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Texture Strengthening and Fracture  Toughness of 4Al-0.2 0 and 5Al-2.5Sn ELI 

Titanium Sheet B i a x i a l  S t r e s s  Fields a t  Room and Cryogenic Temperatures 

By Timothy L. Sullivan' 

Abstract 

Burst t e s t s  of six-inch diameter cy l ind r i ca l  pressure vessels  (1 t o  2 

s t r e s s  f i e l d )  fabr ica ted  from nominally 0.020 inch t h i c k  mater ia l  showed 

s i g n i f i c a n t  increases  i n  s t r eng th  over uniaxial values.  B i a x i a l  y i e l d  

s t rengths  as high as  1 .53 times uniax ia l  y i e l d  were obtained. 

Ti-4Al-0.2 0 a l l o y  with a room temperature p l a s t i c  Poisson's r a t i o  of 0.845 

(R = 5.45) general ly  had g rea t e r  b i ax ia l  y ie ld ,  ul t imate ,  and weld s t r eng th  

a t  a given temperature than d id  t h e  Ti-5Al-2.5Sn ELI a l loy  (room tempera- 

t u r e  p l a s t i c  Poisson's r a t i o  equals 0.732; R = 2 . 7 3 ) .  

The 

However, t e s t s  of 

cracked cyl inders  a t  -320 and -423 F showed t h e  Ti-5Al-2.5Sn ELI a l loy  had 

less notch s e n s i t i v i t y  f o r  through-the-thickness cracks 0.1 inch o r  longer.  

P l a s t i c  Poisson 's  r a t i o  obtained from a uniax ia l  tension t e s t  was used t o  

p red ic t  t h e  amount of b i a x i a l  strengthening. 
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Introduction 

Anisotropy i n  ce r t a in  sheet  materials can cause appreciable s t rength-  

ening under conditions of b i a x i a l  s t ress .  Whereas y ie ld ing  i n  a 1 t o  2 

stress f i e l d  i s  predicted t o  occur a t  1.15 times t h e  uniax ia l  y i e l d  s t rength  

f o r  t h e  i so t rop ic  case, it i s  predicted t o  occur at 1.5 times or grea te r  f o r  

ce r t a in  anisotropy (1). 

tu r ing  and is  character ized by isotropy i n  t h e  plane of t h e  sheet  with con- 

s iderable  anisotropy normal t o  t h e  sheet plane. Conventionally, t ex tur ing  

i s  quant i ta t ive ly  character ized by a s t r a i n - r a t i o  parameter, R, which is  

t h e  r a t i o  of width s t r a i n  t o  thickness s t r a i n  measured on a uniax ia l  tension 

specimen. Uniaxial s tud ie s  of textur ing i n  t i tanium a l loys  have been made 

by severa l  inves t iga tors  ( 2  - 5).  

experimentally inves t iga ted  t h e  biaxial strengthening of Ti-5Al-2.5Sn at 

room temperature. 

The form t o  anisotropy re fer red  t o  i s  ca l l ed  tex- 

Sliney e t  a1 ( 6 )  and Babel e t  a1 ( 7 )  have 

In  alpha t i tanium a l loys  m a x i m u m  strengthening occurs when the  basal 

(0001) planes of t h e  hexagonal close-packed c r y s t a l s  a r e  p a r a l l e l  t o  the 

plane of t h e  sheet  (Fig. 1). I n  unalloyed t i tanium sheet  t he  basa l  planes 

are found t o  be inc l ined  approximately 30' toward t h e  t ransverse d i rec t ion .  

However, ce r t a in  a l loying agents < i .e . ,  alpha s t a b i l i z e r s )  i n h i b i t  ro t a t ion  

VI u L I T ; m e  plaL,rlab aiiii tile acirition 01" 3 . 6  percent aiuminum (~i-4~ij i s  re- 

ported t o  g ive  c lose  t o  t h e  i d e a l  texture  a f t e r  r o l l i n g  (4 ) .  Because of t h e  

p o t e n t i a l  usefulness of t h i s  a l loy  as a cryogenic propel lant  tank mater ia l ,  

a program was undertaken a t  t h e  Lewis Research Center t o  determine t h e  

s t r eng th  and f r a c t u r e  toughness of 0.020 inch t h i c k  Ti-4Al-0.2 0 shee t  i n  

both  uniaxial  and 1 t o  2 biaxial s t r e s s  f i e l d s .  

ducted with t h e  ex t r a - low- in t e r s t i t i a l  (ELI) grade of a less textured 

h . F I  CL,,,, - 7  

A p a r a l l e l  study was con- 
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t i tanium al loy,  Ti-5Al-2.5Sn. Results f o r  each a r e  compared. In  addition 

t h e  weld s t rengths  of a l imi ted  number of un iax ia l  and b i a x i a l  tes t  speci-  

mens were determined. 

1 Uniaxial smooth and notch properties f o r  both a l loys  were determined a t  

room temperature, -320 and -423 F. Smooth b i a x i a l  propert ies  were deter-  

mined from burs t  t e s t s  of 6-inch diameter cy l indr ica l  pressure vessels  over 

t h e  same range of tes t  temperatures. 

made a t  -320 and -423 F. 

Notched pressure vessel  t e s t s  were 

An attempt i s  made t o  character ize  by p l a s t i c  

Poisson's r a t i o  t h e  amount of textur ing i n  the  two al loys.  

Analytical  Basis f o r  Texture Strengthening 

By applying H i l l ' s  theory f o r  t h e  yielding of anisotropic  sheet mate- 

rials (a), Backofen e t  a1 (1) indica te  t h a t  f o r  the  case of r o t a t i o n a l  

symmetry about t h e  thickness d i rec t ion  ( isotropy i n  the  plane of the  shee t )  

t h e  y i e l d  c r i t e r i o n  becomes 

-1/2 

(5 
YS 

where a i s  t h e  r a t i o  of t h e  pr incipal  stresses i n  t h e  plane of t h e  sheet  

cry/.,, uys 

i s  t h e  r a t i o  of p l a s t i c  s t r a i n  i n  the width d i rec t ion  of the  sheet  

i s  t h e  uniax ia l  y i e l d  s t rength i n  t h e  plane of t h e  sheet and R 

cW t o  

p l a s t i c  s t r a i n  i n  t h e  thickness d i rec t ion  of t h e  shee t  

being determined from smooth uniax ia l  tension tests. 

et, these s t r a i n s  

It i s  assumed i n  

Eq. (1) t h a t  the  pr inc ipa l  d i rec t ions  of anisotropy correspond with t h e  

p r i n c i p a l  d i rec t ions  of stress. The derivation of t h i s  equation i s  found i n  

appendix A of (6 ) .  

Because of t h e  d i f f i c u l t y  i n  accurately measuring s t r a i n  i n  the  thick- 

ness d i r e c t i o n  of t h i n  gage mater ia ls ,  it i s  des i rab le  t o  base R on a 
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N A l  H 0 

0.014 3.8 0.007- 0.21 
.010 

0.014 5.1 0.006- 0.08 
.009 

more e a s i l y  measured quant i ty ,  i .e . ,  s t r a i n  i n  the  length d i rec t ion  

This can be done i f  constancy of volume i s  assumed. 

e 2  + cW + et = 0 

cZ. 

If y ie ld ing  has occurred, 
~ 

f o r  s m a l l  s t r a ins .  As a r e su l t ,  et can be wr i t ten  i n  

8 terms of more e a s i l y  measured quant i t ies .  Thus, 

Sn Mn 

-- -- 

2.5 G . 0 0 6  

where vp i s  the  p l a s t i c  Poissonfs  ra t io ,  -eW/eZ. 

Experimental Apparatus and Procedure 

T e s t  specimens were fabr ica ted  f rom sheet  nominally 0.020 inch th i ck  

produced from a s ing le  hea t  f o r  each alloy. 

treatment provided by t h e  suppl ie r  are given i n  Table 1. 

The m i l l  ana lys i s  and annealing 

Anneal 

Table 11 -- Annealing Treatment and Composition (Percent 

C Fe 

by Weight) f o r  Alloys Invest igated 

1325 F f o r  
4 h r  fur -  
nace cooled 

1325 F f o r  
4 h r  fu r -  
nace cooled 

t------ 
0.023 0.12 

0.022 0.08 

Ti-4Al-0.2 0 

Ti-5Al-2.5Sn ELI 

I 

Heat 
no. 

V-3002 

D-3272 

Uniaxiai  Tests  

The specimens used t o  determine the uniax ia l  p roper t ies  of t h e  sheet  a r e  

shown i n  Fig. 2. Finished specimens were stress re l ieved  according t o  the  

schedule out l ined i n  t h e  next sec t ion  f o r  b i a x i a l  tes t  specimens. Conven- 

t ion& smooth proper t ies  including 0 . 2  percent o f f s e t  y i e l d  s t rength  and 

p l a s t i c  Poisson's r a t i o  were obtained using t h e  specimen shown i n  Fig. Z(a). 

Weld specimens were of t h i s  type (Fig. 2 ( a ) )  and had t h e i r  weld beads normal 
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t o  the  loading axis. Weld beads were not ground f l u s h  wi th  t h e  parent metal 

s o  t h a t  they would model more closely the fabr ica t ion  of component hardware. 

Notch s t rength  (based upon i n i t i a l  crack length)  and f r a c t u r e  toughness 

(based upon c r i t i c a l  crack length)  were determined using the  specimen shown 

i n  Fig. 2(b). Cryogenic tes t  temperatures were obtained by immersing t h e  

specimens i n  l i q u i d  nitrogen o r  l i q u i d  hydrogen. 

The NASA cont inui ty  gage ( 9 )  was used t o  measure the slow crack growth 

which took place p r i o r  t o  catastrophic  f a i lu re .  

between slow and rap id  crack growth was abrupt and the  c r i t i c a l  crack length 

w a s  r ead i ly  obtainable from the gaQe output d i rec t ly .  A t  -320 F, however, 

t h e  t r a n s i t i o n  was gradual and a crack veloci ty  of 0.1 inch per  second w a s  

a r b i t r a r i l y  se lec ted  t o  def ine the  c r i t i c a l  crack length. 

ve loc i ty  se lec ted  i s  r e l a t i v e l y  slow, the c r i t i c a l  crack lengths  used t o  

ca l cu la t e  f r a c t u r e  toughness were conservative. 

A t  -423 F the t r a n s i t i o n  

Because the crack 

P l a s t i c  Poisson's r a t i o s  were obtained using high-elongation copper- 

n icke l  f o i l  s t r a i n  gages on the  tes t  sect ion of t e n s i l e  specimens. One gage 

was mounted p a r a l l e l  t o  the d i rec t ion  of loading on one s i d e  of t h e  specimen 

while a second gage was mounted t ransverse t o  the  d i r ec t ion  of loading on 

t h e  o the r  s i d e  of the specimen, d i r ec t ly  behind the  first gage. This allowed 

s t r e i l l  EPESC~P.ZP.;~ 5~ k ~ t k :  d l r~~ t l~ r ;~  ~t essentially t'iie sziie i 0 ~ ~ ~ t i 0 1 1 .  

S t r a i n  d i f fe rences  from one surface t o  t h e  o ther  due t o  bending would not be 

expected from t h e  t h i n  sheet  used i n  t h i s  invest igat ion.  

g q e s  was used t o  d r ive  an X-Y recorder. The specimen was loaded i n  tension 

u n t i l  y i e ld ing  had occurred. To r e s t r i c t  t h e  s t r a i n  r a t i o  t o  purely p l a s t i c  

(nonrecoverable) s t r a i n  components i n  accordance wi th  the assumption of vol- 

ume constancy, the load was then held constant as t h e  s t r a i n  continued t o  

The output of t h e  
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increase u n t i l  t he  end of the  recorder char t  t r a v e l  was reached (about 2 per- 

cent s t r a i n ) .  The s lope of t h e  curve of eW versus c z  after y ie ld ing  

occurred was taken as the  p l a s t i c  Poisson’s r a t i o .  

versus i s  shown i n  Fig. 3. 

B i a x i a l  Tests 

A t yp ica l  record of E~ 

Six-inch diameter c y l i n d r i c a l  pressure vessels  18 inches long were 

fabr ica ted  using a s ing le  longi tudinal  b u t t  weld. 

t h a t  t h e  r o l l i n g  d i r ec t ion  of the material was normal t o  the weld. 

was performed i n  an argon-inerted chamber wi th  a tungsten electrode. No 

f i l l e r  material was added. 

l i eved  i n  vacuum and furnace cooled. The stress r e l i e f  schedules were one 

hour at 1000 F f o r  t h e  Ti-4Al-0.2 0 a l loy  and two hours at  1100 F f o r  the 

Ti-SAl-2.5Sn ELI a l loy.  

The sheet  was or iented s o  

Welding 

Following fabr ica t ion  cyl inders  were stress re -  

Cracked cyl inders  were flawed by e l e c t r i c a l  discharge machining longi- 

t ud ina l  s l o t s  through the  cyl inder  w a l l  followed by low s t r e s s  f a t igu ing  t o  

obtain sharp  cracks a t  the  slot ends. 

t h e  crack f o r  pressurizing t o  f a i lu re .  

An i n t e r n a l  patch (10) w a s  taped over 

To preclude weld f a i l u r e s  i n  cylinders used t o  determine parent material 

b i a x i a l  y i e l d  and u l t imate  s t rengths ,  it w a s  necessary t o  re inforce  these  

welc?e. 

c i a l l y  pure t i tanium s t r i p  t o  the  weld. The s t r i p s  were 0.004 inch th i ck  

and approximately two inches wide. For room temperature t e s t s ,  an epoxy- 

nylon adhesive was used t o  bond the  s t r i p s  t o  t h e  cylinders.  For t e s t s  and 

D.is I.!PC dc2e by q p l y i n g  i n t e 2 . d  En2 exterEP1 G.,rerlPys nf CGmmer- 

-320 and -423 F, a polyes te r  adhesive was used. 

hesive had shown good s t r eng th  at cryogenic temperatures. 

obtained by embedding t h e  cyl inder  ends i n  heads f i l l e d  w i t h  a low-melting- 

I n  l a p  shear tests t h i s  ad- 

End closure was 
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poin t  a ~ o y  (10). 

Strippable-backed nickel-chrome f o i l  s t r a i n  gages were applied t o  a l l  

uncracked cyl inders  using an epoxy adhesive f o r  room temperature tests and 

t h e  polyester  adhesive re fer red  t o  above for cryogenic t e s t s .  One longi-  

t ud ina l  gage and one hoop gage were applied 180' from t h e  weld and midway 

from t h e  ends on t h e  cyl inders  t e s t e d  t o  determine weld strength.  

t o  determine t h e  y i e l d  and ul t imate  s t rengths  of t h e  parent tank material, 

p a i r s  of hoop and longi tudina l  gages were applied +.goo and 180' from t h e  

weld. 

s igna l  from t h i s  gage was applied t o  one axis of an X-Y recorder i n  order t o  

obtain a continuous pressure-versus-strain record. Pressure and the remain- 

ing  s t r a i n  gage s igna ls  were read out incrementally on a multichannel d i g i t a l  

s t r a i n  recorder. 

For tests 

An addi t iona l  hoop gage w a s  applied at one of t h e  90' s t a t ions ;  the 

The cyl inders  were pressurized t o  f a i lu re  by applying helium pressure 

t o  water, l i q u i d  nitrogen o r  l i q u i d  hydrogen f o r  tests at 70, -320, and 

-423 F, respect ively.  For t h e  cryogenic tests, the cyl inders  were placed i n  

a c ryos t a t  and both f i l l e d  and surrounded with the  appropriate cryogen. 

I n  t h e  l i n e a r  s t r e s s - s t r a i n  range pressur iza t ion  of t h e  unflawed cyl in-  

ders  was in te r rupted  a t  each 100 p s i  pressure increment t o  allow recording of 

S t r a i n  gage data. 

t ransducers  were pr in ted  out before and after each p a i r  of hoop and longi- 

t u d i n a l  s t r a i n  gage readings. When a pressure of approximately 80 percent 

of t h e  an t i c ipa t ed  bu r s t  pressure was achieved, t h e  s t r a i n  recorder w a s  made 

t o  p r i n t  da t a  at a rate of 4 channels per second and t h e  cyl inder  was pres- 

su r i zed  continuously t o  f a i lu re .  

s t r e s s - s t r a i n  range at each s t a t i o n  at 5 t o  10 ps i  increments i n  pressure.  

Pressure readings obtained from strain-gage-type pressure 

This provided s t r a i n  data i n  the  nonlinear 
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Cracked cyl inders  were pressurized continuously t o  f a i l u r e  at  a rate which 

ranged from 100 t o  200 p s i  per  minute. 

was recorded. 

The pressure a t  which bu r s t  occurred 

Accurate pressure readings were assured by ca l ib ra t ing  t h e  

transducers with a high accuracy (within 3 p s i )  pressure gage before  each 

test. Burst pressures ranged from 120 t o  1850 psi .  

Hoop stress cr was calculated f r o m  t h e  pressure p using the  r e l a t i o n  

u = p r / t  where r is  the  cyl inder  radius and t t h e  w a l l  thickness. Fa i l -  

ure  s t rengths  were computed using t h e  burs t  pressure.  

obtained using t h e  0.2 percent o f f s e t  method. 

Yield s t rengths  were 

Results and Discussion 

Uniaxial Propert ies  

Smooth and notch propert ies  f o r  both a l loys  are p lo t t ed  as a funct ion 

of test temperature i n  Fig. 4. 

t i o n  both p a r a l l e l  ( longi tudina l  specimen) and normal ( t ransverse  specimen) 

t o  t h e  r o l l i n g  direct ion.  

d i t i on .  

longi tudina l  and t ransverse y i e l d  and ul t imate  s t rengths  ind ica t ing  t h a t ,  a t  

least f o r  these  propert ies ,  t h e  mater ia ls  were e s s e n t i a l l y  i so t rop ic  i n  t h e  

plane of t h e  sheet. The Ti-5Al-2.5Sn ELI exhibi ted g rea t e r  smooth uniax ia l  

s t r eng th  at all three test temperatures. 

10 percent  a t  room temperature t o  about 3 percent at  -423 F. 

Specimens were t e s t e d  with the  loading d i rec-  

A t  least three  specimens were t e s t e d  f o r  each con- 

For both a l loys  only s l i g h t  differences were found between t h e  

The d i f fe rence  ranged from about 

Through-the-thickness, cen t r a l ly  cracked specimens were t e s t e d  t o  de- 

termine t h e  behavior of t h e  two materials i n  the  presence of a flaw. The 

Irwin method (11) w a s  used t o  ca lcu la te  f r a c t u r e  toughness. 

made t o  prevent buckling of t he  crack l i p s  out of t h e  plane of the  sheet  

during t e s t i n g .  

No e f f o r t  w a s  

A l imi ted  number of t e s t s  using antibuckling face  p l a t e s  
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indicated that buckling can reduce the calculated value of toughness by about 

8 percent for the Ti-5Al-2.5Sn ELI  alloy at -423 F. The error produced by 

the omission of antibuckling face plates at other temperatures for the 

Ti-5Al-2.5Sn ELI alloy was not determined, nor was the influence of buckling 

investigated for the Ti-4Al-0.2 0 alloy at any temperature. 

a l l  notched uniaxial specimens reported here were tested without antibuckling 

However, since 

face plates, the notch strength and fracture toughness values are considered 

comparable, though conservative. 

A special point should be made regarding the thickness of the materials 

tested. As would be expected for sheet 0.020-inch thick, all specimen frac- 

tures were characterized by full shear fracture surfaces and accompanied by 

considerable plasticity. A rather complete statement of the effects of 

sheet thickness on the fracture toughness of Ti-5Al-2.5Sn alloy is reported 

in Ref. 12. It is important to recognize that the present results relate 

only to 0.020-inch thick material. While comparison of the two alloys in- 

vestigated is justified on the basis of identical thicknesses, a comparison 

with the same or other alloys at thicknesses other than 0.020-inch is to be 

avoided. 

As Fig. 4 shows, the Ti-4Al-0.2 0 generally had a slightly higher notch- 

to-jriplc? st.r~ngt.h rat.i_n ("is. 4 ( b ) )  but a lower fracture toughness (Fig. 4(a)). 

"he difference between test results using longitudinal and transverse speci- 

mens is again small except for Ti-5Al-2.5Sn ELI at -423 F where the trans- 

verse exceeded the longitudinal fracture toughness by about 10 percent. The 

cracked specimen was not sufficiently wide for obtaining valid toughness 

values at room temperature. 



10 

B i a x i a l  Propert ies  

A t  -320 and -423 F t h e  Ti-4Al-0.2 0 cyl inders  general ly  f a i l e d  imme- 

d i a t e l y  adjacent t o  the  weld reinforcement. 

fo re  t h e  0.2 percent o f f s e t  s t r a i n  was reached. 

i s  used as t h e  y i e l d  strength.  I n  Fig. 5 t h e  b i a x i a l  y i e ld  and ul t imate  

s t rengths  are p lo t t ed  as a function of tes t  temperature f o r  both al loys.  To 

ind ica t e  t h e  increase i n  y i e l d  s t rength  predicted f o r  an i so t rop ic  material, 

1.15 times t h e  average uniax ia l  y i e l d  s t rength i s  a l s o  included i n  t h i s  

f igure.  

A t  -423 F failure occurred be- 

Here t h e  s t r e s s  at bu r s t  

Both a l loys  developed b i a x i a l  y ie ld  s t rengths  subs t an t i a l ly  g rea t e r  than 

those predicted f o r  i so t rop ic  materials. Strengthening ranged from 1.25 t o  

1.50 times t h e  uniax ia l  y i e ld  s t rength.  As would be expected, strengthening 

was g r e a t e r  f o r  t h e  more heavily textured Ti-4Al-0.2 0 a l loy  a t  a l l  tempera- 

t u r e s  invest igated.  Consequently, although Ti-4A.l-0.2 0 had lower uniax ia l  

y i e l d  s t rengths  than Ti-5Al-2.5Sn ELI a t  t h e  th ree  tes t  temperatures, t he  b i -  

axial y i e l d  s t rengths  f o r  both a l loys  a t  70 and -320 F were nearly iden t i ca l .  

A t  -423 F t h e  Ti-4Al-0.2 0 b i a x i a l  y i e ld  s t rength  w a s  about 9 percent g rea t e r  

than t h a t  of Ti-5Al-2.5Sn ELI. 

Subs tan t ia l  increases  i n  b i a x i a l  ul t imate  s t rength  were a l s o  demonstrated 

by both a l loys ,  

forcement, it i s  l i k e l y  t h a t  t he  s t r e s s  r a t i o  at  t h e  f a i l u r e  locat ion was 

less than 1/2,  and t h e  values shown i n  Fig. 5 are probably lower than those 

which would be obtained i n  a t r u e  1 t o  2 stress f i e l d .  A t  70 and -320 F t h e  

percentage increase i n  f a i l u r e  s t rengtn,  comparing b i a x i a l  t o  uniax ia l  re- 

s u l t s ,  i s  about t h e  same as the  percentage increase i n  y i e l d  s t rength  f o r  

t hese  two stress f i e l d s .  A t  -423 F the u l t imate  s t rengths  were only s l i g h t l y  

I n  cases where f a i i u r e  occurreti edJaceiit to the vel2 rein-  
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g r e a t e r  than t h e  y i e ld  s t rengths .  

I n  order t o  estimate t h e  y i e ld  s t rengths  of t h e  two a l loys  i n  o ther  

stress f i e l d s ,  t he  experimental r e s u l t s  were used t o  compute values of t he  

s t r a i n  r a t i o  R i n  Eq. (1). These values are tabulated i n  Table 2.  Then 

t h e  computed values of R were used i n  Eq. (1) t o  ca l cu la t e  y i e l d  s t rengths  

i n  o ther  b i a x i a l  s t r e s s  f i e l d s .  These projected y i e ld  s t rengths  are shown 

i n  Fig. 6. A t  a l l  th ree  tes t  temperatures the  Ti-4Al-0.2 0 y i e l d  s t rength  

i s  g r e a t e r  f o r  stress r a t i o s  g rea t e r  than 1/2. 

terest  is  the  1 t o  1 (a =1) which occurs i n  a pressurized spher ica l  s h e l l .  

Another stress f i e l d  of in -  

For t h i s  case the  projected Ti-4Al-0.2 0 y i e l d  s t rengths  exceed those pro- 

jec ted  f o r  Ti-5Al-2.5Sn ELI by 13, 9, and 16 percent a t  70, -320, and -423 F, 

respect ively.  It i s  emphasized t h a t  these are projected s t rengths  which have 

not been experimentally ver i f ied .  

The r e s u l t s  of t h e  through-cracked cyl inder  tests are shown i n  Fig. 7. 

It has been demonstrated i n  Ref. (l3)that t h e  b i a x i a l  behavior of a material  

i n  t h e  presence of a through-crack can be cor re la ted  with t h e  uniax ia l  be- 

havior  by 

where uhc is t h e  c r i t i c a l  hoop f rac ture  stress i n  the  cyl inder ,  Kcn is 

t h e  nominal f r a c t u r e  toughness (based on i n i t i a l  crack length) ,  a. 

i n i t i a l  half crack length,  u is  the 1 t o  2 b i a x i a l  y i e l d  s t rength ,  r i s  

t h e  rad ius  of t h e  cylinder,  and C i s  a dimensionless bulge coef f ic ien t .  

The term takes  i n t o  account t h e  increase i n  stress i n t e n s i t y  a t  

t h e  crack t i p s  i n  a pressurized cylinder due t o  bulging. 

is  t h e  

Yb 

1 + & r 
The values of C 
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used t o  draw t h e  curves i n  Fig. 7 were obtained f o r  each material and temper- 

a t u r e  by averaging t h e  values of C computed using Eq. (3) f o r  t h e  ind i -  

vidual  da ta  points.  

both al loys.  

cyl inders  with sho r t e r  crack lengths t o  an e r r o r  i n  f r a c t u r e  toughness; con- 

sequently,  it weighs t h e  longer crack lengths more heavily. As a. ap- 

proaches zero, t he  c r i t i c a l  hoop s t r e s s  predicted by Eq. (3) exceeds t h e  

actual- b i a x i a l  burs t  s t rength  (i. e., at Therefore 

al l  curves i n  Fig. 7 are terminated at  t h e  biaxial  u l t imate  s t rength  i n  t h e  

region of s m a l l  crack lengths.  

A weighted average described i n  Ref. (13) w a s  used f o r  

This average takes  i n t o  account t h e  g rea t e r  s e n s i t i v i t y  of 

a. = 0,  ohc = ,/Z oyb). 

For all t h e  crack lengths t e s t e d ,  t h e  Ti-4Al-0.2 0 exhibi ted g rea t e r  

notch s e n s i t i v i t y  than t h e  Ti-5Al-2.5Sn ELI. 

toughness proper t ies  of t h e  two a l loys  were about t he  same, the  r e l a t i v e l y  

l a r g e  difference i n  the  b i a x i a l  r e s u l t s  f o r  longer cracks w a s  not expected. 

A por t ion  of t h e  d i f fe rence  can be a t t r i b u t e d  t o  a higher res idua l  stress 

condi t ion i n  the Ti-4Al-0.2 0 due t o  using a lower temperature and shor t e r  

time i n  t h e  stress relief of these cylinders.  

which t h e  cyl inders  opened when s l i t  longi tudinal ly ,  it was calculated t h a t  

approximately 25 percent of t h e  res idua l  stress due t o  forming w a s  s t i l l  

present  i n  t h e  Ti-4Al-0.2 0 cyl inders;  t h i s  compares t o  l e s s  than 10 percent 

i n  t h e  Ti-5Al-2.5Sn ELI cylinders.  

r e s idua l  stress remaining i n  t h e  Ti-4Al-0.2 0 cyl inders  cannot account com- 

p l e t e l y  f o r  t h e  difference i n  t h e  b i a x i a l  notch s t rengths .  

(0.1 in.  o r  less) it i s  l i k e l y  t h a t  the d i f fe rence  between the  notch 

s t r eng ths  of t h e  two a l loys  w i l l  be small. 

Because the  uniax ia l  f r ac tu re  

By measuring t h e  radius  t o  

However, it is bel ieved the  amount of 

For s m a l l  cracks 

Some of t he  ramif icat ions of using b i a x i a l  y i e ld  s t rength  i n  design 
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were brought t o  l i g h t  during the  b i ax ia l  t es t  phase of t h i s  t es t  program. 

It was s t a t e d  i n  a preceding sec t ion  tha t  t h e  Ti-4Al-0.2 0 cyl inders  at -320 

and -423 F frequent ly  f a i l e d  immediately adjacent t o  the  weld reinforcement. 

The appl ica t ion  of t h e  reinforcement res t ra ined  t h e  cyl inders  longi tudina l ly  

i n  the  v i c i n i t y  of t h e  weld. 

adjacent t o  the  reinforcement was not 1/2 but  something less than t h a t ,  de- 

penaing on the  thickness of t h e  reinforcement. As Fig. 6 shows, t h e  

Ti-4Al-0.2 0 s t rength  is  qu i t e  s ens i t i ve  t o  stress r a t i o  and it i s  probable 

t h a t  i t s  s t rength  adjacent t o  the  reinforcement was reduced s u f f i c i e n t l y  t o  

cause f a i l u r e  the re  a t  cryogenic temperatures. The s ing le  cryogenically- 

t e s t e d  Ti-4Al-0.2 0 cyl inder  t h a t  f a i l e d  away from t h e  weld reinforcement 

had t h e  reinforcement b u i l t  up gradually i n  t h ree  increments. 

mental l aye r  was 0.004 inch t h i c k  and was l/2-inch narrower than t h e  preced- 

ing layer .  

should be made gradually and not abruptly. 

Weld Strength 

The s t r e s s  r a t i o  i n  the  material immediately 

Each incre-  

This behavior ind ica tes  t h a t  thickness  changes i n  textured metals 

The un iax ia l  and 1 t o  2 b i a x i a l  weld s t rengths  of t h e  Ti-4Al-0.2 0 

a l l o y  are p lo t ted  i n  Fig. 8 as a function of tes t  temperature. 

weld s t r eng th  of Ti-5Al-2.5Sn ELI at -320 F i s  included i n  t h i s  f igure .  

aii cases the s t rength  of t h e  uniaxiai  Ti-4Ai-6.2 0 weid specimens was 

g r e a t e r  than t h a t  of t he  parent metal. 

s t r eng th  of Ti-SAl-2.5Sn ELI at  70 and -423 F has shown it t o  be very dlose 

t o  t h a t  of t h e  parent  metal (12). 

The biaxial  

I n  

Invest igat ion of t he  uniax ia l  weld 

Contrary t o  t h e  uniaxial behavior, t h e  biaxial weld s t rength  w a s  i n  all 

cases  less than t h e  biaxial ul t imate  strength.  However, t he  Ti-4A1-0.2 0 

weld Strengths  at  70 and -320 F exceeded t h e  biaxial y i e ld  s t rength.  I n  all 
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cases t h e  f r a c t u r e  occurred immediately adjacent t o  t h e  weld bead. 

weld d a t a  f o r  Ti-5Al-2.5Sn ELI  were obtained only a t  -320 F. 

en t  b i a x i a l  y i e l d  s t rengths  of t h e  two a l loys  at t h i s  temperature were nearly 

B i a x i a l  

While t h e  par- 

b ident ica l ,  the  biaxial weld s t rength of t h e  Ti-4Al-0.2 0 was about 1 7  percent 

g r e a t e r  than t h e  Ti-5Al-2.5Sn ELI weld strength.  The b i a x i a l  weld d a t a  ob- 

ta ined i n  t h i s  program are very limited. 

r e s u l t s ,  Ti-4Al-0.2 0 may have a considerable advantage over Ti-5Al-2.5Sn ELI 

i n  flaw-free, weld-cr i t ical ,  b iaxial ly-s t ressed s t ruc tures .  

Correlat ion of B i a x i a l  Strengthening and P l a s t i c  Poisson‘s Ratio 

If subsequent t e s t s  produce t h e  same 

By combining Eqs. (1) and (2 )  and l e t t i n g  ax = uyb ( b i a x i a l  y i e l d  

s t r e n g t h ) ,  t h e  r a t i o  of 1 t o  2 b i a x i a l  t o  uniax ia l  y i e l d  s t rengths  can be 

wri t ten i n  terms of p l a s t i c  Poisson’s r a t i o  as follows 

This r e l a t i o n  ind ica tes  t h a t  it should be possible t o  character ize  tex ture  

strengthening i n  a sheet  mater ia l  by i t s  p l a s t i c  Poisson’s r a t i o .  

t o  v e r i f y  Eq. ( 4 ) ,  values of v were obtained experimentally. These values 

are p l o t t e d  i n  Fig. 9 versus average 

tests. In Table 2 values are tabulated of average uyb/ays, and v ob- 

I n  order 

P 
“yb/“ys obtained from pressure vessel  

P 
C 0 , ’ n r r A  uaII-IL.u b ~ , + A - c I I I u I I v - I J ,  m v n e . m i  man+a117, mc? E ntt.air?ed- from o -./a_-- using ~ q .  (1). MSO 

YU‘ Y b  

included i n  t h i s  t a b l e  are R and ayb/ays predicted by average v using 

Eqs. ( 2 )  and (4), respectively.  

P 

I n  general  using v t o  predict  strengthening resu l ted  i n  v d u e s  close P 
t o  those  obtained experimentally. A t  70 F, use of vp resu l ted  i n  predic- 

t i o n s  of strengthening g r e a t e r  than actual ly  occurred while at -320 and -423 F 

t h e  pred ic t ions  were low. The grea tes t  difference occurred with t h e  
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Ti-4Al-0.2 0 a l loy  at  -320 F where use of  

cent l e s s  than was obtained from pressure vesse l  tests. 

v and biaxial  strengthening provides a r e l a t i v e l y  simple and inexpensive 

vp r e su l t ed  i n  a predict ion 7 per- 

The r e l a t ion  between 

P 

means of inves t iga t ing  the  p o s s i b i l i t y  of va r i a t ion  i n  t ex tu re  strengthening 

within a sheet,  from sheet  t o  sheet  of t he  same hea t ,  and from heat  t o  heat  

of t h e  same alloy. 

Conclusions 

Tests of Ti-4Al-0.2 0 and Ti-5A1-2.5Sn ELI  pressure vessels  fabr ica ted  

from 0.020 inch th i ck  sheet  showed s ign i f i can t  increases i n  y i e ld  and u l t i -  

mate s t rength  i n  a 1 t o  2 b i a x i a l  stress f i e l d  over t h a t  obtained uniaxial ly .  

On t h e  basis of b i a x i a l  y i e l d  and u l t i m a t e  s t rength,  Ti-4Al-0.2 0 with a room 

temperature p l a s t i c  Poisson's r a t i o  of 0.845 ( R  = 5.45) w a s  general ly  super ior  

t o  Ti-SAl-2.5Sn ELI (room temperature p l a s t i c  Poisson's r a t i o  of 0.732; 

R = 2.73) at  70, -320, and -423 F especial ly  when t h e  experimental y i e ld  

s t rength  da t a  was projected f o r  stress r a t i o s  g rea t e r  than one-half. 

l imi t ed  da ta  available, t h e  Ti-4Al-0.2 0 a l s o  exhibi ted superior weld strength.  

Ti-5Al-2.5Sn 

longer  than about 0.10 inch. 

t h e  Ti-4Al-0.2 0 a l loy  w i l l  probably be dependent upon the  use of design and 

f ab r i ca t ion  techniques which a r e  ab le  t o  take advautsge of I t s  superLcr y ie ld  

and weld propert ies .  

For t h e  

ELI developed g rea t e r  biaxial notch s t rength  f o r  through cracks 

Consequently, t h e  fu tu re  improvement and use  of 

I n  designs based on the  b i a x i a l  y ie ld  s t rength,  care  must be taken t o  

in su re  t h a t  t h e  stress f i e l d  i s  as an t ic ipa ted  and not changed t o  a l e s s -  

advantageous one i n  t h e  presence o f  doublers, reinforcements, e tc .  

U s e  of t h e  p l a s t i c  Poisson's r a t i o  obtained from a tension tes t  t o  pre- 

d i c t  t h e  amount of b i a x i a l  strengthening gave reasonably good r e su l t s .  
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Figure 1. - Ideal orientation of hexagonal close-packed crystal for maximum strengthening in a 
biaxial stress field, 

I I 1 3  
. .  

I 

‘Electrical discharge machined slot 
(0.80) plus fatigue extension 

Ibl Center cracked specimen. 

Figure 2. - Sheet tensile specimens (all dimensions in inches). 



Figure 3. -Typical width strain against length strain record for Ti-4AI-0.2 0 sheet at 
r w m  temperature. 
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(b) Notch to  yield strength ratio. 

Figure 4. - Uniaxial properties of Ti-4AI-O. 2 0 and 
Ti-5AI-2.5 SnELI sheet as a funct ion of test temperature. 
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Figure 5. - h 2  Biaxial yield and ultimate strength of Ti-4AIi). 2 0 
and Ti-5AI-2.5 SnELI sheet as a function of test temperature. 2or -Ti-4A-O.20 
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Figure 6. - Projected yield strengths for Ti-4AI3.2 0 
and Ti-5AI-2.5 SnELI in a tension-tension biaxial 
stress field. 
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Figure 8. - Uniaxial and h2  biaxial weld strength of Ti-4AI-O.2 0 
and Ti-MI-2.5 SnELI sheet as a function of test temperature. 
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