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ABSTRACT 

Surface m e a s u r e m e n t s  of d r o p  s i z e  distribution and  liquid w a t e r  content 

made  in advection fogs a r e  shown to  a g r e e  with c h a r a c t e r i s t i c s  of the fog 

mode l  p re sen ted  in e a r l i e r  work.  

nucleus concentrat ions m e a s u r e d  in  Buffalo, Hawaii  and C e n t r a l  Pennsylvania .  

Compar isons  a r e  made  of cloud and fog 

Analytic and expe r imen ta l  data  show that the bas ic  concept for  

minimiz ing  vis ibi l i ty  degrada t ion  i n  radiation fog by p reseed ing  with s m a l l  

concentrat ions of l a rge  hygroscopic  nuclei  i s  sound. 

g r e a t e r  than a fac tor  of two over  unseeded fogs have been  produced in the 

labora tory .  

fog s i tuat ions.  

Visibil i ty improvemen t s  

The concept  a p p e a r s  to  have applicabili ty only fo r  radiat ion 

Analytic and expe r imen ta l  investigations show that it is imprac t i ca l  

to  a t t empt  to s u p p r e s s  fog a t  a n  a i r p o r t  by placing e l e c t r i c  cha rge  on fog 

drople t s .  

p rac t i ca l  d rople t  charg ing  equipment  is used are far too s m a l l  to  have signifi-  

cant  influence on fog diss ipat ion r a t e .  

E l e c t r i c a l  f o r c e s  that can  be establ ished by th i s  m e a n s  when 

v i  i 



PROJECT FOG DROPS 
INVESTIGATION O F  WARM FOG PROPERTIES 

AND FOG MODIFICATION CONCEPTS 
VOL. I11 

" The p r i n c i p a l  a c c o m p l i s h m e n t s  thus far a re  s u m m a r i z e d  in the next sec t ion .  

D u r i n g  the p r o g r a m ' s  third year,  e m p h a s i s  w a s  placed on obtaining measure- 

I. INTRODUCTION 

* This  is the third annual summary  report  published under the same title. The 
o ther  two were designated NASA CR-72 and NASA CR-368, respectively. 

1 



11. SUMMARY OF ACCOMPLISHMENTS TO DATE 

A .  Definition of the Problem 

A generalized fog classification system has  been evolved. Structural  

models have been established for the micro-  and macroscopic propert ies  of 

advection and radiation fogs. 

advection and radiation fogs and fo r  "sea smoke. 

been established fo r  the Continental United States .  

were  presented in the f i r s t  two annual repor t s .  

Dynamic models have been formulated f o r  

A fog climatology has  

Results of these studies 

B. Investigation of Condensation Nuclei 

Using a thermal  diffusion chamber developed on this program, measu re -  

ments  have been (and a r e  being) made of the concentration of condensation 

nuclei active a t  supersaturat ions charac te r i s t ic  of natural  clouds and originally 

thought to be charac te r i s t ic  of natural  fog. 

investigation drawn at the end of the second year  is that the maximum super -  

saturation existing in urban fog is probably substantially l e s s  than 0.1%. 

This observation, combined with resu l t s  of experiments  conducted during 

development of the diffusion chamber,  led to the concept for  seeding the 

atmosphere pr ior  to fog formation to  minimize the degradation in visibility. 

An important conclusion of this 

These measurements  were  continued during the third year  of the program 

at Buffalo, and Springville, New York, a t  the Philipsburg Airport  in Cent ra l  

Pennsylvania and (as par t  of a field t r i p  conducted on another project)  on the 

Island of Hawaii. The resu l t s  obtained indicate that even in r u r a l  regions of 

New York and Pennsylvania the maximum supersaturat ion achieved in natural  

fog is usually l e s s  than 0.1%. 

hand, show that a t  the ocean surface (actually 50 m e t e r s  f rom the w a t e r ' s  

edge) supersaturations of a few tenths would be requi red  to  activate sufficient 

nuclei to produce the droplet  concentrations found in  dense s e a  fogs. 

Measurements  made in Hawaii, on the other 

Two 
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miles  inland the concentration of nuclei activated at one percent supersatur-  

ation had doubled so that typical advection-fog droplets concentrations could 

be produced at supersaturations as low as  0.470 to 0.2’?40. 

nuclei, although associated with the land mass ,  has  not been established. 

The source of these 

I C. Investigation of Methods for Altering Diffusional Growth Ra tes  of Droplets 

The validity of the droplet growth-rate expression given by Eisner ,  

Quince and Slack (1960)  was demonstrated experimentally. 

this expression we predicted that growth r a t e s  of droplets could be decreased 

by t reatment  of droplets with surface active monolayers such as hexadecanol 

and octadecanol and verified this prediction experimentally. 

demonstrated that t reatment  of nuclei prior to droplet formation did not 

prevent activation of the nuclei but did inhibit continued growth of droplets 

that formed on the nuclei. We have suggested that the drop s ize  distribution 

in fog could be favorably al tered (to improve visibility and cause more  rapid 

precipitation) by treating a portion of the droplet population (or  nucleus popu- 

lation) with selected monolayers to minimize competition for available water  

and thereby promote m o r e  rapid growth of untreated droplets. We have not, 

however, developed a practical  method for treating drops in a natural  fog. 

On the basis  of 

We further 

D. Investigation of Effects of Ionic-Surfactants on Coalescence 

Several  investigators have considered the use of ionic surfactants to 

promote coalesence of droplets. 

showed that surface layers  of such mater ia ls  inhibit ra ther  than promote 

coalescence . 

Experiments conducted on this program 

E. Investigation of a Possible Method for Preventing Dense Radiation Fog. 

The fact  that radiation fog consists of large numbers  of very  smai i  

droplets accounts for  the extreme stability of the fog and the poor visibility 

associated with it. 

therefore ,  has  been aimed a t  causing a rediairibuiioii of fog liqcid .,-,.ater ss 

that fogs consist of a few large drops rather than the natural  distribution 

which is character ized by many small  drops. 

Our search  f o r  techniques to suppress  radiation fog, 

3 



We have reasoned that i f  a portion of the atmosphere could be seeded 

with extremely hygroscopic nuclei p r ior  to fog formation, the ar t i f ic ia l  

nuclei might remove enough excess  water f rom the atmosphere to prevent 

activation of most  natural  nuclei. This would resu l t  in a fog consisting of 

a small  number of la rge  drops that would sca t te r  less light ( improve 

visibility) and precipitate more  rapidly. 

Calculations made during the past y e a r  indicate that this  reasoning is 

To check these hypotheses and calculations in  the laboratory we valid. 

have conducted a s e r i e s  of experiments in  which the visibility in seeded and 

unseeded fogs was  measured.  

that  visibility improvements of g rea t e r  than a factor of 2 can be expected in 

dense fog i f  proper separation and insertion of nuclei a r e  achieved. On those 

occasions when visibility in unseeded fog was g rea t e r  than 1. 5 mi les ,  seeding 

provided no improvement in visibility. 

hypothesis on which the experiments a r e  based is sound. 

discussion of the concept is given in Section 111, P a r t  C of the text. 

Results of t e s t s  conducted thus far indicate 

It appears  therefore  that the basic 

A detailed 

F. Investigation of Elec t r ica l  Means of Fog Dispersal  

Since a majority of droplets in natural  fog a r e  l e s s  than 20p. rad ius  the 

incidence of coalescence is v e r y  smal l .  

that  droplet coalescence might be enhanced by placing sufficient charge on 

droplets to  causes  a t t ract ion of neighboring drops.  

proposed methods of fog suppression by e lec t r ica l  means  we suggested that 

the maximum e lec t r ica l  effect might be achieved by charging al ternate  

adjacent regions of the fog positively and negatively. By s o  doing, we 

reasoned, substantial e lec t r ic  fields might be produced to promote rapid 

mixing of droplets charged to  opposite polar i t ies .  

might exer t  sufficient a t t ract ive fo rces  on one another to promote coalescence. 

It has  been suggested in the pas t  

After reviewing var ious 

Once mixed, the droplets 

F rom a thorough analytical and experimental  investigation of this concept 

we have concluded that it is impract ical  to a t tempt  t o  d i spe r se  fog by placing 

electr ical  charge on the droplets .  

theoretically and in the laboratory that, when prac t ica l  equipment is used, 

W e  have been able  to  demonstrate,  both 

4 



the average at t ract ive force between oppositely charged, i O p .  d iameter  

droplets  is approximately eight o r d e r s  of magnitude l e s s  than gravitational 

forces .  

effort  be devoted to fog suppression concepts based on ar t i f ic ia l  charging 

of fog droplets.  

of the text. 

I Such forces  are t ruly negligible. We recommend that no fur ther  
~ 

Details of this investigation a r e  given in Section 111, Part D 

5 



111. TECHNICAL DISCUSSION 

A. Character is t ics  of Natural  Fog 

During the la t te r  pa r t  of October and ea r ly  November of 1965, we 

participated with personnel of the Department of Meteorology, Penn State 

University, in a field program in Central  Pennsylvania to  obtain additional 

data about the charac te r i s t ics  of natural  fog. 

about the drop-size distribution, nucleus concentration, liquid water  content 

and vertical  t empera ture  variation in fog. Such information is necessary  

both for experimental verification of physical and dynamic fog models and 

for  a better understanding of the mechanisms of fog formation. 

In par t icular ,  data were  sought 

During the period involved, measurements  were  made in three frontal  

fogs, two radiation fogs and three s t ra tus  clouds (encountered on mountain 

ridges).  On two dates,  during periods of pre- f ronta l  fog, we were able to  

obtain measurements of a l l  the des i red  fog pa rame te r s  except ver t ica l  

temperature  profiles. 

tion nuclei were made with a thermal  diffusion chamber and a GE sma l l  

particle detector.  

Daily measurements  of the concentration of condensa- 

1. Drop-Size Distribution 

To obtain measurements  of drop-size distribution, a modified Bausch 

and Lomb slide projector was used to expose gelatin coated s l ides  to a 

s t r e a m  of foggy air. 

s l ides  to leave permanent, well defined rep l icas  that could be accurately 

measured under a microscope,  

impressions in the gelatin l aye r s  a r e  presented in F igu res  1 and 2. 

previous work, (Jiusto,  1960, 1965) we have found that t rue  droplet  d i ame te r s  

a r e  very near ly  equal to one-half the c ra t e r - l i ke  impress ions  left in the 

ge la t in. 

Droplets in the a i r s t r e a m  were  impacted on t rea ted  

Sample photographs i l lustrating the droplet  

F r o m  

6 



F i g u r e  I FRONTAL FOG DROPLET IMPRESSIONS 

F i g u r e  2 STRATUS CLOUD DROPLET IMPRESSIONS 
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The droplet  r ep l i cas  in Figur,:  1 wcrc  rnade during a p r c - f r o n t A !  

fog. Visibility was  about 1 / 8  milc with s o m e  light dr izz lc  in the a rea .  

drop-size range was  typical for f rontal  fog, i . c .  2 to  50p diameter ,  o l though 

in this  portion of the photograph the l a rges t  i inprcssion shown was r n ; L t l c :  by 

a droplet of 34p diameter .  

made  by drople t s  f rom a s t r a t u s  cloud, which typically average 6 to  &;A 

d iameter  and have a s i ze  range of 1 to 2Op. 

had obscured the nearby mountain s ides ,  was  l c s s  than 1 / 8  milc with !jolllc 

light dr izzle  falling. 

The 

In cont ras t ,  FigGre 2 i l lus t ra tes  the c r s i c r s  

Visibility witliin the cloud, which 

F r o m  the r e s u l t s  of numerous samples  taken in  clouds and fog t n c  

following drop s ize  information was  obtained 

TABLE I 

Drop Size Data 

Drop Dia. 
Fog or Cloud Type Range (Avg.) M c a n  Diameter  Vol. M c a n  Diainctcr 

F r on ta 1 2 -  50p 7 . 8 ~  1 4 . 2 p  

Stratus  1.5-43 4.9 9 . 0  
Radiation 1.5-39 3.5 7 . 5  

In F igures  3, 4 and 5 average  drop-size dis t r ibut ions a r e  given f o r  

f ronta l  fog, radiation fog and s t r a t u s  clouds, respec t ive ly .  A logrithmic sca le  

of drop diameter  in te rva ls  w a s  chosen s ince  a preponderance of drop s i z e s  

were  clustered around 2 to 1 O p  with only a few drops  in  the 30p, 40p arid 5Op 

range. 

increments  of ip. 

Also shown in each  f igure are the da ta  normalized t o  drop d iameter  

The r e su l t s  of these  measu remen t s  a re  in  good ag reemen t  with the  

data  given by Pede r sen  and Todsen (1960) f o r  s t r a t u s  clouds and fog. 

expected, the use of nar row s l ides  in ou r  sampling appara tus  not only improved 

our  measuring capability but a l s o  revealed sn ia l l e r  average  drop  s i z e s  t!ian 

have been indicated by most  previous nlcasurei i ients .  
s i ze s  a r e  somewhat s m a l l e r  than those indicated in  our  radiation fog modei  

As 

The measu red  d r o p  

8 
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(First Annual Summary Report); however we do not consider the resu l t s  of 

so few measurements  sufficient to warran t  modification of the model at this 

t ime. 

A S  par t  of the program conducted by Penn State, Jiusto and Mack 

(1965) made a case  study of an advection fog that occurred at the field s i te  

on 1 2  November 1965. 

i l lust rates  the importance of drop s ize  distribution on visibility. 

droplet spectra  were  obtained from 2 samples  taken an hour a p a r t  during 

the fog. Horizontal visibility, as indicated by the t ransmissometer ,  was 

1 /8  mile for Sample A and 1 / 2  mile for Sample B. The difference in the 

individual drop-size distributions was striking. 

visibility) revealed a high amplitude peak of smal l  droplets (-5p diameter) 

while Sample B (1/ 2 mile visibility) indicated a broader and lower amplitude 

spectrum of la rger  droplets ( A I  1Op diameter) .  

of droplets in the 1 / 8  mile case  was est imated to be approximately an  order  

of magnitude grea te r  than in the l e s s  dense fog. 

the two fogs was ,  therefore,  about equal. This comparison i l lustrates  

exactly the effect that we a r e  attempting to produce art if icially by preseeding 

radiation fog (Section 111, Part C). 

This study is particularly interesting in that i t  

Detailed 

Sample A (1 /8 mile 

The relative concentration 

Liquid water content in 

2. Liquid Water Content 

Because observations of liquid water content a r e  extremely s c a r c e  

we have, in the past, relied on developing analytic expressions to descr ibe 

the distribution of liquid water in fog, Pili& (1965). 

been valuable in formulating mathematical  fog models and in assess ing  the 

general  fog problem, but the requirement  f o r  additional measurements  s t i l l  

exists.  To help satisfy this requirement  we obtained a few additional liquid 

water  measurements while at Philipsburg, Pa. 
wire liquid water meter  was used for the measurements .  

These expressions have 

A Johnston-Williams hot 

During the four weeks of operation in Central  Pennsylvania we were  

able to obtain data about fog liquid water  on the two occasions in which wide- 

spread  frontal  fog occurred. 

5 meters  above the ground, atop our laboratory van. 

Measurements  w e r e  taken approximately 

Table I1 shows average 

10 



I .  

measured values of liquid water content and associated visibility in the two 

fogs. Es t imates  of visibility were  made from the a i rpor t  t ransmissometer  

located alongside our apparatus. 

TABLE I1 
Average Values of LWC for Two Frontal  Fogs 

And Associated Visibility 

Visibilitv 

100 m e t e r s  

200 m e t e r s  

300 m e t e r s  

Average LWC 

3 0 .22  g / c c  

0.12 
0.05 

These averages are in quite good agreement  with the value of 
3 0.17 g m / c m  used in our physical fog models, Jiusto (1964). 

3. Nuclei Measurements 

The concentrations of cloud and fog nuclei were measured on a daily 

bas i s  at our field site using the CAL thermal  diffusion chamber. 

these measurements  a r e  presented in the next section, together with the 

data f r o m  Buffalo, N. Y. and Hilo, Hawaii. 

Results of 

B. Measurements of Cloud Nuclei 

During the past  year we have continued our investigation of cloud and 

fog nuclei and have gathered additional data in mari t ime (Hawaii) and contin- 

ental  (Buffalo, N. Y. ,  Philipburg, Penn.) climates.  Measurements in the 
KilG,  u-. --.-.. .. 

L I a w a L I  =...ere cndertaken to obtain more  data on mari t ime 

nucleus concentrations, and to assess their role in local cloud microphysics.  

Cloud nucleus measurements  at Philipsburg Airport, Penn. were  made during 

a 4 week field p r ~ g r a . m -  in which data were sought about the character is t ics  

of na tura l  fog. 

1. Buffalo, N. Y. Data 

The cloud nucleus measurements obtained in Buffalo, N. Y. represent  

11 



data from approximately a 2 year period. 

Table I11 together with a comparison of this years  (1965-66) and last y e a r s  

(1964-65) observations. 

These data a r e  summarized in 

TABLE I11 
Nucleus Concentrations in Buffalo, N. Y. 

Average Data Average Data 
Supersaturation for 1964-65 for 1965-66 Average of all Data 

3.070 5300 4100 47 50 

0.9% 3450 2600 30 50 

0.370 1000 1000 1000 

0.1% 495 490 495 

A s  indicated by the f igures  in Table 111 average counts obtained for  

the current  year (1965-1966) a r e  somewhat lower (4 2570) at 3.0% and 0.9% 

than counts taken during the period 1964-1965. 

a t  lower supersaturations (e.g. 0 .3% and 0.1%), however, a r e  near ly  

identical for both years. 

during the past year are  pr imari ly  due to  lower concentrations that were 

observed when the wind was coming from the west.  

recent  efforts by industry to reduce the particulate mat te r  discharged into 

the atmosphere. This, of course,  can only be hypothesized at the present  

t ime since no quantitative data are available on industrial  effluent control. 

Continued measurements  should reveal  this t rend i f  it actually exis ts .  

Average nucleus measurements  

The lower average numbers  a t  high super saturations 

The data may re f lec t  

Updated values of nucleus concentration in Buffalo, N. Y. as a 

function of wind direction are  shown in F i g u r e s  6 and 7. 

s imilar  to previous measurements  except for  the somewhat lower average counts 

found at 3.07' supersaturation during periods of wester ly  wind and the some- 

what higher counts at 0.1% supersaturat ion during periods of S W  and SE wind. 

Again a fairly poor correlation was  found between urban pollution and active 

nuclei near 0.1% supersaturation. 

resul t  of these s ta t is t ics  is the fact that cloud nucleus measurements  at 0.1% 

supersaturation a r e  generally very  high when the wind direction is f rom the 

The s ta t is t ics  are 

An interesting, but as yet unexplained 
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south (a region of very  little industrial  activity) even though the counts at 

3.070 a r e  consistantly below average. 

In our  studies of nuclei we have found that, in general, a change of 

air m a s s  (frontal passage) will produce the greatest  change in the concen- 

tration of nuclei active at very  low supersaturations (i.e.< 1.0'$0). 

supersaturations ( N  3.00/0), sources  of local pollution readily a l te r  the numbers  

of active nuclei and often mask  the effect of the frontal  passage. 

observations, one before and one af ter  a cold front, se rve  to i l lustrate this 

point. 

At higher 

Two sets of 

The data are shown in Table IV. 

TABLE IV 

Nucleus Concentrations Before and After a 
Fronta l  Passage  

2 August 1966 - Buffalo, N. Y. 

Supersaturation 

3 .0% 

1.0% 

0.170 
0.02% 

0.370 

11 AM 2 P M  1964-66 
Wind S 18 Wind NW 13 Averages 

2550 4900 47 50 

2100 1750 30 50 

1600 7 30 1000 

700 150 495 

700 85 405 

P r i o r  to the frontal passage counts at 3.070 and 1.070 were below 

average a s  is usually the case  when winds a r e  f rom the south. 

that at 0.370,  0.1% and 0.0270 the counts were  substantially above average.  

With the passage of the front the wind direction abruptly changed to NW. 

effect of industry to the NW immediately became apparent by the above average 

counts at 3.070 supersaturation. 

in cloud nuclei concentration at 0.1% and 0. 02y0 supersaturation. Evidently 

the basic character is t ics  of the existing air mass w e r e  most  important in 

determining the concentration of nuclei that were  active at low supersa tur -  

ations. 

cloud and fog nuclei can occur. 

Note, however, 

The 

Note, on the other hand, the dramatic  decrease  

The case a l so  i l lustrates  how quickly changes in the spectrum of 

14 



* 
2. Hawaii Data 

F o r  about an eight week period during the summer  of 1965 the GAL 

thermal  diffusion chamber was operated (principally) at two sites, 

University of Hawaii, Hilo Campus (UHHC), located about 2 miles  f rom the 

ocean and (b) on the shore of Hilo Bay, 50 meters f rom the water ' s  edge. 

The latter location emphasized on-shore trade wind flow with a minimum 

source of land nuclei. 

(a) the 

The resu l t s  of these measurements are shown in Figures  8 and 9 
where number concentrations, 

S , Each straight line represents  a least-squares  f i t  to  the data result ing 

in the empir ical  relations: 

N, are plotted as a function of supersaturation, 

I 

N = 105s o * 6 3  (UHHC - two miles  inland) 

N =  5 3 s  o * 4 6  (ocean edge) 

and 

Note that these straight line relations a r e  only considered valid for the 

indicated supersaturation range and cannot be extrapolated indiscriminately. 

Obviously as S approaches large values, N tends toward a limiting value. 

Departures  f rom linearity a r e  a l so  expected at lower supersaturation. 

The factor of two difference in nucleus concentrations at the two s i tes  

separated by only a few miles  is ra ther  impressive.  

a r e  the comparisons between these data and those obtained with the same 

apparatus  at Buffalo, N. Y. and at Philipsburg, Penn; average Buffalo and 

Philipsburg nucleus concentrations a r e  shown for comparison in Figure 8. 

is apparent  that nucleus concentrations over populated continental areas 
exceed those of the Hawaiian mari t ime environment by 1 to 2 o r d e r s  of 

magnitude. 

Even more  impressive 

It 

96 
Resul ts  presented in this section w e r e  obtained by James  E. Jiusto during a 
cloud physics investigation in Hawaii sponsored jointly by the National Science 
Foundation and Cornel1 Aeronautical Laboratory. 
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Figure 8 shows that at supersaturations between 0.170 and 170, the 
3 nucleus concentrations vary  from a few tens to a few hundred per  c m  . 

Such numbers correspond quite well with observed droplet concentrations 

in mari t ime clouds and s e a  fogs. The almost  immediate influence of land 

m a s s  on cloud and fog nucleus concentrations is shown by the higher counts 

found just  two miles  inland. Under these conditions, typical advection fog 

drnplet C G E C ~ E ~ ~ Z L ~ ~ C E S  C G U ! ~  be p ~ ~ d u c ~ d  at supersa t~rat i~ i i s  ZIS !OW ss 0 .  ? T u  

o r  0.270. 

m a s s ,  has not been established. 

The source of these nuclei, although associated with the land 

Two individual runs made within five hours of one another a t  the 

oceanside si te a r e  interesting in that they represent ,  respectively, the 

highest and lowest nucleus concentrations obtained during the summer .  

(See Figure 1 0 . )  The high concentrations measured between 0950 and 1050L 

(local t ime) were associated with a NW flow of air f rom the Hilo industrial  

area; sugar refining plants and cane fires lay in the upwind direction. By 
1430-1530L, the N E  t rade wind had established itself, and the resultant 

oceanic air trajectory produced extremely low nucleus concentrations. It is 

noteworthy that the two se ts  of data tend to converge a t  low supersaturation; 

hence these observations strengthen the conclusion of Twomey, 1963 and 

Kocmond, 1965, that local contamination appears  l e s s  influential at low 

supersaturations. 

3 .  Philipsburg, Penn. Data 

A s  part  of our fog r e s e a r c h  program in Central  Pennsylvania, 

measurements  of cloud and fog nucleus concentrations were  obtained on a 

daily basis. 

information about (a) the concentration of fog nuclei in areas relatively f r e e  

of pollution but known to have frequent occur rences  of natural  fog and (b) the 

correlation between the total nucleus content and the concentration of fog 

nuclei. 

F r o m  these measurements  we expected to  gather additional 

18 
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In Table V the resu l t s  of Pennsylvania data a r e  compared with obse r -  

vations taken a t  Buffalo and Springville, N. Y. 

TABLE V 

Average Nucleus Concentrations at Three  Locations 

Avg. No. Nuclei Avg. No. Nuclei Avg. No. Nuclei 
Supersaturation (Buffaio, N.  Y. ) (Springville, N. Y. ) (Philipsburg, Pa.) I 

3.0% 47 50 

0.9% 30 50 

0.1% 495 

0.02% 400 

3075 

1725 

415 

335 

2600 

1720 

410 

380 

A t  high super saturations the observations in Cent ra l  Pennsylvania 

follow the same general  t rend that was observed in Springville. 

at 3 . 0 %  supersaturat ion the average concentration of nuclei  at  our  field site 

was nearly 45% less than in Buffalo and a lmost  1570 less than in Springville, 

N. Y.  

pollution was discussed in the Second Annual Summary Report .  

however, the effects of a tmospheric  pollution become l e s s  obvious a t  low 

supersaturations since most  contaminants a r e  in the Aitken s ize  range (10 

to 10 

low supersaturation. 

and do contribute to industr ia l  haze. 

is the fact that a t  0.02y0 supersaturat ion the average  concentration of fog 

nuclei  at  Philipsburg was near ly  the s a m e  as in  the highly contaminated 

atmosphere of Buffalo. 

F o r  instance,  

This t rend  toward lower numbers  in regions of low atmospheric  

Briefly, 

- 5  

- 6  cm)  which are not la rge  enough to  grow to fog droplet  s i ze s  at ve ry  

Many of these nuclei, however, a r e  ve ry  hygroscopic 

Of par t icular  i n t e re s t  in this  comparison 

A t  low supersaturat ions the Philipsburg data  were  strongly influenced 

by the measurements made on four  separa te  days in which the nucleus concen- 

t ra t ion averaged between 750 and 900 nucle i /cm . 
the wind was S to S W  and was accompanied by a penetrating odor (indicative 

of mercaptans; chemicals  containing su l fe r  that  a r e  r e l eased  in wood pulp 

processing).  

field location. 

3 On three  of these days 

One such mi l l  is located in a town about 22 miles  S-SW of our 

Evidently, a prolific source  of fog nuclei  is provided by the 

20 



chemicals used in these mills. 

an  important role in the drop s ize  distribution and visibility character is t ics ,  

as well as the formation, of some fogs in the a r e a .  

we noticed the odor, there  was a substantial amount of haze, even though 

conditions were not good for the formation of natural  fog. 

We suspect that this source of fog nuc :i plays 

On all occasions on which 

The data obtained in Pennsylvania indicate that very  little correlation 

It exis ts  between the concentration of fog nuclei and the total nucleus content. 

is not uncommon to find as few as 150 nuclei/cm 

even though the total nucleus content (as measured by the expansion chamber) 

may be as high as 95,00O/cm or  as  low as  2500/cm . Hourly measurements  

sometimes show the fog nucleus count to  be steadily increasing while the total 

nucleus count is falling, 

3 November, the concentration of fog nuclei measured at 0.1% supersaturation 

numbered 225/cm while the total nucleus count stood at 6000/cm . By 

0600 EST the measured fog nucleus concentration had near ly  tripled to  650 

nuclei /cm3 and the total nucleus count fell to  4500/cm . 

3 active at 0.1% supersaturation 

3 3 

F o r  example, a t  0200 EST, on the morning of 

3 3 

3 

4. Conclusions 

The conclusions drawn from our investigation of fog and cloud nuclei 

thus far may be summarized as  follows. 

In continental air m a s s e s  in the northeast  United States, the concen- 

t ra t ion of nuclei active at 0.1% supersaturation usually exceeds the concentration 

of fog drops in dense natural  fog. 

fogs must  therefore be substantially smaller  than 0.170, In a mari t ime 

atmosphere (Hawaii) the concentrations of nuclei active at 0.1% to 1.0% 

snpersati.i.ration are  consistant with observed mari t ime cloud and fog droplet 

concentrations. 

Maximum supersaturation in most  inland 

Nucleus concentrations in Hawaii a r e  one to two orders  of magnitude 

iower  i h r i  i I i  urban afid r ~ r a !  a r e a s  ~f Nex: Yerk and Pennsylvania. 

Industrial  effluents and most other man made pollutants may not be 

par t icular ly  effective sources  of fog nuclei in either continental o r  mari t ime 

a tmospheres  but a r e  prolific sources of Aitken nuclei. One possible exception 
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is the effluent from pulp mil ls  observed in Central  Pennsylvania. 

A i r  m a s s  changes produce the most  dramatic  changes in cloud and 

fog nucleus concentrations. 

ation often masks the effect of air m a s s  changes. 

At high supersaturations industrial  contamin- 

Our measurements  are consistant with the fact  that precipitation 

is effective in scavenging nuclei f rom the atmosphere.  Scavenging appears  

to be most effective for those nuclei that are active at supersaturat icn l e s s  

than 1.07'. 

C. Investigation of Possible Techniques for Preventing Dense Radiation Fog 

In a fog, visibility restrictioii  is due to light scattering by droplets in the 

optical path. Any procedure that reduces the amount of light scat tered can 

therefore be expected to improve visibility. 

light per  droplet is proportional to the square of the droplet  radius and, for  

constant liquid water content and a given s ize  interval, the number of droplets 

is inversely proportional to radius cubed. It follows that i f  the total liquid 

F o r  water droplets the scat tered 

water content can be concentrated in a few large drops rather  than a la rge  

number of small  drops, improvements in visibility would result .  

Mathematically, the concept may be expressed as follows: F o r  a drop 

s ize  distribution N ( r )  the total scat tered light L is 

The liquid water content M in the fog is 

w k ~ i ( r j 7 - 3 d r  5 Nrk,,,. 
where Y 

mean volume radius. 

is the refor e 

indicates root mean square droplet  radius and Y 
r m s  m v r  

indicates 

The light scat tered per  unit volume of liquid water 
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We suggested that the desired changes in drop s ize  distribution could 

be produced by seeding the atmosphere before natural  fog forms with a 

relatively few giant hygroscopic nuclei. 

was examined analytically and in laboratory experiments. 

a r e  promising, may be summarized as follows. 

During the past  year this concept 

Results, which 

Analytical resul ts  indicate that with monodispersed, eight micron 

diameter nuclei, visibility improvements approaching a factor of five as an 

upper l imit  might be possible, 

Experimentally we have achieved visibility improvements of grea te r  

than a factor of two by preseeding an atmosphere suitable for formation of 

dense fog. 

we have not been able to cause further improvement. 

ments  that have been achieved were  no doubt due to a combination of improper  

seeding and variations in the natural  properties of the atmosphere. 

over seeding with smal l  nuclei invariably lowered visibility. 

When visibility of the natural  fog exceeds approximately 1 .5  miles  

Intermediate improve- 

Intentional 

1. Theoretical  Considerations 
4. 

In the process  of natural  fog formation, droplets grow first on those 

nuclei that are both large and very  hygroscopic. 

other nuclei of l e s s  hygroscopic substances deliquesce, but generally these 

nuclei do not promote growth to fog droplet s izes  since they require  a greater 

supersatiirat-ion than is normally found in fog. The number of nuclei that do 

participate in the ensuing fog is determined by 1) the distribution of s izes  

and hygroscopicities of the nuclei and 2) the ra te  at which excess  water vapor 

is made available for droplet growth. 

A S  the humidity increases ,  

F r o m  a review of Weather Bureau records,  we estimate that in 

r e i a i i v e l y  di'y aii- prior  to fog forr,ztior?, the maximum- cooling ra te  likely 

to be encountered is of the order  of 3OC/hr. 

of heat loss by the atmosphere is: 

Without condensation, the rate 
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where H = the heat loss  per  unit volume 

/3 = air density 

C p  

d t  

= specific heat at  constant p r e s s u r e  

= 3OC/hr = 0.83OC/hr 

Assuming that this heat t ransfer  ra te  p e r s i s t s  during the ear ly  stages of 

condensation and accounting f o r  the latent heat of condensation L , the ra te  of 

temperature change is: 

dM is  the condensation rate.  
d M  

d? 
where 

as to maintain a constant relative humidity, - will be equal to the rate  at 
d t  

which saturation absolute humidity M/s , decreases:  

If condensation occurs  a t  such a rate. 

dWs/dT was approximated from tabular values and equations ( 2 )  and (3) 

solved simultaneously to show that the rate  of temperature  change during 

the initial stages of condensation is approximately 0.93 C / h r  2 i ° C / h r .  

At this rate of temperature change water is made available for condensation 

a t  2.6 x I O - "  g m / c m  

0 

3 sec.  

Once fog has  formed the heat loss  through radiation is reduced S O  that 
0 the ra te  of temperature change is of the order  of 0 .1  C / h r .  

additional water vapor is made available at approximately 2.8 x 10 

sec.  

A t  this rate 
-11 3 

g m / c m  

One way to estimate the potential of the proposed preseeding concept is 

to compare the above r a t e s  with r a t e s  at which large,  extremely hygroscopic 

nuclei can extract  water f rom the atmosphere.  

we have computed the amount of water that would be condensed out of a 

saturated atmosphere onto a n  8p diameter  d r y  salt nucleus. 

computed the relative humidity at which the growing solution drop would be 

at equilibrium with the environment. 

To make this comparison, 

We have a l so  

Express ions  developed by Keith and 
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Arons (1954) were used to  determine the time reql i red for the dry  salt 

nucleus to grow to the indicated diameter. 

Similar calculations were made for LiCl and MgC12 nuclei; except for 

differences at low relative humidities the resu l t s  were  very  s imilar .  

Results a r e  presented in Table VI. 

TABLE V I  

Growth t ime and m a s s  of water required to produce 
drop of diameter (d) f rom a n  81.1 diameter NaCL nucleus 

(MASS = 5.8 x io-" gm) 

Size of 
solution drop( p) 

14.8 

17.2 

21.4 

3 2 . 1  

36.2 

57.6 

Time required to grow 
to (d) a t  10070 RH (sec)  Mass HzO(gm) 

1 .6  x 0.25 

2.5 0.7 

5 2.5 

1 7  23.0 

25 44.0 

100 450.0 

Equilibrium 
relative humidity 

7670 

85. 2 

92.7 

98.3 

98.7 

99.7 

Let  u s  suppose that two nuclei of this type are introduced into each 

of air at a t ime when the relative humidity has  reached a value between 3 cm 

85 and 90%. 

them immediately and reduces the relative humidity f rom its initial value, 

By the t ime the initial humidity has  been re-established - by continued air 

cooling - the equilibrium droplet diameters are between 1 7  and 21p. Once 

condensation has begun, the cooling rate of the air is limited to approximately 

1 C / h r  so  that the maximum ra te  at  which water can be made available for 

condensation is 2.6 x 10 gm/cm sec. During this initial growth period, 

when the heat loss  ra te  by radiation is still high, the equilibrium relative 

humidity is expected to remain substantially below 100~0. 

became saturated, the amount of water extracted by the two growing 21p 

diameter  solution drops would exceed 40 x 10 

t i m e s  grea te r  than water would be made available even at the maximum 

cooling rate.  

Because these nuclei a r e  hygroscopic, condensation begins on 

0 

- 10 3 

(If the atmosphere 

- 20 3 g m i c m  sec,  a value if, 

Obviously the equilibrium humidity in the cooling atmosphere 
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will be between saturation relative to the solution drop and 10070 relative 

humidity.) It seems,  therefore,  that the drops will grow at such a rate that 

they remain in approximate equilibrium with the ambient relative humidity 

at any time. 

At this point in the fog formation we must  consider the reduced 
0 

cooling rate,  which is not expected to exceed approximately 0 .1  C / h r .  

the newly established cooling rate ,  water is made available at only 

0.093 g m / m 3  h r  or  2.6 x I O - ' *  g m / c m  

the total liquid water content will rise to approximately 0.14 g m / m  . If 

all water were condensed on the two nuclei, the droplets would achieve a 

diameter of 51p by the end of the hour. 

A t  

3 sec.  During the next hour therefore ,  
3 

Three  important features  of the fog must  now be recognized f o r  

comparison with the fog that would have formed had it not been seeded. 

(a) According to our fog models, a radiation fog of liquid water 

content equal to 0.14 g m / m 3  would consist  of 200 drople ts /cm3 having a 

volume mean diameter of 1 1 . 2 ~ .  

would be 3.9 x 10 ( c m - I )  whereas  the extinction coefficient for the 

seeded fog would be 0.79 x 10 ( c m  ). Since the extinction coefficient is 

inversely proportional to visibility we can conclude that visibility in the seeded 

fog would be 4.9 t imes grea te r  than what would have occurred without 

seeding, 

The extinction coefficient for such a fog 
-4 

-4 -1 

(b) 
which is negligible. 

fall speed of 9 .3  c m / s e c .  

m e t e r  fog would fall to the surface in 18 minutes. 

The fall velocity of a n  1 1 . 2 ~  particle is approximately 0. 35  c m / s e c ,  

The 56p diameter  particle on the other hand h a s  a te rmina l  

A t  this velocity a solution drop at the top of a 100 

(c )  The relative humidity in the fog at the end of an hour would 

sti l l  be between 99 and 100%. 

Since some of the natural  nuclei would cer ta inly be activated a t  a 

( T O  relative humidity of 9970, the model used is not completely real is t ic .  

construct a realist ic model requi res  information on the hygroscopic nature 

and size of a l l  natural  nuclei: such information does not yet exist .)  The 
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, 
I mod 1 therefo e predicts a visibilit: improvement that is greater  than can 

ever  be expected in the field. 

certainly al tered in the proper  direction and a visibility improvement must  

occur. 

2 x 108m3 ( 2  km x 1 km x 0 .1  km) would be about 230 kgm, a value that is 

not unreasonable. 

repeated seeding would be required about once every 20 minutes. 

velocities other than near  zero  will be deleterious to  the experiment. 

apparent that prohibitively la rge  amounts of mater ia l  would be required to  

treat the atmosphere in advection fog situations. 

Nevertheless the drop size distribution is 

The amount of mater ia l  required to treat a hypothetical zone of 

According to  our model, once the artificial fog is formed, 

Wind 

It is 

2. Laboratory Experiments 

To provide a more  real is t ic  estimate of the visibility improvement 

that might be obtained in the field we have initiated a s e r i e s  of laboratory 

experiments in which fog can be formed in both seeded and unseeded samples  

of air drawn f rom outside the laboratory, The apparatus is arranged so that 

nuclei of the proper s ize  (4p to 1 O p  diameter) can be introduced into the air 

sample before entering an  eight foot tall tes t  chamber. 

fog is supplied by wet blotting paper on the walls of the chamber. 

(visibility) is computed from transmissivity measurements  made over the 

eight foot length of the chamber. 

Moisture for forming 

Fog density 

In a typical s e r i e s  of measurements fog is allowed t o  form in three 

successive samples of unseeded air and, i f  the light transmission measurements  

indicate that the 'natural '  fogs a r e  similar, a fourth air sample into which 

artificial nuclei have been introduced, is  drawn into the chamber. 

is allowed to develop and visibility of the seeded fog is compared with that of 

the three unseeded fogs. 

tc! provide additional comparisons. 

of the effectiveness of our seeding procedures in suppressing the formation of 

dense natural  fog. In an attempt to avoid the difficulties of producing properly 

sized hygroscopic - nuclei for  laboratory experiments we designed the apparatus 

shown schematically in Figure 11. 

separation of nuclei according to s ize  and insertion of nuclei of proper s ize  

The fog 

On some occasions a fourth natural  fog is produced 

The experiment thus provides a measure  

This apparatus permits  both gravitational 
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into the t e s t  chamber.  
3 solution into the 12 ft 

lamp. 

very  high concentrations of d r y  sal t  crystals .  

e lectron microscope show that the s ize  range of these c r y s t a l s  var ies  between 

0.1~ and 19y diameter .  

d iameters  of approximately 4 to  1Op.  from the others  and inser t  thc dcsircd 

par t ic les  into the atmosphere in which the fog will form.  

Nuclei a r c  produced by sl)r'c'ying a snturatcc! sal t  

formation chamber which is hcatcd by a n  infra-red 

The solution drops quickly evaporate in the d r y  atmosphere lcaving 

Mcasurcments  made with s n  

The problem is to separate  those par t ic les  that have 

To prepare  the nuclei for separation, c i rcu lar  disk V in Figure 11 1 
is first removed to  permi t  the nuclei to circulate into the conditioning chamber .  

Disk V is theii hcated to approximately SO C and rcplnccd. A tctnpcraturc 

inversion is thus established in the conditioning chamber  helping to stabil izc 

the air. Disks V and V a r e  next removed to permit  the nuclei to settle 

at  their  t e rmina l  fall velocit ies into scttliiig chambers  A and B. 

c h a m b e r ' s  dimensions were  selected so that in approxiiiiately 100  seconds 

a l l  nuclei g r e a t e r  than l o p  diameter  settle on Disk V4 and those smal le r  than 

4y diameter  remain  in or  above chamber A .  

replaced and, ideally, only nuclei in  the 4-1Op diameter  range remain in 

settling chamber  B. 

into the t e s t  chamber  and the fog allowed to develop. 

through the seeded fog is recorded on a Sanborn c h a r t  r e c o r d e r  for comparison 

with measurements  made previously in unseeded fogs. 

0 

1 

2 3 
The settling 

After 100 seconds Disk V3 is 

By means  of appropriate valving, these nuclei a r e  forced 

Light t ransmission 

In F igure  12, photomicrographs a r e  presented which show typical 

NaCl par t ic les  produced by the aerosol  spray. 

nuclei  w e r e  shadowed with gold to facilitate identification of very  smal l  

par t ic ies .  

nuclei  before and af te r  passing through the settling chamber ,  

that  p r i o r  to  separation only 6% of the total number of nuclei were in the s ize  

range  4p to  i3, diamcter. 

w e r e  of the proper  size;  

and l imited the visibility improvement that could be achieved through seeding. 

The microscope gr ids  and 

Such photogr&phs w e r e  ~ s c d  tn nh ta in  size distributions of the 

It was determined 

After separation, between 207'0 and 40% of the nuclei 

the remaining par t ic les  were  smal le r  than des i rcd  
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F i g u r e  1 2  PHOTOMI CROGRAPHS OF N a C l  N U C L E I  PRODUCED 
BY AEROSOL SPRAY FOR S E E D I N G  EXPERIMENTS 
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The t ransmissometer  used in  the experiments  consisted of a stablized 

light source mounted under the fog chamber and photomultiplier detector 

mounted on top of the chamber .  To assure  stability of the equipment, light 

was transmitted f rom the stabilized light source to the detector alternately 

through the fog chamber and through a dehumidified reference tube. Alter-  

nating the light path f rom one chamber t o  the other was accomplished with 

a rotating m i r r o r  and severa l  fixed mirrors .  

ation or  droplets settling on optical surfaces,  a l l  optical e lements  exposed 

to the fog were maintained a t  slightly elevated tempera tures  throughout the 

experiments.  

dr i f ts ,  a standard data taking procedure was established in which a) the 

final t ransmission measurement  through each fog was made, b) the chamber 

was flushed for 1 5  seconds and c) the transmission through the clear  a i r  was 

measured  immediately. 

a r e  based on these two se ts  of measurements .  

made during the period of fog formation a r e  useful in developing an under- 

standing of the p rocesses  taking place but a r e  probably l e s s  accurate.  

aforementioned precautions were necessary  because with only an  eight foot 

path through the chamber the difference between the amount of light t r ans -  

mitted through c lear  a i r  and through a dense fog (1/4 to 1 / 8  mile visibility) 

is of the order  of only three to six percent. 

To avoid e r r o r  due to conden- 

To further avoid difficulties that might occur due to long t e r m  

Visibility improvements discussed in this section 

Comparitive measurements  

These 

The manner in which visual range (visibility) was computed in seeded 

and unseeded fogs was a s  follows: 

intensity Io , and t raversing a distance X through a scattering medium, has  

a parallel beam of light having an  initial 

a n  intensity I given by 
I = T 

10 (4) 

w h e r e p  is the generalized extinction coefficient. Normally, P is represented 

by a combination of Rayleigh scattering, Mie scattering and an absorption 

coefficient. In fog, near ly  a l l  of the droplets a r e  la rger  than 10’4 cm and 

only Mie scattering is important. 

In our experiments, measurements  were made of light intensity L o  
before the formation of fog, where there was no scattering, and again af ter  
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fog formation ( I ) ,  
path length of the light is eight feet, we can compute the scattering coefficient 

F r o m  these measurements ,  and f rom the fact that the 

The visual range can then be determined from the formula: (Duntley, 1948) 

3 . 5 ~  v =  p 
where the units of distance a r e  those used in determining P . 

3 .  Discussion of Results 

To date we have run 21  experiments. Sixteen of the c a s e s  resulted 

Of the five remaining c a s e s  in a measurable improvement in fog visibility. 

two showed no improvement, although on both occasions natural  fog visibility 

was in excess of 1.5 miles.  

improper seeding; 

poorer  visibility character is t ics  than the natural  fog. 

Three other c a s e s  were  unsuccessful due to 

in one of the c a s e s  overseeding resulted in a fog having 

The general  trends of fog development for  both seeded and unseeded 

fogs a r e  shown in Figure 13. 

sequence of events that occur when substantial visibility improvement is 

achieved. 

The data shown a r e  character is t ic  of the 

Note that two minutes after seeding the visibility in the seeded fog 

This is to  be expected since is significantly l e s s  than the unseeded cases .  

art if icial  nuclei that a r e  admitted into the tes t  chamber ,  being large and 

hygroscopic, quickly form solution drops severa l  microns in diameter .  It 

is important to note that in the process  of forming fog the art if icial  nuclei 

use most of the water available for condensation and r e t a r d  diffusional growth 

of natural nuclei. 

the chamber, fog visibility remains essentially unchanged. 

art if icial  nuclei have settled out of the chamber  diffusional growth on natural  

nuclei proceeds and visibility deter iorates  in a manner  s imilar  to that shown 

for the natural fog. This process  required more  than ten minutes and is not 

shown i n  the figure. 

f rom seeding the atmosphere pr ior  to fog formation. 

A s  the solution drops continue to grow and sett le out of 

After all of the 

In this example an  887$ improvement in visibility resulted 
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F i g u r e  13 COMPARISON OF SEEDED AND UNSEEDED FOGS 

In Figure 14 another example i s  presented which demonstrates how 

improper  seeding can produce fogs of greater  density than unseeded fogs. 

Slight overseeding was accomplished by allowing many very  smal l  salt nuclei 

(< 1p. diameter)  to  enter  the tes t  chamber along with nuclei of the proper s ize  

(4p. t o  lop. diameter).  

Again, as in the previous example, rapid deterioration of visibility 

occurred  in the seeded case  within two minutes. 

visibility continued to deteriorate,  and after 10  minutes was reduced to only 

1200 f t  compared to a visual range or' 2cci3 f i  iii the ~nseedec!  fsg.  

can be expected whenever the atmosphere is preseeded with large numbers 

of s m a l l  nuclei. On one occasion we purposely overseeded with high numbers 

of s m a l l  nuclei and were  able to decrease visibility to the extent that visibility 

was  l e s s  than the length of the eight foot chamber. 

However, in this example 

Such resu l t s  
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F i g u r e  14 DEGRADATION I N  V I S I B I L I T Y  DUE TO 
IMPROPER SEEDING 

The resu l t s  of these experiments  c lear ly  demonstrate  the need 

for careful control of the s ize  and number of nuclei  used in seeding. 

edly the variability of our resu l t s  is partially due to the variabil i ty in the 

effectiveness of our separation techniques (2070 to  4070 of the nuclei a r e  in 

the proper s ize  range).  

Undoubt- 

For  this reason we have been searching for more  effective means 

Recent experiments  have been aimed of producing nuclei of the right s ize .  

a t  developing methods fo r  producing solution drops  which, af ter  evaporation, 

fo rm nuclei that conform more  near ly  to  the des i r ed  s ize  distribution. Best  

resu l t s  thus f a r  have been achieved by forming  the solution droplets  with 
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8 
an atomizer  

diameter) to 40% prior  to separation. 

sieves which a r e  available for separating particles in the s ize  range f rom 

1 to 201~. and a r e  certif ied by the manufacturer to *2p of the nominal value. 

which increases  the percentage of usable nuclei (4p to l op  

We have also begun testing commer ica l  
I 

Significant resu l t s  have not yet been obtained using sieves.  

We recognize other refinements in the operational procedure and 

experimental  technique that wi l l  be incorporated in future experiments. 

Basic  among these is the need for a chamber of grea te r  vertical  depth. 

Because the existing chamber is only eight fee t  tall,  droplets formed on 

large hygroscopic nuclei sett le out of the fog in l e s s  than 10 minutes. While 

this is a desirable resul t  for operations in the field, it l imits our evaluation 

of the concept to unrealistically short  times. 

we a r e  planning experiments  in the 30 x 30 foot cylindrical settling chamber 

in the recently completed CAL Ordinance Laboratory. 

equipped with 23 sidewall ports so that instrumentation for visibility 

measurements  in seeded and unseeded fogs can be made. 

experiment  with other hygroscopic mater ia ls  (e. g., MgCL2, CaCL2, 

LiCL, urea)  to determine the most  effective nucleant for  fog suppression. 

Finally, accurate  measurements  of the drop size distribution in seeded 

and unseeded fogs wi l l  be made to verify the resul ts  obtained through light 

t ransmiss ion  measurements .  

To overcome this problem 

The cylinder is 

We will a l so  

* 
Manufactured by A i r  -Shields, Inc., Hatboro, Pa.  

35 



4. Recommendation for  Continued Effort to Suppress Radiation Fog 

In view of the above findings we are recommending that finalized 

laboratory tes ts  be conducted to determine the maximum improvement in 

visibility that can be expected from preseeding. 

ments to  date a r e  sufficiently encouraging to  warran t  further investigation 

of this concept. 

The resu l t s  of our measure-  

Items of particular importance a re :  

a. Devise improved techniques f o r  producing nuclei of the proper  

s ize  (4p to 1Op diameter) for  insertion into the atmosphere pr ior  to  fog 

formation. 

b. Determine, in the laboratory, the best  nucleating mater ia l s  and 

the optimum size and concentration of nuclei to  be used f o r  seeding. 

most  important considerations in this study will be the handling qualities 

of the material .  

The 

c. Devise, i f  possible, methods for  re-seeding laboratory produced 

fogs to determine whether, and to what extent, the effects of seeding can be 

prolonged. 

d. Design and conduct experiments that will permit  droplets 

formed on artif icial  nuclei to fall a minimum of 3 0  feet through the fog. 

These experiments a r e  necessary  to  extend the period over which we can 

determine the visibility improvement achieved in fog. 

extend the t ransmissometer  path length. 

Such equipment will 

e. Based on the findings of i tems a through d, develop methods 

for preparing and disseminating sufficient quantities of the nucleating mater ia l  

for field experiments and formulate detailed plans f o r  conducting such exper-  

iments,  

D. Investigation of Elec t r ica l  Means of Fog Dispersal  

Numerous investigators have suggested that the presence of an ambient 

e lectr ic  field and/or  charge on droplets might f o r m  the basis  for  fog suppression 

(i. e. use electr ical  forces  to enhance droplet  coalescence and cause precipi-  

tation of the fog drops).  We suggested that the maximum electr ical  effect  
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might be obtained by charging alternate adjacent regions of the fog positively 

and negatively. 

be produced between the adjacent regions to promote rapid mixing of droplets 

charged to opposite polarit ies.  Once mixed, the droplets of opposite polar- 

i t ies might exer t  substantial mutually attractive forces  to promote coalescence. 

By so doing, we reasoned, substantial e lectr ic  fields might 

During the past  year we have tested th is  concept experimentally 

and have concluded that no significant increase in fog dispersal  rate can 

be produced by electr ical  means using practical  system configurations. 

The experiments that were  conducted, their theoretical  interpretation and 

detailed conclusions are described in the following paragraphs.  

1. Determination of Charge per  Droplet 

In order  to  es t imate  the effect that artificial droplet electrification 

might have on fog it is necessary  to calculate the electr ical  forces  produced 

by the charge placed on droplets. 

amount of charge that can be placed on the droplets. 

we set up the following experiment. 

A Faraday Cage, 0.94 x 0 .91  x 0.45 m 

It is therefore necessary  t o  determine the 

To obtain this information 

in dimension was constructed 

of aluminum and separated f r o m  ground by large polystyrene insulators. 

corona wire  was mounted in its center as shown in  Figure 15a To supply 

water  for  fog formation the inside of the cube was lined with blotting paper 

soaked with tap water.  

t empera ture  gradient within the chamber, crushed ice was scat tered over 

the chamber  bottom. 

admitting normal  laboratory air into the chamber. 

A 

To accelerate  fog formation and to c rea te  a stabilizing 

Dense fog formed within one half t o  1 hour a f te r  

Fog droplet  concentration was measured using a photographic 

a r rangement  s imi la r  t o  that used in the thermai diffusion ckii ibei- .  

arc lamp and collimator were mounted near one corner  of the chamber to 

illuminate droplets in a narrow region of space. 

droplets  in a well defined voiume was detected photographically urith a Polaroid 

c a m e r a .  

A Mercury 

Scattered light ( Y O 0 )  f rom 

Droplet "images" were then counted from the photograph. 
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To obtain an est imate  of mean drop s ize  the fog was drawn through 

a 3 .5  cm diameter tube at  a velocity of 45 

Bausch and Lomb slide projector was used to  expose gelatin coated s l ides  to the 

a i r s t ream.  

which la ter  could be examined under a microscope. 

measurements w e r e  made, mean drop diameters  were consistently observed 

to be in the eight to ten micron range. 

m e t e r s  per second while a modified 

Droplets impinging on the sl ides would f o r m  permanent repl icas  

While only a few such 

‘To provide charging cur ren t  for the droplets, a corona discharge 

was produced a t  the wire by applying a high voltage. The equipment, shown 

in block diagram form in Figure 15b, produced 14,000 volt pulses 5.5 milli- 

seconds long, of either polarity, at a rate of five per second. 

The experimental procedure was as follows. Once the fog had formed, 

the high voltage was applied to the corona wire  to produce a discharge.  While 

the discharge was  taking place the cur ren t  to  the chamber walls was observed 

with the vacuum tube volt meter .  

the chamber permitted to discharge through the VTVM. 

the chamber was completely discharged the VTVM was switched to a voltage 

measuring mode and retained in the circui t  until zero  volts were indicated. 

The net charge on the capacitance between the chamber and ground (i .e.  

the charge in the box plus that on the box) was,  therefore,  zero. 

concentration measurement  was made a t  this  t ime.  

remove the VTVM from the circui t  and S closed to place the electrometer  

between the cage and ground. The exhaust fan was turned on to  remove all 

drops (and the charge on them) from the chamber,  a process  that required 

about one minute. 

determined to be in excess  of 1 / 2  hour , )  With the droplets  removed the net 

charge remaining a c r o s s  the capacitance, C, was equal and opposite in 
polarity to  the charge Q removed f rom the chamber  (i.e. that on the fog 

droplets). Voltage observed by the e lec t rometer  was therefore  equal to 

I 

The high voltage was then removed and 

To be cer ta in  that I 

The droplet - - 
S2 was then opened to 

1 

(The t ime constant between chamber and ground was 
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F r o m  knowledge of the droplet concentration N ,  the volume of the 

chamber Vo , the average charge per droplet 8. could be computed. 

equipment w a s  quite stable and resu l t s  were  repeatable f rom one experiment 

to the next. 

The 

Typical experimental  values were  

3 N = 200 to 300 droplets per cm 

v, = 0.388 m 

C = 290 x fds 

V = 30 to 50 volts 

3 

The average charge per droplet determined froin many experiments was 

4% 1 . 2  x 

ence observed between the amount of positive or  negative charge that could 

be placed on a droplet. 

coulombs or  - 700 electronic charges.  There was no differ-  

The physical p rocesses  governing droplet charging may be viewed 

as follows. 

quickly separate under the influence of the electr ic  field associated with the 

discharge. 

in wet air - quickly become attached to water molecules. F o r  a negative 

polarity w i r e  the N2 and O2 ions produced in the discharge a r e  collected 

at the wire and small  negative ions are forced toward the walls, Enroute 

some a r e  intercepted by droplets to cause a net negative electrification of 

the fog. F o r  a positive-polarity wire  both the electrons and 0; ions a r e  

collected by the wire and the positive ions move toward the chamber walls. 

Again some a r e  trapped by droplets, this t ime to f o r m  a fog with net positive 

charge. 

The electron-positive ion pa i rs  formed near  the corona wire  

Electrons attach to oxygen molecules to form 0; ions, which - 

t t 

The maximum amount of charge that can be collected by a droplet 

was shown by Pauthenier (1932) to be that amount which produces a n  e lec t r ic  

field at the droplet surface which is equal and opposite to the distorted ambient 

e lectr ic  field that tends to drive charges toward the droplet. 

droplet imbedded in an otherwise uniform e lec t r ic  field Eo , the electr ic  field 

at the droplet surface is given by 

F o r  a spherical  
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where K is the dielectric constant of water. 

maximum charge 9 max 

The electr ic  field due to the 

that can be placed on the droplet of radius I" is 

Combining equations (8) and ( 9 ) ,  fmax  may be expressed as 

= /ZT  € E 0 y 2  (10) 
?MAY 

To obtain an  order  of magnitude estimate of Eo we used the expression for 

the e lec t r ic  field under space charge limited conditions in a clyndrically 
-- 

symmetr ic  chamber: 

-6  -1 

in air. Assuming 1Op 

w h e r e 1  = peak cur ren t  per unit cylinder length ( -2  x 10 

for  our experiment) and k = ion mobility, - 2 x 10 

diameter  drops, 

amps  m peak 
-4  

can be calculated f rom equation (104. max 

=: I O i 6  coulombs Z 6 0 0  electronic charges  max 

This  value is in reasonable agreement  with the value of "N 700 electrons per 

drop found experimentally. 

2. Est imates  of Electr ical  Forces  on Droplets Due to  Drop Charge 

With a quantitative understanding of the maximum charge that can 

be placed on a droplet it is possible to  compute the electr ical  forces  that might 

be experienced by droplets that have been iizeatec! in nat .~r=l  fngs, 

a s s u m e  first that a charging mechanism, e.g. a long horizontal corona wire  

and suitable grounded grids, is established at an a i rpor t  t o  enable us  to 

place an amount of charge equal io  

f r o m  the wire  without placing any charge on those droplets outside of the 

cylinder with radius R . 
the wind displace i t  by a distance 2 R  f rom its initial position and then repeat 

Let US 

max 2" all clrn,plets within a distance R a 
After this region of the fog has  been charged, le t  
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the charging process ,  this t ime placing - y  
meters  of the wire. The resul t  would be two adjacent cylinders containing 

in one cylinder all positively and in the other all negatively charged drops. 

Using parameters  of the physical fog model (Jiusto, 1964) and reasonable 

character is t ics  for the charging device, we can est imate  the forces  tending 

to cause mixing of the drops in the two charged regions. 

on every drop within max 

After the two charged regions dr i f t  away f r o m  the wire the electr ic  

field at the point of contact of the two regions will be 

where Q = nR2n  y m ax 
Assume that R = 1 meter ,  n = 200 ~ m ' ~  = 2 x 10 m 

volt meter, and y = 

of 10 

micron diameter droplets. 

and n is the number of droplets per cubic meter .  
- 1 2  8 - 3  , € = 8.85 x 10 coul/ 

coulombs, which is consistent with application max 4 volts between a corona wire and the set of gr ids  that define and 10 

The electr ic  field will be 

E Z 2 kilovolts/meter 

The force exerted on one droplet a t  the edge of region 1 tending to push it 

into region 2 will be 

-13 F = E p m a x  ~2 x 10 newtons 

- 1 2  This value 

on the same droplet. 

of the electrical  forces will therefore  be only 0.04 of the terminal  velocity 

of a 10 micron particle under the force of gravity, which, of course,  is 
negligible. 

may be compared with the gravitational force of 5 x 10 newtons 

The terminal  velocity of the droplet under the influence 

The only way that e lectr ical  f o r c e s  can be increased is to increase 

the maximum amount of charge on the droplets,  which would require  an  

increase in e lectr ic  field during the charging cycle, o r  t o  increase the radius 

of both charged regions. 

that they equal gravitational forces ,  whether by increasing R or  
To increase the electr ical  forces  even to the extent 

would max, 
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require  use of a power supply capable of delivering over a million volts to a corona 

wire that is perhaps as long as a runway. 

is clear ly  impractical. 

Such equipment in a field situation 

The conclusion can be drawn, therefore, that use of e lectr ic  forces  

to stimulate mixing of positively and negatively charged par t ic les  is not 

practical .  

It should be pointed out that the source of charge is not an important 

consideration in these calculations. 

only the droplet radius and the electr ic  field to which the droplets a r e  exposed 

during the charging process  a r e  important. 

Provided sufficient charge is available, 

Let u s  consider the effect that the opposite charges  on droplets might 

have on the fog if mixing were accomplished by some means other than with 

electr ical  forces ,  F o r  this purpose it is necessary  to compute the average 

force  that the electr ic  field due to charge tf 

another droplet of charge -ymax. 
200/cm , the average separation, (I , between droplets is approximately one 

mil l imeter .  

on one droplet exer t s  on 

In a fog having droplet concentration of 
max 

3 

The force exerted on one drop by the charge on the other is 

fo r  10 micron diameter  droplets charged in a field of I O 4  volts /meter .  

This force is eight o rde r s  of magnitude smaller than the gravitational forces  

on the same  droplets. Certainly, then, relative terminal  velocities will be 
cox,p:ete!i; nCg!in;l- . l  m 

6'"'-. 

3.  Summary of Conclusions 

a. The amount of charge that can be placed on a droplet i s  directly 

proportional to the electr ic  field that exists during the charging praeess 2nd 

direct ly  proportional to the square of the droplet radius. Fo r  e lectr ic  fields 

of the o rde r  of 10 volts per meter  and typical fog-droplet radii  of 5 microns 

the maximum amount of charge that can be placed on a droplet is of the order  

4 
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of coulombs, (600 electronic charges).  Such electr ic  fields can easi ly  

be produced in the field over distances of one meter  f rom the charge source 

but with great  difficulty over distances of 10 meters .  

impractical  to produce of 10 

It is completely 
5 volts per  meter  over ten meter  distances. 

b. If (during the droplet charging cycle) the e lec t r ic  field is 
4 maintained at 10 

source in a fog of high droplet concentration (200/cm ), the electr ic  field 

at the surface of the charged region due to charge on the droplets will be 

approximately two kilovolts per meter .  The electr ic  forces  on individual 

droplets due to this field will be an order  of magnitude smal le r  than the 

gravitational forces  on the drop. 

would be produced. 

voltage sources  capable of producing more  than a million volts would be 

required. This is clear ly  impractical .  

V/meter  over distances of one meter  f rom a linear charge 
3 

Certainly no mixing of adjacent regions 

To increase the electr ic  forces  by an order  of magnitude, 

Since typical values for the e a r t h ' s  e lectr ic  field a r e  of the 

o r d e r  of 100 volts per  meter ,  forces  exer ted by the natural  field will be an 

o r d e r  of magnitude smal le r  than under the conditions described above. 

c.  If mixing of adjacent regions of the fog is accomplished by 

some means other than electr ical  forces,  the mutual attraction between 

positive and negative par t ic les  would still exist .  

between droplets in a fog of 200/cm3 would be of the order  of 1 mm. A t  

this separation the mutual attraction between oppositely charged droplets 

would be approximately eight o r d e r s  of magnitude smal le r  than gravitational 

forces .  

would still be six o r d e r s  of magnitude smaller than gravitational forces .  

Such forces a r e  truly negligible. 

The average separation 

If droplets approach to within 100 microns the attractive force 

If under the influence of f o r c e s  other than electr ical  forces  
droplets happen to collide, the charge of opposite polarity may enhance 

coalescence. 

than 18p radius,  is extremely small .  

bility of collision is essentially zero.  

collision is therefore meaningless. 

The probability of collision between two droplets, both less 

With droplets of 5p radius  the proba- 

Exhancement of coalescence upon 
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On the bas is  of these results it may be concluded that it is 

impractical  to attempt to modify fog by placing e lec t r ic  charge on the fog 

droplets.  

e lec t r ic  forces  a r e  not important in the coalescence of droplets. 

s t o r m s  for example, where the electric fields may exceed those that can be 

applied art if icially a t  an a i rpo r t  by more than three o rde r s  of magnitude and 

where drops a r e  more  than 10 t imes larger  than fog droplets,  the e lec t r ic  

forces  between drops can be ten orders  of magnitude grea te r  than those that 

can be applied art if icially in fog. 

This conclusion should not be interpreted a s  indicating that 

In thunder- 

Such forces  a r e  truly significant. 
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