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FOREWORD

The classical differential equations for the problem of three

bodies remain valid only if there are no collisions or other dis-

continuities for real values of time. The equations of motion are

not analytic when two or three of the bodies occupy coincident

positions. In order to investigate collisions, the equations of

motion must be made analytic by a suitable transformation of the

independent variable. Once this transformation is carried out, the

equations of motion are regularized. This paper is an exposition

of Sundman's treatment of regularization of the three body prob-

lem. Although Sundman's work is the basis for this paper, related

papers and discussions have been included. To my knowledge, this

paper is the first complete exposition of Sundman's historic paper

to be done in English and in vectorial form. The paper provides

all deve!opments in detail and leaves very little to be taken for

granted.



EXPOSITION OF SUNDMAN'S

REGULARIZATION OF THE THREE BODY PROBLEM

by

Donald K. Yeomans

ABSTRACT

A complete exposition of Sundman's regularization of the three

body problem is given. The equations of motion and the integrals

of motion are derived. Double real collision is investigated and

the vector joining the center of mass of the two colliding bodies

and the non-participating third body is found to be bounded. The

velocity and acceleration approach infinity as the distance between

the two colliding bodies approaches zero. The unit vector ap-

proaches a limit near real collision. A new independent variable

"u" is introduced which is seen to remove the singularity in the

equation of motion for double collision. The mutual distances

between the three bodies, along with the original independent

variable are expanded into a power series in "u". A lower limit

for the strip of convergence of these solution series is determined.

Another independent variable "w" is introduced and it is seen to

remove all singularities for any number of double real collisions

between any of the three bodies. A lower limit is also determined

for the strip of convergence of the power series solution with

respect to this variable. The convergence of the power series

solutions is investigated and found to be extremely slow.
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EXPOSITION OF SUNDMAN'S REGULARIZATION OF THE THREE BODY PBOBLEM

INTRODUCTION

The motion of the three body system is considered regular if the coordinates of the system are
analytic functions of the independent variable. These equations of motion for the three body prob-
lem remain analytic as long as the mutual distances between the three bodies remain greater than
zero. A singularity is encountered when two bodies collide. The series solutions for the coordi-
nates in the three body problem, converge only in so far as there are no singularities. The main
body of this paper will be concerned with the removal of the singularity brought about by collision
of two bodies. This paper gives the exposition of Karl Sundman's "Memoire sur Le Probleme Des

Trois Corps," although additional material and explanations are included. Sundman showed that
the singularity of the differential equations which corresponds to a collision of two of the bodies is
not of an essential character, and may be removed altogether by making a suitable change of the
independent variable. The new independent variable is chosen in such a way that the differential

equations of motion are regular and a real prolongation of the motion after collision is possible.
The coordinates can then be specified for all values of time, whether collisions take place or not
and a positive lower bound can be assigned to the two greater of the mutual distances. The coordi-
nates of the three bodies, and the time are analytic functions of the new independent variable "7"
and they can be expanded as convergent series in powers of "T" for all real values of the time.

THE EQUATIONS OF MOTION

Ifthe masses of the three bodies are designated m 0,mI and m 2 and their position vectors from

an arbitrary point "0" given by _'o,71 and r2, the equations of motion are written:

m o

m I

d2 r"0 fmoml (71 -7o)

dt2 _21

d271 fro1 mo (7o -71)
z

dt 2 &_

m

+ fmom2 (r'2-ro)/xo32 _A°I

+ f ml m2 (72 - _1) m°

d2 r"2 fm2mo(7o-72) fm2ml(71-72)
+ (1)

m2 dt 2 &_ _ Figure 1

m 2

where :oi, _2, _12 refer to distances between the masses. Adding Equations 1 we have;

d 2 7 0 d 2 7 1 d 2 7 2

_ ÷ m +m 2
mo dt 2 1 dt 2 dt 2

= o (2)



Integrating we have;

d7 o d71 d_ 2

mo -_- + ml _- + m2 dt - A (3)

)_ is a constant vector which provides three integrals of motion. Integrating once again we have;

m070 + m, 7, + m272 : At + B (4)

i3 is a constant vector. We now define R as the position vector of the center of mass of the system,
where

m 0 7 0 -_ m 1 71 + m 2 7 2

-- mo +ml +m2 (5)

From Equation 3 we have

d--t" = M- M : m 0 + m I + m 2 (6)

and from Equation 4 we have

At +
M (7)

From Equations 6 and 7 we see that the center of mass of the system moves in a straight line with
constant velocity (i.e., inertial system). Switching to the center of mass system we have

d_ _, = fi o
_ = o d_- = o

m 0 r' 0 +m 1 71 +m 2 7 2 : 0 (8)

H we define

f m o m_ f m o m 2 f m 1 m 2

* + (9)U - Ao I _o2 L_12



We can rewrite Equations 1 as

d 2 7 0

m o dt 2 = gradTo U

d 2 71

ml dt 2 - grad71

d 2 7 2

m 2 dt 2 - grad_2 U (i0)

dot multiplying the first Equation in 10 by dTo, the second by d71 and the third by d_'2 we have,

mo_o " dvo + ml _I " d_l + m2 U2 " d_2 : d7 0 • grad% U + d71 gradrl U + d7 2 • grad 2 U
(11)

or

1 _ dU dU dU

d[m 0 Uo2 +m I v, 2 +m 2 _] : -_ro • d7 0 + _ " dT, + d_2 " d7 2 = dO (12)

finally we have by integration the energy integral

_- [m o Vo2 +m I vl 2 +m 2 _2 2] = U + a (13)

where _ = constant. Cross multiplying the first Equation in 1 by 70, the second by 7, and the
third by 72 we write,

dv 0 fmlm 0 fmom2 (70× 72)

F o x m o dt - A3 ro x 71 +
O1 A:2

d_ 1 fm lm o _ fm lm 2 71× 7 2

r'l × ml dt- : A031 rl × 70 + ---- AI_

dr2 f m2 mo _ f m2 ml r'2 x _I

7_ × m2 dr- Ao32 _2 × 7o + A_ (14)



adding

dv 0 dv I dv 2

mor'o × d-t- + ml r'1 × _ + m2r'2 + dt = 0 (15)

Since Fx dU/dt = d/dt (FxU) we can write 15 as

d ,_ _ , d ,_ _, d
 -o Vo) * o (16)

Integrating we get

mo( o  o) : (17)

Rewriting Equations 8, 13 and 17 the ten integrals of motion are

-_ (m 0 v02 +m I v/ +m 2 v 2) = U + a

moV o + m, V1 + m2V_ : 0

mo Vo + m, Ul + msv2 = 0 (18)

The first equation is the integral of energy, the second equation (3 integrals) is the angular mo-
mentum integral and the last two equations (6 integrals)are referred to as the center of mass
integrals.

It is evident that our problem consists of nine equations in 14 of second order and hence 18 degrees
of freedom. With the corresponding 10 integrals of motion, there remains 8 integrals for a solu-

tion to the problem. These integrals are not known. However a reduction of the problem can be
accomplished by using the last two equations in 18. This simplification reduces the degrees of
freedom to 12. This reduction is accredited to Jacobi and is described below.

JACOBI'S REDUCTION

In the diagram (Figure 2) K is the center of mass of m0 and m, while s represents the center of
mass of the three body system. Our goal is to derive the equations of motion in terms of the two
vectors V and _, thus reducing the system to 12 degrees of freedom.



m o

m 2

Figure 2

From the diagram:

m o + m 1

= 71

- ?o (19)

71 - ?o : ?

?2 - ?o = _? +

where

m 1

m o + m 1

mo?o + ml ?I + m2 ?2 = 0 (20)

71 : ? + 7o

?2 : ;_?+ P + ?o

mo? o ÷ ml(?÷r'o) + m_(;_r'÷P÷?o) -- 0



recombining terms

_0 (too +ml +m2) + ml F + m2 (_F + _) = 0

or

_o - M

r'(m I ÷Xm2) +Pro 2

where

M = m I + m 2 + m 3

m ml m2 _ +, + mo +m_] _
r'o = - M

mo+m, ] _
r'o = - M

(21)

finally

m2

Fo = - Fx-_-p (22)

Once again we write

F, = F + Fo

Substituting Equation 22 for Fo

m2

l m I

r I - r - mo +m I E ml 1 -= F 1 motto I

m2

_P
m o

=

m o + m I

m_
mF- M



letting

m o

mo _m I _u (23)

m2

F: _? - -m-_' (24)

Rewriting Equation 20

?2 : kF + F + Fo

Using Equation 22 we have

m2 m o + m I

m o + m 1

r'2 - M
(25)

rewriting Equation 25

M
z

mo +mI r2 (26)

If we define

M

R : m2 (too +ml) (27)

we have from 26

(28)



Collecting formulas and definitions, remember that;

m2 _ ml

F 0 = - X7 - _ p 7 : 71 - 70 X = ml +m °

m2 . m0

71 : _F - _ p P = gm 272 _ : m I +m 0

m 0 + m 1 M

72 - M P g - m2 (mo + ml )

At this point Sundman changes notation. The distances between the bodies are denoted

= 171 = = rAol -70 r2

: rl : 17+_71

_ _t IOQt_

where the distance between m1 and ms is denoted with the missing index (ar2e). It should be emphasized
that r s is not the absolute value of the vector Fs . The notation r s and r used interchangeably
depending upon the circumstance.

Writing the equations of motion (1) using the new notation we have:

dS70 fml (FI-7o)fms (7s-7o)

- = + 3
dt s r23 r 1

d2r 1 fmo (Fo- 71) fm 2 (72-71)
- +

3 r:dt s r s

dS- r2 fm° (7°-72) " fml (72 -71) (29)

dt s r_ r_

We write for convenience,

ms - m° +ml _ (30)

72 - 7 0 : _7 +M P + M P : > + x7

m o + m I _ ms

72 - FI : M p - _F + _- p : _ - _F (31)

71 - r, 0 : _ r s : x s + yS + z 2 (32)



Substracting the first Equation in 29 from the second and using 32 we write

d_ 'mo_fm,_ F!_-_,/ /_-_o!_
dt2 r23 r3 + fro2 L- r03 - r13 _J

= - f(mo+m,)r_ fm_Lr2 - _,_ .J

So that

d 2 - f(mo+ml)_ +fm 2
dt 2 r 13 fm 2 + ro3 (33)

By Equation 26

M

mo + m 1

differentiating we have

d 2 _ M d2 r2

dt2 m o + m I dt 2

Substituting in the third equation in 29 and using 30, 31

d 2 p M d2r'2 _ M Ff mo (-_-_r')

dt2 m° +ml dt2 m° +ml L r13

= fM I- /_(_r_+-_?)+ _(-P+/_F)]ro3

< >l: fM + +r' --+
13 _0 3 r13 _o3

dt 2 = ro3o3 r I r-1,3 (34)



Rewriting Equations 33, 34 we have

dt 2" = f(mo+ml) _ ÷ fm2_ r13 - fro27 +

d2 P fM _ # + + pX7
dt £ = (35)

Looking at Equations 35 we have completed Jacobi's reduction. We now have 6 Equations of the
second order for 12 degrees of freedom. Since we used the 6 integrals of the center of mass for
the above reduction, we are left with 4 known integrals.

We note that in a collision of masses m, and m0, r goes to zero while r, and r 0 remain re-
latively large and in fact equal to each other. This can be seen by referring to Figure 3.

72

I

m 0

m 2

71

With these approximations the second Equation in 35 can be written

d2_ -fM_
dt 2 p3

(36)

With this approximation the problem is reduced to the two body problem.

AREA INTEGRAL

The area integral will now be derived. From Equation 18 we rewrite

d7 o d71 d72
mo 7o × dt + ml 71 × dt + m2 72 × dt -

10



UsingEquations22,24,and25

dF mo m2 d_ room2 _ d_ m_ _ d_ /3F d-r ml m2 dr'
mo_aF×_-+,_ _×_+_._r×_+_-moP×_-+m I ×_-_ _t_×_

mlm2 dp mlm22 dp (too +ml)2 , d):_

_--/-L_×a-_+ M2 P×a_ -+ M2 %' _(- =

collecting terms

d_' d_ Ira22 mo m, m22_ [too ?Q + + -- (mo+m,)Sms]+ Ms

d7 m s /_n 2 + 7× _-+_×_ - =

From Equations 20, 23 the last two terms are zero and

d_ d_ [ms s mo ml m22
x _ (m oX2 +m,.2) + _ × dt [ M 2 + M_

m o + m 1 ]2m

+ Ms J = F (37)

now using 20 and 23 again

m 0 )k2 + ml #2

m 0 m12 + m 1 m:

(ml +too) 2

mom,(mx+too) morn,
(ml -}mo) 2 ml 4toO

(38)

and

m22 m 0
-- - 4 --

M2

m1 m_

M2

m o +ml) 2

M2 m2

msSmo +mira2 2 -}m2mo 2 _ 2momlm 2 +m 2) ,'
z ....

M2

m2(m,+m2 m3)(mo+m,)
:: n

M2

ms (too +m_)
z -- --

M (39)

11



If we define

mo +In 1
z

mo m 1 (4O)

and from 27

M

g = m2(m ° +m13

Using this notation, Equation 37 may be written

d_ d_
g_ x _ + h_ x dt - gh_ Area integral (41)

ENERGY _TEGRAL

Toderivetheener_ integralwestartwith Equationl3

[m0 \at / +ml \-dt-] +ma \dt ] J = U _ a
(42)

where now from Equation 9

mom m 1 m 2 mom2_= -- + -- + ---
f \ r2 r o r 1 / (43)

Substituting Equations 22, 24, 25 into 42 we write

( (1 dr" __ d_ 2 dr' m2 d_ 2

_- o -x_-- M _-_J +m, _--_ _-#

squaring the appropriate terms we have

+ %(m° M _/j = U+ ct

l fro [A (d--_2 2Lm2 d_ d_ m22 (d_2 1 I_ 2 (d__ 2o 2\at] + M at at + --M-\_-/ J + m, \at]

2/zm2 d}' dp m_ (d_21

M dt dt ÷ --_ \_-/J

+ _too +ml d_ 2
m 2 M2- (_t" = U + _z

12



Collecting terms

I (d_ 2 (d_ 2 (rno rn22 ml md m2 (m 0 +m I )2_

/

+ 2 dt dt - = U

from Equations 20, 23, the last term on the left is zero and using Equations 38, 39, 40 and 27 we
have

i g\a j ,,\a-r] ghU+

if we define

hgU = V (44)

we have

(d_ 2 , [d_ 2

g\_] + n\_-] = 2V - K Energy integral (45)

The next few pages will be devoted to deriving some equations which will be useful in in-
vestigating the motion of the system. Differentiating Equation 45

dF d 2 _ d_
• --+ 2h _--'_" -- -2g _- dt 2

d2_ dV dr2 dV drl dV dro

dt 2 2_- 2 " _- + 2 dr 1 dt _ 2 dr ° • _{

this can be represented vectorially as

[ d2F d2_ ] ^ (^ dV dV ,iV)[vr _÷vpp ] " g -_t2 _+hd-_-P = (v2 i ÷Vl J+vok) • i cl_-2 + ; dr-i _l_ d;.o

or

d2r' ÷h d2P 1_ • g dt_ _ = _ • gradV

13



wehave

d 2 _" d 2 p _

g dt 2 - grad_.V h dt-- _- - grad?V (46)

The Euler Equation for a homogeneous function of the order n

afx iax i - mf
i

where

f = f(x,,x 2,.-.x)

Since v is a homogeneous function of order (-1)

av av
" _ * _ " a_ - (-1)v

from Equations 46 we have

d 2 _ d 2• -- + h_ •
g_ dt 2 d_ (47)

adding Equations 45 and 47 we have

[fd_'?+_.. d_ l [( d_ l : L dt; dt j+u (48)

which is equivalent to,

[d'(_) l h ['d2(_] l
_-L dt_ J + _L dt-_ J = V-K

or

d2 (g_2 +h_2) = 2(V-K)
dt 2 (49)

14



' If we define

R2 : _2 + h_2 (50)

then from Equation 49

d 2 R 2

dt 2 - 2(V- K) (51)

Now we assert that

R 2
r02 rl 2 r22

÷ + -- (52)mo _ m2

where ro : A,2, r 1 = Ao2 , r 2 = AOl Equation 52 is justified if it can be reduced to Equation 50; using
Equation 28' we have

R2 - ]_-_1 _ I_+_1 _ I_[_+ -- + --
m o m 1 m 2

R2 P2-2/_p'r'+Iz2 r2 p2+2_._+_2r2 r 2-- + ÷ --
m 0 ril I m 2

R 2 : p2 1 + 1 + r2 + m_ + + _ " _ m 0

by Equations 20, 23 the last bracket is zero and

[ ]+rm°m 12 ml +m° r 2

R 2 = p mlm 0 L(mo +ml)2 + _2

or

Fml +mo 1 Fro2 +mo +ml 1
R 2 = p2 -- + r 2

L m, mo _] L(-mo -+_-, i _

15



and using Equations 27, 40 we have R2 : gr 2 + hp 2 which is Equation 50 and assertion 52 is justified.

From Equation 51

d[ dR] d2Rd_- 2R_- = 2R dT- + 2-_- : 2(V-K)

and

d 2 R (dR_ 2
--+ = V-K

R dt 2 \dt J (53)

We now differentiate R_ (Equation 50) to get

dR d_' dp
R _- = g7 • _ + hp • _- (54)

Squaring Equation 54

\][dR_2 (dr_ 2 h 2 p2 (dP_ 2 dr' d_R 2 _- : R 2 r 2 + + 2hRr" " p " " (55)

We now define

p = R-_- r _ -p dt] + _-_ Fx dt ] +_-_ _x _) (56)

Since (g×b)*= _292_(_.g)2 we can write

P __( dp + g 2 _ _'. + 2 - _._ = r _ -p dt/ _ \dt] _ \_-] (57)

Since r dr/dt : 7 • dF/dt and p dp/dt = p • d_/dt the last two brackets in 57 are identically zero
and

: Rh( dp dr_ 2
_P R_ r d¥ -P dt] (58)

16



using Equations 55 and 58 we write

dR_ 2 1 Ig2r2/dr_2 (dp'_ 2 d_ d_ (r dp dry21_-] ÷P = _ \_-] +h2p 2 • ._ \_] +2gh}' "_ _-_ _-_+gh _-P dt] _]

1 2 2 h 2/92
= _ r + \_-) +2gh}" "p "_-_ "_-+ghr 2 \-d-t) - 2gh_" p" _-{ • _-+ ghp 2\dt/ J

1 rrdr 2R 2 Igr2 +hP2)mgk___t] + dp 2

from Equation 50 and Equation 45

_- +P = 2V -K (59)

It is evident from Equation 53 and Equation 59 that

d 2 R
= --+V

P R dt 2

or

d 2 R
- P-V

dt 2 (60)

adding Equations 60 to Equation 53 we have

d 2R (dR) 2--+ = P -K
2R dt 2 _ _ (61)

In an effort to express ___(Equation 56) in a different form we introduce

)2 g2 h 2
hR 2 d_ gh p2 _ + -- _2

gr 2 p2 P× _ - _- R2 (62)

17



from Equation 41 we denote

_h_ : _1 + _2

where

d_
(63)

Substituting Equations 63 into expression 62

squaring

hR2 !_ p2_ _2 + (_l +_2)2c_r20 2 - (_i+;2 R2

b- -" I

gr 2 p2

2/o 2 2p2 p4

J
cl 2 + c22 + 25'I " _2

+

R 2

rearranging terms

F hR2 p4 13 [ hR2 2hR2 p2 + hR2 p4c? kg_ p2 R4 + _ + c22 gr 2p2 h2 gr 2 p2 NR2 gr 2 p2 R 4

the coefficient of C1

+ _,

• _2 by Equation 50 is written

I_ hR2 2P 2 + hR 2 2P 4 2 7 (64)
gr 2 p2 hR 2 gr 2 p2 R 4 + _- J

2 + 2hp 2 2 2
-- + -- - _ __ +

_r 2 [_1-2 R2 _2 _r2

2hp 2 + 2gr 2 2 2R 2
z _ __ +

gr 2 R 2 gr 2 Kr 2 R 2
- o

18



• therefore 64 is written

Since by Equation 50

hp 2 1 gr 2 + hP 2 1

gr 2 R 2 R 2 gr 2 R 2 gr 2

we write

C12 + C22 gr 2 p2 h gr 2

or

cl2 11c1 _ [R2- 2hl....gr 2 c22 r:2p 2h gr 2 gr 2 C22 grr 2 p2h J

by Equation 50 again we have

c12 + Fg r2 +hp 2 -hp21 _ c12 c 2

g r2 c22 L gr_ P_2h J gr 2 + hP_ (62')

using Equations 63

c12 + c22 g (7 dtj + (_x _]
.... d_ 2 h d_ 2

gr2 hP 2 r_ x

now this equation is equal to the expression 62' and upon further inspection it is also the last two
terms in the original definition of _P (Equation 56). Therefore we can rewrite Equation 56 as

gh dp dr 2 hR 2 dp _ ghp 2 __ _2
P = R-_ r dt -P dt 4- p x _ R2 _ + R 2- gr 2 p2 (65)

19



Using the derived equations we shall now investigate double and triple collisions. Some important
theorems will result.

DOUBLE COLLISION--p REMAINS BOUNDED

Remembering Equation 51

d z R 2

dt 2 - 2(Y - K)

we shall first investigate a collision of m0 and m1 (double collision). In this case r - 0 as t - t 1 where
t_ is thetime of collision now since v : hgU (Equation 44) and u is proportional to r-', V necessarily
goes to infinity. We write if r-0 _ V_°°_ t- t I and from Equation 51

d 2 R 2

--dt 2 > 0 tl-So<t<t 1 (66)

where t 1 - s o is an interval about tl; from 66 it is evident that dR2/dt iS increasing and we have two
possibilities

dR 2

a) dt > 0

dR 2

b) dt < 0 (67)

Case a) implies m2 is smoothly increasing with time and case b) implies R2 is smoothly decreasing
with time.

R 2

I
I
I
I
I
I
I
I
I

tl -_o 1

CQse

R 2

t

Figure 4

Either 67 a) or 67 b) could be true in a double collision.

t 1 t

2O



Wewill nowshowthat as r _0,p_Pl wherepl is finite. This proof will be done using the
method of reductio ad absurdum. For a double collision, r _ 0 and p is finite. We shall assume that
p does not approach a limit. Since 1_2 = gr 2 +hp 2 (Equation 50) it is evident that 1_2 does not approach
a limit. Since 1__ is continuous with continuous derivatives, and is without limit by assumption, R2
must oscillate. However dR2/dt, by 67 a and b, has a constant sign and R2 cannot oscillate. We
have a contradiction and the original assumption is incorrect. Therefore p has a limit which we

denote p_. This completes our proof and we write Theorem 1:

lira p = Pl
r-O

From 28' we write

r0 : I_-JI

r2 : ]_'1

as t_ta,7_0 and

r0 = Pl

rl = Pl

r 2 = 0

This trivial conclusion for a double collision was obtained from the signs of the first and
second derivatives of R2 .

FOR A TRIPLE COLLISION, THE AREA INTEGRAL (C) EQUALS ZERO

In the case of a triple collision we have only to consider case b of 67

and

R 2 _ 0
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writing Equation61

d 2R (dR) 2--+ : P-K
2R dt 2 _- _

and Equation 65

gh ( dp dr_ 2 hR2 ( dp-- _r 2 p2 _-
ghP 2 )2R2

g 2 h 2
+ __ _2

R 2

If we let the first two terms of P = F, we have

g2 h 2 c 2
P - +F
- R2 (68)

where F_>0. Substituting into Equation 61

d2 R (dR)2 _ g2h2 c2
2R _ + _ R2

+F-K

or

2R --+d2Rdt2 (dR)2_ g2 h2C2R2 + K = F (69)

Multiplying both sides of Equation 69 by dR/dr

dRd2R (dR) 3
2R dt dt 2 + _-

g2 h 2 c 2 dR dR dR

R2 _-+K_ : F_ (70)

For convenience we define

/dR_ 2 g 2 h 2 c 2
. : R_) +KR+ R (71)
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differentiating, we have

dH dR {dR_ 2 dR d 2R dR g2h 2 c 2 dR

- --- + K _ R2 dtdt _- k_-/ + 2R dt dt 2

Since dl{/dt equals the left hand side of Equation 70 we write

dH dR dR
dt - F _- or dH : F _- • dt (72)

We now stop to introduce some convenient notation; when t = t' , R = R' and H = H' likewise when
t : t',R : R" andH : H"

t'<t<t" (73)

Integrating 72 and using the above notation we have

ftH" - H' = F dt
i (74)

we now consider two subcases a) and b)

a) dRd_- > 0 for t '<t<t -

therefore R is increasing and R' <R'; from 74

f dRF_-dt >0

and H' _<H"

dR
b) dr- < 0 for t' < t < t" (75)

R is decreasing and R' _>R", H' _H" . Since we are considering a triple collision, R must be de-

creasing and we only consider case b) that is;

dR
d_-< 0
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andR_0 as t _tl, H"<H' R'_ , R"_< . RewritingEquation 21

[dR\2 g2 h 2 c 2
H = Ri_-} + KR + -- R

Since R is positive

R2 h 2 c 2
H>KR+ R

and

g 2 h 2 c2
KR" + _ -<H"

Since H" _<H'

g2 h 2 c 2

KR" +_<H'

now as t" -t 1 , R" 40 if we are to have a triple collision. If R" is then zero we have __<H'. Since

H' is finite, we must conclude that c : 0. This is one of Sundman's important theorems. That is;

Theorem 2: For a triple collision, the area integral (c) equals zero. This is a necessary, but not

sufficient condition.

BEHAVIOR OF VELOCITY VECTOR NEAR DOUBLE COLLISION

We now return to the case of the double collision in an effort to investigate the velocity near

collision, i.e., to investigate d_'//dt as t _ t 1 . For double collision r 40 as t _t,. In an interval

t_ - _o -<t < t_ there exists a number b such that

ro >b

rl >b

when

r 2 : r _ 0 (76)
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Rewriting Equations 35,

d2

dt 2 _ _) (_ r_)f(m o+ml) _ +fm 2_ - fm 2_ +
r

- ' '"II
The second of these equations can be rewritten

d 2 P fM
-- #

dt 2 r 12

(_ + _F) fM_ (_ - _)

rl ro2 ro

By the triangle inequality

d 2 _ fM /L _ +_F fM_ _-<rl"-"_ r I + ro2

by Equation 30 and 31 this reduces to

< fM +

and from 76

(77)

in the interval t 1 - _o < t < t 1 .

We note that this acceleration is bounded. If we define t' = t 1 - _o -<t < t 1 then we note that

_ ftt__dt/_/'d-¥ - ,dt _
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where the prime indicates d_/dt has been evaluated at time t'. By the triangle inequality

-< _- + t _-t_ dt

by 77

< _dtJ ] ÷_ (t-t')

as t _t I

d_ ] fd_' I Mf< \dt] + _ _0 (78)

Since

t 1 - t' = tl - tl + _o

= _0

We see that I (d_/dt)'t is finite because it is evaluated before the time of collision and ]d_/dt I

is seen to be bounded. At a later time, Idp/dt I will be shown to have a definite limit at collision.

Rewriting the energy integral (Equation 45)

/dr_ 2 , (d_ 2
g\N) ÷n\_-) : 2V-K

as t - t i, v has been shown to approach infinity and the above discussion leaves d_/dt finite. There-

fore we realize that dr/dt _ or the velocity of the colliding masses along the vector joining them,

approaches infinity as t _ t 1. Thus far, we have seen that p has a definite limit, dp/dt is bounded

and dT/dt approaches infinity as t _ t 1 in the case of a double collision. The following section will

be devoted to further investigation of dT/dt as the masses m0 and m 1 approach collision.

We start with r 2 = 7 • 7; differentiating we have

dr 2 d7
dt = 27 " _-
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dividing through by 2 and differentiating again we obtain

1 d 2 r 2 [d_ 2

dt 2 \dt ] ÷

d 2 _'

dt 2 (79)

The energy integral is once again written

+"km] : 2v K

where v can be written as

V = fM I + ml rl mo ro (80)

i.e., v = ghU. Upon further inspection, in the above energy integral, d_/dt remains finite and the
last two terms in the bracket of Equation 80 are finite if r - 0 as t _ t I • Under these conditions,
the energy integral and Equation 80 yield

d?' _2 2f(mo + ml)
dt ] r L1 (81)

L 1 = finite as t _ t I . We note that d_'/dt behaves roughly as the inverse root of r. Dot multiplying
the first equation in 35 by F, we have

d2r f(mo +ml)

r'" dt 2 r L2 (82)

L 2 _ finite as t _ t 1" Adding Equations 81 and 82 and making use of 79 we have

1 d 2 r 2 f(mo + ml)
= L'

dt 2 r (83)

where L' = L 1 +L 2 . It is clear from 83 that as r 40 (double collision) d2 r2/dt 2 _co and

d 2 r 2
-- > 0
dt 2 (84)
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This tells us that dri/dt is increasing and we have two subcases

dr 2
a) dt < 0

dr 2
b) dt > 0 (85)

Case b) insures that r _ is increasing so that r does not approach zero. Since we are considering
collision we reject this case and consider only case a. In this case r 2 decreases monotonically.

From the vector indentity _2 g2 = (_. g)2 + (_× g)2 we let _ = 7, g = d_/dt and write

\dt] : 7" dt] + _× dt]

or

\dt] = r2\at-] + 7x dr/ (86)

From 81 we see that as t _ t l

(dr'k 2

,\a-] - 2f(m0+m,)

and

r2 \dt ] - 0 (87)

Now from Equations 86 we see that we have the sum of two positive quantities equal to zero and
hence they are each identically zero. Therefore

(88)

as t-t i.
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Wewill nowshowthat

dt

as t - t i • From Equation 35

d_ _ (1)dt 2 - f(m° +ml) _ 4 f m2P rl a

We cross each side of this equation by F so that

x dt_ _- : fm2_ x p 3

and

d( d_ (_ 11_3)d_ F× _ : fm2r' x _
r

Since a a-b 3 : (a-b) (a 2+ab+b 2) we write

d( d_)d_ _'× dt- = fm2_ x _(_o- _l)(r _ + lro r_ + _ 12)

or

dCd_} ,rl-rO,(1_, _)
taking absolute values

dC )1 F_,%'(' ' _)dF tFx 71 r-o - r 1 ro 2 r 0 r12rx _- = fm 2 -- + --- + (89)
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m 1

m2

m o

Figure 5

In the time interval t, -_o-<t <t I , p<r o +gm I <ro+r where r = rain (r o, rl, r2) also since r <r o

p < 2% (90)

in the neighborhood of collision and

Irz-%l < r (91)

17×_t < rp (92)

from 76 r o >b, rl> b and

1 1
m <

r 0

1 1
-_ < _- (93)

Substituting the inequalities 90, 91, 92, 93 into Equation 89

_t ( d}') 6fm2 r2r'x _- < b3 (94)

We note that from 88 and 94 both 7× d}'/dt and its derivative go to zero as r goes to zero. We now

take two instants oftime (t", t' such that t I -So_<t"<t' <t 1 and
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We see that

from 94

(7x dT_'

I

St t 6f m 2 r 2 6f m2 r 2dt < ,, b3 dt b3

dt

(t'-t")

We see that

6f m 2 r 2 (t'- t")
<

b 3

now as t '

and

t 1 (collision)

d7_" 6fm2 r2 (tl -t")

7 × _- ) < b 3 (95)

Here we see that 7 x dT/dt not only goes to zero as r goes to zero, but it does it very rapidly since
as r _ 0, t"4 t l the numerator in 95 goes to zero rapidly.

The unit vector £ as 7_ 0 will reveal the type of motion near collision. In an attempt to in-
vestigate this unit vector we write.

r 3 r 3 r 3

d_
r 2 dt

Therefore we write

( 67)d_ _- 1_ 7x _- x 7
dt r 3 (96)

now from 95

da_- _3 @ d7) 6fro2 (tl -t)
• < x _- r < b3 (97)
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Weintroducetwomomentsof time t' andt" suchthat t 1

t tf d_
_, _,, = |

,, _-_- dtJ,

-_0<t"<t'<tl now

and by 97

ft t_ d_ j't'6fm2 (tl -t)1_'-_"1 < dt < dt
,, _" b3 (98)

We now evaluate the integral

t I t t t I

ft,, (tl-t) dt --_t,, tldt-ft, tdt = tl(t'-t")-(t;
-](t -t")(t'+t") = (t -t")[t 1-_-(t'+t')]

from 98

6f m2 1
(t'-t") [tl- _ (t' +t")] (99)

as t', t" _ t 1 , I _" - _' { _ 0 and by the Cauchy criterion, _ approaches a limit. If we denote this
limit by _ we have

_ --_, l_i -- I (1oo)
t't I

Because the unit vector is constant near collision we conclude that the motion is smooth and

dismiss the possibility of m0 and m1 spiraling into collision with each other. In addition, (-t) can
be substituted into Equation 35 without any effect. This suggests that the motion is symmetrical
about the t axis. The two above conditions suggest a smooth and symmetric motion before and

after collision, see Figure 6

Figure 6
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Since

d}* dr dF

d_- : _- F + r _-

and

From 87

dt]

r_2 f_2
= \dtJ + r2 \dt] (101)

so that

Idly
r\dT] _ 2 f(m 0 +ml) (102)

rdr_2 (d_V
r_-] + r3 \_-] _ 2 f(m0 +ml) (103)

and as t_t I we see from 97 that

(dF_ 2

which leaves

(dr_ 2
r\d_) _ 2 f(m o +ml) (104)

or

dr _- ¢2 f(m o +ml) (lO5)

from 101

dr dr dF
]/7 dt : }/7 a{ • F 4 r_-_- (lO6)
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andsincetheunit vector_ is constantnearcollision thelast term in 106is zero. From 100,105
and106wehave

dF
at- - ¢2 f(mo+m,) (107)

and

dr" _; ¢2 f(mo
_ -_r +ml) (108)

From 107, we can gain insight as to the behavior of the velocity vector near collision.

BEHAVIOR OF "r" NEAR DOUBLE COLLISION AND INTRODUCTION OF REGULARIZATION
VARIABLE "u"

In order to investigate the asymptotic behavior of r in the neighborhood of collision, we write
down 105

dr _ - ¢_ f(mo )at +m,

which is equivalent to

2 dr 3/2

3 dt + ¢2 f(m o + m 1) -- 0 (109)

we see that

dr3/2 I+ ¢2f(m o +mr) [ < E (ii0)

if 1t - t, I< _ where _ and _ are arbitrary constants and c _ 0 as t _ t, now

Since rt= t, O: also

2 r3/2
- _f(mo*ml) (t,

3r3/2 - ¢2f(m 0 _ml)(t 1

£t[ 2 dr3/2 ]-t ) -- d-_-- + ¢2f(mo +ml)

t I

ftt' 2 dr3/2_dt. + ¢2f(mo +ml-t) <

dt

dt
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from Equation110

2 r3/2 _ ¢2f(mo+ml)(t I _t)t < e(tl-t)

if Jt 1 - t[ < _ and

2r 3/2 J
i

¢2f(_o+m,)(_,-t)-Xl < ¢2f(mo+m,)3

if It 1 - t[ < 77 as t _ tl, c(t) goes to zero and

2r3/2

3¢2 f(mo+ml) (tl -t )
(111)

if we define

2 1 1

3 ¢_ _(mo+m,) A_ (112)

then

r 3/2

1

A 3/2 (t 1 -t)

t -t 1 and

r _ A(t I - t) 2/3 (113)

From 113 we note the asymptotic behavior of r, as a function of t, near collision. From 105 and
113 we write

dr

dt

¢2 f(m o +ml)

CA(t 1 -t) 2/3
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and if we define

fS_(m0 +m,)
(114)

we have

dr

d_- _ B(t, - t) -1/3 (115)

From 115 the velocity, as a function of time, is evident in the neighborhood of collision.

we note that as t -t, the velocity becomes infinite.

We shall show that r (see 113) can be expanded into the following series

Once again

r = a 2 ( t,-t_2/3/ + a3 ( t,-t_3/3l + a4 (t,-t) 4/3 + "'"

if we let (t ] - t ) 1/3 = u

r = a 2 u 2 + a 3 u 3 + a 4 u 4 + " " " (116)

and

du 1
dt - 3 '/t , - t ")-2/a

or

du 1
dt r

where

f t dtu = _-

t o

(117)
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now

dt
du = --

r (118)

from 113, 115 and 117

dr dr dt r
-- z

du dt du _t7

and

dr

d--d"¢_ (119)

The regularization variable u, as defined by 117, is referred to as the pseudo-time. This new
pseudo-time is seen to remove the singularity in the velocity, for now, the new velocity is pro-
portional to the square root of r and as r _ 0, for collision, the velocity does not go to infinity. The
velocity is now an analytic function.

In an effort to investigate the convergence of the Taylor series solution, we state the Cauchy-
Picard Theorem without proof.

CAUCHY-PICARD THEOREM

Theorem 3: Let Qi (q,, q2 "'" qn) i : 1, 2, "'" n be analytic functions which do not contain t

explicitly and which are developable into Taylor series in the powers of differences of qi - qi and
these series are convergent if;

a) < q/

Then there exists positive and finite quantities 0j' such that when a) is satisfied

i

b) Q, (ql "''qn) < Oj j : 1, 2, "'" n (120)

Under conditions a) and b) the system of differential equations

dq i

dt - Qj (ql "'" qn ) (121)

admits one and only one analytic solution such that qi goes to a finite limit qi when t -t.

37



Conditiona) assuresthefunctionsareanalyticwithin the radius%'. In this solution,theun-
knowns(,qi) are developable into Taylor series in powers of t -t which are convergent for It -t-t-<T'
where T is minimum

ql q2 qn

QI' ' Q2 Q, (122)

At a time t : t let the components of q and _ be (x,, Yi, zi). and (_.i, Y_, _i) respectively and
similarly let the components of _ and _ be ( £,, _,, _) and x i, _, _ Condition a) assures that

(123)

where k 0 and k 0' are minimum radii of convergence. From 28'

r:

(124)

We let

(125)

so that

(126)

from 125

We know from 123

+ [1_-_1 +I_, _,1]_ (127)

I_-_1-_ Ix_-_l + ly_-_l _ Iz_-_-_l<_o (128)
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andsimilarly

I71-_1[ < 3ko (128')

We see that

I_ 2 _r2 [ : ¢(x2__2)2+ (y2__2)2 + (z2__2)2 < 3_0 2 : _r_ ko (129)

likewise

[L -71] < /3 ko, [7 o -70 < ¢5 k o (129')

Using 128, 128', 129, 129' and 127 we find

]Po[ < 12roko + 12ko 2

and from 126

ro2 > _o 2 - 12(_oko+ko _ (130)

ro 2 must remain positive so that

12ko 2 + 12rok o - ro 2 < 0 (131)

Since k o must be greater than zero we have

(4__132- 6 ) Fo ¥o
0 < k o < 70 = 4_÷6 12.928 ""

The inequality is strengthened if the denominator is set equal to 14

¥o > 14ko
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andsimilarly

¥1, ¥2> 14ko (132)

from 124 and 125

r: : 7: +eo

I I ( eo_'J2
ro ro\_+_-/ (133)

Here we see that I/ro, which appears in the equations of motion, remains analytic for Fo > 14 k o.

Itmust be remembered that xi,Yi, zi were chosen arbitrarily and that the radius of convergence

k0 depends upon these initialconditions. As 7o is taken smaller and smaller, the radius of con-
vergence decreases. Rewriting 130

ro 2 _> TO2 - (1270k o + 12ko 2)

using 132

ro2 _> 7o2 - 12_ o-_ +12 196/

or

ro2 > ro2 - 127o2 = 49
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sothat

andsimilarly

270 2Fo
r I > -_--' r_ > 7

sothat

__1 < 7 A < 7 1 <_77
r 0 - 2F 0 ' r 1 -- 2F 0 ' r 2 2 r o

(134)

These three inequalities hold for the given initial conditions 123. Using these same initial con-
ditions the disturbing force will be investigated. We write;

Ix2x,I : (x2-_2)- (x,-_,) + (_2-_,)

Ix2 xll __ix2 _t + lx, _,1 + I_ _,l

Using 123 and 132

Yo Fo 8 F o
[xz,-x 1[ 5 ko + ko + Fo < ]_ + ]_ + Fo _ 7 (135)

from 134, 135 and 132

X2-Xl 8Fo(7)3< 1
Ir_ _- -< _ 2_o - 4k:

similarly

I

x,-×o , x2-xo[ < I

1 r23 r13 [ - 4k02 (136)

Now from 129, 129' we see that condition 120 a) of the Cauchy-Picard Theorem is satisfied.
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Thedisturbingpotential43is written

/In 0 m 1 nl I m 2 nl 0 m2_

= +--+ _r 0 r 1 /

now

1 DU f FmO ml ml m2 1

m, ax, - m, L_]- (x,-Xo)+-- (x2-×,)roa J

and from 136

1 aU <: f(mo +ml) /_" _ f(mo+ml+m2/

m_ ax 1 \4ko2 ] < 4ko 2

In a similar way, it can be shown that

_U

4k_ (137)

From 27, 40 and 44

m o m 1 m 2

u _- ---K-- v (138)

and from 43 and the instant t =

Im m 1 m 0 m s m 1 m21

and using 132
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sothatfrom 138

m o m I m 2 _
M--V_ <

f(m lm 2 +m2m o +m I mo)

14k o (139)

Two useful inequalities will now be derived. It is evident that

(m, _2/2+ (m2mo/_+ (m, too/2> 0

or

So that

m02 + m12 + m22 > m 1 m 2 + m 2 m 0 + m lm 0

adding 2(m, rn2 +m2m o +m, mo) to both sides of this inequality; (mo +m I +m2)2 > 3(m 1 m2 +mum o +m 1 mo) or

M2 > 3(m,m_+m=mo +m,too) (140)

Now if

4m i mj < M 2 (141)

then

4moral < (mo+ml+m2) 2

4mom 1 < (m o +m,) 2 + 2m 2 (m 0 +ml) + m22

o < (too-m,)_ + _m2(mo+m,)+m_
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Since the final step is correct, then the steps can be reversed and assumption 141 is correct. From

139 and 140

from 141

rno m 1 m2 _ fM 2

M V < 42ko (142)

m.m. K M ]KI< (143)

where K is the energy integral constant. The energy integral can be written

2

i=O

mo m1 m2 2m o m I m2
: M K+ M V

so that

m o m I m 2 K 2m o m 1 m 2 Vmi _i 2 < M + M

Since this is true at any moment of time

momlm2 K 2mo m__m2 Vmo Xo2 < M +

from 142 and 143

mo M fM 2
mo Xo2 < _- IKJ + 21ko

or

M fM2
Xo < -Izl+ 21moko (144)
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Ifwe let m = minimum (mo,m,, m21, 144 can be written

M fM 2

Xo_<_ IKI +

or

_-IKI + fM2_o < 2link o

It is obvious that a similar procedure will give the same results for _i , _i and _i so that

V/___ fM 2_i , _ , _i < IKI+_ (145)

Since from 123

£i-_i < ko' (146)

We let

, _MI_ fM 2ko = + 2link o (147)

and 145, 146, 147 yield

Ix, I = xi-_i ÷ _i < 2ko' (148)

We have k 0' for the Cauchy-Picard condition 123. Note that k0' is the radius of convergence
for a series, in powers of differences in velocities, which represents the right side of our dif-
ferential equations. One should realize that k0' can be arbitrarily chosen. The Taylor series
representations of the right side of our differential equations, in powers of the differences in co-
ordinates and powers of the differences in velocities, have been investigated. The radii of con-

vergence were also determined. Each power series representation is valid up to the singularity
at the point of collision. A new independent variable will be defined such that the singularity at the
point of collision is removed.
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RADIUSOF CONVERGENCEFORTIME SERIESWHENMUTUALDISTANCESARE ALL
LARGERTHAN14k0

Our final Taylor series solutionfor theright handsideof our equationsof motion,is ex-
pressedin powersoft -t whichis convergentfor t -}_<T' whereT' is minimumof %/Ql',
q2'/Q_', • • • q.'/Q." (see 121) In order to investigate the radius of convergence for the solution
series, we take two representative equations of motion:

dR o

dt = Xo

(149)

from 123, Ixo -Xol <ko and from 148 I£oI < 2ko' so that

i

qo ko

Qo' - 2ko'

from 123 £o -Xo <ko' and from 137 I'£ol < fM/4ko2 so that

(15o)

ql' 4ko' ko2

Q1' fM (151)

We know that T' is the minimum of 150 and 151. Now

4ko2 k o' k o k o
M - 2ko' = _o (8k°k°'2-M)

and from 147

4k: ko ° k o k o
(152)

Since the largest m can be isM/3, we substitute this into 152 and find 152 to be positive, so that

ko/2k0, is the minimum of 150 and 151. We see that the series solution, in powers of t - }-,is
convergent for

it -t-I< T'
k o

r o , r I , r 2 _> 14k o
(153)
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Motion is regular in the given interval, if the coordinates of the bodies are analytic functions of the

time in this interval.

This analysis has been done under the restriction that all the mutual distances are greater

than 14k 0.

THE EQUATIONS OF MOTION USING NEW INDEPENDENT VARIABLE "u"

If the scalar components of ? (25) and _ (26) are designated (x, y, z) and (_, 7, _) respectively,

equations 35 are written

+

_" +

f(m o +ml)x

r 3

f(m 0 +ml)Y

r 3

- fX

- fy

f(m o +ml)z
_" + : fZ =

r 3

= fm 2 + + fm2_

- _ fm2y ,- + + fm2v

- frn2z /_ + + fm 2

_" = f_ - fM_(r_ + r_)+ f)_fzMx(--13\ro r-l_)

" : fS : fM + + f_/_Mz (154)
\r o

The definitions of (X, Y, z, _, R, Z) should be evident from the above equations. From equations 41

we write in scalar form.

g(xy-yx) + h(_-_) = ghc 0

g(y_ -z_) + h(_ - _) = gh c l

g(z_-x_) + h(_-_[) : ghc 2 (155)

and from 45 we have

(156)
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Now from 117, 118 we remember

dt = r du

t o

Lt - t o = rdu (157)

With these definitions in mind we define different derivitives of a function w. Let

dw dw
d-'Y = _ and _uu = w' (158)

so that

1 1 r'

= 7-w' , (_ - r_ w" - _ w' (159)

and

w' : r{v , w" : r 2{_ + r_{v (160)

Now from 160, x" = r 2_+r_ and from 159x" : r 2_+r'x'/r. Similar equations exist for y" and

z' so that from 154

dx' r' f(mo+m,)x
d--u = x" = r x' r + fr2 X

dy' r' f(mo +ml)Y
du = Y" = -r- Y' r + fr2 Y

dz' r' f(mo +ml)z

du : z" = %-- z' r + fr2 Z (161)

using Equations 156 and 159 we have

g(x'a +y'2 +z 'a) + hr2(_2+4;2+ "(2) = r2 (2V-K) (162)
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From 160

using the energy integral (45)

r" = r 2 {-" + r {-2
(163)

or using 27

r[ -2

K Ii m 2 m 2 II
-- __ +

+_72+_2) __ + 2(too +ml) f + mor ° m_rl (164)

Now r 2 _ will be evaluated. We assert that

since from 154

r2 _ _- _ f(m o +ml) + rf(xX+yY÷zZ)
(165)

r21. • -

= r2i:

Ix f(m0 +ml) f(m° +ml)f(mo+ml) + r _+ r3 x2+yff+ r 3 y2 +z_+

f(m o +ml)

f(mo +ml ) + r 2 (x 2 +y2 +z2) + r(x_ +y_;+z_')

using 164, 165 to evaluate 163 we may write

where

L : f(xX+yY+ zZ) +

dr I

r" : d---u : f(mo, +ml, _ + rL

2fro 2 (m 0 +m 1) 2fro 2(mO+m 1)
+

m o r o m I r 1

K

(166)

(167)
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We now let

e
r

= t xI

f(mo+m,)x

/3
f(m o +ml)Y

T

t
r

r

_(mo+m,)z
i

- -- Z
r (168)

differentiating _ with respect to u

dcz

_5 , x,(,,_x +_- r -

Substituting x' (161) and r" (166) we have

d_ r,2 f(mo +_,)
r 2 r 2

xr' + frr'X+-_ f(mo +ml) +rL- - f i +x

f(mo+m,)
r 2

i
xr

after canceling appropriate terms we find that

ia : fXrr' + Lx'

and similarly

/3' : fYrr' + Ly'

y' = fZrr' + Lz' (169)

From 160 and 159

also

(_. + fr _ X

x" = r2_ + rrx

, f(mo_ m,)x
r j

X - •
r r

+ r

s
r

= r2_ + -{- x '

f(mo +ml)x r'

r r

(17o)
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so that

dx'

d_ : x" : a + fr 2 X

and similarly

dy'
du Y" -- /3 + fr2 Y

dz I

du = z" = y + fr 2 Z (171)

Collecting equations, we have

dr dr '
r' du = r" = f(m odu +m 1

dt
+ rL du - r

dx dx' da
du : x' d_ = a + fr 2x du fXrr' + Lx'

dy : , dy_ dfi
du Y du _ + fr2 Y du = fY rr' + Ly'

dz dz ' d)
i

du z du = / + fr2Z _ = fZrr' + Lz

• d<
d{ d_ r_¢_ - r2 d_ : _i : r_

d_ d;i d_,
du - fr E du = fr }{ dM = fr 2- (172)

For a given set of initial conditions (x, y, z, x', y' , z , _, ?) , _, _', ri ' , },' ) a,/, ) can be determined
from 168. In addition since

r 2 x 2 4 y2 + z 2

rr' xx' + yy' + zz' (173)

r and r' are determined from the initial conditions.

In order to determine L (167), we must find K from 162. It is necessary to divide by r 2 , which

will go to zero near collision. II the initial conditions are chosen near collision, then numerical dif-

ficulties arise. Given the initial conditions, the eighteen equations of motion (172) are now soluable.

Our new pseudo-time variable "u" (157) must go to collision simultaneously with "t". That is,

from its definition, "u" appears to go to infinity. In the following exposition, which differs from
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Sundman's, "u" will be shown to be limited. From 105

dr

¢2f(mo+ml/ (1 4. __)-1 (174)

where I, ! -0 as r-r 1 so that

dt

V7

¢ (mo m,) (l+_)dr
(175)

from 157

dtt dt dt +
: r -i- -F-

0 t 1 - _'' to

(176)

where the first integral is the interval near collision and the second is arbitrary since t o is
arbitrary. From 175, 176

" r Jl

j_tt dt frr 1 dr 1 frrdr 1 frEd r
t,-H' _- : " ¢2f(mo +ml) (1+ e) _- : 2_(m 0 _ml) _rr + ¢2f(m 0 +ml)

(177)

evaluating the first integral we have

' ¢;)
¢2f (mo+ m I )

(178)

which is finite as r _ r I the second integral

l[r dr ' ; dr
¢2f(mo +ml) _ < ¢2f(mo+ml) r f¥

(179)

there exists a number "_/" such that I _ I < _ since I _ J - 0. With this in mind

" r i,

¢2f(m o +rn,) IG ¢2"f (m o +m,) _C?
(1so)
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Thefirst integral in 177is finite andthesecondintegral, from 179and180is bounded,sothat "u"
is boundedandcannotgoto infinity as t . t,.

Thequestionarises whethertheequationsof motion29,35or 172bestdescribethe motion
nearcollision. Thedistancer doesn'tenterinto thedenominatorin the right handmembersof
equations172andthis systemwill begenerallypreferablewhenr is small with respectto the
other twodistances.

Correspondingto our eighteenequations172wehave

r, r', t, x, x', (z, y, y', /_, z, z', 7, _, T/, _, _ _7, _

(181)

as our eighteen unknowns. If the distances r0, r 1 , r 2 are greater than zero for t : to, the variables

in 29 and consequently the unknowns 181 are developable in powers of t - t o if It - t01 is suffi-
ciently small. This follows from 117. Since r is not zero for t : to, 1/r is analytic and can be
expressed as a power series in t - t o . Integrating this power series from t to to, u is expressed
analytically as apower series in t - t o . By rewriting 117 as

-- = F dlAt t o

it is evident that the variable t is developable in powers of u when lul is smaller than a certain
value. Upon substituting for t, this series in the series expression for the unknowns 181, we
obtain functions of the variable u which verify the equations 172. Furthermore, upon substituting
the series expression for u into the solution of the system, we get the solution of the system 29
from which we started. The equations of motion 172, are equivalent to equation 35 from which they
were derived, and equations 35 were in turn derived from 29. The initial conditions for the system
172, are

x, y, z, x', y', z ', ,_, T?, (, _', v)', _' (182)

and are regulated by 162, 168 and 173. By recombination of the equations 172 the system is seen
to have the following integrals,

I F' (m° ;Inl)x I I r' (m° ;ml/Y_l = )_ ly r' (m° ;ml)z 1r _- _- x' :: _ r - r y' _ , r - _- z' • - - _

which are seen to be zero by 168. It remains for us to see that "r", which is amoung the unknowns
of the system 172, as well as the constant K, which enters into the same system, both have the
same significance as in 154 and 156.

Rewriting Equation 173,

rr' xx' _ yy' + zz'
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weseethatthis equationexists for all valuesof t or t, anduponintegrating

r2 - (x2 +y_ _ z_)

is equal to a constant of integration. This constant is seen to be zero so that the unknown "r"
satisfies Equation 32. Upon introducing "t" into 162 we get 45, from which one concludes that the
constant of kinetic energy K is the same for both systems.

We would now like to see the unknowns 181 developed into a series in powers of u - u 1 and to
determine the lower limit of the radii of convergence of these developments. To do this, we must

find the upper limits for the unknowns when t - t I as well as the absolute values of the second
members of the Equations 172. From these values, we then can form the ratios ql'/Ql' , q2'/Q2' • • •

needed for the Cauchy-Picard Theorem.

Suppose now that the motion is regular in the interval o_< t < t 1 where t i designates the mo-
ment of collision. Recall the quantities K :

r = r2, r O, r 1, r', x, y, z, x', y', z

whose values, as t approaches t 1 are denoted

(r)o, (ro)o, (rl)o, (r')o' Xo' Yo' Zo' Xo' Yo' Zo'

P0' f0' _o, _o' 4o" %" _o" %' _o' 7o

We assume furthermore that

k 1

(r)_ < -_ (183)

and

Pl -> 14kl (184)

where k_ designates a positive constant whose value will be determined later.

We would like to have the unknowns 181 expressed as power series in u - u_ and to determine
a lower limit of the radii of convergence of these developments. This will be the goal of the
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following exposition. As we approach collision

(r0)0 (r,)o > ,1 - (r)o (185)

from 183 m_d 184

k 1

(ro)o, (r,)o > 14k 1 - _-

or

27k,
(ro)o' (r_)o > 2 (186)

also

fM fM 2fM (m o +m 1)

mo (ro)o + m1 (rl) 0 27kl morn 1 (187)

we let

m2f(mo+m,)2 IKi
A1 27 mo m1 k 1

(188)

and from 162

x,2 + y,2 + z,2 : --g (2V-K) ---_ r 2 + _ 2)

using 80 we have

X'2 _ y'2 4 Z '2 2r2 fM I 1 + 1 + __1 1 _ r2KI_ mor 0 m 1 r l m 2 r 2 R

h

(' ")r 2 _ 2 ÷_? 2 _8 2
g

incorporating 187

2r 2 2Mf(mo _rnl) 2rfM
X '2 t y,2 q Z_2 ,- +

g 27m o m, k 1 gm 2

r2K
,
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using 188 and the definition of _ (27)

x,2 _ y,2 + z,2 < 4(r)o2A, + 2(r) ° f(mo _m,)

or

, [ ]Xo, 2 + YO'2 + Zo 2 < 2(r) ° f(mo +ml) + 2A 1 (r)o

it follows that

IXo'l, lyo'], IZo'l and I%'I < ¢ 2(r)o [ f(m°+m')+ 2A, (r)o ]

from 168 and the above inequality

[aol' I/_ol and JTol < 3f(mo _ml) + 4A 1 (r) 0

using 183

IXo'], ly o' tZo' and (r)o < Ck, [f(mo+m,)_ A 1 kl] (189)

and

i_,oi, [:_oi and i>o < 3f(mo+ml) + 2Alk 1 (190)

also from 183 we have

k 1

IXol,ly0t and tZol (191)

If we now consider the case where (r)l :: 0 for t : t 1

Xl = Yl zl (r)l 0 (192)
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by usin,g 118 with 105

x 1' y( z( r( 0 (193)

from 107 (in scalar form) we have

(

where

dr
dy ¢2f (mo +

,x, . are components of the unit vector i/-. and are further defined by

I/2f(mo _"1)(194)

using 160, 168 and 195

× z (195)1 im T / 1im _-. X 1 im -F '"'
I 1 1 t=t I t t 1

'_, (mo_ I131) "_ /')1 : (mo+ m,) X )/1 : (mo +m,)_/, (196)

The values of _i , " 1 ' ' 1 are seen to satisfy 190.

We now turn to look at the upper limits of the absolute value of the second member of Equa-

tions 172, and state that the unknowns verify the conditions

!

, i , L z-'l.i - [r- (r)l!' x-xl[' !Y-Yl !z- Zl i ' 71 i Y,: ""1

and

, ' i2
k 1

r'-(r':,, :x'-x'/i' IY'-Y;!

and

i

ll'-Z 1 k'

• . [

i
l I ;' ri 1

and

i ._ k ¸
i 1

and

I,-_1[ k

I 1 I (197)
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The constmRs k', k", k and , ' are finite, positive quantities and we will determine their values
later.

Using the last relation in 28' in scalar form .

r: : (_ -_X) 2 + (7]-_y)2 + (_-_Z)2

which is equivalent to

r:

and we write

rg : p} + e, (198)

where _PI is a polynomial in

x - x a , y - Yl z - z 1 , _: - _1' 7) - 771 , _ - _1' Xl' YI' z1

Since

and

--< Pl (199)

We see that by 191 and 197

Pll < 12/_lkl _ 12k12 (200)
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and from 184

<

so that

45
I_1t <_-pl 2 (201)

We now see from 198, 184 and 201 that lfr 0 is developable into a series, of powers in x - x,,

y-y,, z-zl,_-_,, 7-331 and _-_,. From 198

ro2 > ;2 _ _p,

and using 201

2
Irol >_Pl (202)

Similarly, if we start with

r_ : (_+;kx) 2 + (_7+)_y) 2 + (_. +Lz) 2

we can show

2
]rll > 7- Pl (203)

Using 184, 202 and 203 become

/rol, Ir,l > 4k, (204)

Here it is evident that both l/r 0 and 1/r 1 are analytic in the interval before collision. We state
that

'r=_o3 f_]o3 ' r_' r'_' , -r13 , _ _ 15' 64k 12
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64k12 (205)

The first inequality is shown as follows: from 197 and 184

/) 1

Id-'_ll < kl -<]'4

whereby from 199

/'1 15 12) 1

and by using the above inequality and 202

!r_' 735
< --

16 pl 2

or finally by 184

< --

64k 12

The other inequalities of the first line in 205 are handled analogously. The inequalities involved

in the second line of 205, follow from 204, and 191, 197 which together show that

ixi, lYi, }zi < k, (206)

Using 154 to define IfXl, IfYl, IfZl, IfF.l, If}(l, IfZl, remembering that the sum of absolute values

is greater than the absolute value of the sums, and employing 205 we find,

rn 2

I fXI, I fY!, I fZI < --
2k 12

M
Lf=-I, Lf_l, If_l <

2k 12 (207)

Now using 167 to define ILl, and employing 204, 206, 207 we note that

ILl < x
1 (208)
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where

m2[/m0'./2]h ,/\ 1 2k I 3+ mom_ '-_ (v12 _6Vlk I +3k1'2) ÷ --g (209)

where tile factor 6v, k,' + 3k1'2 has been arbitrarily added and the velocity v 1 is given by

= 2 (210)

Now from 183, 189, 190, 197, 210

Irl <k,

I×'!, ',y'l,q_'l, Ir'l k' + Ck, (mo +m, +A,k,)

_t <v 1 +k"

I cz], ]/_l, l)'l < k + 3f(mo _ m,) + 2 A 1 k I (211)

from 208, 211

Im o +m 1 +rL I < m o + m 1 _ _, k 1

from207, 211

m 2

]c_ + r 2 fXl, ]? _ r 2 fY], I/ + r 2 fZ < k + 3f(mo + m, ) + 2 A 1 k, + _-

from 207, 208, 211

:fXrr' _Lx'], [fYrr' _Ly'l, lfZrr'+Lz'l < k, + k' _ Ckl (moUrn, +.\,k 1

from 211

I r_l, I r_][, i ri ¢ k 1 (v, + k")
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from 207.and211

• M
Irf_l, IrfJ(I, Irf_l <

Returning to the system 172, we conclude that the quantities which correspond to the ratios

q,"Q,' ,%'/Qj + " " " , qn'/Q.' in the Cauchy-Picard Theorem, in the present case are;

k 1

k I

mo +ml +N1 kl

k I

m 2

k÷-_- +3(too+m1) +2A, k

()kl + "_lm2 / [k' + Ckl (m° +ml +Alkl)l

2k 1 k'

M

k 1

Since . ' can be arbitrarily fixed, we give it a value such that r'/k_ is larger than the other ratios

and we choose for k', k' and k the values

k' Ckl (mo+ml+Alkl/

k" =

k : mo + % + A I k, (212)
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Thesechoicesof k', k", k bring theaboveratiosto thefollowingform

_/kl (too t ml°4 A1 kl )

4(m 0 -_ m I +A 1 k 1)

Ckl (too +ml + Alkl)

mo * m1 +/k I k I

¢k-1 (mo + ml + A1 kl)

m 2

_- +4(too +roll +3Alk I

Ckl(mo +ml + Alkl)

2k 1 k I +m 2

We shall designate by Q2' the smallest of these quantities. Then by the Cauchy-Picard Theorem
we know

1) that, in the solution of the equations 172, which were deduced from 29, the quantities (K),

are developable in series with powers of u- u,

2) that these series converge for

lu-u,[ < Q2' (213)

3) that the inequalities 197 will be such that "u" verifies the inequality 213.

We now consider the case where one of the distances (r) goes to zero as t _ t 1 • From 50

lim R : R 1
t_l 1

such that

RI : _ /Jl
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and from 184 as t-. t,

"l : 14kl

so that

k I

R 1

14¢h (214)

As t-_tl, r-'0 and

(ro),: (r,),: _, (215)

Using the Equations 172, and the method of undetermined coefficients the following series

solutions are obtained. These results can also be obtained using the asymptotic behavior of dr,/dt

and dr, dt. Only the first terms are given.

f(m° +ml) " (u u I)3+ _ _1 Mf(m° +ml) (u 1= " + .... E1 - u )3 + . . .
;1 6 _l 6.13

f(mo +ml) Mf(m° +ml) (u 1) `3
:'_,* -6- _l(U-_,)_+"" +_: _' 6.? _' -_ +""

f(m o *ml) . . . Mf(m o )
:,+ 6 , (_-u,)_+... _ : _, +_' (u-u,)_+...

" 1 6/: 13 _ 1

: :_1 + "'" /_ : 'Jl + "'" "_ : ?1 + """

f(m o +ml)

2 7.(U--U,) 2 + "'" x' = f(mo ÷m,)_(u-u,) + "'"

f(m o +ml)

Y 2 X(u-ul) 2 +''" Y' _ f(mo +ml) X(u-t'l) + "'"

f(m o +ml)

2 _(u--U 1 )2 + ... Z' : f(mo4 ml) _/,(u - ul) + "'"

f(m o Sml)

r 2 (u-Ul) 2 +''" r' : f(m o +m,)(u-t,,)+"" (216)
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f(n,0,m,)
t - t, 6 (tl-t'l)3 I "'" (217)

Looking at the series 217, we can see that u - u, can be developed into a series of (t t,_ ) ,/3

and substituting this series in place of L,- u, in the formulas 216, we find that the quantities _, _j,

:, • • • are also developable in powers of (t -t,)'/3. The quantities u, ,5, 7/, • • • considered as

functions of t, have singular points at t t,.

The same series can be used to describe the movement of the bodies after collision.

From 216 we note that the ratios x/r, y/r, z/r tend toward the same limits (i.e., ¢, x, _) when

t goes to t 1 in _ increasing or decreasing fashion. We must conclude from this, that the motion

approaching and exiting from collision forms a cusp. Of course, investigating the motion of a

colliding body, after collision, is only of mathematical interest and the fact that any motion at all

can be investigated after collision points up a divorce of mathematics and physical motion.

DETERMINING A LOWER LIMIT FOR "R"-DOUBLE COLLISION

It will now be our purpose to reinvestigate R, (Equation 50) with the idea of finding its lower

limit for the case when the constant of the area integral is not equal to zero (two body collision).

From Equation 50, we see that, in the ease of two body collision, R goes toward a finite and non

zero limit. If we define an interval t ' < t < t", then from 75b.

and from Equation 71

(dR" _2 g2 h2 c 2
W :: R" \_-1 + KR" + T

so that

")2 g2 h 2 c 2H' >- R" -- _ KR" + - R" (218)

and

g2 h2 c 2

R"
H'- KR H' _ IKI R'

65



and finally if R doesn't have a minimum for t = t'

g2 h 2 c 2
R" -> H' + }KI R' (219)

The inequality 219 remains valid until t" goes through _, where dl_dt changes sign, and for
the minimum value of R', where dR'/dt = 0, the equality

/dR,_2 g2 h2 c 2
H' -- R' _--_j + KR' + _

gives us

g2 h 2 c 2
R' >

H' + IKt R'

for K > 0 or K < 0. We see that the relation 219 holds for the minimum value of R so that we can

generalize and say, Theorem 4:

R_>
g2 h2 c 2

H' + ]I_] R' (220)

is valid up to the point where R = Rmax.

If K-< 0, Equation 51 shows that d 2 R2/dt 2 is never negative from which one concludes that R
doesn't have a maximum. In this case, R goes to infinity when t goes to infinity, and 220 therefore
gives a lower limit to R which remains valid for all values of time, If K > 0 and R doesn't have a
maximum for finite values of t, Equation 220 will again give the lower limit forR. This particular
limit can be expressed in the following manner. We multiply the numerator and denominator of

220 by R and employ Equation 71, to get

R_>
g2 h a c a R

/dR\2 g2 ]32 c 2

If we let R° and dR°//dt be the values of R and dR/dr for t = 0 and let

g_h 2c 2 = f2 (221)
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we have Theorem 5:

f2 Ro

R ->( dRO_2 (222)
R 0 _-] + fl 2

if K < 0 and no maxima

R > dROp2 f2 R°

R _-/ + 2KRo2 + fl 2 (223)

if K > 0 and R has no maximum for finite values of t.

It remains for us to find a lower limit of R when K > 0 and R has a maximum for a finite value

of time (i.e., "S" expression 289). We will find this lower limit on R, for all values of time, such
that it only depends upon f l andK. We assume that R has a maximum R' for t -- t' so that we
consider the case where

K > 0 (224)

and

dR I

dt -

(225)

Now from 71 and 225 at t = t'

f 12

H' : KR' + -_ (226)

Since R' is a maximum, there exists in the neighborhood of t' and instant t" such that the deriva-
tive dR/dt does not change sign and that R <R' in the interval from t' to t". From 218 and 226

(_t") 2 fl 2 fl 2R" +KR" + __<KR' +-_- (227)

so that

fl _ (R' -R")
K(R'-R")-> f12(_ - -_) : R"R'
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and

f 12

K _ R,R,,

KR '2 > fl 2
(228)

and finally by taking the square root of both sides and multiplying by f l we have

(229)

now from 226, 229 we have

H' < flYt-K + KR ' (230)

Starting with 223, and using 227, 226 and 230 respectively we see that

f 12 f 12 f 12 f 12
R> > H' >

R" (-_-) +2KR"+--_- 2KR' + R'

or

f2

R > (231)
fl l/R+ 2KR'

Now this lower limit on R will become smaller as t goes to +co if R' gets larger as t goes to +0o.

We wish to find a positive, fixed limit which remains valid however large the maximum R'.
With this in mind we note 156 and write

2V-K>0

and from80

1 1 1 K
+-- +-- >-- (232)

m 0 r 0 m I r I m 2 r 2 -- 2M
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wheref is set = 1. If we designate r m as the smallest distance r i, we have from 232

-- ÷-- + >
r m m 1 -- (233)

Now we note that r m-<q where

q = -K- + m'_ + (234)

The movement of the three bodies will be such that one of the distances r i will be the smallest.
Since the distances r i are continuous functions of time, it is evident that each time that a certain

distance ceases to be the smallest, it will become equal to another distance. At this instant, both
distances are considered the minimum distance and 234 insures they are both <_q. The third dis-
tance of the isosoles triangle would be <2q. To simplify our following formulas we will say that
all the distances are <qlfS. From 52 and the fact that r 0 , r,, and r 2 -<_gqwe write

R < Ro (235)

where Ro is denoted by the positive radical of the equation

Ro 2 = 5q 2 1 + m--_+ (236)

We conclude that in an interval of time where R_>R 0 a single distance remains constantly <q.

We now, consider the movement in an interval of time where the inequality

R _ R o (237)

is constantly verified. We also let r 2 _ r be the distance which remains smaller than q, or

r < q (238)

We will now deduce from 237 and 238 some other needed inequalities. We shall also determine

a certain value R0 of the quantity R which will play an important role. With this in mind, it can be
shown that

R02 : (g+_2 h) q2 (239)
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where g and h are defined in 27, 40 and

0 -2 : 4 +
4n10 mill ml02 + ml0 mill + m12

m2 (m0 + m,) + (% + ml,)2 (240)

These relations are proved by substituting 240 into 239 and winding up with 236. We can see from
240 that

> 2" (241)

From 50, 237, 239 and 238 respectively

gr 2 + hp2 > Ro2 = (g+c_2h) q2 > gr 2 + _2hq2

or

p > 0-q (242)

and from 238

r< p-
0- (243)

We see from 185, that r 0 >p - r, r I >p - r and from 243 and 242

r 0

r 1

(0-- 1)
> --

0-

(0-- 1)
> --

Gr

"h

p > (0--1) q

Jp > (0--1) q

(244)

Rewriting Equation 50 as

hp 2 = R 2 - gr 2 (245)

so that

R

(246)
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Using 239, 237, 238

gr 2 < gq2
g Ro 2 g R 2

- < -- (247)
g+_2 h - g+_2 h

we now can see from 245, 247 that

[ ] : R2F 7hp 2 > R 2 g+_2hgR2 R 2 1 g+_-2h Lg + r2hj

or

eR

P > _- (248)

where the constant

g o-2he = (249)+0 -2 h

is smaller than one.

We now define

R o

R0 - e (250)

where we see that T o > Ro. Designating by Po, _o the values of p which correspond to the values

R o and T o of R, we see that after 246 and 248,

R o

Po <_

T o

_o > _ (251)

and consequently 7o > Po. One must conclude from 251 that in the interval of time in which R de-

creases from T o to Ro, there exists an instant }- where the inequality

dp
< 0 (252)
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is verified. That is to say, that p is decreasing at an instant t-. LettingR, _, • • • designate the
values of R, p, • . • for an instant¥, and using 252, 250 and 251 we have

d_
_R- < 0 (253)

Ro -< R -< R0 (254)

Ro Ro

< -< (255)

The differential equations of the movement (35) remain invariable when "t" is replaced by "-t".
From this we deduce that the lower limits are independent of t and are valid before and after the
maximum of R. We shall study the values of R after the moment t' where R passes through a
maximum R'. It will be necessary to divide the maxima into three classes, according to the sizes
of the maxima R' and the minima R" which follow it.

The firstclass will refer to the maxima which verify the condition

R' < R0 (256)

and after 231 we have

f 12

R>
fl _+ 2I_o

The second class will include the maxima for which

R' > R0

and

R" _> Ro (257)

and since R is in the interval of maxima R' and minima R",

R->R o

The firsttwo classes are seen to have lower limits. The third class satisfies the conditions that

R' > R0
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and

R" < Ro (258)

The next section will be concerned with finding a lower limit for R in this third case.

Consider a maximum of the third case. R will diminish constantly from R' to a value smaller

than R0 since the minimum is less than R 0. This third case corresponds to the relations 253, 254,
255. To find an inferior limit forR, we will seek a superior limit for H (Equation 71) when t = }-.
In order to accomplish this, we must find a limit for the absolute value of the derivitive dPv/dt.

Since from Equation 54,

_ dR d¥ dF
R_- = g_-_ + h_- (259)

we see that the superior limits for the expressions

and

are necessary. In an effort to determine the upper limit of the former relation, we note that

(dx_2 fdy_2 {dz_ {dr_ _
dt/ + kd-t ] +\dt ] -> \dt ] (260)

and

+ \_-J +\dt ] - kd-t-] (261)\dt/

and from 156 it follows that

/dr_ 2 (_tP) 2gk_J + h -< 2V - K (262)
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If R__Ro (237) we see from 244, 241 and 234

+ ----_ < (c_ -I)_ +
m 0 r 0 m I r I

1 1
-- + --

m o m I

1 1
K

1 c_- 1 <K
--+-- + --
m 0 ml m 2

(263)

Using the definition of V (Equation 80) and setting the constant f = 1 for simplicity, we see
from263that

2M
2V-K<--

m2 r (264)

Now incorporating 264 into 262 we have

{dr _2 .{dp,_2 2M

g_-_.} + n_¥j < m 2 r

or

dr) 2M_-_ <-
gin 2 r

so that

and from 234

Yd_- < _ (265)

It remains for us to find an upper limit for 1_ d-fi/dt [ . To this effect we write the definition

p2 = 42 + @ + _2 and differentiate twice with respect to t and find that,

d2p 2 d2_: + 77 __ + _ __ + + +
P _ + = _ dt-----_ dt 2 dt 2 \_t'J _-_]
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andafter 261

d 2d 2 _ d 2 7-/ + _ -
d 2 p > _ _ + 7) dt 2 dt 2P dt 2 -

so that by means of 154

d2P >- f +ql + h_Mf rl-03 r-1 l(_=x+_Y+_Z)
__ M_-_- /1" p2 1

P dt 2 - ro3 3

or

d2P > - Mr.--- P2-_(x_+Y_)+z_) +_

P dt 2 -- Mr# ro r12

p2 + ;_(x_ + y_ + z_)l

J (266)

Now writing 28' in scalar form

r? = (___x)2 + (___y)2 + (_-_z)2

we have

ro 2 = p2 + /z2 r 2 _ 2_(x_: +YV + z_)

and it follows that

p2 r02 : p4 + #2 r2p2 - 2pp2(x_=+y_)+z_)

or

,o2 r02 : [p2-/z(x_ +y_+z_)] 2 + /4 2 [r 2p2 -(x_ +y'r/+ z_) 2] (267)

now since

Ix_:+y_+z_[ -< rp
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it follows that

_ [_;_-(xe+y_+z_)_] > o

and from 267

pr o _> p2-_z(x_+yv?+z_) (268)

In an analogous manner

Prl _> [p2 +k(x_+yT/+z_) (269)

Now from 266, 268, 269

d2P> I_02-- +
_M _ Pro _ P_r, 1

P dt 2 - ro ri 2 rl _]

and

Now from 244,

M(_ + _)G 2d2P + 0

or

C
d2P + >
dt 2 -_ - 0 (270)

76



where

Mo -2

(_-1) { (271)

Before going further, we must consider separately,

1) The case where dp/dt < 0 when t decreases from t' to }-.

2) The case where there exists an instant t " between t' and }- such that dp/dt = 0 for t : t"'
and dp/dt < 0 between t' and _. These are two subcases of 258.

In the first case, between t' and }-, we see that dp/dt < 0 and from 270,

dp Fd :' P _cct <2 _ L--_-]- + 0p2 - (272)

Integrating between the limits t' and

fp_ c dp
It (dp_ d2p dt + 2 dt<

2 j,_j dt--_ ,_ _ o

we have

<

and finally

(273)

In the second case we integrate 272 between t "' and }-, and noting that dp/dt = 0 for t : t" we
have

(dp_ 2 < _ 2c

\c_-] p p

We can now see that the inequality 273 is valid in both the first and second cases. We shall
now return to the determination of an upper limit for I_ d_/dt I . R was, by hypothesis, a maximum
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for t = t' SO that d2 R2/dt 2 <0 for t = t' and after Equation 51, we see that

V'<K (274)

where V' is the value of v when t = t'. From 274, we note 2V' -K < 2K-K: K and from 262

/dr') 2 + (275)

Since dR'/dt : 0 we find by differentiating Equation 50

dr' dp'
gr' d---t- + hp' dt - 0

or by rearranging terms

\dr/

substituting this into 275

(h2 )

or

hgr 2 +h 2p'2](dp'_2

and

- hR,2

after 238, 258, 255

(_t') 2 < __Kgq2 < Kgq 2
- h_02 - h 2 _2
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from 273

(dp _2 2c Kgq 2

"d-T/ < -7- ÷ h2 _2

multiplying both sides of this inequality by 32 and taking the square root, we have

_-_ _/Kgq2

and after 255

_ ,/Kgq2 2cRo (276)

Now from 259 with the aid of 265 and 276

_ < ,/-_q + CKgq2+2cRohl/h
V m2

where it follows that

_2 (.__/2 4Mgq< m2 + 2Kgq 2 + 4cRo hl/_

since R > R o (254)

I_._)2 < RO0 \m21(4Mg...__q + 2Kgq2 + 4c Ro h_/'h)

Upon recalling Equation 71, and since R > R0 we have,

H+KR<S 2 (277)
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where

1 ( gq \

s 2 : _ \ m2

fl 2 = g2 h 2 c2 (278)

from 75b we note H +KR<H ' +KR' and from 220, 257

This is the lower limit for the third case, 258. Since the above inequality is true for all R, one
sees that

f 12

Ro > -_2

Now if we note the limits for the first and second cases (256, 257) and from the definition of S2 (278)
we see that the inequality

R >
f 12

S2 + fl ¢-_ (279)

is valid for all three cases, (256, 257, 258). The next few pages will be devoted to further rear-

rangement of this lower limit on R.

We shall designate by "m" the smallest of the masses mo, ml, m2. We note right away that

M > m2 -->m

M
m<_

m 0 + m I > 2m
(280)

from 27, 40 we find

1

m o + m I

1<3
+m_-_
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h =
1 1 2

-- +-- <:--

mo m I -- m (28:)

from 280 I/m > 3/M and i/m o + I/m I + I/m 2 > 9/M so that

9 1 1 1 3
-- -- +-- 4--- <_

M -< m0 mI m2 - (282)

from 234

q = _ +m--_+

and since 9/M< 1/m o + l/m: 4- 1/m 2 we have 18/K<q and since 1/m o 4- l/m: + 1/m2<3/m we have

18 < < 6M
--_ _ q __ (283)

from 236

Ro 1
q - ¢_)/_ 4-m_ +

and using 282

3 ___- __ -- (284)

from 284,

and
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using 283, we find

< K M
N- (285)

Now from 284, R o __q 15flflflflflflflflfl_mand 283,

(286)

from 236, 239

5 1 +m--1 + : g+_2 h

Using 40, 240

cy2h

4(mo+ ml) 4
+ -- +

m o m 1 m2

mo 2 + m o m 1 + ml 2

(too +ml) mo m 1

4(mom 2 +m I m 2 +moml)

m 0 m I m 2

mo 2 + m o m I + m12

+ (mo+ml)mom I

so that from 249, 250, we have

Ro /_g +o -2 h

RO = a2h[-
_ . \mo m 1

4 1 1 + I_ + mo2+momI+ml 2
+ mq m_] mom 1 (In 0 HTm-_)

(287)

from 241, 271 we see that

c < 4M

Now from 278 and the inequalities 280, 281, 283, 285, 288.

(288)

and consequently

s_ < + --g_-/ + 2(8¢T6+ ls,6) "mf_

f2 ms f_
>

$2 + fCK (8M f 1_ Km2_ V/_-5+ g_- ] + 2(8 I/T'6 + 1S l_)Mf'_ + f, lr_ m2
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by replacing m by M/3 in the denominator and simplifying the numerical coefficients, we have

f 12 f 12 m 2

S2 + fl¢R > fl MIr_
64+-_- _+ _ f/I_

and finally

l fl TM 1

1 M_ (289)

While considering the maxima of the third class, we have supposed that r 2 remained smaller

than q for R_>R0. However, since S is symmetrical with respect to the three masses m0, ml, m2, it
is evident that the result we have obtained remains true in the cases where r 0 < q and r, < q for
R > Ro . In short we will have R > S in the case where K > 0, f > 0 and R has at least one maximum for
a finite value of t. Referring back to 222 and 223 we are now ready to state an important theorem
of Sundman. Theorem 6: If the area integral is not zero for the three bodies one will always have

R > J (290)

where J designates the quantity

fl 2 R °

if K _<0 and the smaller of the quantities S, and

fl 2 R°

clRO_R° -dt] +2KR °2 + fl 2

if K>0.

The case of K > 0 has two limits corresponding to the cases where R passes through a maximum
(S) and the case where R doesn't pass through a maximum.

The next section dealing with Sundman's exposition will treat the problem of finding a lower
limit for the radius of convergence of the development into powers of u -u I .
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DETERMINATIONOF A LOWERLIMIT FORTHE RADIUSOF CONVERGENCEFORSERIES
SOLUTIONSIN POWERSOF u- u1

Theorem 7: If fl >0, the two larger of the distances ro, r 1 , r 2 remain constantly superior to
the quantity

1
= -3 ¢_J (291)

To prove the theorem we note from 52, that

ro2 ÷ r¢ + r22
R2 _<

m

If the theorem were not true, at least two of the distances ro, rl, r 2 would assume, at a certain
instant, values smaller than or equal to_, (i.e., say rl, r 2 _<_). The third distance would be less
than the sum of the other two, and hence it would be less than or equal to 2_. (i.e., r 0 -<r, + r_ _<2_)
Now

ro2 + r12 + r22 < 62_2 2 j2
m -- m 3

so that

This is a contnidiction to the preceding theorem 290, and our present theorem is proved. We shall

now fix, in a convenient manner, the constant kl. Since r 0 and rl are the two larger distances,
they will be considered greater than £ (291). Noting that p > r o - r and p > r_ - r, we conclude from
183 and 184 that

p > 14k_

k 1
r <--_ (292)

Now it is clear that ; > r 0 - r or ; >£ - kl/2, and if we let £ : kl/2 + 14k 1 , we arrive at the first
inequality of 292. Therefore from 291, and fixing the value of k 0 from 132, 183 we have:

2 2
k 1 - 29._ : _-_j

and
k

ko : 2-'8 : (293)
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Undertheperturbativeeffectof thethird body,theremainingtwobodiescanasymptotically
approacheachotheras t goestowardinfinity. Thequestionarises, asto thenatureof thevelocity
(5)as the twobodiesapproacheachother. It will beshownin thefollowingsubsectionthat the
velocity v - dp, dt remains below a finite limit when r <k,/2, ro, r, >_.

The proof begins by defining

m 2 (mo +m,) momlm 2

A - 2_ + 4M LKL (294)

with the assumptions being,

k 1

r <_

while

%> r, > _ (295)

from 45, 80, 295

(d_'k2 " [d7_2 (_0 1) 1 2M ÷ IKIgkdt] + n\_) <- 2M + -_l T * m2 r

or

g\_](d_2 + htd_-)[d_\2 -< m o ml4Mm2 fro2 (m; + ml)+ -IKi m° ml m2t4M + __m22Mr

from 27, 40, 294

[dr'_ 2 [d_k 2
_t,a;) + htN ) -<4gh A + ,,,: ,. (296)

now

hv 2 -_ 4ghA + m2 r
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and

_M moml _ 2 i_r- M moml

v 2 -< 4g A + m2 r m o + m I gL2 A+ m2 r m o + m_

and

[m° ml /v2 -< 2g_--- 7- +2A (297)

multiplying both sides of 297 by r2 and noting r <ki/2 we see that

rv< ¢gkl(toom,+Ak,)

Starting with 296 we can easily show that

(298)

We now assume that when r < kl/2

v 2 Z D (299)

where

m m 1 )D = 4g\--_-- 1 + A

It will be our objective to show that the assumption 299 leads to a contradiction. We therefore
assume the inequalities

k!

r <_

rv < Cgk 1 (m Om I +Ak 1)
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and

d_ Chkl (m ° mlr < + Akl) (3oo)

are verified when v2 _>D. From relations 41; 300, we note

similarly

I:_, I < [: -7;:',-g c

(g_'-_') : gc o

_[ d, dx1+ r r _-_o _ +

_[ d_ dx1- _ x _1¥ - y _}-

" g_Co[ +21//'/_ (mom 1 +Akl)l
= A (301)

and

+_'t < g Cl] ÷ 2 _- (m 0 m 1 + Ak I = B (302)

so that

¢k, '1c2] +2 h-1 moral +Ak
= C (303)

I_'_'-v_'l < A

1_' - C_'] < B

I_'-g_'l < c (304)

Itcan be shown that

p2 \_¥{dp'_2] (_. d-t/d_2 (_ x dP_2= + _-/
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or

now since _ : v and p > Z - kl/2

\d-t-/ > v2 - - A2 - B2 - c2

so that

p >W>0 (305)

where

W -- 2 _,_ -A2 -B 2 -C 2 (306)

is verified if v satisfies the conditions v2 ->D

V 2 -_- - A 2 - B 2 - C 2 > 0 (307)

Employing Equations 154 we see that

d2 P (dp_2 v 2 - F-__ = = M _._- p2

dt _ ka_) L_o_
-_(x_ +yv + z_) +

ro r 12
(308)

and

dv 2 dv dp d 2 p

dt - 2v _ = 2 _ dt 2

/d 2 _ d 2 _3 d 2 _ dp

= 2k-_t2 + -- +dt 2 dt a ] d-t

dt = 2M +--
r

(309)
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¢

from 268, 269

now 308 gives us

d-¥ P d-t- > v2 - -- +- ro _-_1_

Since r o > p - r > p - ki/2 and r 1 > p - r > p - kl//2 and remembering p > 14k 1 (292) we have p/r o and

p p 1 1 28
-- < - __ : --

rl kl k-1 < 1 27
1 - _'_

p --_ 1 2p

so that by using 295

_-d (P_) > v2 -Edt (310)

where

28 M

E - 27 T (311)

from 309 we see that dv2/dt will have the same sign as -p dp/dt if

+ > k_ rl3' (x_+y_+z_ (312)

now since

/1 (1 ,)
ro 3 r? \r o
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b

then 312 is true if

dp

from 300

x_ +y_ +Z_ -< rv < Cgkl.(m Om I +Akl)

now using 305 and if we assume

W _> Cgk, (m 0 ml+ Ak,) (313)

then

p > W > Cgkl(moml+Akl) > rv : (x_+y_7+z_)

In short, we can say that if 313 is true then 312 is verified. We can go further and say that
dv2/dt has the sign of the quantity -p dp/dt if

and

v 2 - _ A 2 - B 2 - C 2 -- W2 > gk I (morn I +Akl)

v2_>D (314)

We now let

G 2
= max CA 2 +B 2 +C 2 +gk I (morn I +Akl) } (315)

If we choose

G2 = 2_E
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and

v _>G2 (316)

itis immediately obvious from 3I0 that

G2 = ¢-b or

__2__ C2 Akl)2_ - k I ¢ A2 + B2 + + gkl (moral +

then since it must be the maximum of the three, it follows that if G2 = ¢-D then D > 2E and if

2 B2 C2
G2 : 2'{'- k, ¢ A2+ + + gkl (morn, +Akl)

then

A 2 +B 2 +C 2 +gk, (room I +Ak,) > 2E

so that 310' is valid for either of the 3 possible Values of G2.

We now try to get a contradiction to 316 to demonstrate that v always remains smaller than G2.
Now there will be an instant of time t' when v has a finite value v'(_>G2) and from 305, we can
conclude that rJ dp/dt admits for t = t ' a finite value p' d;_'/dt which verifies one or the other
of the inequalities

, dp'
p _- < - W' < 0

, dp'
p -_- > W' > 0

Suppose that /J' dp'/dt < - W'. We increase the time t after t'. Under our assumption 316, v 2 _>0

since G_ is, and in this first case we have assumed p dp/dt < 0. From the discussion following 313,
we know that dv2/dt and -p dp/dt have the same sign so that dv2/dt > 0. In this first case we con-
clude that v 2 increases positively if f_ dp/dt < 0 (if v'_ > G2). Since v_>G 2 is assumed true we re-
member that 305 is also verified and the desired contnidiction is reached. Now since the equations
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of motionare invariantwith respectto a change in the sign of t, we can show that the second
inequality also leads to a contnidiction for t decreasing after t'. We now conclude that the assump-
tion 316 was incorrect and

v<G 2

when

r

We now direct our attention to look for a upper limit on G 2 which doesn't change by a per-

mutation of m0, m1 , m2 • With this in mind, some inequalities will be developed. From 281 and
some previous inequalities it can be shown that

M2

mo m I < -:_

1 m0 ml M

-_ = m0 + m I <'4

gm o m 1

M mo ml M 2

- m2 m0 + m I <

M M

gA< _'_ +]'-_ IKI

m o m 1 m 2 M 2

M < 27

gImoml+Akl < M 1 + 4m + ]6 + IKI

D<_ +_+Yd IKI

A 2 + B 2 + C 2 < 2g 2 cg +c, 2+c_ + =-h- (moml +Ak, < _ (Co2 +c, 2 +c]) + m + _ + _ IKI

Now, from the above inequalities it is found that the expressions f-_, 1/-5 and

2 B2 C2
¢ A2+ + +gk 1 (moml+Akl)
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are all smaller thanthequantity

G - 14kl (%2 + c 2 + %2) + 775 + _1 _'6 + _ + _ JK[ (318)

considering the definition 315, it follows that

G 2 < G (319)

With this in mind, one notes that in order to calculate an inferior limit for the quantity Q2',
(i.e., the smallest of the quotients following 212) we take vl : G. Thus, we now have an appropriate
value for v_ in 210 and in the quotients. It can be shown that the denominators

4(m 0+m I +A 1 kl)

m o + m I + h_1 k 1

m2
-_- + 4(too +ml) + 3Alk I

2 k 1 k I + m 2

of the quotients are all smaller than the quantity

5M 2 M G2 M _ M4M + _ + m kl + 3m G + _ IKI k I

now since

we see that
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is not thesmallestquotient and is eliminated as a possible lower limit for the radius of convergence.
Since

4
ra o + m 1 + A 1 k I > __M

or

it follows that all the quotients following 212 are greater than

Q
15M 3 G2 9 G ,]/r-_l 36+ _- + _ k 1+_ +_ IKlk 1

or

2G + _ (320)

whichever is the smallest. The first expression is always the smaller of the two, and consequently

Q2' > Q (321)

We now conclude that the development of the unknowns of the Equations 172 into powers of

u -u, converge if u verifies the condition

Iu - I Q (322)

Hence, we have succeeded in establishing a lower limit for the radius of convergence of the series
solutions for Equations 172.

INTRODUCTION OF A NEW INDEPENDENT VARIABLE "w"

In the preceding work, we have employed in the place of t, a pseudo-time "u" which is a reg-
ularizing variable for only two particular bodies. It has been assumed up until now that m0 and m_
are the colliding bodies and the distance, r 2 = r, between the two bodies has been going towards
zero. A glance at Equations 154, will point out that for a collision between m0 and m2 or m_ and m2 ,
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thedifferential equationsof motion have singular points, namely when r 0 = 0 or r, = 0. There-
fore %" is only a satisfactory regularizing variable for two particular colliding bodies. An in-
dependent variable "w" will be introduced that will remove all singularities and allow any number
or combinations of collisions to occur without singularities. We define;

dt = F dw

t = 0

for

w = 0 (323)

where

Now _ is defined by 291, and the function F has a determined value for each real value of time and

0_< V < 1 (325)

From 323, 325 it is seen that w and t increase and decrease together. Furthermore, there
exists a one to one correspondence between w and t. It is clear that v is positive when all the

distances r 0 , r,, r2 are greater than zero, and w cannot become infinite when t tends toward a
finite value, say for t = t 1. From 117 and 323.

dw r
B _- _
du V

Since r, and V go to zero together, the right side of the equation remains finite for r- 0. It is also
clear that if r -0 for t - t 1 , w tends toward a finite value when u -% or t - t,. One finds the same
result if the distance r 0 or r, goes to zero for t = t I. The variable "w" will be finite when t is
finite and since ttl < Iwl, from 323 and 325, the reciprocal is also true. It can therefore be said
that

lim w = + co lim w = - m
t = +co t =-m

lim t = + co lim t = - co
w = +co w = -m
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Weshall devotethenext section to finding a lower limit of the radii of convergence for the co-
ordinates of the three bodies, their mutual distances and the time expressed in power series of
w-_. Two cases are to be investigated.

Case 1: For w : _ one of the distances r0, rl, r 2 is inferior to kl/2; for example

Let t 1 be the value of t for w = _. We shall designate by u x the value of u for t = t l or w = _. We
can then say that the coordinates of the bodies, their mutual distances and the time will be devel-

opable into powers of u- u I if u verifies the condition

IU-Ull < Q

The variables u and w are related by the equation

du 1_

dw r

u : U 1

(326)

for

w =

Since both V and 1/r are developable into a series in powers of u - u1 , the right side of 326 is also

developable into a power series if lu -u_l- < Q. In order to apply the Cauchy-Picard Theorem to
Equation 326, we must find an upper limit for IV/r] when lu-uzl- < Q. Writing down 198, 201, 184

,-o_ : p? + _eI

45
PI < _ Pl2

Pl > 14kl

we see that r02 never becomes zero or negative and the real part of r o
the real part of r 0 is positive for u = u_, it will remain positive if lu-
that

doesn't change sign. Since

%1 -<q. It therefore follows
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and

1 - e =r°/_ < 2

In an analogous manner

1 - e -rl/_ < 2

Now we observe that

_ 2_1-e-r/2_ = 1 r r__2_2 __ kl k12-_+_3 .... -< + _ +6-_ +
e kl_- 1

k z

from 293 L : 29/2 k I and e 2/29- 1 < 1/12, we see that

1

< _ 1-e -r°/2_ 1-e -ru/L _'_'2" 2 1

SO that

if lu--,I-<o.

Now we can apply the Cauchy-Picard Theorem and say that the Equation 326

has a unique analytic solution (in powers of w -_) for

Iw-_l _ 3Qk 1 (327)

A result of this is that the coordinates of the bodies, the distances r0, r I , r and the time axe
developable into powers of w -_ if w verifies 327. Since k, and O axe symmetric with respect to
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themasses m0 , m, and m 2 there would be no change if, in the place of r 2 -= r < kl/2 one had
_o<k,/2 or _, <k-_/_for _ : _.

Case 2: Forw= _ all of the distances %, r_, r are>k_//2 or from 293, ro, rl, r>14k o • We

note that this is condition 132 if t is the value of t for w = _. We have already found that the co-

ordinates of the three bodies and the distances to, rl, r 2 are developable into powers of t -¥ if t
verifies 153. From the above reasoning

so that Iv] <8 if ]t-_-] _<T' . We note from 323 that

dt
m = [-dw

and the Cauchy-Picard Theorem insures that this equation has a unique analytic solution in powers
of w - _ for

I T ,Iw-_t -<_ (328)

That is, the coordinates of the three bodies, the distances r o, r 1, r2 and the time are, in case 2,
developable into powers of w-_ if 328 is satisfied. From 153, 293

or

k 1

T I ko k,

224 _21mk 1 +MIKI 224 _21mkl + [KI

T I

-g =

//1 M224 6 _+31K[ k 1

From 320

3qk i 3
15M 3 G2k1+ 9 G_ + [Klk l6+ _- -fi- + _ _ _[
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Both3Qk1andT'/8 are greaterthan

fl =

3 /l M (329)lSM 3 c2 + 9 IKlk,+ +3bKIk,8 m + _ k I _- _ 224 6 m

where G and k 1 are defined by 318 and 293 and m designates the smallest of the masses m0, m1 , m2.
An important result of Sundman's work can finally be stated.

The coordinates of the three bodies, their mutual distances and the time are developable in
powers of w - _, such that these developments are convergent for

tw-_] _< fi

We now have a "convergent strip" with a width 2_ and the real w axis runs symmetrically through
the center of this strip. Since the domain of convergence for a Taylor series is circular and we
now have a strip of convergence, a transformation would be useful. With this in mind, we in-
troduce a new variable 7 by the transformation.

2_ 1 + T "_
w : _- log ] _ T

e _w/2_ - l

T e _w/2_ + l

(330)

It can be shown that as w-_, [7t _ 1 and that 171 < 1. The real values of _ between -1 and +1 will

have a one to one correspondence with the real values of t between -_ and +0o. We have effectively
transformed the strip of convergence in the w plane to a unit circle in the 7 plane. We can now
state Sundman's final theorem.

Theorem 8: If in the problem of three bodies, the constants of area are not all zero, one can
find two constants _ and _, (the coordinates and the velocities of the bodies being given for a certain
finite moment) such that, if one introduces in place of "t" a variable "7", the coordinates of the
three bodies, their mutual distances and the time are developable in powers ofT. These series
solutions converge for [71 < 1 and represent the movement for all time. The equations remain
regular for collisions between any two bodies.

Through the introduction of the variable 7, the coordinates of the three bodies, their mutual
distances and the time is developable into powers of 7 if 171 < 1. In the general case considered
by Sundman, the series are very complicated. The convergence of these series was investigated
by Belorizky and the results are summerized below.

INVESTIGATION OF CONVERGENCE

After determining the constants £ and _, the new variable 7 is substituted for t and the regu-
larized solution series are obtained. Belorizky uses the equilateral triangle solution to the three
body problem in an effort to investigate the convergence of the Sundman solutions. He takes the
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mutualdistancesbetweenthethreebodiesasoneastronomicalunit, the sumof themassesis the
unit massandtheGanssianconstantis set equalto one. Usingthesesimplifications v is a constant

and

F = (1-e-1/_) 3

consequently t = rw and

2f_l_ 1 + _ 1 + T

t - _ log 1 - _ - Alog 1 -

and

T T3 TS T2n+l /t = 2A + _- +-_ +'"+ _i +''"

Furthermore

t 2 t 4

x = cos t = 1 - _. + _-. ....

2
= I- 2A2_-2-(_A2-_A4)_4-(_A2-_ A4+ £A6) T6 ....

t 3 t s

y = sint = t - _-. + _-. ....

= 2A_ + (_-4 A3)73 + (___ 4A3 + _5 AS) _s + "'"

We consider m2

1
I) ml - 200

1
2) ml = 10

1
3) m I =

to be the larger of the three masses, and m1 = m0 . If
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the corresponding values of f? will be;

1) _1 < 9 × 10 -8

2) ;?2 < 4 × 10 -6

3) fi3 < 10-5

SO that A has the values

i) A I < 4 × 10 -8

2) A 2 < 2 x 10 -6

3) A 3 < 4 x 10 -6

Let "h" be the error introduced by stopping the "t" series at 2n - 1 terms so that

7- T3 7-5 T2n-1 _t - h = 2A +-3- + 5- +"" +2ffsi]

and x, y can be expressed as

1[L ( _ T 2n- 1 '_] 2 4! L_ [ (7- "I-3 72n- 1 '_14x : 1 - _T' 2A'r+_- + _- +'-- +_/j + 2A + 3 +'''+ 2n:-i]J

( ./-3 .7-5 T2n-1 "_ _. [ (?_ ,?-3 ,r2n-1 '_13y = 2AT+_-+_-+'''+2_n__I]- 2A +3 +'''+ 2--n-:I/J

If we wish to have the coordinates x, y for the epoch t = 1 with an accuracy of only one decimal

place, the number of terms necessary (n) can be computed by setting

7- 3 7-4 T2n-I )1 : 2A r+-_ + 5- +''" + _ +""
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hence

: 2A +_- +.--_-:_] > 0.9
0

and the sum

T 3 7 5 7 2n-1 9

S : _ +-_ +_-+'"+_-=_> 20-_

The variable 7 is determined by the relation 7 = e 1/^ - 1/e 1/^ + 1 and for

A< 4 × 10 -8 on finds

A<2 × 10 -6 on finds

A<4 × 10-6 on finds

S_l >107

S > 2 × l0 s
"r 2

S > l0 s

We shall now compare the sum S_ with the divergent series

1 1 1 1
1 + _ + _r+ _--+...+ ____ + ...

Since 7 < 1 one has 72"-1/2p- 1 < 1/2p- 1 and if

P

1

Belorizky shows that p > e 2s- 2.4 and since S < S, p > e 2s_-2"4 . Now for

S_ = 107 one finds pl
1

S_ = 2 x l0 s one finds P2

s 3 = l0 s one finds P3

6

> lOSXlO

4

> i017xio

> 108xlo'

We have designated by "n" the number of terms which is necessary in the series

7 3 7 2n-1 1
7 ÷ 3- +'''+2n-:'l + .... 2A
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in order to haveS _>9/20A.Thisnumbern is greaterthanthenumber"p" of theterms whichit is
necessaryto takein the series

1 1 1
1 + ]+g+ 7+ -..

in order to have the same sum. From above we can see that n > p.

We wish to calculate x, y in our particular case with only a single decimal accuracy by Sundman's
method. For the epoch t = 1, in the three different cases where M/m : 200, M/m = 10, M/m = 3, the
number of terms is respectively greater than 108_°6 10 '7xlo4 10 sx'o4

The extreme slowness of convergence in this particular case is apparent. The Sundman solution
is, in a practical sense, quite useless for ephemeris computation. The motion of a body near col-
lision, can however be represented by the Sundman series solution. The Sundman exposition, al-
though not generally useful for a solution to the three body problem, has allowed a rigorous in-
vestigation of the motion near collision. A few of the more important results are given below.

SUMMARY

1. In a double collision, the distance to the non-participating third body remains bounded.

2. In order for a triple collision to occur, the area integral of the system must equal zero.

3. The velocity and acceleration of the colliding body tends toward infinity at the point of
double collision.

4. The unit vector along the radius joining the two colliding bodies tends to a limit.

5. Singularities in the equations of motion can be removed at one of the bodies by the intro-
duction of the independent variable "u".

6. An independent variable "w" was found such that all the singularities of the motion were
removed, allowing any number or combinations of double collisions to occur.

7. The power series solutions were found to converge, although extremely slowly.

Although this paper, up until this point, has considered only the regularization introduced by
Sundman, there are several other known transformations that regularize the equations of motion.
One of the best known methods for the restricted three body problem is that of Levi-Civita.

We consider two primary bodies in the cartesian plane having the coordinates (_, 0), (_ - i, 0).

The third body's position is denoted by (x,y). A transformation is made from the x, y plane to a
p,q plane by the following equations

x - _L = p2 _ q2

y = 2pq

dt = 4(p2 + q2) dr
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Using these transformations, one can transform the equations of motion in the (x, y) plane

d 2 x dy

dt 2 2 _-_ = _x

d 2 y dx
-- + 2 _"y =dt 2 Y

1 1-;
= -_ [(1-/_)r 2 +/_r22 ] + _1 + r_

rI = fix _/_)2 + y2

r 2 = ¢(x+ 1-_)2 + y2

to the corresponding equations of motion in the (p, q) plane. These are;

d2P 8(p2+q2) _- 4 _- _ C (p2+q2
d'r 2 p

dp [ ]d2 q + 8(p2+ q2) _ 4(_-_ C)(p 2 +q2)
dr 2 q

Subscripts in the right side of the equations denote differentiation with respect to that variable

and c is a constant of integration.

If we now consider a collision at (_, 0), then as r I _ 0 the term (1 -_)/r I or (1 __)/p2 +q2 in

_, which becomes infinite, appears multiplied by a factor p2 + q2 . At p = q = 0, the last equation

shows that the square of the velocity is proportional to 8( 1 - _). The curves of motion are analytic

curves without singularity near the origin. Thus for a single collision at (g, 0), the equations are

regular.

Recently, a new method has been introduced into the three body problem. Originating in atomic

physics, "spinors" were used to describe the process of spinning of an elementary particle. In

celestial mechanics, spinors are no longer used to describe spin but are used instead as a mathemat-

ical aid in simplifying the equations of motion for the three body problem. A spinor can be thought

of as a vector in the complex plane connecting a complex number z t = u_ + iv t to another complex

104



. number z s = us + iv_. The spinor is then a four space vectors of the form:

v!

S = Us

2

It is these vectorial analogies of spinors which are used to regularize the differential equations of
motion. Transformations of the Levi-Civita type cannot immediately be extended into three di-
mentions. By using spinor notation, a position vector ? and its 3 scalar components (x, y, z) can

be expressed in terms of z I, z 2 and their complex conjugates.

For each position vector, there corresponds differential equations for a spinor (z 1, zs) which
are regular, when a certain pseudo-time is chosen to be the independent variable.
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