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FOREWORD 

This report was prepared by Stanford Research Institute under Contracts 

NAS 2-2752 and AF 33(615)-1099, with Dr. James C. Bliss as Project Leader. 

Contract NAS 2-2752 was monitored at the Ames Research Center, National 

Aeronautics and Space Administration, Moffett Field, California, by 

Mr. Richard Weick. Contract AF 33(615)-1099 was monitored at the 

Electronics Technology Division, Air Force Avionics Laboratory, Aeronautical 

Systems Division, by Dr. Mildred B. Mitchell. 

While the author is responsible for the material contained in this report, 

certain sections are primarily the work of others and are so indicated. In 

addition, we would like to acknowledge the contributions of B. M. Wilber, who 

wrote the computer programs for most of the experiments; J. G. Crummett, 

who worked on circuits and displays for the tracking experiments; A. F. 

Ferrera, who kept the facility operating and ran many of the experiments; 

B. Lane and W. R. Brody, who conducted the step-response tracking experi- 

ments and analog computer simulation; and L. I. Mickelson and F. A. Kopala, 

who did much of the data gathering and processing. 
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AUSTRACT 

Results from five different studies on tactual perception, involving airjet 

stimulators and a computer-controlled facility, are presented. In the first 

study, alphabetic shapes were presented on an 8-by-6 array of airjets, which 

was physically translated in a small circle. For a rotation diameter of 0.8 cm, 

a masimum in recognition accuracy occurred at a rotation velocity of 400 rpm. 

A hypothetical model is suggested which qualitatively accounts for the effects 

of display motion, 

In a second study, pairs of alphabetic shapes were presented in rapid suc- 

cession at the same anatomical location. As the temporal conditions were 

varied, three aspects of the interaction were observed: (1) an increase in 

letter reversals for very short interstimulus intervals; (2) a greater percentage 

of first-response errors for short-stimulus onset intervals and a greater 

percentage of second-response errors for long-stimulus onset intervals; and 

(3) a crossover in the first- and second-response error rates in the range of 

100 to 200 msec after the onset of the first stimulus. 

In a third study, point airjet stimuli were presented simultaneously to the 

24 interjoint regions of the fingers (thumbs excluded). After correction for 

guessing, the number of point tactile stimulus positions that subjects could 

report was between 3 and 7. However, in a partial-report procedure in which 

the subject only had to report from a portion of the field indicated by a marker, 

it was shown that about one additional stimulus position was available to the 

subject. These results suggest a tactile short-term memory that has greater 

capacity than the span of immediate memory but that decays within 0.8 sec. 

The fourth study is on cross-modality reaction time, in which visual and 

tactile stimuli that gave the same mean simple reaction times were used. 

However, when the number of response alternatives was increased, the mean 
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visual reaction times incrcascd significantly less than the mean tactile reaction 

limes. Moreover, when both visual and tactile stimuli were presented 

simultaneously, the mean reaction time was significantly shorter than that 

with either visual or tactile stimuli alone, independent of whether the two 

simultaneous stimuli required the same or different responses. This result, 

coupled with the effect of response repetitions on choice reaction time, 

suggest a model employing sensory and response switching mechanisms. A 

mathematical interpretation of the increase in reaction time with the. number 

of alternatives in terms of the repetition effect is also given. 

The fifth study is on tracking performance with visual and tactile displays. 

Responses to step commands under various feedback conditions indicated that 

movements with the visual display tended to be quicker than with the tactile 

display, but the stationary pauses were longer with the visual display. With 

continuous command signals, describing functions were obtained which showed 

less gain and less bandwidth with an airjet tactile display than with a visual 

display. However, increased bandwidth was obtained with a contacting tactile 

display that produced tangential as well as normal forces on the skin. 
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I INTRODUCTION 

As man-machine systems become more complex, it becomes more 

important to study all potential methods of communication between man and his 

hardware systems. In this regard, the tactile sense deserves serious attention, 

because it is certainly capable of high information rates, as evidenced by deaf- 

blind persons, some of whom are capable of receiving live speech in real time 

by placing their fingers on the lips, jaw, and throat of a speaker. 

This report covers a one-year joint research program investigating basic 

properties of the tactile channel important to communication systems. The 

research is an outgrowth of projects initiated in 1962 under Air Force and NASA 

sponsorship. These previous projects are described in the several reports and 

papers listed at the end of this section. 

Up until a year ago, a relatively large part of the program effort was 

devoted to the development of a tactile research facility to generate and control 

rapidly changing tactile-spatial patterns. During the past year, however, the 

first major studies have been conducted with this facility, and the results of 

these studies are covered in this report. Since these results are also being 

submitted to the appropriate scientific journals, the various sections of this 

report are written in the style and format appropriate for journal publication. 

Also for this reason, each section is relatively independent of the other sections, 

even though the subject matter is closely related and basically the same facili- 

ties were used in each experiment. An overview of these studies is given in 

Section IX, which attempts to point out relationships between these various 

studies and the general problem of tactile communication. 

Basically, there are five types of experiments described in the body of this 

report. These include experiments in the effect of display movement on tactile 

perception (Section II); temporal effects in spatial pattern recognition (Section 

RI); spatial interaction and memory limitations (Sections IV, V); reaction time 
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time (Section VI); and tracking with transient and continuous commands 

(Sections VII and VIII). These sections are summarized below. 

In Section II*, an investigation of the effect of display movement on the 

ability of subjects to recognize alphabetic shapes tactually is described. The 

display consisted of a computer-controlled 8-by-6 array of small airjet stimu- 

lators that could be physically translated in’s small circle by means of a 

mechanical linkage. The experimental parameters were the stimulus duration, 

the angular velocity of the display, and the amplitude of the rotation. Recogni- 

tion accuracy increased with stimulus duration between 100 and 400 msec. For 

a rotation amplitude of 0.8 cm, a maximum in recognition accuracy occurred 

at a rotation velocity of 400 rpm, or 150 msec per revolution. The optimum 

angular velocity appeared to decrease as the amplitude of rotation increased. 

From these results and certain related neurophysiological evidence, a 

hypothetical model is suggested which qualitatively can account for the data. 

Section III* describes a study on tactile pattern recognition in which pairs 

of alphabetic shapes were presented in rapid succession at the same anatomical 

location, the subject being required on each trial to identify both the patterns. 

Experimental variables were the duration of each stimulus and the time between 

stimuli. Three aspects of the observed interaction were (1) an increase in let- 

ter reversals for very short interstimulus intervals; (2) a greater percentage of 

first-response errors for short-stimulus onset intervals and a greater percent- 

age of second-response errors for long-stimulus onset intervals; and (3) a 

crossover in the first- and second-response error rates in the range of 100 to 

200 msec after the onset of the first stimulus. These results are consistent 

with some of the temporal properties of models proposed for analogous visual 

tasks. 

In Section IV*, exploratory experiments on tactile-spatial interaction are 

presented. In these experiments a number of point tactile stimuli were pre- 

sented simultaneously to the 24 interjoint regions of the fingers of both hands 

(thumbs excluded). It was found that although subjects initially had a relatively 

*Supported under Contract AF33(615)-1099. 
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high error rate when two simultaneous stimuli were presented, after a rather 

short training time substantially error-free performance was obtained. 

As an outgrowth of the exploratory experiments of Section IV, two formal 

experiments were performed; these are presented in Section V*. In these two 

experiments the number of point tactile stimuli simultaneously presented were 

varied between 2 and 12. After correction for guessing, it was found that sub- 

jects could report a maximum of between three and seven stimulus locations. 

However, in a partial-report procedure in which the subject only had to report 

from a portion of the field indicated by a marker, it was shown that about one 

additional stimulus position was available to the subject. The time of occur- 

rence of the marker was varied with respect to the stimulus, which showed 

that the additional information was available for less than 0.8 set after termi- 

nation of the stimulus. 

In Section VI , a cross-modality reaction time study with tactile and visual 

stimuli is described. In the four separate experiments performed, the stimu- 

lus conditions and the number of response choices were varied. The first 

experiment, on simple reaction time, showed that the tactile and visual stimuli 

used were balanced so that there was no significant difference between the 

means of the tactile and visual reaction times when only a single response was 

to be made. In the second experiment, on two-response reaction times with 

either visual or tactile stimuli, a longer mean reaction time was obtained with 

the tactile stimuli than the visual stimuli. Moreover, the standard deviation of 

the tactile reaction times was significantly greater than the visual. Experiment 

3 was the same as Experiment 2 except that two stimuli, one tactile and one 

visual, were always presented simultaneously. The two stimuli could either 

indicate that the same response, out of the two possible responses, or different 

responses. The results from this experiment showed that mean reaction time 

with the two stimuli was significantly less than that with either stimulus alone. 

There was no significant difference in the reaction times when the same or 

different responses were indicated. In Experiment 4, the disparity between 

*Supported under Contract AF 33(615)-1099. 

Supported under Contract NAS 2-2752. 
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tactile and visual mean reaction times was further widened when the number of 

response choices was increased to four. 

Section VII describes hand responses to step commands presented tactu- 

ally, visually, or both tactually and visually. While a large amount of variation 

in the specific time-position course of the hand was found, the data could be 

classified into a few typical response types. The typically reported “staircase” 

response with a visual display and positive feedback was also found under these 

conditions with the tactile display. In agreement with the reaction-time study 

of Section VI, quicker responses were found when both displays were used 

simultaneously than when either the visual or the tactile display was used 

alone. It is suggested that the data can be explained by pure delays in the 

human operator as well as by the more frequently proposed sampling model. 

A continuous-command signal tracking study is presented in Section VIII. 

In this study, single-axis compensatory tracl&g was performed with a con- 

tinuous visual display, a continuous tactile display, and with both of these 

displays together. The subjects’ describing functions were determined, and 

these data indicated a greater gain and bandwidth with the visual display than 

with a pulsating airjet display on either the forehead or the hand. However, 

with a static contacting tactile display, increased bandwidth was obtained, 

comparable to that with the visual display. The low-frequency gain remained 

significantly lower than that with the visual display. No significant difference 

was noted between the describing functions obtained with the visual display and 

those obtained with both displays together. 

*Supported under Contract NAS 2-2752. 
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II EFFECT. OF DISPLAY MOVEMENT ON TACTILE 
PATTERN PERCEPTION 

by James C. Bliss, Hewitt D. Crane, and Stephen W. Link 

Bliss and Crane (1965) and Linvill and Bliss (1966)* found considerable 

improvement in subject performance when tactually displayed letters were pre- 

sented sequentially along a moving ticker-tape (Times Square) display rather 

than just a single stationary letter at a time. To study these tactile spatial- 

temporal interaction effects further, it was decided to test a different mode of 

stimulus pattern movement, namely a small circular translation (or nutation) of 

the entire display apparatus. In this mode, a single letter is presented in a 

fixed position on the display, and the display itself is translated about a circu- 

lar locus, which is small compared to the size of the array. Each activated jet 

therefore follows a circular locus on the skin. By changing the diameter of the 

circular path and the velocity of the rotational motion, a fairly wide range of 

parametric conditions is obtained. &cept for a slight increase in the total ex- 

cited area because of the movement, the pattern remains fixed over the same 

anatomical position. Thus, a measure of performance with and without nutation 

over the same anatomical position can be readily obtained. 

There were three reasons for the interest in this particular stimulus move- 

ment. First, it is reminiscent of vibrations in the eye, which are important for 

continuous vision. It is well known that if these eye vibrations are effectively 

cancelled, as in “stabilized image” experiments, vision rather quickly fades. 

Moreover, Krauskopt (1957), who introduced controlled motion in visual 

stabilized-image experiments, reported some improvement in acuity for oscil- 

lations at frequencies below 10 cps and of sufficient amplitude. 

*References are given at the end of this section. 
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Second, when lettering is read through a piece of shattered glass, where 

the average size of the intact glass is smaller than the size of the lettering, 

significant improvement can be achieved simply by vibrating the shattered glass 

in its own plane. In this way the distortion introduced by the fine structure of 

the shattered glass is averaged out. (Less improvement is obtained if the 

source material is vibrated instead of the glass. ) For the tactile perception 

experiments, it was felt that since the dimensions of the overall tactile display 

are generally not more than a dozen or so two-point limen distances (i. e. , close 

to the limit of spatial resolution on the skin), the effects of distortion introduced 

by nonuniform afferent receptor fields might similarly be averaged out by vibrat- 

ing the pattern over the skin. 

Third, some neurophysiological evidence suggests the probability of im- 

proved tactual perception with pattern vibration. Mountcastle (1957, page 427)) 

for example, from a study of cortical recordings observed: 

“It is a common observation quickly confirmed that tactile sensation is 

more acute if the exploring finger pad moves lightly over the test sur- 

face than if held motionless against it--for example, in differentiating 

fine grades of sandpaper, in the finger movements of the blind in read- 

ing Braille, or in assaying the quality of cloth. Oscillatory movement 

of the sensory receptor sheet will produce sharper peaks in the grid of 

cortical activity, with steeper gradients between them. Temporal al- 

ternation in the activity of two widely overlapped groups of cells will 

accentuate the role of refractoriness of those cells common to both, 

rather than spatial facilitation, thus greatly steepening the gradients 

of activity between the two peaks. ” 

Three different experiments are reported here: 

(1) In the first experiment, static and “rotated” patterns were pre- 

sented in alternate sessions, with various values of the stimulus 

duration, interstimulus interval, and angular velocity of rotation. 

The quantitative results clearly indicate better performance with 

the rotating display. 



(2) The results from the first experiment were sufficiently positive 

that a second experiment was performed to study more precisely 

the effects of overall stimulus duration and pattern rotation ve- 

locity. In this experiment the subject was self-paced, since re- 

sults from the first experiment indicated that a forced response 

interval caused errors unrelated to the parameters of interest. 

(3) In the third experiment, the effect of rotational amplitude was 

studied. 

A. APPARATUS AND PROCEDURE 

The experiments were carried out under control of a computer system de- 

scribed elsewhere by Bliss and Crane (1964). In this system a CDC 8090 Com- 

puter is used to store stimulus patterns and to control the sequence in which the 

patterns are presented. For each frame of presentation the computer transmits 

a sequence of eight 12-bit words (each word representing one row of the spatial 

pattern to be displayed) to specially constructed external equipment. The ex- 

ternal equipment stores up to 96 bits (8 words) and activates the specified 

tactile stimulators in 8 msec. In the experiments reported here, only half the 

array, 8 by 6, was used. The basic tactile stimulator generates bursts of air 

from an 0. OSl-inch outlet port, under control of a sensitive high-speed electro- 

magnet. The pulse pressure, measured l/8 inch above the airjet outlet, is 

about 3 psi, with a rise and fall time of about a millisecond and an overall pulse 

width of about 2.5 msec. A 200-cps pulse repetition rate was used throughout 

the experiments, implying that the airjet is turned on and off 20 times, for ex- 

ample, during a stimulus duration of 100 msec. 

The advantages of airjet stimulators are that relatively uniform stimulation 

is produced over nonuniform cutaneous sufaces and that stimulator spacing can 

be easily changed. The stimulator array used is shown in Figure 1, and the lo- 

cation of the stimulators with respect to the palmar side of the hand is shown in 

Figure 2. The subjects suspended the fingers of the right hand over the matrix, 

with the arm and palm of the hand supported by a rest. 

Inexperienced or “tactually naive” subjects initially have considerable dif- 

ficulty reading a simple capital letter alphabet of the form shown in Figure 3. 
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FIG. 1 TACTILE STIMULATOR APPARATUS (Top View) 

The general reaction is that there is just too much air; each letter seems to 

feel like a blast of air without much structure. For this reason the more ab- 

stracted alphabet forms of Figure 4 were developed. The procedure for de- 

signing this alphabet was subjective and based on trial and error methods. To 

take advantage of possible positive effects from the transfer of visual imagery 

to tactile imagery, a progressive process of modifying the block letters was 

pursued, and an attempt was made to maintain as much similarity to the 
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LOCATION OF 8 - BY - 6 
ARRAY OF AIRJET 
STIMULATORS ON 
PALMAR SIDE OF HAND 

FIG. 2 POSITION OF AIRJET ARRAY (Airiets Position about l/8 
inch below Paimar Side of Hand) 

standard letters as possible. In many cases this was possible, but in others, 

unrelated symbols were substituted to facilitate rapid discrimination. Letter 

modifications continued until each letter could be recognized with almost per- 

fect accuracy when the letters were presented in random order in a fixed (non- 

moving) position for about 150-msec duration and with an interstimulus interval 

of approximately 1 sec. 

The specially designed alphabetic symbols of Figure 4 were used in the 

first two experiments reported here; the block letters of Figure 3 were used in 

the third experiment. 
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Subject S1 was trained in a series of one-hour sessions in which the stimu- 

lus duration was 300 msec and the interval between stimuli was progressively 

decreased from 1.5 set to 0.6 sec. Display rotation was introduced in alternate 

double sessions as shown in Figure 5. For these sessions, the angular velocity 

was 870 rpm and the amplitude of rotation was 0.8 cm. Figure 5 indicates that 

even during training, display movement improved performance. By the 13th 

session the subject had reached the asymptote of his performance. 

B. EXPERIMENTS 

1. Experiment l--Performance With and Without Stimulus Pattern Motion 

This experiment helped to determine under what stimulus conditions nuta- 

tion of the stimulus apparatus improved a subject’s performance. Two factors 

were investigated: (1) motion versus nonmotion of the stimulating apparatus, 

and (2) variation of the total number of display revolutions per presentation, 

accomplished by varying the stimulus presentation time. 

1.2 
I.1 

g I.0 
2 0.9 
< 0.8 
ii? 0.7 
F L 0.6 
-I 0.5 
s 0.4 
i2 0.3 
2 0.2 

0.1 

SESSION NQ 2 
INTERVAL BETWEEN 

STIMULUS ONSETS-set F 

I NO MOTION 

MOTION 

1 
. 

I.8 

TB-746522-48 

FIG. 5 PERFORMANCE DURING TRAINING FOR S, 
STIMULATION DURATION = 0.3 set; 
ROTATION VELOCITY = 870 rpm 
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The rotation frequency and stimulus duration for each session is shown in 

Figure 6, along with the performance scores. These results are for Subject 

S1, who was highly practiced in making verbal responses to briefly presented 

tactile stimuli. In each trial of this experiment, a letter was presented to the 

subject, and 900 msec after the onset of the stimulus, a new stimulus was pre- 

sented. The fixed trial time required the subject to respond faster when stimu- 

lus duration was increased. During each experimental session, presentation 

time, and hence the number of revolutions per presentation, was held constant; 

but presentation time was varied from session to session over a range of 50 to 

450 msec. Rotation speeds of 435, 870, and 1250 rpm were used. Each ses- 

sion consisted of four test runs of approximately 90 trials each. The correct 

letters per second from the twelve sessions, 36 to 43, 48, and 50 to 53, were 

analyzed according to a two-way analysis of variance. The results of this anal- 

ysis are shown in Table 1. 
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SESSION NO. 
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DURATION-m vm 
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- 
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FIG. 6 AVERAGE TEST SCORES FOR EACH SESSION 
INTERVAL BETWEEN STIMULUS ONSETS = 0.9 set 
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Table 1 

ANALYSIS OF VARIANCE FOR SESSIONS 36-53 

Source 

Motion vs. Nonmotion 

Sessions 

Interaction 

Error 

Total 

Sums of df Mean Level of 
Squares Square Significance 

78.65 1 78.65 ci < 0.005 

96.35 5 19.27 o! = 0.010 

73.25 5 14.65 a < 0.050 

187.28 36 5.20 

435.53 47 

Considering the order of magnitude of the interactions (Table l), it cannot 

be concluded that the component due to interaction is insignificant. However, 

it may be safely concluded that averaged over revolutions per letter, there is 

a significant (a, < 0.005) difference between the motion versus nonmotion meth- 

ods of stimulus presentation, motion resulting in a marked increase in the 

number of correct responses by the subject. 

As shown in Figure 6, for each session a different response time and a dif- 

ferent number of revolutions per letter of the airjet array were used. It can be 

concluded (a! < 0.01) that there are significant differences among the six pairs 

of sessions. 

An analysis was made of the frequency of occurrence of error-error pairs 

on successive trials during a session. The purpose was to determine whether 

the paced response resulted in a greater number of errors, owing to the de- 

crease in time allowed to respond with decreased inter-stimulus interval. It 

was found that error-error pairs increased with presentation time and hence 

with reduced response time, assuming that the response time started after the 

stimulus was turned off. 

In summary, Experiment 1 indicated: 

(1) Motion (versus nonmotion) of the tactile pattern results in a sub- 

stantial increase in the number of correct responses. 

(2) Limiting the time to respond resulted in increased errors. 
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These results suggested more careful control of the presentation factors as 
well as introduction of a self-paced stimulus presentation rate. 

2. Experiment 2--Effect of Stimulus Pattern Rotation Velocity and 
Stimulus Duration Time 

In order to examine more carefully the influence of stimulus presentation 

time and the rotation velocity of the display, a complete factorial experiment 

was designed. Of the two male subjects and one female subject participating in 

the experiment, Sl had extensive prior training in tactile perception, and S2 and 

S3 were given 9 hours of prior training. Each subject’s task was to identify a 

letter presented tactually , make a verbal response, and then depress a foot 

switch to signal the computer to proceed with the next stimulus presentation. 

Each experimental session consisted of a control test followed by three tests 

under a new experimental condition. During both control and experimental 

tests, subjects were presented the alphabet of 26 letters three times (i. e. , a 

total of 78 letters) in a random order. 

Two factors, consisting of four levels of presentation time and five levels 

of rotation velocity, were replicated by each subject. Factor I, presentation 

time, consisted of levels 100, 200, 300, and 400 msec, factor J, rotation ve- 

locity, consisted of levels 0, 200, 400, 800, and 1200 rpm. At the beginning of 

each control session, a test was run at 400 msec and 800 rpm. 

The data for each subject were corrected for guessing using the formula 

where 

P(c) = observed proportion of correct responses 

p = probability of a correct response without guessing 

g = probability of guessing correctly. 

The only substantial changes in the data due to this correction were for Subject 

S3, who performed very poorly throughout the experiment. In spite of several 

additional hours of training, S3 averaged less than half the number of correct 

responses recorded for either S1 or S2. Because of this rather poor perform- 

ance, the data for S3 were analyzed to obtain only information concerning the 

effects of motion vs. nonmotion of the tactile display. The average number of 
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correct responses (out of a possible 234) was 76.7 in the nonmotion condition 

and 89.4 in the motion condition. A simple analysis of variance showed that 

the effect of motion contributed substantially toward improved performance 

(a < 0.001). 

The results for S1 and S2 are reported in Tables 2 and 3. Since the con- 

trol variable contained little variation, it was not included in the analysis. 

Figures 7 and 8 show the performance versus “treatment. ” 

Table 2 

DATA FROM STIMULUS MOVEMENT 
EXPERIMENT 2 FOR S1 AND S2 

Entries are Means of Number Correct (out of a possible 234) 
from Three Tests Averaged Over S1 and S2 

Column Means 

Factor I 
(msec) 

100 

200 

300 

400 

T 
0 

Fat 

200 

or J il 

400 

\ L ---I 

l- 800 

212 208 227 212 

210 226 232 227 

214 225 222 227 

220 230 230 227 

214 222 228 223 

?Drn\ 
-I- 
I 

1200 
Row Means 

216 

I 

215 

227 224 

228 223 

224 226 

224 222 = overall mean 

Table 3 

ANALYSIS OF VARIANCE FOR EXPERIMENT 3 
- 

Source df sums of Mean Square Level of 
Squares Significance 

Rows 3 753.58 251.19 cl!< 0.05 

Columns 4 812.70 203.18 a< 0.05 

Interaction 12 597.85 49.82 n.6. 

Error 20 857.40 42.87 

Total 39 3021.53 
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The data in Figure 7 show that for the range of stimulus durations ex- 

plored, a maximum rate of performance occurred at 400 rpm, corresponding 

to a rotation period of 150 msec. Figure 8 shows improved performance with 

increasing stimulus presentation time. (Subject S1, who was highly trained 

in tactual percept&n, showed a strictly linear increase in performance as a 

function of presentation time. The deviation from linearity shown in Figure 8 

resulted from the performance of subject S,, who was not as highly trained as 

S1. ) Viewing the maximum row and column means, it is apparent that a 

maximum in performance occurred at 400-msec presentation time and 400 rpm. 

These conditions correspond to 2-2/3 complete revolutions of the display 

during each stimulus presentation, with 150/5 (or 30) separate presentations 

of the pattern per rotation, spaced 360/30, or 12 degrees apart along the 

circumference. 

3. Experiment 3--Effect of Amplitude of Stimulus Pattern Movement 

In this experiment the effect of rotation amplitude was investigated. In 

order to lower the percentage of accuracies below those of the previous exper- 

iment so that improvements would stand out, and also to reduce the effects of 

0 200 400 so0 1200 

REVOLUTIONS PER MINUTE 
T.-4‘5C-I.” 

FIG. 7 PERFORMANCE AS A FUNCTION 
OF rpm 
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100 200 300 400 

STIMULUS DURATION - msec 
TA-4656-20R 

FIG. 8 PERFORMANCE AS A FUNCTION 
OF STIMULUS PRESENTATION 
TIME 

previous training, it was decided to run this test using the more difficult 

block-letter alphabet of Figure 3 rather than the specially designed alphabet 

used in the previous experiment. 

Subject SI was given two hours of training on the block-letter alphabet, 

which he had never felt before. Then he was given a series of tests with differ- 

ent amplitude settings . Four tests were run for each amplitude setting. In 

Figure 9 are plotted the results for each setting, the spread in results for the 

four tests, and the average. The numbers next to the plotted points indicate 

the sequence of these tests. The sequence is significant because the subject 

was not very well trained on this alphabet before starting the experiments, and 

therefore some learning during the sequence was expected. The relatively 

small extent of this learning can be seen from the slightly increased perform- 

ance between the first and last experiment for the same conditions, namely 

0.8 cm and 400 rpm. 

C. HYPOTHETICAL MODEL 

It is clear from the results described here that certain amplitude and rota- 

tion velocities improve performance. Subjects commented on the sharpened and 

20 



80 

60 

0- I I I 
0 I 2 3 

DIAMETER - cm 
TB-4656-2lR 

FIG. 9 EFFECT OF AMPLITUDE OF CIRCULAR TRANSLATION OF 
STIMULATOR ARRAY ON RECOGNITION OF BLOCK LETTERS 

enhanced sense of perception in these ranges of quantitative improvement. 

Subjects’ reports also indicate that the l’bestl’ frequency of rotation tends to 

decrease monotonically as the amplitude of rotation increases, suggesting that 

best performance may be obtained for a certain linear velocity of the display. 

What this velocity might be can be estimated from the second and third experi- 

merits. For an amplitude of about 0.8 cm, a peak in performance for S1 and 

S2 was obtained with a display rotation frequency of 400 rpm (or 150 msec per 

revolution), leading to a velocity along the circular locus of about 15 cm/set. 

(This velocity corresponds to a moving-belt display of 6’7 words per minute, 

reported in Linvill and Bliss, 1966. ) 

A possible neurological mechanism underlying these results is suggested 

by Mountcastle (1957), who found that in response to each point stimulus at 

the periphery (say, point A in Figure 10) there appears a corresponding 

point A’ of maximum excitation at the cortex, with lesser magnitudes of exci- 

tation surrounding this central point and a circular band of inhibition even 

further removed from the center. Of particular importance is a monotonic 
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FIG. 10 CORTICAL RESPONSE 
TO A PERIPHERAL 
POINT STIMULUS 

increase in latency of response as the 

recording point moves from the strong 

central point toward the inhibitory sur- 

round. In terms of such observations, 

the results of this paper might be inter- 

preted according to the following model. 

Visualize, for each point stimulus 

at the periphery, a “wave” of activity 

propagating from a central point at the 

surface of the cortex, as suggested in 

Figure 11, excitation becoming weaker 

with further and further distance until 

a zone of inhibition is reached. Con- 

sider now a second peripheral location 

B with corresponding central point B’ . 

Let point B be stimulated T seconds after point A. If the interval T is very 

short, then excitation appears at pointi A’ and B’ essentially simultaneously, 

and similar waves propagate subsequently from each of these points. If T is 

very long, the effects of the wave from A are substantially dissipated before 

excitation of B, and the subsequent course of excitation from B’ resembles that 

from A’ except for a shift in position and time. For an intermediate range of T 

values, excitation at B’ tends to occur during the interval of inhibition from A’ . 

FIG. 11 TRAVELING WAVE FROM THE MAXIMUM POINT 
OF EXCITATION A’ IN RESPONSE 
TO STIMULATION AT PERIPHERAL POINT A 
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In this case, a significant decrease, or even complete elimination, of the 

excitatory response at B’ could be expected. At points intermediate between 

A’ and B’ , however, a summation of excitation from A’ and B’ would be 

possible. 

A subsequent excitation at A, following the excitation at A and then B, 

involves similar considerations, Thus, with repetitive stimulation , a-9, A, 

B, A, B, . . . one could expect to find a rate of excitation, of period 2T, at 

which the net sensation is strongest at an intermediate position between two 

even relatively widely spaced points A and B. These arguments can be extended 

to consideration of sn airjet stimulator traveling in a circular locus, where the 

pulsating air causes excitation at point a’, and then b’ , then c’ , and so forth, 

as in Figure 12. In the critical frequency range, we visualize the excitation 

summing at the central region, with the peripheral responses diminished by 

inhibition. 

Of particular interest with regard to this interpretation of cortical events 

is the experimental finding that the optimum frequency of rotation tends to 

decrease inversely with the diameter of the rotation. In terms of the two-point 

arrangement of Figure 11, if A and B 

were separated further so that the 

inhibition wave took correspondingly 

longer to become effective in the region 

of the other point, then for the optimal 

cancellation of excitation, interval T 

would have to be correspondingly 

increased. Similarly, if the radius of 

rotation were doubled, then as a first 

approximation, the optimum time for 

the stimulator to arrive at its dia- 

metrically opposite location would be 

doubled--or, the optimum rotation 

frequency would be halved. 

Because the stimulus pattern with 

the rotating display is complex (due to 
simultaneous excitation of many 
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rotating jets), a simple qualitative experiment was performed using a single jet 

traveling in a circle over the tip of the index finger. The prediction based on 

this simple model was that at very low rotation frequency, the subject would 

mentally be able lo follow the slowly moving path of the stimulator. At a very 

high rotation frequency, the subject would have the sensation that a sharp circu- 

lar rim was pressing into his skin, since, at high rotation frequencies, all 

parts of the path are essentially excited simultaneously. One might think that 

there would be a relatively smooth transition from the slow-speed sensation to 

that of the solid rim;’ however, the arguments in connection with Figure 12 

predict an intermediate sensation at which there is primarily a strong central 

sensation with perhaps little, if any, sensation of rotation. An intermediate 

sensation of this form is indeed found, and at a rotation rate close to that found 

to be optimum for the complex display patterns. However, the sensations are 

by no means geometrically perfect. Below are some verbatim responses of 

subjects as the rpm was progressively increased: 

(1) 

(2) 

(3) 

(4) 

Atverylow rpm: ‘I... feel point moving around but not a good 

circular feeling--perhaps more elliptical, or if finger is not posi- 

tioned accurately only perhaps half an arc. I1 

At higher rpm: “. . . begin to feel more of a closed locus but again 

more elliptical with axis changing randomly, although there seemed 

to be a preferred direction. Sometimes felt circular.” 

Still higher: “There seemed to be a zone in which the feeling was 

more like a solid disk of air with some edge modulation--like a 

coin settling down on a table. ” [ Note: The sensation still remained 

as a single central zone even with the finger moving about.] 

At high rpm: “. . . felt like a rim of air, especially if the finger 

moved around; in an exploring manner. ” 

D. SOME RELEVANT NEUROPHYSIOLOGICAL DATA 

Such a mechanistic model leads to a search for inhibitory phenomena 

involving interaction over periods of the order of a 100 msec or so. It would 

indeed be interesting to obtain physiological recording data with a stimulator 

array moved over the skin, or even a point stimulus rotating over the skin, in 
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the manner discussed. However, data are generally available only for a single 

fixed stimulator. Even so, there does appear to be scattered data indicating 

such periods of inhibitory effects. Below is a sampling of such evidence. 

A relevant study is that of Towe and Amassian (1958)) in which the digits 

of rhesus monkeys were stimulated electrically and single-unit responses were 

recorded in the somatosensory cortex. It was found that the discharge of 40 of 

the 110 units encountered could be prevented by prior or simultaneous stimu- 

lation at a nearby point, even when this nearby point stimulated alone would not 

itself cause the unit to fire. This inhibition lasted about 80 msec and was fol- 

lowed by a period of slight facilitation. The duration of this inhibitory effect 

was directly proportional to the intensity of the testing stimulus and the spatial 

separation of the conditioning and testing stimuli. 

Phenomena found in the components of compound evoked potentials recorded 

from the scalp of humans suggest similar inhibitory effects, lasting about 100 

msec, followed by facilitation (Uttal and Cook, 1964; Allison, 1962). 

Related phenomena have also been noted on a peripheral level. Lindblom 

(1965) found long-duration inhibition phenomena in dorsal root units of monkeys 

as a result of mechanical stimulation of the distal glabrous skin. By means of 

threshold studies, he demonstrated that each impulse is followed by a relative 

refractory period that lasts more than 100 msec. Repetitive discharge delayed 

the recovery further and produced a cumulative increase in threshold which 

rendered maintained firing at frequencies above about 60 impulses per second 

difficult or impossible. 

In addition, Uttal (1966) reports an amplitude oscillation in the compound 

evoked potentials recorded at the superficial point (i.e. , the point closest to the 

surface of the stin) of the ulnar nerve above the elbow. Pulse electrical stimuli 

were applied to the superficial point of this nerve at the wrist. The magnitude 

of the oscillation was found to depend on stimulus intensity and interstimulus 

interval, although the period of the oscillation was very nearly constant at about 

100 msec. 
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While these results are suggestive, more definitive data are needed before 

the physiological mechanisms underlying the behavioral results are clearly 

understood. From a practical standpoint, however, spatial pattern rotation 

appears to produce effects which may be important for tactile communication 

sys terns. 
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III TACTILE PERCEPTION OF SEQUENTIALLY PRESENTED 
SPATIAL PATTERNS 

by James C. Bliss, Hewitt D. Crane, Stephen W. Link, 
and James T. Townsend 

Visual recognition of patterns presented sequentially in the same retinal 

location has been studied by many investigators (e.g., Kolers and Katzman, 

1963; Massa, 1964; Averbach and Coriell, 1961; Eriksen and Collins, 1956)*. 

Phenomena described as temporal interaction, erasure, forward and backward 

masking, etc. , have been observed, and the results from experiments with 

these phenomena have led to postulated models (e.g., Sperling, 1963) describ- 

ing the temporal properties of the visual channel. In investigations with 

patterned tactile stimuli, similar phenomena are observed, the understanding 

of which is crucial to attempts at tactile communication and development of a 

“tactile language. If 

The experiments reported here were aimed at determining temporal effects 

in the tactile channel. In these experiments tactile-spatial patterns were pre- 

sented in rapid succession at the same anatomical location. 

A. APPARATUS AND PROCEDURE 

The experiments were carried out under control of a computer system that 

is described in detail elsewhere (Bliss and Crane, 1964). In this system, a 

CDC 8090 computer is used to store stimulus patterns and the sequence in 

which the patterns are to be presented. Figure 4 shows the patterns used in 

these experiments. These patterns comprise an experimentally developed 

alphabet that has been found to be convenient for experimentation because the 

patterns are easily distinguished and learned. To make the results easier to 

*References are given at the end of this section. 
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integrate, the relatively more difficult letters (H, M, 0, U, Y, and Z) were 

not used (except for the preliminary experiment described here), leaving an 

effective alphabet size of 20 characters. 

The computer was programmed to output these alphabetic shapes in the 

appropriate temporal sequence. To present one such shape the computer trans- 

mitted a sequence of eight 12-bit words to specially constructed external equip- 

ment. Each word represented one row of the spatial pattern to be displayed. 

The external equipment stored the 96-bit pattern in 8 msec and simultaneously 

activated the specified tactile stimulators. 

The tactile stimulators used were airjets. Each jet was formed from a 

0.031~inch outlet port and was activated by an electromagnet. The air pressure 

pulse, measured l/8 inch direct!y above the airjet outlet, was about 3 psi in 

these experiments, with a rise and fall time of about a millisecond and an 

overall pulse width of about 2.5 msec. A 2OO-cps pulse repetition rate was 

used throughout the experiments, implying that, for example, the stimulators 

were actually turned on and off 20 times during a presentation time of 100 msec. 

The advantages of airjet stimulation are that relatively uniform stimulation 

is produced over nonuniform cutaneous surfaces and stimulator spacing can be 

made quite small. The stimulator array used is shown in Figure 13, and the 

location of the stimulators with respect to the palmar side of the hand is shown 

in Figure 14. 

Two male and one female college students were used in these experiments. 

B. EXPERIMENTS 

1. Preliminary Experiment 

The importance of temporal sequence in tactile perception of alphabetic 

shapes was first noted in an experiment in which a subject was presented with 

random letters in two different temporal sequences but at the same average 

rate of letter presentation. In the first sequence, every 0.9 set a letter 

(chosen at random) was presented for 0.3 set and was followed by a 0.6-set 

rest. The subject had to respond in the 0.6-set ffofpf time between the end of 

one letter and the onset of the next. In the second sequence, sets of three 
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FIG. 13 TACTILE STIMULATOR ARRAY 
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LOCATION OF 12-BY-B 
ARRAY OF AIRJET 
STIMULATORS ON 
PALMAR SIDE OF HAND 

FIG. 14 POSITION OF AIRJET ARRAY ABOUT l/8 INCH 
BELOW THE PALMAR SURFACE OF THE HAND 

random letters were presented in rapid succession during 0.9 set, each letter 

being on for 0.3 sec. In the following 1.8 set the subject had to name all three 

letters. He then received three more letters, followed by 1.8 set of off time, 

and so on. Four sessions of one hour each were run, two sessions with each 

temporal sequence. During each session there were four tests, separated by 

rest and practice periods. Each test consisted of 81 letters. The results of 

this experiment are shown in Figure 15. 
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STIMULUS SEQUENCE 
T.-7.6122-40 

FIG. 15 LETTER RECOGNITION ACCURACY 
FOR TWO TEMPORAL SEQUENCES 

Under the second-sequence conditions, the performance was extremely 

poor. The fact that the subject missed almost every middle letter of each 

triplet suggested that some type of masking was in part responsible for the 

poor performance. It was also found that by counting a response correct when 

it was simply in the wrong sequence, the subject’s performance (after correc- 

tion for guessing) was essentially doubled. Thus, by counting KJP in response 

to PJA as two letters correct (the P and J) instead of just one (the J), the sub- 

ject’s accuracy--corrected for guessing-- increased from 11 percent to 20 

percent. This is in agreement with the results reported by Kolers and Katzman 

(1963) for a visual experiment in which the subject was asked to name English 

letters sequentially presented in groups of three at letter rates approximately 

twice as fast as the ones used in the tactual experiments described here. 

Kolers and Katzman determined that this kind of letter reversal was a common 

phenomenon. This similar finding, for both touch and vision, implies that the 

major problem in the triplet experiment may not be at a peripheral neural 

level, since more letters are recognized than indicated by the performance 

scores, but their sequential ordering is not being preserved. 
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2. Doublet Experiments 

The preliminary experiment led to a series of sessions in which random 

pairs of alphabetic characters were given each of the three subjects according ; . 

to the temporal sequence shown in Figure 16. Following each doublet presen- 
I 
, 

tation, a subject responded at his own rate. His responses were then typed 

on the on-line typewriter by the experimenter, thus automatically activating 

the next stimulus sequence. The subjects were very well practiced in this 

task, each subject having at least ten hours of training before the tests began. 

During each one-hour test session, four separate tests were given, with 

rests between. Each test consisted of a presentation of 66 pairs of equally 

probable random letters. The tests with Subjects R and K were run first, 

using a predetermined set of time intervals (TO , Tl); the tests with Subject Ke 

were run later. The results from Subjects R and K were. used to select a better 

set of time intervals (TO , T1) for Subject Ke. 
!‘ 

In one set of test sessions, T1 (the off time between the letters of each pair) 

was held constant at 22 msec, and TO (the on time of each letter) was varied 

from 100 to 400 msec for Subjects R and K, and from 50 to 300 msec for 

Subject Ke. The results are shown in Figure 1’7, in which the percent of errors 

on the first response and the percent of errors on the second response are 

plotted separately as a function of To . For all three subjects, the error rate 

decreased as To increased, more first-response errors occurring with values 

of To less than 100 msec, and more second-response errors occurring with 

j-0 --y’ -y--o ---y 

FIRST SECOND 

SYMBOLiC SYMBOLIC 

CHARACTER . JHARACTER 
TA-4719-67 

FIG. 16. TIMING ARRANGEMENT iOR _ . 
SEQUENTIAL PRESENTATION 
OF THE PAIR OF ALPHABET 
CHARACTERS 
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FIG. 17 PERCENT ERRORS AS A FUNCTION 
OF STIMULUS ON TIME WITH THE 
BETWEEN-STIMULI INTERVAL 
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values of To greater than 200 msec: The crossover occurred for To between 

100 and 200 msec. In other words, for short letter durations, there seemed 

to be more interference of the second letter with perception of the first, while 

for longer durations the reverse seemed to be true. . .. . 

In a second series of test sessions with Subjects R.and K, To was held 

constant at 100 msec while T1 was varied from 22-m 300 msec; For Subject 

Ke, To was held constant at 50 msec while T1 was varied from 22 %o 400 msec. 

These results are shown in Figure 18, wherkboth first- and second+esponse 
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errors are independently plotted as a function of T1 . Again, there is a cross- 

over between first- and second-response errors, first-response errors being 

more prevalent for short T1 intervals and second-response errors more 

prevalent for longer T1 intervals. Each of the error rates decreased with T1 

to values of about 10 percent. 

In a third sequence of tests with Subjects R and K, the time between letter 

onsets was kept constant at 400 msec, while To was varied from 100 to 400 

msec. These data are shown in Figure 19, where total errors are plotted as 
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a function of To . These curves indicate a minimum in error rate for values of 

To between 200 and 300 msec, implying that a period of no stimulation for about 

100 msec between letters is beneficial. 

A final result apparent from the data is that letter reversals occur only 

for small values of To and T1 . Letter reversals accounted for about 4 percent 

of the errors for T1 + To less than 150 msec (for Subjects K and Ke) and 

accounted for a negligible percentage of the errors for T1 + To greater than 

150 msec. Subject R had a total of only five letter reversals in all of the ses- 

sions; these reversals were all for T1 equal to 22 msec and To between 100 and 

300 msec. 

C. DISCUSSION 

Since the subjects had to identify both of the temporally separated stimuli 

in each of the doublet trials, these experiments may be considered as a pattern 

masking study in which both forward and backward masking phenomena are 

involved simultaneously. That there should be interference between two stimuli 

presented too closely in space or time is, of course, not unexpected, since any 

system, including the human nervous system, has limited resolution. However, 
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the following three aspects of the interaction results reported here are worth 

special mention: (1) an increase in letter reversals for very short interstimu- 

lus intervals; (2) a greater backward masking effect for small values of To and 

T1 , and a greater forward masking effect for longer values of To and T1 ; and 

(3) a crossover in (2) occurring in the range of 100 to 200 msec after the onset 

of the first stimulus. 

While the picture is far from complete, many investigators have suggested 

models of perception based on input quantization of time. Eriksen (1966)) for 

example, suggests that the visual system sums the luminance from two or more 
. successive stimulations distributed within a brief time interval of the order of 

100 msec. 

Although there have been some well-stated objections to models involving 

constructs like llepoch,ll “read-in time,” and “erasure,” such models can help 

structure thinking on masking and interference phenomena, even though these 

constructs are oversimplifications. In particular, it is worth considering 

whether such models can be applied to tactile memory tasks. For example, in 

a model proposed by Sperling (1963) for visual memory tasks, there is a read- 

in interval of roughly 50 to 100 msec. Stimuli occurring wholly within this 

interval tend to summate and superimpose. Normally, without interferring 

stimuli, the read-in period is followed by a short-term storage, processing, 

and read-out interval lasting perhaps as long as several seconds. However, 

a second stimulus occurring immediately after the read-in interval of the first 

stimulus, just before or during the short-term memory readout, may tend to 

initiate a new read-ininterval and cancel or replace the first stimulus before 

it is read out. With still further separation, the two stimuli occur in separate 

“memory epochs, 11 and their mutual interference is reduced. Thus, according 

to this model there are at least three intervals of concern: (1) a summation 

interval of 50 to 100 msec; (2) an interval immediately after (1)) in which a 

second stimulus may tend to replace a first stimulus; and (3) a later interval 

of little interference. 

In terms of such a model, whether there should be more first- or second- 

response errors in the experiments reported here is determined by which of 

these intervals is involved. Of course, for simultaneous presentation of two 
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patterns, the number of errors on the first stimulus must equal the number of 

errors on the second stimulus. Presumably this would also be true for two 

stimuli occurring wholly within interval (1) above. Since the curves of 

Figures 17 and 18 show no tendency to come together again for the short values 

of To and T1 , the interpretation would be that the minimum values of To and T1 

employed in these experiments were sufficiently long that in most cases only 

conditions (2) and (3) mentioned above occurred. This is also suggested by the 

fact that the percentage of reversal errors never became very great. The fact 

that the percentage of reversals increased somewhat above a chance level for 

the shortest times employed indicates that in a few cases interval (1) phe- 

nomena were involved. 

According to this interpretation, then, when the second letter occurs im- 

mediately after the read-in time, the first letter may tend to be cancelled or 

replaced, thereby producing more first-response errors. With further tempo- 

ral separation, the first letter gets safely tucked away in immediate memory 

before the second letter is presented, thereby reducing the first-response er- 

rors. The first- and second-response crossovers shown in Figures 1’7 and 18 

suggest that the interval in which the second stimulus tends to replace the first 

is from about 75 to 200 msec. 

Also consistent with a tactile epochal model are the results from tactile 

apparent-motion studies. These apparent-motion phenomena occur strongly 

for stimuli temporally separated by 50 to 150 msec (e. g. , Kotovsky and Bliss, 

1963 ; Sumby, 1965)) which would place the stimuli in adjacent read-in intervals. 

When the stimuli are separated by one or more memory epochs, the system 

should be able to resolve the ambiguity, and the perception should be that of 

two spatially separate stimuli instead of one moving stimulus. 

A number of tactile neurophysiological experiments have indicated 

response phenomena involving intervals of the order of 100 msec , which are 

suggestive of underlying mechanisms for masking or erasure. In a pertinent 

experiment, Towe and Amassian (1958) recorded action potentials from single 

cortical cells in somatosensory area 1 of rhesus monkeys (Macaca mulatta). 

On stimulating the palmar surface of the digits and hands, they found that the 

evoked discharge of 40 of the 110 units encountered could be prevented by a 
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prior or simultaneous stimulation at a nearby point, even when the nearby point, 

stimulated alone, would not fire the unit. The duration of this inhibitory effect 

was as long as 100 msec, and it was followed by a facilitation period. Presen- 

tation of the efficacious stimulus up to 2 msec prior to the ineffective “condi- 

tioning” stimulus resulted in complete inhibition of discharge in only three of 

the units studied. 

This inhibitory phenomena, followed by a period of facilitation, is also 

found in compound cortical-evoked potentials with cutaneous stimuli. In a 

review of this work, Uttal (1965) points out that several investigators have 

found that components of the second of two evoked responses were diminished 

in size in the 100 msec following the initial stimulus, and that these temporal 

inhibitions led to vast deviations from a simple additive process. 

On a more peripheral level, Lindblom (1965) found long-duration inhibition 

phenomena in dorsal root units of monkeys as a result of mechanical stimulation 

of the distal glabrous skin. By means of threshold studies, he demonstrated 

that each nerve impulse is followed by a relative refractory period which lasts 

more than 100 msec. Repetitive discharge delayed the recovery further and 

produced a cumulative increase in threshold which rendered sustained firing 

at frequencies about 60 impulses per second difficult or impossible. 

While the mechanism underlying forward masking may be the physio- 

logically observed inhibition, it does not appear likely that this could account 

for the backward masking. However, backward masking could result from 

some process associated with the facilitation stage following the inhibition 

phase observed in neurophysiological responses. This facilitation stage occurs 

at about the same time, with respect to the onset of the first stimulus, as the 

period in which fewer second-response errors occurred in the tactile experi- 

ments reported here. 

Whether these and other findings will eventually “fall into place” cannot 

be foreseen. At this point, more direct evidence is needed before any model 

of information processing in the tactile system can be considered more than 

crude and speculative. 
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IV EXPLORATORY EXPERIMENTS ON 
TACTILE-SPATIAL INTERACTION 

by Hewitt D. Crane and Stephen W. Link 

In order to obtain a more quantitative understanding of spatial interaction, 

a series of exploratory experiments was initiated, involving simultaneous pres- 

entation of a number of point stimuli to different locations on the fingers. The 

areas of stimulation were the 12 interjoint regions on the palmar side of the 

hand (thumb omitted), making a total of 24 locations when both hands were used. 

In some experiments only a single hand was used, in others only a portion of 

the hand. Single point stimuli (singlets) and simultaneous stimulation of two 

points (doublets) were used in these experiments. 

A. METHOD OF PRESENTATION 

The interjoint positions of each hand were labeled as shown in Figure 20. 

A modified version of an airjet display designed for this purpose employed four 

pivotal plexiglass fingers, each containing three adjustable airjets. This pro- 

vided ample flexibility for adapting the apparatus to each subject’s hand, which 

was fixed with respect to the apparatus by an arm rest and finger stops at the 

end of each plexiglass finger. There were two such arrangements, one for each 

hand. 

Each session consisted of four sets of presentations, each set containing 66 

doublets, with a rest between each set. Sixty-six is the total number of possi- 

ble doublets for a single hand, that is, a field of 12 positions (12 x 11/2 = 66). 

During a single session, then, each subject received a total of 264 doublets, 

which for a single hand resulted in 44 stimulations of each of the 12 anatomical 

positions. Stimulus duration was 400 msec. Each subject’s response to a 

doublet was typed into the control computer by the experimenter, and after a 

fixed delay, the next doublet was automatically presented. There was no fixed 

time within which a subject was forced to respond. 
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FIG. 20 SCHEME OF ANATOMICAL LABELING 
FOR THE DOUBLET EXPERIMENT 

For experiments involving two hands, the number of possible doublets was 

24 x 23/2, or 276. The same session format was used in the two-hand experi- 

ments as in the single hand experiments, except that in the former, each run 

of 66 doublets represented a different random sample from the possible 276 

doublets. 

Four male college students (Subjects A, D, K, and S) were used in these 

tests. Each subject was right-handed. 
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B. METHOD OF RESPONSE ANALYSIS 

Only single errors were extensively analyzed. The two methods of analy- 

sis reported here point to different aspects of performance which a theoretical 

account of the data must explain. First, we considered %onfusions’l made by 

the subject. For example, if upon presentation of the doublet (a, b), the sub- 

ject reported the occurrence of the stimuli (a, c), then a single confusion was 

said to have been made. Second, we considered whether a confusion occurred 

on the first or on the second response. Since the order in which the subject 

made his replies was preserved, the first-vs-second response analysis is quite 

straightforward. 

Apparently the subjects developed different strategies of response. For 

example, Subject K reported that if the stimulus pairs formed a meaningful 

word (e. g. , familiar initials or a two-letter word), he always reported them in 

that order. Subject S, on the other hand, claims to have always responded in a 

given direction--either right to left or left to right. 

C. ERROR FACTORS 

1. Sinnlets 

Two of the four subjects were tested for singlet localization after several 

sessions of doublets. Typically, the error rate was less than half of one per- 

cent (one error in 240 presentations). A third subject, Subject A, was tested 

before any doublet training. For this subject there was initially a large number 

of errors in localization; however, after approximately five stimulations per 

anatomical position, the percent of error was zero. Hence, it seems that any 

learning that may be involved is quite rapid. In view of later experimental 

results showing no interhand confusion, we might reasonably conclude that 

identification of a single stimulus at a time over a field of 24 locations is a 

rather simple task. 

2. Doublets 

The data shown in Figures 21 through 24 reveal that all subjects had a 

rather high initial rate of error on doublets. This was ,especially interesting 

in view of the substantially error-free performance on singlet presentations. 
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EXPERIMENT - SUBJECT A (on time as indicated) 

Secondly, the learning curves represent those typically found in psychological 

learning experiments, with a seemingly exponential decline in errors. The 

errors reported here were of several types: both responses were in error, a 

single response was in error, or an omission of either one or two responses 

was made. A more critical look at the data reveals some surprising differences 

in the kinds of errors made. 

3. Reinforced and Unreinforced Learning 

In terms of a learning model, one might reasonably expect faster learning 

with reinforcement after each presentation (indication of the correct response 

when there was an error) than with a purely self-learning situation in which 

there was no feedback whatever. Only Subject K was given feedback in this 
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manner, and we see that he had a relatively short learning time, at least as 

compared with Subjects S and D. By the sixth session, Subject K had almost 

reached his learning asymptote, whereas both Subjects S and D still had a high 

error rate. 

It is interesting that Subject A also almost reached his learning asymptote 

by about the sixth session, although he had no reinforcement. He is somewhat 

distinguished from the others, however, by. having been presented with singlets 

during his very first session. Exposure to the more simple forms (i.e., a 

single stimulus at a time) might be an important factor in learning. Knowledge 

of the singlet sensations might be thought of as helping the subject to some 

extent supply his own feedback about right and wrong responses. 

4. Inter- and Intrafinger Errors 

Confusion matrices for each of the four subjects are given in Part A of 

Table 4. Each matrix represents the single errors pooled over the three inter- 

joint locations of each finger for the first four sessions of training. In Part B 

of the table, identical matrices for the last four sessions are presented. In 

general, these data support the conclusion that during the course of training a 

subject’s “perceived” field of stimulation becomes narrowed until only intra- 

finger errors occur. * Thus, residual errors after training are almost com- 

pletely intrafinger errors. This may be partially due to variability in placement 

of jets along the plexiglass fingers. (The jets must be repositioned for each 

subject. ) 

5. Interhand Transfer 

Each subject was initially trained on one particular hand. After his error 

rate had reduced to a low value, the area of stimulation was switched to his 

other hand (except for Subject A). In each case, we see that the performance 

curves maintained their relatively low values, indicating significant transfer of 

learning. In two of the cases, the curves for the first and second response 

separated again to some extent, with the higher error occurring on the same 

*Some confusions seem to be attributable to the use of a verbal response, e.g. , 

d and g were frequently confused by most subjects; hence, there appear con- 

fusions between digits Ill and IV. 
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response position as initially. But after relatively few more sessions, the 

error rate again reduced to a low value. 

6. Display Jitter 

For one subject, display jitter was introduced during sessions 12, 13, and 

14. In previous experiments involving the presentation of complex patterns 

(Section II), we noted an improvement in performance when the entire display 

was rotated in a small circular pattern during the presentation. A similar 

rotation was attempted here with Subject S. For these sessions the display 

arrangement was altered to separate the finger stops from the plexiglass fin- 

gers that held the airjets, so that the latter could be rotated under the station- 

ary fingers of the hand. Though the diameter of rotation was relatively small 

(0.2 cm), there was nevertheless a significant adverse effect on performance. 

(The subject also reported that the movement tended to confuse him. ) 

The significance of this result is not readily apparent. If the display 

movement sharpens the central representation of the pattern, as we have 

previously assumed, then one might expect an even faster learning time with 

this movement and perhaps an even lower residual error rate. However, the 

fact that jitter actually increased the error rate is not necessarily contrary to 

this assumption, since the subject was not given any reinforcement (feedback) 

and learning was still incomplete when the jitter was applied. Stimuli with 

superimposed movement might, for all practical purposes, appear to the sub- 

ject like a new character set, although not a completely unknown set, since the 

error rate with movement was not as high as his initial error rate. Further 

experiments would be required before more definite statements could be 

made. 

7. First and Second Responses 

The subjects were not given any instructions as to a desired order of 

response to each stimulus of the doublet pair. The actual order of response 

was preserved, however, and the error data (single-error only) were plotted 

separately for first response and second response. These errors are shown in 

Figures 21 through 24. The data are similar to those reported for total errors, 

shown in the same figures. However, for all subjects but one, the initial num- 

ber of errors made on the second response was substantially higher than the 
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corresponding number of errors for the first response. Later, either response 

appeared equally often in error. It is interesting to note that although sub- 

stantial training tended to equalize errors in either response, a shift to the 

other hand again produced a distinct difference between the two error curves. 

8. One Hand versus Two Hands 

Only Subject S was given a full field of 24 positions (i.e., two hands). It 

is interesting to note that the error rate for both first and second response 

increased about equally during the first double-hand session (session 39), but 

then rapidly decreased to a low value once again. (The subject reported great 

confidence in being able to score very accurately even in this expanded presen- 

tation.) Of special interest is the fact that there were no interhand errors at 

all during this series of tests. 

9. Decreased Stimulus Duration 

With Subjects A and S, a stimulus duration of 100 msec was used for the 

last few sessions, compared with 400 msec for all other sessions. It was 

expected that the shortened duration might result in again driving apart the 

first and second response curves. However, it is clear from the results that 

there was actually very little effect from this decrease in duration. 

10. Summary 

Several points already seem clear from these experiments: 

(1) There is a considerable amount of learning involved in discriminating 

doublets. 

(2) Even singlets take a short amount of learning. 

(3) There is a significant difference between first and second response 

error rates. 

(4) There is no interhand confusion., 

(5) There is inter-hand learning transfer. 

(6) A subject can improve to substantially error-free doublet perform- 

ance for a field of 24 positions. 
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(7) Residual errors are intrafinger errors. 

(8) The performance of Subject A appears substantially different from 

the performances of the other three subjects in a number of ways. 

The differences are not yet clear. 

D. DISCUSSION 

A cursory analysis of these results requires some discussion of peripheral 

interaction and learning. The fact that singlet localization is an apparently 

simple task indicates that some locality differentiation is highly developed in 

these subjects. Benton (1959)* has noted the developmental course of finger 

differentiation, which terminates at approximately 12 years of age. It is not 

surprising, then, that for coilege students, interjoint localization is easy. 

Similarly, hand discrimination is simple; seldom have we observed any cross- 

hand confusions by subjects. 

A more surprising result pertains to the difference between first and sec- 

ond errors. In this regard it seems clear that focus of attention and memory 

are operating together. For example, suppose a subject is engaged in a 

localization task in which two stimuli are presented, and, barring movement of 

the hand, both stimuli are far above the threshold for two-point discrimination. 

If the subject first localizes one of the stimuli and then the other, the time 

required for the first localization may be of such length as to require the sub- 

ject to localize the second stimulus via trace stimulation. However, for the 

first stimulus to be remembered, it must be sent to long-term storage before 

the second stimulus can be localized. As the mechanism for localization and 

storage is used repeatedly, the length of time required may become shorter, so 

that additional time would be available for localizing and storing the second 

stimulus. Thus, the second-response errors would be reduced. 

The fact that there are few interhand errors indicates that the hands are 

perceived as separate units. Hence, one would not expect any transfer of 

training of singlet localization from one hand to the other. Since none of our 

subjects was given singlet localization training of the second hand that reoeived 

*References are given at the end of this section. 
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doublet training, it is not surprising that initially there was a small increase 

in the number of errors. The transfer of learning does not seem to be in the 

ability of the subject to discriminate, but rather in his ability to use a pre- 

viously practiced central mechanism. At present the best guess is that the 

ability to fixate rapidly on the particular stimulus, define it, and put it into 

long-term storage before moving on to the next stimulus leads to improved 

performance. 

These results, though only partially complete, both corroborate and 

extend previous research in tactile localization. Results obtained by Weber 

and Fechner, reported by Vollunann (18 58) for tactual discrimination of two 

points from one, are in substantial agreement with the results reported here. 

Weber obtained a marked increase in the sensitivity of the practiced skin area 

as well as bilateral transfer to the other hand. Similarly, Krohn (1893) 

reported that ‘I. . . the skin can be progressively educated to localize sensations 

of air pressure more and more correctly. I1 Mukherjee (1933), investigating 

discriminative delicacy on the forearm, also concludes that discriminative 

ability can be improved by practice but that the improvement is greatly 

reduced after a one-week delay in training. 

Thus a broad range of different tactileloci have been examined. Results 

continue to point toward the conclusion that tactile perception of localized 

stimulation can be greatly improved by training. However previous studies 

have focused attention primarily on the two-point discrimination threshold, 

so that little experimental evidence was accumulated on the problem of 

peripheral versus central or cognitive aspects of spatial stimulation. The 

present study, by definitely excluding the two-point limen, tentatively suggests 

that tactile-spatial localization involves a trainable central process in addition 

to the peripheral processes. 
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V. INFORMATION AVAILABLE IN BRIEF TACTILE PRESENTATIONS 

James C. Bliss, Hewitt D. Crane, 
Phyllis K. Mansfield, and James T. Townsend 

When visual stimuli, consisting of a number of items, are briefly shown to 

an observer, only a limited number (usually less than six) of the items can be 

correctly reported. This limit defines the so-called span of attention, appre- 

hension, or immediate memory (see, e. g. , Miller, 1956). * However, ob- 

servers assert that they can see more than they can report. Several investi- 

gators have used sampling procedures to circumvent this immediate-memory 

limitation (Sperling, 1960; Averbach and Coriell, 1961; Estes and Taylor, 1964). 

These experiments have indicated that observers have at least two or three 

times more information available than they can later report. The availability 

of this information declines rapidly, so that within one second after the exposure 

the available information no longer exceeds the memory span. Sperling (1960) 

has tentatively identified this short-term information storage with the persist- 

ence of visual sensation that generally follows any brief, intensive visual 

stimulation. 

If the mechanism for this short-term memory is part of the peripheral 

visual apparatus (see, e. g. , Massa, 1964) then analogous results would not 

necessarily be expected from tactile experiments. The experiments reported 

here were aimed at determining whether or not, with brief tactile presentations, 

there is also more information available than can be reported. If so, the char- 

acteristics of the corresponding short-term tactile memory could be ascertained 

from techniques analogous to those employed in the visual case. Such charac- 

teristics are, of course, of considerable relevance to tactile language con- 

struction for tactile communication. 

*References are listed at the end of this section 
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The first experiment reported here investigates the span of immediate 

memory for brief tactile point stimulations of the interjoint regions of the 

fingers. The second and main experiment in addition employs a sampling pro- 

cedure to investigate the properties of short-term tactile memory. 

A. EXPERIMENT 1: IMMEDIATE MEMORY 

Many visual information-processing experiments have involved tachisto- 

scopic presentation of geometrical patterns such as letters and numbers. In 

these experiments, the information is contained in the geometrical shape of the 

symbols, not in their retinal location. However, anatomical location has much 

greater significance in tactile displays, aided by the many anatomical landmarks. 

Moreover, tactile spatial interaction is much greater than visual, so that nor- 

mal adult subjects cannot clearly perceive a brief simultaneous tactile presen- 

tation of even two spatially separated alphabetic shapes (Linvill and Bliss, 1966). 

However, there at least several anatomical locations that can be identified when 

tactually stimulated simultaneously. For this reason, point stimulation of 

specific anatomical locations was used in the experiments reported here rather 

than presentation of geometric patterns. The subject’s task was to identify 

which locations were stimulated. This use of anatomical position rather than 

symbol shape as the information bearing element is a basic difference from the 

previous visual experiments with geometric patterns. 

1. Method 

a. Apparatus. The experiments were carried out under control of a 

CDC 8090 computer system, which was used to store stimulus patterns and the 

sequence in which the patterns were to be presented (Bliss and Crane, 1964). 

This system was designed for use with up to 96 tactile or visual stimulators. 

Only 24 tactile stimulators were used in these experiments, one for each of the 

24 interjoint regions of the fingers (thumbs excluded). The palmar side of the 

fingers were suspended about l/8 inch above the airjet stimulators shown in 

Figure 25, which permitted easy adjustment for each subject’s hands. The 

subjects’ arms were supported from wrist to elbow, permitting the hands to be 

suspended in this manner for extended periods without fatigue. 
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TOP VIEW 

FIG. 25 APPARATUS FOR HOLDING AIRJET NOZZLES BELOW THE 24 INTERJOINT 
REGIONS OF THE FINGERS 
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SUBJECTS VIEW 

FIG. 25 Continued 
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Each jet of air was formed by a 0.031-inch outlet nozzle under control 

of a high-speed electromagnetic valve. The air pressure pulse, measured l/B- 

inch directly above the airjet outlet, was about 3 psi, with a rise and fall time 

of about a millisecond and an overall pulse width of about 2.5 msec. A 200~cps 

pulse repetition rate was used throughout the experiments. Thus, all stimu- 

lators were simultaneously turned on and off 20 times during the. lOO-msec 

stimulus presentation time. The advantages of airjet stimulation for this in- 

vestigation were that relatively uniform stimulation was produced over non- 

uniform cutaneous surfaces and that stimulator spacing could be easily adjusted. 

b. Training. The subjects were three male college students in their 

late teens and early twenties. Each had previously been involved with experi- 

ments of this type involving point tactile stimuli. By the end of these previous 

experiments, Subject A was making fewer than 2-percent errors with the double 

stimulation on the right hand (i.e. , two stimulus positions out of a field of 12); 

Subject K had achieved the 2-percent error rate on both his left and right hands 

separately; and Subject S, who had previously participated in about twice as 

many single and double presentation sessions as Subjects A and K, was 

consistently below a 2-percent error rate for double presentations with both 

hands (field of 24). Thus all three subjects were well trained for this task. 

c. Procedure. Each subject had before him at all times a visual 

replica of the letter-to-interjoint assignment. On any one trial, n stimulation 

points were randomly chosen (by the’computer) out of the possible 24 interjoint 

locations, and the corresponding stimulators were then activated for 100 msec. 

In any one session the number of positions simultaneously stimulated, n, 

was constant and known by the subject. The subject orally reported the locations 

perceived, using the alphabetic labels shown in Figure 26. 

Each response was typed into the control computer by the experimenter, 

and after a fixed delay the next stimulus was automatically presented. There 

was no fixed time within which a subject was forced to respond. Initially, 

verbal feedback was given after each response, but inspection of the data and 

each subject’s introspections led to a discontinuance of this after the first few 

sessions. The influence of the feedback on the subjects’ performances seemed 

negligible, perhaps because of their previous long experience in this situation. 
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\ T.- ,,I,- 82 
FIG. 26 FINGER LABELING FOR TWO HANDS 

The letters outside the parentheses show the labeling used in Experiment 1; 
those inside the parentheses show the labeling used in Experiment 2. 

For Subject S the number of stimulators simultaneously activated was 

increased by one in each succeeding session, from n = 2 to n = 12. The 

schedule for Subject K was similar, except that n was increased in steps of two 

in each succeeding session from n = 2 to n = 12. Subject A was initially 

given six stimuli simultaneously, and after seven sessions under this condition, 

n was increased by one in each succeeding session until n equaled 12. 

In deciding on the number of trials per session, either the total number 

of simultaneous presentations or the number of stimulations of each interjoint 

position could be kept constant. The former would yield an increasing number 

of presentations per interjoint position per session, while the latter would force 

the total number of presentations per session to vary. Since the subject’s task 

was to identify each of the stimulated positions rather than a pattern composed 

of the stimulated positions, the number of presentations per position per session 

was kept constant, namely, 22 presentations per interjoint position per session, 
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or a total of 22 x 24 = 528 individual point stimuli per session. The total 

presentations per session for each value of n was therefore as follows: 

This procedure kept the binominal variance for the mean number correct for 

each point of stimulation, after correction for guessing, approximately con- 

stant across the different values of n. It allowed the variance for the mean 

number correct out of the n points to increase as a function of n. Thus, in 

analyzing number correct per anatomical position, the data are as stable for 

n = 12 as for n = 2; however, when observing total number correct, more 

confidence may be placed in the smaller n data. 

2. Results 

Figure 27(a), (b), (c) shows the tactile results, after application of the 

correction for guessing given in the appendix. The magnitude of this correc- 

tion increases with n. For Subjects A and K, the correction produced a 

negligible effect for values of n less than 6, about a lo-percent reduction for 

n = 6, and about a 40-percent reduction for n = 12. The correction for Sub- 

ject S was generally less, being only about 20 percent for n = 12. 

The curves for Subjects A and K were remarkably similar to those of 

Sperling (1960) for visual stimuli, showing a span of immediate memory of 

about 4.5 stimulus positions. However, the number of positions correctly 

reported by Subject S continued to increase with n until he achieved an average 

of 7.5 positions correct out of 12 after correction for guessing. 

Introspections by Subject S suggested that he was able to recode simple 

tactile patterns into larger units (e.g. , all three stimuli on one finger repre- 

senting one %hunk” of information). This would help to explain why his 

immediate-memory level appeared so high, and a cursory examination of the 

data indicated that he was able to utilize patterns more than Subjects A or K. 
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To test the immediate memory of Subject S further, an analogous visual 

experiment was run in which the stimulus display consisted of a 3-by-8 array 

of panels illuminated by individual incandescent lights. The procedure was the 

same as with the tactile experiments, and the number of lights simultaneously 

activated was increased each session by two from n = 2 to n = 12. Figure 

27(d) shows these results, after application of the correction for guessing. 

Although he was not performing quite as well as in the tactile experiments, a 

level of performance of 6 out of 12 positions correctly identified was achieved. 

In addition, as a preliminary to Experiment 2, Subject S was tested in a 

partial-report experiment with tactile stimuli. In this experiment, the number 

of stimulators simultaneously activated was always equal to 12, chosen ran- 

domly out of the 24 positions possible. From 22 to 300 msec after the termi- 

nation of this tactile stimulation, a light was flashed for 400 msec, either on 

the left or on the right. If on the left, the subjecVs task was to report the 

letters representing the positions stimulated on the left hand; if on the right, 

the subject’s task was to make a similar report for the right hand. The num- 

ber of positions stimulated on the designated hand was called k, and each 

value of k between 1 and 11 occurred on lOO/ll percent of the trials. Each 

hand was designated on 50 percent of the trials. Sixty-seven trials were run 

for each value of marker delay; however, since the effect of marker delay was 

small, the data were averaged over marker delay. The results, corrected 

for guessing, are shown in Figure 28. 

To estimate the amount of stimulus information available from the partial- 

report data of Figure 28, the average percentage of positions correct for each 

value of k (after correction for guessing) was multiplied by 12. Since the 

marker position was randomly chosen and was presented after the tactile 

stimulation had terminated, the average percentage of positions correct must 

represent the fraction of the 12 stimulus positions available to the observer. 

The results of this calculation are shown in Figure 29. 

Since for k less than 7 the average number of stimulus points available was 

greater than the number reported in the whole-report experiment, the presence . 
of some sort of short-term tactile memory is indicated. 
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FIG. 28 PARTIAL-REPORT PERFORMANCE, SUBJECT S - 
ESTIMATED NUMBER OF STIMULUS POINTS PERCEIVED 
AS A FUNCTION OF THE VALUE OF k 
The data ore averaged across marker delays and hands. 

In analogy with related visual experiments, it was expected that the esti- 

mate of the number available would be independent of k, for k less than the 

immediate memory level. However, as shown in Figure 29, the number of 

letters available decreases from greater than 11 to slightly more than 7, as 

k is increased from 1 to 7. This means that a small number of stimuli on one 

hand, with a correspondingly large number on the other, are reported cor- 

rectly a greater percentage of the time than when the number of positions 

designated is about n/2. A likely explanation for this is that the subject 

adopted the strategy of paying greater attention to the hand with the fewer 

stimuli even before the marker appeared (see Sperling, 1960, pp. 8-10). If 

this was the case, values of k in the range 4 to 6 would give the best estimate 

of the number of stimulus positions available. This yields a value of about 8.5 

stimulus positions available compared with a whole-report performance of 

about 7.5 for this subject. 
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B. EXPERIMENT 2: SHORT-TERM MEMORY 

The purpose of Experiment 2 was to investigate further the capacity and 

temporal properties of any short-term tactile memory. This experiment was 

designed to yield both whole-report and partial-report data (with various values 

of marker delay) from several identically trained subjects. Several improve- 

ments in the procedure were instituted. 

1. Method 

a. Apparatus. The apparatus was the same as that described in 

Experiment 1, with one modification. In Experiment 1, only one airjet nozzle 

holder was available, making it necessary to readjust the airjet nozzles each 
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time a subject was run. In this experiment, each subject had his own airjet 

nozzle holder, which was initially adjusted to his hand and never reset unless 

the subject requested that a particular jet be readjusted. This ensured better 

constancy in the positioning of the airjets from session to session. 

b. Subjects. Four male college students in their twenties were used. 

Subjects Ml, M2, and M3 were normally sighted; M4 had been totally blind 

since the age of 14. None of the subjects had ever participated in an experiment 

of this nature. 

C. Procedure. Each subject was tested in two 30-minute sessions 

per day, with one hour between sessions. The training and testing schedule is 

shown in Table 5. The number of total presentations for each value of n during 

training was determined by the apparent difficulty of the task for each value 

of n; more presentations were given at the higher values. For whole-report 

testing, the number of total presentations for each value of n was chosen to 

allow the variance for the mean number correct per n-value to remain constant 

across all values of n. (Specifically, the number of total presentations was 

set so that the probability that the mean number correct per value of n would 

exceed the true mean by more than 0.4 stimulus positions was zz 0.1. ) For 

each value of n, the number of presentations at each interjoint position was 

equal. 

On any whole-report trial, the procedure was similar to that described in 

Experiment 1, with certain changes: (1) the labeling of the interjoint positions 

was changed, and is shown in Figure 26; (2) subjects were required to report 

the same number of response positions as the stimulus contained and to report 

in alphabetical order (this latter restraint was introduced so that all the sub- 

jects would utilize the same reporting strategy); (3) tactile and visual rein- 

forcement were introduced. As soon as the experimenter finished typing the 

response, the reinforcement was automatically initiated by the computer. 

Reinforcement consisted of a repeat of the stimulus, presented both tactually 

and on a visual display box. Reinforcement duration ranged from l-1/6 set 

for n = 1, to 3 set for n = 12, increasing linearly by l/6 set whenever n was 

increased by one. Subject M4, who was blind, received only tactile reinforce- 

ment, except for sessions with n = 1, 2, or 4, when, in addition, the 
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Table 5 

TRAINING AND TESTING SCHEDULE, EXPERIMENT 2. 

Order of Conditions 

- 
Training 

No. of Stinmlus 
Presentations 
Per Condition 

No. of 
Sessions 

n=l, left hand 
n=2, left hand 
n=l , right hand 
n=2, right hand 
n=2, both hands 
w4, both hands 
n=6, both hands 
n=8, both hands 
n=lO, both hands 
n=12, both hands 

Testing, Whole-Report 

n=2, both hands 
n=6, both hands 
n=lO, both hands 
n=12, both hands 
n=8, both hands 
n=4, both hands 

Testing, Partial-Report 

k=4, n=12, 0.1 set marker delay 
k=4, n=12, 0.8 set marker delay 
k=4, n=12, 0.3 set marker delay 
k=4, n=12, 2,0 set marker delay 
k=4, n=12, 0.1 set marker delay 
k=4, n=12, 0.3 set marker delay 
k=4, n=12, 0 set marker delay 
k=4, n=12, -0.85 set marker delay 
k=4, n=12, 0.8 set marker delay 
k=4, n=12, 2.0 set marker delay 
k=2, n=6, 0.3 set marker delay 
k=4, n=12, -0.85 set marker delay 
k=4, ny12, 0 set marker delay 
k=2, n=6, -0.85 set marker delay 
k=2, n=6, 0.1 set marker delay 
k=2, n=6, 0.8 set marker delay 
k=2, n=6, 2.0 set marker delay 
k=2, n=6, 0 set marker delay 

72 l/2 
360 2-l/2 

72 l/2 
360 2-l/2 
144 1 

96 1 
88 1 

180 2 
100 2 
141 3 

36 l/4 
96 314 

156 3 
188 4 
126 2 

66 1 

66 1 
66 1 
66 1 
66 1 
66 1 
66 1 
66 1 
66 1 
66 1 
66 1 
36 l/2 
66 1 
66 1 
36 l/2 
36 l/2 
36 l/2 
36 l/2 
36 l/2 
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Table 5 (concluded) 

Order of Conditions 

Testing, Whole-Report with 
Partial-Report Stimuli 

n=12 
n=6 

No. of Stimulus 
Presentations 
Per Condition 

No. of 
Sessions 

66 1 
36 1 

experimenter called out the correct response. The termination of reinforce- 

ment was followed by a 2-set pause and then the next stimulus. 

On a partial-report trial, subjects were informed by a marker as to the 

row from which their response should come. The eight topmost interjoint 

positions (A-H) were considered the top row, positions labeled I-P the middle 

row, and Q-X the bottom row. The marker onset occurred either 0.85 set 

before or 0, 0.1, 0.3, 0.8, or 2.0 set following stimulus termination. For the 

sighted subjects, the marker was one of three lights (top, middle, or bottom) 

on the visual display box, lasting 250 msec. For the blind subject, the 

marker was a high (910 pps), medium (357 pps), or low (133 pps) tone, lasting 

30, 80, or 240 msec, respectively. Each marker position occurred an equal 

number of times in each session. Marker position order was random and 

varied from session to session. 

During partial-report sessions, the total number of stimulation points was 

either 12 (with 4 points in each row) or 6 (with 2 points in each row). 

2. Results 

Figure 30 shows the results, after correction for guessing, from the whole- 

report test sessions for all four subjects. The maximum estimate of the 

number of correctly perceived stimulus positions was between 3 and 4 for all 

of the subjects, and this value occurred for n = 12. 

Figure 31 illustrates the response behavior and the effect of the guessing 

correction. While the data of Figure 31 are averaged over subjects for a single 

session with n = 12, the result--that the proportion correct decreased as the 

position in the response sequence increased--was generally observed 
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throughout the experiment. The guessing correction uses the proportion cor- 

rect for each position in the response sequence to estimate the proportion 

perceived in the same sequence position. Then the total number perceived is 

determined by summing the estimates of proportion perceived in each sequence 

position. The results, averaged over subjects, before correction for guessing, 

are shown in Figure 32. 

Also shown in Figure 30 are the results of the partial-report sessions for 

the condition in which the marker appeared immediately after stimulus termi- 

nation. These results are also corrected for guessing, using the formula given 

in the appendix with N=8 and n=k, the total number of points stimulated in each 

row (i.e. , 2 or 4). After this correction for guessing, the estimate of the 

number of points perceived was multiplied by 3 to obtain an estimate of the 

number of stimulus points available. The maximum estimate on the number of 

stimulus points available also occurred for n=12 and was between 4 and 5 for 

each subject. 

0 2 4 6 8 IO I2 

NUMBER OF POSITIONS STIMULATED (n) 
TA-.ll9-88 

FIG. 32 SAME DATA AS FIGURE 30(e) EXCEPT 
UNCORRECTED FOR GUESSING 
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Figures 33 and 34 show the partial-report performance, after correction 

for guessing, as a function of marker delay for all four subjects. The curves 

of Figure 33 are for n=6 and k=2, and the curves of Figure 34 are fcr n=12 

and k=4. Also shown, as a bar at the right of each curve, is the whole-report 

performance for the subject on the same stimuli (constrained to k stimulus 

points in each row) used for the partial-report sessions. Since the number of 

stimulus points in each row was constrained, these whole-report data were 

corrected for guessing by considering the experiment to be three whole-report 

experiments, each with N=8 and n=k, and by summing the three estimates of 

the number of points perceived from the formula given in the appendix. 

While there is considerable variability among the subjects, the partial- 

report curves averaged over subjects in Figures 33 and 34 are always above 

the whole-report bar, except for the 2-set marker delay, in which the partial- 

report and whole-report values are approximately equal. 

C . DISCUSSION 

The experiments described here employed multiple tactile stimuli with 

two kinds of report, whole and partial. In a whole report the subject names as 

many stimulus locations as he can. The upper limit on the number of cor- 

rectly reported items may be called, after Miller (1956)) the span of 

immediate memory. In previously reported studies, this span typically 

ranged from 4 to 7 stimulus items (e. g. , see Miller, 1956; Sperling, 1960). 

Figure 27 indicates an immediate-memory span with tactile stimuli of 

about 4.5 items for Subjects A and K. However, Subject S reported more than 

7 correct positions out of 12 (after correction for guessing), and his per- 

formance did not appear to be leveling off at n=12. Introspections by Subject S 

suggested that he was able to recode the stimulus patterns into larger units, 

or “chunks” of information, much as in visual experiments in which enhanced 

performance is obtained by recoding binary numbers into octal numbers. 

These tactile results were unexpectedly high, in view of past reports of ex- 

traordinary interaction (Geldard, 1966) with two or more simultaneous stimuli 

on the fingers. 
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FIG. 33 PARTIAL-REPORT PERFORMANCE (k = 2, n = 6) - ESTIMATED NUMBER OF 
STIMULUS POINTS AVAILABLE AS A FUNCTION OF TIME OF OCCURRENCE 
(with respect to stimulus termination) OF THE MARKER 

In spite of the surprisingly good tactile performance reported here, the 

reader is cautioned that the effect of long-term tactile training is not yet known. 

When visual data are compared with tactile data, the comparison is between 

results from a highly trained modality and those from a generally poorly 

trained modality. In our early experiments with doublets, for example, with 

subjects who scored perfectly on singlets, we found very high initial errors 

(typically 30-40 percent) which, after five to ten training sessions, dropped to 

only a few percent (Bliss, et al. , 1965). 
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The accuracy in reporting for subjects in Experiment 2 was considerably 

lower than for subjects in Experiment 1 (p ZG 0.05), even though both experi- 

ments differed only in procedural factors which were not expected to hamper 

performance. Figure 30(e) shows that the average immediate-memory span 

in Experiment 2 was between 3 and 4 stimulus positions. This average span 

size is also lower than that reported by Sperling (1960), who, in a somewhat 

similar task using visual stimuli, found an average immediate-memory span 

of between 4 and 5 stimulus items [see Figure 30(f)]. Usually the number of 

items to be reported in a partial-report experiment is selected to be less than 

the span of immediate memory so that an estimate of items available that does 

not reflect immediate-memory limitations can be made. While that was the 

intention in these experiments, it appears from the results of Experiment 2 that 

the k = 4, n = 12 conditions must have taxed the immediate-memory capacity 

beyond its limit, resulting in a low estimate of number of positions available 

when k = 4. 

Three explanations can be suggested for the poorer performance in 

Experiment 2. First, the introduction of tactile reinforcement in Experiment 

2 (lasting from l-1/3 to 3 set) might have interfered with the subject’s per- 

formance by partially masking the next stimulus. At least one subject reported 

that a tingling sensation in his fingers produced by the reinforcement still 

remained when the next stimulus occurred (2 set following the last reinforce- 

ment) . To investigate this hypothesis, each subject in Experiment 2 partici- 

pated in one extra session, which was identical to another session held that day 

except that the pause between the end of reinforcement and the next stimulus 

was increased to 4 sec. If the hypothesis was correct, then the longer pause 

would be expected to increase the level of performance by increasing the 

recovery time (see Bliss, et al. , 1966a). As shown in Table 6, increased per- 

formance was found for all subjects, although this increase is hardly signifi- 

cant for Subject M1. 

Secondly, poorer performance in Experiment 2 may have been due to the 

fact that the subjects in Experiment 2 were not trained as well as those in 

Experiment 1. The average whole-report curve of Experiment 2 [Figure 30(e)] 

shows slight rises in performance when the value of n was 4 or 8, compared to 

77 



Table 6 

COMPARISON OF PERFORMANCE WITH 2- AND 4-SECOND 
INTERTRIAL PAUSE DURATION 

(Uncorrected Values Only) 

Subject Session 

Average Number of Stimulus 
Positions Available 

Two-Second Four-Second 
Pause Pause 

M1 Whole report with 
partial-report 
stimuli (k=2, n=S) 

3.53 3.56 

M2 Partial report 
(k=4, n=12), 2.0- 
second marker 
delay 

7.54 7.82 

M3 Partial report 
(k=4, n=12), O.l- 
second marker 
delay 

8.14 9.09 

M4 Whole report with 
partial-report 
stimuli (k=2, n=6) 

3.42 3.67 

performance levels for other values of n. The testing schedule (Table 5) indi- 

cates that the last three of the 11 whole-report sessions were with n = 4 and 

n = 8. Thus, despite the fact that Experiment 2 subjects had 16 training 

sessions before whole-report testing, they apparently continued to improve at 

the task during testing. Subjects M2 and M4 particularly show this improvement 

during testing. 

Finally, it may be that the constrained-report strategy which the subjects 

in Experiment 2 had to follow may have introduced a slight disabling factor. 

The alphabetical-order-report strategy may have introduced into the experi- 

mental paradigm an extra subtask which could have impaired the subjects’ 

performances relative to that in Experiment 1. 
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As is typically found in partial-report experiments, results from the 

partial-report sessions in both Experiments 1 and 2 indicated more information 

available than could be reported in a whole report. The magnitude of this 

difference was not, however, as great as previous investigators have found in 

visual studies. Sperling (1960), for instance, reports that with visual stimuli, 

more than 9 stimulus items out of 12 were available when the partial-report 

marker immediately followed the stimulus termination, compared with 4.5 

items out of 12 for the whole report. In Experiments 1 and 2 of this paper, 

however, partial report resulted in an increase of only about one stimulus 

item out of 12 over the number of items indicated by the whole-report sessions. 

This result suggests that any hypothetical tactile short-term memory has con- 

siderably less capacity than the analogous visual short-term memory. 

A dynamic aspect of the responses is illustrated in Figure 31. The 

accuracy of the responses decreases rapidly as each stimulus position is 

named. If the first four responses in the whole-report session of Figure 31 

were used to calculate the number of positions available, one would expect this 

value to agree with the value obtained from a partial-report experiment with 

k = 4, n = 12, and the marker occurring before the stimulus. The value from 

Figure 31 so obtained is 5.67, which compares with 5.3 from Figure 34(e), 

with the marker occurring 0.85 set before stimulus termination. 

A similar comparison can be made between the k = 2, n = 6 partial-report 

results and the data of Figure 31 to predict the number of items available in a 

hypothetical k = 2, n = 12 “marker-first” experiment. Using the proportion 

perceived in the first two responses, one obtains the value 7.08 items. From 

Figure 33(e), 3.81 items available out of 6 were obtained from the k = 2, 

n = 6 “marker-first” partial-report experiment, which would give a value of 

7.62 items available out of 12. As one might expect, a higher value resulted 

with n = 6 than with n = 12, perhaps due to greater spatial interaction with 

n = 12. 

Spatial interaction may in part explain the lower number of items available 

in these tactile experiments as compared to previously reported visual experi- 

ments. The data presented here suggest that two or more simultaneously 

presented air blasts at different spatial locations on the fingers may mask one 
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another. For instance, for the whole-report sessions in Experiment 2 with 

n = 2, the estimated number of stimulus points available was 1. 8 positions. 

Yet, for the partial-report sessions in Experiment 2, the estimated number of 

stimulus points available (averaged over subjects) was never higher than 3.81 

positions out of 6 (or 1.27 positions available out of 2)) and this value occurred 

with the marker 0.85 set before stimulus termination. In both these cases, 

the subject had to report only two stimulus positions, therefore the reporting 

was not responsible for the lower partial-report performance. Since the only 

difference between the two cases was that only two stimulus points were 

activated in the first case whereas six were activated in the second case, then 

there must have been interference among the six stimulus points, causing a 

decrement in accuracy of reporting over that with only two stimulus points. 

Figures 33 and 34 show that the accuracy of the partial report was superior 

to the whole report only when the marker occurred within 0.8 set after stimulus 

termination. When the partial-report marker occurred 2.0 set after stimulus 

termination, the accuracy of both reports was approximately equal. Sperling 

reports similar temporal results with visual stimuli. It appears, then, that any 

hypothetical tactile short-term memory can be no more than 0.8 set in duration. 

The averaged partial-report curve for k = 4 and n = 12 [Figure 34(e)] 

decreases more smoothly with increased marker delay than the corresponding 

curve for k = 2 and n = 6 [Figure 33(e)l. The reduced variability in the first 

[Figure 34(e)] may be due to the fact that each data point is based on the aver- 

age performance of each of four subjects in 132 trials, whereas each data 

point in the second [Figure 33(e)] is based on the average performance of each 

of four subjects in only 36 trials. * 

There appears to be a reduction in performance for k = 2 and n = 6 when 

the marker immediately follows the stimulus (0-set delay). The individual 

curves show this effect more clearly, particularly the curve for M4, who was 

*Thirty-six stimulus presentations with k = 2 and n = 6 are sufficient to en- 

sure that the probability of the mean number correct exceeding the true mean 

by more than 0.4 stimulus positions is < 0.1. This probability is reduced to 

0.05 for 132 stimulus presentations with k = 4 and n = 12. 
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blind and received the tone marker. He reported that he was forced to pay less 

attention to the stimulus when the marker followed immediately in order to 

distinguish which tone occurred. The use of the tone marker did not, however, 

appear to reduce M4’s overall performance. In fact, his performance approxi- 

mated that of the sighted subjects in both whole- and partial-report conditions, 

despite the fact that he received only tactile reinforcement while the sighted 

subjects received both tactile and visual reinforcement. 

The slight rise in partial-report performance for k = 2 and n = 6, when the 

marker followed the stimulus by 0.8 set, may have been due to the subjects’ 

choice of strategy while awaiting the marker. A subject could choose, for 

example, to pay equal attention to each of the three rows, to attend to the same 

row, or to guess which row would be specified and pay attention to that row 

only. Sperling (1960) tried to illustrate the effect on performance of switching 

from the first to the third strategy. His subject RNS made this switch at 

marker delays longer than 0.15 sec. His performance curve shows a dip at 

0.15 set , followed by a rise at longer marker delays, and Sperling attributes 

the dip to the subject’s failure to switch strategies at marker delays of 0.15 

set or shorter. The subjects showing the most marked performance rise in 

the 0.8-set marker-delay condition were Ml and M2. Subject Ml reported 

using the third strategy and M2, the first and third strategies. Subject M3, 

who reported that he paid equal attention to the three rows throughout partial 

testing, showed the least variable performance curve. 

The results of the present experiments are relevant to the construction of 

tactile codes for communication using point stimulation of specific anatomical 

locations as the information-bearing dimension. The data shown in Figures 27 

and 30 suggest that a go-percent individual point or an 81-percent symbol 

accuracy could be obtained with a code using 2 out of 24 stimulus positions to 

indicate a particular symbol out of an alphabet of 276 possible symbols. 

Similarly, a 70-percent individual point or a 34-percent symbol accuracy should 

be obtained with a 2024-symbol alphabet, each symbol consisting of 3 out of 

24 stimulus positions. 

The question arises whether or not more information could be transmitted 

per presentation if greater values of n were used to make up the symbols. To 
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overcome the loss in accuracy, redundant codes could be used, permitting 

error correction. 

While the calculation of information transmitted is difficult if the particular 

confusion matrices obtained are taken into account, a lower bound on the 

information transmitted can be easily obtained by assuming that there is no 

stimulus-related information in the errors. For this case the appropriate 

formulas are 

H(S) = log (2;) 

I (R;S) 2 p log (r) + P log P + (I - P) log (1 - P), 

where H(S) is the stimulus entropy, I(R;S) is the information the response gives 

about the stimulus, and p is the estimated proportion of stimulus positions 

perceived. This transformation of the average data in Figure 30(e) results in 

the curves shown in Figure 35. The curves of Figure 35 indicate that the 

transmitted information is relatively independent of n, being about 6 bits per 

presentation for a whole report and 7.5 bits per presentation for a partial 

report. Thus, one is tentatively led to the conclusion that, at least with the 

amount of training employed here, information per presentation cannot be 

increased by constructing codes with high values of n. 

Finally, the results of this paper, combined with our previous results 

[ Bliss, et al. , 1966(a) and 1966(b)], suggest that tactile information processing 

has some of the characteristics accounted for in a model proposed by Sperling 

(1963) for visual memory tasks. A short-term tactile memory with slightly 

greater storage capacity than the span of immediate memory is indicated by 

the results of this paper. This short-term memory appears to decay in less 

than 0.8 sec. The results also suggest that overall performance is limited by 

spatial interaction of the stimuli, except that, again, we do not yet know the 

effects of longer training. 
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APPENDIX 

A standard correction for guessing in psychophysical experiments assumes 

some probability correct due to the sensory process under consideration, and 

if this process fails, then the subject guesses from the available alternatives. 

Thus, 

where 

P(C) = P + (1 - p)g (1) 

p(c) = probability correct 

P = probability correct by result of perception alone 

g = probability correct by guessing if stimulus is not 

perceived. 

If we have an estimate for g, we may solve for the “true” value of per- 

ceiving or knowing the answer, p, as follows: 

P = P(C) - g 
1-g - 

In the present experiment the subject must make more than one response 

on any one trial. The accuracy of each response may affect the guessing 

probabilities on later responses in that trial for a large number of models of 

the subject’s behavior. The present method of estimating p for each response 

represents a relatively severe correction, since, when the subject has to 

guess, it is assumed that he guesses from all the unreported positions. There- 

fore, the corrected data are probably lower bounds on the subject’s perform- 

ante. Furthermore, it is assumed that the number of stimulus-activated 

positions not yet correctly reported at any response on the trial are distributed 

in a uniform manner across all unreported positions. 
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Thus, the appropriate form of Eq. (2) is 

i-l 
n - C p (correct on response j) 

p (correct on response i) - j=l 
N-i+1 

Pi = 
n - g p (correct on response j) 

(3) 

l- j=l 
N-i+1 

where 

‘i = estimated probability correct by perception on response 
number i, 1 s i s n 

p (correct on response i) = uncorrected observed value proportion 
correct on response number i 

n = number of interjoint positions activated on each trial 

N = total number of interjoint positions in possible stimulus 
field, i.e. , the population from which the n are chosen on 
each trial. 

Finally, the corrected value for the estimated total number of the n 

positions reported correctly on each trial is obtained by summing the esti- 

mated pi: 

A = 5 pi. 

i=l 
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VI CROSS-MODALITY REACTION - TIME EXPERIMENTS 
WITH TACTILE AND VISUAL STIMULI 

by Stephen W. Link 

A. PURPOSE, APPARATUS, AND PROCEDURE 

1. Purpose 

Previous investigations of cross-modality reaction time (CMRT) have 

shown an apparent facilitation in reaction time when stimuli are presented 

randomly to either of two sensory channels instead of to a single sensory chan- 

nel. Howell and Donaldson (1962)* used visual and auditory stimuli, equated 

for subjective intensity, to demonstrate that intra modality reaction time 

was generally longer than intermodality reaction time. The purpose of the 

experiment discussed here was to examine this finding for tactile and visual 

stimuli and then investigate changes in reaction time as a function of simul- 

taneous stimulation of both channels. 

A second aim of this experiment was to examine reaction time in a con- 

flicting stimuli paradigm. It has been suggested that man’s information proc- 

essing capacity is partially determined by a sensory sampler which gives rise 

to sensory epochs (Kristofferson, 1965). It has been assumed that a sensory 

sampler provides times during which information arriving over one channel is 

first processed and then the sampler may switch to a different channel, much 

in the same way as a homunculus governing a sensorium. Recent experiments 

(Falmagne, 1965; Kristrofferson, 1965) suggest that only one channel can 

be monitored at a time. Thus, in a choice-reaction-time experiment in which 

stimuli were simultaneously presented over different sensory channels, one 

would expect no difference in reaction time for stimuli which require the same 

response to be made versus stimuli which require conflicting responses. 

*References are given at the end of this section. 
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A third reason for our interest in CMRT is the highly possible result that 

processing times for tactile and visual stimuli may be quite different. By var- 

ying the number of response alternatives per sensory channel, we can easily 

compare reaction time as a function of the number of alternatives and then 

compare response times to visual and tactile stimulation. 

2. Apparatus 

The experimental apparatus is shown in Figure 36. Neon bulbs mounted on 

top of the four posts corresponding to the positions right, forward, left, and 

backward provided visual stimuli. Inside the joystick, airjets pointing in the 

same four directions provided tactile stimuli. Mounted on top of the joystick 

was the warning light. An arm rest was used to ensure that the pivotal point of 

the response was at the wrist. 

The experiments were carried out under control of a CDC 8090 computer 

system, which was used to store stimuli, measure reaction times, record re- 

sponses, and control the sequence in which the stimuli were presented. For 

each presentation the computer transmitted a word of 12 bits to specially 

FIG. 36 STIMULUS-RESPONSE APPARATUS FOR REACTION-TIME EXPERIMENT 
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designed external equipment. The external equipment then simultaneously acti- 

vated the tactile and visual stimuli. 

The tactile stimulator generated bursts of air from a 1.4-mm outlet port 

under control of a sensitive high-speed electromagnet. The pulse pressure, 

measured l/8 inch above the airjet outlet, was about 3 psi, with a rise and fall 

time of about a millisecond and an overall pulse width of about 2.5 msec. A 

200-cps pulse repetition rate was used throughout the experiments, implying 

that the airjet was turned on and off 10 times during a stimulus duration of 

0.05 sec. The positions of the tactile stimulators with respect to the palmar 

side of the hand are shown in Figure 37. Visual stimuli were provided by 

GE NE2 neon bulbs. These were of low intensity, but to a slightly dark- 

adapted subject they pro-vided ample indication of the direction in which a 

response was to be made. All experimental sessions were run in a sparsely 

illuminated room in which the only light source was external light filtering 

through a shaded skylight. 

Responses were made by moving a joystick to any of the four positions: 

left, right, forward, and backward. Special circuits were designed to detect 

when movements of the joystick exceeded any of the four boundaries shown in 

Figure 38. These thresholds were set to be about 6 degrees (or l/2 inch) from 

the center position. Whenever a threshold was exceeded, the computer was 

signaled and the position of the response and the reaction time were recorded. 

Response times were measured with an accuracy greater than a millisecond. 

3. Experimental Procedure 

Four subjects were trained in making responses to eight possible stimuli. 

Four experiments were performed to determine the speed, accuracy, and proc- 

essing characteristics of the tactile-visual system. AI1 experiments consisted 

of a series of trials. As shown in Figure 39, on each trial the subject was pre- 

sented with a warning light 0.5 set after returning the joystick to the center po- 

sition. After another delay of 1.15 set, the stimulus was presented. If, 

during these delays, the subject moved the joystick from the center position, 

brief pulses were sent to all stimuli. To a slightly dark-adapted subject, 
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this provided a clear, if not noxious, indication that the joystick should be 

repositioned. After repositioning, a new trial began. 

Precautions were taken to ensure that the subjects could not simply re- 

spond to auditory stimulation created by activating one of the four airjets. On 

every trial (except rest trials in Experiment l), three dummy airjets were ac- 

tivated in addition to the stimulus. These jets provided ample masking of audi- 

tory cues associated with a tactile stimulus. 

In all, there were two modes of stimulation: tactual and visual. As indi- 
cated in Figure 38, there were four positions of stimulation for each sensory 

modality. Thus, there were eight distinct stimuli but only four different re- 

sponses. For the sake of brevity, we will refer to the stimuli and responses by 

using a code of two letters; the first letter indicates the sensory mode and the 

second letter the position. Thus “tactile right” becomes TR. 

B. EXPERIMENTS 

1. Experiment 1 - Simple Reaction Time 

To obtain data concerning the experimental apparatus, a simple reaction- 

time experiment was run. This served the dual purpose of providing subjects 

with extensive training before the succeeding experiments, as well as indicating 

RESPONSE 

n 

FIG. 39 TIMING ARRANGEMENT FOR 
REACTION-TIME EXPERIMENTS 
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Table 7 

TABLE OF MEANS OF MEDIAN RESPONSES FOR EXPERIMENT 1 

Center entries are mean reaction times in msec; numbers in upper right corner of entries are number of medians 

Forward Backward Right Left 
Subject 

Tactile Visual Tactile Visual Tactile Visual Tactile Visual 

18 18 18 18 17 18 18 18 

1 20’7.6 210.3 177.9 206.6 244.8 235.6 234.4 230.4 

15 15 15 15 1 20 20 20 20 

2 194.2 214.1 173.3 182.7 186.1 185.5 235.3 219.6 



which responses might be considered similar. In this experiment, each sub- 

ject received four sessions of 900 trials. During a single session, one of the 

eight possible stimuli was presented on 20 consecutive trials, followed by a 

different stimulus presented for 20 consecutive trials, and so on until all eight 

stimuli had been presented. In addition, occasional rest periods were pro- 

vided by illuminating for 20 consecutive trials the warning light in lieu of a 

stimulus. Each subject was presented with a random ordering of eight stimuli 

and one rest per period five times, making a total of 900 trials per session. 

Results 

For analysis of this experiment, several restrictions were placed on 

the data. First, criteria were selected such that any response either less than 

90 msec or greater than 700 msec was discarded. Second, the initial trial of 

20 consecutive stimuli was excluded, because the subjects typically made an 

inappropriate response to a new stimulus. Response errors were also ex- 

cluded. The medians of the remaining trials were then computed. 

For each subject a one way analysis of variance was run using the medians. 

The results shown in Figure 40 are averaged over all subjects but are typical 

of the individual data (Table 7). In general, there was no significant difference 

between responses to right and-left stimuli, regardless of the sensory modal- 

ity. Subject 2 deviated from this finding; his reaction time to a right stimulus 

was 185 msec, while that to a left stimulus was 228 .msec. 

I 

i . 

Averaged over all subjects, the mean reaction time to right or left visual 

stimuli was 224.5, while the corresponding mean for’ tactile stimuli was 225.7. 

This difference is hardly significant. However, an analysis of the variances 

for these data, using Bartlett’s test, revealed significant differences, the 

tactile standard deviation being 30.97 and the visual,. 33.33 msec. .A one-way 

analysis of variance performed on the eight responses was significant, 

F (7, 455) = 11.75 or Q< 0.01. 
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FIG. 40 MEANS OF MEDIAN RESPONSES AVERAGED OVER ALL SUBJECTS 

Hence, although there were substantial differences, for individual subjects 

the responses to right and left stimuli were more similar than those to either 

forward or backward stimuli. Given a particular response, the difference 

between reaction times for different sensory modalities, was relatively small. 

For a single subject different responses are easily identified by the asso- 

ciated mean reaction times. The backward response mean is lower than others 

because the response is quite similar to a reflex. The required response is 

akin to jerking the hand away from a hot burner. Averaged over sensory 

modalities, the differences in response times for the various positions appear 

attributable to motor characteristics of the response. 

For anaIysis of the later experiments it is sufficient to note that the right 

and left responses were very nearly similar. Moreover, for either position 

the differences between tactile and visual stimuli were quite small. 
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2. Experiment 2 - Two-Response Reaction Time with Either Visual or 
Tactile Stimuli 

A straightforward generalization of Experiment 1 provided the paradigm 

for Experiment 2. In this experiment the trial structure remained unchanged 

(Figure 39) but the set of stimuli was changed to TR, TL, VR, VL (tactile- 

right, tactile-left, visual-right, visual-left). Each session of 500 trials con- 

sisted of the four stimuli presented in a random order. The subjects were 

instructed to respond in the direction of the stimulus. Thus, the experiment 

amount to cross-modality, four-choice reaction time. Herbart (1816) would 

label it as simply a complication experiment. 

Results --- 

The data in Table 8 represent the mean reaction times of the last 375 

trials of the last two sessions for each subject. Occasional errors, antici- 

patory responses, and latent responses were omitted from the analysis. More- 

over, although the generation of the stimuli was random, not all stimuli had the 

same probability of occurrence. Thus, the number of presentations of the 

stimuli, shown in the upper corner of each cell in Table 8, varies considerably 

from subject to subject. Reaction time, as is well known, is quite sensitive to 

the presentation probabilities. 

As can be seen from Table 9, the mean reaction times to tactile and 

visual stimuli were nearly identical. Similarly, there appears to be little 

difference between the responses to right and left stimuli. There are, how- 

ever, substantial individual differences. Subject 2, for example, responded 

faster to the right than to the left, a fact noted in Experiment 1. Examination 

of the data for each subject indicates that the observed differences are in 

part dependent upon effects solely attributable to the response mechanism. 

Thus, we may conclude that cross-modality reaction time is similar to 

single-modality choice reaction time. Moreover, the differences between 

response times in Experiment 1 and Experiment 2 are of the same order as in 

other experiments in which only visual stimuli have been used. Of course, 
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Table 8 

REACTION TIMES FROM EXPERIMENT 2 

Center entries are mean reaction times in msec; 

numbers in upper right corner of entries are number of observations 

4 

t------ 
1 Average 

T Tactile 
- 
I 

Right 

138 

406 

236 

257 

149 

356 

233 

378 

756 

341 

Left Right Left 

155 212 166 

342 350 336 

163 313 203 

312 267 317 

165 203 162 

351 361 363 

252 317 249 

355 364 335 

735 1045 750 

342 332 336 

Visual 

each stimulus is unique; therefore, if the peripheral sensory mechanisms feed 

a central decision mechanism, the resulting differences in reaction times 

among stimuli should be small, given the results from Experiment 1. 

A major difference between tactile and visual stimuli can be seen in 

the variances. The means and standard deviations for each subject are given in 

Table 10. The differences are quite large except for Subject 4, who had partic- 

ipated in experiments in tactual perception for nearly two years. 

3. Experiment 3 - Two-Response Reaction Time with Simultaneous Visual 
a&Tactile Stimuli 

The four stimuli presented singly in Experiment 2 were presented in pairs 

in Experiment 3. Thus, on a single trial, a subject could receive any one of 
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Table 9 

REACTION TIMES FROM EXPERIMENT 2 

Center entries are mean reaction times in msec; 

numbers in upper right corner of entries are number of observations. 

msubjectpTactile 

I.--- - 293- 

Visual Right Left 

378 350 321 

344 372 339 

516 549 366 

287 263 315 

365 352 327 

362 358 357 

566 550 501 

351 370 345 

1825 1801 1515 

334 336 339 

1 372 
I I 

2 
399 

279 
t 

I- 

314 

-1485 

62.4 I 

the following four stimuli: VR-TR, VL-TL, VR-TL, or VL-TR. Again the 

subject was told to respond in the direction of the stimulus. Thus, if he 

received the combination TR-VR, his task was simply to respond to the right; 

however, if the combination TR-VL was presented, the subject was instructed 

to decide which stimulus occurred first and then respond accordingly. In fact, 

both stimuli were presented simultaneously. We have labeled the events TR-VR 

and TL-VL the “identical” response case, and the events TL-VR and TR-VL the 

“conflicting” response case. In all other respects this experiment was the 

same as Experiment 2. 

Results 

The mean reaction times in msec are given in Table 11. The 

overall mean reaction times for the two conditions are approximately 

equal. Furthermore, the mean reaction time in this experiment is 
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Table 10 

REACTION-TIME MEANS AND STANDARD DEVIATIONS AVERAGED 
ACROSS RESPONSES IN EXPERIMENT 2 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

substantially lower than the mean reaction time in Experiment 2. There are, 

however, some individual subject differences worth noting. Subject 2 is again 

quite fast in producing a response to the right, an effect that has persisted 

through both Experiments 1 and 2. Subject 4 also appears to respond faster to 

a stimulus on the right. 

Interesting results are shown in Table 12, where we have entered 

the number of responses made to the right and left in the conflicting stimuli 
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Table 11 

REACTION TIMES FROM EXPERIMENT 3 

Center entries are mean reaction times in msec; 

numbers in upper right corner of entries are number of observations. 

I 

Subject 

1 

2 

3 

4 

Average 
RT 

SD 

Same Stimuli I Different Stimuli 

Right 

199 

310 

198 

230 

144 

314 

192 

379 

Left 

173 

Right 

166 

Left 

185 

312 312 310 310 

242 242 104 104 

225 225 285 285 

122 122 162 162 

320 320 336 336 

173 173 175 175 

396 396 360 360 

1329 
I 

311 315 

71.8 87.3 

Table 12 

RESPONSE PATTERNS FOR EXPERIMENT 3 - 
CONTRADICTORY STIMULI 

Entries indicate number of responses for each condition. 

Visual Right - Tactile Left Visual Left - Tactile Right 
Subject - I ~~ 

J Right 1.r 1-- Left Right Left 

~--- I 1 I - 150 10 16 175 - 
I 2 -._I 118 40 124 64 

L- 3 I 81 1 45 41 117 

I 4 ! _. .-- 25 134 148 41 
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condition. Here it is noted that Subjects 1 and 3 favor responding to the visual 

stimulus, while Subject 2, of course, favors responding to the right. Also 

Subject 4 favored responding to the tactile stimulus. 

Table 13 shows that fewer errors were made in response to a visual 

stimulus (Experiment 2) than were made in response to a simultaneous pres- 

entation of the same stimuli (Experiment 3). However, there were fewer errors 

in response to identical stimuli than there were in response to a single pres- 

entation of a tactile stimulus in Experiment 2 (Table 8). 

4. Experiment 4 - Four-Response Reaction Time with Either Tactile or 
Visual Stimuli 

An eight-choice reaction-time experiment was run to examine the informa- 

tion processing characteristics of the sensory system. As in previous experi- 

ments, subjects were presented with either a tactile or visual stimulus which 

indicated the direction in which a response should be made (F, B, R, L). The 

trial structure remained unchanged from previous experiments (Figure 39). 

Each subject had six sessions of 500 trials each, with average presentation 

probabilities for each of the eight stimuli, as shown in Table 14. 

The data in this experiment were again confined to the interval 90 < t < 700 

msec. This resulted in a loss of 188 observations from the 9000 responses 

analyzed (from each session only the last 375 trials were included in the data 

analysis). 

Results 

Individual data for each sense modality and each response position are 

reported in Table 15. It can be seen that there is considerable variability in 

the number of correct responses per cell. This result is due in part to unequal 

stimulus probabilities and in part to errors in responding. The average rate of 

error for this experiment was 15 percent when calculated over the last 375 

trials per session. 

Such an extraordinarily large error rate, nearly twice that ex- 

pected, demanded a fine scrutiny of the data. In Table 16 the total errors for 
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Table 13 

ERROR RATES IN EXPERIMENT 2 

1 Sub;t 1 ;a;;; 

2 0.115 

3 0.060 

4 0.050 

Average 0.078 

Visual 

0.068 0.116 ___- ~~-~ 
0.019 0.119 

0.017 0.042 
~- 

0.031 0.077 
~- 

Table 14 

AVERAGE PRESENTATION PROBABILITIES FOR EIGHT 
STIMULI - EXPERIMENT 4 

Forward Backward Right Left Total 

Tactile 0.10 0.24 0.10 0.10 0.54 

Visual 0.11 0.12 0.13 0.46 

Total 0.21 0.36 0.23 1.00 

. . 

all subjects, all sessions, and all trials indicate that out of 12, 000 observations 

nearly 17.5 percent were response errors. These data support the hypothesis 

that the largest factor affecting the error rate was the rather fine bounds 

placed on the response by the thresholds of the external equipment (Figure 38). 

Response bias must be ruled out, since the number of errors in either F-B or 

R-L are about equal. Secondly, since there appeared to be no substantial 

improvement in the error rates as sessions progressed, we cannot conclude 
that discrimination of the stimulus was a major factor. Also, all subjects had, 

immediately prior to the present experiment, engaged in an exclusively left and 

right response experiment, and yet there seems to be no clear indication that 

there exist marked differences between the number of errors in the F-B and 

R-L classes of responses, regardless of the sensory modality stimulated. 
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Table 15 

REACTION TIMES FROM EXPERIMENT 4 

Center entries are mean reaction times in msec; 

numbers in upper right corner of entries are number of observations 

Subject Forward 

1 

2 

3 

4 

186 

Tactile 397 

245 

Visual 348 

163 

Tactile 405 

233 

Visual 343 

130 

Tactile 548 

220 

Visual 459 

T Backward Right Left Mean 

337 96 186 650 

453 437 399 437 

243 227 271 973 

442 353 331 381 

475 191 172 1024 

306 428 411 363 

259 201 251 956 

348 362 371 357 

389 156 185 893 

299 397 343 345 

232 176 227 868 

345 362 330 344 

380 178 165 853 

452 503 513 489 

230 180 236 866 

431 459 435 444 

Finally, it must be remembered that the subjects were told to respond in the 

direction of the stimulus. Thus, the means of arriving at the final position of 

the joystick is highly dependent upon the initial position of the subject’s hand. 

If, for example, a left stimulus is given and the subject is holding the joystick 

at a position near the threshold for a forward response, then it is quite pos- 

sible that a slight movement forward could surpass the threshold and result in 

the recording of the response as an error. Only the position of the first 

threshold crossed was relayed to the computer by the external equipment. 
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numbers in upper right corner of total column entries are number of trials 
-~ 

Response 
Stimulus No Response Total 

F-B L-R 

2700 

182 17 81 280 

2760 

23 141 101 265 

2400 

542 87 118 747 

4080 

101 611 141 853 

Table 16 

TOTAL ERROR DISTRIBUTION FOR EXPERIMENT 4 

- 

/ Total 848 856 1 441 12145 12’ Ooo 1 

Thus, although the terminal position of the joystick may have been correct, the 

response was recorded as an error. 

A final suggestion that the initial position was indeed the reason for 

the rather large error rate comes from the fact that visual stimuli produced 

fewer errors than tactile stimuli. Since the subject was told to respond in the 

direction of the stimulus, the response to tactile stimuli is more dependent on 

the position of the hand than is the visual stimulus. Hence, more errors would 

be expected for the tactile stimulus. 

For each subject the mean reaction times to visual stimuli are shown 

in Table 15 to be shorter than the mean reaction times to tactile stimuli. Since 

the TB stimulus has probability 0.24 of occurring, nearly twice that of any other 

stimulus, it is likely that repetition effects associated with this stimulus yield a 

lower mean reaction time to tactile stimuli than would be expected if all stimuli 

had the same probability of occurrence. To determine whether or not responses 
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to the TB stimulus were unduly influencing the mean, we calculated the 

repetition effect for the TB stimulus and compared this with the effect for VB. 

These results are shown in Figure 41. 

The repetition effect is clearly more severe for TB than for VB. * 

Hence, to adjust the data and obtain a more representative estimate Of 

reaction time to equally probable stimuli, we eliminated TB and then calcu- 

lated mean reaction time to the remaining tactile stimuli. These results are 

given in Table 17. All subjects showed an average difference of 40 to 50 msec 

between tactile and visual responses in Experiment 4. The fact that this 

*Also, we note that there appears to be a recency effect at the fourth repeti- 

tion. This phenomenon is a result of the often cited “gambler’s fallacy, I1 

wherein the subject begins to expect a different stimulus. This result is 

found in numerous data. 
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FIG. 41 REACTION TIME AS A FUNCTION OF NUMBER OF REPETITIONS 
OF THE TB AND VB STIMULI - EXPERIMENT 4 
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Table 17 

TACTILE* AND VISUAL REACTION TIMES IN EXPERIMENT 4 

1 

313 

420 

549 

2 412 

504 

3 381 

L. 473 

4 519 

Visual 

973 

381 

956 

357 

868 

344 

866 

444 

* The tactile reaction times are computed excluding 

the response to the tactile backward stimulus, that is, 

the most prevalent stimulus. 

difference was not found in Experiment 1 indicates that the decision time may 

be longer for tactile input than for visual input. 

A second feature of these data is shown in Figure 42, where we have 

plotted mean reaction time as a function of repetitions of a stimulus, indicating 

the position of the response. Here any sequence of correct responses in the 

form TB, TB, VB, TB contributes one value to each of the means for repeti- 

tions of length 0, 1,2, and 3. Thus, if the probability of a position being pre- 

sented is l/4 and the trials are independent, then the probability of observing 

the above sequence is (1/4)4. Therefore, unless the probabilities are quite 

high, few responses are recorded for repetitions of, say, length ten. Although 

the data are not as orderly as might have been expected, they do show a definite 

decrease in reaction time when responses are repeated, regardless of sensory 

channel. This result suggests that a switch might govern the responses in such 

a way as to capitalize on the probability of the occurrence of a particular 

stimulus. Such a model has been discussed by Falmagne (1965), who assumes 
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FIG. 42 REACTION TIME AS A FUNCTION OF NUMBER OF REPETITIONS 
OF RESPONSE INDEPENDENT OF SENSORY CHANNEL - EXPERIMENT 4 

unique responses to each stimulus. The case here, where the same response 

is made to either of two stimuli (i. e., either the visual or tactual stimulus), 

indicates that the idea of a response switch may have a somewhat more general 

interpretation. 

To explore the switching idea in greater detail, we examined repeti- 

tions to the modality previously stimulated. The results are shown in Figure 

43. It is quite clear that if a switch with the function of providing for sensory 

epochs exists, it has no effect on the reaction time to sequentially presented 

stimuli . That is, the switch operates independently of the stimulus. 

Another interesting result shown in Figure 43 is the difference in 

reaction time between tactile and visual repetitions. Assuming there exists a 

sensory switch that operates independently of the stimulus, the reaction times 

for the two modes of stimulation should be roughly equal. However, a visual 

warning signal was used during these experiments; therefore, if the switch acts 

as postulated, and if during the l-set warning light the visual channel was being 
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FIG. 43 REACTION TIME AS A FUNCTION OF NUMBER OF REPETITIONS 
OF SENSORY CHANNEL INDEPENDENT OF RESPONSE POSITION - 
EXPERIMENT 4 

sampled, then the lapse of 0.15 set between the offset of the warning signal and 

the onset of the stimulus might be small enough to capture the switch in the 

visual mode more often than in the tactile mode. This would, in effect, cause 

a biasing of reaction time in favor of visual stimuli. Moreover, the warning 

signal occurred on every trial, and hence the effect of channel repetitions 

should have been small. 

C. DISCUSSION 

These numerous experiments suggest several hypotheses concerning 

information in the tactile and visual systems. These major results suggest 

that the human information processing system consists of (1) an input switch 

governing the time during which information can be read from the sensory 

channels; (2) some form of higher-level association of stimuli and responses; 

and (3) the response switch, which seems to have a large probability of staying 

in the position of the last response. 
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In Experiment 4 it was shown that if a switch governed reading informa- 

tion from the sensory channels, it had little, if any, effect on repeated presen- 

tation of stimuli indicating where the response should be made. This indicates 

that if there is a switch it is apparently independent of the stimulus and merely 

acts as a gate through which information may flow. More substantial evidence 

that there is, in fact, a sensory switch comes from Experiment 3, where we 

found that when subjects were simultaneously stimulated in both channels, with 

stimuli indicating conflicting responses, no increase in the mean reaction time 

was observed when compared to the case in which the indicated responses were 

identical. One hypothesis cancerning this result is that the presumed sensory 

switch is either in one of two positions. In either position, tactile or visual, it 

allows incoming information to pass, and then (and only then) it switches to a 

different channel. 

Assuming that the subject responds with high probability to the first infor- 

mation to pass the switch, we would predict that the average responses to two 

stimuli presented simultaneously would be faster than the average reaction 

times to either stimulus presented alone. Comparing the average reaction 

times for Experiments 2 and 3, we see that this is indeed the obtained result. 

The average reaction time for Experiment 3 is 313 msec, while that for Exper- 

iment 2 is 335 msec. 

Final evidence of the existence of a sensory sampler is the result obtained 

upon comparing the repetition effects for Experiments 2 and 3, shown in Figure 

44. The repetition curve for simultaneous presentations requiring identical re- 

sponses is the result of averaging two curves, one for sequences indicating 

that left responses should be made and another for sequences indicating right 

response. Both experiments involve four choices, each choice having probabil- 

ity 0.25. In Experiment 2, the four stimuli were TR, TL, VR, VL, while in 

Experiment 3 the stimuli were combinations of the stimuli used in Experiment 

2, namely TRVR, TRVL, TLVR, TLVL. Assuming a sensory sampler, we see 

that a response can be made in Experiment 3 regardless of the channel the 

switch may be monitoring, while in Experiment 2 the switch may be forced to 

change channels. Since some time must be involved in the process of changing 

channels, we expect the mean reaction time in Experiment 3 to be lower than it 

is in Experiment 2. Furthermore, the differences in repetitions should be 
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marked. The results shown in Figure 44 are in agreement with these specula- 

tions. 

A rigorous formulation of such a switching mechanism must account for 

other aspects of our data. For example, it was observed in Experiment 4 that 

repetitions of visual stimuli produced reaction times which were, on the aver- 

age, some 40 to 50 msec faster than tactile stimuli. (Figure 43. ) Moreover, 

in Experiment 3, one subject who had received extensive training in tactual 

perception showed a distinct bias toward responding to tactile rather than visual 

stimuli. There are several possible explanations for these results. It is 

possible that the biases revealed in Experiment 3 reflect a bias in the sen- 

sory sampler. If this is in fact true, then one should be able to bias the switch 

through experimental manipulations. A variety of conditions for a warning sig- 

nal would produce a bias of the sensory sampler. 

Figure 45 shows that reaction time increases more per alternative for tac- 

tile stimuli than it does for visual. An apparent explanation for the increase in 

tactile reaction time as the number of alternatives increases is that the subject 

109 



I 2 4 
NUMBER OF RESPONSE CHOICES 

FIG. 45 MEAN REACTION TIME AS A FUNCTION 
OF NUMBER OF ALTERNATIVES - 
EXPERIMENTS 1, 2, 3, AND 4 

may more closely attend to visual stimuli. This conjecture is supported by the 

following facts: 

(1) It has been shown in numerous simple reaction-time experiments that 

(2) The reaction time of one subject who favored tactile stimuli in Experi- 

ment 3 was, in every case, higher than that of the other subjects. 

(3) Repetitions of visual stimuli produce lower reaction times than repeti- 

tions of tactile stimuli. 

(4) The visual warning light may have tended to bias the subject to attend 

to the visual channel. 

In choice reaction time (CRT) some controversy has centered around the 

question of whether or not the number of alternatives in the experiment affects 

110 



the mean reaction time. Some investigators claim that for well-trained sub- 

jects there should be no difference in reaction time for experiments with vary- 

ing degrees of choice. Essentially this amounts to stating that choice reaction 

times should not vary as a function of stimulus probability. Furthermore, the 

assertion that reaction time is independent of stimulus probabilities implies 

that either (1) repetition effects must be identical for all stimuli, or (2) that 

there should be no repetition effect at all for well-trained subjects. Figure 42 

shows that for subjects who had received extensive training in making right and 

left responses, a repetition effect persists; hence (2) may be ruled out. In ad- 

dition, the assumption that repetitions must be identical for all stimuli is also 

voided. Finally, it is quite clear that reaction time varies as a function of 

stimulus probability. 

We conclude that since repetition effects are more extreme for stimuli that 

occur more often, observed differences between CRT experiments of varying 

degrees of choice are attributable to the effects of repetitions. In experiments 

with a large number of alternatives, N, the probability of a lengthy sequence of 

a particular stimulus is lower than the corresponding probability for an experi- 

ment with a smaller number of alternatives, M. Thus, when all data from a 

CRT experiment of degree N are averaged, there will be fewer lengthy repeti- 

tions and hence fewer low values of reaction time contributing to the mean re- 

action time than there will be for a CRT experiment with degree M. 

. . 

These ideas suggest an alternative to the rather elaborate mathematical 

model proposed by Falmagne (1965). If we assume that there are fixed time 

constants associated with the repetition of a response, then we may be able to 

account for the observed differences in reaction time for CRT experiments with 

varying degrees of choice on the basis of how often a particular repetition effect 

is observed. We formalized these notions as follows: 

Let TN = the overall mean reaction time for an experiment of degree N 

.th ti = the mean reaction time for the 1 repetition 

NV = $9 * - * , sN) be the set of stimuli for a CRT experimsart of de- 
gree N 

p(si) = probability of occurrence of si 
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p(si, k) = probability of observing at least k repeated presentations of si. 

Now, it can easily be shown that for multinomially distributed si, 

P(‘i’k) = [‘-P(‘i)I IP(si)Ik. (4) 

Suppose that p(si) is uniformly distributed over S(N) then 

p(si, k) = (N-l)(N)-(k+l) 

N Q) 

TN = 
cc P (‘i’k) tk’ 

i=l l~l 

Since there are N such sequences for S(N), the marginal probability becomes 

p(si, k) = (N-l)(N)-k. 

Or, using only the marginal distributions p(si, k), we can write 

N 

TN = 1 P (si,k) tk (5) 
i=l 

There are several reasons for believing that reaction time in CRT is solely a 

function of stimulus probability. Data from Stone and Calloway (1964) and Link 

(1964) indicate that mean reaction times to stimuli of, say, probability 0.5 are 

the same regardless of the degree of choice in a CRT experiment. 

Estimates of the tk may be obtained if several experiments of differing de- 

grees of choice are run. As a first approximation, we may use the marginal 

probabilities p (si, k) as the estimate of the kth repetition of a stimulus. Then 

for every TN, Eq. (5) holds. We can write this in matrix form as 

T = I?& 

,, 

where 

T is a column vector containing the various values of TN 

P is a matrix whose first row is p(si, 1) p(si, 2) . . . for S(N) 

and whose second row is p(Si, 1) p(Si, 2) . . . for S(N+l) 
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and 

t is a column vector containing the tk of Eq (5). 

Then 

P-l T = t. 

For a finite number of trials in an experiment, the expected number of oc- 

currences of a sequence of repetitions of length k becomes small as k becomes 

large. Moreover, such occurrences become even smaller as N is increased. 

Hence it is in most cases sufficient to treat P as a matrix of finite order, de- 

pending upon the number of trials in the experiment. 

The fact that as N becomes large the values in the columns of P become 

small simply illustrates the fact that fewer and fewer repetitions are likely to 

be observed. This dictates that estimates of the tk for large values of k will be 

insignificant in their contribution to the mean for large values of N. If one 

could estimate the first few t i, apply these values to values of N larger than 

those used in the estimation, and predict the mean reaction time, then a close 

fit to observed values would indicate that our assumptions may be valid. 

However, due to the effects of intervening items, the first point on the rep- 

etition curve is often larger than expected on the basis of Eq. (5). To account 

simultaneously for both the effects of repetition and intervention of stimuli, we 

derive the probability that there are exactly m intervening stimuli between the 

last presentation of si and a run of at least k repetitions of s.. 

Let (“i, k9 m ) = ( ‘i’n’ ‘j f i’ n+l’ ’ . ’ ) ‘j ~ii’ n+m’lsi,n+m+l, ’ ’ . ) 

S 
> i’ n+m+k 

Then 

P(si) [‘-P(si)Im p(si)k if k, m > o 

P (s ) = 
i’ k’ m 0 otherwise 
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We show that 

~ z: ~ P(‘i, k’ m) = ~ ~ [l-P(si)Im 
i=L IF1 m=l i=l k-1 

m 
= 

cc P(‘i) 
k+l 

c D-P(si)lm-l 
\m=o > 

= cc P(s3k+1 $j -’ c 1 i 

= cc p(si)k+l ?!&) [ 1 i 

n m 

i=l IF1 

= C [l-P(‘i)l C P(si)k-l 
i=l IF0 

n 
= 

c 
i=l 

[l’P(‘i)l [~ -l] 

n 

i=l 
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The joint distribution is shown in Table 18 below: 

Table 18 

JOINT DISTRIBUTION OF REPETITIONS AND INTERVENTIONS 

mk 

Repetitions 

1 2 3 4 5 . . . .=a 

Interventions 

Values of p(si, k, m) = p(~~)~+~[l-p(~~)]~ = pk+l qm 

For the marginal distributions we have 

P(‘i’ k, ’ ) = 
c P(‘i* k’ m) = P(‘i) 

k+l 
c I1-P(si)lm 

m=l m=l 

= P(siJk+l & -1 
(-) 

= p(si)k+l GJ! 
( > i 
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Similarly 

m ) = c P(‘i’ k) m) = [l-P(si)lm p(si)k+l 

IF0 

= il-Ptsi)lm P(‘i) [+ -‘I 

= p(si)2 [l-p(si)]m-l 

Given the marginal distributions, or the probabilities of (si, k, m), we can 

easily calculate the mean reaction time for any CRT experiment, provided that 

some previous estimate of the times for repetitions are also given. Our data, 

at present, are hardly sufficient to allow a test of these hypotheses. However, 

the fact that we are able to specify a probabilistic design for at least part of the 

response indicates that the development of an integrated mathematical state- 

ment of characteristics of the sensory sampler, decision mechanism, and re- 

sponse mechanism is within easy reach. Additional experiments are needed to 

support even a simplified model of tactile and visual processing systems. 

D. SUMMARY 

In summary we have shed some light on the functioning of a central switch- 

ing mechanism that may govern information flow from the sensory channels. A 

single switch operating more or less at random and independent of the particu- 

lar stimulus allows such a mechanism to create in its wake a series of sensory 

epochs, times during which information can be read from the sensory channels. 

This gives rise to the seemingly bizarre prediction that for simultaneous pres- 

entation of stimuli requiring conflicting responses, the reaction time will be 

lower than the reaction time to either stimulus presented separately. 
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Furthermore, it predicts that reaction time for simultaneously presented stim- 

uli requiring conflicting responses will be equal to the reaction time for simul- 

taneously presented stimuli requiring identical responses. 

Secondly, we have shown that reaction time for tactile stimuli is longer in 

CRT than it is for visual stimuli, and we have accounted for this on the basis of 

a central sensory monitor. On the basis of these experiments we conclude that 

the differences in reaction time between tactile and visual stimuli, as the num- 

ber of alternatives in CRT are increased, is due to the effects of: 

(1) The channel which the sensory switch is monitoring at the time of 

stimulation 

(2) The effects of repetitions and interventions of stimuli in the sequence 

of trials during the experiment. 

Hence, under our experimental conditions, we find that postulating a sensory 

sampler will account for differences between reaction time to tactile and visual 

stimuli. In general, other factors such as stimulus intensity will also influence 

reaction time. The more intense a stimulus, the more likely it is to reach the 

sensory sampler before a weaker stimulus presented simultaneously. Howev- 

er, it appears that decision time is quite probably of the same duration regard- 

less of the stimulus. 

Finally, a simple mathematical model that attributes the differences in re- 

action time for differing numbers of alternatives to the effect of interventions 

and repetitions of stimuli has been presented. With this model we are able to 

show that the well-lmown repetition effect is appropriately localized in the out- 

put mechanism of the subject. 
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VII VISUAL AND TACTILE TRACKING WITH STEP COMMANDS 

By James C. Bliss, William R. Brody, and Barton Lane 

A useful technique in developing models for human operator performance 

in manual control is to compare the responses obtained with different sensory 

inputs. In this way, sensory effects can be distinguished from response 

features primarily caused by the central and neuromuscular systems 

Several experiments described here are relevant to the development of 

models to describe the eye-hand and ,&in-hand coordination control systems. 

In the basic experiment, hand responses were recorded for various step com- 

mands and feedback conditions, and with analogous visual and tactile displays. 

Similar experiments involving eye tracking and hand tracking are reviewed by 

Young and Stark (1965)*. 

A. INITIAL EXPERIMENT 

An important factor in tracking experiments with abrupt changes in the 

command signal and feedback conditions is the adaptive behavior of the subject. 

In fact, once a subject has made a particular response to a new situation, that 

subject may choose a new mode of behavior, which means that any model 

describing his initial behavior probably does not describe his new behavior. 

To illustrate this point, an initial experiment performed on three untrained 

subjects is described below. The responses presented are the very first 

responses they made with the apparatus. When these experiments were 

repeated (described in subsequent sections) with more subjects, more trials 

per subject, and under more carefully controlled conditions, several features 

of the results were not substantiated. A possible explanation for this is the 

difference between initial behavior and the behavior after even a small amount 

of experience. 

*References are given at the end of this section. 
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1. Method 

The experimental arrangement was for a single-axis pursuit tracking task. 

It is shown in Figure 46 for the tactile input and in Figure 47 for visual input. 

In the tactile case, the subject’s task was to move his hand so that the activated 

airjet stimulator was always aimed at a specific anatomical position near the 

proximal end of the index finger. This position was marked with a gummed 

reinforcement for loose-leaf notebook paper holes. Similarly, in the visual 

case the subject’s task was to keep the pointer aligned with the neon light that 

was illuminated. In a few cases, the subject was presented both the tactile and 

visual displays simultaneously. The subject always kept his hand fixed with 

respect to the side arm controller, which provided an electrical indication of 

his hand position. 

The command signal, hand position, display position, and error were 

recorded on a four-channel chart recorder. Even though the displays were 

discrete, with 13 stimulators in each case, it appeared from the records with 

step commands of several quantization levels in amplitude, that the quantiza- 

tion was fine enough that the display could be considered continuous for these 

conditions. 

A Donner 3100 analog computer was used to close an external feedback 

loop around the subject, as shown in Figure 48. The gain of this loop was 

varied from -2 to +2. In this situation, the subject presumably notes the posi- 

tion of the activated display stimulator, compares it with his hand position 

visually and kinesthetically, and estimates an error, which he translates into 

corrective hand movements. According to the terminology used here, the dis- 

play position d is related to the command signal c and the hand position r by the 

following equation: 

d=c+Hr, 

where H is the feedback gain. Thus for a feedback gain of +l, the command 

and response are simply summed to determine the display position. The error, 

d-r, is then equal to the command, and the subject’s internal feedback is can- 

celled, producing an open-loop situation. Thus, with a step command, the 

activated stimulator always stays a fixed distance ahead of the hand position 

(constant error), and we should expect the subject to rapidly go off scale. 
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FIG. 47 EXPERIMENTAL ARRANGEMENT FOR PURSUIT TRACKING 
WITH THE VISUAL DISPLAY 
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The amplitude and sign of the step commands and the value of feedback 

gain were varied randomly. Thus, preceding each trial, the subject was 

unaware of the direction or magnitude of the next step command and the feed- 

back gain. Three subjects were used, and a total of 98 trials were performed. 

2. Results 

Figure 49 shows responses of the three subjects with +l feedback, step 

commands of various sizes and polarities, and the visual and tactile displays. 

Note that in these examples, for both tactile and visual displays, the hand 

movements are separated by stationary periods, giving a “staircase” appear- 

ance to the responses. Also note that, consistent with each subject, the dura- 

tion of these stationary hand periods is longer with the visual display than with 

the tactile display. 

If the feedback gain is negative, then as the subject moves to reduce the 

error, the display position moves in the opposite direction, which also tends to 

reduce the error. Figure 50 shows responses of three subjects for a feedback 

gain of -1, step command signals of various amplitudes, and the tactile and 

visual displays. Note the striking difference between the responses with the 

tactile display and the responses with the visual display. The tactile responses 

show a slight overshoot, while the visual displays are oscillatory with a period 

ranging from 750 to 1070 msec. 
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Figures 51 and 52 illustrate responses for feedback gains over the range 

-2 to +2. Note the progression from decaying oscillations to expanding oscil- 

lations for the visual display and feedback gains of -l/2, -1, and -2, respec- 

tively. Also note the %taircasel’ with increasing size steps, the “staircase” 

with uniform steps, and the “staircase” with decreasing size steps, for the 

tactile display and feedback gains of +2, +l , and +1/2, respectively. 

Figure 53 illustrates the performance when the tactile and visual displays 

were used simultaneously. For positive feedback gains, note that, like the 

results with the tactile display alone, the stationary parts of the response are 

relatively short. Also note that for negative feedback gains, the responses are 

less oscillatory than those with the visual display alone. 

B. EXPERIMENT 1: BASIC EXPERIMENT 

The experimental paradigm of the initial experiment was repeated with 

several improvements in procedure and over a wider range of experimental 

conditions. Since more trials were run on each subject, the subjects were of 

necessity more experienced than in the initial experiment. 

1. Method 

As described in the initial experiment, a row of 13 neon lights and a row 

of 13 airjet stimulators were arranged above a joystick. The airjets were 

collinearly spaced l/2 inch apart, from the top of the ventral side of the index 

finger of the right hand to the wrist. In the tactile experiment, the subject’s 

task was to move his hand so that the activated airjet stimulator was always 

aimed at a specific position near the proximal end of the index finger. Simi- 

larly, in the visual experiment, the subject’s task was to keep the pointer 

aligned with the illuminated neon light. In some cases the subject was pre- 

sented both the tactile and visual displays simultaneously. 

The subject always kept his hand fixed with respect to a side arm con- 

troller, which provided an electrical indication of hand position. A Dormer 

3100 analog computer was used to close an external feedback loop around the 

subject, as shown in Figure 48. In this situation, the subject presumably (1) 

noted the position of the activated display stimulator; (2) compared it with his 

hand position, as estimated visually and proprioceptively; and (3) estimated the 
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error, which he translated into a corrective hand movement. Thus, the exper- 

iment was a single-axis pursuit tracking task. * The instructions given each 

subject were: 

IIn this experiment you are to move the control stick either forward 

or backward in response to visual or tactile command signals, or 

both visual and tactile simultaneously. The visual command signal 

will consist of a light turned on; the tactile signal will be a correspond- 

ing airjet turned on; or they could both be on simultaneously. 

“Your task is to move the control stick as quickly as possible to point 

to the proper light or airjet, and continue to move until the error is 

zero. That is, in the visual case, you are to continue to move as 

quickly as possible until the pointer coincides with whatever light is on; 

in the tactile case, you are to continue to move as quickly as possible 

until the airjet points to the designated area at the knuckle. 

“In between runs the centerlight and airjet will remain on; I will say 

‘ready’, and at some time immediately following (say, 1 or 2 seconds) 

you will receive the stimulus. You will then move until the error is 

zero, after which time you will be told to stop. Each run will take 

about 10 seconds. ” 

The values of command signal and feedback for which hand responses were 

obtained are shown in Table 19. Zero final error was possible for all the con- 

ditions except those with +l and +2 feedback. On each session, the 26 different 

conditions of Table 19 were presented in random order with either the visual 

display, the tactile display, or the visual and tactile displays simultaneously. I, 
Then the display was changed and the conditions were presented again in a 

*Perhaps the visual and tactile displays would have been more closely analo- 

gous if an airjet, always activated, had been fixed to the hand and continuously 

indicated the anatomical reference position. This airjet would then have 

played the role of the pointer in the visual display. However, an anatomical 

position can be remembered tactually very well, so that this “pointer” airjet 

was considered to be unnecessary. 
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CONDITIONS 

TABLE 19 

FOR TRACKING EXPERIMENT 

FEEDBACK(H) 

-2 X X X X X X 

-1 

0 
I 

1 
I 

2 X X X X X X 

, 3 X 

4 X X 

5 

6 X X X X 

X DENOTES THE TEST CONDITIONS 

different random order. This process was repeated with the third display con- 

dition, so that there were 78 trials in any session--26 with the visual display, 

26 with the tactile display, and 26 with both displays. Four subjects were used 

and each subject had three sessions, so that three trials at every feedback, 
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command, and display condition were obtained. The order in which the dis- 

plays (visual, tactile, or both) were presented was balanced over these three 

sessions. 

Special precautions were taken to ensure that prior to the step command 

signal, the subject was unaware of the feedback condition for the next trial. 

These precautions included turning off the feedback until the step was pre- 

sented, so that small preliminary movements of the stick would not convey the 

feedback information. 

2. Results 

The first method used to reduce the data was to classify the responses 

qualitatively according to an arbitrary set of response types. Figures 54 and 

55 show the response types used for positive and negative feedback respec- 

tively; Figure 56 shows the types used for zero feedback. Histograms, aver- 

aged across subjects, resulting from this classification procedure are also 

shown in these figures. 

From these histograms, a type C response for negative feedback was 

chosen as representative for more quantitative analysis because of its fre- 

quency of occurrence. Thus, all of the type C negative feedback responses 

were examined, and the parameters shown in Figure 57 were measured. 

Table 20 gives the averages of the time measurements from these responses. 

Similarly, for positive external feedback, response types B, C , and D 

were considered representative, and the parameters shown in Figure 58 were 

quantitatively measured for each of these responses. The averages from these 

data are shown in Table 21. .’ 

3. Discussion 

The response types of Figures 54 and 55 are arranged in order of increas- 

ing oscillatory behavior. Thus, the histograms indicate quantitatively the 

degree of stability of the responses. In contrast with the exploratory results 

described in the initial experiment, no consistent qualitative difference in the 

degree of stability was obtained for the visual, tactile, or simultaneous visual 
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FIG. 54 HISTOGRAMS OF TYPES OF RESPONSES OBTAINED 
WITH POSITIVE FEEDBACK AND THE TACTILE, 
VISUAL, AND BOTH DISPLAY CONDITIONS 

and tactile displays. In fact, few oscillations (type E responses, negative 

feedback) were obtained with any display, and there were slightly more type E 

responses with the tactile display than with the other display conditions. This 

result suggests that the similarity between responses with visual and tactile 

displays and negative feedback is greater than was first thought. Moreover, 

it is difficult to explain the lack of type E (negative feedback) responses with a 

sampled data model. 

Where both displays were used simultaneously, the subjects reported 

that they only attended to the visual display, ignoring the tactile display. Thus 

it is surprising that the average simultaneous display histograms are more 

like a combination of the tactile and visual histograms. 

Consistent with the exploratory results of the initial experiment, the mean 

of the reaction times with both displays used simultaneously was shorter than 

the means for either the visual or tactile displays. This result is also con- 

sistent with many other findings, such as those in Sec. VI of this report. 
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Also consistent with the initial experiment, the flat regions in the positive 

feedback Waircase” responses (T3) and around the peak of the negative feed- 

back responses (T3) were longer with the visual display than with the tactile 

display. However, the actual movement times, T2 and T4., were shorter with ’ 

the visual display than with the tactile display. The overall duration of the 

response was shortest with both displays used simultaneously, and was shorter 

for the visual display than the tactile display. 

A linearity comparison of the various displays reveals another display- 

dependent difference in the responses. Figure 59 shows that the responses 

with the tactile display were much more nonlinear than with the other displays. 

This result suggests a high-gain saturation element in the tactile model. 
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TABLE 21 
TIME AVERAGES FOR TYPES 8, C,D, BC,ANDBD 

RESPONSES - (msec) POSITIVE FEEDBACK 

PARAMETER I TACTILE I VISUAL I BC ITH 

L;,-- 1 359 332 3 IO 

Tz 249 202 209 

L- T3 142 152 133 

T4 297 248 250 
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Figure 60 shows three models of the human operator experiments that are 

appropriate to the initial experiment results and the basic experiment results. 

The terminology “sampling model, ” “Dl Model, ‘I and rrD1 Model” will be used 

to refer to these models. 

It is easy to see how each of these three models can produce the features 

characteristic of hand responses to step commands,. These response features 
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are produced wheqan external feedback loop with variable gain is introduced, 

as shown in Figure 61. Then, with the external feedback H equal to +l, a 

“staircase” response is obtained, with the steps about 0.3 to 0.5 set apart and 

of equal amplitude. With H equal to -1, oscillations are sometimes obtained 

with a frequency of about 1 cps. The “staircase” response for positive external 

feedback is explained by the sampler in the sampling model, by the delay D1 in 

the DI model, and by the delay D’ in the D’ model. The oscillations for negative 

external feedback are caused by the sampler in the sampling model; whether 

oscillations are obtained in the other two models depends on the remainder of 

the system dynamics. 

Young and Stark (1965).propose a sampled-data model for eye tracking and 

analyze it in some detail. For that reason, only the D1 and D’ models are 

analyzed here. The essential difference in these two models is determined by 

whether display perception is delayed with respect to hand-position perception 

or vice versa. Also, D1 contributes to reaction time in the D1 model, while 

reaction time in the D’ model is a result of the dynamics only. 

Actually, a more comprehensive model might contain both D1 and D’. In 

that case, whether D1 - D’ is positive or negative would be of primary interest. 

The D1 and D’ models can be considered first approximations to the more 

comprehensive model, with D1 - D’ positive and with D1 - D’ negative, respec- 

tively. Also, since delays can be produced in many ways, including sampling, 

quantization, and filtering, pure delays in the D1 and D’ models can be con- 

sidered to be crude approximations to these possibilities. 

Since stability is a function of the loop gain only, consider the simplified D’ 

model shown in Figure 62 which can either represent a D’ model or the loop 
c 

dynamics of a D1 model. Because of the pure delay, there are an infinite num- 

ber of branches of the root locus. Figure 63 is a plot of two branches, the 

principal branch and the next lowest one. Since the plot is symmetric with re- 

spect to the u axis, only the part for w > 0 is plotted, the part for w < 0 being 

a mirror image of the o > 0 plot. 

The essential characteristics of this root locus are that for very small 

values of forward gain A, there are two poles on the real axis and an infinity of 

poles on higher-order branches. As A increases to values greater than the 
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critical value l/eD, the two low-order conjugate complex poles break away from 

the real axis. At a value of A = 7r/2D, these two poles reach the imaginary 

axis, and the corresponding solutions become sustained oscillations. Higher 

values of A give right-half-plane solutions as well as the solutions on other 

branches of the root locus. 

Because of stability, the values of A of interest in modeling hand responses 

are between A = 0 and x/2D. Thus, we should expect behavior resulting from 

conjugate complex poles or poles on the real axis. Moreover, with fixed delay 

D, increasing the loop gain A moves the poles along the root locus, as shown 
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in Figure 63. Alternately, for fixed A, varying the delay D scales the root 

locus. An increase in D decreases stability. 

To examine the behavior of these systems in more detail, the models of 

Figure 64 were programmed on a Donner 3100 analog computer, using the 

model 3770 transport delay for the system delays D1, D2, and D’. Responses 

of these models have been obtained for various values of the parameters A, r _- - 
on, f; , D1, D2, and D ’ as well as the external feedback gain K. The method ” 

employed in this simulation was (1) to obtain from these models responses 

which qualitatively resembled the actual hand responses, and (2) to alter the 

various parameters, one at a time, from these standard values. 

Tables 22 and 23 and Figures 65 through 73 illustrate the types of results 

obtained. In general, similar responses can be obtained from both the D1 and 

D’ models with proper parametric values. At least qualitatively, both models 

can produce responses similar to actual hand responses. The value of on 

needed in the models (about 20 rad/sec) is much greater than the typical values 
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Table 22 

SIMILAR FEATURES OF Di AND D’ MODELS 
~-~~ 

External 
Feedback 

Comment Figures 

0 Simple “double parabolic” response. Increasing A 65 
changes the character of the response from Ystair- 
case” to underdamped and decreases the rise time. 
Often a second “corrective” response is made after 
the initial response. 

+l Wtaircase” response. Increasing A increases the 
height and rise time of the 9taircase” steps. De- 
creasing !Z increases the oscillatory nature of the 
responses. 

66 
68 
69 

-1 Response varies from slight overshoot to oscilla- 70 
tions . Increasing A and decreasing 5 tends to 71 
make the responses more oscillatory. 72 

Table 23 

DIFFERENCES OF DI AND D’ MODELS 

External 
Feedback 

Comment Figures 

I O I For same reaction time, DI model has less delay 
in the loop than the D’ model. I -- I 

+l Character of error signals is grossly different 
between the two models. 

67 

-1 Character of responses is grossly different be- 70 
tween the two models for the same damping 5. 71 

-SDext 
The duration of the %taircase~~ steps becomes 73 

+e greater in the D model and less in the D’ model 
as the external eedback delay is increased. 1 

of about 1.5 rad/sec for continuous command-signal tracking models. How- 

ever, the “freewheeling” w, for the hand-arm system is about 40 rad/sec. 

For the D’ model we were unable to find parametric values which pro- 

duced as realistic responses as the D1 model. Moreover, hand responses with 

external feedback delay resemble the Dl more than the D’ model. In summary, 
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(D, = 0.2 set; D, = 0.1 set; 6 = 0.1; w = rad/sec) ” 

in spite of the simplicity of these linear models, they both match actual hand 

responses remarkably well, with the D1 model appearing slightly more likely 

than the D’ model. 

C. EXPERIMENT 2: EXTERNAL FEEDBACK DELAY 

In order to help distinguish between the D1 and D’ model possibilities, an 

experiment was performed in which delay was introduced into the external 

feedback loop. For the D’ model there should be a value of external feedback 

delay that cancels the internal feedback loop of the model and thus gives an ’ 

open-loop response. If the open-loop system is as we suppose, this open-loop 

response should be smooth and free of the steps characteristic of the ?&air- 

case” response. On the other hand, for the D1 model, external feedback delay 

should increase the duration of the steps, as shown in Figure 73. 

The data from this experiment were reduced in the same manner as the 

positive external feedback data; the parameters measured are shown in Figure 

58. Figure 74 shows that the effect of the external delay was to increase the 

duration of the steps (T3) for all display conditions except the tactile display 
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FIG. 66 SIMULATED RESPONSES FOR + 1 
EXTERNAL FEEDBACK GAIN 

and an external feedback delay of less than 100 msec. Thus, the results sup- 

port the DI model for the visual display and both (simultaneous) displays, but 

the D’ model is suggested for the tactile display. 

D. EXPERIMENTS: DISTINGUISHING BETWEEN MODELS 

An experiment was conducted to determine if a delay between display per- 

ception and hand position perception, or vice versa, could be measured 

directly. It was felt that if successful, this experiment would provide an 

independent means of distinguishing between a delay in the feedforward path 

outside the feedback loop, and one in the feedback path, as suggested by the DI 

and D’ models, respectively. In the experiment performed, the subject was 

told to move a joystick toward a tactually presented target. While the subject 

moved the joystick in the direction of the target, he received another tactile 
stimulus called a marker. His task was to decide whether this stimulus was to 

145 



(a) D’ MODEL WITH D’= 0.4sec, D2 =0.3sec, 

A= 3, 5 =0.02, w = 20 rad/sec 

Irlllllllll 

(b) D’ MODEL WITH D’ = 0.1 set, 

A = 3, (.=0.02, w, = 20 rodisec 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

TIME - seconds 

(c 1 D, MODEL WITH D, = 0.24 set, D,= 0.06 sec. 

A=3, 5=0.2, wn= 20rad/sec 
Tl-4719-51 

FIG. 67 SIMULATED ERROR CURVES FOR +I 
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the right or left (or forward or backward, respectively) of a predesignated 

point. 

Analogous visual experiments have been reported by Matin (1965). He 

describes two experiments, one in which the marker position is compared 

to the target position, and one in which the marker position is compared to the 

fixation or control position. These two experiments give contradictory results, 

the latter one suggesting a D’ model, the former suggesting no relative delays. 

[These contradictory results can be neatly explained by the model suggested by 

Massa (1964).] 
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The results of our experiment indicate a high degree of variability between 

individual subjects and implies that a given subject may employ one of several 

“strategies” in order to localize the stimulus in space and time. While no 

definite conclusions can be drawn from our data so far, it appears that valuable 

insight might be gained from further research in this area. 

1. Description of Experiment 

In a typical experiment, the subject is seated at a control console with his . 
‘hand on the handle of a joystick, which is constrained to move along one 

dimension. Above the joystick is a linear array of 13 airjet stimulators (fixed 

with respect to the joystick/hand configuration) whose function is to stimulate 

the upper portion of the outstretched hand from the tip of the index finger to 

the wrist. In the fixed position, the subject centers the joystick by placing his 

knuckle directly under the center airjet stimulator. Throughout the experi- 

ment, the knuckle acts as a hand/joystick position indicator. 
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FIG. 69 EFFECT OF 6 D, MODEL RESPONSE 
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(D, = 0.2 set; D, = 0.1 set; 
A = 3; on = 20 radhec) 

With the center (fixed) airjet turned on, the subject centers the joystick 

for several seconds. At a random time, the center airjet is turned off and a 

peripheral airjet to the right or left of center is turned on for about 100 msec. ,’ 
- 

In this particular experiment, the peripheral airjet, called the target, was 

five airjets .to either the right or left of center, and the subject was instructed 

to move the joystick under the target airjet as rapidly as possible. 

Since subject reaction time is typically about 300 msec, the target airjet 

is off before the subject begins moving the joystick. When the subject has 

moved the joystick a predetermined distance (called the threshold), another 

stimulus, the “marker” airjet, is turned on for about 25 msec. The marker in 

this experiment was either zero, one, two, or three airjets away from center, 
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FIG. 70 EFFECT OF A ON D’ MODEL RESPONSE WITH -1 
EXTERNAL FEEDBACK GAIN (D’ = 0.1 set; 
D, = 0.3 set; ( = 0.04; on = 20 rad/‘sec) 

to the left or right, and the values of threshold and marker were varied in a 

random fashion. The subject’s task was to report whether the marker was to 

the left or right of the center fixed airjet. 

This experiment included two values of threshold, seven values of marker, 

and two target values, making a total of 28 different stimulus-threshold 
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FIG. 71 EFFECT OF A ON D, MODEL RESPONSE WITH -1 EXTERNAL 
FEEDBACK GAIN (D, = 0.1 set; D, = 0.2 set; 6 = 0.04; wn = 20 radhec) 

combinations. Each subject was given a scheduled run consisting of these 28 

different conditions repeated four times for a total of 112 trials. These 1-12 

runs constituted about one l-hour session. Four subjects (Subjects K, F, A, ,_ -- 
and C) were used, and each subject had three sessions, one session per day. (---- 

No preconditioning was used, nor was any reinforcement given during or after 

any of the trials. 

All the subjects were famiIiar with the apparatus, having participated in 

the experiment in visual and tact& tracking of step inputs conducted pre- 

viously. 

Figure 75 shows a typical position vs. time plot of a subject’s responses. 

Figure 75(a) is a plot for a threshold of 0.05, and Figure 75(b) is the 
corresponding plot for a threshold of 0.25. 
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FIG. 72 EFFECT OF < ON D, MODEL RESPONSE FOR -1 EXTERNAL FEEDBACK 
GAIN (D, = 0.2 set; D, = 0.1 set; A = 3; on = 20 rad/sec) 

2. Results 

The data are best summarized in the histograms of the subjects’ re- 

sponses, shown in Figures 76(a) and (b). These histograms show the number 

of correct and incorrect responses for various values of marker. In these 

plots, the plus values correspond to marker values which were on the same 

side of the center as the target airjet; e.g. , if the target was on the left, then 

a marker value of +2 would correspond to a marker two airjets to the left of 
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the center fixed airjet. There are two histograms for each subject, corre- 

-spending to the two values of threshold. 

It is evident from the histograms that there was considerable variation 

from subject to subject. Subject K, for example, seemed to be heavily biased 

to reply that the marker was on the same side as the target; his responses are 

fairly independent of marker position. Although Subjects A, F, and C show 

dissimilar histograms, they all has a tendency to be more accurate for large 

negative marker values (e. g. , -3) than for small negative marker values 

(e.g. , -1). In addition, the shaded portions of the histograms of these subjects 

show a shift toward the right when the threshold increased from 0.05 to 0.25. 
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Initially, it was hoped that some insight could be gained into the process 

by which a tactile stimulus can be localized when there is relative motion be- 

tween the stimulus and the stimulus receptor. Of particular interest was the 

investigation to determine whether any delays, such as a D1 or a D’ , existed. 

In Figure 77(a) a typical response curve (position vs. time) is shown along with 

the marker stimulus. If the system had an effective D1 delay, then the per- 

ception of the marker would be delayed, or shifted to the right along the time 

axis. Thus, if D1 > 10 msec and if the marker were at -1, then the delay 

would shift the perception of the marker positively and the subject would 
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respond “plus”. * On the other hand, as shown in Figure 77(b), if the system 

had a D’ delay, the subject would perceive the stimulus at the proper time, but 

because of a delay in proprioceptive feedback, he would perceive his hand to 

be where it actually was D’ seconds ago. The net effect would be a negative 

shift of marker, so that a +l marker would elicit a “minus” response from the 

subject. 

Referring again to Figures 77(a) and 77(b), one can see that if either a 

D1 or D’ delay existed, a “crossover” would occur in correct vs. incorrect 

responses, provided that one of these delays was on the order of 10 msec. 

From the data of Figure 76 it is apparent that such a crossover occurs in the 

histograms of Subjects F, C, and A. On this limited basis, one might con- 

clude that a D1 delay exists in the human operator. However, if one mvesti- 

gates the behavior of the data with an increase in threshold, it appears that the 

crossover point is insensitive to the threshold value. 

The threshold value of 0.25 occurs at a point in the response of the subject 

when the velocity of the hand is at least as great as, if not greater than, the 

corresponding value for 0.05 threshold; therefore, if the human operator were 

operating as a D1 system, one should predict that the crossover point would 

move away from center. Because this predicted shift is not observed, we can- 

not accept the conclusion that our experiment completely specifies a D1 model. 

After some discussion with the subjects, it appeared that there were some 

problems in the experimental design that led to effects which could not be 

eliminated from the data and which might have obscured any D1 or D’ delay, 

if one existed. 

3. Problems with the Experiment 

There are many problems associated with the design of this exper~ent 

which may tend to obscure those properties of the human operator which the 

experiment was designed to measure. A few of these problems are discussed 

below. 

*Assuming no errors in hand position perception and perception of the anatomi- 

cal location of stimulus by the subject. 
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The first problem is one of poor tactile resolution. The marker pulse is 

short and somewhat faint, and in addition, airjet spacing is small, so that 

errors due to poor tactile resolution will occur. Presumably these errors will 

tend to be random and cancel out as a great many experimental trials are con- 

ducted. Nevertheless, it would be much more convenient if a different display 

scheme could be used to improve the static resolution. 

A second and somewhat more difficult problem to settle is the question of 

how the subject responds to the experiment. The subject is faced with a diffi- 

cult forced-choice situation for which he is given no prior conditioning. In 

this situation, the subject tends to develop his own strategy, that is, condition 

himself to a particular scheme which seems most reliable to him. Along with 

this situation, one must allow for any preference which the subject might have 

for saying “right” rather than “left”, or vice-versa. The latter conditions is 

fairly easy to account for and measure; the former condition is more difficult 

to handle. 

At the conclusion of the experiment, one of the subjects (Subject C) was 

quite effective in delineating his strategy for making his spatial localizations 

of the stimuli. He stated that his hand was moving too fast to obtain any useful 

information about where his hand was when the marker stimulus occurred, and 

he therefore used short-term storage characteristics of the tactile sensation 

to remember the point on his hand at which the marker stimulus occurred; 

then he always assumed (independent of threshold) that the reference position 

on his hand was under the target airjet when the marker occurred. Using this 

information, he was able to extrapolate and tell whether he thought the marker 

was to the right or left of center. _/ ‘. 

According to this scheme, it is a simple matter to convince oneself that 

increasing the threshold will reduce the number of errors and hence effec- 

tively move the crossover point nearer the center. (As the threshold is 

increased, the marker occurs when the lmuckle, or pointer, is closer to the 

target, and thus the subject’s original assumption becomes more valid. ) 

The interesting point here is that according to this strategy, no temporal 

information would be used in making the decisions. Thus, this strategy pre- 

vents the experimenter from accurately determining the delays in the system. 
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This interpretation is consistent with our data, although it may not be the cor- 

rect one. But in any event, it points out the need for more basic experiments, 

especially experiments in which the subject’s strategy can be accounted for. 

E . DISCUSSION 

With respect to the relative merits of the alternative models, there are 

four areas from which we have obtained evidence. First, analysis and analog 

computer simulation indicate that the D1 model is inherently more stable than 

the D’ model because of the greater loop delay required by the D’ model for 

the same reaction time as the D1 model. Second, from our basic experiment, 

quantitative and qualitative data were obtained which permit parametric speci- 

fication in the models. From these results, the negative feedback responses 

were found to be surprisingly stable, an area of difficulty with the D’ model. 

Next, the addition of external feedback delay changed the character of the re- 

sponses as predicted by the D1 model for the visual display and the simulta- 

neous visual and tactile display, but the result was inconclusive for the tactile 

display. Finally, the experiment to test directly for D1 or D’ delays sup- 

ported the preference for the D1 model over the D’ model. It is therefore 

interesting that Matin’s (1965) results for eye position tracking can be inter- 

preted as supporting the D’ model. 

The choice between the D1 model and a sampling model is less clear. At 

this point, both descriptions are sufficiently crude, so that there may be no 

basis for a choice. However, one set of data suggests that the subject’s esti- 

mate of error is not made according to the actual time relation between dis- 

- -@lay position and hand position; thus, the location of the sampler within the 

model is open to question. Perhaps a more accurate model would involve 

memory epochs like the visual models suggested by Massa (1964) and Sperling 

(1963). 

Several differences appeared in the data as a result of the various display 

conditions. In general, the tactile responses were not as linear as the visual 

tracking responses (probably because of the reduced resolution). In addition, 

the movements were slower, and the “stop” time was shorter. Surprisingly, 

the characteristics of the responses obtained with the simultaneous visual and 
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tactile display were midway between those obtained with the tactile display and 

those obtained with the visual display, in spite of the report by the subjects 

that they were attending only to the visual display. Also, reaction times with 

the simultaneous display were shorter on the average than those with either 

display alone. 
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VIII HUMAN OPERATOR DESCRIBING FUNCTIONS WITH 
VISUAL AND TACTILE DISPLAYS 

by James C. Bliss 

In the attempt to develop models of manual tracking behavior that also in- 

corporate characteristics of the physiological systems underlying the 

responses, techniques are needed to separate the contributions of the individual 

physiological systems, including sensory, central, or motor functions. 

Techniques that have been used in the past involve variations in the type of 

command signal (e. g., transient, periodic, and random); the type of output 

response (e. g., continuous or discrete); and the vehicle dynamics. The 

research described in this section emphasizes varying the sense modality 

employed (i. e. , visual, tactile, or both) with continuous command signals and 

pure-gain vehicle dynamics. 

Two experiments are reported. The first experiment compares the 

describing functions obtained with (1) a visual display, (2) a tactile display, 

and (3) both displays used simultaneously. The second experiment explores 

various tactile display conditions. 

A. PROCEDURES 

A system for performing tactile and visual tracking experiments and 

,obtaining amplitude and phase measurements of the response as a function of 

frequency was developed. This system consists of CDC 8090 programs, A/D 

and D/A conversion channels, and display and response apparatus. 

The CDC 8090 computer programs consist of several parts: (1) a signal 

generator program, (2) a signal analysis program, and (3) anINTERFOR 

program for calculations on the data. The first two parts cyclically generate 

a value for the D/A output signal and analyze a response value input through 

the A/D channel. At the end of an adjustable time, the experimental trial is 
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terminated and control is transferred to an INTERFOR* program, which 

performs some calculations on the analysis results and outputs the amplitude 

and phase values on the on-line typewriter. 

The signal generator program contains a table of 15 values representing a 

quarter cycle of a sinewave. The program uses this table to generate a 

composite signal, consisting of a sum of sinusoids of arbitrary amplitude and 

phase. Thus, 

N ‘($) = c ci sin (Witk + pi) , 

where c(th) is the value of the generated signal during interval tk; ci is the 

amplitude; vi is the phase; and Oi is the frequency of the ith sinusoid. up to 

eight frequencies can be accommodated by the program, and since the longest 

program cycle is 75 msec, frequencies up to 6.7 cps are practical with the 

full eight-signal sinusoids plus eight additional analysis sinusoids. [Higher 

frequencies are practical if fewer than 16 (total) sinusoids are used.] 

The accuracy of the A/D and D/A conversion is eight bits. The arbitrary 

amplitude of each generated frequency component can be selected with four 

bits. The eight frequencies can be chosen with four bits and the phases can 

be chosen with four bits within each quarter cycle. 

By positioning a sense switch on the computer console, either the 

internally generated signal can be subtracted from the response and the dif- 

ference (i. e. , the error) outputed (e. g., for compensatory tracking), or the 

internally generated signal (i. e., the command) can be outputed directly (e. g., 

for pursuit tracking). 
-.----// 

In the analysis programs, an input signal is multiplied by each of a number 

of sine and cosine components, consisting of the frequencies generated by the 

signal generator program plus up to eight additional frequencies. Cumulative 

sums of the results of these multiplications are updated each program cycle. 

*INTERFOR is a Control Data programming system for the CDC 160-A comput- 

er that is relatively easily interfaced with machine language programs. 
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Thus, if the input signal is r(tk), then the sums aj and bj are formed as 

follows: 

T 

a. = 
3 z 

T cj sin (wjtk)r(fk) 

k=O 

T 

bj = 
c 

cj cos (wjtk)r(tk). 

k=O 

The input signal to this program is either the response signal directly from the 

A/D converter or the difference between the response and the generator signal 

(i. e. , the error), depending on the position of a console switch. 

The clock for the programs described above is either internally based on 

the computer memory-cycle time or controlled by an external pulse generator, 

depending on the position of a console switch. Shorter program-cycle times 

are possible with the internal clock, but greater time accuracy is possible 

with the external pulse generator. 

The INTERFOR program takes the sums generated during the experimental 

trial by the analysis program and computes the amplitude rj and phase qj of 

each of up to 16 frequency components according to the following equations: 

;- . --_ 

2 
‘j = T 

+ b2 
j. 

a. 
Vj = tan -’ j+ 

j 
Y 

i 
The results of these calculations are then typed out on the on-line typewriter. 

g! 
Thus, pursuit or compensatory tracking experiments can be performed 

with real-time determination of either response or error spectra. Up to eight 

sinusoids can be used to generate the command signal, and an additional eight 

sinusoids can be used to determine the characteristics of the remnant. In 

addition, the total power in the response is computed so that the correlation 

between the response and the corresponding linear system can be determined. 
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A continuous tactile display system was constructed for tactile compensa- 

tory tracking. This display consisted of a servo-positioned airjet stimulator 

which moved horizontally across the forehead or the palmar side of the hand 

over a range of about 4.5 inches. The airjet was positioned according to the 

computer-generated signal from the D/A channel. Figure 78 shows this display 

system when used as a forehand display, and Figure 79 shows the display 

adapted for stimulation on the palmar side of the hand. A visual display that 

was analogous to the forehead tactile display was obtained by placing a mirror 

in front of the subject so that he could see the arm that carried the airjet 

nozzle. A stationary pointer was attached to the forehead rest to give a zero 

reference for the visual display. The visual counterpart to the tactile display 

for the palmar side of the hand was obtained by having the subject merely 

watch the airjet nozzle directly. Again, a pointer was provided to give a visual 

zero reference. 

The computer system was calibrated by connecting the output command 

signal from the D/A converter to the A/D response channel. The analysis was 

then performed on a “perfect” response--these results agreed within the 

expected 8-bit accuracy. As a further check, the system was used to measure 

the Bode diagrams for a simple resistor and capacitor divider forming a 1-cps 

low-pass filter. In Figure 80, the computer analysis, the measured values 

from applying each sinusoid individually, and the calculated values are 

compared. 

The computer system was then used to measure the Bode diagrams for the 

servo system, and these results are shown in Figure 81. In all of the subject- ----- 
describing functions, the servo characteristics were removed either by - . - 

calculation or by analyzing the feedback pot signal and considering this to be 

the error input to the subject. 

Three male subjects in their early twenties were used. Previous to 

testing, each subject was given from 12 to 30 (depending on his mean squared 

error scores) two-minute trials, during which (in alternate trials) the display 

was changed from tactile to visual. 

Table 24 gives the frequencies and amplitudes that composed the 

command signal. 
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FIG. 78 TACTILE TRACKING APPARATUS FOR FOREHEAD 
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FIG. 79 CONTINUOUS TACTILE TRACKING DISPLAY FOR THE PALMAR SIDE 
OF THE HAND 

Table 24 

COMPOSITION OF COMMAND SIGNAL 

_-fz 
--_ 

Frequency 

cps rad/sec Amplitude 

0.0261 0.164 1 

0.0436 0.274 1 

0.0960 0.603 1 

0.2440 1.53 1 

0.4270 2.68 1 
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Table 24 (Concluded) 

Frequency 
set rad/sec Amplitude 

0.6730 4.23 1 

1.25 7.85 0.25 

2.30 14.45 0.25 

=r 0.6 
g 0.5 
a 

0.4 

0 

I 20 
W 

= 30 

5 
w 4o 
: 
I 50 
a 

60 

----- COMPUTER 
-a- CALCULATED 

0.0261 0.0436 0.096 0.244 0.427 0.673 1.16 2.30 
FREQUENCY - cps 

Ta--746522-96 

FIG. 80 COMPARISON OF AMPLITUDE AND PHASE CHARACTERISTICS VERSUS 
FREQUENCY OF A I-cps FILTER DETERMINED BY DIRECT 
MEA-SUREMENT, COMPUTER TRACKING SYSTEM ANALYSIS, 
AND THEORETICAL CALCULATION 
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A:: 
s 0.8 
3 0.7 
5 0.6 

g 0.5 

a 0.4 

0.0261 0.0436 0.096 0.244 0.427 0.673 I.16 2.30 
FREQUENCY- CPS 

TB-746522-97 

FIG. 81 BODE PLOTS FOR DISPLAY SERVO SYSTEM AS DETERMINED 
BY THE COMPUTER TRACKING SYSTEM 

B. EXPERIMENTS 

1. Experiment l--Tracking with Visual and Tactile Displays H-’ ..- 
-- 

In this experiment, forehead airjet tactile tracking was compared with 

tracking by visually observing the tactile display through a mirror. Tb.e airjet 

stimulator was not activated in the visual tracking runs, but six additional 

tactile stimulators for auditory masking were used in both the tactile and visual 

tracking runs. 

Two sessions were run with each subject. In the first session, twelve 4- 

minute tracking runs were performed, alternating between the tactile and 

visual displays. In the second session, six 4-minute tracking runs were 

performed, alternating between the tactile, visual, and both display conditions. 
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The individual subject variability among trials was comparable to the 

variability across subjects, therefore only data averaged over all sessions and 

subjects with the standard deviation at each point are presented in Figure 82. 

While there appears to be no difference between the visual and both-display 

conditions, tracking with the tactile display resulted in much less low-frequency 

gain and a reduced crossover frequency. 

IO 
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1- 
. -. - 

;-t ., 
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w - rad /set 

FIG. 82 DESCRIBING FUNCTIONS, AVERAGED OVER 
SUBJECTS AND SESSIONS, FOR THREE 
DISPLAY CONDITIONS 

171 



2. Experiment 2--Various Tactile Display Condilions 

In view of the relatively poor performance with the tactile display in 

Experiment 1, several modifications were made to determine whether the 

tactile tracking could be improved. A single subject who gave the most 

consistent behavior in experiment was selected for these explorations. For 

these sessions the location of the tactile stimulation was changed to the palmar 

side of the hand. In addition, the frequency of the airjet stimulation was 

adjusted to 40 cps and then to 70 cps. Finally, the airjet stimulator was turned 

off, and the nozzle tip was adjusted so that it lightly touched the palmar side of 

the hand. 

Figure 83 shows the describing functions obtained for each of these 

conditions. There appears to be little difference between the results with the 

forehead stimulation and the hand stimulation, and among the results with the 

various frequencies of airjet pulsation; however, significant improvement was 

obtained with the contact stimulus. 

C. DISCUSSION 

The results described here indicate that, at least for this amount of 

training, performance with a tactile airjet display produces a describing 

function with less gain and bandwidth than that obtained with the analogous 

visual display. This result is in agreement with our previous work (Seeley and 

Bliss, 1966). * Further analysis of these data should also indicate differences 

in remnant and mean-squared error with the various display conditions. 

Several other investigators (Bekey, 1962) have noticed a peak in human _.A--_ 
-I _ 

describing functions and have suggested that this peak is a result of sampling. 

One purpose of the present study was to investigate this phenomenon and to 

determine if it also occurred with a tactile display. The result obtained was 

that some subjects consistently produce this peak, under each of the three dis- 

play conditions, whereas others do not. While we have as yet obtained little 

evidence that this peak can be ascribed to sampling, some support of this type 

*References are given at the end of this section. 
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of mechanism is suggested by the results of Set VI, “Cross-Modality 

Reaction-Time Experiments with Tactile and Visual Stimuli. ” 

Another area of future research is suggested by the finding that the 

bandwidth of the describing function can be significantly increased by a con- 

tacting tactile stimulator that produces tangential as well as normal forces. 
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IX AN OVERVIEW AND SOME CONCLUSIONS 

This report covers a year of intensive experimentation in tactile per- 

ception. This research represents the efforts of many people, both directly 

and through consultations. The facility developed for these studies over 

the past few years greatly enhanced our data-gathering and data-analysis 

capabilities. 

As pointed out in the introduction, Sets. II through VIII of this report are 

written as independent articles, and each article has its own discussion section 

in which the specific conclusions that can be drawn from the results are 

presented. Thus, in this section we will merely attempt to point out relation- 

ships that exist among the sections and some of the practical significance of the 

results. 

One of the most impressive aspects of working with subjects in tactile 

experiments is the effect of training on performance. While this impression 

is difficult to document and would require many more experiments to quantify 

precisely, certain indications can be pointed out. Section IV, “Exploratory 

Experiments on Tactile Spatial Interaction, I1 deals with the effects of training 

more directly than the other sections. These results show that even on a 

relatively simple task, such as naming two anatomical locations simultaneously 

stimulated, subjects initially may make over 20-percent errors. An exception 

was Subject K, who initially made less than 7-percent errors; he had previously 

participated in unrelated tactile experiments for over a year. However, with a 

relatively small amount of training, subjects’ performances typically show 

around 2-percent errors on this task. Another example is the same Subject K’s 

(Subject 4) performance in the reaction-time experiments of Sec. VI. The 

variability of his tactile reaction time was considerably lower than the other 

subjects, and he tended to respond to tactile stimuli in preference to visual 

when faced with a conflict. In Experiment 1 of Sec. V, “Information Available 

in Brief Tactile Presentations, ” Subject S performed with an accuracy nearly 
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twice as high as that of the other subjects. He also had considerably more 

espericnce in tactile experiments than the other subjects. 

Sections II through V deal with experiments of primary practical 

significance to the design of tactile codes, symbols, or languages for the 

purpose of communication. If spatial patterns are to be transmitted tactually, 

the results of Sec. II, “Effect of Display Movement on Tactile Pattern Per- 

ception, ” suggest that a small circular translation of the pattern can enhance 

pattern recognition. This effect is most pronounced during training, so that 

one might consider using it in training even if it is proved to be impractical in a 

final system. 

The results of Sec. III, “Tactile Perception of Sequentially Presented 

Spatial Patterns, ” specify the temporal limitations of the tactile channel in 

receiving geometrical patterns. Presentation of patterns closer together in 

time than about 300 msec results in a marked increase in errors. A period of 

no stimulation between patterns of at least 100 msec is beneficial. 

Section V, “Informatjon Available in Brief Tactile Presentations, ‘I 

describes experiments pertinent to the development of tactile codes. These 

results show that for codes using anatomical position as the information- 

bearing element, information transmitted is relatively constant for the number 

of points simultaneously stimulated between 2 and 12. Up to 5 stimulus posi- 

tions can be available to a subject for a short period after stimulus termina- 

tion, even though he may not be able to name all of these positions. 

Sections VI through VIII are related to the use of tactile displays for 

warning and tracking related to vehicle control. A common result in both __ 

Sec. VI, “Cross Modality Reaction Time Experiments with Tactile and Visual 

Stimuli, ” and Sec. VII, “Responses to Step Commands Presented Visually and 

Tactually, I1 is that when both visual and tactile stimuli are used together, more 

rapid responses are obtained than when either stimulus is used alone. 

However, the results of Sec. VIII, “Human Operator Describing Functions 

With Visual and Tactile Displays, ” indicate that when both visual and tactile 

displays are used simultaneously to track continuous command signals, there 

is no significant improvement in performance over that obtained with the visual 
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display alone. This resull is consistent with the sensory and response switch- 

ing theories discussed in Sec. . VI and suggests that the primary value of a two- 

sensory modality display is in a reduced reaction time to abrupt changes in 

conditions. 

The results of Sec. VIII also suggest that under proper conditions, a 

tactile display can permit reasonable performance in a continuous compensatory 

tracking situation. If direct contact of the skin is made by a continuous tactile 

display, thereby producing tangential as well as normal forces on the skin, a 

describing function bandwidth approaching that obtained with a conventional 

visual display is approached. 

Finally, tactile displays have recently been proposed for several practical 

applications, from a headway display for an automobile to a communication 

system for aquanauts. It is hoped that the basic research described here will 

be helpful in the development of new uses of the tactile channel. 
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