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SUMMARY 

This report contains results of the studies carried out by Analytical 

Mechanics Associates, Jnc. in the continued development of the Goddard 

Minimum Variance Program under Contract NAS 5-2535. The report con- 

tains a universal solution of the two body problem, based on a formulation 

by Stumpff, specifically designed for the modified Encke method. The re- 

port contains a modified set of variational parameters derived to eliminate 

the singularity existing for parabolic and near-parabolic orbits. The report 

also contains a new development accounting for the effects of bias e r rors  in 

the equations of motion of the state as well as biases in the observations on 

the estimate of the state, and the covariance matrix of the e r rors  in the state. 

In addition, the report contains the development of the effect of machine pro- 

cess noise both in the solution of the equations of motion as well as in the 

prediction of the observations. This bias sets a lower limit to which the un- 

certainty in the state may be reduced by means of the orbit determination 

program. 

designed to produce changes in the state of the orbit when the changes in the 

variational parameters may no longer be considered small. 

Finally, the report contains a derivation of a set of finite rotations 
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INTRODUCTION 

The development of an operational orbit determination program re- 

quires the ability to weight real data properly in the effort to produce a 

meaningful estimate of the dynamic state of the vehicle. Many programs 

exist which apparently function well with simulated data, but which prove 

incapable of reducing real data without the use of irrational smoothing tech- 

niques, arbitrary weighting factors, and other personalized interventions into 

the field of orbit determination. The Kalman filter, used in a sequential 

manner, compels the analyst to estimate the expected residual in the observa- 

tions from point to point. Any infraction of the physical laws used to describe 

the propagation of the covariance errors in the state or the expected stochas- 

tic noise in the observations will result in an unrealistic estimate of the lower 

bound to which we hope to reduce the uncertainty of the state, or  an optimistic 

estimate of the subsequent residuals yet to be encountered. This report con- 

tains a rational method for including the effect of known biases in the equations 

of motion and in the observations. Basing these expected errors  on known 

physical models, the report derives a realistic weighting of the errors  in the 

state, as well as the rate of propagation of the errors.  

The introduction of the NASA variational parameters, in Reference 1, 

has proven successful for typical elliptical and hyperbolic orbits. However, 

for an important class of parabolic and near-parabolic orbits, such as may be 

expected to occur for lunar trajectories, it has become evident that some 

modification to the existing parameters is required. Since the semi-major 

axis, a, is known to become infinite as the orbit approaches the parabolic 

condition, the terms in the transition matrix in which the semi-major axis 

occurs in the numerator become cumbersome in the near-parabolic case. A 

modification was undertaken which removed this ambiguity. The specification 
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of insuring that only one of the variational parameters could affect the energy, 

in order to restrict the secular terms to only one variable, was adhered to. 

A detailed development of this study is contained in this report. 

Perhaps the most significant contribution of this study lies in the dis- 

covery of the effect of computing machine process noise on the cwariance 

matrix of the estimated errors  in the state. It has been known for some time 

that the Kalman filter tends to lose the ability to reduce the norm of the co- 

variance matrix of the estimated errors in the state, due to the loss of positive 

definiteness in this covariance matrix at some point along the orbit time arc.  

Theoretically, the state error  covariance matrix may be shown to be always 

positive definite and monotonically decreasing so long a s  data is continually 

being processed. However, in practice, there exists a finite amount of com- 

puting machine process noise which effectively places a lower limit on the 

norm of the covariance matrix. By neglecting this important realistic source 

of error,  it is possible to produce a nonpositive definite covariance matrix 

using the Kalman filter on a finite digit computing machine. This report de- 

rives a method for accounting for this effect and enables the Kalman filter to 

produce realistic estimates of the state and realistic estimates of the co- 

variance of the estimated errors  in the state. 

In order to diminish the destabilizing effect of nonlinearities on the 

linear filter theory described herein, it has been found necessary to derive 

a procedure for finite displacements or  rotations. Using linearized theory, 

it is often possible to derive a correction to the state which may reintroduce 

errors .  In particular, due to the important role played by the energy, it is 

of utmost importance to insure that, once an estimate of the change in energy 

has been arrived at, the additional variables to be corrected for do not disturb 

this altered energy. A method of producing finite rotations consistent with 

the modified NASA variational parameters is described herein. 
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1. Two Body Problem 

It is convenient to have a solution of the two body problem which holds 

for all conic sections. A solution, obtained by K. Stumpff and first published 

in Reference 2, is used as a basis for the form of the solution described 

below. 

The solution of the two body problem, in Cartesian coordinates, is 

given as a function of the initial conditions as follows: 

R = f R  + gRo 

k = I R o  + g R o  

0 

The functions f, g, 

and the increment in time from the initial time, t - to, as follows: 

and g are given in term of the initial conditions 

g = 1 - -F3(Cr) P2 
r 

The functions r d , v and r aredefined as 
0' 0 0 
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1/2 r = [k( t  ) R ( t  )I  
0 0 0 

d 0 = R(to) R(to) 

(1.3) 
v = CR(to) k(t )I 1/2 

0 0 

1/2 r = [R( t )  R ( t ) l  

The variable, 

bolic, elliptic, parabolic and rectilinear cases. f l  is given by 

8, is the regularization parameter used to unify the hyper- 
2 

fi2 = a c t  

where the semi-major axis, a, and CY are defined as 

2 
V 1 2 0 

a r Fc. 0 

E - E 

eccentric anomaly. It is noted that f l  is always real since the eccentric 

anomaly becomes imaginary whenever the semi-maj or axis becomes 

negative. 

is the increment in the eccentric anomaly measured from the initial 
0 

finite 

given 

The functions F are  in reality the sine and cosine series with a 
i 

number of initial terms removed. The general formula for Fi is 

bY 
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W 

- a  

k=O 

To obtain the universal anomaly, B,  from the increment in time, it is 

necessary to solve Kepler's equation given below 

3 do 2 d i i  ( t - t o )  = B F* + roBF2 + - B F3 
JF 

(1.7) 

Equation (1.7) may be solved by Newton's method in an iterative manner for 

a given t - t as follows: 
0 

The denominator, r( Bi), represents the partial derivative of equation (1.7) 

with respect to @ and is given by 

This formulation is presently in use in many different forms (References 3, 

4, and 5). The purpose of describing it herein is to bring attention to the 

earliest derivation known to the authors, as contained in Reference 2. 

It is convenient to obtain a reduction formula for the functions F (a) i 
in order to reduce the number of terms required for the summation of the 

series for large a ' s .  The highest function that will be required is F6(a). 

Reduction formulae are given which express F (a) as functions of Fj( 7) 
as follows: 

a 
i 
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(1.10) 

To obtain the lower order functions, we have the recursion formula 

(1.11) 
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2. The Modified NASA Variational Parameters 

Reference 1 contains a description of a set of variational parameters. 

These parameters consist of three rigid rotations in addition to three other 

variations. The three rotations may be described as follows: 

(a) A rotation of the vector R( t ) about the vector R( t ) 

1' through a small angle a! 

(b) A rotation of the vector R( t ) about the vector R( t ) 
through a small angle a! 

2 '  

(c) A rigid rotation of both R( t ) and H( t ) about the 

angular momentum vector, H = R x R, through a 

small angle a3. 

The remaining three variables may be described as follows: 

A variation in the scalar function R' R accomplished 

by rotating R( t ) about H through a small angle, leaving 

R( t )  and the magnitude of the velocity vector invariant. 

m 

1 
A variation in the scalar function a accomplished by 

stretching the vectors R( t )  and R( t ) along their re- 

spective directions, leaving the angle between them 

unchanged. 

2 
A variation in the scalar function - r v  - 1 accomplished cc 
by stretching the vectors R( t.) and k( t ) along their 
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respective directions in such a proportion as to leave 

the magnitude of a and the angle between them 

invariant . 
1 

The defect in the above formulation accrues from the fact that the semi- 

major axis, a, occurs in the numerator of several term in the parameter 

state transition matrix as well as in the point transformation matrix relating 

the variational parameters with the components of R and R. As the orbit 

approaches the parabolic case, the terms become unbounded and numerical 

inaccuracy results. 

It is possible to remove this difficulty by a new choice of parameters 

1 without eliminating a as  one of the variables. The significance of retaining 

1 - as a parameter is to insure that the remaining five variables remain inde- a 
pendent of the energy so that no secular terms will occur in the state transi- 

tion matrix due to variations in these parameters. In this fashion the secular 

terms may be restricted to only one variable, namely the semi-major axis, 
1 
a *  
- 

The formulation carried out here is similar to that contained in Ref. 6, 

although the derivation is somewhat simpler. Let there be two sets of vari- 

ables ai and B The point transformation matrix relating R and R with 
i '  

may be expressed in terms of the as  follows: a i  1 

(2.1)' 

Similarly, the inverse is given by 
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-1 -1 = (-)(-) a@ aP = J - l ( P , a ) S  ( p , ~ )  s ( a ! , x )  = (S ag ax 

The state transition rnatrix may be altered as follows: 

Let the old variables be /3 and the new variables be ai. We choose i 

The matrix of the partial derivative8 is given by 
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1 

0 

0 

0 

0 

0 

0 0 

0 0 

1 0 

0 0 1 0 

0 0 

I The inverse matrix is given by 

- 
1 0 0 0 

- r  

0 0 

0 1 0 0 0' 0 

0 0 1 0 0 0 

0 0 0 0 ,la - - R - R ~  1 
2 

0 0 0 0 1 0 

0 0 - r a  - a  0 0 

The new point transformation matrix may be obtained from S( x, f l ) ,  
given in Reference 1, and Eq. (2.1) 

10 



1 - - H  V ! 0 

s =  

- 
V - -  
h2 

0 

0 

R 

2 - - R  3 r 

1 - F R  

0 

1 - H  r 

- 
- H x R  1 7 H x R  1 - Pd HxR JL - -@-(I - t ) H x R  r 2 2 2  2 2  

2v h r v h  h h 

0 - 1 - HxR h 
2v 

R 
U 

2 2  
-- 

r v  

The new inverse of S may be obtained from S -1 (x, p) ,  given in Reference 1, 

and Eq. (2.2) 

- - -1 
S 

- 
0 

- l2 HxR 
h v  

R 

- 0 

It should be noted that the semi-major axis does not appear in the numerator 

of either s or S-'. 
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The new state transition matrix may be obtained from O( 6, S,), 
given in Reference 1, and Eq. (2 e 3) .  

0 0 0 

0 0 0 

1 %,4 $,8 

0 ti 

0 0 1 

a 
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2 

(2 .9~)  
r 

r v  r v  
0 0 0  

2 
- J ; - [ - r 2 p F F  - - b  2 ( F 3 + 2 F F ) - - p  do 3 F F  

O4,5 r 3 1  cc 3 2  
O l 2  6 

3 3  3 do 4 3  2 +rap (-F - - F  - 2 F F ) + - - - p  (-F - 3 F 5 - 2 F 3 )  
2 4  

2 3  f i  2 3  2 4  

I - - 3 F - F3F4)] 
' s 5 ( k F 5  2 6 

I 

2 1  d r  2 
0 2 0 0  8 F  F + r  p ( z F 4 - F 5 - F  F )  

P2 --F - -  
695 = - [  r 2 2 2 3  0 4 2  f i  

2 

+ - p  do 2 (F5- z F 4 -  I zF4F2)+-p  do 3 1  (-F --F 3 - F  F )  1 
2 5  2 6  4 3  

P J;; 

(2. Qd) 

(2.9e) 
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3. The Modified Kalman Filter With Bias Errors  

Reference 1 contains a description of the modified Kalman filter in 

which e r rors  in the initial conditions and stochastic noise in the observations 

a re  the main sources of uncertainties in the knowledge of the state. This re- 

port proposes to extend this analysis for the effects of bias e r rors  both in the 

equations of motion and in the observations, as well as the effect of computing 

machine process noise on the uncertainty in the state. 

A. Machine Process Noise 

In finite digit arithmetic, every number, a, may be 

defined as a decimal followed by p digits (where p is a'fixed 

integer for a given computing machine) followed by an exponent, 

n, which fixes the relative magnitude of the number in the arith- 

metic base (say 10 ). Thus, every number may be written as 

a = .a a - - -  a lon  
1 2  P 

Two numbers are considered equal if  they agree both in the 

digits following the decimal as well as the exponent. Further- 

more, any number, #3, smaller than the least significant 

part of a, 
ber a. This is necessarily so since a + will produce a 
in the machine. Since the number beyond the final digit in the 

machine is unknown, it may be considered a random variable. 

Furthermore, if we assume that round-off in addition, in the 

machine, is accomplished by simply dropping the number be- 

yond the least significant digit, it is apparent that the sign of 

the number dropped is in reality the sign of a and that we 

may be considered zero with respect to the num- 
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are dealing with a biased stochastic process. An estimate 

of the machine noise associated with a given number, a, 
is given by 

Since the process of obtaining the exponent of a number in the 

computing machine is time-consuming, a sufficiently accurate 

estimate of the machine noise associated with a given number, 

CY, is given by 

q ( a )  - a 10-p 
Furthermore, an estimate of the variance of the machine noise 

is given by 

2 -2p E(q,r)*) = o! 10 

In the event that CY is a vector, x, an estimate of the 

machine noise for the vector is given by 

The associated covariance matrix for the expected errors  in the 

vector, x, is given by 

(3.3) 

(3 4) 
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0 0 0 0 x; lo-2p 

It is noted that this matrix is a diagonal rnatrix since we are 

dealing with a random process and no correlation existe be- 

tween the various components of the machine noise. 

B. Biae Errors  in the Equations of Motion 

Let the state variablee be described by a system of dif- 

ferential equations given below. 

x = f(x, u, t )  

The variables, u, refer to biaees in the equations of motion. 

These may be constant parameters, such as the gravitational 

constants, or they may be variables themselves governed by 

differential equations, such as thrust, atmospheric drag, etc . 
In any case, they may be described by differential equations of 

the form 

The propagation of e r rors  in the solution of equations (3.7) and 

(3.8) is given by the conventional variational equations 

16 



= H 6 x  + J 6 u  + ~ ( u )  

Let the covariance matrices of the expected correlation 

between the variables be given as follows: 

The differential equation describing the time rate of change of 

the covariance matrix is given by 

F G P C  P C F * C  '[I* I] [H J][C* B] + [C* B][C* B d  

+[: u:l 

A solution of this differential equation may be obtained by numeri- 

cal integration. This would entail a considerable amount of com- 

putation. Since we are  interested only in an approximation to the 

covariance matrix, it will be sufficient to follow the method out- 

lined in Reference 1 utilizing the partial derivatives of a closed 

form approximate solution of the equations of motion. 

(3.10) 

(3.11) 
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Let equations (3.7) and (3.8) be approximated by 

i 4  = .C(s,v,t) 
. 
v = m(e,v, t )  

where s and v are known in closed form as  follows: 

The variation in the state, s, is given by 

= @ b e o  + U6vo + ~ ( s )  

The covariance matrix for the deviation in the state, 8, may 

be given by 

8 
E ( 6 8 , 6 s * )  = P = QiP 9* + UB U* + Q 

0 0 

The covariance matrix, P, will grow in a manner 

described by equations (3.15). Under such conditions, the co- 

variance matrix, Q of the machine process noise would be- 

come a negligible part of P. However, in the normal procedure, 

observations are included to decrease the uncertainty in the state 

and the matrix P will then become small again. Under such 

conditions, the matrix Qs will act as a lower bound on the co- 

variance matrix P beyond which the uncertainty cannot be re- 

duced even with continued observations. 

8’ 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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Since the covariance matrix P is subject to numerical in- 

accuracy due to the nature of the secular t e r m  in the state transition 

matrix CP, it is necessary to carry out the analysis in terms of the 

variation in the parameters ai described in Section 2. 

E(6aY6cY*) = Q = SPS* 

The covariance matrix Q may be propagated in a manner similar to 

P given in Eq. (3.15) 

Q(t)  = nQ(t )a* + SUB U*S* + S Q  S* 
0 0 S 

C .  Bias Errors  in the Observations 

In the original work on the modified Kalman filter (Ref. l), 

the only errors  accounted for in the expected residuals from the ob- 

servations were those due to errors in the state and the stochastic 

noise in the observations. The present modification will account for 

errors  in the observations due to biasesvas well as computing machine 

process noise. The method outlined here accounting for observation 

bias is taken from the method described in Reference 7. 

Let an observation be given as  a function of the state, x, and 

certain bias errors  u 
i 

(3.16) 

(3.17) 

(3.18) 

The linear estimate of the true observation in terms of its nominal 

predicted value is given by 
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The expected value of the observation residual is given by 

(3.19) 

(3.20) 

Let the expected value of the various covariances and correla- 

tion matrices be given as follows: 

The covariance matrix of the observation residual is given by 

E(by,6y*) = Y = NQN* + F D F *  + W + Q + N C F *  
Y 

+ FC*N* + NG + G * *  N 

D. The Kalman Filter With Biases and Machine Noise 

Let the correction in the variational parameters be given as a 

linear function of the residual in the observation a6 follows: 

(3.22) 

(3.23) 
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After making the correction, the expected error  in the function is 

given by 

(3.24) 

The optimal filter, L, is chosen so as to obtain the smallest co- 

variance matrix of the expected remaining error,  6a + 

+ e *  
E(6a ,(6a ) ) = Q+ 

= Q - (QN* + CF* + G)L* - L(NQ + FC* +a*) 

+ LYL* (3.25) 

The optimal L is given by 

The derived value of the Kalman filter also yields updated values for 

the covariance matrices Q , C and G following each observation. 
+ +  + 

Q+ = Q - L(NQ + FC* + G*) 

C+ = C - L(NC + F D )  

GC = G - L(NG+Qy) 

(3.26) 

(3.27a) 

(3.27b) 

(3 .27~)  

It is necessary to propagate the various covariance matrices 

from one observation to the next. Let the observation biases be 

described as follows: 

21 



b u ( t )  where 8 (t, 5 1 represents the transition matrix of the ( 
for the bias. 

) Wt,) 

The propagation of the variation in the ai( t ) may be obtained 

from Eq. (3.14) as follows: 

h ( t )  = 0 6 a ( $ )  + SUGv(t 0 ) + S q ( s )  

(3.28) 

(3.29) 

The propagation of the covariance matrices E( 6a, du*) and 

E ( 6 Q , 6  q (y)*) between observations is given by 

(3.30) 
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4. Finite Rotations 

The introduction of the variational parameters necessitates a method 

of effecting changes in the state x, given a corrected change in the parameters 

Aa . A simple procedure would be to take the linear estimate of the correction 

from the point transformation matrix 

Ax = S ( x , a )  Aa 

This will usually suffice for small changes in the parameters. For larger 

changes, it may be necessary to obtain a nonlinear transformation. This is 

especially important whenever changes are required which restrict the varia- 

tion in the energy to a given amount. In such a case, the formula for a rigid 

rotation which leaves the lengths of the vectors invariant is required rather 

than the approximate infinitesimal rotation given in the S matrix. This sec- 

tion contains a solution of the change in the state due to a non-infinitesimal 

change in the ai. 

and 01 and let 
3' Let there be three finite changes in a, a 2 ,  

the original value of the state be R( t  ) and R( t).  The new state may be 

obtained from the old by executing three finite rotations corresponding to 

Aal, Aa2, and Aa successively as  follows: 
3 

For Aa1 

s inAal .  
RxR R * R  

V 
RI = -( 1 - C 0 8  Aal) -t COS AalR I. 2 

V 

(4.1) 

k, = R ( t )  

23 



For A% 

R2 = Itl 

(4.3) 
R *R1 sin Act2 

R xR1  r 1 
n 1 (I - COS hqL)R1 + COS b%R1 + 

2 
R2 r 

Them two rotations establish the inclination of the new orbit. If H = RxR, 

we have for the altered orbit ' 

. 
H' = R xRZ 

2 (4 4) 

The rigid rotation corresponding to Aa3 is accompliehed about this new 

angular momentum vector, H', 

3 1  R3 = cos ba R + H xR2 
3 2  h' 

sin &a3 

h' 
H' x R~ R3 = cos Aa3R2 + 

To obtain the altered state due to changes in Aa4, Act5, and Aa,, 
we proceed as detailed below. 

r' = r + Aa6 

From these, we may solve for the altered speed v', 

24 



j 

. 
I 1/2 

2 1 
r v' = C p k  - ($11 

There remains the problem of changing the angle between R3 and R3 in the 

plane perpendicular to H' to accommodate Aa4. We will adjust the elevation 

angle between R3( t ) and R,( t ) by rotating R3( t ) rigidly about HI, 

leaving R3( t ) unchanged. For such a rotation, the elevation angle, y,  is 

measured negatively. 

H'X R~ 
sin Ay 

h1 
R4 = R 3 c o s  by - 

R4 = R3 

The relationship between Aa4 and Ay is given by 

Aa4 R 4 * R 4  - R * R  = 

(4.7) 

(4.9) 

where 

= r ' v '  cos(y + Ay) 
R 4 '  R4 

cos Ay = cos y cosy' + sin y' siny 

- - [It - R ( l  + Act4) + hh ' l  r v r ' v '  
(4.10) 

25 



The final corrected vectors are adjusted for the proper lengths r1 and V I  

as follows: 

r t  R 5 =;R4 

v' ' R5 = ;R4 
(4.11) 
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5. Analytical Partial Derivatives of the Biases 

This section contains the analytical partial derivatives for several of 

the biaaes which affect either the equations of motion or  the observations. 

A. The Gravitational Bias 

The uncertainty in the determination of the gravitational 

constants used in the equations of motion of an orbiting vehicle 

gives rise to a corresponding uncertainty in the determination of 

the position and velocity of the vehicle. An approximation of the 

variation in R and R due to a variation in  p can be obtained 

in closed analytical form from the solution of the two body prob- 

lem. W e  have 

The expressions for I_ a f  af bg -% are  given below in terms ap’ ap ap ’ ap 

of the Fi(a) series. 

do 2 

f i  a = J j i ( t - t $  + - B  F3 

(5.1) 

2 
1 4  2 B 6 3  3 2 1  V 

- = -  I a f  (J + ”[- 50 F3 +-(-F + -F - - F  - F3F5)] (5.2a) 
r 2 6  2 4  2 5  
0 

2 
ap 2p3/2 CLr 

27 



3 3 2 1  
2 6  2 4  2 5  3 5  

--(-F +-F --F - F  F ) ]  
f i  (5.2b) 

2 

( 5 . 2 ~ )  
V 

2 312 
0 + 

ror cc 

ro P4 
- 2 .,"I 

B. The Station Location Bias 

The station location uncertainty is a constant bias in an earth- 

fixed reference frame. However, in an inertial coordinate system, 

the bias becomes an oscillatory, time-varying bias. In order to ex- 

press the varying bias as  a constant bias, the time-varying factors 

may be included in the matrix F( y, v ) ,  leaving the covariance matrix 

D( V )  to account for the constant uncertainty in the station location. 

(5.2d) 
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Let G be the right aeoeneion of the etation. Furthermore, 

let the Carteeian components of the station location biae in an earth- 

fixed eyetem be Au, Av, Aw. The partial derivatives of the etation 

location biaeee with respect to  Au, Av, Aw are  given below for 

range ( p ) ,  range rate ( b ) ,  azimuth (A), elevation (E), and the mini- 

trackcomponents 4 and m. 

1 
P S S S S 

F(p ,Aui )  - - -[(x-x)coeG - ( y - y ) s i n G , ( x - x ) s i n G + ( y - y ) c o e G ,  

(2 - zs), 0, 090 1 

( lx  6 row vector) 

(5 3) 

- [ ~ ( x - x , )  P - -(x+w,y)lsinG+ 1 .  L2(y-ys) P - - ( y - ~ ~ x ) l c o e  1 .  G, 
P P P P 

[-(z-zs) ri - p 2 1 , 0 , 0 , 0 }  1 '  
P (5 4) 

(1 x 6 row vector) 
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1.-, c- p 2 cos cp cos 8' + z"'(x -xs) cos a + zf'f(y -Ys) sin a, i / d  F(E,Aui) 5 

p 2 2  [ p  - ( Z r q l  

2 - p COB cp sin 8' - zfrr(x -x ) sin G + zrrr(y - y )cos G, 
5 5 

2 
. - p sin cp + zrff(z - z  1, 0, 0, 01 

( l x  6 row vector) 

S 

F(.t ,Aui) - - [ p  1 2  sincpcos ~ ' - x ~ ~ ~ ( x - x ) c o s G - x ~ ~ ~ ( ~ - ~ ~ ) ~ ~ ~ ~ ,  
P3 5 

2 p sin cp sin 8' f xtr'(x -x )sin G - x"'( y- ys) cos Q, 
5 

2 - p COB c p -  x"'(z-z ), 0, 0, 01 
8 

(1 x 6 row vector) 

2 - p  sin 8' - y t ~ ' ( x - x ) s i n G + y f f t ( y - y ) c o a G ,  
8 6 

y"t(2-z ), 0, 0, 01 
S 

(1 x 6 row vector) 

(5.7) 

The observation variables p ,  xrr*, y"', z"', Q, 6' are defined in 

Ref. 1. 
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