GPO PRICE $

CFST!I PRICE(S) $

Hard copy (HC) 3’9 O

Microfiche (MF) ! i ib

- ELECTRONICS RESEARCH
- CENTER

SPACEBORNE
'MULTIPROCESSING SEMINAR

October 31, 1966
'MUSEUM OF SCIENCE )’

Boston, Massachusetts

S e

" N67-17101 N67-17111

- = (ACCESSION NUMBERJ ] - {THRW)

[-]

-3

[

: g7 |

'Y

>

4 (PAGES) {CODE)

o

s Im{~5930L 0(
{NASA CR OR TMX OR I\D NUMBER) ('CAT'E.GOW)

Ca?nbﬂdQe, Massachusetts

st e



SPACEBORNE
MULTIPROCESSING SEMINAR

MUSEUM OF SCIENCE
Boston, Massachusetts

October 31, 1966

Sponsored by

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
ELECTRONICS RESEARCH CENTER
Cambridge, Massachusetts



FOREWORD

As the Nation's space program evolves, increased emphasis
is being placed on developing the computer technology to support
an expanding class of on-board computational tasks. Within this
framework, various multiprocessing approaches appear to offer
strong promise of accommodating such complex requirements
in future missions.

We have been most fortunate in arranging an outstanding
group of speakers, each of whom was selected on the basis of
important contributions to computer technology. Capsule
summaries of the presentations have been compiled in this
-document so that all attendees may have a background refer-
ence for the papers to be delivered,

I am especially grateful to all those present, both for
their interest in the proceedings and for taking time out from
their busy schedules to participate in the Seminar.

Hoias S Bnke

THOMAS E, BURKE
General Chairman
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MULTIPROCESSOR ORGANIZATION FOR MANNED MARS MISSION

By A. Williman, L. Koczela, G. Burnett

Autonetfes, A Division of North American Aviation, Inc., Anaheim, California

N 67-17102

sUMMARY

Three different approaches to computer organization for a long duration manned space mission are given.
Flexibility in meeting computational requirements is an important factor in the computer system design. The
organizations are currently being evaluated, and preliminary evaluations indicate that a Multiprocessor or Distrib-
uted Logic approach offers the most potential for future Space missions.

INTRODUCTION

The purpose of this paper is to review some of the
considerations in the application of digital computers to
long duration space missions. The space missions to be
considered are the extended manned missions which are
typical of advanced earth orbital and manned planetary
missions. A manned Mars lander mission would typi-
cally have a duration of 420 days, an earth orbiting
space station might have a mission duration of 1 year;
to develop rather specific requirements for computer

design, a manned Mars mission was considered in detail.

Although some of the processing tasks are unique to this
mission, the resulting computer configurations will in
general be applicable to other space missions.
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REQUIREMENTS

The desirability for some form of digital compu-
tation aboard the vehicle has been demonstrated in the
on-board control of Gemini reentry and will be further
shown in Apollo. The Mars mission computational
tasks which can be mechanized on a digital computer
system are shown in Figure 1. They are basically
divided into two groups: Command and Control and
Mission Data Processing. The computational require-
ments vary considerably from phase to phase during
a mission, as shown in Figures 2 and 3. The relia-
bility requirements for the Mars mission were defined
as a 0.997 probability of success and a 0.997 avail-
ability for approximately 10, 000 hours.
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MODULAR COMPUTATION SYSTEMS

A single computer is quite efficient for a specific
requirement, however, as soon as that requirement is
altered, such as the speed requirement doubled, diffi-
culty is encountered. For this reason and others as
pointed out below the potential of a modular computa-
tional approach was investigated. What are the advan-
tages expected from varying the computational capability
of the computer system ? Power (which is very impor-
tant for long duration missions) can be saved by being
able to turn modules on and off. Reliability is increased,
given that failure rates of dormant equipment are lower
than operating equipment (which appears to be the case
from preliminary data). Probability of mission success
and computer availability are greatly enhanced due to
the capability of withstanding failures by reconfiguration
at the module level. Only a portion of the compuytational
capability may be lost during a failure, thereby giving
the possibility of "graceful degradation."

The computational requirements have been shown
to vary considerably during a typical long duration space
mission. If the computer system were designed in terms
of modules, the potential of turning off some of the
modules during various phases would exist. As an
example in the Mars mission considered, if two com-
puter modules are designed to share the load during the
Mars orbital phase, then only one of these modules may
be required during the long duration coast and cruise
phases; this capability results in advantages as given
above, most notably in power and reliability.

In addition to the above, the coniputational require-
ments are expected to vary substantially from mission to
missicn (for example the manned Mars Lander vs the
unmanned Mars flyby) and in fact, from the Mission
Module of a spacecraft to the Lander Module. A modu-
lar concept then enables the setting up of a baseline set
of computing modules upon which many computer sys-
tems can be built. This enables a common sparing
philosophy on any particular mission as well as common
sparing, development, production, and testing for a
range of missions.

Another point worthwhile mentioning is the use of
the modules to back up each other during critical mission
phases such as Mars Orbit Injection and Earth Reentry.
During these phases, 5 seconds is typical of the maxi~
mum allowable time for switching to a backup or redun-
dant system in case of a failure. This requires fault
detection, isolation, and reconfiguration to an on-line
backup within 5 seconds. The critical computations
occur in nonheavily loaded phases and as a result the
extra modules necessary only in the heavily loaded Mars
Orbital phase can be used as on-line backup; however,
even if the extra modules were not available, modules
not carrying out critical computations could be used as
backups in order to be able to withstand multiple fail-
ures. This shows that all the modules in the system can
be used in order to obtain a very high probability of

carrying out critical computations (probability of success).

The discussion so far has indicated some advan-
tages if so called modularity is introduced into the com-
putational system. The question which now must be
answered is how to attain this modularity. It is then

possible to estimate what the modularity costs so that
an evaluation can be made to determine the most effec-
tive approach. Three computer system organizations
have been investigated to attain modularity. These are
Multiple Computer, Multiprocessor and Distributed
Logic Organizations.

Multiple Computer

The Multiple Computer system consists of two
independent computers each with a 200, 000 operation
per second processor, a 24K - 18 bit word memory,
and a program controlled I/0 section. The individual
computers perform self-checks and are interconnected
so that critical system outputs can be automatically
switched from a failed computer to a correctly operating
computer through an output switch. A block diagram of
the system is shown in Figure 4. The processor
features shown in this figure were developed from an
analysis of the computational requirements. The soft-
ware considerations for this organization and the other
two organizations are given in a following paper by
R. Hokoml entitled "Executive Program Control for
Spaceborne Multiprocessors."

Multiprocessor

The Multiprocessor, shown in Figure 5, consists
of two 200, 000 operation per second processors, three
12K - 18 bit word memories and two program-
controlled 1/0 units with full intercommunication
between the processors and the other modules in the
system, The requirements for this system are the
same as those for the Multiple Computer; as a result
the processor features are the same. It should be noted
however, that only three 12K memory modules were
necessary instead of the four in the Multiple Computer.
This more efficient use of the memory was obtained due
to the flexible processor-memory communication;
however, there will be approximately 2.5 times as
many lines required for the Multiprocessor than for the
Multiple Computer. The memories and the input/output
units will have lock-out features which will permit the
multiprocessor to operate essentially as a Multiple Com-
puter system during critical mission phases where
redundant calculations are required. This prevents the
failure of one processor-memory system from annihilat-
ing information in memories or in disturbing the opera-
tion of the other processing system.
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Distributed Processor
The third type of computer organization con-
sidered is a distributed logic organization. This type

of computer contains a decentralization of the logic
elements on an array basis. Each element or cell com-
municates with a number of other cells, and each cell
has some memory associated with it. The complexity
of a cell can vary from the execution of a single instruc-
tion to a small computer. The control of the execution
of a program in the array can either be distributed
among the cells or can be centrally controlled. The
array tyge construction as depicted in the Holland
machine4 is typical of a local control type configuration,
The Solomon computer3 is typical of the global control
type configuration, Determination of which approach to
follow was one of the first requirements of the distrib-
uted logic study. To aid in this determination it was
necessary to define the -parallelism associated with com-
putational problems. Two types of parallelism have
been defined: natural parallelism which has the property
for carrying out a number of operations on distinct data
bases or on the same data base simultaneously and
independently; the second, Applied parallelism where a
number of exactly the same operations on distinct data
bases or on the same data base are carried out simul-
taneously. Figure 6 is an example of applied and
natural parallelism for a sum of products type computa-
tion. The sequential operation is shown at the top of
the figure. The applied parallelism example shows the
identical operations a/x and b/z being computed simul-
taneously. The computation ¢ x y is done sequentially
and the sum is made sequentially. At the bottom of the
figure the use of natural parallelism is shown by the
parallel solution of ¢ x y. The saving in time by the use
of parallelism is shown at the right hand side of the fig-
ure with a solution time for applied parallelism being
2/3 of that for the sequential computation and with the
applied and naturalism being 1/2 that of the sequential
solution time. Computational requirements for the
Mars mission were examined to determine the amount
of applied parallelism and natural parallelism that
could be mechanized. Figure 7 shows the improvement
in computational speed as a function of the number of
cells in applied parallelism. It can be seen from the
curve that after 25 cells, there is little reduction in the

.33 .33 167 167
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—OTO—0
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Applied Parallelism
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Figure 6. Example of parallelism
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1 T T 1
1 5 l3 / 5 17 8

4 5
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Figure 7. Applied parallelism degree of complexity
vs computation speed

computational speed. Figure 8 shows the effect of
natural parallelism on the computational task speed
reduction; this figure shows that after six computational
centers the reduction in computational speed is negligible.

The chosen Distributed Processor was developed
to take advantage of both natural and applied parallelism
and also to take maximum advantage of the technology
assumed for 1980. The organization of the Distributed
Processor is shown in Figure 9 in block diagram form.
It consists of a number of groups of cells all intercon-
nected through an inter-group bus. Each cell executes
macro instructions from storage or from a controller
cell and can communicate to its neighboring cells. It is
seen that the cells are organized into fixed sized groups
each of which can perform a computational task. This
alleviates the optimization problems for program recon-
figuration and also makes executive monitoring simpler.
The number of cells in the group is chosen to best meet
the applied and natural parallelism inherent in the Mars
Lander Mission computations. Therefore a structure
containing approximately 25 cells per group and having
up to 25 groups was specified. Each cell within a

_8_
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group, shown in Figure 10, can operate either as a
controller, an operating cell, or a storage cell. The
controller cell provides the global control for a group by
placing macro instructions on the inter-cell bus. The
operation cells receive these macros from the controller
or from their own storage registers, decode them and
use them to read out a sequence of operations from the
microprogram storage in a cell. The sequence of
ingtruections from the microprogram storage cause
storage registers and control registers to be added,
exchanged, transferred, etc. Group switches are pro-
vided which act as lock-out switches for the particular
group during critical phases. During critical phases
the switch is set such that any given group will only
accept commands and communicate over one of the two
inter-group busses. This enables isolation of failures
and reconfiguration within the 5-second time constraint.

EVALUATION
The following are some of the considerations in

evaluating the three computer mechanization approaches.
The Multiple Computer approach provides minimum

_9_
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components and communication lines and provides a
reasonably good match of hardware to the requirements,
The fault detection to a computer is relatively simple;
however, fault detection to a level lower than the com-
puter is difficult to meet. Changing computational
requirements, it is also necessary to vary computa-
tional capability in terms of computer modules. The
multiprocessor approach again gives a good match to
the requirements and permits localization of failures to
modules due to the full intercommunication capability.
It also presents the possibility of providing spares at
the module level. Down time during reconfiguration
after failure is less with this approach and it is possible
to withstand certain multiple failures. Expansion of
this system in memory and computational speed can be
done in smaller hardware increments than with the
Multiple Computer approach. Some of the problem
areas are that the expansion is limited and must be
accounted for in the communication area during the
design, and that the number of communication lines is
somewhat greater than with the Multiple Computer
approach. The Distributed Processor approach pro-
vides the possibility of very high reliability and low
power consumption due partly to the elimination of the
main memory. It is possible to take advantage of the
hardware by providing many levels of graceful degra-
dation. The Array Type technology will also be taken
advantage of in the Distributed Processor approach. It
is possible to expand the computer in small hardware
increments if the increments have been anticipated and
if the packaging is adjusted. The problems with the
distributed approach are that it is relatively complex to
define optimum macro and micro instructions and that
the programming and executive are relatively more
complex.

Figure 11 shows a block diagram of the Monte
Carlo approach used in this study for performing a
reliability simulation. It should be noticed that prob-
ability of fault detection was included in the Monte Carlo
approach as well as the probabilities of failures for the
varijous components of the system. Figure 12 shows a
typical set of curves that resulted from the simulations
for the multiple computer system. The curves show
three failure rates or MTBF's of the computers 8, 000,
16, 000 and 25, 000 hours; a probability of detection of
faults of 0.99 was assumed in the runs and an on/off
failure rate of 10 was used. Curves are also included
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which show the effect of having the full memory on at
all times during the mission and being able to turn off
portions of the memory when not in use. It is seen that
a significant increase in probability of success of the
computer system is achieved by turning off memory
modules when not in use. Other curves have been
generated to access the value of failure detection, ratio
of on/off failure rates, and computer availability during
the mission.
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By E. L. Gruman and P. S. Schaenman
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SUMMARY

This paper discusses functions which will
require support from the on-board computer system
during advanced manned missions. In addition to
present day functions, such as guidance, naviga-
tion, attitude control, etc., the computer system
would provide capability for: 1) monitoring,
confidence testing, and diagnostic testing for
spacecraft subsystems and experiments; 2) inflight
crew training with simulations; 3) control and
data management for experiments; 4) displays for
flight and experiment operations; and S5) G&N of
unmanned probes launched from the mother craft.

It is concluded that: 1) The functions (G&N,
attitude control) which originally justified
using on-board computers are no longer the pacing
factors in determining many system characteris-
tics; 2) Mission complexity will force the crew to
make extensive use of computer system support; 3)
The growth of computer usage in spaceborne scien-
tific experimentation will parallel the historical
surge evident in ground-based experimentation; L)
Increased functional requirements will result in a
greatly increased number of I/0 channels, in-
creased high speed memory, the addition of off-
line bulk storage and more powerful processing
capability, regardless of the specific system con-
figuration; and 5) The amount of on-board software
required for a manned flyby mission will be large
relative to manned missions heretofore.

Introduction

In the Apollo program the spacecraft compu-
ters are used for the functions of: guidance,
navigation, attitude control, operation of simple
displays, astronaut-computer communication, and
computer-ground communications. They also run
tests on themselves and the G&N system. Beyond
Apollo, the increasing complexity of missions, and
advances in computer technology, will undoubtedly
result in a lengthening of the list of functions.

This paper discusses various functional re-
quirements on spacecraft computer systems for
advanced manned missions. A planetary flyby mis-
sion shall be used for the purpose of this dis-
cussion. Nevertheless, the discussion will be
applicable, to varying degrees, on long duration
earth orbital, planetary landing, double flyby,
and other manned missions.

Emphasis is placed on requirements which are
nev, i.e., not expected to be found on missions
through Apollo. It is assumed that the spacecraft
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must be capable of entirely independent operation,
regardless of whether the spacecraft or ground has
prime control for the various mission operations.
No attempt is made to delineate a specific compu-
ter system configuration, although certain gross
system characteristics can be inferred.

EXAMPLE MISSION

The planetary flyby mission used as an exam—
ple here is assumed to begin with assembly and
checkout of a spacecraft and injection vehicle in
earth orbit. The spacecraft includes a large
Manned Module (MM) in which the astronauts nor-
mally carry on their activities during the trip,
and a small Earth Entry Module (EEM) for the final
return to Earth. After injection toward the plan-
et, a few midcourse corrections are made. In
transit, experiments in space physics, behavior,
and physiology are conducted. Astronomical obser-
vations are made using a large telescope. A few
days before planetary encounter, several (about
six) unmanned probes are ejected from the space-
craft and guided toward the planet. The probes
may include orbiters, slow-descent atmospheric
probes, and soft landers. The probes communicate
at high data rates with the mother spacecraft for
a short time before and after periapsis.

On-board the spacecraft, remote measurements
of the planet are made using various portions of
the electromagnetic spectrum. A large number of
high resolution pictures are taken using the large
telescope. Data is transmitted.to Earth at rates
up to one megabit per second from injection until
a few weeks after encounter. The maximum rate
diminishes to a low of approximately seventy kilo-
bits per second. This low rate lasts for about a
month, then returns to one megabit per second.
There may be a period on the return leg when the
sun lies between the spacecraft and Earth; this
would cut off communications with Earth for as
long as two months. The return leg of the mission
is used to transmit data collected during plane-
tary encounter to Earth and to perform experiments
similar to those on the outgoing leg. Earth entry
will occur some one and one-half to two years
after injection.

REQUIREMENTS FOR FLIGHT OPERATIONS
Monitoring and Testing On-board Systems

Three levels of testing will be required for
conducting flight operations: monitoring - an
essentially continuous check of certain system
parameters; confidence testing -~ a more detailed
check of system parameters before certain crucial
events; and diagnostic testing - a still more de-
tailed check of a system whenever it is found to
be faulty.

Checkout at these levels is not restricted to
inflight needs but is required as well in certain
phases prior to launch. Use of an integrated
testing concept(l) in which certain prelaunch and
inflight tests are carried out in a common manner
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by essentially the same automatic equipment
appears desirable, both for economic reasons and
to maintain continuity of testing. The on-board
computer system 1s the natural candidate for the
Job.

There are other arguments for using the
on-board computer system for checkout. Monitor-
ing system status for long periods of time is a
job done poorly by humans and, even worse, is a
waste of precious resources.{2) Confidence and
diagnostic testing, though higher order tasks
than monitoring, are also candidates for automa-
tion in order to obtain faster testing with less
chance of human error. This is particularly true
- at hectic times in the mission or if multiple
failures occur.

The use of a computer for testing provides
the storage media, computational capability, and
logical capability for making comparisons and
indicating trends with both accuracy and repeat-
ability. Furthermore, the test points and much
of the checkout software will already exist from
prelaunch requirements. It will also be desir-
able to have an automated system on board which
can assist the ground in determining the status
of the spacecraft, especially if part of the crew
becomes incapacitated.

Astronauts will control the automated check-
out system via a checkout station which will have
a keyboard, displays, and communication link with
the central computer system. Ordinarily, only
summaries of system status will be presented on
the displays. Upon request, the astronaut will be
presented with more detailed information on any
system. He will be able to ask for present,
former, or nominal values. He will also be able
to initiate confidence and diagnostic tests. His
overall capability will be somewhat like thet at
launch system consoles during an Apollo countdown.
The MADAR (Malfunction Detection and Recording)
System, an automated inflight checkout and main-
tenance system being developed for the C-5A
transport,(3) is another precursor of the type of
system envisioned.

In Apollo, the ACE (Acceptance Checkout Equip-
ment) spacecraft test points are automatically
checked on the ground. Only a restricted set of
these points is used on board because of the very
limited use of inflight maintenance. In contrast,
an interplanetary spacecraft will probably have
all its "ACE" points available in flight as well
as preflight. Some of the points used for diag-
nostics and all of those used for monitoring and
confidence testing will probably be wired into
the automated checkout system. The rest--those of
improbable use due to limited system usage or lack
of criticality--will be accessible by being
plugged into a portable interface with the com-
puter.

How many test points will there be? On one
hand, the increases in system size and sophistica-
tion and the addition of new services will tend

to increase the checkout requirements over Apollo.
On the other hand, the increasing capability per
unit size of electronic devices and other system
building blocks will tend to reduce the overall
number of points to be tested. The authors' specu-
late that for a mission such as the T0's flyby
example, one can expect a factor of two to five
increase over the number of Apollo ACE CSM test
points. This implies approximately 2000 - L000
test points for the MM systems. Diagnostic test
points would make up about three fourths of the
total number.

Three broad classes of diagnostic approaches
are foreseen: 1) those for digital systems (auto=
mated); 2) those for analog systems (automated);
and those for basic building blocks (semi-auto-
mated). Just as they require more test points,
digital equipments generally require more complex
diagnostic routines than do analog equipments
since they are generally capable of many more oper-
ational states. Thus, elaborate diagnostic rou-
tines are foreseen for systems such as up and down
data links, the computer system itself, and the
computer interface equipments. Certain digital/an-
alog hybrid subsystems will also require rather
elaborate diagnostic routines.

The totality of diagnostic programs will
require a significant amount of bulk memory space.
For example, the Apollo ACE programs use tens of
thousands of words for checkout of & lunar landing
mission spacecraft. A planetary flyby spacecraft
would require somewhat greater storage for the
totality of its checkout programs.

The discussion thus far applies primarily to
an MM where the crew normally carries on its activ-
ities. It is recognized that an EEM would be
checked out prior to interplanetary injection and
prior to Earth landing. Its checkout equipment
may be partially self-contained, partially con-
tained in the MM. The MM computer system may
therefore have to bear part of the load of EEM
checkout as well as its own. However, for most of
the mission, EEM checkout will not ordinarily be of
concern.

G&N, Abort Guidance, and Digital Autopilot

Guidance, navigation, and abort requirements
obviously depend heavily on the type of mission
involved. For planetary flyby missions, the G&N
computation requirements would not be substantially
higher than those required for a lunar flyby, ex-
cept in the vicinity of the planet, where probe
guidance (briefly discussed later) is necessary.
There would be opportunity for early return by
abort only while the spacecraft is significantly
influenced by the earth's gravitational field,
which is less than one percent of the mission dura-
tion. Abort G&N algorithms would be of the same
order of complexity as the abort algorithms used
for a lunar flyby.

A significant impact upon advanced computer
systems could result from the use of strap-down
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inertial measurement units (IMU'S), which are can-
didates for planetary mission use because of reli-
ability per unit weight and power considerations.
There are indications that strap-down units could
increase the on-board G&N computation load by as
much as a factor of five to ten with respect to
the calculations required using a gimbaled IMU,
although use of a digital autopilot tends to

lower this factor slightly. Both gimbaled and
optical platforms are also possibilities. Either
could well be used, if not in a prime role for
the entire mission, then as prime for a particu-
lar mission phase or as backup.

Displays

Currently, the interior of a spacecraft re-
sembles an airplane cockpit: a profusion of dials,
lights, and switches, each with a unique function.
For the most part they are connected to sensors
with little or no information processing en route.
Pilots eventually learn to live with this display
Jungle, though non-pilots are usually staggered
by it. The situation could get worse with the
more numerous and complex systems expected on
advanced missions.

One source of relief would be to display less
subsystem data with the aid of the previously dis-
cussed automated checkout system. Another approach
would. be to combine information from various sen-
sors into integrated situation displays like those
recently developed by Army-Navy research for air-
craft use. In one such display system, data is
collected from the gyros, radars, air data compu-
ter, compass, instrumentation landing system, and
fuel flowmeters. The central digital computer
system processes the information and provides the
outputs to run a vertical situation display and a
horizontal situation display.

A version of the vertical situation display,
made by Kaiser Aerospace and Electronics Corpora-
tion, is currently operational in the Grumman
A-6A Intruder. This "contact analog" display
shows the command flight path as a highway in the
sky. The highway is in proper perspective as
viewed from the current position of the aircraft.
The pilot flies his command course simply by
trying to stay on the highway. Other features
include a distance scale, the aircraft attitude
in three dimensions, and symbols for a target and
&8 weapon release point.

Tn a second mode, the digplay projects 2 cyn
thetic 3-D view of the terrain ahead of the plane,
using range, altitude and azimuth information from
the radars. The terrain is shown as ten vertical
slices at various ranges (1/4 mile ahead, 1/2 mile
ahead, etc.). Each slice shows terrain height vs.
azimuth at that range, so that the overall effect
is one of looking at a three dimensional contour
map. Tests show that pilots can follow terrain
contours of the radar display more accurately and
with more confidence than with visual references
in clear weather. The radar sharpens terrain
features, and accurately measures range which the

eye only estimates. Pilots like these displays.

The flight display puts a light incremental
computation load on the central computer, since
most of the displayed data must be calculated
regardless of the type of display used. The
amount of additional computer memory space which
may be charged to this particular display is es-
timated at less than 1000 words.

It seems reasonable to anticipate variations
of the above integrated situation displays which
would assist rendezvous, earth entry, attitude
control, and virtually all other piloting func-
tion aboard a manned spacecraft. For example,
consider a manually controlled rendezvous with
another vehicle which has an extremely unfavor-
able lighting background. A display showing the
vehicle in perspective, some range markers, the
desired rendezvous trajectory, and appropriate
command information would be of considerable aid
to the pilot and thereby increase reliability in
a critical situation. Other integrated displays
might be used for projecting entry corridors as
three dimensional paths, or in simulations used
for on-board crew training.

In addition to these somewhat exotic dis-
plays, there will be more mundane CRT or electro-
luminescent (EL) displays for showing such things
as X-Y plots and alphanumerics. For example, the
automated checkout system will use these displays.
Others will be associated with experiment control
and data management. The Apollo spacecraft uses
numeric EL displays for showing selected outputs
from the AGC.

The role of the computer in all of these
various on-board display systems is obvious: it
collects and formats information from various
sensors; stores and fetches data; performs nec-
essary computations; and composes appropriate data
into the various presentations by commanding the
appearance and positioning of symbols, waveforms,
and other types of graphics. In spite of the
inference one might draw from the vertical situa-
tion display example presented here, the load on
the computer for driving displays may vary over
a very wide range.

The MTBF's of present integrated situation
displays are estimated at several days to several
weeks—~too low for planetary missions. Antici-
pated improvement in CRT and/or EL technology will
significantly increase these MIDF's. The fact
remains that most of the elements of the present
display jungle have the inherent reliability
advantage of the simple over the complex and of
not putting all the eggs in one basket. Until
the more sophisticated displays are proven reli-
able, they will probably be backed up by a

reduced set of "simple" displays.
Astronaut-Computer Communications

The Apollo astronauts communicate with the
Apollo Guidance Computer (AGC) using a keyboard
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with buttons for: numbers 0 - 9, +, -, VERB, NOUN,
CLEAR, STANDBY, KEY RELEASE, ENTER, and RESET.
The astronauts consult a code book and punch in
digits representing verbs, nouns, or data. The
verbs are simple commands to the computer, such
as "display (noun)", "monitor (noun)", "load
(noun)". The nouns are various parameters such
as velocities, angles, rates, positions, time,
ete. The computer communicates with the astro-
nauts via a simple numeric EL display and a set
of status lights. Almost the entire computer-
astronaut dialogue centers around guidance and
navigation.

The expanded set of computer functions on
advanced missions will require more frequent,
more inclusive, and more sophisticated man-machine
communications than in Apollo. A premium will be
placed on speed and accuracy of communications and
on minimizing the tremendous learning burden of
the astronauts. The improved displays suggested
in the preceding section will be one source of
aid. Another will be higher level input lan-
guages. Research is needed to define either a
general spacecraft command and control language
or a group of function-oriented languages for the
astronaut-computer dialogue. Reasonably detailed
diagnostics of input programs should also be pro-
vided. A high level language package plus in-
creased diagnostic capability imply the avail-~
ability of additional high speed memory space.

Another improvement will be to enlarge the
keyboard and have individual keys for frequently
used words, with less frequently used words in-
serted via a general set of alphanumeric keys.

The choice of words to be considered "most fre-
quent" might be left to the user and allowed to
vary from person to person and station to station.
All commands could still be initiated from any
keyboard.

Optional hard copy of inputs or outputs
would be another desirable feature. Also, punched
or magnetic cards might be used for storing fre-
quently used programs. The card would be inserted
into a computer input device, similar to card
dialers used with telephones, in lieu of punching
buttons whenever the program is desired. Voice
input devices might also become feakible for some
portion of the input repertoire.

Inflight Crew Training

"During a several month interplanetary
voyage, crew members could lose some of the skill
they have developed in such maneuvers as earth
atmosphere reentry."{(5

Alan B. Shepard
February 19, 1964

Planetary flybys will put at least one to two
years between the time an astronaut last flew (or
practiced in a full scale simulator) an earth
entry and the time he must do so again. The
intervening time plus the physiological and psy-
chological demands of the mission will tend to
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degrade his ability to perform the task. Various
other on-board tasks will have smaller but still
significant intervals between practices. Exam-
ples are planetary photography at close range,
targeting and guidance of probes, and on-board
planetary encounter experiments.

The astronauts must somehow maintain their
skills in these tasks, either by live practice
runs or simulations. Ideally, they should use
the same controls, displays and systems for
practicing as in actual operational usage. How-
ever, there is a school of thought that one
should not take flight-critical controls and dis-
plays off line for simulations during a mission.
Moreover, introducing simulation modes (with
switches and additional input and output paths)
may lower system reliability.

We therefore anticipate the existence of an
on-board training, simulation and behavioral
research station. It would have displays and con-
trols which can assume different configurations to
simulate different crew stations. It would also
use the computer system for controlling real time
simulations, storing norms, simulating certain
systems, evaluating results, and compiling subject
profiles. The facility would have the following
uses:

1. Training. This is required to main-
tain crew skills which are not fre-
quently used.

2. Crew reassignments. Each astronaut will
be a specialist in some areas and cross-
trained in others. At some point in
the mission, perhaps due to the incapaci-
tation of some other crew member, it may
be desirable or necessary to reassign an
astronaut from his original specialty to
another. The equipment and software
used for "routine" training might suffice,
though some additional "teaching machine"
capability may also prove to be desirable.

3. Checkout of new procedures. These may be
established by the flight crew or ground
during the course of the mission (The
mission will be of such duration that
even state-of-the-art advances are
possible.] This function requires the
ability to insert large new programs into
the computer from ground or smaller ones
from on-board.

4. Behavioral research. In addition to the
biomedical monitoring of the astronauts,
certain behavioral studies will take
place. These will consist of tests of
reaction-time, decision-making and
problem solving. The results of these
tests will be correlated with biomedical
data to indicate the "condition" of the
astronauts at various points in the
mission. Since these behavioral studies
will require the use of displays and




controls, it should be possible

to use the facility for behavorial
experiments as well as for simula-
tion and training.

The simulations used in conjunction with this
facility would be major users of computational
time when running. They could be among the
largest programs on board. The Apollo Mission
Simulator and IM Mission Simulator programs each
run greater than 100K words. Though not nec-
essarily representative, they indicate how large
these simulations can become.

EXPERIMENT REQUIREMENTS
On-board Experiments

"Nuclear instrumentation is undergoing
revolutionary changes because of [thel rapidly
increasing use of stored-program computers by
exXperimentalists in nuclear-structure labora-
tories."

John V. Kane

"In the high energy physics laboratory the
most remarkable development that has occurred in
the last five years has been the introduction of
the digital computer as an active part of the
experimental apparatus.”

George W. Tautfest

Both of these gquotes were taken from the
July, 1966 issue of "Physics Today" and indicate
the effect computers have had on ground-based
experimentation. It is likely that spaceborne
computers will have a similar effect on space
experimentation within the next decade when one
considers that they have been virtually unused
thus far and that the number and complexity of
experiments are increasing. For example, the
particles experiment on Explorer I measured omni-
directional intensity of particles of any type.
On OGO-E, the particles experiment will measure
directional characteristics and intenf%?y as a
function of particle energy and type. Several
uses of computers in on-board experimentation are
suggested in the following sections.

Experiment Checkout and Calibration -- It is esti-
mated that there will be about 30-40 major pieces
of experimental equipment on-board a flyby space-
craft in addition to about forty carried in the
unmauned scientiflc proves. There would also.be

a large (LO") telescope with its own attitude
control, photographic and TV systems.

About one third of the on-board experiments
and the telescope system must be monitored and
occasionally tested or calibrated throughout the
mission, much in the manner of spacecraft systems.
Another third of the on-board experiments, the
forty experiments carried in the probes, the
various subsystems of the probes, and the flyby
photography and TV systems must all be tested,

and calibrated if necessary, shortly before
planetary encounter. This may involve on the
order of one to two thousand test points.

The checkout and calibration tasks should be
automated to the fullest extent possible for
reasons similar to those given for automating
spacecraft systems checkout (obtain speed and
accuracy, reduce crew workload, avoid human error,
etc.). The precision possible with a computer
system will be of even more importance for these
tasks than for testing of spacecraft systems be-
cause of the generally greater precision required
by scientific measurements compared to operational
engineering measurements (G&N systems excepted).

As in testing, the use of the computer system
for calibration will permit the use of complicated
or exhaustive schemes which might not otherwise be
used. This, plus the accuracy and repeatability
of the computer, the ability to record steps in
the calibration process, and the presence of man,
will result in greater confidence in the calibra-
tion of the experiments--an important advantage
over present experimentation.

Experiment Control -- At various times in the mis-
sion experiments must be turned on, have their
sensors exposed, be run through a warm-up se-
quence, be coordinated with other experiments,
undergo cyclic changing of operational modes, etc.
Although most of these functions could be imple-
mented with simple programmers, they are candi-
dates for computer control in order to allow
flexibility in flight. Building a programmer with
enough flexibility to arbitrarily change the tim-
ing and sequencing of experiments may be less de-
sirable than building a wired interface with the
computer system, using a modest amount of computer
time and memory space, and keeping the flexibility
in the software.

A more complex type of control than sequenc-
ing may be needed for experiments such as patrol-
ling for solar flares. In this experiment, the
sun will be monitored for about half of the
planetary mission using telescopes, X-ray, UV,
visible and other electromagnetic sensors, cosmic
ray and solar proton sensors, etc. While the
crew may occasionally or even regularly monitor
the sensors, it does not seem reasonable to spend
a man-year for this purpose, since the flares
occur only about O - 20 times per year. Nor can
one rely on earth to warn that a flare is occur-
ring. The visible portion of a flare lasts from
several minutes to one hour, whereas the communi-
cation time for transmitting the warning from
earth to spacecraft will be in the order of 0 - 30
minutes; the flare or its beginning might be
missed entirely.

It would be economical in film, bit storage,
and man-hours to have a system which samples the
sensors at a low rate until something unusual
occurs, then alerts the astronauts, increases the
sampling rates and photographic repetition rates,
and brings on-line any sensors which may have been
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inactive. The computer system would be used to
discover the "something unusual," perhaps using
pattern recognition techniques to determine an
unusually bright area on a TV picture of the sun.
The computer system would command the initial
response. This overall scheme represents one form
of data compaction by computers.

Several experiments, including the above,
will require accurate pointing and holding to tar-
gets on various heavenly bodies. Calculations
for these functions may require data from the on-
board autopilot and G&N system, the telescope at-
titude control system and ephemeris tables.

Experiment Data Management and Displsys -- The
astronauts themselves will have an important role
in the checkout, calibration and routine control
of the experiments. In addition, they should
have some capability to take advantage of dis-
coveries, explore anomalies, redirect experiments
in case of failures or mistakes, and select data
for transmission to the ground.

To perform these tasks the astronauts must be
able to sample, in real or near-real time, data
from any of the experiments being conducted.
Though this may not always be possible, it should
serve as a goal. They must then be able to pro-
cess the data with the aid of the computer system
if necessary. Processing may involve curve-
fitting, computation of statistics, statistical
filtering, correlating data from several experi-
ments, solving systems of equations, and an
extremely wide range of other possibilities.

Both raw and processed data should be capable
of being displayed in a variety of alphanumeric
and graphic formats. Display options should in~
clude symbols, histograms, X-Y plots, waveforms,
and scatter diagrams. The astronauts should also
be able to display data from several related ex-
periments simultaneocusly and to request a priori
expected results to be displayed alongside actual
results.

Probes

In our example mission, the crew of the flyby
spacecraft must check out and count down the ap-
proximately six scientific probes about one week
prior to encounter, using the computer system for
automated testing and sequencing. About three of
the probes will be of the complexity of Lunar
Orbiter or Surveyor; the other three will be rel-
atively simple atmospheric probes. All would be
launched within a period of a few days.

After injection toward the planet, the probes
will be tracked from the spacecraft by radar and
optical techniques. Before landing (or going into
orbit), the probes receive one or two midcourse
corrections from the spacecraft. The corrections
are based on the continually improving knowledge
of the spacecraft's trajectory relative to the
planet. The trajectory improvement is based on

inputs from the on-board sextant and telescopes
and from earth-based continuous tracking.

Thus, the spacecraft must act as a space-
borne tracking and flight control facility while
at the same time navigating for itself. It has
been estimated that the spaceborne computation
load for probe guidance will be several times
that of the Apollo IM descent guidance, the most
demanding of the Apollo guidance programs.

It is not clear to what extent guidance com-
putations for the various probes would overlap in
time with one another and with other tasks. It
is clear, however, that the probe guidance tasks
will be of extreme importance and will be demand-
ing attention at one of the busiest, most criti-
cal times in the mission.

RELTABILITY REQUIREMENTS

The heavy dependence upon the computer sys-
tem suggested in this paper presumes extremely
reliable hardware and software. 1In Apollo, the
guidance computer is required to have a certain
MTBF. A computer system for interplanetary mis-
sions will also have MTBF requirements, but in
addition will be required to absorb (at various
levels) certain malfunctions without hindering
performance, and certain other malfunctions with-
out complete loss of performance. Considerable
study is being given to hardware reliability, and
techniques are rapidly becoming available to meet
these enhanced requirements on hardware.

The AGC software is required to produce ap-
propriate ocutputs under allowable input condi-
tions. This general software "quality" require-
ment, already difficult to achieve, will tend to
become even more elusive in future missions. The
housekeeping functions introduced by redundancy
and switchable configurations as well as increased
I/0 will significantly complicate the package of
programs relative to the AGC software.

In studying the software gquality control
problem of Project Apollo, it was concluded that
the use of strong management procedures including
tightly controlled documenta}ion was the most
valuable approach available. Producing detail-
ed software documentation has a most desirable by-
product, that of forcing the thinking out of pro-
gram possibilities. This tends to eliminate
problems due to logical inconsistencies. It ap-
pears that strong management control will remain
8 valuable approach for interplanetary missions.
The general problem of software reliability is
ripe for new approaches.

CONCLUSION

The following inferences can be drawn from
the above discussion:

1. The functions which originally Jjusti-
fied bringing a computer on board a



space vehicle (G&N, attitude control)
will no longer be the prime factors in
determining characteristics of the
computer system. The new functions,
automated checkout, flight crew
training, expanded displays, and
on-board experiment control and

data processing, will force the
future on-board computer system

to have the capability to
efficiently perform character
manipulations as well as mathe-
matical calculations.

2. The complexity of spacecraft
flight operations and scientific
activities will alter previous
mission management concepts. The
crew will make extensive use of
the automated system centered
around the computers. This will
require highly efficient
astronaut/computer communications.
More sophisticated displays and
input languages than those being
used in Apollo will be required:
to accomplish this.

3. The growth of computer usage in
on-board experimentation will
parallel the rapidly expanding
usage in ground-based experi-~
mentation. This trend will im-
pose significant requirements on
both the memory and processing
capability of future on-board
computer systems.

L. It is estimated that the in-
creased functional requirements
will result in g greatly in-
creased number of I/0 channels,
an increase in high speed memory
of an order of magnitude, the
addition of off-line bulk
storage memory capability, and
a more powerful processing capa-
bility than is presently avail-
able in Apollo. These charac-
teristics will require either a
very fast central processor or
a multiprocessor system.

There are various functions in addition to

those discussed in this paper which may be candi-
dates for use of the on-board computer system.
For example:

. Housekeeping, such as automatic
balancing of solar heat loads by
attitude control.

. Communications management, such as
routing messages between spacecraft
systems, experiments, probes and
ground, and pointing spacecraft an-
tennas.

. Medical diagnosis

. Data reduction and compression, in
addition to controlling experiment
sampling rates as in solar patrols.
(This is not foreseen as a vital
function because of the expected 106
bits/sec. transmission capability on
board. )

As the o0ld saying goes, further study is needed.
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SUMMARY

Extrapolation of Apollo experience to space-
craft computers of the next generation indicates a
need for digital systems of greater computing and
interface activity, and of greater reliability,
than has been realized to date.

An idealized collaborative multiprocessor
structure in which a number of processing elements
are tied together by means of a single multiplexed
data bus is explored. At least one job assignment
procedure is possible for which no one processor
has to act as 'master', and which can survive
processor malfunctions or the deletion or addition
of processors to the bus, thus accomplishing
'graceful degradation' and 'reconfiguration' of
sorts. The single bus structure as used here
implies things about compilers for it, and also
certain bandwidth relationships between processors,
bus and common memory. Rough estimates based on
short extrapolations of circuit technology show
that the structure is probably realistic.

DESIGN TRENDS
Introduction

In manned spacecraft to date, more uses have
been identified for on-board data processing than
could be provided by the computers therein.
Computer designers are inclined to anticipate this
sort of problem by their natural tendency to supply
greater performance than the application seems to
require, but have been inhibited in the spacecraft
area by apparently inelastic size, power and
reliability constraints. These constraints are
relaxed when it is discovered that mission success
is imperiled by lack of adequate computer perfor-
mance. This very likely arises at a time which is
too late to reconfigure the computer within the
mission schedule. Instead, mission objectives are
apt to be restricted and a large software effort
is mounted to prepare and verify programs which
squeeze out maximum performance. A lesson {for the
next spacecraft generation is that graceful expand-
ability should be a fundamental requirement for the
data processor and other systems. This can result
in the ability to profit from lessons learned in
the development phases of a mission by reconfig-
uring the on-board systems with a minimum of impact
upon the spacecraft,

In this paper, we review some general require-
ments for the next spacecraft computer generation
and the forecast for hardware available in the
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coming years, In the absence of the development of
a suitable self-organizing automaton, the multi-

‘processor structure appears to be best suited to

both the requirements and the hardware available.
We describe an idealized multiprocessor organiza-
tion and examine its performance in terms of the
performance of its components,

Multiprocessors

Extrapolating the Apollo mission to a plane-
tary mission has many pitfalls, as entirely new
problems and solutions are involved. From the
computer's point of view however, the requirements
can be expressed independent of many of the attri-
butes of the total spacecraft. Size and power
constraints should not be expected to be much dif-
ferent from what they are today. However, reli-
ability over a period of several years adds a new
dimension to the problem, for in a system of
perhaps millions of solid-state electronic elements,
it must be assumed that several, perhaps many, will
become inoperative either due to poor quality or to
severity of environment. What is needed is a
system whose performance will not be reduced below
the minimum required for survival of the spacecraft,
unless failures of calamitous proportions occur. A
new concept of graceful degradation has arisen to
supplement the old notion of redundancy in which
elements may fail, but the circuits which contain
them continue to function with no degradation, If
more elements fail than the redundancy can cope
with, the circuit will fail, and with it, the
system, Graceful degradation implies an organiza-
tion in which circuit failure reduces, but does not
suppress, the machine's throughput. The brain has
this characteristic, but neuron-based automata have
not yet exhibited promise for miniature control
computer applications.

In a multiprocessor organization, graceful
degradation and graceful expansion are related
properties, both made possible by the independence
of the constituent functional units: processors
and memories, A multiprocessor is more complex and
expensive than a like sized array of independent
computers, Its value is greater, for its perform-
ance depends on the number of units functioning at
any time., To increase the power of the machine,
processors and memories can be added without affect-
ing parts previously present and, at least equally
important, without affecting existing programs.
Each processor may be made as powerful as the
technology allows, but in the face of the reli-
ability problem, it appears more desirable to build
simple, reliable processors in greater quantity so
as to minimize the impact of a single processor's
loss.

The multiprocessor structure is compatible with
several of the requirements of the spacecraft ap-
plication beside that of reliability. For one thing,
communication between the multiprocessor and all
other spacecraft systems can be handled in the same
fashion as communication among the processors, thus
affording a unified treatment of the problem of
input-output involving perhaps hundreds of external
functions., In a time-multiplexed serial
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transmission structure, for example, a new system
can be added to the multiprocessor's interface
with virtually no more changes beside the addition
of access lines for the new system to the coaxial
cable (or waveguide) run. Today, multiwire cable
and connector problems probably constitute half the
battle in making spacecraft systems work.

Another example of the multiprocessor's well-
suitedness is the natural division of many space-
craft data processing tasks into short jobs of
fractional second duration. This is a result of
the multiplicity of independent programs serving
the many systems involved, and also of the sampled
nature of control computations, Each program
typically has a low duty cycle, requiring brief
service several times per second. Each instance of
service can be treated as a separate job to be
handled by any available and competent processor.
In the Apollo spacecraft, repetition rates for jobs
vary from a few tens per second down, with no more
than eight jobs running at a time. 1In future we
can expect on the order of a hundred programs run-
ning at once and tens or hundreds of samples per
second per program,

Hardware

Regardless of what organization may be used,
increased performance without increased size can be
obtained only with smaller and/or faster components,
Size is the key to speed by virtue of the finite
velocity of information transmission and of the
power (hence size) of an element which drives a
long (hence reactive) line, The first effect more-
over requires characteristic impedance termination
to avoid reflections, which further aggravates the
power problem, Efforts to shrink components are
hampered by the difficulty of interconnecting
components reliably in a small volume with adequate
yield.

An area in which great progress is being made,
with promise of improvement, is in the creation and
interconnection of large numbers of semiconductor
elements on a single wafer. Within a wafer, signals
can be transmitted at a higher rate than from wafer
to wafer, Likewise, the propagation delay of an
element no larger than required to drive an
internal intercomnection will be less than that of
an element large enough to drive an external line.
The designer is challenged by this technology to
organize his equipment into local high speed areas,
interconnected by as few lines as possible. How to
do it depends on the number of elements per wafer
that can be realized, 1If it is hundreds, then we
think in terms of arithmetic and error detection
circuits, multiplexers, digital-analog converters,
sequence generators, scalers, and small scratch pad
memories. If it is thousands, then small processors
medium sized scratch pad memories and small associ-
ative memories could be made. If tens of thousands
or more, possibilities of rather elegant processors
come to mind.

In any event, logic is becoming inexpensive,
indeed virtually expendable, to a point where using
wire, cable and connections to save it is

uneconomical. Thus it is anticipated that all
spacecraft systems will have local digital circuitry
for encoding, decoding, and multiplexing informa-
tion for transmission in a common language to the
computer and elsewhere, One of the outstanding

jobs of the computer designer is to coordinate

with the manufacturers of large integrated semi-
conductor circuits to best exploit this new
technology.

Memory will be of several types to serve the
various functions of scratch pad, data storage,
and program storage, either in a common area or
associated with a given processor, or both. Enough
separate memories with separate driving circuits
must be supplied to meet the graceful degradation
criterion, and enough words must be supplied in
each memory to do thejob. Scratch pad memories
might be from 27 to 2 words; common erasable
storage will perhaps require 50 words per program,
or more than ten thousand words in all., Program
memory would have on the order of a thousand words
per program, hence hundreds of thousands of words
in all. All three sizes are an order of magnitude
beyond Apollo without even considering the addition-
al cost of redundancy. In the light of the growth
of computer sizes and requirements in the last ten
years these estimates may be somewhat conservative.

IDEALIZED MULTIPROCESSOR STRUCTURE
System Structure

As a model upon which to base our size and
performance estimates we use an organization which
is simple, yet which contains the elements of a
general class of multiprocessors. Starting with a
group of processing elements (roughly computers)
each of which has its own program and scratch pad
data memories, we create a combination in which
there is no one supervisory element or processor,
but which is truly collaborative.

The first item needed in addition to the
processors is an infallible data distributor by
which information is transferred among units. A
simple form of distributor is a time-multiplexed
bus. Every unit having access to this bus can
receive all data which appears thereon. Every such
unit can also transmit data upon the bus by means
of a multiplexer circuit, associated with the unit,
which emits the data at an appropriate time. The
problem of scheduling time is handled by making
each multiplexer enable the next in line as soon as
it is through sending data. The next multiplexer
will then send its data unless it has nothing to
send, in which case it will skip the enable on to
the following multiplexer (see Figure 1),

The next item needed is a common erasable
memory in which to store data needed to start jobs,
This memory must either be infallible, or else have
graceful degradation properties of a sort which will
be left unexplored in this paper. The memory has
access to the bus as do the other units of the multi-
processor., It is interrogated by means of a message
sent from a processor specifying its own identity
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Figure 1. (Collaborative multiprocessor model.

and that the contents of memory address k is
desired, Upon receipt of this messsage, the

memory places it in a waiting stack. When its turn
comes, the message causes a memory cycle to be
executed, and both address and content to be
delivered to another waiting stack for transmission
on the bus. The requesting processor will recog-
nize its answer as it appears on the bus,.

The last item in the multiprocessor is an
input-output buffer unit, capable of relaying
messages between multiprocessor units and external
system data terminals. Although it is possible in
principle simply to extend the multiprocessor bus
out to the externmal units, it is probably prefera-
ble to accommodate the external data transfers on a
separate bus system. This not only isolates the
multiprocessor from its environment for conceptual
analysis, but as a practical matter permits the use

of different sequencing techniques for the mutually
distant remote multiplexers than for the intermal,
closely packaged ones, Except for this, the remote
systems may be considered to be specialized
processors, and treated accordingly in the analysis.

Processing Element Properties

The processing elements P are thought of as
small general purpose computers with a number of
features not normally presumed in connection with
processing elements. These are:

Program Storage -~ Each processor has its own copy
of all programs. The programs are written as pure
procedure. This redundant program storage can be
dispensed with by having onme or several memories
which the varjious processors can interrogate, but

it simplifies discussion to have it. In particular,
each processor has a list of jobs it can undertake,
plus any additional information required by each
job, such as starting address, data locations, etc.

Message Transmitter and Receiver -~ A processor is
connected to the data bus multiplexer by way of a
transmitter and receiver section. This section may
have a job request stack, as discussed below, and
does have means for discriminating among or origi-
nating various messages, such as common memory
transfers, job requests, job acceptances (see below).
An important property is that this section be
"infallible", meaning as reliable as we can make it;
more to the point, it cannot fail in such a way as
to disable the data bus.

Self Error Detection -- Each processor must be
capable of diagnosis at least to the extent of
detecting any errors within itself. The result of
an error in a processor must be a special job
request message put on the data bus so as to have
each processor inform all others when it malfunctions
or when it becomes inactive (e.g., power failure);
this is the reason for requiring an "infallible"
message transmitter and receiver. Error detection
need not be instantaneous; it is probably sufficient
to detect errors within a job execution interval and
not issue false job results. The detection of
certainkinds of errors such as inactivity, or
programs becoming ''lost", requires either a certain
minimum time or else an uneconomical amount of
equipment. The area of error detection and/or cor-
rection may be one of the more difficult ones in
multiprocessor element design.

. In addition each processing element has a
scratch pad storage, an arithmetic unit and rudimen-

tary interrupt system which will enable single memory

cycles out of sequence. The latter should permit a

check within several memory cycles to see if a job re-

quested is available in this processor’'s repertoire
of procedures.

OPERATION
Job Assignment

A view of the detailed process of job assignment
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is important in ascertaining if the single data
bus structure is either possible or desirable, and
if graceful degradation will occur.

Definitions
P Processor
Pl’ or Pi A specific processor
J Job
Jl’ or Ji A specific job
Y Priority
Y, Y, A specific priority Yi +‘1 > Yi
R(J,Y,T) Job request message
AQJ,P) Job acceptance message
E(J,P) End of job message
T Time

The general job assignment can be as follows:

1.

3a.

3b.

R(J,Y,T) appears on the data bus, issued
by either a processor or an input-output
unit. This is a request to do job J,
which has priority Y, and to do it at
time T. The time at which the job is to
be done can be 'mow', or 'as soon as
possible’, or some specified time in the
future.

Each P capable of doing J records R,
whether busy or not, in a stack with
certain associative properties. The
messages may be retrieved by keying on J,
on T, or on the maximum value of Y.
Processors are either free or not. If
not, they are doing a job J of a certain
priority Y.

Suppose J=J,; when R(Ji,Y,T) appears on

the bus the free processors PI’PZ ...P.
each compose a response message J
A(Ji’Pl)’ A(J"PZ)’ ... A(J.,P.). Some

one of the frée processors %il? have first
turn at the data bus (because the bus is
time multiplexed) and will issue an A-
message. All P, free or not, then elide
R(J, ,P,T) and also any redundant A(J.,P)
the§ may have prepared, and which is
waiting its P's turn on the bus. After

A is issued by P., P, must bring all
pertinent informdtiod about J. from the
common memory into itself. 1

If there had been no free P, then
R(JI,Y,T) would remain outstanding in all
P. "All those P doing jobs with lower
priority than that of the job requested
also prepare response messages A(J,,P).
Again, some processor will be first to
issue A(J, ,P) because of the bus multi-
plexing, and all other R(Jl,Y,T) and
A(Jl,P) are annihilated.

The P that undertakes a new J, of priority

Y2 higher than the priority Y1 of J1 has a

choice: it may take on the new job J
while keeping all the information abolt

J, within itself, if it knows J, to be
s%ort (such information can be part of
the job name itself, or of its priority
measure), Or, if J2 is not short, P must,
after issuing A(J2 Y,) but before actu-
ally doing any work, %ransfer all perti-
nent information used by and about J

to the common memory and issue R(J ,%1,T).
In this way another P can undertake J..
Common practice is to program jobs with
"bump points", which minimize the infor-
mation that must be sent to or brought
from common memory in the event of inter-
ruption. The value of knowing when J, is
short enough to allow the same P that

was doing J, to resume J, after doing J
is in the saving of commdn memory trans-
fers,

4, The end of a job, or the interruption of
a job, also requires a message E(J,P).

3. Each A(J,P) issued is recorded in common
memory, and annihiliated by the subsequent
E(J,P) with matching J. In this way
there is at all times a record of which J
are being executed and by which P. This
information permits restarts in the event
of a P failure, as will be discussed
below.

6. Jobs to be executed at appointed times
are of importance in sampled data systems
such as spacecraft. The same stack used
for storing unsatisfied job requests can
be used to solve the problem. The out-
standing job requests R(J,Y,T) may be
sorted (or retrieved associatively) by
T > T, where T 1is the present time, and
flrther sorted y priority. For each new
TO the stack is interrogated to see if
one or more jobs are outstanding. If so,
an A-message is prepared, as in 3.

Job Stack

The stack which contains the job request is a
potential problem area. On the basis of estimations
of system size and speed, and of future integrated
circuit sizes, we have guessed the stack size to be
100 words of 50 bits each. The required associative
properties might be simulated by circulating the
contents of the entire memory in between job requests,
and for each increment of time. A recirculation
time of the order of a few microseconds looks
reasonable from the point of view of circuit tech=
nology (10 nsec per bit, for word-parallel shifting).
This access time is consistant with a time granu-
larity and a job request interval of the order of
ten microseconds, which appear adequate. It is not
yet clear, however, whether room for 100 outstand-
ing job requests is enough.

The job assignment and interrupt structure
which has been defined previously assumes that
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every processor contains a job request stack with
associative and comparative properties. 1In order
to avoid the N-tuplication of this potentially
expensive stack, the structure can be modified
slightly. One 'infallible" copy of the stack is
maintained in common memory, and is capable of
initiating jobs in any processor. The primary
difference in the message traffic flow is that a
Bump Message [B(P,)] must be defined and transmit-
ted at bump point§., Additionally, the bumping
option available to the distributed table system
which eliminates unnecessary common memory trans-
fers is unavailable to the single table system.

Degradation

The multiprocessor can degrade gracefully if,
together with the postulated infallible common
memory, the message bus and the part of each
processor concerned with message handling are also
infallible. It is necessary that a processor
failure generate a message, i.e., a job request.
The job undertaken by some other processor is to
reissue all job requests shown outstanding for the
failed processor. Since the input information
(the list of outstanding A-messages) is still
available in common memory, recovery can be
effected by having other P's do the jobs over
again,

There are other interesting degraded condi-
tions. One of these is when there is one processor,
The message bus then has only one occupant, P_.
When P, issues R, P, receives it, stores it,
computes A(J,P.) isSues it, annihilates R, and gets
on with the job, Hence the bus structure must be
such as to allow message sending processors to
receive their own messages. The single processor
will also behave appropriately in the event of a
higher priority J2 appearing while it is doing a
job Jl.

General system overload is another case of
interest. Suppose the number of job requests be-
comes large for the system, and the list of R
messages stored in each P increases to the point of
taxing that stack, 1If by ''graceful degradation"
we mean that jobs of higher Y get done first, and
that jobs of lower Y get postponed, but done
eventually, then we must provide means for making
room in the "pending R" stacks. Other strategies
are possible, such as proportioned processor
occupancy. One way to do this is to have each
processor store in common memory (or in its own
scratch pad, if it has one big enough) the job
requests of lower priority and later time of
execution, One interesting point is that, if a
processor has many unserviced R's in its stack,
other processors are apt to have the same messages
in their stacks., Hence, as the lower priority job
requests are stored in common memory, a message must
be issued for annihilating the same requests
stacked in other processors. After making room in
the stack the original processor must issue a job
request that the demoted job requests now in com-
mon memory be reissued,.

IMPLICATIONS
Software Considerations

Despite the fact that most of the calculations
for a spacecraft are sampled by nature, there
exists a substantial programming burden in section-
ing programs into jobs of proper length and estab-
lishing the packages of data required to shelve and
resume the program for interruption and restart.
This burden cannot be placed on the programmer be-
cause, as a practical matter, computer users do not
(and should not have to) know very much about the
computer they use. The onus clearly falls upon a
compiler. Programs written as a single job must be
segmented automatically so as to be able to restart
and permit efficient interruption. Writing such a
compiler probably represents a task of the same
order of magnitude as the design of the multi-
processor itself, and also represents an advance
over present compilers, The above multiprocessor
design (and very likely, any other) would not be
attractive without either the prior existence of a
suitable compiler, or knowledge that one can be
written.

An interesting extreme form of program segmen-
tation into jobs consists of letting each job be an
instruction of an elementary type such as multiply
(or perhaps as complicated as a floating point
vector operation). The job name must in this case
contain data addresses and a next instruction ad-
dress; or else the job name can be simply the ad-
dress of an instruction. This would undoubtedly re-
sult in inefficient processor usage, but it might
lead to useful segmentation techniques.

Estimates of Performance

An order of magnitude estimate of performance
requirements for this ideal multiprocessor can be
derived from an extrapolation of Apollo experience.
Within a few years time we shall desire a machine
which can handle on the order of a hundred programs
at a time on a sampled basis, out of a total
program assembly of hundreds of programs. Each
program would periodically receive a sample update;
an average sample rate of about 50 samples per
second per program would probably be adequate.

This means that some 5,000 samples, or jobs, would
be executed every second. The overall bit transfer
rate for common memory, input-output, and messages
is estimated as follows. An average of 25 words
must be brought from common memory and 25 words
stored there per job. This number is based on
experience with the executive program structure of
the Apollo Guidance Computer. Assume 50 bits per
word for address and data. Assume an average of
one input and one output message and four job
assignment messages of 50 bits each per job. The
minimum bit rate which could possibly serve this
system is

jobs words messages
5000 sec (50 job 6 job )
x 50 bits = 14 megabits/sec

word or message
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This rate takes no account of delays occa-
sioned by stacked up requests or other access
times, but is well within reach of today's tech-
nology for memory and transmission systems.

The instruction execution rate 1is estimated
by assuming an average number, again borrowing
from Apollo experience, of the order of a thousand
instructions executed per job, and an average job
duration of a millisecond. The latter figure is
chosen on the basis of wanting the multiprocessor
to react to an input event or job request within

that space of time. This yields a figure of one
microsecond per average instruction, and also
implies that at least five processors need to be
on line to handle the 5,000 jobs per second. Both
of these figures seem extremely reasonable in the
light of our expectations of the technologies
involved; indeed, we expect that the technologies
will soon substantially surpass these levels.
This, added to the fact that we have been describ-
ing a somewhat primitive form of system organiza-
tion, suggests that we may expect to have more
powerful spacecraft data processors in a decade
than there are on the ground today.
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SUMMARY

The necessity for executive program control, a
description of executive functions, and executive soft-
ware implementation is discussed. The frame of
reference is a spaceborne computer for a manned
Mars mission.

The reasons for having executive program control
include requirements for reconfiguration to handle
failures, computational loading, and unanticipated
processing as well as the general questions of effi-
ciency and timing.

The executive functions described are program
scheduling, inter-program communication, reconfigura-
tion control, request processing, Input/Output super-
vision, and computer self-test.

The application of these functions for a multi-
module computer, which is representative of many
multiprocessors, illustrates their characteristics.
Differences in executive implementation for other
configurations are briefly discussed.

Although this paper is concerned with a particular
mission for a single NASA study, the approaches and
problems examined are applicable to a broad range of
computer systems.

INTRODUCTION

The combination of a new class of space mission
requirements and hardware concepts new fo onboard
computer systems requires a reorientation of software
techniques.

Software design for current ICBM, manned space-
craft and unmanned space probe computers is primarily
concerned with maximizing utilization within a frame-
work of strict timing constraints. Reconfiguration, if
planned for at all, is limited to switching in a backup for
handling failures and to setting logic to enter alternate
program paths for changing mission phases.

For long-duration maimned space missions the em-
phasis on optimum utilization is balanced by the need
for flexibility. The dynamic mission environment
requires computer response, both hardware and soft-
ware, to multiple failures, widely varying computational
loads, and unanticipated requirements. Although timing
constraints still exist, they are not as severe and a large
portion of the computations are unconstrained.

A manned Mars mission (1980 time frame) is used
in this paper as representative of this class of missions.
After demonstrating the necessity for executive control
in general, the various executive functions are des-
cribed. Finally, an example of executive software for

By: Robert A. Hokom, Senior Engineer, Computing

Autonetics, A Division of North American Aviation, Inc.,
Anaheim, California

a particular configuration and a discussion of applica-
tion to other configurations are presented.

NECESSITY FOR EXECUTIVE PROGRAM CONTROL
The Computations
Mars Mission Characteristics — The manned

Mars mission used as the framework for this study
consists of the following major flight segments:

1. Launch and injection into Earth orbit.

2. Escape and trans-Mars coast with midcourse
corrections.

3. Injection into Mars orbit.

4. Escape and trans-Earth coast with midcourse
corrections.

5. Earth re-entry and recovery.

The purpose of the mission is to perform extensive
scientific measurements and experimentation in the Mars
area, and a limited amount of the same during coast
periods. It is representative of other long-duration
manned space flights, such as orbiting stations, Mars
landing, and other planetary missions, since their
operations are computationally related.

Computational Characteristics — There are two
distinct types of computations: control/monitoring and
batch data processing. The first is necessary for
guidance/navigation, status monitoring and communi-
cations, the second for scientific data handling.

Computationally, the mission consists of a sequen-
tial series of 20 unique phases which are classified as
follows:

1. Mars orbital phase — Characterized by the
mission's peak loading of 30000 words with
380, 000 operations/second speed, and
0.5 hour recovery requirements.

2. Non-Mars, critical phases — loading of less
than 12000 words with less than 200, 000
operations/second, and 5 second recovery.

3. Non-Mars, non-critical phases — Loading of
less than 24000 words with 250, 000 operations/
second, and 0.5 hour recovery.

The loading estimates include certain functions
that are non-continuous. TFor instance, during the trans-
Mars and the trans-Earth coast phases over half of the
load is executed on command only at relatively infre~
quent intervals. Of course, other functions, such as
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status monitoring and attitude determination, are con-
tinuously performed during the entire mission, although
the mechanizations may differ from phase to phase.

Computational Requirements — The computer

system must be flexible enough to functionally configure
itself to efficiently process a variety of computational
loads. This includes the capability for processing
unanticipated programs (ie. existent program in-flight
not scheduled for the current phase or the development
of new programs through programming).

Certain portions of many functions must be exe-
cuted periodically. The frequency of these cycles
must not vary.

In addition to providing necessary error detection
and fault isolation, the system must have a means for
smooth transition to backup configurations.

Since in-flight programming might be necessary,
software development must not be hindered by an
excessive number of restrictions.

Dynamic Versus Static Approach

Static Programs — In general, given enough time,

a group of skilled programmers can mechanize any
reasonable set of requirements for a given computer
without any special support software. In this case, in
order to keep the computer size within reason, it is
necessary to program phase defined 'load modules, "
which are permanently stored on a mass storage device.
Therefore, at least some means for sequencing load
modules into the computer as new mission phases occur
must be implemented.

These load modules could be mechanized as separate
static programs, each with a high degree of optimality.
This would mean that 20 unique load modules of between
12,000 and 30, 000 words each would have to reside on
the mass storage.

In order to reconfigure for a single failure, another
complete set of load modules would be required. The
handling of multiple failures would require multiple load
modules for each phase. Reconfiguration to handle
unanticipated processing would involve in-flight construc-
tion of an entire load-module.

Assuming that at least 100 unique load modules
would be required, the mass storage would have to hold
approximately 1,200, 000 words and the logic to select
them would not be insignificant. In addition, the thought
of recoding functions on the order of 100 times is
egpecially repungent to the programmer.

Dynamic Programs — With appropriate executive
program control, each function can be mechanized just
once and the load modules can be constructed during the
flight from 'load profile' tables. The mass storage
would have to accommodate only about 60, 000 words.

These programs will have to be mechanized so that
inter-program data flow, timing, and Input/Output is
performed with support software, and each program
must be otherwise self-contained. There is some loss
in utilization since there is executive overhead and

modularization by nature implies some inefficiency, but
the inherent flexibility is essential to achieving true
effectiveness of the computer system.

An area often overlooked in computer system
design is the effect of program modifications. As
requirements are altered, deleted, or added, the asso-
ciated programs must be reworked. Programs coded
statically must be completely redone for each modifi-
cation. Dynamic programming permits rework to be
confined to directly affected functions.

Accepﬁng the dynamic approach means that certain
executive and support facilities must be provided, and
that programming procedures must be established.

EXECUTIVE FUNCTIONS
Program Sequencing

Periodic Programs — There are a number of processes
within each computational program that must be repeat-
edly executed at a fixed frequency. For the mission

under consideration, the highest rate function is attitude
determination which must be executed 20 times per sec-
ond. Almost all others must be cycled once per second.

Background Programs — Other processes are to be
executed continuously during a phase, but have no
timing constraints. An example of this is status moni-
toring and testing during trans-Mars coast of vehicle
systems to be used in Mars orbit.

Request Programs — There are many processes that
are executed on command only, in other words they are
non-continuous. An example of this is the guidance and
navigation function during coast phases; it will be exe-
cuted about once a day and will take only 0.5 hour. In
terms of sequencing, unanticipated programs are con-
sidered as request programs.

Program Scheduling Routine — The executive must
have a routine for scheduling the execution of these
programs. The scheme must satisfy the strict fre-
quency requirement of all periodic programs, sequence
the background programs, and permit execution of re-
quest programs with some priority control.

This routine must minimize dead time and be able
to perform its job for any of the load modules. This
can only be done if the load profiles include information
concerning the classification of each program in the
load module so that scheduling tables can be constructed
and updated.

Inter-Program Communication

Even though the various programs are functionally
independent, there are a number of parameters that can
be considered as ''global." These include data refer-
enced by more than one program, interface data for
separate programs that jointly represent a single func-
tion, executive-computational programs' control and
information parameters, and data necessary for initiali-
zation of programs.

There must be a means for global parameters to be

transmitted to and from any configuration of computational
programs,
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1. Mars orbital phase — All connections are un-
blocked except that Py is able to temporarily
block the P, - M; and Py - 1/0, connections,
and P, can do the same to the P1 ~ Mg and
P - 12/02 connections.

2. Non-Mars, critical phases — A 'processing
group" consisting of Py, My, and I/0y is
formed by blocking the connections P2 - M),

Pg -1/01, Py - Mg, P1 -1/09, and Py - Mg3.
The Pj - M3 connection is also blocked but may
be unblocked in order to expand the processing
group's memory capacity. The corollary
processing group Pg, Mg, and 1/09, which is
formed by the same blockings, is used as a
backup to the other in case of failure.

3. Non-Mars, non-critical phases — The proc-
essing group of P, Mj, and I/Ol is formed
and the other modules are turned off. The My
memory module is brought into the group when
required.

Multi~Module Executive and Support Software

Program Scheduling — The key area is the scheduling

of the periodic programs. A requirement is established
that all frequencies must be integer multiples of faster
rates. This permits the usage of a fixed ''time interval"
cycle, which equals the highest frequency (0. 05 seconds),
as the base for scheduling. An interrupt system returns
control to the schedule at this frequency.

The highest rate program is always executed first
and then the next highest. A Periodic Table is main-
tained which contains frequency and status information.
Figure 2 shows the execution sequence of a set of perio-
dic programs.

PERIODIC PROGRAMS FREQUENCY TIME-TO- PERFORM

.05 0.01
.1 0.02
.1 0.02

3 0.01

anow
cooo

(NOTICE PROGRAM IS INTERRUPTED TO PERFORM PROGRAM a)

T
0.35 0.4 0.45

'
IRARR AR RRREE RARRN B T
0.5 0,55 0.6 0.65 0.7

Figure 2. Example of Periodic Program

Scheduling

The shaded areas in Figure 2 represent time
periods when either request or background programs
may be executed. A Request Queue, which contains
requested programs and is ordered by priority, is ex~
hausted before the Background Table is used to cycle
the background programs.

During the Mars orbital phase a separate Periodic
Table is assigned for each processing group. When the
interrupt occurs, each processor scans its schedule.
However, a single Request Queue, residing in Mg, is
accessed by both. Separate Background Tables are used,
though, when all requests have been satisfied.

When a program is interrupted, its register values
and the program location counter is saved. A status
indicator for each program is kept in the tables so that
resumption can be scheduled.

Inter-Program Communication — Global parameters
are assigned fixed locations. The various programs
merely perform fetch and store operations directly.

Reconfiguration Program — Each load module is orga-
nized so that periodic, request, and background pro-
grams are separated into blocks. The memory is
organized as follows:

1. Central data area and Executive programs.
2. Executive tables.

3. Periodic programs.

4. Background programs.

5. Request programs.

For the Mars orbital phase My and Mg would each
be organized this way and Mg would contain additional
request programs.

To load a new load-module for a new mission phase,
the current periodic block is moved to upper memory,
overlaying the request block. The loader is executed as
a TOP priority request, so this move is safe. The new
periodic block, when completely loaded, is initiated;
the old one has continued operating until this time. When
the new periodic programs are operating smoothly, the
other blocks are loaded.

A cold restart is accomplished by direct load. This
is required if failure causes computer shutdown.

Unanticipated request programs are brought in by
overlaying lower priority request programs.

Request Processor — Requests are made by setting
logic flags in a Request Board that contains pointers to
all programs. Console messages are interpreted by a
console message processor routine to set this board.

The scheduler will check this board for possible
additions to the Request Queue each time it is ready to
handle request execution.

1/0 Supervisor — Two special routines, PUT and GET,
are used by the computational programs to perform
1/0. The logical name of the sensor, which is supplied
by the user, is used to scan a I/O Configuration Status
Board for device selection. This board is updated by
console inputs whenever manual I/0 reconfiguration
occurs.
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Reconfiguration Control

An executive routine must be provided which can,
in response to appropriate commands, produce a load
module containing all currently required programs.
This naturally leads to the requirement that all pro-
grams be relocatable so that memory resources are
efficiently utilized. The scheme employed must be
capable of reconfiguring in response to several
situations.

Mission Phasing — When a new mission phase is to
begin, the associated load module must be loaded in
such a manner that a smooth transition of the compu-
tations and outputs is obtained. This is especially
important for periodic calculations that will continue
in the new phase.

Failure — The load module must be reloaded into
either an equivalent backup or reduced computer sys-
tem after fault isolation determines what errors have
occurred.

Unanticipated Programs — When an unanticipated pro-
gram is requested for execution, the current load
module must be altered to accommodate the new
program and, when necessary, the computer configura-
tion must be expanded.

In all cases, the job not only is reassignment of
resources (storage and processing time), but involves
alteration of the executive itself so that adequate con-
trol can continue to be exercised.

Request Processing

Request programs can only be placed in the sched-
uling tables when a specific command is issued. There
are two primary sources for request commands.

Programmed Requests — A program may wish some
other program to begin execution when certain conditions
are detected. The decision to issue the request can be
dependent on parameter values, input quantities, or
program sequencing logic. The priority of the request
can be either fixed or a computed value.

Console Requests — The astronaut may want to initiate
a request via the computer console. This can be accom-
plished by having a support package that will interrogate
and interpret console messages and issue the appro-
priate request commands.

A routine to accept these requests and set up the
appropriate logic in the scheduling scheme must be
available.

Input/Output Supervision

The functional configuration of the Input/Output (I/0)
system, which includes computer 1/0 units, sensors, and
their interconnections, is dynamic also. Thus, reccn-
figuration is concerned with this area too.

Since the recovery requirement during 90 + 9 of the
mission is 0.5 hour, the main means for accomplishing
reconfiguration will be manual replugging of sensor
lines into I/0O conditioners. During critical phases the

critical 1/0 devices will be redundantly available and
automatic switching can be used well within the 5-second
limit.

The computational programs could not keep up with
these changes. Therefore, a central 1/0 supervision
routine must be provided. Input/Output will be per-
formed by appropriate calls on this supervisor from
the various computational programs. The current
status of the I/O system must be updated via the con-
sole when manual alterations are performed.

Self-Test

Whatever error detection and fault isolation tech-
niques are employed, the software to support it com-
prises another executive function.

Application to Specific Computers

The logical design of the computer system will have
a direct bearing on the relative difficulty and importance
of implementing these executive functions. In fact, the
hardware design must be concerned with providing
features that will facilitate the executive software
system. Thus, the total computer system design effort
involves considerable feedback and trade off evaluation
between the hardware and software areas.

A REPRESENTATIVE SYSTEM
Multi-Module Computer Description

The software design for a multi-module computer
capable of performing the manned Mars mission is
demonstrative of an executive implementation.

Hardware — The computer is composed of a number of
modularized components as represented in Figure 1.
There are two processor modules (P; and Pg), three
memory modules (M7, Mg, and M3), two I/0 modules
(1/01 and 1/05), and a variable number of 1/0 condi-
tioners with attached sensors. As can be seen, there
are memory-processor connections, processor-I/O
connections, and I/O-conditioner-sensor attachments.

12,000 WORD MEMORY
MODULES

N
M, My My

250, 000 OPERATIONS/SECOND
PROCESSOR MODULEX

SENSORS

Figure 1. Multi-Module Computer
Hardware Representation

Functional Configurations — The functional configuration
is changed by blocking and unblocking interconnections
depending upon the type of phase being executed; these are:
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On input the sensor is sampled, an appropriate
reasonableness test may be used to check the data, and
the value is passed to the user. On output the value is
picked up, transmitted, and verified via hardware
feedback.

Self-Test Program — For this system a number of
error detection techniques are employed. Fault isola-
tion, except for 1/0 errors, is performed after failure
has caused a backup configuration (another processing
group) to be brought up. The means used are the
following:

1. Pulse stream — A special flip~-flop, which
will be hardware monitored, is complemented
at the beginning of each time-interval cycle
within the scheduler. Processor logic errors,
interrupt errors, and some memory failures
are detected.

Failure notification will automatically be given
when the pulse stream test is failed. Errors
detected by other means perform notification
by forcing pulse stream failure.

2. Arithmetic unit test — one of the periodic
programs is a routine that performs a com-
plete check of the processor's arithmetic
logic.

3. Check-sum — The computational programs
are internally organized so that code and con-
stants are blocked separately from variables.
Check-sum information is contained in the
load profiles and is kept in the scheduling
tables. When the scheduler selects a program
for execution, it first performs a check-sum
on it.

4. 1/0 tests — Another periodic routine issues
special test parameters through 1I/0 condi-
tioners and checks built-in feedbacks. The
PUT and GET tests are also used to detect
1/0 errors.

A Conditioner Status Table is used to collect
information on which 1/O errors have been
detected. This is used to isolate to an I/0

unit, a conditioner, or a sensor. Only the first
will cause computer failure notification.

Other Configurations

Multi-Computer — The software for a multi-computer
system, which also is able to perform the mission,
closely parallels the multi-module's. The primary
difference is that during the Mars orbital phase each
computer operates under completely separate executive
control.

Distributed Logic — The distributed logic configuration
considered best suited for the mission is one with a
number of separate cell groups connected only by an
Inter-Group Buss.

Task modules, which are blocks of code that fit
in one cell group, are scheduled only for requests.
Periodic scheduling is performed locally within the
task modules. Reconfiguration consists of reassigning

cell groups to new task modules. Errors are detected
and isolated at the cell group level.

The inter-program communication function is vast-
ly increased in scope. An Inter-Group Communication
System is used to schedule the buss on a time-shared
basis for transmission of inter-task data, global param-
eters, I/0 values, and certain test indications.

Unexamined Systems — Although these three designs
are fairly representative, there are innumerable com-
puter designs that might be considered for spaceborne
missions. The executive functions that were discussed
must be incorporated, to some degree, in any design.
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SELF-REPAIR: FAULT DETECTION AND
AUTOMATIC RECONFIGURATION

By Earl C, Joseph

UNIVAC DEFENSE SYSTEMS DIVISION
SPERRY RAND CORPORATION

SUMMARY

The reliability and flexibility of next generation
spaceborne computers will not be gained primarily
from the application of new and more reliable elec~
tronic devices, but rather through system organization
to meet the reliability requirements of the space age.
The multiprocessor is an example of such a computer
organization. Multiprocessors are capable of parallel
processing and can be configured and reconfigured for
general-purpose applications meeting advanced require-
ments for reliability and adaptability.

With the advent of large scale integrated circuits
(LSI) we are told that we soon will have ""computers on
a chip'’. With such LSI chips containing full or partial
systems, it becomes practical and economical to imple-
ment self-repair. That is, the addition of spare redun-
dancy and diagnostic logic on a chip is possible without
materially increasing the cost and size of the system.
In addition, by including the "spares’ on the chip ready
to be "fused" into usage, automatically under program
control, self-repair is accomplished without additional
connections and complex switching logic.

Included in this paper is a description of the fault
detection, isolation, and location techniques required
to recognize a system failure, to make the necessary
real-time self-repair adjustments to the hardware con-
figuration, and recover from errors generated. This
multiprocessor organization with nonmanual self-repair
features allow for reconfiguration so that a level of
capability is continuously maintained and 100 percent
systems availability can be virtually assured.

INTRODUCTION

) Next generation computers will be required to have
available a maximum capability 100 percent of the time
for many applications. ’

s 1
With the advent of modular multiprocessors, the
design of systems capable of achieving self-repair is
possible so that 100 percent availability becomes poss-—
ible.

If parts fail the redundancy of a multiprocessor
organization can be used to obtain reliable operation,
that is, a multiprocessor is inherently a space redun-
dant system.

Increasing the scope of applications of Large Scale
Integrated Circuits (LSI) is simply a matter of time;
for its usage as the principal ingredient in spaceborne
and aerospace computers (and for that matter, any
computer) is a certainty in this decade. The first
computers that will be made completely from LSI will
be for Aerospace applications. Of course, the major
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incentives leading to the incorporation of LSI, is the
promise of substantial system cost reduction and a
considerable increase in reliability.

The ushering in of LSI puts us at the threshold of
fourth generation computers. Like previous gener-
ations, the current one is characterized by a dramatic
breakthrough in component/device technology. The
four generations and their associated state-of-the-art
technology are:

® 1st generation computers - Vacuum tubes
(1950-1957)

® 2nd generation computers - Transistors
(1956-1966)

® 3rd generation computers - Integrated Circuits
(1962-1977?)

® 4th generation computers ~ LSI (1967-7?)

The continuing reductions in size, cost, and
power consumption of logic circuit elements through
the use of LSI encourages and facilitates the utilization
of more complex logic networks in digital computers
for spaceborne applications and allows for practical
self-repair. This LSI-provoked revolution occurring
in the electronics industry is drastically changing com-
puter components and is causing an upheaval touching
all levels of space technology.

Before LSI, the designer was forced to be concerned
about the amount of logic going into the make-up of

the spaceborne computers. In the near future, that
will not be the case; for doubling or tripling the amount
of logic per system on a wafer makes only a small dif-
ference in cost, size, and power consumption. Thus,
a new era of highly capable and extremely reliable
computers car. now be considered by the space planner.

Historically in the computer industry great advances
have been made in designing for reliability. In 1951
the early computers had a mean-time-between-failures
(MTBF) which was less than one hour. Today we are
using a few computers which exhibit an MTBF of thou-
sands of hours and are designing computers which
should have an MTBF of 10, 000 hours or more. This
paper describes design methods to increase the reli-
ability by another order of magnitude, to the range of
100, 000 hours MTBF or more.

LSI means more logic per component to the sys-
tem designer. Projections made at the recent (1966)
IEEE Lake Arrowhead Workshop, '"The Impact of
Large Scale Integration on Information Processing
Systems', by LSI component manufacturers indicate
that one can expect hundreds and thousands of logic
gates per component and in the not toofar distant future,
in the 1970's, it will be possible to design computers
using ten thousand gates per component. Computers
built today use integrated circuit components with two
to four or at most ten gates per component. So even
with a few hundred gates each, an order of magnitude
breakthrough is occurring and the future promises
breakthroughs of far greater magnitude. These revo-
lutionary changes mean higher speed and smaller future
systems and are of such magnitude that a revolution is
occurring in Aerospace computer design.



Since the component size is relatively the same
size throughout this revolutionary change higher speeds
and smaller systems are possible. This results from
smaller and closer gates driving shorter wires, For
supporting long-term missions demanding increased
data processing capability, these features inherent with
LSI, mean that the computer needs of future high-capa-
bility, post-Apollo, spacecraft can be met. Of equal
and perhaps greater importance to the spacecraft is
that these LSI features also require less power than
present day circuits and systems.

On-board spacecraft reliability requirements pose
a formidable problem to the computer designer of yes-
terday. With LSI, where orders of magnitude fewer
individual components, connections, and process steps
are required to implement a computer, orders of mag-
nitude greater reliability can be achieved. This im~
provement in component reliability coupled with a mod-
ular multiprocessor organization capable of reconfig-
uring itself and self-repair to accommodate both equip-
ment failure and mission changes will allow orders of
magnitude improvements in computer systems reliabil-
ity and availability.

In order to meet the spaceborne requirements of:
1) a self-repairing system capable of diagnosing itself,
2) a spaceborne computer system capable of simultane-
ously performing a wide variety of either or both com-
mand and control or mission data processing tasks, and
3) a system capable of reconfiguring itself into a func-
tional system,
amultiprocessor computer system-organizationis opti-
mum®,

Self-Repair: A Definition

A self-repairable digital computer is a reliable
automaton which has the capability of automatically
detecting and isolating a failure to a functional sub-
system, then automatically causing a program (or
hardware) to switch a spare functioning subsystem into
the system to replace and repair the failure. This
paper describes methods of designing computers for
continuous operation through self-repair where manual
repair is not possible.

System Reliability and Self-Repair

Obviously if the total computer system is demol-
ished, it is not capable of self-repair, What then is
the minimum subsystem configuration which must func-
tion to allow the computer system to be self-repairable?
This paper describes a self-repairable system requiring
a minimum of operating parts of the system together
with spare submodules that can be switched into the sys-
tem to replace failing subsystems.

The reliability of a group of modules in series,
presents a serious problem in maintaining the system
in operation; for, the failurc of onc module will disable
the entire complex. The solution is to use parallel re-
dundant units (as in a multiprocessor) and interchange-
able standby spares which can replace failing modules.

Because the multiprocessor is made up of many
modules that perform each function, it is less vulner-
able, in military applications, than contemporary unit
computer organizations; for if one or more modules are

destroyed, by one means or another, and a module of
each function still exists, the multiprocessor can still
accomplish its job. Thus, future computers for mili-
tary applications will be organized with parallel oper-
ating functions like a multiprocessor. To further mini-
mize the vulnerability of the computer, the system de-
signer has two choices: 1) distribution of the functional
modules throughout the physical system; or 2) central-
izing the functional modules into a well protected area.

For several years UNIVAC has examined various
computer configurations in a continuing search for a
more reliable computer system. These studies con-
clude that a modular system, which can adapt itself to
the specific task, is needed. A system which can recog-
nize the failure of a functional unit and take corrective
action is essential. Future applications require a sys-
tem design which allows not only graceful degradation
at the module level, but which algo permits adjusting
the tasks to be performed to the remaining hardware
capabilities. That is, as errors occur, software re-
covery techniques must enable and assist the system
in recovering from malfunctions. At the full operation-
al level, all of the hardware consisting of many similar
functional modules in a multiprocessor is needed and
used in a nonredundant manner. As a functional unit
fails, it is electronically removed from the system,
new data paths are created by switching, and the sys-
tem continues at a temporarily reduced capability or
capacity.” With the advent of multifunction integrated
circuits, manufactured using batch processing‘grconsis—
ting of hundreds and thousands of logic functions per
component, this type of automatic electronic self-repair
becomes feasible. The functional units are selected
(during design) in such a manner that it is statistically
improbable for a combination of failures to reduce the
capability below the predetermined level needed for
minimal system operation. The hardware and software
diagnostic system must further locate the fault in the
failed functional unit to a replaceable unit without inter-
fering with the system operation. The failed unit can
then be automatically repaired and the system rcturned
to full operational capability,

System organization techniques such as these en-
able the computer system to achieve system availability
and reliability several orders of magnitude greater than
that of the functional units involved. Summarized, this
concept is one of graceful degradation down to a prede-
termined activity level. The probability of failures
which reduce the system to a lower level is so small
that it is realistic to guarantee operation at this prede-
termined level. Thus, extreme system reliability can
be achieved through system organization and design
rather than from circuit improvements only. In the
past, achieving a system reliability greater than the
reliability of the components was only possible in the
neuronal systems encountered in biological systems.
With the advent of parallel systems like the multiproc-
essor, however, man can now achieve a similar level
of reliability in the hardware systems he builds.

Any computer system at some point in time will
have subsystems that fail. By advance planning and
using a multiprocessor organization, the system de-
signer can design a computer system to perform its
task at, perhaps, reduced speed even while containing
failed subsystems. Both the hardware and software,
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however, must be designed to work together to achieve
total system reliability and continuous availability.

Today's individual solid state components are ex-
tremely reliable, in the neighborhood of one failure per
10 billion component hours. Since it is prohibitively
costly to obtain sufficient information about failure
mechanisms to improve component reliability beyond
this point, there is little likelihood that the components
of the future will be more reliable. Today's compo-
nent, however, represenis one or only a few logic
functions, whereas tomorrow's multifunction, batchfab~
ricated, LSI circuits will contain hundreds, thousands,
and even tens of thousands of logic functions. In this
fashion, with the reliability of the component no better
than today's, the actual reliability of each logic node
will be increased by one, two, three, and even four
orders of magnitude.

Further, since there is no observable or predic-
table deterioration with time, associated with solid
state components, the system designer of a self-repair
system using replacement modules, need not be concer-
ned with routine component replacement schedules.

That is, there exists no algorithms to tell the designer
when a component is about to fail because there are no
known wearout mechanisms, other than random failures.
Thus, the designer is faced with designing the self-
repair system to replace failures only after a failure
occurs. In addition, redundant systems gain no added
reliability from standby modules over active redundant
modules, H the redundant modules are active, an
additional capability is achieved. This capability gain
can be used in a fashion to allow the system to be
smaller, when designed as a multiprocessor, than a
system with an inactive standby and to achieve more

reliability by using fewer components in the total system.

SELF-DIAGNOSTICS

In a computer system consisting of many computers,
such as a multiprocessor, it is possible to design the
system.to permit a functioning processor to diagnose
and repair other parts of the failing system.

For example, consider a worst-case situation where
all diagnostic aids fail to isolate the failed subsystem.
Then, under program control, a functioning processor
need only, by trial and error, switch in and out function-
ing subsystems in the failing system until a functioning
and repaired computer is achieved.

Briefly, the techniques of self-diagnostics, to be
discussed, assume that a processor has access to the
various internal or controlling registers of the other
modules in the total system. Thus allowing a processor
to actively diagnose faults in itself and other subunits in
the system in real time. In this manner, a processor
can actively detect and control errors as they occur and
reassign tasks within and among these devices to com-
pensate and adjust the systems work load among the
remaining modules until the failure is repaired.

During the latter part of the last decade and con-
tinuing through to the present time, UNIVAC has been
active in the development of software® which has the
capability of recovering from transient computer and
system errors. Executive control and error control

routines were developed which, in conjunction with
hardware aids, recognized large classes of computer
and system errors. When errors were detected, the
control was transferred to the appropriate self-analysis
routine so that appropriate emergency corrective action
could be taken. In demonstrated cases, useful results
were produced even with several errors occurring per
second.

With the arrival of LSI circuits containing many
logic nodes and even complete functions, component
reliability has and will be greatly enhanced. The de-
mands upon reliability at the system level, however,
have become so great that mere attention to circuit
design, component selection, and manufacturing tech-
niques will no longer suffice.

In designing computer systems with self-repair
features for extreme reliability, the designer needs to
consider many things, many more than one can possibly
discuss in a paper of this scope. Some old assumptions,
definitions, and new considerations presented without
proof are:

® TFailures are malfunctioning hardware or soft-
ware that may or may not cause an erroneous
calculation. They may be either intermittent or
catastrophic. Whereas errors always result in
an erroneous calculation. Errors are caused by
either malfunctioning hardware or partially de-
bugged programs; either type of malfunction may
or may not generate an error; for example, con-
sider a component failure in the multiply algor-
ithm: if the multiply instruction is not called
upon and thus not executed, no error will exist.
In the design of a self-repairable system it is
not just good enough to repair malfunctioning
hardware; the system must also be designed, as
described herein, to recover from all errors,
whether caused by intermittents or catastrophic
failure. The method of error recovery to be
described uses both hardware and software,
working together, to self-repair the damage
caused by an erroneous calculation. Such damage
is manifested as unfinished calculations, loss of
inputs that require reconstitution, and so forth.
Malfunctions which do not generate errors are not
detected until they cause an error.

® Errors and failures occur infrequently in todays
debugged systems using highly reliable compo-
nents; therefore, a computer system should be
designed so that little or no extra system time
(additional time to perform calculations) is re-
quired for error detection and error contrel dur-
ing normal operation. That is, the computer can
be designed to take extra time (and use additional
logic) on an emergency basis at the time errors
occur,

® 1In a self-repair system, spares that would other-
wise be lying on a shelf until they are manually
inserted, can be utilized for automatic replace-
ment, The number of spare modules that can be
handled automatically, however, is small because
the switching logic increases rapidly as the num-
ber of modules switched increases. In a practi-
cal self-repairing system, switchable spares



must contain a lot of logic in order to keep the
number to be switched small.

® If error control is preplanned such that the pro-
grams pre-condition the system for error con-
trol, it is possible to recover and self-repair the
damage resulting from errors. (Refer to section
on adaptive error control. )

® The number of connections between modules is a
minimum when a total function is included in the
module. That is, the density of connections with-
in a function is high whereas the density of con-
nections between complete functions is low. Thus
for practical self-repair a functional break up of
the logic is desirable to keep the number of lines
to be switched at a minimum.

® Assuming that the individual components in a sys-
tem offer maximum reliability, it is a matter of
system organization to achieve a greater system
reliability than the individual components, In
general, to achieve this higher reliability the de-
signer must use one form or another of redun-
dancy; however, a multiprocessor is already a re-
dundant system by definition. This paper de-
scribes a method of achieving extreme reliability
by making use of the redundancy of a multiproces-
sor and by using a computers spares without re-~
sorting to total system triplication. The method
to be described uses many techniques; fault-mask-
ing hardware networks where they are required,
auxiliary coding detection schemes (parity and the
like), and both software and hardware aided detec-
tion and correction schemes together with self-
repair by spare replacement. In general tripli-
cated faultproof” combinational networks are not
used for the sake of economy. Such a system
combining methods of fault masking and replace-
ment strategies for achieving reliability, using
the method best suited to the case at hand, leads
to a more economical and more reliable system -
a system having the widest range of tolerance.

The most reliable computer in the world would be
unreliable and useless if the programs it is executing
were not completely debugged and designed for reliable
operation - designed to recover from errors. To this
end, an adaptive error control program which adapts to
a malfunctioning environment is required.

In order for a computer to repair itself and re-
cover from errors the following steps must be accom-
plished:

® Error Detection
® Fault Location
® Fault Isolation
® Error Control and Recovery
® Repair Replacement.
The following tabulation is a sample list of the type

of error detection circuitry that may be included in a
self-repairing computer system:

Parity checking for data words
Parity checking for memory address words
Parity checking at functional unit interfaces

Integrity checker on the program address
counter

Over-write and over-read checkers for list
memories

Illegal operation detectors
Arithmetic error detectors

Power and temperature (environment) fault
detection

Real-time checks

Critical command operation checks.

In addition to the circuitry required to detect the
above failures, there are fault registers which freeze
information about errors as they occur together with
associated fault interrupt generation control.

Errors and failures in computations are detected
by either hardware or by programmed tests. In a sys-
tem which incorporates considerable error checking
hardware, all programs can become fault checking
programs. Such a system would consist of some or
all of the following error checking hardware:

Data parity checking - all register-to-register
transfers and all data read from memory.

Address parity checking - all transfers of ad-
dresses between registers and read or write
references to memory up to the input of the mem-
ory drivers. It is far more undesirable to jump
to a wrong address, read the wrong word, or
write into a wrong memory location than to read
a data word that has lost a bit. Thus, this type
of parity check is more important than the data
parity check found in most computers. Yet, it

is amazing that address parity checking is seldom
implemented in contemporary computers.

Program address counter parity check - before
advancing the counter, the parity of its value plus
one is predicted and then, after advancement, its
parity is checked against the predicted value.
Again, this is an extremely important check, be-
cause if the program address counter is not oper-
ating properly, no believable program execution
is possible. Operations like this are termed
critical commands. Critical commands are de-
fined as that logic which, when not functioning,
does not allow programs to be executed.

Sequence time checking ~ all instructions preload
a countdown timer before execution and, if the
timer reaches zero before the instruction is
completed, a hang-up error exists. An error
interrupt occurs to release the computer from
this condition.

Arithmetic checks - checking for overflow and
the like.

Nlegal operation checks - such as nonexistent
address checks.




® Environmental checks - examining power and
temperature, To further reduce the degree of
system exposure to failures, redundant nodes and
modules are powered from individual and separate
power sources which have individual turn on/off
systems, controlled by the power checking sys-
tem, so that one of the nodes is always operable.

® Memory lockouts - controlled by the executive
program for protecting data and programs being
executed concurrently.

FAULT RECOVERY

The main objective of a self-repairable system is
to maintain the system at its maximum possible capabil-
ity. This goal is accomplished by detecting a failure as
soon as possible after it occurs, isolating the failure to
a functional subunit before system contamination can
occur, diagnosing the failure to the replaceable unit, re-
placing the failing unit, and re-establishing the function
within the system. To accomplish the above operations
in real time all operations must be manipulated and con-
trolled by the programs and hardware without manual
intervention,

Another objective of such a system is to maintain a
continuous level of computer capability within the sys-
tem. This means that the removal and replacement of
a faulty unit should not interfere with the operational
capability of the remainder of the system. These ob-
jectives are not singularly limited to the computer, but
rather include the total system: the computer, its soft-
ware, and peripherals. The self-repairing system dis-
cussed herein is for the total system.

In general, errors will be detected by hardware and
software. Detected errors will then be recorded in a
processor, a memory, or a status unit. The error de-
tected will react in the system with the initiation of a
task through an interrupt at one of the functioning proc-
essors. The processor interrupted will analyze the
trouble, determine corrective action, and decide whether
to continue, do further diagnosis, or isolate and replace
the troubled component. In most cases, the program
will decide how many times an error may occur before
isolation is necessary. Electronic isolation and surgery
will be accomplished by changing the status of the defec-
tive unit at a status unit. Functional isolation and sys-
tem reconfiguration are accomplished by programs,
switching submodules, and using memory lockouts.
Subsystem switching (replacement repair) will be done
without power shutdown and confidence checks will be
made before returning the electronically repaired equip-
ment to operational status.

In all these cases, if an error is detected, the fol-

lowing sequence occurs:

® Aninterrupt occurs to the appropriate executive
error control program which further resolves the
error condition. This error control program, if
it is executable, will determine if the error is
intermittent or catastrophic. If a failure has oc~
curred, it will indicate this condition and initiate
repair. If the failure is such that the executive
error control program is not executable, then
special hardware or another processor is required
to isolate the error to the functional subsection

that has failed, and the error control hardware
initiates the repair by initiating a functioning
processor.

® Prior to an error interrupt and instantly upon de-
tection of an error, information about the error
is captured and frozen in registers. Two types of
data are captured and saved: 1) the type of error
and 2) an address associated with the error. This
information is used by the error control program
or hardware to determine which functional sub-
system has failed and for recovery from the
error.

Additionally, real-time control programs and cer-
tain on-line multiuser systems require that all outputs
are checked to determine their validity and the checking
of arithmetic operations. In either case, it is usually
sufficient to execute periodically (for example, before a
control output) a confidence reliability test program to
determine the state of the system, and if no errors are
detected, assume that the system was also all right
when the critical computations were performed. This
program also checks logic which does not have associ-
ated error checking hardware. In other cases, addi-
tional logic is required to check all operations.

To assist in the error detection, location, isolation,
and recovery process, the following registers are re-
quired in each processor:

® Error Type Detected - Holds type of error

® Error Address - Holds address associated with
error

® Error Recovery Location - Program pre-loaded
for recovery (to be described)

® Memory Lockouts - Holds lockout information

® Status - Holds operatable status of all subsystems.

In contemporary computers using discrete compo-
nents for achieving a logic node, parity checking is a
useful method of detecting single errors occurring in
transfers of data. Parity checking has found widespread
use in the computer field as an economical method of
checking for errors. With the advent of the LSI circuit
containing many logic nodes, however, the probability
that a multiple logic error occurring becomes very
likely. Since there are many logic functions per inte-
grated circuit and when a failure occurs, such as a
crack propagating through the single component circuit,
the probability of the failure affecting many of the logic
functions, rather than just one of these functions, is
high.

With the probability of multiple logic switching
function failures occurring when a component fails, the
possibility of an even-odd parity check detecting the
error is considerably reduced over the days when dis-
crete components were used in systems. This means
the value of parity needs to be reanalyzed in the light of
this new problem encountered through the use of batch
fabricated integrated circuits. Inthe meantime, while
other economical methods of detecting errors are deter-
mined, the designer is burdened with arranging his
logic so that more than one logic failure in a single
component does not invalidate the parity checks. As the
number of logic nodes per component increases, the
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number of external connections to the component for
performing the logic functions goes down rapidly with a
correspondent increase in reliability. That is, the
number of connections between natural logic functions
is considerably less dense than the connectivity required
within the function (within the integrated circuit), When
the logic designer designs around this parity problem,
the number of connections to the integrated circuit goes
up somewhat in order to isolate and achieve valid parity
checking and, in turn, reliability goes down because of
the extra connections, however, the increase in connec-
tions is less than those deleted through the use of multi-
function integrated circuits.

To determine what portion of the diagnostics is to
be performed by the hardware and what part by the soft-
ware, the designer must determine, for the various
applications of the equipment being designed, what
period of time is tolerable for system interruption. In
general, error detection must keep pace with the com-
putations and thus hardware is required for error de-
tection; whereas, fault location, isolation, replacement
repair and process restoration need not keep pace with
the computations and these functions can be performed
primarily by the software. The question becomes one
of determining how much hardware to put in the system
for error diagnostics. This becomes an important
question when the designer realizes that only a very
small percentage of the total system will be required
for a coupled error detection and self-repair scheme on
up to three or four times as much hardware for a tripli-
cated system. Studies to date indicate that replacement
systems require a percentage increase in hardware
rather than the many-factor increase required when
massive redundancy is used.

PROGRAMMED SELTF-REPAIR

The pool of submodules, a spare parts bank, is used
by the self-repair program in reconstructing those por-
tions of modules that have failed by switching, see Fig-
ure 1. In effect, the program switches out the failed
module. The error control program then determines
which submodule has failed in the failing module in
order to switch it out and to switch in a good submodule
from the pool of spare submodules. Total system capa-
bility is regained by switching this "repaired' module
back into the system.

r SYSTEM 1l
OPERATING o " switcHin I SPARE
| ° S 1 el ParTs |
SYSTEM ® MATRIX BANK |
' ]
1 0 S P SN _o_og_I_J
e e e e e
| FAULT FAULT !
DIAGNOSTICS ISOLATION |
| T REPAIR }
| l CONTROL |
ERROR
|l contror ano Lﬂ FAULT |
I RECOVERY LOCATION I
F-REPAIR T A
| SELFTEPAIR SUBSTSTEW (VAROWARE 0 pRocaus) |

Figure 1. A Self-Repairing Machine

Critical programs, constants, and computed vari-
ables are double-stored in separate and distinct mem-~
ory modules. In particular, the self-repair and error
control programs are double stored. Thus, if a mem-
ory module fails, the alternate module containing iden-
tical data is referenced. If a processor (or input/out-
put) module fails, a functioning module takes over the
task of the failing module. In either case, the total task
is performable, at a possibly reduced speed, until the
failing module is repaired.

ADAPTIVE ERROR CONTROL

There are many methods for a program, which has
been interrupted because of a fault, to recover (that is,
to adapt to the error). One would be to return to some
previous point in the program where all computational
values are present and repeat a section of the program
that has failed. Another method would be to use an
acceptable substitute for the desired output value and
continue the program without the information from the
failing section. Other methods would be to perform
entirely different calculations or reconstitute the inputs
and reperform the computations. Each recovery method
is unique to the program which has been error inter-
rupted. The programmer of such a system must be able
to select the best method of recovery for each critical
portion of his program.

Onc method of achieving fails:\fe6 adaptive error
control is to preplan for the occurrence of errors. In
this method the system is preconditioned during the exe-
cution of the program, as each critical subprogram is
initiated, by logging a recovery address (where to re-
cover to) into each processors fault recovery address
register. After an error interrupt (detection of an
error), the address in this register is used by the ex-
ecutive error control program to determine where to
recover to, in the program interrupted. This method
allows all faults, including transients, to be recovered
from and corrected.

Examples of fault recovery initiation points are de-
noted in Figure 2 by the encircled letters A, C, and D.
As the program reaches each of these recovery points,
the location of the recovery point is sent (retained in
memory) to the error control subroutine in the execu-
tive control program. Only one recovery point (address
location) is retained per processor at a time. Whenever
a fault is detected, control is transferred to the execu-
tive error-control program (usually through an interrupt
via a task list), which uses the address thus retained
(A, C, or D) to cause a jump to where the appropriate
remedial action will be initiated. For example, assume
an error occurs in the middle of Subtask 2 in Figure 2.

Adaptive Error Control
and Recovery

Figure 2.




Control is transferred to the executive error-control
task, which, after initiating a diagnostic task, transfers
control to subtask C (the fault recovery point) which
performs the specified remedial task before any erron-
eous external effects occur.

By incorporating adaptive error control in this
fashion, a processor becomes a self-recovery system —
a time redundant system.

The following examples are some of the criteria
for choosing the recovery points:
A remedial routine must be performed
Information must be read again
The problem must be computed again

A set of computations must be aborted

Data must be reconstituted.

This error control philosophy is the result of study-
ing programmed systems using this technique success-
fully, The following real example describes the kind of
results possible with this method of error control. In
one system built by UNIVAC, some calculations and all
errors were event-recorded. During many runs involv-
ing a real-time control problem, a memory short devel-
oped which associated the computer electrically to other
equipment in the metal shielded room. Consequently,
an error occurred whenever a telephone relay clicked,
whenever an electric typewriter was operated, and so
forth. The event-recorded tapes indicated a mean-time-
between-errors of 30 milliseconds. Even with errors
occurring at this rate, the real-time control task was
accomplished satisfactorily.

Thus, all programs, through adaptive error control
and error detecting hardware become fault checking and
correcting programs.

Briefly, the end goal of adaptive error control is
not to achieve internal fault free operation but rather to
achieve error free system operation as viewed from the
outside.

RELIABILITY AND AVAILABILITY

The multiprocessor system described herein was
simulated using pertinent calculated reliability para-
meters. The purpose of this simulation analysis was to
show how levels of organizational redundancy, repair
philosophy, and component reliability interact and affect

the reliability of a self-repairing multiprocessor system.

All units in the system, were assumed to have expo-
nentially distributed failure times. See Figure 3. The
repair rate using a pool of submodules for replacement
was assumed to be the same for all units in the system.
It was also assumed that the system was to operate con-
tinuously for a one-year period without manual mainte-
nance and upon failure was to be serviced automatically
by the error control programs and self-repair system
from a pool of spare submodules so that failing functions
could be restored to the system; however, each submod-
ule was lost from the system upon failure. The mean-
time-to-restore a failed unit to service was assumed to

be lengthy compared to the actual milliseconds required
by the programs.

DISTRIBUTED POOL

OF SUBMODULES
/ FOR REPAIR \
PROCESSOR MEMORY INPUT/OUTPUT
PROCESSOR MEMORY INPUT/OUTPUT
® . ®
° ° °
° ® °
PROCESSOR MEMORY INPUT/OUTPUT
DISTRIBUTED PROGRAMS
IN DISTINCT MEMORY
MODULES
SELF -REPAIR PROGRAMS
® EXECUTIVE ERROR CONTROL
@ ERROR RECOVERY
® RELIABILITY TEST
@ SYMPTOM -FAULT CATALOGUE
Figure 3. Self-Repairable Multiprocessor

The system was assumed to have failed when: 1) all
modules of a function fail simultaneously (e.g., all proc-
essors); or 2) when all spare submodules of a type were
exhausted.

Each processor was assumed to consist of 10, 000
logic nodes, contained in 250 integrated circuit packages.
A typical component failure rate for each package was
selected as 25 failures per billion hours or in other
words, a meantime-between-failures per component of
about 5000 years.

The input/output units were assumed to contain as
many packages of the same type as the processors. The
memory modules were assumed to consist of less than
half the number of packages as a processor. In all cases
it was assumed that the switching logic and power were
included in the modules. A two-processor, two input/
output, three-memory module multiprocessor, with
spares consisting of 2000 integrated circuit packages
(80, 000 logic nodes), was analyzed.

A pessimistic estimation for the mean-time-be-
tween-failures was calculated using the method of
Wrnealn

The result was a mean-time-between-failure of
more than 100, 000 years.

That is, a systen consisting of 2000 packages using
the methods outlined in this paper for obtaining reliability
is 20 times more reliable than its individual components.

SPARE REPLACEMENT SWITCHING
A major problem in achieving practical self-repair

is in performing the electronic surgery (the logic) for
switching out a failed submodule and switching in a
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functioning spare submodule (replacement repair). One
method of solving this problem is to:

® Place spares on same LSI wafer as logic being
spared in order to reduce the number of external
connections.

® Use logic to perform an analogous operation of
fusing for the interconnection of submodules
including spares.

® Place the fuses in serial for each interconnection
so that a malfunctioning submodule can be re-
moved both functionally and electrically from the
system - the blowing of these fuses deletes the
submodule from the system. The reverse oper-
ation of the fuse (making the circuit) allows the
spares, which are bussed in parallel to the inter-
connection path, to be added, both electrically
and functionally, to the system.

® Allow a computer to self-repair itself when criti-
cal control logic fails. The logic required simply
tries connecting and disconnecting (by fusing) sub-
modules until a functioning set of submodules, to
make up a complete system, is located.

® Use an error status register to address (deter-
mine) which interconnection lines and control
logic to effect the fusing operation of switching
the failure out and switching a good submodule in,
when malfunctions occur. This register is loaded
automatically on detection of critical control
ertors, which also automatically energizes the
control logic for the fusing operation. For non-
critical failures (failures which allow a program
to be executed) a program is required for loading
the register and initiating the fusing operation
(for the purpose of cconomy of hardware).

® Use multiple fuses for spares that are usable in
more than one section of the system. When a
submodule is connected into the system for oper-
ation in one section, the other fuses are inter-
locked so that the same spare cannot be fused into
a circuit for a different use in the system at a
later time. This method of fuscd switching allows
submodules together with their fuses to be added
modularly.

® To each submodule there are multiple fused inter-
connection paths including power to provide redun-
dant pathways. Therefore, even if multiple fail-
ures occur, the submodule can be switched out so
that it does not affect system operation.

Since it is desirable to design computer systems
using a minimum number of spares in order to keep the
switching logic within practical limits, an investigation
was performed using quorum probabilities. It was
assumed, since it is not possible to predict in which
submodule a failure would occur, that the sell-repairing
system would require at least one of each different type
submodule as a spare. Further, in order to achieve the
desired high level of reliability, additional sparg sub-
modules would be required. By using Einhorn's® equa-
tions for the calculation of MTBF and solving for the
number of spares (redundant submodules) it can be
shown that the number of spare submodules of each type
is small,

UNSOLVED PROBLEMS

Not all problems for achieving self-repair have

been solved. The problem areas associated with self-
repair techniques requiring solution are:

® What self-repair techniques applied,singularly
or in combination provide the greatest improve-
ment in reliability ?

® What methods are optimum for automating and
initiating:
4  Fault diagnosis
4  Fault location
4 Fault isolation
A  Self-repair by replacement
A FError repair (process restoration)?

® What constitutes a complete (closed) set of fauit
diagnostics and self-repair techniques and what
theory can be formulated to show that the set is
complete ?

® What is the effect of self-repair on the total
system relative to design, manufacturability,
maintenance, application, etc.?

® What ground rules must be followed to achieve
total self-repair?

® What are the implications of self-repair on
programming?

® What different diagnostic and self-repair tech-
niques are required by various functional logic
circuitry, such as control and timing logic, hard
core logic, critical command logic, and memory?

CONCLUSION

With micro-miniaturization techniques growing into
standard usage, that are difficult'and time consuming to
repair manually, automatic self-repair techniques are
becoming a necessity. Self-repair by automatic replace-
ment puts the spares, associated with any computcr in-
stallation, to use in effecting extreme system reliability
rather than having them sitting idle on a shelf waiting to
be manually put into use.

In computing systems of the future, the entire task
of fault detecting, identifying, locating, isolating, re-
pairing, and process restoration can be automated by
replacement switching with present day state-of-the-art
techniques. Future computing systems will undoubtedly
incorporate some form of self-repair because many
applications require continuous error-free operation,

The many-sided advantages of self-repairing auto-
mata for the computing field include:
® Continuous system operation
® 100 percent system availability

® Long term remote system operation (operation
for years)

® Reduced maintenance costs.
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A computer, through a system design encompassing
both hardware and software techniques, can be designed
as a self-repairable space and time redundant system.
Since the technology now exists to achieve a self-repair-
able system and such a system is realizable, 100 per-
cent system availability can be virtually assured.
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SUMMARY

In this paper the classification and proper-
ties of arithmetic codes is briefly reviewed. The
theory of error checking and correction is well
developed. However the application of this theo-
ry to practical computers has been limited be-
cause of the effects of error checking on compu-
tation rate or because of the relative complexity
of error control circuits in comparison with arith-
metic circuitry. It is possible that some applica-
tions of error codes have lead to a less reliable
overall unit because of the complexity of the er-
ror control equipment which is also subject to
malfunction. It is well known that a modulo three
residue check suffices for the detection of all sin-
gle arithmetic errors. In this paper a new logi-
cal circuit for the determination of the modulo 3
residue is presented and the expected perfor-
mance of this circuit is analyzed, using the as-
sumption that the error events follow a binomial
distribution. The modulo three check circuit op-
erates faster than the conventional adder carry
logic and the statistical analysis indicates that
the circuit is practical.

Introduction

Error correcting codes for arithmetic op-
erations have received considerable attention,
Peterson has shown that all separate checking
codes are residue codes({l1]. Brown has intro-
duced the AN codes [1] and Henderson has given
examples of systematic codes [6]]. Since Hender-
son does not consider the code arithmetic, it is
impossible to determine whether these codes as
presented by Henderson were meant to be sepa-
rate or nonseparate. Recently Garner|3] has
shown that both the Brown codes and the Hender-
son codes are members of the same general class
gf nonseparate codes which are ideals contained
in rings of integers.

Error codes are classified according to
three characteristics: (1) Parity or Residue check,
(2) Separate or Non-separate arithmetic for the
check digits and the number digits, (3) Systematic.

A single malfunction in the conventional ad-
der logic produces errors. represented by burst
error patterns for parity codes. The burst length
or weight may have any value from zero (no error)
to n+1 (all digits of the sum in error)[5]. All
l}urst errors due to single component malfunctions
In a standard binary adder are obtained if + is
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used to combine the error patterns of the type

e =+2-1 j=1,2,...,n, with the correct sums
[1]. Thus, error amalyses for single component
malfunctions can be simplified if + is used to
combine the error patterns since only 2n patterns
need be considered.

A parity check checks only the digitwise
modulo addition in the addition process. Specif-
ically, it does not check the carry generation
process. Errors in carry generation will not be
detected. Any of the transmission type of error
correcting codes can be used, rather than the
simple parity check. However, such codes will
still only obtain error correction for errors in
digitwise modulo addition{13]. The absence of a
check on the carry generation process plus the
burst nature of the error patterns tend to render
the parity check useless. Garner [45 compares
the effectiveness of a two bit parity check against
a modulo three residue check. The modulo three
check is shown to detect all errors due to single
component malfunction while the two bit parity
check detects at most 92% of these errors.

A separate code for a nonredundant number
system N is y, the single-valued mapping de-
fined by the set of ordered pairs n, y(n) such
that each n € N occurs in one and only one or-
dered pair. This mapping is indicated by y:N—-R.
y(n)e R is the check digit for ne N. The separate
code is characterized by the absence of anyarith-
metic interaction between N and R. Different
arithmetic is defined for N and R. A theorem
due to Peterson|[ll] states that every separate
check code is a residue code or is isomorphic to
a residue code. Separate residue codes, fer bi-
nary numbers, have the undesirable requirement
of sign correction if twos complement coding is
used. If ones complement coding is used, then
sign correction is not required.

Nonseparate codes and transmission codes
have the same basic structure. Let Q be the set
of all distinct n tuples over {0,1}. ThenK, the
nonseparate code, is a subset of Q. A single
arithmetic unit processes the coded elements of
K. Thus check arithmetic and operand arithme-
tic are not separated. The general class of non-
separate codes includes the AN codes but is not
restricted to a diminished radix complement
interpretation for K. This is desirable since
other complement interpretations of k can be
easily realized and these avoid complete end
around carry correction,

A nonseparate code is systematic if for
each ne N there exists a unique ke K such that
n can be identified in k., Separate codes are
trivially systematic. An example of a system-
atic code was given by Henderson [6, 7} The code
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arithmetic was not discussed. Henderson indica-
ted that the code should be a concatenation of

- |n ‘ and n. This description leads to the use
of the tgrm "additive" to describe this class of
codes. The term additive is not appropriate
since the Henderson code is a member of the gen-
eral class of nonseparate codes. All codes in
this class are multiplicatively generated. An im-
portant property of the systematic, separate
codes is that multiplication requires no correc-
tion.

The smallest value of a check base for sin-
gle-error detection for binary arithmetic is three.
The separate code structure is preferred for a
one's complement code if n; the number of bits,
is even. If n is odd, a separate code does not
exist for g=3 but a systematic, nonseparate code
exists. For the two's complement code, the non-
separate systematic code structure exists for all
code lengths if g=3;and the nonseparate structure
is preferred over the separate code structure
since sign and multiplication correction are not
required [ 3].

The basic difficulty relative to the applica-
tion of error detecting or correcting codes of the
separate or nonseparate type is the number of the
components or the time required to determine the
check and effect the correction. The check or
correction computation must be accomplished in
about the same time required for addition. Some
solutions to this problem can be obtained by using
properly coded stored tables. The actual effec-
tiveness of check realizations has receivedq little
attention, Major research efforts have been
devoted to the structure of the codes. A prelim-
inary study of the utility of a modulo three checker
is considered in this paper,

Bounds on Arithmetic

We shall consider the following as basic
time units relative to the computational period of
a logical circuit

7. = min period between successive input pulses
resolvable by a flip-flop

T _ = the delay associated with a single unit (i. e.
a transistor in a logical gate)

Technology is such that 2Tg <7y < 4‘rg [9].

In the following discussion, let kr = Tg
T, , the period of one addition Operationgfor an
accumulator type adder, can be defined as the
period between the set of the input register and
the set of the accumulator. For a conventional

ripple carry adder 7, =2n Ty Thus
2n T
Tf<TA§2nTg= X =TAR (1)

A faster adder is obtained with an "exclusive OR

carry"(3,14]. The upper bound is reduced to at least
nrt
f

" In fact, TA®

[10] has made a detailed comparative study of the
cost and computation time for all known adder
configurations., His results show the adder with
exclusive OR carry generation to be as much as
seven times faster than the conventional ripple

should approach 7 i Lehman

carry adder. Specifically
T T
R R 2)
7 S7ae, 573 (

An adder with a modulo four exclusive OR carry
generation is as much as fourteen times faster
than the ripple carry adder.

T T

R R (3

T4 STAe, 56
These substantial reductions in 7, are associ-
ated with only fractional increaseés in hardware.

Components Total Semi-
Per Stage Conductor
diodes| transistors |devices/stage
Ripple carry 6 2.2 8.2
Exclusive OR
(Mod 2) 6 6 12
Exclusive OR
(Mod 4) 10 4.6 14.6
TABLE 1

Components per Stage for
Different Carry Schemes (Lehman [10])

The count in Table 1 does not include the
two flip-flops per stage in the input and output
registers. Each flip-flop consists of eight semi-
conductor devices. Thus the different adder con-
figurations require approximately 24, 28, 31
semi-conductors per stage.

Thus, modest increases in the number of
components (17% to 25% yield an adder such that

2n T
[ 4
IS A S kg (4)
where 3 < q < 14 and 6 < kq < 64 The upper
bound is valid only if
2n oy, (5)

kq
The preceding discusion shows the exis-
tence.of adder designs, requiring a reasonable
number of components per stage, with an aadi-
tion period,
aTg (6)
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where o is small, but @ > 1. Multiplication and
division are obtained by a sequence of add-shift
operations in the conventional parallel arithmetic
unit. Even if the add is deleted for zero multi-
plier digits and multiplier recoding is employed,
the multiplication period for 7., for n-bit operands
has a lower bound given by n7.~ This bound can
be lowered further only by using multiple stage
shift logic in the accumulator register which is
costly. It should be possible to approach the
lower bound using a carry store adder. A multi-
plier using multiplier coding, deletion of add
for zero multiplier digits, and single stage shift-
ing in conjunction with an adder using an exclusive
OR carry circuit will have an average lower
bound for the multiplieation period equal to
§n7f+a§7-f = an(———zga) (7
SRT division can be considered to have approxi-
mately the same lower limits as those given for
the above multiplication periods.

Properties of a Switched Mod 3 Adder

The simplest circuit for checking is a mod-
ulo 3 adder. The input of the modulo 3 adder is
obtained from a switch which samples pairs of ad-
jacent accumulator digits in sequence. Such a
circuit requires two flip-flops. The total number
of semi-conductor devices required for n stages
is x + 2n where 30 < x < 40. This count includes
the commutator part of the switch but assumes the
required pulses for required commutation are
available.

Let e be the time period required for a
check of n s%ges. Then

n
Tes 2 278 (8)

The checker should almost obtain the lower time
bound. The performance of this checker relative
to the different adders previously discussed is
such that

T <7 <T < Tha - (9)
A(B4 A®, AR = 'CS

Assume that

_n 0
Tcs T2 7y (10)

Previously, we have shown

2n
TAR = T Tp 2<k<4 - (1
SO
-%Tf < Tpp S 0TS (12)

Thus, under the most optimum circumstances,
the switched checker will not add to the addition
time of a ripple carry adder. For example, a
10 n. s. carry propagation time per stage
requires flip-flops in the checker clocked at 50
Mc. It has been estimated that

"AR TAR

12 S Tae S T3 (13)
Thus the switched checker will require a sub-
stantial period of time over and above the addi-
tion period of an adder using an exclusive OR
carry circuit. If the required check period
can be overlapped with some period when the
adder is idle, then the switched checker can be
used. However, when this cannot be done, a
parallel checker is required.

A Parallel Modulo 3 Check Circuit

Several parallel designs are possible. The
design presented here utilizes the same prin-
ciples used to obtain fast carry propagation for
the exclusive OR carry type of adder. The pro-
posed parallel modulo three checker should re-
quire a check period no longer than the maximum
carry propagation period of the modulo 4 exclu-
sive OR carry circuits, and the hardware reali-
zation of both circuits will be subject to identi-
cal considerations or restrictions. Thus

= TA® (14

T
CP 4

Approximately 2(15) transistors are required to

realize this parallel modulo three checker.

Basically the chgcker consists of a chain
of 5 switch units and 5 switch control units as
shown in Figure 1. Each switch unit is a 3pP3T
switch as shown in Figure 2. Each 3P3T switch
requires nine transistors and each switch con-
troll logic unit requires six transistors. The
checker requires a relatively short period for
the check because all switches are set simul-
taneously shortly after the accumulator is set.

NN
P o) ma T LTI ML S A

Accumulator
¢ v SCL SCL SCL
. e o-<—-%§&17——‘§%?|4— ?ﬁk?
_— 3 2|
Figure 1

Block Diagram of Parallel Mod 3 Checker
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Figure 2

Connections Used in the Parallel
Modulo Three 3P3T Switch Checker

The parallel checker should be capable of
checking a sequence of additions without requir-
ing excess time for checking. However, on the
average, the period for multiplication with mul-
tiplier coding and suppressed addition for zero
digits is

2+a
M - D 'rf( ). (15)
The checker will require
Tom - RO Tg (E)

since a check should occur,after each add-shift
operation and after each shift operation in the
multiplication process, unless reliability require-
ments permits checking after tnhe final product.
The characteristics of the non-separate, sys-
tematic class of residue check codes facilitates
the direct checking of products,

Three alternatives are available relative
to the check of multiplication using the parallel
checker. (1) Check every step and an increase
in the multiplication period occurs due to check-
ing unless @ = 1. In this case there is no need
to employ multiplier coding or suppressed addi-
tion for zero multiplier digits since

™ = Tém T R Ta
(2) Check the final product with no check at any
intermediate step. No excess time is required.
(3) Check each add-shift, shift-sequence during
the next add-shift step. A shift operation re-
quires a period approximately equal toa T, the
same as an addition check. It is expected fthat

amn

this scheme is optimum since the average number
of shifts between each add-shift operations is two
and the shift operation is more reliable than addi-
tion since less time and fewer components are
required.

A checker for both the high order and the
low order part of the accumulator is required
unless only rounded products are required.

Evaluation of the Checked Adder

Assume each semi-conductor has a prob-
ability of failure P = 1-Q in the time interval
T,. Successive time intervals are assumed
independent. The probability of at least one
failure in an unchecked arithmetic unit containing
r semi-conductors in s is

p(F,7) = 1- p0,7g)
- 1-9p%" = rp,
p<1 (18)

A checked arithmetic unit requires r + m com-
ponents., Let (F,T,) denote the probability
in the checked arithmetic unit in 7, and

Py(F,7) 2 (r+ m)P (19)

The probability of at least one failure of a check
circuit semi-conductor in s is

py(F,7) = mP (20)

Thus an upper bound on the fractional increase
in errors due to the checker is given by

fole) < . (21)
Using the component counts for the various ad-
ders and the parallel checker fixes f_(e) between
1/4 and 1/3. This upper bound is nt realistic
because the checker for the adder also checks
other components in the computer, i. e. memory
and data transmission between memory and the
arithmetic unit.

The modulo three checker will correct all
errors due to a single component malfunction in
T, and 1/2 the errors due to two component
failures in 7,. So, with checking, the proba-
bility of an undetected failure in ¢ is

2
t(t-1)(P)")
(1))

t, P\t

Py(E,7) < 1- QUG + 1Y) +

wheret = r + m.
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The ratio of the probability of an undetected fail-
ure in Ty with and without checking is

t.p t-1 P
p(Rr) o 1TYRQUrT Q)
pl(F, Tf) 1- Qt—m

Two complete adders with parallel check-
ing and a comparator between the accumulators
can be realized with 2t + 2n semi-conductors.
All errors are detected unless there is a com-
ponent malfunction and the error is correctable
except when an error not detectable by the
parity checker occurs or when a detectable
error occurs in both adders. Erroneous cor-
rection can occur because of the poussibility of
an uncheckable error in one adder coupled with
a checkable error in the second adder. Evalua-
tion of this configuration is in process.

(This research was partially supported by Air
Force Contract AF 30(602)-3546.)
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University of California, Los Angeles, California

SUMMARY

The techniques for the application of pro-
tective redundancy in digital systemsare reviewed
and compared. The choice of a replacement system
as protective redundancy for a spacecraft guid-
ance and control computer is reached by consider-
ation of its computing requirements. The system
organization of an experimental replacement
system is described, with emphasis on the method
of concurrent fault diagnosis by means of arith-
metical encoding. An extension of the system to
a multiprocessor configuration is considered as a
means to provide on-board data processing after
arrival at a remote destination.

INTRODUCTION: RELIABILITY BY
MEANS OF PROTECTIVE REDUNDANCY

Reliable performance of digital systems is
usually attained by the systematic application of
two techniques. The first is the selection of
highly reliable components and the use of proven
methods for their interconnection and packaging.
The second technique is an extensive verification
of the design and of the programs, first by simu-
lation and later by diagnostic and functional
tests under expected environmental conditioms.
Despite of these reliability assurance techuniques,
the system may still fail during use because of
uncontrollable or undetected faults. These in-
clude undetected design errors, random failures
of components or connections, and externally in-
duced failures due to the environment (nuclear
radiation, sparks, mechanical damage, etc.).

The effects of these faults can be controlled
by the third reliability technique - the intrp-
duction of protective redundancy into the system.
A computer system contains protective redundancy
if the effects of component failures or program
errors can be tolerated because of the use of
additional components or programs, or the use of
more time for the computational tasks. These ad-
ditional components, programs, and time are not
required by ihe system in order to execute the
specified tasks as long as no failures or tran-
sient malfunctions occur. The techniques of pro-
tective redundancy may be divided into two major
categories: massive (also called masking) redun-
dancy and selective (also called stand-by) redun-
dancy.

In the massive redundancy approach the
effect of a faulty component, circuit, signal,
subsystem, program, or system is masked instan-
taneously by permanently connected and concur-
rently operating replicas of the faulty element.
The level at which replication occurs ranges from

N67-17108

individual circuit components to entire sysfems.
The principal techniques of massive redundancy
are:

1. Replicafion of circuit components; e.g.,
"quadded" diodes, resistors, transistors;
duplicated comnections, etc. (Refs. 1, 2).

2. Replication of logic signals: wuse of
multiple channels and voting elements,
recursive nets, interwoven logic, vari-
ation-tolerant threshold element nets.
(Refs. 3, 4, 5, 6, 7).

3. Adaptive logic elements, e.g., voters with
variable-weight inputs. (Ref. 6)

4. Replication of entire systems with compar-
ison and voting or diagnosis at system
level.

In the selective redundancy approach the
presence of a faulty element is detected by ob-
serving a symptom of the failure; subsequently
the fault is made harmless by a corrective action.
The principal techniques of selective redundancy
are:

1. Error detection and correction using error-
correcting circuits for coded words.
(Refs. 8, 9)

2. Replacement of the faulty element or
system by a stand-by spare (self-repair).

3. Reorganization of the system into a dif-
ferent computer configuration. (Multi-
processors and other ''degradable" systems)

The last two methods presuppose the exist-
ence of a diagnosis procedure which will recog-
nize the symptoms of a fault (Refs. 10, 11), and
of a switch which implements the replacement or
reconfiguration. (Refs. 12, 13), Error correc-
tion is attained by recomputation, possibly re-
tracing several steps in the program to a
"rollback" point.

APPLICATION OF PROTECTIVE REDUNDANCY
IN A SPACECRAFT GUIDANCE COMPUTER

The choice of a method or of a combination
of methods from the preceding list for a partic-
ular computing system is influenced by the in-

‘tended application. The present paper considers

the application of protective redundancy to a
guidance and control computer for an unmanned



spacecraft which may also be employed for the on-
board processing of scientific data when guidance
computation is not in progress. The guidance
computer is required to survive space voyages to
other planets which range up to several years in
length and to perform approach guidance and con-
trol computation at the end of the voyage. Con-
tinued control of the spacecraft after arrival
may also be required. Course corrections are to
be computed one or more times during the voyage;
considerable time is available for this task.

The computing at launch and in early stages of
the voyage may be performed or supported by com-
puters on the ground and in the launch vehicle.
The extreme distance and the potential occulta-
tion make ground support less effective at
approach to the planet, therefore the approach
presents the most severe problems to the guidance
and control computer.

The computer design must also be performed
within the constraints of the available power,
weight, and volume. The existence of these con-
straints indicates an advantage for selective
redundancy, which does not necessarily require
power for the spare replicas and which offers
protection with the minimum of one spare for each
operating element, On the other hand, the prin-
cipal advantages offered by the massive approach
are:

1. The corrective action is immediate and
"wired-in"; it is delayed and requires
switching in selective redundancy.

2. During operation there is no need for
diagnosis, which is essential in selective
redundancy.

3. All parts of the system are equally pro-
tected; unprotected "hard core' elements
may exist only at interfaces with other
systems. In selective redundancy schemes
a "hard core' always exists in the system.

4. The conversion of a non-redundant design
to a massively redundant one is relatively
straightforward; more novel design tech-
niques are demanded by the introduction of
selective redundancy.

Compared to massive redundancy, the selec-
tive form requires several additional features:
& system ability to tolerate interruptions for
repair and to execute a "rollback" for error cor-
rection, sophilsticated diagnosis methods, protec-
tion for the 'hard core", and trade-off studies
between time, program, and hardware replication.
The advantages of selective redundancy over the
massive form are, however, also very significant
in our application:

1. Power is required by only one copy of each
replaceable item in a replacement system;
all copies require power in the massive
form,

2. The replacement switch provides fault

isolation between subsystems; such isola-
tion is essential in the case of catastro-
phic failures. Massive redundancy usually
assumes independent failures of logic
elements; such independence requires iso-
lation which is difficult to provide for
integrated circuit packages which are
batch-fabricated and contain many logic
circuits in close proximity. The entire
batch may possess the same defect; also,
mechanical or thermal damage is likely to
affect an entire package, rather than
single logic circuits.

3. All spares can be utilized in selective
redundancy; in the massive form a majority
of faulty elements in a given region leads
to system failure.

4. The designs of individual replaceable
blocks may be altered, and the number
of spares may be adjusted to a given
mission without changes in the system
design in the case of selective redun-
dancy; such changes are more difficult
in the massive case.

5. The replication in massive redundancy
frequently leads to increased fan-out
and fan-in requirements for logic elements,
or to increased tolerance limits in circuit
design; such problems are avoided in the
selective case.

6. Permanent connection of the redundant
elements makes the pre-mission check-out
more difficult to implement in systems
with massive redundancy; special circuits
and system outputs are necessary.

7. Massively redundant systems with voting
require synchronization of the separate
channels at the voting elements; they also
are susceptible to transient external in-
fluences (e.g., sparks) which alter logic
signals in a majority of channels without
leaving permanent damage. The delayed
occurrence of diagnosis in the selective
case allows detection of such transient
changes in signals.

CHOICE OF REDUNDANCY TECHNIQUES
FOR THE JPL-STAR COMPUTER

Evaluation of the differences between the
massive and selective approaches led to the
choice of selective redundancy for the protection
of an experimental prototype for a spacecraft
guidance computer, which will be called the "JPL
Self-Testing and -Repairing" (abbreviated JPL-
STAR) computer in this paper. The requirement
for approach guidance demands a certain computing
capacity at the end of a long voyage, and there
is no anticipated requirement for a higher capac-
ity at an earlier time. Under these conditions,
a replacement system possessing the required
capacity is preferred over a reorganizable or
"degradable'" system which has a minimal
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configuration of the same capacity. The replace-
ment system avoids the programs, switches, and
control hardware which perform the reconfigura-
tion and resulting rescheduling of programs.

The diagnosis, or self-test, is an essential
function of a replacement system. The most com-
mon approach - periodic diagnosis - utilizes a
diagnostic program which is stored in the memory.
Computation is periodically interrupted and the
diagnostic program is executed. Detection of a
fault initiates the replacement procedure; the
program is "rolled back' to a point preceding
the previous (successful) diagnosis period.
Errors which have been induced by transient fault
conditions remain undetected. The cost of diag-
nosis consists of the storage used for the diag-
nostic program, of the time consumed by its exe-
cution, and of the time needed for repair and
repeated execution of the program segment which
was run after the last diagnosis. Such time
costs are very severe in approach and re-entry
guidance and control programs, which require
real-time computing..

The alternate diagnosis method is concurrent

diagnosis in which error-detecting codes are em-
ployed to show the presence of faults. The exe~
cution of every instruction is checked immediate-
ly; instead of a stored diagnostic program, the
cost includes the logic circuits which perform
the code check. Errors due to transient faults
are detectable, and the immediate detection of a
fault permits a very short rollback in the pro-
gram. For these reasons concurrent diagnosis is
preferable in the JPL-STAR computer,

The simplest and most costly code (100%
redundancy) is the complete duplication of pro-
gram and data words. Errors are indicated by
the disagreement of two words; diagnosis is
needed to pinpoint the faulty source. Parity
and many classes of more complex codes which de-
tect errors in the transmission of digital data
have much lower redundancy, but are not suitable
for the checking of arithmetic operations. 1In
order to have a uniform code for the entire
system, arithmetical error detecting codes were
selected as a means of diagnosis for the JPL-STAR
system. An extensive theoretical investigation
of the effectiveness, cost, and applicability of
arithmetic codes was conducted prior to the sys-
tem design of the JPL-STAR computer. (Refs. 14,
15) . The results showed the existence of a class
of low-cost codes with sufficient effectiveness
of error detection.

SYSTEM DESIGN OF THE JPL-STAR COMPUTER

The JPL-STAR computer is a replacement sys-
tem, which is intended to serve as a prototype
for spacecraft guidance computers in very long
missions of several years duration. The system
consists of several autonomous functional units,
including:

1. an arithmetic processor;

2. an index arithmetic processor;
3. a read-only memory;
4. a read-write memory;
S. input/output buffer registers.

The functional units are interconnected and con-
trolled by the central control unit (CCU). One
or more replicas of each operating functional
unit are included in the system as standby re-
placements. Replacement of a functional unit is
initiated by the CCU and implemented by a re-
placement switch, which selects the spares in
cyclic order. To facilitate checkout, the switch
returns to the original operating unit when the
spares are exhausted. In order to reduce the
size of the switch, all words (instructions and
numeric data) are transmitted between the func-
tional units in bytes of four binary digits each.

Word Formats

The arithmetic coding which is most effec-
tive in the case of transmission and computing
by four-bit bytes employs the check constant 15,
(Ref. 15). Any single determinate fault (logic
value "stuck on zero'", or ''stuck on one") will
be detected for word lengths up to 14 bytes (56
bits), even if every byte is separately affected
by the fault. Binary numerical operands X (28
bits long) are encoded in the product code Z =
15X, yielding 32 bits long code words. The
checking algorithm computes the modulo 15 resi-
dues (designated as /2/15) of operands and re-

sults which are transmitted between the func-
tional units. Error detection is implemented

by the checker: a four-bit adder with an end-
around carry which sums the bytes of the word
being transmitted to obtain the modulo 15 resi-
due. The checkers are located in the CCU; their
operation is verified by complete duplication.

A non-zero residue is the symptom of a fault in
the unit which delivered the operand.

Instructions of the JPL-STAR computer con-
sist of two four-bit operation codes and a 24~
bit address part. The address part is also sub-
ject to arithmetic operations (addition and sub-
traction) during indexing sand during incrementing
of the address. In the selection of a memory
location the address is usually divided into two
or three segments, which serve as inputs to
selection iree networks. Froduci coded numbers
cannot be separated in this fashion into properly
coded segments; therefore residue coding with the
check constant 15 is used for the address part.
In the residue coding, the 20-bit binary address
A carries along a 4-~bit check symbol c(A), which
is the 15's complement of the modulo 15 residue
of the address A:

c(a) =15 - /A/15

Passing both A and ¢(A) through the checker
should yield the check result 1111, which
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represents the zero residue of a product-coded
operand. It is very important to note that the
residue /A/15 as the check symbol will not give

the same error-detecting effectiveness as the
product code 15X in the case of four-bit bytes,
while 15-/A/15 offers the same effectiveness as

the coding 15X.

Two operation codes of four bits each are
used in order to have maximal autonomy of the
function units. The first code is the control
code which remains in the CCU and serves to de-
fine the path for the second code - the function
code, which is delivered to a function unit
designated by the control code. The operation
codes are protected by a two-out-of-four encoding,
which leaves six valid words in a four-bit code.
Such coding is most efficient for short words and
is acceptable because operation codes are not sub-
jected to arithmetic operations. It is evident
that their validity test is made by a separate
circuit, since it cannot be verified by the
checker (which is bypassed by the op. codes).

Arithmetic Processors

The main arithmetic processor (MAP) of the
JPL-STAR system accepts six function codes:
Clear Add, Add, Subtract, Multiply, Divide, and
No Operation. (Ref. 16) . The operands and re-
sults are 32 bit product-coded binary numbers.
All arithmetic control is contained in the MAP;
an input consists of a function code followed by
a coded operand, and the output is a coded result
followed by a non-numerical 2-out-of-4 code byte,
indicating either one of three singularities
(sum overflow, quotient overflow, zero divisor)
or the type of a good result (positive, zero,
negative). The good result codes are stored in
the central control unit (CCU) and are used as
data for conditional jump instructions. All par-
tial and final results are delivered to the CCU
checker and also stored in a Duplicate Accumulator
register in the scratchpad (read-write) memory.
A Store instruction is therefore not needed for
the MAP. There are four data input lines, four
data output lines, and four control lines between
the MAP and the CCU. The control lines are a
clock input and three outputs: 'perform check",
"end of algorithm" and "internal fault". The
"end of algorithm" serves as a work request; the
"internal fault" is obtained from internal monitor
circuits which detect catastrophic failures and
internal control faults. A breadboard model of
the MAP has been constructed and is undergoing
functional tests. Residue coding is also appli-
cable to arithmetical operands. An alternate MAP
design for residue coded operands is being pre-
pared for a comparison to the present design.

The index arithmetic processor (IAP) contains
the Index Register (IR), the Sequence Register
(SR) and an adder. When the 20-bit index word B
from the IR is added to an address A, its 4-bit
check symbol c(B) is added modulo 15 to c(A).

The indexed address and thé new check symbol go
through a checker to the input lines of the
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appropriate memory unit. The incrementing (by
one) of the current address in SR is performed
in exactly the same manner, with 1 being added
to A and c(1) = 14 being added modulo 15 to c(A)
The incremented address returns to SR through a
checker. The input and output lines of the IAP
are similar to those of the MAP.

Storage

The read-only memory (ROM) contains the
programs and the associated constants for the
given mission. The address part allows direct
addressing of 2 locations; the experimental
model provides 2 = words of 32 bits each, using
an assembly of magnetic cores and wires for the
permanent storage of binary information. The
ROM also contains all necessary peripheral elec-
tronics: the address register, access circuits,
drivers, sequence control, and the output regis-
ter. Proper operation is verified by the moni-
toring of driver currents and by the independent
readout of a four-bit check symbol of the address
designating the location accessed, which is com-
pared to the check symbol in the address regis-
ter. This comparison verifies that the storage
cell which was specified has actually been
accessed. All output words from the ROM are
delivered byte-by-byte through the appropriate
checker. The present model of JPL-STAR computer
includes complete replicas of the ROM as replace-
ments; the replacement of peripheral electronics
without discarding the core and wire assembly is
now being explored. Integrated-circuit ROM's
which are presently being developed by several
manufacturers promise a considerable reduction
in the size and weight of the ROM. The cost of
replacement of entire ROM's will be decreased
by such miniaturization.

The read-write memory (RWM) and the buffer
registers are protected by complete duplication.
The RWM provides storage for various intermediate
results and inputs; it consists of replaceable
core memory modules which contain all peripheral
electronies. 1In case of a permanent fault in one
member of a pair, the contents of the good module
are copied into a replacement and the faulty
module is disconnected. The size of modules and
their number is controlled by the total RWM re-
quirements of a mission; the prototype will use
a single pair of 128 word modules. It is expec-
ted that large-scale integration will provide
replaceable RWM modules on one or a few chips.
The internal fault monitoring of the RWM modules
is similar to the method used in the ROM. It is
to be noted that because of complete duplication
the copying and replacement may be postponed
until a critical computation is completed.

Central Control

The central control unit (CCU) contains the
hard core of the replacement system. It serves
as the bus connecting all functional units and
performs the functions of synchronization
(clocking), transferring information, executing
the checking algorithm, and implementing




replacement. The transfer of coded words between
the functional units occurs on a one-byte (four-
bit) bus; it is controlled by the control code of
the current instruction. All bytes entering the
CCU are directed to a checker. The two-out-of-
four code bytes are checked individually by a
check network. The bytes of an operand, a re-
sult, or an address are summed modulo 15 in the
checker and the residue is tested for zero value
(represented by four ones) when the transmission
is completed. The CCU receives "internal fault"
signals from monitoring circuits inside the re-
placeable functional units, as well as from its
own checkers. Two checkers are employed in the
present JPL-STAR system configuration: one for
outputs of memory units, and one for outputs of
the processors.

In the case of a fault signal, the CCU inter-
rupts the current program and executes an emergen-
¢y sequence. First, the current imstruction is
repeated in order to correct a transient error;
if the fault persists, the replacement switch is
advanced. After replacement the program is
"rolled back', i.e., resumed at a designated
instruction. The address of this instruction
is stored in a special CCU register; its updating
is a function of the program.

The CCU itself is vulnerable to faults and
requires protection. Massive logic or component
redundancy (voting, quadding, etc.), complete
operating duplication (Ref. 17), periodic self-
diagnosis (Ref. 18), and external monitoring are
all applicable to this task. Studies are pre-
sently being conducted to determine optimal or
near-optimal balances of these methods in the
CCU. Operational duplication of the checkers
and similar functional parts of the CCU permits
their replacement and is presently considered as
the preferred method of reducing the extent of
the hard core.

A highly reliable replacement switch which
also provides adequate isolation in the case of
catastrophic failures is an essential part of the
CCU. A design study which considers magnetic and
semiconductor implementations of the switch is in
progress. Performance of the switch will be ex-
tensively tested under expected environmental
conditions.

AN EXTENSION TO MULTIPROCESSING

It was observed in the preceding discussion
that the most severe tasks for the spacecraft
guidance and control computer occur during ap-
proach and re-entry to a planet after a long
period of comparative idlenmess. As a consequence,
there is no apparent need to utilize the spares
for an extension of computing power by multipro-
cessing during the earlier phases of the mission,
although the spares are available. 1In general,
it is expected that a thorough application of
conventional reliability practices will yield a
design which is already highly reliable (the
longevity of the Mariner IV spacecraft serves as
an illustration of this point). The purpose of

the replacement system is to provide insurance
against overlooked design weaknesses, human er-
rors in production and checkout, and externally
induced faults; all of these failures may be
catastrophic with respect to an entire functional
unit of the system and require the isolation pro-
vided by replacement.

Under normal conditions such faults will be
avoided, and the replacement system will reach
the destination with all or most of its spares
still intact. After the execution of the ap-
proach and re-entry, the functions of the guid-
ance computer are largely completed; however,
there remains a large computational task of pro-
cessing the scientific data which are acquired
during and after the arrival. At this point all
surviving spares of the replacement system can
be utilized in the new task of on-board data
processing, and a multiprocessor configuration
becomes desirable.

The conversion of the ordinary replacement
system to a multiprocessor requires several ad-
ditional features. A considerably more compli-
cated bus and switching arrangement is needed to
accommodate parallel operation and reconfigura-
tion in case of fault detection. The number of
checkers is increased for parallel diagnosis.

A more elaborate control unit is needed for the
scheduling and coordination of the parallel
events. A set of new programs (a new ROM) is
also to be provided by the conversion. Design
studies of the conversion problem have been
initiated with the objective of holding the
additional system elements inactive and isolated
until the conversion is commanded by the guidance
program. Such isolation minimizes the possibil-
ity of early system failure in the switch and

CCU caused by the additional multiprocessing
hardware. After a complete functional checkout
the conversion features will be incorporated into
the JPL-STAR computer experimental model, which
is presently being constructed.

ACKNOWLEDGMENT

The research described in this paper has
been carried out at the Jet Propulsion Laboratory,
Pasadena, California, under Contract NAS7-100,
sponsored by the National Aeronautics and Space
Administration. The author wishes to acknowledge
the full support and encouragement of W. F. Scott
and discussions with J. J. Wedel and G. R. Hansen
The logic design of the main arithmetic processor
was performed by A. D. Weeks and D. A. Rennels,
and the construction was carried out by J. Buchok,
all of the Flight Computers and Sequencers

Section, Guidance and Control Division, JPL.
REFERENCES

1. Creveling, C. J.: Increasing the Reliability
of Electronic Equipment by the Use of Redun-
dant Circuits. Proceedings of the IRE, vol.
44, pp. 509-515, April 1956.

_65_



10.

Lewis, T. B.: Primary Processor and Data
Storage Equipment for the Orbiting Astronom-
ical Observatory. IEEE Transactions on
Electronic Computers, vol. EC-12, No. 5,

pp. 677-686, December 1963.

Dickinson, M, M., Jackson, J. B., and Randa,
G. C.: Saturn V Launch Vehicle Digital Com-
puter and Data Adapter. AFIPS Conference
Proceedings, vol. 26, (1964 FJCC), pp. 501-
516.

Tryon, J. G.: Quadded Logic. Redundancy
Techniques for Computing Systems, pp. 205-
228, Spartan Press, Inc., Washington, D.C.,
1962.

Pierce, W. H.: Interwoven Redundant Logic.
Journal of the Franklin Institute, vol. 277,
No. 1, pp. 55-85, January 1964.

Pierce, W. H.:
Design.

Failure-Tolerant Computer

Winograd, S., and Cowan, J. D.:
Computation in the Presence of Noise.
M.I.T. Press, Cambridge, Mass., 1963,

Reliable
The

Peterson, W. W.: Error Correcting Codes.
The M.I.T. Press and John Wiley & Sons, Inc.,
New York, 1961.

Kautz, W, H.: Codes and Coding Circuitry for
Automatic Error Correction Within Digital
Systems. Redundancy Techniques for Computing

Academic Press, Inc., New York, 1965.

Systems, pp. 152-195, Spartan Press, Inc.,
Washington, D.C., 1962.

Seshu, S., and Freeman, D. N.: The Diagnosis
of Asynchronous Sequential Switching Systems.
IRE Transactions on Electronic Computers,

vol. EC-11, no. 4, pp. 459-465; August, 1962,

ey

11.

12,

13.

14.

15.

16.

17.

18.

_66_

Roth, J. P.: Diagnosis of Automata
Failures: A Calculus and a Method. IBM
Journal of Research and Development, vol.
10, No. 4, pp. 278-291, July 1966.

Griesmer, J. E., Miller, R. E., and Roth,

J. P.: The Design of Digital Circuits to
Eliminate Catastrophic Failures. Redundancy
Technigques for Computing Systems, pp. 328-
348, Spartan Press, Inc., Washington, D.C.,
1962.

Avizienis, A.: Coding of Information for a
Guidance Computer with Active Redundancy.
JPL Space Programs Summary No. 37-22, pp.
9-12, 1963.

Avizienis, A.: A Set of Algorithms for a
Diagnosable Arithmetic Unit. JPL Technical
Report No. 32-546, March 1, 1964,

Avizienis, A.: A Study of the Effectiveness
of Fault-Detecting Codes for Binary Arithme-~
tic. JPL Technical Report No. 32-711,
September 1, 1965.

Avizienis, A.: The Diagnosable Arithmetic
Processor. JPL Space Programs Summarv No.
37-37, vol. IV, pp. 76-80, 1966.

Downing, R. W., Nowak, J. S., and Tuomenoksa,
L. S.: No. 1 ESS Maintenance Plan. The
Bell System Technical Journal, vol. 43,
No. 5, part 1; pp. 1961-2019; September 1964.

Forbes, R, E., Rutherford, D. H., Stieglitz,
C. B., and Tung, L. H.: A Self-Diagnosable
Computer. AFIPS Conference Proceedings,
vol. 27, part 1, (1965 Fall JCC), pp. 1073-
1086 .




COMPUTER AIDS

-67 -



A

COMPUTER DESIGN ASSISTANCE FOR THE EVOLVING
LARGE SCALE INTEGRATED CIRCUIT TECHNOLOGY

JOHN S. MERRITT

Mr. Merritt is a Development Engineer, Computer Systems, Honeywell
Corporation. He received a B. S. degree in Electronic Engineering from
Rutgers University in 1958, and studied Programming and Theory of Auto-
matic Computation at U. C. L. A.

At Honeywell, Mr. Merritt was responsible for the development of
computer design aids using existing computers. Since December 1965,
he has been engaged in advanced computer development for an aerospace
multi-processor computer system. _

Mr. Merritt joined Aero-Florida in 1962 as an electrical engineer,
assigned to airborne computer programming for the SAINT project. He
was responsible for work on inertial navigation, platform calibration, and
assembly integration testing, Later he was involved in simulation work on
the H-800 ground computer. Since September 1963 he has programmed
definition compiler studies and airborne computer design.

Mr. Merritt was employed as an electrical engineer for Remington Rand
(1958-1961), working on such projects as Titan and Nike-Zeus, and was
involved in the application of logical design techniques to the design of the
logical circuitry between the paper tape reader and the magnetic drum.

Mr. Merritt is a member of Pi Mu Epsilon (Mathematics Honor Society)
and Delta Phi Alpha (German Honor Society). His professional writings
include: 'The Analog Computer," Rutgers Engineer, March 1957.

_69_



PRECEDING PAGE BLANK NOT FILMED.

COMPUTER DESIGN ASSISTANCE FOR THE
EVOLVING LARGE SCALE INTEGRATED
CIRCUIT TECHNOLOGY

By John S. Merritt

Electrical Engineer
Advanced Computer Development
Honeywell Inc., Aeronautical Division
St. Petersburg, Florida

SUMMARY

The design of a multiprocessor computer
system will be developed with the aid of an exist-
ing computer. A tool box of programs is pre-
sented which have in common the fact that they
all work on the same reel of magnetic tape. This
tape contains files each of which specifies the
design of a particular unit. The operational
steps in execution of selected program tools for
a particular equipment design fall into four gen-
eral categories: 1) Formulation of logic,

2) Simulation of operation, 3) Placement of com-
ponents, 4) Preparation of wire-run lists.

Each operational step may be thought of as a
different shelf in a tool box. On each shelf are
several program tools which may be selected by
the designer. Tools presently available and
planned are described. The objective of these
tools is to provide a cooperative man-machine
interactive design system which frees the
designer from routine bookkeeping tasks so that
he may devote more of his time to the actual
system design. The elimination of breadboarding
and manual layout techniques not only reduces to
a few hours computer time the many man-years
this takes by hand but with the advent of Large
Scale Integrated Circuit Technology provides the
most practical method of implementation.

INTRODUCTION

The design of a multiprocessor computer
system will be developed with the aid of an ex-
isting computer. A tool box of programs has in
common the design data to be processed. The
evolving design is kept on a reel of magnetic
tape. This tape contains files each of which
specifies the design of a particular unit. The
operational steps in execution of selected pro-
gram tools for a particular equipment design fall
into four general categories:

Phase I - Formulation of Logic

Phase II - Simulation of Operation

Phase III - Placement of Components

Phase IV - Preparation of Wire-Run Lists

Each phase may be thought of as a different
shelf in a tool box. On each shelf are several
tools which may be selected by the designer.
Different tools are independent of one another thus
allowing them to be modified or added to without
affecting the others. Different types of tools on a
shelf are used by the designer to shape the work
in the design files. The sequence and use of these
tools is determined by the designer according to
how the work is developing in the file. Different
versions of the same type of tool may be available
for processing different integrated circuit building
blocks. After each tool has obtained from the file
that portion of the design data it works on, its
function is performed, and the updated work is
returned to the file. Use of tools on subsequent
shelves depends upon data processed by tools on
the first shelve(s).

However, the same tool can be reused to re-
work the data after the tool has once been used and
data in the file has once reached its level of up-
date. Several tools are never seen by the designer
but are used by the tool designer (programmer)
in bootstrap development of the program tools and
to service and run them. At the same time, the
designer uses the tools he requires in bootstrap
development of the design data.

Designs which use the same technology use
the same program set but new technology designs
require program modification. This is done
either by making a copy (new version) of an ex-
isting program with modifications or by adding a
new special purpose program. Thus, the system
is expanded without affecting what has already
been accomplished.

The program tools now being used for inte-
grated circuit technology are being converted to
machine independent programs so that they may
run on any computer having the proper capability.
The tool box is being expanded to include additional
toolis for use in processing various large scale
integrated circuit approaches.

Following is a description of each computer
program of each phase. All programs are run
under control of the engineer design group using
them. Computer runs are supervised by the
design executive program {see.''Executive' under
Service Programs). One computer run may exe-
cute any useful combination of programs. More
than one unit design may also be processed on
one run.
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PHASE I - FORMULATION OF LOGIC

A design in the form of equations specifying
both logic and interconnections must be loaded
into a file on the magnetic tape. Modifications
of the file are made until the logic design has
been formulated. Load lists are prepared. Vari-
ous sections of the design are merged substituting
signal symbolic names where necessary to main-
tain consistency.

The logic design is manually partitioned into
tentative sets of logic for LSI building blocks.
Composite multi-function truth tables are gener-
ated. An automatic commonality analysis is
performed with the objective of minimizing the
total number of minterms for all functions in the
set. The resulting new equation set is then
reduced one equation at a time by Boolean sim-
plification techniques. Full use is made of don't
care conditions in both the commonality analysis
and subsequent Boolean simplification. Checks
are made wherever possible in all program
applications. Errors are listed but do not stop
the design process. Defective data is returned
to the file in its original form and is not updated.

Load Logic Equations

This is a basic building block of the com-~
puter design assistance system. It loads equa-
tions into a new file via punched cards or cor-
rects an existing file on a previous file magnetic
tape. A control card specifies input and output
options and the name of the design file. Cor-
rections of changes, additions or deletions auto-
matically modify all affected data in the file.

Single valued functions are represented by
single equations where the subject symbol repre-
sents the output signal and the input symbols
represent the input signals. Logic operator
connectives and function name indicate the logic
function to be performed between inputs and
output. Multi-valued functions arec represented
by sets of single equations. All the subject
symbols of a set are identified by a set-name
much as a programmer names a subroutine.
Characteristics of the set, such as load lists,
are identified. Equations which only feed other
equations within the sct will not appear as outputs
from the set and such equations' load lists will be
internal to the set. Only those load lists external
to the set will be identified as set loads. Set loads
are scparated by the subjects of sct output signals.

A load list is generated for a particular
equation by obtaining the subjects of all other
equations which have the particular equation's

subject as an input. This process is lefi until the
entire file has been updated with additions, changes
and deletions. Changes replace an equation's
inputs but not its subject and deletions not only
completely remove an equation from the file, but
also remove the equation's subject symbol wher-
ever it may appear as an input in other equations.
After updating the file, load lists are regenerated
for the entire file. Those inputs which are not
represented in the file by equations cause exten-
sions to be generated which are equations with
subject and loads, but no inputs.

Output options include complete listings of
equations including loads or any portion thereof,
load lists, boundary items (such as extensions)
listing signals entering and leaving the design,
listings of equations without loads, punched cards
of equations suitable for reloading inlo a file of a
new unit which may be a redesigned version of the
existing file.

Generate Truth Tables

After the logic designer has loaded equations,
he identifies multiple equation sets which he deter-
mines may form a useful [LSI building block function.
After this manual partitioning, composite multi-
function truth tables are generated for each set.
This is done by a logic simulation program which
simulates each set for all combinations of inputs
which the logic designer indicates. Input and out-
put binary word pairs are thus generated for each
set regardless of the logic contained within the set
(see Simulate Logic Equations). All serial logic
(that is, equations feeding other equations) within
the set will have been transformed into parallel
logic because only input and output values will be
given in the composite truth table.

Practical limitations will be held to due to
LSI pin-out restrictions. The truth tables will go
into file and not be printed out unless requested.
Manual inputting of truth tables is also possible,
and in this case equations need not be in the file
for such functions. A future design aid would be
a problem oriented compiler to gencrate truth
tables by programming instead of simulation.

Commonality Analysis

Functions within the set which for the same
combination of input values obtain the same output
value have minterms in common. A minterm is
defined as a Boolean product of all input variables,
with cach variable present in either its true or
complemented form depending upon whether or not
the corresponding input value is a 1 or 0. Since a
function may be represented as a Boolean sum of

_72_




all minterms for which the function is true, (that
is, 1), only such minterms will be considered
together with don't cares.

The objective of commonality analysis is the
minimizing of the total number of minterms for
all functions in the set. A trial and error ap-
proach can be followed to generate a new set of
logic equations in expanded minterm form. New
functions are generated of each minterm for
which all N outputs are true, for which all N-1
outputs are true, all N-2, etc. The resulting
new equation set represents the original function
when common logic outputs are ORed together
with the logic unique to each function.

Boolean Simplification

After the multi-valued function minterm
reduction is performed by commonality analysis,
the resulting new equation set is then reduced one
equation at a time by Boolean simplification
techniques. Each equation is represented by its
truth table which is a listing of all minterms for
which the function's output is true. This min-
term form is also called the first canonical form
or the disjunctive normal form.

Each minterm is represented by a binary
word of N bits where N is the number of equation
inputs. The value of the word is determined by
those combinations of bits for which the corre-
sponding combinations of input signals obtain a
true output. The words of this truth table are
then grouped according to the number of 1's in
each word. Words of adjacent groups are com-
pared for a match in all but one bit position.
Such matches produce a new word of N-1 vari-
ables with an X marking the deleted variable.
This is equivalent to applying the theorm
Xy + Xy = y. After N passes, prime implicants
will remain. The simplest sum-of-products
representation is obtained by the Quine method of
Boolean simplification.

This program has been written in Cobol and
run for 12 variables in reasonable time on a
131K character H-2200 computer. Any program
which takes more than an hour to run is consid-
ered unreasonable in execution time.

Substitute Equation Symbols

Input consists of match symbols denoting the
equation symbols to be modified and substitute
symbols specifying the modification. This pro-
gram is useful as a clerical aid in changing
signal names. If two design files are to be
merged, common signals must have the same
names and one file may have to substitute

symbols. All occurrences of the same symbol in
the file are automatically modified. If a charac-
ter in the match symbol is a hyphen, that charac-
ter position is omitted in the comparison and
substitution. Deletion of symbols is another
option.

PHASE II - SIMULATION OF OPERATION

Phase II programs depend upon data proces-
sed by Phase I programs. After a design has
been formulated, it is tested and checked by
Phase II programs. Any errors found can be cor-
rected by rerunning Phase I programs. Circuits
are associated with equations by the circuit
assignment program in order to allow detailed
circuit timing checks to be performed.

Functional Complexity Check

After the reductions of Phase I, multi-valued
function sets must be checked to see if the com-
monality and simplification was enough to allow
the function to meet various LSI pin-out limitations
and logic functional complexity limitations. Out-
put of this program are error listings. The file
is not modified in any way.

Simulate Logic Functions

Besides the logic equations in a design file,
the program simulate logic equations also accepts
as input a card deck which controls the simulation
timing, inputting of test data, output format, and
output of selected circuits at selected times. Out-
put is to the high speed printer. The design file
is not modified in any way.

The program will handle up to 24, 000 logic
equations as presently written in assembly lan-
guage on the H-800 Computer. Run time depends
upon- number, size and type of equations; average
number of unclocked circuits in a chain; number
of clock phases in a clock cycle; amount of test
data input and amount of output. Although for
synchronous logic, the program will accept asyn-
chronous chains logically separated from other
chains. Unclocked logic feedback 1s accepted and
logic loops and oscillatory conditions are identified
if they exceed maximum allowable iterations. A
subroutine exists for each allowable logic equation
type. This subroutine library can be updated for
new circuit types. Truth tables of multi-value
functions are also available to speed simulation
by table look up.

Circuit Type Assignment

The only changes made in the design file by
this program will be circuit types for single-
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valued functions (for example, cell type or fixed
array LSIs with internal interconnect needed).

If a circuit type is already specified for an equa-
tion, it is checked; if not, a circuit type is as-
signed. Manual assignments can be made through
load equations or on input cards to circuit as-
signment. Circuits are assigned or checked
according to an equation's logic, fan-in and fan-
out. Manual assignment is made by specifying a
circuit type for a subject symbol on an input

card. The subject symbol may contain dashes as
in the substitute symbols program to allow as-
signment of this same circuit type to all equations
which have the same subject symbol except for
the character positions which contain a dash.

Assignment or checking is done by means of
a table in the program which specifies circuit
types by logic function, maximum fan-out, and
maximum fan-in per term (sum of products form).
The table is ordered so that the minimal circuit
type will be assigned to each equation.

Circuit Timing Check

After circuit types have been assigned to all
equations in the file, this program may be run.
The design file will not be modified in any way.
Various worst case¢ tests are made through all
chains and associated sub-chains under test where
a chain is defined as starting and ending at
clocked circuits. Turn-on and turn-off circuit
delays are accumulated for various tests.

A table contains turn-on and off times for
each loading condition of each circuit type for
each test condition. Tests are made at various
temperatures and for either minimum or maxi-
mum delays. Turn-on and off delays are alter-
nated whenever circuits invert pulses. Checking
criteria specify maximum and minimum accept-
able chain delays as accumulated at the top of
each chain. Different such criterion can check
chains between different clock phases. Set up,
skew and margin are included within these
criteria.

Any violations found are listed giving maxi-
mum/minimum test at temperature, subject
symbol of the circuit at the top of chain, and
accumulated turn-off and turn-on delay time. A
complete listing of all chains for all test condi-
tions may also be obtained as an option. Errors
can be corrected by reasssigning circuit types
and/or rcloading logic equation corrections.

PHASE III - PLACEMENT OF COMPONENTS

The automatic placement of the selected
integrated circuits in the right places on each

board or LSI minimizes printed or etched wire
lengths. The automatic routing of such wires
minimizes cross-over points. Thus the number
of LLSI or board levels is kept to a minimum re-
ducing to a few hours the many man-years this
takes by hand. The elimination of breadboarding
and manual layout techniques provides with the
advent of large scale integrated circuit technology
the only practical method of implementation.

Phase III programs depend upon data proc-
essed by Phase I and II programs. Various parts
of Phase [II programs are applicable only to
variable array type LSIs. Other parts are appli-
cable to cell type or fixed array LSIs with inter-
nal interconnect wire-routing necded. Note that
discretionary interconnect is not covered in the
design phases except as various data (for example
logic equations) may feed into other programming
systems such as Computer Production Assistance
and Computer Test Assistance.

Circuit Placement

Manual placement is done by specifying sub-
ject symbols and board placement coordinate
locations. Possible errors are: 1) Circuit types
not in file, 2) Subject not in file, 3) Duplicate
subject symbols, 4) Placement location overfilled.
Automatic placement will generate board locations
for each subject. Circuits within the same flat-
pack for fixed array type LSIs or within the same
cell for cell type LSIs will be automatically as-
signed. Thus, placement will update the file with
placement locations and placed circuit types giving
circuit allocation within cells and flat-packs.
Location will also specify any expander gate(s)
located relative to the expanded circuits.

Violations will list subjects or board locations.
Output options include listings of spares, unplaced
signals, placed equations. Main output is place-
ment diagrams showing circuits and subjects at
coordinate placement locations by board. Vari-
able array type LSIs will not require any internal
placement or circuit allocation.

Generate Pin Groups

After placement this program will compute
and add to a design file for each equation record
an input pin group matching the logic equation's
inputs and an output pin group matching the
equation's load list.

Iquations may be reordered within a set or
the inputs of single cquations may be reordered to
facilitate pin assignment such as interior connect-
ions brought out to common pins. Expander gate
pins are automatically assigned. Generate pin
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groups will only specify flat pack pins not con-
nectors or feed-throughs. These are either
generated by special programs or can be added
by the manual pin assignments program (see
Manual Pin Assignments).

Several listings are generated: Maintenance
listing with all data (equations, input pins, load
list, output pins, circuit type, placement lo-
cation) ordered by subject; assembly point to
point wiring lists internal to each LSI; assembly
wiring lists external to each LSI.

Manual Pin Assignments

LSI and/or printed board connector pins and
two-sided printed board feed-through pins as
well as other pins may be entered into the output
pin groups by this program which is also able to
modify existing input pin groups. This is a gen-
eral program for use with any design technology
while generate pin groups is a more specialized
program with many versions. Normally, con-
nector pins will be known even before listing pin
groups using only the placement diagrams. Thus,
a card deck specifying connector pins may be
submitted to this program either before or after
running generate pin groups but after placement.
Unassigned connectors will be listed as will sig-
nals which still require feed-through. Output
options are the same as given for the generate
pin groups program. Pin designations must not
be duplicated. This and other possible errors
will be checked.

LSI Board Etch

For cell type or fixed array LSIs with inter-
nal interconnect wire-routing needed, this pro-
gram will provide layer separation for cross
over and wire routing layout according to the
specific groundrules of the design. This is$ a
special purpose program which will exist in many
different versions. For variable array type
LSIs it will only be necessary to specify the array
mask for the word pairs of a multi-valued function
as developed in Phase I. For internal intercon-
nect routing, internal pin groups must have pre-
viously been specified. Output is routed wire
lists by layer or array connection points.

Printed Board Etch

This program separates board layers indi-
cating where plated-through holes are needed and
routes printed circuit board wiring. Its function
is similar to that of LSI board etch except that
the wire routing is between pins external to the
LSIs and different groundrules will be followed.

PHASE IV - PREPARATION OF WIRE-RUN LISTS

Phase IV depends upon data processed by
Phases III, II and I programs. Programs of this
phase provide the wiring output in various forms
for production assembly. Wire-listings are re-~
ordered to run a scribing machine to prepare
masks for LSIs and printed boards. The massive
data transmitted from Engineering to Production
is literally 100, 000's of wire segments necessi-
tating masks automatically prepared by computer
controlled scribing.

1.SI Board Wiring Lists

Either a routed wire list or an array mask
list is made for each LSI in the file.

Printed Board Wiring Lists

A routed wiring list is made for each board
connecting flat-packs.

Mother Board Wiring Lists

A routed wiring list is made for each board
connecting other boards.

Listings Ordered for Scribing

Cards, paper-tape or magnetic tape is pro-
duced to run a scribing machine.

SERVICE PROGRAMS

These programs are used by the programmer
to run and service the computer design assistance
system. The library program forms a basic pack-
age from which all other programs are built up.
The executive provides continuity of running be-
tween all the other design programs and communi-
cation with the computer operator. The file edit
works on design files as a whole copying, deleting
or renaming them. In addition, various para-
meteration programs may exist to modify tables
in other programs (logic subroutines in simulation
program, circuit types in circuit assignment pro-
gram, time delays in timing check program, etc.).
Service programs are:

Subroutine Library

In addition to a library of logical, input/output
editing and formatting, sorting, scanning, search-
ing and square root subroutines, constant and data
format pools are specified. All are designed to
simplify the programming of the type of programs
found in the computer design assistance system.
The use of a compiling system simplifies library
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maintenance. Programs are constructed by
copying common portions from the library.
Presently the Cobol Compiler, Update and Li-
brary system is being used for Bootstrap devel-
opment and maintenance of all programs.

Executive

This program provides continuity between
all the other programs. The executive consists
of two parts: start-up and run. The start-up
reads the first control card and checks magnetic
tape file mountings. The run executive is then
called.

The run executive reads a single program
batch control card which preceeds each design
program input card deck. Any tape reassign-
ments necessary, rerun points, comments to the
operator, etc. are made and the next program
to be run is called.

Thus, a batched system card deck is sub-
mitted for each run. The run executive calls
all other programs which return back to it upon
exit. Normally there will be no computer stops
for a run. Note that the same program may be
run more than once with different data. Also
more than one design file may be updated.

File Edits

This program will: 1) copy the complete
CDA system of files and change the sequence

number; 2) delete selected records of selected
files; 3) copy selected file records of selected
files; 4) copy selected files with new titles;
5) rename selected file titles; 6) list all file
titles; etc.

Parameter Updates

Various special programs may be provided
to update tables in other programs.

CONCLUSION

The objective has been to show various com-
puter design aid tools applicable to multiprocessor
LSI technology and to provide a cooperative man-
machine interactive design system to free the
designer from routine bookkeeping tasks so that
he may devote more of this time to the actual
system design.

Since all programs work on the same file,
corrections can be made at any point in the design
by simply rerunning appropriate programs. Also
the fact that the programs are independent with
data separated from the programs into a common
file allows for easy expansion of the system by
adding of new programs to take advantage of new
construction techniques as they come along.

Since each phase is complete and dependent
only on the preceding phases, development of
programs can proceed in parallel with the actual
equipment design using the lead time of completed
phases.
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ESSENTIAL FEATURES OF ON~LINE SYSTEMS
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The exciting interest in time-sharing of
computers that is sweeping the profession raises
some questions. Why, is time-sharing so good?
If it is so good, why didn't we do it years ago?

On the first question: time-sharing is not
so good! What is good is the on-line use of com-
puters wherein the user works for continuous peri-
ods with sustained attention. Thus, relative to
batch processing techniques the user can concen-
trate on his most significant problems. There is
no need to have a number of secondary problems
active in order to occupy his time while waiting
out turn-around on a batch system.

Even though the above is sufficient economic
justification, of much greater significance is
the fact-that the user may "explore" his way
through a problem. In other words, the user may
start on his problem without knowing a complete
solution algorithm. If certain cases never occur
they need not be accounted for in the program.

This on-line use contrasted with batch use
can be compared with communication with a distant
person. Letters represent batching of information
and must be sufficiently complete so as to avoid
misunderstanding. In comparison a telephone com-
munication gives (1) the possibility of a briefer
text assuming the receiver understands the ambigu-
ities or the omissions, (2) if the text is too
brief immediate feed-back occurs, and (3) immedi-
ate response (answers) can occur. Note that the
turn-around time for a telegram compares with
that for batch processing computers.

Now consider the second question: The first
electronic computers were used on-line. And, even
in recent times, groups doing large system pro-
grams, where total elapsed time to completion was
of prime importance, have been given exclusive on-
iine access to large computing cystems.

However, most computer systems have developed
into well- tuned batch systems with input and out-
put queuing organized to keep the central proces-
sor busy (this, generally, maximizes the amount of
computing that can be done).

A successful on-line system must service a
number of users comparable to (or more than) the
number that can be serviced with an equivalent
(measured, say, in terms of cost) batch system.
In order for this to be possible the portion of
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the system (hardware, software, buffer areas,
etc.) dedicated to the individual user must be
small. Individual start-up and close-down costs
must be modest with respect to the system and to
the user. Minimum price terminals are low data-
rate devices and this requires system storage of
user files. Although, magnetic tape represents a
possible means of storing such files between user-
sessions, it is much too slow for the storage of
the files of a user when he is active.

In the above discussion the consideration of
display scopes is being by-passed because of their
high cost per user. Technical developments may
change this cost. Of perhaps greater importance:
with a proper supporting system (yet to come) a
scope by pictorial techniques may transmit to the
user so much more information than is possible by
a typewriter, and pointing techniques (light-pen,
Rand tablet, etc.) may be so much easier than,say,
typing coordinates; that scope consoles may then
compete economically with typewriters for some
applications. Summary of the desirable character-
istics of an on-line system:

1) The terminal (and all of the system dedi-
cated to the individual user) must be low-cost,
and in the current state-of-the-art ‘this implies
low data-rate equipment.

2) Low data-rate terminals imply substantial
amounts of system storage per user (active or not).

3) The active files of active users must be
in quickly accessible memory. A "lively'" on-line
system must respond to each active user in seconds.
For general engineering and scientific computation
this means (1) the user's files are in fast core
(which may conflict with the minimum cost require-
ments mentioned, above), or (2) the user can be
"swapped-in" from a lower-cost memory without ex-
cessive overhead costs.

The system of Project Genie at the University
of California, Berkeley, represents our approach
to the above problems. User terminals are teletype
machines. User storage is a large capacity disc
(30 million words in the initial version); low cost
storage for active users (and system programs) is
a million word drum which can swap with the high
speed core at core-rate. The 32K memory is divid-
ed into two frames and variable priority memory
access is provided to allow the central processor
to run during drum and 1/0 transfers. The vari-
able priority reduces memory access conflicts from
about 40% to below 10% . When a device (drum,
CPU, data channel, etc.) requires a memory cycle,
it comes in with minimoum nriority and for each
memory cycle that it fails to get its priority is
upgraded.

The hardware configuration is less than half
the story. Batch processing software is not suit-
able for on-line systems because it is not designed
to provide interactive communication with the user.

A number of so-called on-line systems have
been promoted which either (1) provide limited lan-
guage capability requiring restricted input and
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output formats or (2) which permits the user (via
his console) to obtain a position in the batch
processing queue. In order to compare at all
with batch processing the on-line system must pro-
vide essentially the same computing facilities.

The on-line system must cater to at least
two types of user. One is the neophyte or occa-
sional user. To him the system should be "for-
giving' and it should "lead" him through the com-
putational process. At the user language level,
JOSS (our version at Berkeley is called CAL) is
an example of a good "fail-safe" language. This
tolerance and helpfulness must exist at all levels
such as system communication, text generating and
editing, and in each user language.

At the other extreme is the professional
user. For him flexibility is of prime importance.
He should be able to maximize his communication

rate with his problem relative to his physical and
mental effort. Thus, system procedures should all
be available to him with a relatively uniform
method of calling.

All the above must occur in a system which
gives almost all hardware and software facilities
to each of its users (varying perhaps from 20 to
100) for his time-slice out of an interval which
is at most a few seconds long.

The Berkeley system uses memory paging to
protect programs from one another, and to extend
the apparent memory size from the user's viewpoint

People are realizing, and some computer com-
panies have apparently not yet realized, that the
proper software is at least half of the cost of a
good batch processing system. This is even more
true of software systems.
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SUMMARY

The OPS system, an interactive system
designed for use in a time-sharing environment,
includes an on-line simulation capability. A
simulation activity, thought of as a series of
events, is scheduled, canceled, or rescheduled
dynamically on the AGENDA, either at a specified
time, or when a prescribed condition is met.
The activity can be made to consume simulated
time by means of an internal delay for a certain
period, or a wait until given conditions are
satisfied. The AGENDA is a time-ordered list
of all conditionally and unconditionally
scheduled activities. The user may inspect it
at any point in a simulation, and personally
modify or restructure it. He may base his
strategy on data and partial results examined
and analyzed with the help of the OPS system
during interruption of the run. Extensive
tracing facilities permit the user to follow
the flow of control during a simulation to any
level of detail.

Introduction

OPS is an interactive system designed for
general use in a time-sharing environment.*
It includes an on-line capability for building
models and running simulations. Simulation
activities are scheduled, canceled, or resched-
uled dynamically on an AGENDA either at a
specified time or when a prescribed condition
is met. Activities can be made to consume
simulated time by means of a delay for a
certain period or a wait until given conditions
are satisfied. The AGENDA is a time-ordered
list of conditionally and unconditionally
scheduled activities.

*For those interested in the origin of
names, OPS was coriginally an acrenym for On-
Line Process Synthesizer. The system could
be adapted for a small stand-alone computer.

It is fully documented in the manual On-Line
Computation and Simulation: the OP3-3 System,
M. Greenberger, M. M. Jones, J. H. Morris, Jr.,
and D. N. Ness, MIT Press, 1965.

Working within the multi-purpose framework
of the OPS system, the user may inspect the
AGENDA or some index of performance without
stopping the simulation. He can also interrupt
the run to make unprogrammed inspections and

alterations. Before resuming, he can roll the
simulation back to an earlier state that has
been preserved, or perturb it in some other
manner. Reference to data and activities is
symbolic.

Extensive tracing facilities permit the
user to follow the flow of control during a
simulation to any desired level of detail.
He may modify his experimental design as he
views partial results, as well as conduct
interim statistical analyses, without relin-
quishing title to the computer or losing his
place in the simulation. By running indepen-
dent components of his model singly or in
selected combinations from standard initial
conditions, he is able to examine different
aspects of his simulation in a controlled way.
This flexible mode of operation encourages him
to build and validate his model incrementally,
thus giving him a measure of protection against
the problem of initial overcomplexity that can
plague a monolithic simulation.

The OPS System

The OPS system provides a multi-purpose
facility for on-line computation, programming,
and model-building. It is an open system and
it is modular. The user can enlarge and re-
shape it to suit his own requirements by adding
individually tailored subroutines, known as
operators. An operator may simply be a sub-
routine with a fixed number of arguments of
fixed connotations. Or it may have a variable
number of parameters whose interpretation is
sensitive to context. These parameters
may be read in literally, symbolically, or with
conversion to any of several modes. Some 60
to 70 standard operators come with the system.
Additional operators may be written in any of
a variety of programming languages, such as
FORTRAN, MAD, or FAP; or they may be recruited
from a wide assortment of existing subroutines
without modification.

New operators may be written in terms of old
operators. An ordered set of operators is known
as a compound operator or KOP (pronounced K-OP).
A KOP may be executed as it is being constructed,
since its execution is interpretive. After it
has been debugged, it may be compiled into a
conventional subroutine. A KOP has a fixed



number or arguments of fixed connotation.

Whether or not it is compiled, it is referred to
by name as though it were a subroutine. Compound
operators (KOP's) may themselves be compounded.
They may call themselves and each other to any
depth. Flow of control between KOP's is similar
to flow of control between subroutines.

There are standard operators for input and
output, testing, branching, and repeating within
a KOP. Thus, a KOP is analogous to an ordinary
program, except that its components can be of
arbitrary complexity and tailored to an indiv-
idual need. Operators are the building blocks
and KOP's are the structures.

In the OPS system, all variables are
referred to symbolically through a symbol table
maintained during execution. Changes in the
symbol table can be made at any time without
disturbing the definitions of activities.
Arrays of up to 3 dimensions can be addressed
by implicit indexing. Thus, the multiplication

SET X = A * B

applies whether X, A and B are single cells or
arrays. If A and B are compatible arrays, the
multiplication is carried out element-by-element
over all of their elements. Infix symbols are
available for matrix multiplication (.M.),
matrix transposition (.T.) and the differencing
of elements of vectors (.D.). If either A or B
is a cell, the designated scalar operation is
performed.

The current version of OPS does not include
a general list processing capability, although
several list processing operators have been used
experimentally. It also appears feasible to
add the SLIP primitives to OPS, subject to core
space limitations.

Simulation and Model Building

A simulation model may be conmstructed from
operators and KOP's by using them to represent
activities. An activity is an ordered sequence
of one or more events, or more precisely, a
list of operators defining how these events take
place. Since the order of execution of activ-
ities is not known in advance, the flow of
control between activities is not handled in
the normal style of subroutine calls. A
special KOP, known as the AGENDA, is introduced
to permit the dynamic scheduling of activities.
After an activity is completed, control returns
to the AGENDA which specifies the next activity
to be executed. Activities are scheduled on
the AGENDA for execution either at a specified
time or when a specified condition is met.
Activities can schedule, cancel, and reschedule
themselves and other activities during execution.
They may also consume simulated time by delaying
for a certain period or waiting for a condition
to be met. Delays and waits are used to string
events together as activities. These features
are in the spirit of simulation languages such
as SOL and SIMSCRIPT, although SIMSCRIPT works

only with events and does not schedule condition-
ally.

In designing the simulation facility,
primary emphasis was placed on providing the
researcher with a flexible framework for build-
ing his model on-line in an interactive manner.
The building phase of the simulation process
was considered more critical than the rumning
phase, and the subject of running efficiency
received secondary status. This philosophy led
to a combined interpretive and compilative system.
Operators are compiled programs. They run at
full efficiency. KOP's, however, are executed
interpretively and may be traced in detail, a
feature which is particularly effective in an
on-line environment. Once a model is ready for
production runs, its running efficiency can be
improved by compiling all activities written as
KOP's into operators.

In building a simulation model on-line,
there is great advantage in structuring it so
that preliminary pieces can be tested before
they become embedded in a larger whole. This
sometimes is best accomplished by building from
the outside in, as in the construction of a
house. Other times, it can be achieved by assem-
bling parts in hierarchical combinations, as in
the formation of an organization. Either way,
relatively independent parts should be isolated
into separate segments. This allows the computer
to aid in weighing alternative formulations of
components, and helps build an understanding of
the model as the model itself is built.

In the OPS system, the parts of the model
are out in the open and easily modified. The
AGENDA or schedule of activities also is out in
the open. Through the use of system switches,
the user can indicate where in the AGENDA he
wishes to start the simulation, the exact
duration of the run, or a condition for termin-
ation. He can insert himself into the simulation,
and modify its course from the console by alter-
ing the AGENDA or adding to it. He can interrupt
a simulation to examine some data, make a
calculation, transform a variable, or estimate
a coefficient; then insert a change and resume

the run. This type of interaction is facilitated
by the openness of the OPS system. All the
simulation variables are available for examin-
ation, and they may be operated on by any of a
wide variety of statistical operators. Since

all KOP's are executed interpretively, it is
straightforward to modify a KOP and then restart
the simulation. No intermediate complation or
reloading of the system is required.

Extensive tracing facilities are available.
For example, the following may be traced: the
names of KOP's executed; the line numbers
executed; the parameters and results of oper-
ators executed; the movements of simulated
time; and the values of any variables referenced
symbolically. This tracing is controlled by
system switches which may be set at the console
or dynamically from within a KOP.




The man-machine interaction possible with
this type of on-line simulation facility offers
new possibilities for better understanding of
complex systems. For example, those aspects of
a system that are well understood may be pro-
grammed as operators or KOP's. The less under-
stood components of the system may be modelled
by the researcher at his console. The entire
system may then be made to interact under diff-
erent controlled conditions. The simulation
may be stopped by the user at any point, by
pressing a special interrupt button, and
detailed validation analysis performed. It is
not necessary to specify the desired stop point
in advance, although this alternative is
available. Alternate simulation strategies may
be compared by restarting the simulatjon from
a given point with different decision rules.

It is only necessary to edit the appropriate
KOP's, reload the AGENDA and common storage
(which has been saved on disk), make appropriate
modifications to the simulation variables, and
enter run mode.

Activities

A simulation system must have a way of
representing events or activities. TIn SIMSCRIPT
and SOL this is the subroutine. 1In OPS, it is
an operator or sequence of operators, called a
KOP. An activity may affect a simulation by
changing the values of state variables in
common storage. It may also alter the course of
the simulation by scheduling the execution of
activities, including itself, at future times,

and by canceling activities previously scheduled.

An activity may also advance simulated time by
means of DELAY and WAIT operators.

The Agenda

A discrete simulation system must also have
a scheduler that drives its clock. In SIMSCRI?T,
this is the events list. In OPS, it is a special

KOP called the AGENDA. The AGENDA normally
contains calls to activities. The entries in
the AGENDA are ordered by their line numbers
which are equivalent to simulated time.

At the top of the AGENDA are conditional
calls to activities, calls that depend upon
some relation among state variables. Following
the conditional calls are unconditional calls.
Normally the AGENDA is entered from the top and
the conditional calls are examined to see if any
of them is satisfied. If one is satisfied, the
first unconditional call is executed, and the
system variable TIME is advanced to the line
number of that call. The variable TIME always
contains the current value of the simulated
clock. It is not changed when a conditional
call is executed.

All the call operators in the AGENDA delete
themselves from the AGENDA vhen they are execut-
ed, Thus, an activity is not called more than
once unless it is scheduled more than once.

Note: The preceding is the first part of a talk
presented at the 21st National meeting of the
Association for Computing Machinery, Los Angeles,
August 30, 1966. The full text appears in the
Proceedings of the conference, published by the
Thompson Book Company, Washington, D. C., 1966,
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