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FOREWORD

The classical differential equations for the problem of three
bodies remain valid only if there are no collisions or other dis-
continuities for real values of time. The equations of motion are
not analytic when two or three of the bodies occupy coincident
positions. In order to investigate collisions, the equations of
motion must be made analytic by a suitable transformation of the
independent variable, Once this transformation is carried out, the
equations of motion are regularized. This paper is an exposition
of Sundman’s treatment of regularization of the three body prob-
lem. Although Sundman’s work is the basis for this paper, related
papers and discussions have been included. To my knowledge, this
paper is the first complete exposition of Sundman’s historic paper
to be done in English and in vectorial form. The paper provides
all developments in detail and leaves very little to be taken for
granted.



EXPOSITION OF SUNDMAN’S

REGULARIZATION OF THE THREE BODY PROBLEM

by

Donald K. Yeomans

ABSTRACT

A complete exposition of Sundman’s regularization of the three
body problem is given. The equations of motion and the integrals
of motion are derived. Double real collision is investigated and
the vector joining the center of mass of the two colliding bodies
and the non-participating third body is found to be bounded. The
velocity and acceleration approach infinity as the distance between
the two colliding bodies approaches zero. The unit vector ap-
proaches a limit near real collision. A new independent variable
‘“‘u” is introduced which is seen to remove the singularity in the
equation of motion for double collision. The mutual distances
between the three bodies, along with the original independent
variable are expanded into a power series in ‘‘u’’, A lower limit
for the strip of convergence of these solution series is determined.
Another independent variable ‘‘w’’ is introduced and it is seen to
remove all singularities for any number of double real collisions
between any of the three bodies. A lower limit is also determined
for the strip of convergence of the power series solution with
respect to this variable. The convergence of the power series
solutions is investigated and found to be extremely slow.



ACKNOWLEDGMENTS

I would like to thank Dr. P. Musen of the Goddard Space Flight
Center and University of Maryland, for unselfishly giving his time
and direction throughout this project. In addition I am indebted to
the Publications Section at Goddard Space Flight Center for the
typing and printing of the final draft of this paper.



EXPOSITION OF SUNDMAN'S
REGULARIZATION OF THE THREE BODY PROBLEM

By
Donald K. Yeomans

Because of the interest in the material included in this
paper by people working in the area of celestial mechanics
in NASA, we are now making this material available as a
Goddard report. We would like to thank the author, Mr.
Yeomans, for permission to print this material prior to
publication.

iii



CONTENTS

INTRODUC TION
THE EQUATIONS OF MOTION
JACOBI'S REDUCTION
AREA INTEGRAL
DOUBLE COLLISION— p REMAINS BOUNDED
FOR A TRIPLE COLLISION, THE AREA INTEGRAL (C) EQUALS ZERO
BEHAVIOR OF VELOCITY VECTOR NEAR DOUBLE COLLISION

BEHAVIOR OF 'r" NEAR DOUBLE COLLISION AND INTRODUCTION OF
REGULARIZATION VARIABLE "u"

CAUCHY-PICARD THEOREM . .. .. .. . ittt ittt sansnannsnsas

RADIUS OF CONVERGENCE FOR TIME SERIES WHEN MUTUAL DISTANCES

ARE ALL LARGER THAN 14K, ... .. i ittt ittt ittt tanennesnn
THE EQUATIONS OF MOTION USING NEW INDEPENDENT VARIABLE "u".....

DETERMINING A LOWER LIMIT FOR "R"-DOUBLE COLLISION............

DETERMINATION OF A LOWER LIMIT FOR THE RADIUS OF CONVERGENCE

FOR SERIES SOLUTIONS IN POWERS OF u=-u, ... .0ttt ittt

INTRODUCTION OF A NEW INDEPENDENT VARIABLE "w" ...............

INVESTIGATION OF CONVERGENCE

SUMM A RY . i ittt ittt e it e e s ettt e e e e e e e e e e e

SELECTED BIBLIOGRAPHY . . . . ot it ittt it ittt i ettt e i i e eenn

v

Y R st .».}:“"'i‘ F\E NAI BN
TR UL NS RS S W R B S S T AN iNG iliviia

..............................................

....................................

------------------------------------------

.............................................

-------

............

.................................

................................

10
20
21

24

34

37

46
47

65

84
94
99
103

105



-

EXPOSITION OF SUNDMAN'S REGULARIZATION OF THE THREE BODY PROBLEM

INTRODUCTION

The motion of the three body system is considered regular if the coordinates of the system are
analytic functions of the independent variable. These equations of motion for the three body prob-
lem remain analytic as long as the mutual distances between the three bodies remain greater than
zero. A singularity is encountered when two bodies collide. The series solutions for the coordi-
nates in the three body problem, converge only in so far as there are no singularities. The main
body of this paper will be concerned with the removal of the singularity brought about by collision
of two bodies. This paper gives the exposition of Karl Sundman's '""Memoire sur Le Probleme Des
Trois Corps," although additional material and explanations are included. Sundman showed that
the singularity of the differential equations which corresponds to a collision of two of the bodies is
not of an essential character, and may be removed altogether by making a suitable change of the
independent variable. The new independent variable is chosen in such a way that the differential
equations of motion are regular and a real prolongation of the motion after collision is possible.
The coordinates can then be specified for all values of time, whether collisions take place or not
and a positive lower bound can be assigned to the two greater of the mutual distances. The coordi-
nates of the three bodies, and the time are analytic functions of the new independent variable "'r"
and they can be expanded as convergent series in powers of "' for all real values of the time.

THE EQUATIONS OF MOTION

If the masses of the three bodies are designatedm,, m; and m, and their position vectors from
an arbitrary point 0" given by T, 7, and r,, the equations of motion are written:

d’r, - fmymy (?1 —?o) fmym, (;2'?0)
Mo g2 A3 ’ A3
01 02
d?r, ~ f‘“l“‘o(?o"?l) fml“‘z(?z_?l)
m = +
tode? Doy bY
d? T, f""z““o(;:o_;"z) N fm2ml(?l_;2) (1)
o _
2 de? AZ 83

where ¢, v, /. refer to distances between the masses. Adding Equations1 we have;

—

27 2 27
d®r, d*r, d r,

+ m +m
dt? 1ge2 2 g2

my

0 (2)



Integrating we have;

d?o dr dr .
mygr M dc * M dr - A 3)

A is a constant vector which provides three integrals of motion. Integrating once again we have;
mo}:o*'mlrl+m2r2 = At + B (4)

B is a constant vector. We now define R as the position vector of the center of mass of the system,
where

ﬁ : m0?0+m1?1+m2?2 5
my tm, tm, ( )
From Equation 3 we have
dR _ A _
dt = M M = my tm *m, (6)
and from Equation 4 we have
-. At + B
R = M (7)

From Equations 6 and 7 we see that the center of mass of the system moves in a straight line with
constant velocity (i.e., inertial system). Switching to the center of mass system we have

R = 0 R 0 A =B -0
dt m0?0+ml_r'1+m2?2 = 0 8)
If we define
fmym, fmgm, fm1m2
Uu = —n— + + AT
AOI A02 A12 (9)



We can rewrite Equations 1 as

4?7,
m, ae? = grad?oU
427
m, ac? = grad-r.lU
4?7,
m, qe2 = grad?zU (10)

dot multiplying the first Equation in 10 by dr, the second by dr, and the third by dr, we have,

mg Vo ¢ dvy tm YV, - dV +m, v, + dv, = dr, - gradro U +dr, - gradl_1 U+ d?z . gradr2U (11)
or
1 o o o . du o du o du - _
2 d[mg V¢ +m, V2 +m, 2 dr, ~dro * dr, ° dr, + dr, ’ dr, = dU (12)
finally we have by integration the energy integral
1 - - - _
2 [me Vg tm V2 tm, vi] = Uta (13)

where o = constant. Cross multiplying the first Equation in 1 by r,, the second by ¥, and the
third by 1, we write,

. dv, fmlmo_. . +fmomz(rox r2)
I, x m = r, x r AP
0 o dt 3 0 1 3
o1 Doy
i . dv, B fmlmo_. . +fm1m2r1><r2
r, xm - N x T - T
1 1 dt 3 1 0 3
/\01 A12
~ dv, ) fm,m, . +fm2mlr2><r1
T, x m, “q¢ T r, xor —
2 2 dt 3 2 0 3
/’\02 Al2 (14)



adding

~ dv, } dv, dv,
Mefgx g¢ Tmr, x gg tmr, * g - O (15)

Since T x dv/dt = d/dt (¥ xv) We can write 15 as
d d o d o Ly -
mo de (Fox Vo) * my qc (Fixvy) +my g (T2 ¥,) = 0 (16)

Integrating we get

My (?oxz’.o) +ml(?lxvl) +“‘2(?2)(;’.2) =< (117)
Rewriting Equations 8, 13 and 17 the ten integrals of motion are

1 -

7 (mp v tm V2 +m, V2) = U+a

My (?ox Uo) my (Fl Xz;l) tom, (sz Vz) = c

moFo +mlF1 +m2?2 = 0

mg Uo + ml?/'l + m272 = 0 (18)

The first equation is the integral of energy, the second equation (3 integrals) is the angular mo-
mentum integral and the last two equations (6 integrals)are referred to as the center of mass
integrals.

It is evident that our problem consists of nine equations in 14 of second order and hence 18 degrees
of freedom. With the corresponding 10 integrals of motion, there remains 8 integrals for a solu-
tion to the problem. These integrals are not known. However a reduction of the problem can be
accomplished by using the last two equations in 18. This simplification reduces the degrees of
freedom to 12. This reduction is accredited to Jacobi and is described below.

JACOBI'S REDUCTION

Ih the diagram (Figure 2) K is the center of mass of m; and m;, while s represents the center of
mass of the three body system. Our goal is to derive the equations of motion in terms of the two
vectors r and 7, thus reducing the system to 12 degrees of freedom.




Figure 2
From the diagram:
Ty tr = r,
m,
S TtF = T, -F
my tmy p 2 0 (19)
r, —ry, T r
7/
r, ~r, = Afr tp
where
N
my +my
mo"o+m1r1+m2r2 = 0 (20)
r, ~ rtr,
. r, = Ar + p t 1,
moro+m1(r+r0)+m2(>\r+p+ro) = 0



recombining terms

To(mg +m, tmy,) +m, T tm, \Ft5) = 0
or N
- £(m, +Am, ) + 7m,
l'o - - M
where
M = m +m, +my
- my My -
o rm1+m0+ml+pm2
ro - - M
™ (m0+m1+m2)] N
r
B Mo * M ’ (21)
I'O - - M
finally
- m,
r, - TTATTHP (22)
Once again we write
¥, = T+T,
Substituting Equation 22 for 7
m
- - - 2
T, T T AT P
. B ! ml'H E—' L —*ml m, , m, . m2,3
T T g tmy, TN P r mytm | " MP T myFm T M




letting

Rewriting Equation 20

Using Equation 22 we have

ol

rewriting Equation 25

If we define

we have from 26

m,
my tm, H (23)
5 My
T KE = 3 £ (24)
T, AT D+ T
m m, tm
N 4B - AT -4 B = B
m, +ml -
M P (25)
o M ~
P m, tm, T2 (26)
0 1
g - m, (m, +ml) (27)
Pocogm, ¥, (28)



Collecting formulas and definitions, remember that;

- M2
Ty = “AfTHg R
T
T, T our TP
L MMy
Ty ~ M7

At this point Sundman changes notation.

01

02

12

my
A N
1 0 m1+m0

o " _ ™
P - gm2r2 I m, Tm
1 0

_ M

g =
m, my tm,

The distances between the bodies are denoted

Irl—ro\ - r2 - r

Irz—ro‘ = r, = Ip+>\r|

[ - B 1= =t (291
‘I‘z l'll ro |~ HTY \&U

where the distance betweenm, andm, is denoted with the missing index (r 2). It should be emphasized

that r
depending upon the circumstance.

, is not the absolute value of the vector r,. The notation r, and r are used interchangeably

Writing the equations of motion (1) using the new notation we have:

2 = - _ = =
d’r, - fm, (7, -7,) . fm, (7, T,)
dt? r23 rl3
d?r, o fmg (fo~7)) . fm, (?2—?1)
dt? r} rd
27 - _ - =
d*r, _ fm, (7o rz)‘fml(rz ) 29
dt? rl3 rf (29)
We write for convenience,
. . . m, _ m, +m1 . . .
r, ~ry - Ar tg oot M o T p tAr (30)
- o my fm, oo My - .
r, ~ry o~ M pTur tr e TP T our (31)
T, T T, T T r2 = x? +y? + 2?2 (32)




Substracting the first Equation in 29 from the second and using 32 we write

d2r fmg ¥ fm T (?2'?1) (?2—?0)
de? r3 ;3 T im

So that

d?r T 1 1\. A “\ L
Y R
By Equation 26

- M
p- mg +m, T

differentiating we have

d? 3 M d? F2
de2 Mo tmy o ge2

Substituting in the third equation in 29 and using 30, 31

d2p M d2?2 ) M fmo(-E—A—r')+fml(-Z+pF)i]
ar . T = .,
dt? Mg ¥My  de? My Tmy r} rg
[ W((B+AFY  A(-PHuT
AP NGRS B pam}
L Ty Yo
_ N )
o B) ol A )
L I To e To
423 N 11
=L = fM|-3l5= + =)+ ;T[S - —
dt2 i I \T 13 r03 r03 1.13 (34)




Rewriting Equations 33, 34 we have

d2s S u A (1 1
d—tz— = fMl:p<_r_F+_r;5>+Mr <r03—r13>1 (35)

Looking at Equations 35 we have completed Jacobi's reduction. We now have 6 Equations of the
second order for 12 degrees of freedom. Since we used the 6 integrals of the center of mass for
the above reduction, we are left with 4 known integrals.

We note that in a collision of masses m, and m;, r goes to zero while r;, and r, remain re-
latively large and in fact equal to each other. This can be seen by referring to Figure 3.

)

Figure 3

With these approximations the second Equation in 35 can be written

2 (36)

With this approximation the problem is reduced to the two body problem.

AREA INTEGRAL

The area integral will now be derived. From Equation 18 we rewrite

~ dr, . - dr, X ~ dr,
oTo X dt mry < dt m,r

m 2)( dt - 8

10




Using Equations 22, 24, and 25

o L dr ™M™y 47

R - oo 2
My My dr MMy |, dg My
Ixde ™M MPxXdt

+—

- dr - L de
mokzrxa—th\Tpxd_t+>\ M Txag Mzm()pxﬁw‘mlpt2

— 2 - 2 -
mymy, CE m; my” d_p_ (m0+m1) . dp .
TTM O MExdet M2 Pxget M2 my ¢ de ¢
collecting terms
- 5 2 2 2
- d_r[ A2 4 21 4+ 3 dg M2 M MM, (mo+"‘1) my
rx dt Mg mlf‘] P x dt M2 +M2 + M2
. §E Am m, Hmy m, . d_,_o' >\m0 m, pmy m, L
texE|TM T T M | trxdc ™M T M | T ¢
From Equations 20, 23 the last two terms are zero and
- - 2 2 2

. dr . 2N 4 3 do|M2 Mo MMy (m0+ml) N

T X dte (mox my & ) Px dy M2 + M2 + M2 - ¢ (37)
now using 20 and 23 again

2
\2 ) mo"’x2 tmymg mOml(ml +mo) Mo My
+ = = =
™o Mk (m1 +m0)2 (m1 +m0)2 my tmg (38)

and

m 2m0 m, m22 (m0 +ml)2 ) r,n,zi;_of my rrj{* m, mﬂor2 1 2m0 m, m, tmzl -

WT * M2 T M2 M2 - M2

my (my tmy tm)(mo tmy) oy (mo tm)
T M2 - M (39)

11



If we define

ho= my tm,
m0 ml (40)
and from 27
: M
& m, (mo +my

Using this notation, Equation 37 may be written

. df . dp .

gr x gg * hpx f = ghe Area integral (41)

ENERGY INTEGRAL

To derive the energy integral we start with Equation 13

; dr,\2 dr,\? dr, \2
2 |mo \dt +m1<‘d?> tm, ('&?) = Uta (42)

where now from Equation 9

moml m1 m2 mom2
u = f< * * ) (43)

T2 To T

Substituting Equations 22, 24, 25 into 42 we write

1 aF M dp)’ gt ™ ap) | (Metm dpY|
T imp i~ AgE "M de,) TM\#dt C Mdt) tTm\TM dt = Utae

squaring the appropriate terms we have

1 J(ary Pmyap s (ap\] [ (dE %M dad dp M (dBY:
7m |A*\dt) * M dt dt T M \dt my A7 \dt M dr dt ' g2 \dt
(mg *m,;)? dp \? .
+m2——M2——a—t‘ = U+t a

12




Collecting terms

1 /d7\2 1 d7o'>2 m, mz2 m, mz2 m, (mo w‘ml)2
Z &L 2 2 < (&£ -
2 <dt> (mg A% +my p?) + 3 <dt Mz w2 M2
1 9_}‘ dp 2mg Am, 2m, pm, 7
f2dtdt\TM T TN U

from Equations 20, 23, the last term on the left is zero and using Equations 38, 39, 40 and 27 we

have
1 (dr\2 1 (dp\* _
LB (BT -
if we define
hgU = V (44)
we have
g@—f)z + <g—§>2 = W -K Energy integral (45)

The next few pages will be devoted to deriving some equations which will be useful in in-

vestigating the motion of the system. Differentiating Equation 45

df &% dp 28 av dra gy dny gy dr
' Fohigr s ge T %dr, T de Y 2dr, dv ' 2dr, " de

2 gt dt?

this can be represented vectorially as
~ dV . dV . v
j Tk d(} >

d?7 d*g S > ~ :
[v. f+v, 2] [g;z‘r”‘gz—ﬂ (vo Tovy Trvek) - \Tar, *7 ar, .
or
d2‘4 d2_' N
r p} = v -+ gradV

z . th ——
v {g dt? de?

13



we have

427 423
g ar? = grad;V h at? = gradb.V (46)

The Euler Equation for a homogeneous function of the order n

where

Since V is a homogeneous function of order (-1)

=i
O.|QJ
<
+
ol
|
1
~~
|
—
p g
<

from Equations 46 we have

"-dz?+h"' d?s vy
dt? LTE (47)

adding Equations 45 and 47 we have

dr\2 . d?F 922+_. a2z
g1\ dt +r'dt2 * hi\ge P 4 = V-K (48)

which is equivalent to,

) 3[8) - v

or

d? .
—— (gr2+hg?) = 2(V-K)

dt? (49)

14




If we define

R? = g?2 + hl_0'2 (50)
then from Equation 49
d?Rr?
dt? = 2V-K) (51)
Now we assert that
\ . 1.02 rl2 !'22
R = m—o + r? + m—2 (52)

wherer, = A,, r, =4,,,r, = 8,, Equation 52 is justified if it can be reduced to Equation 50; using
Equation 28' we have

=_ 22 3472 2|2
p-prl? [B0arl2 |7

R2 =
m, my m,
29,2 .7 4,2 2 24 03T 42212 2
Rzzp 2;Lprpr+p 20T rt o, o’
My my my
2 2
R? = pz{_1+_1]+,{u_+x_+_l]+5.;[25_2&}
my my Mg my —m m m

by Equations 20, 23 the last bracket is zero and

R = 2':"‘1““0 . o2 my *m, .1
- m, m r 2 m,
1™ (mg +ml) 2

or

+
I ) m; tm, . 2 m2+m0 m,
= p 2 |
m, mg (mo +m1) m,

15



gr2 +hp? which is Equation 50 and assertion 52 is justified.

and using Equations 27, 40 we have R?
From Equation 51
d?R dR\*

2(——) = 2(V-K)

i[ d_R]_ d?R
dt [2Rgr] - Rg ' 2at

and
d2R dR\? _
R0 +(E) - V-K (53)
We now differentiate R? (Equation 50) to get
&R _ , df . dp
Rgt = er "gf the ' gt (54)
Squaring Equation 54
2(%)2 - 2 2(d")2 2 2( )2 Ine r o dg
R 3% = g?r?lge) +th¥Pefi\ge) t 2her - b - gt Gt (55)
We now define
S B dr>2+g_<— ar\? | h (L dpY
£ gz \Tdt P dt L2 \T™ dt 02 \P* dt (56)
Since (3x by = a2b?- (a-b)? we can write
- Q _d__/O E 2 g dr 2 N £ 2 h d,O 2 . d,B 2
P - R2(rdt—pdt) *;[fz(a) \Fra) |t 2 (G) -7 & (57)

Since r dr/dt = T -dr/dt

and
(58)

16



using Equations 55 and 58 we write

(&) e = e (@) oo () w5 Franle -0 &)
- R_lz [t%’ r? (gY)z +h? (T)z F20h 7 G Gt ehe? (d—f)2 ~2ghF B e - e+ gho? (%%)2]
- e enon) )" ()]}
from Equation 50 and Equation 45
(@) e - o-x (59)

It is evident from Equation 53 and Equation 59 that

P = R <R, v
dt?
or
<R L
R dt2 B B v (60)
adding Equations 60 to Equation 53 we have
d?R  (dR\? _
R-T (Ei?) R (61)

In an effort to express P (Equation 56) in a different form we introduce

hR? (. d6 _gh ,_\*, g’h? _,
ar? p? px 2 ° (62)

17



from Equation 41 we denote

ghc = ¢, +¢,
L _ . dr
Cl - gr x 'E
where
o .. dp
¢, = hpxgg (63)

Substituting Equations 63 into expression 62

squaring

c?tc2+2¢, - ¢,

-2, - == t o (efrepr2d, -G, ¢t

2 €17 ©2 2 €2 4 \C1 2 17 2 2
hR hR R R

rearranging terms

,| hR? p% 1 ,| hR? 2hR? p? hR? p* 1
ST 2 2 pa 2|t C2 2 212 2 * ”é Rz
gr? p? R R gr? p?h gr2 p2hR? gr2p? R* R?

+c —
gr2 ,02 hR2 gl.2 /02 R4 R2

- hR2 202 = hR?20* 2 (64)
10 S22 7 t o g

the coefficient of ¢, - ¢, by Equation 50 is written

2 2hp? 2 2

- —— — = —

2 4 2 2
+2hp 2gr _ _l+ 2R

gr’.’ gr2 R?2 R2 gr2 gr2 R2 gr2 gr2 R2

18




therefore 64 is written

Since by Equation 50

gr?R? R? gr?R?  gr?

we write

or

c? 2 4 po? 2 2 2
1 +ho? - h ¢ c
et T [grﬁf—zi = (62")
gr gr? p2h gr? hp?
using Equations 63
2 2 -
of ed g (. &V, (L @)
gr?  hp 2 \FX dt 02 \PX dt

now this equation is equal to the expression 62' and upon further inspection it is also the last two
terms in the original definition of P (Equation 56). Therefore we can rewrite Equation 56 as

T (65)

19



Using the derived equations we shall now investigate double and triple collisions. Some important
theorems will result.

DOUBLE COLLISION—p REMAINS BOUNDED

Remembering Equation 51

d? R?
dt?

= 2(V-K)

we shall first investigate a collision of m, and m, (double collision). In this case r -0 as t ~t, where
t, is thetime of collision now since V = heU (Equation 44) and U is proportional to r™!, V necessarily
goes to infinity, We write if r-0> V-®, t~t, and from Equation 51

d? r?
dt?

>0 ty "8y Ct<ty (66)

where t, -8, is an interval about t,; from 66 it is evident that dR?/dt is increasing and we have two

possibilities
dRZ
a) gt > 0
dR2
b) gt <0 (67)

Case a) implies R? is smoothly increasing with time and case b) implies R? is smoothly decreasing
with time.

R2

Figure 4

Either 67 a) or 67 b) could be true in a double collision.

20
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. We will now show that as r~0, o~ o, where p, is finite. This proof will be done using the
method of reductio ad absurdum. For a double collision, r -0 and o is finite. We shall assume that
p does not approach a limit. Since R? = gr? +hp? (Equation 50) it is evident that R? does not approach
a limit. Since R? is continuous with continuous derivatives, and is without limit by assumption, R?
must oscillate. However dR2?/dt, by 67 a and b, has a constant sign and R? cannot oscillate. We
have a contradiction and the original assumption is incorrect. Therefore o has a limit which we
denote p,. This completes our proof and we write Theorem 1:

limp = p,
r~0
From 28' we write
ry = |8-u7l
r, = B +aT]
e, = |7l
ast-t,, r—0 and
o = M
oA,
r, = 0

This trivial conclusion for a double collision was obtained from the signs of the first and
second derivatives of R2.

FOR A TRIPLE COLLISION, THE AREA INTEGRAL (C) EQUALS ZERO

In the case of a triple collision we have only to consider case b of 67

and

RZ -0

21




writing Equation 61

d?R

and Equation 65

(ig°]

R2 Eﬁ_pa?

If we let the first two terms of P = F, we have

_ gh ( dp dr)2 hR? <_. do _ gho?
r 2 P x -

2 h2 2
P = E—ngi +F
where F20. Substituting into Equation 61
d’R @RY _ g?h?¢?
Rzt \qx) = " *tF-K
or
d2 R <d_R)2 g2 h? C2 _
2R de? * dt - *tK = F

R2

Multiplying both sides of Equation 69 by dr/dt

@R dPR (Y glblc? dR . dR
2R dt dt2 * dt B R2 dt + K K

For convenience we define

22

(68)

(69)

(70)

(71)



differentiating, we have

di d_R(@Y dR d2R dR  g?h?c? dR
dt = de\dt/ *Rg 7 *Kat - T dt
dt R
Since dH/dt equals the left hand side of Equation 70 we write
dH dR dR
dt -~ Fgg or di = Fg - dt (72)

=t', R=R' andH = H' likewise when

We now stop to introduce some convenient notation; when t
t =t R-R" and H = H"

t' <t < t" (73)
Integrating 72 and using the above notation we have
o
H" - H = F dR dt
o dt (74)
we now consider two subcases a) and b)
dR . "
a) gt >0 for t' <t <t
therefore R is increasing and R’ <R”; from 74
dR
JF g dt >0
and H' <H"
dR
b) dc <0 for t' <t <t” ('75)

R is decreasing and R’ 2R", H' 2H". Since we are considering a triple collision, R must be de-
creasing and we only consider case b) that is;




andR~0as t ~t,, i"<H', R"<R'. Rewriting Equation 71

Since R is positive

and

Since H" <H'

g2 h2 C2

2
no- R(E) et

now as t” ~t, , R" -0 if we are to have a triple collision. If R” is then zero we have ®<H’'. Since
H' is finite, we must conclude thatc = 0. This is one of Sundman's important theorems. That is;
Theorem 2: For a triple collision, the area integral (c) equals zero. This is a necessary, but not

sufficient condition.

BEHAVIOR OF VELOCITY VECTOR NEAR DOUBLE COLLISION

We now return to the case of the double collision in an effort to investigate the velocity near
collision, i.e., to investigate dr/dt ast~t,. For double collision r -0 as t ~t,. In an interval
t, - 6,5t <t, there exists a number b such that

when

r, ~ r—0 (76)
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Rewriting Equations 35,

27 _ T (1 1 SN
P ‘f(mo+m1)—3+fmzp<r_3'$ ~fm,x L3

The second of these equations can be rewritten

eF MG (B u)
dt? r? H ry r Ty
By the triangle inequality
B M BT A [BosE
dt?]| ~ r? T r 2 To

by Equation 30 and 31 this reduces to

d2 s A
S e
t ry ry
and from 76
-
d¢ p < f_M
dt?| — p2

in the interval t -5 <t <t, .

-
Cw

We note that this acceleration is bounded. If we define t' = t, - § <t <t, then we note that
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where the prime indicates d3/dt has been evaluated at time t’. By the triangle inequality

2 &)] [
by 77
)< |y e
as t—t,
|§r§ < <§‘E>, *l:—i % (78)
Since
t, ~t' = oty ~t, 3

We see that |(dg/dt)’| is finite because it is evaluated before the time of collision and |dz/dt|
is seen to be bounded. At a later time, |d5/dt| will be shown to have a definite limit at collision.

Rewriting the energy integral (Equation 45)

g(%)z + h(%)z = 2V -K

as t ~t,, V has been shown to approach infinity and the above discussion leaves dg/dt finite. There-
fore we realize that dr/dt, or the velocity of the colliding masses along the vector joining them,
approaches infinity as t ~t . Thus far, we have seen that o has a definite limit, ds/dt is bounded
and dr/dt approaches infinity as t ~t, in the case of a double collision. The following section will
be devoted to further investigation of dr/dt as the masses m, and m, approach collision.

We start with r2 = 7 - r; differentiating we have
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dividing through by 2 and differentiating again we obtain

1 d?e?  (drf\?2 . d?F
) dtz (79)

dr\2 do\?
e\dt +hﬁ = 2V -K

where V can be written as

_ 1 1 1
v = fM[mzr + m, r, + m, ro] (80)

i.e., V = ghU. Upon further inspection, in the above energy integral, d5/dt remains finite and the
last two terms in the bracket of Equation 80 are finite if r -0 as t ~t,. Under these conditions,
the energy integral and Equation 80 yield

- L

(d;>z ) 2f (my +m,)

dt r 1 (81)

L, = finite as t =t , . We note that dr/dt behaves roughly as the inverse root of r. Dot multiplying
the first equation in 35 by ¥, we have

- dr B f("‘o*ml)
dt? r 2 (82)

where L' = L, +L,. It is clear from 83 that as r -0 (double collision) d2 r2/dt? -« and

d? r2

atz 0 ° (84)
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This tells us that dr?/dt is increasing and we have two subcases

dr?
a) v <0
d 2
b) oo (85)

Case b) insures that r? is increasing so that r does not approach zero. Since we are considering
collision we reject this case and consider only case a. In this case r? decreases monotonically.

From the vector indentity 2252 = (a- b)2+(axb)? we let 3 = T, b = dF/dt and write
—, (dT\?
7 (§)
or
o (AT dr\? . dry?
r? ('&T) - (§) (rx a) (86)

From 81 we see that as t—t,

and

) dar \?
rf\d& /) "0 (87)

Now from Equations 86 we see that we have the sum of two positive quantities equal to zero and
hence they are each identically zero. Therefore

dr
rge ~ 0

=l

=l
X
28
i
(=}

(88)

as t —t,.
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We will now show that

as t ~t,. From Equation 35

d?7

_ T {1 1 A ©
dez _f(mo+m1)r—+fm2p<:_:>_fm2r<_3+_>

w

We cross each side of this equation by T so that

and

d (. d&F) _ . {1 1
de \T>* dt/ ~ fmzr"prs_ 3
1

Since a3 -b3 = (a-b) (a2+ab+b2) we write

d [, dr - of1 1 1 1 1
a(rxa>: fmzrxp<r_0—r_><_‘+ +'—2>

or

d (o ﬁ), - a(> 1,1 .1
dt (rxdt fmyrx o T, o 2 3

taking absolute values

R L i 1
= fm2’rxp3 T n + + — (89)
1
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Figure §

In the time intervalt, -8, <t <t , , p<r,+gm, <r,*r where r = min (r,, r,, r,) also since r <r,

p < 2rg (90)
in the neighborhood of collision and
|rl—r0| <r (91)
It Bl <1p (92)
from 76 r,>b, r,> b and
1.1 1.1
r, b r, b (93)
Substituting the inequalities 90, 91, 92, 93 into Equation 89
d . d? 6f m2 r2
a (rx d_t> b3 (94)
We now

We note that from 88 and 94 both r« dr/dt and its derivative go to zero as r goes to zero.
take two instants of time (t”, t') such that t, - &, <t" <t’' <t, and

’

Y4 (. dF R AN A AN
,dt \Txgg/dt = \rx gy ) T A\rxdt
t
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We see that

R AN A TAY “ld (L df
T 3¢/ ~\T™x gr < L lat \tx dt dt
t
from 94
J't d (_, d?) tlﬁfm:.,rz 6fm2r2
de \Tx g Jide < 5 dt = o/ (t'-t"
o fae T o b E )
We see that

"

R T Y A
rxﬁ "I'Xa?

now as t' —~t, (collision)

'

(F &)
rx gg) 0O

and

"

<_' d?) 6fm, rz(tl-t”)
I X a?

b3

<

(95)

Here we see that 7 x dr/dt not only goes to zero as r goes to zero, but it does it very rapidly since

as r~0, t"~t, the numerator in 95 goes to zero rapidly.

The unit vector 7 as ¥- 0 will reveal the type of motion near collision.
vestigate this unit vector we write.

dr dr\ dr 2
- - dar 2=, CL 22 d L d d
<r>< dt> r< >+dt (r) rza%—rr : ra%-

I x

-
[=X
-

In an attempt to in-

- 2

r3 3 r3 r

Therefore we write

now from 95

(96)



We introduce two moments of time t' and t" such thatt, -8, <t" <t'<t;, now
!
" df
£ - = J dt dt
tlI

and by 97

t U
o 4 6f m, (tl—t)
Brofrf < J: dt. de < jt b3 dt (98)

We now evaluate the integral

#

t’ t’ t’
t’2 t”2 l [ " 1 " 1 4 "
[Lmgec= [ nae] = qero-(7 -57) = war g oo = @ ol e )]
t t t

from 98

6f m2 1
e N UR I O SRR (99)

A A

ast’, t"~t,, [f"- #'] -0 and by the Cauchy criterion, f approaches a limit. If we denote this
limit by ¥ we have

lim? = ¢, Il = 1 (100)

t*tl

Because the unit vector is constant near collision we conclude that the motion is smooth and
dismiss the possibility of m, and m, spiraling into collision with each other. In addition, (-t) can
be substituted into Equation 35 without any effect. This suggests that the motion is symmetrical
about the t axis. The two above conditions suggest a smooth and symmetric motion before and
after collision. see Figure 6

- Y

Figure 6
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Since

and

From 87

so that

and as t—t, we see from 97 that

which leaves

or

from 101

(101)

(102)

(103)

(104)

(105)

(106)



and since the unit vector f is constant near collision the last term in 106 is zero. From 100, 105
and 106 we have

dr
Vroge = - ¢ y2f(m, +m,) (107)

and

dr P
a?’v—ﬁ 2f(m0+ml) (108)

From 107, we can gain insight as to the behavior of the velocity vector near collision.
BEHAVIOR OF "r" NEAR DOUBLE COLLISION AND INTRODUCTION OF REGULARIZATION

VARIABLE '"u"

In order to investigate the asymptotic behavior of r in the neighborhood of collision, we write
down 105

Gk R TN

which is equivalent to

2 )
3 ac * V2f(mg tmy) ~ 0 (109)
we see that

2 dr3/?2
5% Y o)

<€ (110)

if |t - tl\ <7 where ¢ and 7 are arbitrary constants and ¢ ~0as t ~t, now

‘T2 dr¥/2
r3/2 - 2f(m0*ml) (tl—t) = .[ |:§ ax 2f(m0+ml)]dt
t

wlro

Since r,., = 0: also
1




from Equation 110

§r3/2 - 2f(m0+m1) (tl-t) < e(tl-t)
if )tl—t’<n and
2r3/2 €
-1 < T
3y2£(mg +m)(t, - t) 2 f(my +m, )
if ‘tl—t‘ <nast-t,, (t) goes to zero and
21‘3/2
3)/2f(m0+m1)(tl-t) o1
if we define
2_ 1 - 1
3y 28(my +m,) A3/2

then

3/2
AVE (1, - t)

t—-t, and

r - Aty -t)¥3

(111)

(112)

(113)

From 113 we note the asymptotic behavior of r, as a function of t, near collision. From 105 and

113 we write

dr 2f(m0+m1)
A(tl—t)”?’
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and if we define

) 2f(m0 +m])
B = - YA (114)
we have
dr _
dt ~ Bt mt)7 (115)

From 115 the velocity, as a function of time, is evident in the neighborhood of collision. Once again
we note that as t —~t, the velocity becomes infinite.

We shall show that r (see 113) can be expanded into the following series

= - 2/3 - 3/3 + - 4/3 4 ...
r a, (tl t) tay(t, t) 34(t1 t)

if we let (t1 ~t)1/3 = u

r = azuz*a3u3*a4u4+"' (116)
and
3—:‘ - %(tl_t)-m
or
du 1
dt r
where
" dt
Lo J’ de (117)
t
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now

du = c% (118)
from 113, 115 and 117
dr _ drdt r
du ~ t du /T
and
S~ (119)

The regularization variable u, as defined by 117, is referred to as the pseudo-time. This new
pseudo-time is seen to remove the singularity in the velocity, for now, the new velocity is pro-
portional to the square root of r and as r -0, for collision, the velocity does not go to infinity. The
velocity is now an analytic function.

In an effort to investigate the convergence of the Taylor series solution, we state the Cauchy-
Picard Theorem without proof.

CAUCHY-PICARD THEOREM

Theorem 3: Let Q, (ql, a, """ qn) i = 1,2, ---n be analytic functions which do not contain ¢
explicitly and which are developable into Taylor series in the powers of differences of q, -q; and
these series are convergent if;

'

a)

% -a;| <q

Then there exists positive and finite quantities QJ.’ such that when a) is satisfied

b) 1Q, (a; - a,)| < Q) j=1,2 n (120)

Under conditions a) and b) the system of differential equations

a © Q (e a,) (121)

admits one and only one analytic solution such that q, goes to a finite limitg, when t -t.
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Condition a) assures the functions are analytic within the radius q;' . In this solution, the un-
knowns (qi) are developable into Taylor series in powers of t - t whlch are convergent for |t -t f<T!
where T' is minimum

Q' Q Q) (122)

At a time t - t let the components of q and q be (x,. vy, 2,), and (¥;,¥,,z,) respectively and

-

similarly let the components of q and g be (%, v, 2,) and X, ¥, ?l, Condition a) assures that

%

y —y l ‘zi ‘7.111 < ko' (123)

where k, and k,/ are minimum radii of convergence. From 28’

- ’?2 _rl'2 + (%, ?1)[(?2 -7,) (% “?1)] * [(Fz -F,) - (7, - ?1)]2 (124)
We let
B, - (%, —?1) [(?2 —?2) - (7, —?1)] ¥ [(;2 -T,) (7, _?1)]2 (125)
so that
rf 258~ |Po (126)
from 125
.Po‘ = 2l?2 _?1\ ['?2 —?zl * ‘?l T ” * [?2 _?2i * Fl T ”2 (127)
We know from 123
I?z_a‘ < ,x2—§2| * |y2_§21 + {22-22| < 3k, (128)



and similarly

l?l '?1| < 3k,

We see that

likewise

I?l _?1‘ <3k, |?o '?o| <13k,
Using 128, 128", 129, 129" and 127 we find
|Po| S 1275ky + 12k

and from 126

r2 > T¢ - 12(T ko tk)

r 2 must remain positive so that

12k2

Z +12Tgky ~ TZ <0

0

Since k, must be greater than zero we have

(arv3-6) _ _  To i

0 <ko <13 To T pEie | 12,928 '

The inequality is strengthened if the denominator is set equal to 14

T, > 14k,
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(128"

(129)

(129")

(130)

(131)



and similarly

T,.T, > 14k, (132)
from 124 and 125
r02 = FOZ + Po
or
P0
r, - T 1+—
0 0 r02
and
1 a1, By
r, | To \}T T2 (133)

Here we see that 1/r,, which appears in the equations of motion, remains analytic for 1, > 14 k.
It must be remembered that x,,y,, z, were chosen arbitrarily and that the radius of convergence
k, depends upon these initial conditions. Asr, is taken smaller and smaller, the radius of con-
vergence decreases. Rewriting 130

2272 - (12T,ky +12k7)
using 132

T T2
2> =2 _ = 0 0,0
ro z l'o 12 rO 14 12 196

or

v
|
~
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so that

r022;°
and similarly
r1.>_2—7;'9’ r2227?0
so that
1.1 1. 7, 1. 7
ry  2r, r, ~ 2r, r,  2r,

(134)

These three inequalities hold for the given initial conditions 123, Using these same initial con-
ditions the disturbing force will be investigated. We write;

|X2 - X

1|
- < x|+ -%, | + %, -%
%2 x| £ fxg m K| fxg mR | 4[|

Using 123 and 132

B Fo T, _ 8r,
‘xz—xl}ik0+k0+ro.<_ﬁ+ﬁ+ro = 7 (135)
from 134, 135 and 132

X, T Xy S8?0< 7 >3<
r03 7 2r0 - 4k02 |
similarly ‘
|
|
xl —XO X2 _XO < 1 1
£} rd | T4k (136) 1

Now from 129,129' we see that condition 120 a) of the Cauchy~Picard Theorem is satisfied.
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The disturbing potential 43 is written

mgm, m;m, Mgm,
v - f(—;z. To r1‘>
now
1ou £ [Me™ my s
m, 9%, m | 3 (xl—xo * L3 X2 xl)
2 0
and from 136

1 oU
m, Za_x”ls £(mg +m, ) <4k2

-

1oau| |1 oau| |1 eul
m; dx m; 9y ' m; 92 4k02
From 27, 40 and 44
my my My
U = o V
and from 43 and the instant t = t
— mymy MM, MM,
2 1 (1]

and using 132

42
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so that from 138

— f(ml m, tmymy tmy mo)
Mo V- 14k, (139)

Two useful inequalities will now be derived. It is evident that
("‘1 _“‘2)2 * (mz _mo)z * (ml -mo)z >0
or
2m02 + 2m12 + 2m22 - 2(m1m2 tm, my +m, mo) >0
So that
me? *mf +md > mimy +mymg tomymg

adding 2(m, m, +m, m, +m m;) to both sides of this inequality;(m, +m; +m,)2 > 3(m; m, +m, my +m, m; ) or

M* > 3(m; m, tm,mg +m, my ) (140)
Now if

4m; m, < M2 (141)

1 J

then
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Since the final step is correct, then the steps can be reversed and assumption 141 is correct. From
139 and 140

Mo My My _ fM2
M VS 3%k, (142)
from 141
mim. M
i K| <3 ¥ (143)

where K is the energy integral constant. The energy integral can be written

2
2L o2452) = _ Mo My My +2‘“om1mz
mi(xi Ty, Zi) - M K M \'

i=0

so that

" my,m; m, K 2m0mlm2V|
m; Xy M + M
Since this is true at any moment of time
-~ mym, m, K 2mym, my V
my Xg < M * M
from 142 and 143
T2 o« ,_2! K] + M2
Mo Xo 4 21k,
or
- M fM?
x? <7 1Kl + 2im &, (144)
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If we let m = minimum (my, m;, m,), 144 can be written

v, M £M2
X0 4 K| + 2Imk

or

%ol < Y 1K1+ S

It is obvious that a similar procedure will give the same results for |§i z,| so that

M M2
Y7 &l * o1, (145)

, §;‘ and

zZ.

X, v, .
Since from 123
%, -%, | <k, (146)
We let
. /MIK] M2
ke = Y 7a ' 2mk, (147)
and 145, 146, 147 yield
A AR ARE™ (148)

We have k' for the Cauchy-Picard condition 123. Note that k,' is the radius of convergence
for a series, in powers of differences in velocities, which represents the right side of our dif-
ferential equations. One should realize that k,’ can be arbitrarily chosen. The Taylor series
representations of the right side of our differential equations, in powers of the differences in co-
ordinates and powers of the differences in velocities, have been investigated. The radii of con-
vergence were also determined. Each power series representation is valid up to the singularity
at the point of collision. A new independent variable will be defined such that the singularity at the
point of collision is removed.
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RADIUS OF CONVERGENCE FOR TIME SERIES WHEN MUTUAL DISTANCES ARE ALL
LARGER THAN 14k

Our final Taylor series solution for the right hand side of our equations of motion, is ex-
pressed in powers of t - t which is convergent for t -T <T' where T' is minimum of q,/Q,,
qz'/Qz' > .o qn'/Qn'. (see 121) In order to investigate the radius of convergence for the solution
series, we take two representative equations of motion:

dx, .

dar T o

dx, .

dt T %o (149)

from 123, |x, - X,| <k, and from 148 [%o] <2k, so that

b K
o, kg (150)

from 123 |%, -%,| <k, and from 137 |%,| < W4k so that

qQ,’ 4y kg
Q, ~ ™ (151)

We know that T' is the minimum of 150 and 151. Now

a2k, kg ko
W T 2k, C kg (Bkoko'” M)
and from 147
4 Pk, ke kg [& ]
M T &, o Xk, L2im T Kl -1 (152)

Since the largest m can be is M/3, we substitute this into 152 and find 152 to be positive, so that
ko/zko’ is the minimum of 150 and 151. We see that the series solution, in powers of t-t,is
convergent for

fe-tl <1 =

=)

LTy T, 2 14k

4M? (153)
i~ tMIK

21mk K]
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Motion is regular in the given interval, if the coordinates of the bodies are analytic functions of the

time in this interval.

This analysis has been done under the restriction that all the mutual distances are greater

than 14k,.

THE EQUATIONS OF MOTION USING NEW INDEPENDENT VARIABLE 'u"

If the scalar components of T (25) and 7 (26) are designated (x, y, z) and (¢, 7, {) respectively,

equations 35 are written

f("‘0 +"‘1)x by
. un 1 1
K== = X = -fmx(L 5 ) fm e - =
r "2 X<r03 r13> "2 §<r03 r13>
f(my +m, )y A 1 1
- M
+ S O ] e IR Y (SR
Y rs "2 Y\<ro3 r13> "2 77<r03 "13>
f(mo +“‘1)Z A 1 1
Z+ p = fz = ‘fm22<f‘3+—3>+fmz€—3'—s>
r ro rl ro rl
. A 1 1
£ = f8 = - fM§<—3 + %) + mm(—; - —3>
ro rl ro rl
.. A L 1 1
5o = - fM77<— +—> + foMy<—‘ —>
RS 0? rp
4 £2 YR CANNNUNCI PV
4 5 rg o] t 0@ P (154)

The definitions of (X, Y, Z, & K,
we write in scalar form.

and from 45 we have

Z) should be evident from the above equations. From equations 41

g(xy - yx) + h(&n - n€)
g(yz - z3) *+ h(nl - 17)

g(zx - xz) + h(L& - £0)

{1

g(x? 97 +32) + n(g2 +32 + 22)

47
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gh c,
ghc, (155)
= 2V - K (156)



Now from 117, 118 we remember

dt = rdu

I
e c
"
a
c

t -ty (157)
With these definitions in mind we define different derivitives of a functionw. Let
dw . dw ,
3 - % and gy = W (158)
so that
X = l ! = .l no_ f_’ '
ooy AT (159)
and
w' = rw, w' = rlW ot orrw (160)
Now from 160, x” = r2% + r ix and from 159 x" = r?x+r’ x'/r. Similar equations exist for y" and
z" so that from 154
, ' f(m +m, )x
' ' f(m +m.)y
o ey
' ' f(m +m, )z
NS e
using Equations 156 and 159 we have
g(x12 +y!2+z:2)+hr2(é2+h2+é2) = r2(2V—K) (162)
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From 160

r' = r2f 4 ri? (163)
using the energy integral (45)
or using 27

r2 = r[— % (g2 +92+72) - g + 2(my +m,) f(% + % + %}ﬂ (164)

Now r? f will be evaluated. We assert that

r2f = - f(mg+m) + rf(xX +yY +22Z) (165)
since from 154
flm, +m film, tm flm. +m
27 = _f(mo+m1)+f|:>&+ ( 0 K24 gy + (0 l)y2+z'z'+ (03 1) zz]
T r T
f("‘o““l)

using 164, 165 to evaluate 163 we may write '

dr’

" - =

r' = g = f(mgtmy) 4oL (166)

where

(220it 0 22) -

2f’“2(mo+m1) 2f"‘2(mo+"‘1) h
L = f(xX+yY+zZ) + My Ty + m, T, "z

qef >

(167)
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We now let

differentiating « with respect to u

r
a = 7 x - r
' f(m +m)y
5 = r_ry, N 0r 1
r’ f(““o*ml)z
y = otz - T

after canceling appropriate terms we find that

and similarly

From 160 and 159

also

®
|

x
= - —_— e — 1 + —
du a ; X 2 xr'+frr’' X+t ¢ [f(m0+m1)

fXrr'

fYrr'

fZrr’

+ Lx'

(168)

(169)

(170)



so that

dx’ )
= x" T a+ fr?X
and similarly
dv’
Ny e ey
ddzu = g" = v o+ fr2 7 (171)
Collecting equations, we have
dr , dr’ . dt
du r du -~ T~ f(mo +m1) + rL du - T
d dx’ d
ag E— 5; = o+ fr?X a%— = fXrr' + Lx'
d dy’ d . :
o=y da Bt frty aé = et v Ly
1] d
gﬁ - %ﬁ; = oy o+ fr22 a% = fZyrr' + Lz’
d- 3 dn . dz _
du = T du T du ~ ré
d= dn A 2
d‘ljl = fr= EL] = fr}{ du ~ fr= (172)

For a given set of initial conditions (x,y, z,x",y’', 2" ,<,n, 0, <, v, 7' ) a, +, » can be determined
from 168. In addition since

r x2 4 y2 + 22

rr xx' t yy' + zz'

(173)

r and r' are determined from the initial conditions.

In order to determine L (167), we must find X from 162, It is necessary to divide by r?, which
will go to zero near collision. If the initial conditions are chosen near collision, then numerical dif-
ficulties arise. Given the initial conditions, the eighteen equations of motion (172) are now soluable.

Our new pseudo-time variable "u'" (157) must go to collision simultaneously with ""t'". That is,
from its definition, "'u" appears to go to infinity. In the following exposition, which differs from
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Sundman's, "u'"" will be shown to be limited. From 105

d
Yige - - Y2(metm) (1) (174)

where || +0 as r—r, S0 that

dt = - = (1t e)d
¢ 2 (my rmg) O (175)

from 157

t t t, -3
) J' dt J' de J" dt
u - - - — —
t ' tl~8” r t r (176)

where the first integral is the interval near collision and the second is arbitrary since t, is
arbitrary. From 175, 176

"
r

1 e dr

' N A W PSS S G
J'“F” r £ 2f (my +m,) (7<) yr )/2f(m0%m1)J: Yr ' y2f(my +m)) ). T 1mm)

evaluating the first integral we have

S SR
2 (my 1y ) 2077 -7 (178)

which is finite as r-r, the second integral

l a lel dr

1
o J = (179)

€ dr

1 !
V2f<m0 +m1) J; Yr

there exists a number "7 such that |«| <7 since |e| ~0. With this in mind

1 Clelar .1 ,[ ndr
)/2f(m0+m1) Jl vr ﬁf(moerl) N £ (180)
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The first integral in 177 is finite and the second integral, from 179 and 180 is bounded, so that ""u"'
is bounded and cannot go to infinity as t - t,.

The question arises whether the equations of motion 29, 35 or 172 best describe the motion
near collision. The distance r doesn't enter inlo the denominator in the right hand members of
equations 172 and this system will be generally preferable when r is small with respect to the
other two distances.

Corresponding to our eighteen equations 172 we have

o't x ey, y Bz v, 0L E T, L (181)

as our eighteen unknowns. If the distances r, r,, r, are greater than zero for t = t, the variables
in 29 and consequently the unknowns 181 are developable in powers of t - ty if |t -t | is suffi-
ciently small. This follows from 117. Since r is not zero for t = t,, 1/r is analytic and can be
expressed as a power series in t - t;. Integrating this power series from t to t,, u is expressed
analytically as apower series in t - t,. By rewriting 117 as

it is evident that the variable t is developable in powers of u when !u| is smaller than a certain
value. Upon substituting for t, this series in the series expression for the unknowns 181, we
obtain functions of the variable v which verify the equations 172. Furthermore, upon substituting
the series expression for u into the solution of the system, we get the solution of the system 29
from which we slarted. The equations of motion 172, are equivalent to equation 35 from which they
were derived, and equations 35 were in turn derived from 29. The initial conditions for the system
172, are

x,y.z,x,y. 2z 5o 0,8 0, (182)

and are regulated by 162, 168 and 173. By recombination of the equations 172 the system is seen
to have the following integrals,

r’ (mo‘m1)x B v, (m0+m1)y r’, (m0+ml)z -
f e X R e el B I e e

which are seen to be zero by 168. It remains for us to see that ""r", which is amoung the unknowns
of the system 172, as well as the constant X, which enters into the same system, both have the
same significance as in 154 and 156.

Rewriting Equation 173,

rr’ xx' + yy' + zz'
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we see that this equation exists for all values of t or u and upon integrating

2 - (x2 fy24 22)

is equal to a constant of integration. This constant is seen to be zero so that the unknown "r"
satisfies Equation 32. Upon introducing ''t'" into 162 we get 45, from which one concludes that the
constant of kinetic energy K is the same for both systems.

We would now like to see the unknowns 181 developed into a series in powers of u-u, and to
determine the lower limit of the radii of convergence of these developments. To do this, we must
find the upper limits for the unknowns when t = t, as well as the absolute values of the second
members of the Equations 172, From these values, we then can form the ratios ql'/Ql', q2'/Q2’ SR
needed for the Cauchy-Picard Theorem.

Suppose now that the motion is regular in the interval 0<t <t, where t, designates the mo-
ment of collision. Recall the quantitiesK:

whose values, as t approaches t, are denoted

[ ¢

(e (ro)o' (‘"1)0~ (r')g» Xg» Yg» Zg» Xg» Yo 5 Zg

£o- L0+ Mo Lor S0 Mo Lo v %or Bor Vo

We assume furthermore that

kl
(g <73 (183)
and
py = 14k, (184)

where k, designates a positive constant whose value will be determined later.

We would like to have the unknowns 181 expressed as power series in u-u, and to determine
a lower limit of the radii of convergence of these developments. This will be the goal of the
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following exposition. As we approach collision

(rO)O' (rl)O > T () (185)

from 183 and 184

or
27k,
(ro)or (r1)0 > 72 (186)
also
fM s fM . 2fM (m0+m1)
m, (ro)o m, (rl)o 27k, mym, (187)
we let
Compf(mg tmy)? g
Ay 27 mym, k, * g (188)
and from 162
/2 2 r? b a2, 2,72
x'2 +y oz = E(QV—K)—Er(g tm 4+l )
using 80 we have
12 . 12 ' - 2r? M 1, 1 + 1 +r_2_K_h 2(12.':*32)
x 2ty Stz g myr, m, r, ' om,r, 2 g I'\s ° 71 <

incorporating 187

2r? 2Mf(m0 +ml) . 2rfM r2 K

2 - A i
g 27mym k, gm, g

x,z | yrz 1 Z’
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using 188 and the definition of g (27)
X2 4y 42 A EA 2 f(mg tmy)

or

xo':Z + YO'2 * 20'2 < 2(r), [f(mo +m1) +2Al(r)°]

it follows that

1XOI" ‘y0'|, lZOI| and ‘rol‘ < }/2(”0 [f(mo+ml)+2A1(r)0}
from 168 and the above inequality
lao |+ [50] . and v, < 3f(mg tmy) + 4A; (1),

using 183

< }/;1 [f(moﬁnx) *Alkljl

%'} \vo'| |2'| and l“')o

and

logls |Bo] and [yg| < 3f(mg+m) + 24,k
also from 183 we have

k
.xol,'yo‘ and ’zo| ,<._2l

If we now consider the case where (r); = 0 for t - t,

X, Ty oz () 70
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(189)

(190)

(191)

(192)



by using 118 with 105
' 0 (193)

from 107 (in scalar form) we have

¢ - | 17 -
o 20w m)  Far o ox Y2ulmgm) R - V2i(mg ) (194)
where -,y, . are components of the unit vector ; and are further defined by
. .y z -
}}!n: T i Ll'ml - X } 1‘rr: - (195)
using 160, 168 and 195
4 (mo*m1)$ iy (m0+m1)>< 71 (m0+m1) W (1986)

The values of ., ., ., are seen to satisfy 190.
We now turn to look at the upper limits of the absolute value of the second member of Equa-

tions 172, and state that the unknowns verify the conditions:

|

lf’<">1i-‘X“X11~33"'>'1§ 52_21‘!‘“““1;'
and
vy 1\—21
{r"‘(r')l;"x'—xl’i,{y’—yl"
and
;7'*21'; k!
N i
and
BN
Y \ - 1}
and
-,k
i 11‘ '
57

(197)



The constants k', k", k and +' are finite, positive quantities and we will determine their values
later.

Using the last relation in 28" in scalar form
rg 7 (Emwx)? (o)t (Lmuz)?
which is equivalent to

r

¢ oAl %, [(5'51) _/‘(X—xl) —/“‘1] * [(g_gl) - u(x=xy) ““"1]2
+ 2n, [(n—m) -uly -v,) "uy,] + [(77- 1)~ ey -v,) *uyl]z

+ 20, [(é—él) —/J.(Z—zl) —p,zl] + [((“_Cl) —#(Z'zl) _#21]2

and we write

! (198)

where P, is a polynomial in

X'XI»Y"yl,Z_Zlvé_flyﬁ”'fllvé"Ql‘xl»ylyll

Since
£a] Il
and
[2a] < e (199)
We see that by 191 and 197
[Py < 1205k ¢ 12K/ (200)
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and from 184

so that

| < % Py (201)

We now see from 198, 184 and 201 that 1/r, is developable into a series, of powers in x - x

19
YTYys 2Tz, 8 &, andé—cl. From 198

2 5 2 _
Ty Py B,

and using 201

2
[vo| > 7 £y (202)
Similarly, if we start with
rF T A () 4 (Lt az)?
we can show
2
nl 7oA (203)
Using 184, 202 and 203 become
ol [l > 4k, (204)

Here it is evident that both 1/ry and 1/r; are analytic in the interval before collision. We state
that




S 120 U 20 0 O 20 O 20 e
r r03 ro3 r} rl3 rl3 641(12 (205)
The first inequality is shown as follows: from 197 and 184
- y /)1
|£-51] <k <T1a

whereby from 199

1 15 py

£l <93 * ey 4

and by using the above inequality and 202

735
l'03 16 pl2
or finally by 184
| £ 15
_— [ QR
|rd| 64k

The other inequalities of the first line in 205 are handled analogously. The inequalities involved
in the second line of 205, follow from 204, and 191, 197 which together show that

I Iyl el s

k
Using 154 to define | x|, | Y[, |fzl, |f=l, MG, 163,

1

(206)
is greater than the absolute value of the sums, and employing 205 we find,

remembering that the sum of absolute values

Lex), eYl, 1€z] <

21(12
FEETREE 2“:— 207)
Now using 167 to define |L!, and employing 204, 206, 207 we note that
L] <A,

(208)
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where

M2 (mo tm,)? h , . |K|
N R, [3+ T | g (v ey Ky 3k) (209)

where the factor 6v, k,' + 3k,’? has been arbitrarily added and the velocity v, is given by

Vi T Ef+mft +-C12 (210)

Now from 183, 189, 190, 197, 210

bl il o] < &+ 3f(m0*m1) t2A Kk (211)
from 208, 211
my tmy +rL| < my +om o4 )\lk1

from 207, 211

m
— 2
ot e XL 1 r2 Y] Ly e £Z) < kot 3f(mgtmy) ¢ 24k, t

from 207, 208, 211

‘ M ,
fXrr' vLx'], [ fYrr' *Ly'\, [fZrr'+Lz'| < <>\l+ﬁ(_l> [k 4+ '/kl(mo%mlﬁ\lkl)}

from 211

el teil Teld <k, (v, 1 k%)
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from 207 and 211

¢ M
IreE], |rfH}, |rf2] < —2?"1

Returning to the system 172, we conclude that the quantities which correspond to the ratios
q,'Q, ,a, /Qy *+ o, qn'/Qn’ in the Cauchy-Picard Theorem, in the present case are;

ky

2[1(‘ < Yk, (mg +m, +Alkl)]

Since - can be arbitrarily fixed, we give it a value such that =/k, is larger than the other ratios
and we choose for k', k" and k the values

k = m, +m * A k (212)
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These choices of k', k", k bring the above ratios to the following form

{q(mo i mli 1A kl)

4(m0 fmytA kl)

{kl (mo tmyt A1k1)
m, tmy tA k1

0

'kl(m0+ml+l\lkl)
e
2 +4(”‘0’”“1) 34,k

We shall designate by Q," the smallest of these quantities. Then by the Cauchy-Picard Theorem

we know

1) that, in the solution of the equations 172, which were deduced from 29, the quantities (X),

are developable in series with powers of u-u,

2) that these series converge for

- < y !
iu u1| Q2

3) that the inequalities 197 will be such that ""u" verifies the inequality 213.

(213)

We now consider the case where one of the distances (r) goes to zero as t ~t,. From 50

limR = R
£t

1

such that



and from 184 as t—t,

Py = ‘141(1
so that
RI
ke ” 14vh (214)
As t-t,, r~0and
(o)1 = (r1): = A (215)

Using the Equations 172, and the method of undetermined coefficients the following series
solutions are obtained. These results can also be obtained using the asymptotic behavior of dr/dt
and dr/dt, Only the first terms are given,

f(m0+m1) . . . Mf(m0+m1)
R et e umu )
f(m *m) Mf(m ‘rm)
. ,/,1$_°6L;)1(U_u1)3+... no- ;71’—603—1“771(\1'111)3*“'
1y
fim, *m Mfim, +m
17 ( 06 l) ‘7~1(“—“1)3Jr LT AA(6;3 l) i (u_ul)u
1
LT agt 5= 31+ ;T oyt
f +
X (m02 ml) :L(u—ul)zw‘ x' = f(mo’fml) ¢>(u—ul)+
f{m, +m
y ( 02 1) x(u—u1)2 + y E f(m0+m1) x(u-ul)+
f(monl
z ) ‘P’(“_u1>2+ z f(m0+m1) L/’(u_ul)+
f(mo*m)
r 5 (u—ul)2+"' r' - f(m0+ml)(u—ul>+"‘ (216)
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f(m 'm)
t-t, e (u-u,)? (217)

Looking at the series 217, we can see that u -u, can be developed into a series of (t - t, )13
and substituting this series in place of u-u, in the formulas 216, we find that the quantities =, 7,
*, + + + are also developable in powers of (t - t,)/3. The quantities u, £, 7, - - - considered as
functions of t, have singular points at t - t,.
The same series can be used to describe the movement of the bodies after collision.

From 216 we note that the ratios x/r, y/r, z/r tend toward the same limits (i.e.,#, x, ) when
t goes to t, in an increasing or decreasing fashion. We must conclude from this, that the motion
approaching and exiting from collision forms a cusp. Of course, investigating the motion of a
colliding body, after collision, is only of mathematical interest and the fact that any motion at all
can be investigated after collision points up a divorce of mathematics and physical motion.

DETERMINING A LOWER LIMIT FOR "R"-DOUBLE COLLISION

It will now be our purpose to reinvestigate R, (Equation 50) with the idea of finding its lower
limit for the case when the constant of the area integral is not equal to zero (two body collision).
From Equation 50, we see that, in the case of two body collision, R goes toward a finite and non
zero limit, If we define an interval t' <t <t"”, then from 75b.

H" < H
R" < R’
and from Equation 71
. ) (dR")Z . g¥h?c?
H dat FTRT
so that
N ., (dR 2 , g2 h2 C2
H =R {7/ ' KR" + =7 (218)
and
2 2,2 3
B~ TH - KR" T H ¢ [K| R

65



and finally if R doesn't have a minimum for t = t'

2h2C2

" _g"n ¢
R' 2H ¥ [K| R’ (219)

The inequality 219 remains valid until t” goes through t, where dR/dt changes sign, and for
the minimum value of R', where dR'/dt = 0, the equality

Hl = R’ (Q.’)z + Iml + gz ZCZ
dt R
gives us
2 112 ~2
R > g‘hc
H' +|K| R

forK>0 or K<o. We see that the relation 219 holds for the minimum value of R so that we can
generalize and say, Theorem 4:

g2 h2 c2

RZH’ +|K| R’ (220)

is valid up to the point where R = R_,.

If K <0, Equation 51 shows that 42 R?2/dt? is never negative from which one concludes that R
doesn't have a maximum. In this case, R goes to infinity when t goes to infinity, and 220 therefore
gives a lower limit to R which remains valid for all values of time, If K>0 and R doesn't have a
maximum for finite values of t, Equation 220 will again give the lower limit forR. This particular
limit can be expressed in the following manner. We multiply the numerator and denominator of
220 by R and employ Equation 71, to get

g2 h2 C2R

2
R(a?) + 2KR? + g2 h?c?

If we let R® and dR°/dt be the values of R and dR/dt for t = 0 and let

g2 h2 C2 = f12 (221)
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we have Theorem 5:

f2 R

R2T77""F77"
dRO 2
(RO dt) + f12

if K<0 and

f2 RO

dRO 2
(RO F) + m02 + f12

R 2

if K>0 and R has no maximum for finite values of t.

} no maxima

(222)

(223)

It remains for us to find a lower limit of R when K> 0 and R has a maximum for a finite value
of time (i.e., "'S" expression 289). We will find this lower limit on R, for all values of time, such
that it only depends upon f, andK. We assume that R has a maximum R’ for t = t' so that we

consider the case where

K>0
and
dr'_
d&e - 0
Now from 71 and 225 att = t'
flz
H' = KR' + g7

(224)

(225)

(226)

Since R’ is a maximum, there exists in the neighborhood of t' , and instant t” such that the deriva-
tive dR/dt does not change sign and that R<R’ in the interval from t’ tot”. From 218 and 226

so that

f2(R'-R")

" I SO T Ot S S
K(R'-R") 2 f12(R“ '?) = R' R’
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and

KR'Z > f2 (228)

and finally by taking the square root of both sides and multiplying by f, we have

f12
® <K (229)
now from 226, 229 we have
H < f /K + KR’ (230)

Starting with 223, and using 227, 226 and 230 respectively we see that

£, £ 2 £2 £2
> = 7 T >
dR"\2 £2 £2 HU+KR" “ ¢ yK+ 2KR'
e (%)

or

f2

R > ——__fl TR+ KR (231)

Now this lower limit on R will become smaller as t goes to +» if R’ gets larger as t goes to i®.

We wish to find a positive, fixed limit which remains valid however large the maximum R'.
With this in mind we note 156 and write

2V-K20
and from 80
1 1,1 LK
m, 1, * mr, myr, 2™ (232)



where f is set = 1. If we designate r_ as the smallest distance r,, we have from 232

1(r, 1 1), K
Ty \Mo my —my /™~ 2M (233)
Now we note that r £q where
- 2M<_1 L, L)
qa K mg m, m, (234)

The movement of the three bodies will be such that one of the distances r; will be the smallest.
Since the distances r; are continuous functions of time, it is evident that each time that a certain
distance ceases to be the smallest, it will become equal to another distance. At this instant, both
distances are considered the minimum distance and 234 insures they are both <q. The third dis-
tance of the isosoles triangle would be <2q. To simplify our following formulas we will say that
all the distances are <q/5. From 52 and the fact thatr,, r,, and r, <y5 q we write

R <R, (235)
where R, is denoted by the positive radical of the equation

1,1

1
R02 = 5q2 (mo + o + F) (236)

[y
N

We conclude that in an interval of time where R2R, a single distance remains constantly <q.

We now, consider the movement in an interval of time where the inequality
R 2R, (237)
is constantly verified. We also let r, = r be the distance which remains smaller than q, or

r <g (238)

We will now deduce from 237 and 238 some other needed inequalities. We shall also determine
a certain value R, of the quantity R which will play an important role. With this in mind, it can be
shown that

RZ = (g+o?h)q? (239)
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where g and h are defined in 27, 40 and

\ 4m,m, mZ *mymy tmp?
= + +
d 4 my (mo tmp) (mg +m,) 2 (240)

These relations are proved by substituting 240 into 239 and winding up with 236. We can see from
240 that

o> 2 (241)
From 50, 237, 239 and 238 respectively
grz + hp2 > R02 = (g+0-2 h) q2 > gr2 + o2 hq2
or
p > oq (242)
and from 238
o
r<y (243)
We see from 185, that r, >p-r, r, >p - r and from 243 and 242
-1
To 2 ('U—E") p>(e-1)q
244
(- 1) (244)
r, > p,>(-1aq
Rewriting Equation 50 as
hp* = R? - er? (245)
so that
R
pEE
vh (246)



Using 239, 237, 238

2
gRo < ng

2 2
gr2 < gq etoih - gtolh (247)
we now can see from 245, 247 that
R? o2 h
h 2 5 R2 - g = 2[ — g ] = 2 ]
? gto?h B g+tolh R gtr?h
or
> i
£ 7 ¥n (248)
where the constant
olh
¢ - g +O’2 h (249)
is smaller than one.
We now define
— RO
Ry, = ¢ (250)

where we see that R, >R,. Designating by o,, 7, the values of o which correspond to the values
R, and R, of R, we see that after 246 and 248,

o> e m (251)

and consequently 5, >p,. One must conclude from 251 that in the interval of time in which R de-
creases from R, to R, there exists an instant t where the inequality

dp
dt <0 (252)

1



is verified. That is to say, that o is decreasing at an instant t. LettingR, 7, - - - designate the

values ofR, p, - - - for an instant t, and using 252, 250 and 251 we have

dp
dr < 0 (253)

2 Eg < 35 < E
7 ° TR (255)

of the movement (35) remain invariable when "t" is replaced by "-t"".

From this we deduce that the lower limits are independent of t and are valid before and after the
moment t' where R passes through a

maximum of R. We shall study the values of R after the
maximum R'. It will be necessary to divide the maxima into three classes, according to the sizes

of the maxima R’ and the minima R" which follow it.

The differential equations

The first class will refer to the maxima which verify the condition

R <R, (256)

and after 231 we have

f 2

R> —/———=
£, 7K+ 2KR,

The second class will include the maxima for which
R' > R,

and

R" > R, (257)

and since R is in the interval of maxima R’ and minima R",

R 2 R,
The first two classes are seen to have lower limits. The third class satisfies the conditions that

R' >R,

T2




and
R' <R, (258)

The next section will be concerned with finding a lower limit for R in this third case.

Consider a2 maximum of the third case. R will diminish constantly from R’ to a value smaller
thanR, since the minimum is less than R,. This third case corresponds to the relations 253, 254,
255. To find an inferior limit forR, we will seek a superior limit for H (Equation 71) when t = t.
In order to accomplish this, we must find a limit for the absolute value of the derivitive dR/dt.
Since from Equation 54,

~R _ _df &
R 3t gr gt * ho G (259)

we see that the superior limits for the expressions

[oN
Il

|
Gl

and

(8" (&) + (&) 2 (8) (260)
and
(%) + (50 + (§) = (%) (261)
and from 156 it follows that
E(g%)z ¥ h(?@z S2V-K (262)
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If R2R, (237) we see from 244, 241 and 234

M 2M M 1 1 my M K
my 1,1, 1o-
mo m m

i<K
+

(263)

-
(S

Using the definition of V (Equation 80) and setting the constant f = 1 for simplicity, we see
from 263 that

™
N-K<mr (264)

Now incorporating 264 into 262 we have

or
dr\? M
(E) < gm, r
so that
_dr ™Mr
rde] < Yem,
and from 234
gl P
r dt gm, (265)
It remains for us to find an upper limit for |5 dp/dt| . To this effect we write the definition

02 = £2+72 +{? and differentiate twice with respect to t and find that,

Lo (] - e SE Lt S () ()

p dt? dt? dt?

T4




and after 261

d? p d? & d? 7 d?
> N
P = ¢ T ge2 ¢ dt?

so that by means of 154

d2 p A p 11
p dtzz-M[r—; F et MM - TS [ (Gx oy + L2)

or

2 2 -
d?p -M[i PP tyn tal) |

n
dtz ro2 Ty r2 Ty

P2 HN(XE tyn + z@)]

1

Now writing 28' in scalar form

r@ 7 (Emm0? r (nmpy)? (L pe)?
we have
rd = p? tutr? - 2ux€ tyn tzl)
and it follows that
prrd = pt 2 p? - up?(x£tyntzl)
or
prrg = [p-uxg tyn+z0)] ¢ w2 [x2 0% - (x€ +ym +20)?]
now since

|xg +ym +2L] < 1p
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it follows that

and from 267

In an analogous manner

Now from 266, 268, 269

and

Now from 244,

or

u? (1207 - (x tyn +20)?) > 0

v

pro 2 |P? —u(xE +yn +2L)

| P2 +A(x€ +yn + 20)

v

pry
dt2 —

d?p 5 M[x PTg , prl]

2 2
d¢p N M(A +w)o >
de2  (o-1)2 p?

;

o,
~
~N
o
v
(=]
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where

MT2
(o -1)?2 (271)

Before going further, we must consider separately,
1) The case where dp/dt <0 when t decreases fromt’ to t.

2) The case where there exists an instant t"” between t’ and t such that do/dt = 0 for t = t”
and dp/dt <0 between t' and t. These are two subcases of 258.

In the first case, between ¢’ and t, we see that dp/dt < 0 and from 270,

do[d%2p ¢
2a [_dtz ' ?]5 0 (272)

we have

and finally

(%f)z < (dTipY’)z t 2—; (273)

In the second case we integrate 272 between t” and t, and noting that dp/dt = 0 for t = t" we
have

We can now see that the inequality 273 is valid in both the first and second cases. We shall
now return to the determination of an upper limit for |z ds/dt|. R was, by hypothesis, a maximum

(i}



for t = t' so that d?R%/dt2<0 for t = t' and after Equation 51, we see that
V' £K (274)

where V' is the value of V when t = t'. From 274, we note 2v' -K < 2K-K=K and from 262

o(G) + o)

<K (275)
Since drR'/dt = 0 we find by differentiating Equation 50
, dr’ , do’ _
gr' g *he' ¢ = O

or by rearranging terms

substituting this into 275

or
hgr'2 +h? p'?]/dp"\?
[—————g,,z (%) <x
and
(dp’)2 Kgr ' 2
—df hR'Z
after 238, 258, 255 -
dp'\? _ Keq® _ Ked’
(_cft_> = hﬁoz " h2p?
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from 273

dp K
5% < /R 1 acn
and after 255
_dp Kegq? 2¢c ﬁo
lp atl Ve YR (276)

Now from 259 with the aid of 265 and 276

Meq =
<Y, tVKedt 2R, hth

l_ dR
R 3t
where it follows that
—. {dR\? 4Mgq —
R (Et—) <m, * Xea® * 4cR,hth

since R >R, (254)

~([dRY 1 (4M =
R(HT) <x, ( me -+ Kea?  4cR, hy’ﬁ)

Upon recalling Equation 71, and since R> R, we have,

H+KR<S,
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where

_ 1 (4Megq — _
s, ~ —R—o<m2 +f12+2Kgq2+4cR0hy’}_1>+2KR0

£2 = g2 h2 C2 (278)

from 75b we note f +KR<H' +KR' and from 220, 237

This is the lower limit for the third case, 258. Since the above inequality is true for all R, one
sees that

f2

Ro>?2

Now if we note the limits for the first and second cases (256, 257) and from the definition of s, (278)
we see that the inequality

f?

R>—F=
S, +f, 7K

(279)

is valid for all three cases, (256, 257, 258). The next few pages will be devoted to further rear-
rangement of this lower limit onR.

We shall designate by "'n" the smallest of the masses my, m;, m,. We note right away that

M>m2—>—m

(280)
from 27, 40 we find




- 2
h = m, * m, *um (281)
from 280 1/m>3/M and 1/m; +1/m, +1/m, >9/M so that
9 1 1 1 3
M<m, " tw, Sw (282)
from 234
= ﬂ<_1 R S _1>
q K \m, " m, m,
and since 9/M<1/m; +1/m, +1/m, we have 18/K<q and since 1/m, + 1/m, +1/m,<3/m we have
18 6M
K <9°Ka (283)
from 236
R, 11 1
LR/ CRE R
and using 282
5 K 15
sy <y (284)
from 284,
q 1 /M
R, “3)3
and
1 1 M
R =3}
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using 283, we find

1 K M
R, <54} (285)
Now from 284, R, <q ¥15/m and 283,
6M /15
Re 2xm Vo (286)
from 236, 239
1,1, 1) . 2
sm0+m1+m2 = gto’h
Using 40, 240
2 B 4("‘0““1) 4 mg tmgmy tmy
ot h Mo my +“_‘—2 ' “‘o+m1) Mg My
4(mom, *m; m, +mom1) mg” *mgm, *my
i My My My ’ (m0+m1) My My
so that from 249, 250, we have
_ FESNETEY
ﬂ’ _ /gto?h - . m, m;,  m <./3
Ro o?h 1 1 1 mg tmym +m? 4 (287)
4Fo +F1 +m—2 * Mg My ("‘o +m1)
from 241, 271 we see that
C < 4M (288)

Now from 278 and the inequalities 280, 281, 283, 285, 288.

fZK /—
M 1 M M
S, <{— t =+ 28Y10+15Y3) —
2 <m2 54) 5 ( 15 3)mym

, and consequently
f2 § m? f 2
S, + /K f2Km?\ /y
M+ —gz |5 *2(8YT0+ 15 V3 )My + £, R m?
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by replacing m by M/3 in the denominator and simplifying the numerical coefficients, we have

f2 £f2

1 m
> _—
S, +f. yK f 1 MyYM
2 1 — —_
64+ VKM + 1g57 KM

2

and finally

flm 2 1
S = —_———— —_—
1

While considering the maxima of the third class, we have supposed that r, remained smaller
than q for R2R,. However, since S is symmetrical with respect to the three masses m;, m, m,, it
is evident that the result we have obtained remains true in the cases where r, <q and r, <q for
R>R,. In short we will have R>Sin the case where K> 0, f >0 and R has at least one maximum for
a finite value of t. Referring back to 222 and 223 we are now ready to state an important theorem
of Sundman. Theorem 6: If the area integral is not zero for the three bodies one will always have

R>J (290)

where J designates the quantity

f2R

dr%\2
0
(R dt) +f12

if K <0 and the smaller of the quantities S, and

0
£,2R

0\2
<R° d—ﬁ-) +2KRO” + £ 2

if k>o0.

The case of K > 0 has two limits corresponding to the cases where R passes through a maximum
(S) and the case where R doesn't pass through a maximum.

The next section dealing with Sundman's exposition will treat the problem of finding a lower
limit for the radius of convergence of the development into powers of u-u,.
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DETERMINATION OF A LOWER LIMIT FOR THE RADIUS OF CONVERGENCE FOR SERIES
SOLUTIONS IN POWERS OF u - u,

Theorem 7: If f, >0, the two larger of the distances r,, ry, 1, remain constantly superior to
the quantity

1
t = 3/m] (291)

To prove the theorem we note from 52, that

If the theorem were not true, at least two of the distances r,, r,, r, would assume, at a certain
instant, values smaller than or equal toZ, (i.e., say r,, r, <4 ). The third distance would be less
than the sum of the other two, and hence it would be less than or equal to 20. (i.e., ro<r, *r, <24)
Now

r2+r12+r22< 02 ) )
m S 73]
so that
2
R? <3 J?

This is a contrddiction to the preceding theorem 290, and our present theorem is proved. We shall
now fix, in a convenient manner, the constant k,. Since r, and r, are the two larger distances,
they will be considered greater than © (291). Noting that p>r,-r andp>r, -r, We conclude from
183 and 184 that

p > 14k,

kl
r <3 (292)

Now it is clear that p>r,-r Or p>4 -k, /2, and if we let 4 = k,/2 + 14k, , we arrive at the first
inequality of 292. Therefore from 291, and fixing the value of k, from 132, 183 we have:

2 2
ky = 2t = gro/m]
and
ky  1ym
ke = 38 ° 1218 (293)



Under the perturbative effect of the third body, the remaining two bodies can asymptotically
approach each other as t goes toward infinity. The question arises, as to the nature of the velocity
(°) as the two bodies approach each other. It will be shown in the following subsection that the

velocity v = do dt remains below a finite limit when r <k 2,10, 1,24,
The proof begins by defining
m (m tm ) m, m, m
s Al s S 1] (294)
with the assumptions being,
1(l
r < )
while
For Ty 7 4 (295)

from 45, 80, 295

or

dr\? [SEA 4M mz("‘o““x) N lK|“‘0”“1"“2 ..
E\dt +1"dt T mgm;m, 2§ aM m.r

from 27, 40, 294

dr'\? dp\? M
g<d—€> * h<d—f> S dgh A+ (296)

now

hv? < dgh A + =
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and

2 < M To™ B - M mo my my (m0+ml)
v_“g/\ﬁLmzrmow‘ml »2g2A+m2r.m0+m1' M

and

N
A

mg m,
26\ t2A (297)

multiplying both sides of 297 by r? and noting r <k, /2 we see that
rv < yek, (m0 m; +Akl)

Starting with 296 we can easily show that

dx dy dz
T gcl’ rgt‘l and rge| < m(moml+21\r) (298)
We now assume that when r < kl/2
viz2D (299)

where

It will be our objective to show that the assumption 299 leads to a contmidiction. We therefore
assume the inequalities

k

« 2
r 2




and

d
r E% < '[hkl (mo m, t Akl) (300)

are verified when v2>D, From relations 41; 300, we note

d d
Gn'omé'y g, ‘% [xa% - yaﬂ
o, _ g dy dx kl -
sl ol B PR r®] < efleal 2/ (mamian) | = A (301)
similarly
l(l
iyttt < g ‘%’*2 T (mgm, * Ak )| = B (302)
and
l{l
et et ] <glfe,| *2Y I omem tAK | = C (303)
so that

len' -ng'| < A
Int' -¢n'] <B

lze -&r'| <c (304)

It can be shown that




or
2 . . .
o (az) = ()P * (ENmnE)? + (L -L? t (L -ELT
now since / = v and p>4 -k, /2

dp\? ki \?
pz(d_f) >V2<,g__2 - A2 - B2 - (2

so that

&

e}
[aX

g > W0 (305)

where

k, 2
W - v2 (,ﬂ - __2_> — A2 _B2 _C2 (306)

is verified if v satisfies the conditions v22D

k 2
v2({——21) - A2 - B2 -C2>0 (307)

Employing Equations 154 we see that

2% - pE‘a’Pﬁu (&) - Vz‘”[r%z P"u(mfr:yn‘fz@) +TL1202+>\(X§r:yn+2€)] 308)
and
dv? dv _ _dpdip _ _[d*¢& d*n d2l\dp
de T ar 24t go (Et—2+~dt_2 g)a
dstz - ‘2M<—03*ﬁ)pg’%”LMu(é-:—ls)(xéwﬁwi) (309)
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from 268, 269

A

’pz - (%€ tym +zé)| pry

A

|p2 +>\(x§+y77+24)‘

now 308 gives us

d dp A p Koo
dt('od_t)z"z_M<r_T+rr—l

—

P Je) B 1 1 _ 28
T Tk kK, “T_1 T 27
P73 1-5, 17728
so that by using 295
d dp
dt (o) v -k (310)
where
. 28M
E= 77 (311)

from 309 we see that dv?/dt will have the same sign as -po dp/dt if

<)\ +p.>‘ dp

PUERREEY BT
3

rd o

>

1 1 : . :
M(r‘a - r‘g)(XéWn*lC)‘ (312)

0 1

now since
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then 312 is true if *

dp . i .
P e > (x§tyntzl)

from 300

xg+yh+z.§| <rv < '/EkL (m0 m, +Akl)

now using 305 and if we assume

W2 ek, (mom, +Ak,) (313)

then

-4
P dt

> W2 yfgkl(moml+1\kl) 2 v = (xé+y7’7+z'§)

In short, we can say that if 313 is true then 312 is verified. We can go further and say that
dv?/dt has the sign of the quantity -o do/dt if

k12
v2(_—2>_A2_B2_C2

W2 > gk, (mgm, +Ak,)
and

v22D (314)

We now let

(315) 4\'

If we choose
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and

v >G, (316)
it is immediately obvious from 310 that
d do
qt (P ?rt) > E (310"

G, =vD or

%——Z_k-l )/AZ TB?+C2 4 gk, (mOml +Ak1)

then since it must be the maximum of the three, it follows that if G, = ¥D then D> 2E and if

_o_2
G, = 2% - k, y/A2+B2+C2+gkl(m0m1+Akl)

then

2
[———2{31(] [A2 +B2 +C2 +gkl(m0ml+Akl):| > 2E
1

so that 310" is valid for either of the 3 possible values of G,.

We now try to get a contrddiction to 316 to demonstrate that v always remains smaller than G,.
Now there will be an instant of time t' when v has a finite value v’(ZG2) and from 305, we can
conclude that » do/dt admits for t = t' a finite value ' de’/dt which verifies one or the other
of the inequalities

W
PR TN <0

Suppose that ' dp’'/dt < -W'. We increase the time t after t’. Under our assumption 316, v2>0
since G, is, and in this first case we have assumed p do/dt <0. From the discussion following 313,
we know that dv?/dt and -p dp/dt have the same sign so that dv2/dt >0. In this first case we con-
clude that v2 increases positively if p dp/dt <o (if v'2> G2). Since v >G, is assumed true we re-
member that 305 is also verified and the desired contnidiction is reached. Now since the equations
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of motion are invariant with respect to a change in the sign of t, we can show that the second

inequality also leads to a contrddiction for t decreasing after t'. We now conclude that the assump-
tion 316 was incorrect and

when

k

Pt
T, 2

e}
11

We now direct our attention to look for a upper limit on G, which doesn't change by a per-

mutation of m, m , m, . With this in mind, some inequalities will be developed. From 281 and
some previous inequalities it can be shown that

3
2 < oy

1 MeM™ .M

h mg + m, 4
M MM M2
gm, m - T+ m A
oM m, mg + m, 4m

k
1 M 1
g(mom1+Ak1)<M®+ﬁ+l_6+lKl
1 M
D<E—l—<@+m+l—!x!>
4k, 9 Mk, /g Mok
AT + B2+ C2 <222 vcdrct Ty (mom tAK)| <o (efrelret) r T (E *2m * 16 K

Now, from the above inequalities it is found that the expressions Y2E , YD and

—223—1(: '/;V +B% +C% + gk, (mo"‘l +Akl)
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are all smaller than the quantity

1 9 kY 1M K
G - 1ak, ‘/;2‘ (C02+C12+C22) + (775’r ?) Mk, (@ *2m t 16 lK|> (318)

considering the definition 315, it follows that

G, <G (319)

With this in mind, one notes that in order to calculate an inferior limit for the quantity Q,’,
(i.e., the smallest of the quotients following 212) we take v, = G. Thus, we now have an appropriate
value for v, in 210 and in the quotients. It can be shown that the denominators

4(’“0*“‘1 +A1k1)
2
2t 4("‘o+m1) *3A Kk
2>\1k1 + m

2

of the quotients are all smaller than the quantity

M2 M M M
aM + Fm +EG2k1 + BEG}/Mkl t3 |K|kl

now since

1 Lk
/™M M
2Vl + kl
we see that
kl
™
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is not the smallest quotient and is eliminated as a possible lower limit for the radius of convergence.
Since

LA

mg +my + Ak, >37M
or
k.M
2 1
{kl (“‘0+m1+A1k1) >3 3

it follows that all the quotients following 212 are greater than

or

1
oG + /kil (320)

whichever is the smallest. The first expression is always the smaller of the two, and consequently

Q, > Q (321)

We now conclude that the development of the unknowns of the Equations 172 into powers of

u-u, converge if u verifies the condition

'u-u1| £Q (322)

Hence, we have succeeded in establishing a lower limit for the radius of convergence of the series
solutions for Equations 172.

INTRODUCTION OF A NEW INDEPENDENT VARIABLE "w"

In the preceding work, we have employed in the place of t, a pseudo-time "u" which is a reg-
ularizing variable for only two particular bodies. It has been assumed up until now that m;, and m,
are the colliding bodies and the distance, r, = r, between the two bodies has been going towards
zero. A glance at Equations 154, will point out that for a collision between m, andm, orm, and m,,
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the differential equations of motion have singular points, namely when r, = 0 or r; = 0., There-
fore "u" is only a satisfactory regularizing variable for two particular colliding bodies. An in-
dependent variable "'w'' will be introduced that will remove all singularities and allow any number
or combinations of collisions to occur without singularities. We define;

dt = TI'dw
t = 0
for
w = 0 (323)
where

r - (1—e"°/{> (1—e""/€) (1 -e"'zﬂ> (324)

Now £ is defined by 291, and the function " has a determined value for each real value of time and

0<I<1 (325)

From 323, 325 it is seen thatw and t increase and decrease together. Furthermore, there
exists a one to one correspondence between w and t. It is clear that ' is positive when all the
distances r,, r,, r, are greater than zero, and w cannot become infinite when t tends toward a
finite value, say for t =t,. From 117 and 323.

dw _ 1

du - T

Since r, and I" go to zero together, the right side of the equation remains finite for r~ 0. It is also
clear that if r -0 for t~t,, w tends toward a finite value when u~u, or t ~t, . One finds the same
result if the distance r, or r, goes to zero for t = t,. The variable "w'"" will be finite when t is
finite and since !t| < |w|, from 323 and 325, the reciprocal is also true. It can therefore be said
that

fimw = +® limw = - o
t= +@ t=-®
limt = +® limt = -

w=+0 w=-0
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We shall devote the next section to finding a lower limit of the radii of convergence for the co-
ordinates of the three bodies, their mutual distances and the time expressed in power series of
w-w, Two cases are to be investigated.

Case 1: For w = w one of the distances r,, r,, r, is inferior to k,/2; for example

k,

< X
Ty 2

Let t, be the value of t for w = w. We shall designate by u, the value of u for t = t; orw = w. We
can then say that the coordinates of the bodies, their mutual distances and the time will be devel-
opable into powers of u-u, if u verifies the condition

|“_“1| <Q

The variables u and w are related by the equation

du r
u =

for
w - w

Since both I" and 1/r are developable into a series in powers of u-u,, the right side of 326 is also
developable into a power series if |u-u, | < Q. In order to apply the Cauchy-Picard Theorem to
Equation 326, we must find an upper limit for |I/r| when |u-u |< Q. Writing down 198, 201, 184

45 ,
P, <39 A~
p, 2 14k,

we see that r? never becomes zero or negative and the real part of r, doesn't change sign. Since
the real part of r, is positive for u = u,, it will remain positive if |u-u,| £Q. It therefore follows
that

<1

%
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and

‘l*e-ro/& <2
In an analogous manner
\1—e"VQ <2
Now we observe that
e I R N S . R
r LAY IMPYE =TT Tt ok
from 293 € = 29/2 k, and e¥?- 1 <1/12, we see that
1'" l-e"//ﬂ -ro/’ﬂ -rl/’f/ le.z.z 1
I R

so that

r

T

L
3K,

if |u—u1|§Q.

Now we can apply the Cauchy-Picard Theorem and say that the Equation 326

has a unique analytic solution (in powers of w - w) for

lw-w| £ 3Qk,

A result of this is that the coordinates of the bodies, the distances r , r,, r and the time are

(327)

developable into powers of w-w if w verifies 327. Since k, and Q are symmetric with respect to
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the masses my, m, andm, there would be no change if, in the place of r, = r< k,/2 one had
r, <k, /20r r, <k,/2 forw = ¥,

Case 2: Forw = w all of the distances r,, r,, r are2k,/2 or from 293, r,, r,, r214«,. We
note that this is condition 132 if t is the value of t for w = w. We have already found that the co-
ordinates of the three bodies and the distances r,, r,, r, are developable into powers of t -t if t
verifies 153. From the above reasoning

ll - e-ro/{

, ‘l-e-rl/lﬁl , ll—e—tz/{

<2

so that || <8 if [t-t| <T' . We note from 323 that

dt
dw'r

and the Cauchy-Picard Theorem insures that this equation has a unique analytic solution in powers
of w-w for

T (328)

00| =

lw-w| <

That is, the coordinates of the three bodies, the distances r,, r,, 1, and the time are, in case 2,
developable into powers of w- w if 328 is satisfied. From 153, 293

k
1
T 1 ko _ k, _ ™ Y3k,
. - - )
m2 1 112}‘2 112M 3kl
MKl oog Voo tMIK 224 Vi + Kl
Zimk, K] 224 J 2imk, K| mk )
or
3k,
T _ ISR A
8 M
224 /16 7 + 3 K| k;
From 320
3k,
k. - KV ™M
1 5™ 3 9 3
6+ Fm " 2w Ok * 3w OV, + 7 (KK,
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Both 30k, and T'/8 are greater than

3k,
LYW

1
QO = — - —
15 3 9 3 M (329)
Bm b Gk oo GyMk, + 7 Kk, +224 /16 o + 31K| K,

where G and k, are defined by 318 and 293 and m designates the smallest of the masses Mg, M
An important result of Sundman's work can finally be stated.

3=

12 Mpe

The coordinates of the three bodies, their mutual distances and the time are developable in
powers of w-w, such that these developments are convergent for

lw-w| <0

We now have a "convergent strip" with a width 20 and the real w axis runs symmetrically through
the center of this strip. Since the domain of convergence for a Taylor series is circular and we
now have a strip of convergence, a transformation would be useful. With this in mind, we in-
troduce a new variable + by the transformation.

20 1+

w = o leg 7=

(330)
eﬂw/ZQ -1
e'nw/ZQ + 1

It can be shown that as w-®, |7| -1 and that |7| <1. The real values of - between -1 and +1 will
have a one to one correspondence with the real values of t between ~» and +». We have effectively
transformed the strip of convergence in the w plane to a unit circle in the + plane. We can now
state Sundman's final theorem.

Theorem 8: I in the problem of three bodies, the constants of area are not all zero, one can
find two constants © and 0, (the coordinates and the velocities of the bodies being given for a certain
finite moment) such that, if one introduces in place of "'t a variable ''+", the coordinates of the
three bodies, their mutual distances and the time are developable in powers of r. These series
solutions converge for || <1 and represent the movement for all time. The equations remain
regular for collisions between any two bodies.

Through the introduction of the variable r, the coordinates of the three bodies, their mutual
distances and the time is developable into powers of r if |7| < 1. In the general case considered
by Sundman, the series are very complicated. The convergence of these series was investigated
by Belorizky and the results are summerized below.

INVESTIGATION OF CONVERGENCE
After determining the constants £ and (), the new variable 7 is substituted for t and the regu-

larized solution series are obtained. Belorizky uses the equilateral triangle solution to the three
body problem in an effort to investigate the convergence of the Sundman solutions. He takes the
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mutual distances between the three bodies as one astronomical unit, the sum of the masses is the
unit mass and the Gaussian constant is set equal to one. Using these simplifications I is a constant
and

r= (1 -e'l/’f’)s
consequently t = I'w and

2Qr 1+7 1+
o log T—%5 = Aleg 7T -7

and

+
o
+

T2n*l N
tomEl t

Furthermore
x = cost = 1-37+t37~ "

= 1 - 2A%?72 '(%A2—§A‘)T‘ —(%gl\z-—A‘+

[e o]
| &

5 AG)TG - e

O
o+

y = sint = t- 37 * 3y "

A3+%A5)75 4 eee

1}
=
“+
———
ml':;’,
]
w| s
>
w
—
s.‘
w
+
T
o
1
wl

We consider m, to be the larger of the three masses, andm, = m,. If

1
1) m = 200

1
2) m = 10

1
3) m = 3
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the corresponding values of O will be;

1) 9, <9x 1078

2) 0, <4x10°°

3) 9, <1073

so that A has the values

1) A <4< 108

2) A, <2x 1076

3) A, <4x 1070

Let "h" be the error introduced by stopping the '"'t"" series at 2n -1 terms so that

73 7.5 ,r’.’n-l
t-h = 2A(T+'§+?+"'+zn——1
and x, y can be expressed as
1 73 45 2n-1\] 2 1 -3 AN
x = 1-a7 2A<T*—3+‘s‘+"'+%——1 v 2A<”_3+"'+2n——i

3 S 7.2n-l T

3
1
y = 2A<T+? +?+”'+—_——2n—1>_3_! [21\(7*‘3 +"'+*—2n—1>]

w
3
N
=
[
-

If we wish to have the coordinates x, y for the epoch t = 1 with an accuracy of only one decimal
place, the number of terms necessary (n) can be computed by setting

w

T T

4 7.2n-l
1 - 2A(T+—3+§+...+2n—"—1+“.>
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hence

_ Ij 72n-1
Z = 2Alr+ 3+ mpTy) > 0.9

and the sum

w

T Ts 7.2n-l 9

S, = 7+3 tF ot ag-1” 204

The variable 7 is determined by the relation = = e/A-1 /el/A + 1 and for

A<4 x 107 onfinds S, >107
A<2 X 107® on finds S,, >2 X 108

A<4 X 10°° onfinds S >10°

We shall now compare the sum S_ with the divergent series

—
+
W =
+
o ==
+
~3 -
+
+
7
"
+

Since = <1 one has 72""!/2p-1<1/2p-1 and if

P
_Zl
S = 2p._1
1

2 -2.4
Belorizky shows that p >e?*"2-* and since S _<S, p>e i . Now for
S, =107  one finds p, > 108%1°°
1
4
S, = 2 X 10% one finds p, > 1017*%
2
s, = 105 one finds p, > 103"104

We have designated by '"n'' the number of terms which is necessary in the series

7.3 7.2n-1 1
T gt tgmsI o T 2R
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in order to have S, 29/20A. This number n is greater than the number "p" of the terms which it is
necessary to take in the series

1 1

FEhE b o

W =

1+

in order to have the same sum. From above we can see thatn > P.

We wish to calculate x, y in our particular case with only a single decimal accuracy by Sundman's
method. For the epoch t = 1, in the three different cases where M/m = 200, M/m = 10,M/m = 3, the
number of terms is respectively greater than 10810°  1017x10* jgsxio

The extreme slowness of convergence in this particular case is apparent. The Sundman solution
is, in a practical sense, quite useless for ephemeris computation. The motion of a body near col-
lision, can however be represented by the Sundman series solution. The Sundman exposition, al-

though not generally useful for a solution to the three body problem, has allowed a rigorous in-
vestigation of the motion near collision. A few of the more important results are given below.

SUMMARY
1. In a double collision, the distance to the non-participating third body remains bounded.
2. In order for a triple collision to occur, the area integral of the system must equal zero.

3. The velocity and acceleration of the colliding body tends toward infinity at the point of
double collision.

4. The unit vector along the radius joining the two colliding bodies tends to a limit.

5. Singularities in the equations of motion can be removed at one of the bodies by the intro-
duction of the independent variable "u"".

6. An independent variable "w'" was found such that all the singularities of the motion were
removed, allowing any number or combinations of double collisions to occur.

7. The power series solutions were found to converge, although extremely slowly.

Although this paper, up until this point, has considered only the regularization introduced by
Sundman, there are several other known transformations that regularize the equations of motion.
One of the best known methods for the restricted three body problem is that of Levi-Civita.

We consider two primary bodies in the cartesian plane having the coordinates (u, 0), (»-1, 0).
The third body's position is denoted by (x, y). A transformation is made from the %, y plane to a
ps q blane by the following equations

x~p = p?-q?
y = 2pq
dt = 4(p2 + q2) dr




Using these transformations, one can transform the equations of motion in the (x, y) plane

d? x dy _
T2 T t& T %
d?y

dx
ae fra

-1 -4 p
Q= gla-mrfrelt] T

Yy (x-w)? +y?

1l

Ty

2 Vr("+1_*‘)2+y2

-
1l

to the corresponding equations of motion in the (p, q) plane. These are;

d? d 1
d,i’ - 8(p2+a?) g - [4(0‘ 3 C) (P“qz)]p

d? d 1
dT? +8(p2+at) @ = [4(0‘ vl C)(P“Q’)L

()" + (42)" - s(o-3c)(p?+a?)

Subscripts in the right side of the equations denote differentiation with respect to that variable
and C is a constant of integration.

If we now consider a collision at (., 0), then as r, ~ 0 the term (1-u)/r, or (1 -2)/p? +q% in
0, which becomes infinite, appears multiplied by a factor p? +q?. Atp = q = 0, the last equation
shows that the square of the velocity is proportional to 8(1-x). The curves of motion are analytic
curves without singularity near the origin. Thus for a single collision at (x, 0), the equations are
regular.

Recently, a new method has been introduced into the three body problem. Originating in atomic
physics, ''spinors'’ were used to describe the process of spinning of an elementary particle. In
celestial mechanics, spinors are no longer used to describe spin but are used instead as a mathemat-
ical aid in simplifying the equations of motion for the three body problem. A spinor can be thought
of as a vector in the complex plane connecting a complex number z, = u, +iv, to another complex
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number z, = u, +iv, . The spinor is then a four space vectors of the form:

It is these vectorial analogies of spinors which are used to regularize the differential equations of
motion. Transformations of the Levi-Civita type cannot immediately be extended into three di-
mentions. By using spinor notation, a position vector T and its 3 scalar components (x, y, z) can
be expressed in terms of z,, z, and their complex conjugates,

For each position vector, there corresponds differential equations for a spinor (z,, z,) which

are regular, when a certain pseudo-time is chosen to be the independent variable.
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