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Kirchhoff's theorem is finding diverse applications in acoustics
and optics. Its generalization for the case of a mox'/ing medium has
been given by D. I. Blokhintsev! who limited himself to an examination
of a uniform flow. This paper gives a further generalization of this
theorem for the case of a potential movement of a medium. The
application of the theorem is illustrated with the solution of a problem
on the point source of sound, which is in the flow.

1.  Derivation of the Auxiliary Lemma
The wave equation of acoustics for the quasisteady potential

flow was for the first time given by N. N. Andreyev? and somewhat
refined by D. I. Blokhintsev3. In the refined form, it is as follows:
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where 6, = single matrix
u, = speed component along the Xy, axis
= density of the medium
¢ = potential of the acoustic speed

potential of the body force

Here and always henceforth, it is understood that we deal with the
summation with respect to two Greek subscripts from 1 to 3.

Equation (1) is approximately valid also for a weakly eddied flow
when the dimensionless eddy is small in comparison with the dimension-
less speed, i.e.,

lrotu' <<E’
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where w is the frequency of the sound.



Let us assume that a certain auxiliary function, X, also satisfies
the equation (1), but without the right-hand part:
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Let us prove the lemma; if s is a random closed surface which
limits a certain volume, v, while t; and t, are two random moments of
time, then the following relationship takes place:
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We wish to note, first of all, that equation (1) can be written in
a more abbreviated four-dimensional form:
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where the twice repeating Latin subscripts indicate summation from
0 to 3, x, indicates the time, t, while the '"time component of the
speed, ' ugy, is equal to unity. 8;; differs from the single matrix:
5;x = 0 not only when i # k, but also when i =k = 0 and 8; = | when
i =k #0. F is the abbreviated designation of the right-hand part of
Equation (1).

The proof of the lemma is based on the well-known properties? of
self-conjugate operators. The operator in the left-hand part of
Equation (4) will not be self-conjugate, but it can be made such if the
equation is multiplied by p (density of the medium). In multiplying
Equation (4) by p, we introduce the designations:
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Then it will assume the forms:
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Ajxk = pF. (7)

If we designate by L the operator in the left-hand part of the last
equation, then it is written as follows:

L(p) = pF. (8)
Accordingly, X will satisfy the equation:

L(x) = 0. (9)




The condition of self-conjugation of the operator,l,is written as
follows:

8Aik

an - Bi.

It is easy to see that this condition is satisfied in our case.
Actually, by differentiating (5) with respect to x), we get:
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The last member in this equality is converted into zero as a result of
the continuity equation which, for the quasisteady flow, has the form of:

® (P

= 0.
OX)

The first member can be rewritten in the form of p g;np and the

Uil 2
third in the form of p — %ﬁ_c_ , after which the right-hand part of
X
k

the last equality, as can be seen from a comparison with (6), coincides
with Bj.

The self-conjugate operator has the characteristic in that the
expression XL(9p) - oL(X), where @ and X are random functions,
represents the divergence of a certain vector Cj, i.e.,

dcj

XL(9) - OL(X) = =—, (10)
1

besides, the vector, C;, in our designations has the following form:
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Let us now assume that the functions ¢ and X satisfy, respectively,

Equations (8) and (9). Then, we get from (10):
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or, in the three-dimensional form,
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0xy ot P (11)
By integrating the last equation with respect to time within the limits
of t; to t, and then with respect to volume, v, and by using the Gauss
theorem, we get:
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2.  Selection of the Auxiliary Function

Lorenz®, in deriving the Kirchhoff theorem from the ordinary
wave equation, selects the auxiliary function, X, in the form of a brief
pulse which converges to the observation point, P.

It is easy to show that in our case the auxiliary function, X, which
satisfies Equation (2), can also be selected in the form of a converging
pulse.

The usual wave equation is symmetric with respect to time. For
this reason, by replacing in the solution the time, t, by -t, we also get
the solution.

The wave Equation (2) of the acoustics of a moving medium does
not possess this symmetry with respect to time. It is disturbed by the
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the replacement of t by -t. If, for this reason, X(x, y, z, t) is the
solution of Equation (2), then X(x, y, z, -t) will not be its solution. It
is easy, however, to see that the function X(x, y, z, -t) will satisfy
Equation (2), if the direction of the speed of motion of the medium in
all the points of the space is changed to the opposite, i.e., if we
replace u, by -uy, in Equation (2). Actually, the members which are
nonsymmetric with respect to time will be proportional to the compo-
nents,up,, of the speed of the medium, whereas, the remaining members
will either not depend at all on the speeds, u,, or will be their quad-
ratic functions. For this reason, the replacement of uy, by -uy in
Equation (2) will lead to a change in the signs only in the members
which are nonsymmetric with respect to time. If we now introduce a
new variable, t; = -t, then the nonsymmetric members will once more
change their sign and the wave equation will again assume its initial
form. Its solution will be the function:

X{x, Yy, 2, tl) = X(x, Y, Z, -t).

And so, if the function X{(x, vy, z, t) is the solution of the wave
Equation (2) in the field of speeds, U, then the function X(x, y, z, -t)
will be the solution of the same equation in the field of the reverse
speeds, “uy,.

Let us assume now that the function X(x, y, z, -t) describes the
brief acoustic pulse in the field of reverse speeds, which emanates
from the point, P, at the moment of t = 0. Then the function X{(x, y, z, t)
will describe the acoustic pulse in the field of speeds, . which con-
verges into the point, P, at the moment t = 0.

Thus, the auxiliary function X(x, y, z, t) will always be selected
in the form of a pulse which converges to the point P and disappears
in it (and consequently also in the entire space) at a definite moment
(inasmuch as the start of time counting can be selected at random).

Let us assume that the converging pulse disappears at the moment
t = 0. If in the relationship (3) the upper limit t, > 0, then the value
of the expression within the rectangular brackets for the upper limit
under the sign of the second integral will be equal to zero.

In order to convert to zero the value of this expression for the
lower limit, it is sufficient to assume that the acoustic field did not
exist forever. If it originated at the moment t, < 0, then the lower




limit should be so selected as to fulfill the inequality t; < t,. Then the

relationship (3) assumes the form:
t;
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By introducing the normal component of the speed,

un = uy cos(n, Xu)»

we rewrite the relationship (12) in the following form:
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3. Uniform Flow

Let us apply the relationship (12), first of all, to a uniform

flow. If the axis, x, is directed along the speed of flow and it is
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considered that in this case p = const and = 0, then it will

assume the form:
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The second integral of the left-hand part can be rearranged as
follows:

Xa—(p - dtds =2 X— dtds
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s 't
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because the values of the expression in the rectangular brackets under

the sign of the integral for the upper and lower limits are equal to zero.

By introducing the new variables,

! = 1t = —
X = ,Y YZ'_‘Z,




and accordingly, the projections of the elementary area in the coordi-
nate planes in new variables,

ds', = ds

and also the element of the volume

dv':—dv—,

2
u
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we rewrite (14) as follows:
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or by designating the normal to the surface s' by n' in a more abbre-
viated form:
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In the case of uniform flow, the converging pulse is described by
the 6 -function,

X = — (17)

where r' = ‘/ x'2+y'2+2'2, and

1
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besides, the integration should be applied also to the surface of an
infinitely small sphere r' = const with the center in the observation
point, P.

By repeating the calculations which the reader can find in the
book of Lorenz®, we convert the left-hand part of (16) to the form of
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By utilizing the well-known characteristic of the §-function in the
right-hand part of the relationship (16) and by transferring the start
of the time counting to the point,T, we get the Kirchhoff theorem:

o s E G [l )
@ [E]le 2 [ ]d'
Vs [l folE]e

(19)

In Formula (19) the rectangular brackets indicate that the magnitude
within them are taken for the momentt = 7 - R/c. This formula coin-
cides with the formula obtained by D. I. Blokhintsev.

Assuming that there are no body forces (® = 0) and that the boundary
values depend harmonically on time:

iwt w
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we get
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4. Nonuniform Flow

The sources of acoustic waves can be either variable body
forces or vibrating solid bodies. Solid bodies which are in the flow
disturb its uniformity in opposition to body forces. For this reason,
the problem of the emission of vibrating solid bodies, which is of
greatest interest, cannot be solved with the help of the Kirchhoff
theorem for uniform flow, even in the case when the only reason for
the disturbance of the flow uniformity is the vibrating solid bodies
themselves. For this reason, we should return to an examination of
the nonuniform flow. We will assume that the body forces (which are
of lesser interest) are lacking. This will make it possible to simplify
somewhat the formulas.

Integration in the relationship (13) should be applied to the surface
of the solid bodies and the distant surface. If all the vibrating bodies
are concentrated in the end region of the space, then the surface can
be selected so far that the acoustic waves which originate at the moment
to < 0 will not succeed in getting to it at the moment,t,. For this reason,
the integral with respect to the distant surface will change to zero.

The integral with respect to the surface of the solid bodies is also
strongly simplified because the normal component, u,, of the speed of
flow at the surface of the solid body is equal to zero (u, = 0). The
relationship (13) assumes the form:

o0 X 3
f f p<X _an -0 _8n>dtds =0, (21)
S t

where the integration should be applied along the surface of all the
solid bodies.

In order to determine the acoustic potential in a certain observation
point, P, it is necessary to select the auxiliary function in the form of
a converging pulse which satisfies Equation (2). Within an infinitely
small volume, which encompasses the point, P, the flow can be con-
sidered uniform, and having directed the axis, x, along the speed of
flow in the point, P, make use of the prior expression (17) for a con-
verging pulse. The integral with respect to an infinitely small surface,
which encompasses the point, P, is calculated just as in the case of
uniform flow and within the limit is equal to:

12




uZ
-4mpoq/ 1 - = @p(0),

where p, and u, are, respectively, the density and speed of the medium
in the observation point, P. The Kirchhoff theorem assumes the
following simple form:

(22)

The right-hand part of this relationship has the same form as in
the case of an immobile medium. However, the form of the auxiliary
function, X, which is selected in the form of a pulse that converges to
the observation point, P, will be entirely different. The problem of
finding this function, which reduces itself to finding a solution of
Equation (2) in the form of a converging point, apparently represents
considerable mathematical difficulties in the case of nonuniform flow.

By moving the start of time counting to the point, T, we get:

u? t2 0
4 - — (1) = x 2% X ) dtas (23)
Po CZ CPP P an = CP an ’

where t, > 71, t; <ty+T, if t; + T is the moment of the origin of acoustic
vibrations. These conditions are, in particular, satisfied by the
infinite limits t; = -0 and t, = +. The function,X,represents a solution
of Equation (2) in the form of a pulse that converges to the point of
observation, P, at the moment, T.

5. Point Source

A point source of sound can be realized in the form of a
pulsating small sphere of very small dimensions or a body force with a
spherical symmetry, concentrated in a small volume. In a quiescent
medium, such sources,for the same power, create entirely the same
sound fields. The question naturally arises: will the fields of the
sources also be alike in a moving medium? Moreover, even with
respect to the pulsating small sphere, two assumptions can be advanced:
1) the small sphere is covered by the flow; 2) the small sphere is

13




permeable to the flow, which apparently is fundamentally also impos -

sible. In the first case, the uniformity of the flow will be disturbed by

the small sphere and in the second case, the uniformity of the flow

will not be disturbed by the small sphere. We can justly pose the

question: will the fields created by the permeable and impermeable

small sphere be the same or different? Or, in other words: will the

nature of the flow in the immediate vicinity of the small sphere affect ¢
the sound field far from the small sphere?

Thus, we should solve the problem of three different point sources:
that of a small sphere washed by the flow, permeable small sphere,

and body force.

a. Small Sphere Washed by the Flow

I.et us assume that the pulsating small sphere of radius
a is washed by a uniform flow with a speed u;. The uniformity of the
flow will be disturbed in a certain region which encompasses the small
sphere, the dimensions of which are of the same order as the dimen-
sions of the small sphere. The pulse which converges to the observa-
tion point, P, will no longer be given in this region by the expression
(17) which is valid for uniform flow. If, however, the dimensions of
the small sphere are small in comparison with the distance to the
observation point, P, as well as in comparison with the wavelength,
then the change in the form of the pulse can be disregarded in this
region. Therefore, by substituting in Equation (23) the expression for
the function, X, as given by Equation (17), then we get

~-ikR
€
!

where integration is carried out with respect to the surface of the
pulsating small sphere. Since on the surface of the pulsating small
sphere, the amplitude of the potential of the acoustic speed,,and the
amplitude of the acoustic speed V = 9y/dn are constant, then the pre-
ceding relationship can be written as follows:

u? -ikR -ikR
4 ] o= 4 =V e a K d
po CZ LJJP p r, s - Ll'l p an rl S.

ds,
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In view of the smallness of the dimensions of the small sphere,
the subintegral function e-ikR/r' can be considered constant. Carrying
it out for the sign of the first integral in (24), we get?

@ pds, (25)

relative to u/c from the Bernoulli equation:

1 ug u?
P:Po“'ipo E?-'C'z— s

where c is the speed of the sound. By substituting here the well-known
expression for speed, u = 3/2(u, sin ¥), of an incompressible liquid
which washes the small sphere, we get:

1 ug 9
= - — - — inl
P = po +2 Po =3 1 7 sin 4], (26)

where ¢ is the angle between the direction of the normal to the surface
of the small sphere and the direction of the flow.

By substituting (26) in (25), we get:

1'r 2
u
1 0 9 l
(i) 2 + = —_— -z 2
pds = 2ma / lpo > P03 <1 7 sin 0>151n0d0
0

2
2 1 %
4ma‘py (1 - T2/ (27)

It is easy to show that the second integral in the relationship (24) is
equal to zero. Thus, from the relationship (24), we get the following
solution:

i

[+
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—

]
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nN] O

=
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If we introduce the spherical system of coordinates with the origin
in the center of the small sphere, the polar axis of which coincides
with the direction of the flow (with the axis x), then the solution assumes
the form:

2
1 Yo .
l] - = — -ikR
a2 4 c
Up = Va (28)
uz *
0
1 - — sin?d¢
CZ

b. Permeable Small Sphere

The problem of a permeable pulsating small sphere can,
without effort, be solved with the aid of the relationship (20). Since
the radius of the small sphere is small in comparison with the wave-
length and the distance to the observation point, then the right-hand
part of this relationship reduces itself to a single member:

-ikR
bl Cb W
P~ 4y r! on'

The last integral is calculated as follows:

an 1 Q_\P_ 1 8_44 ' ?ﬂ ' 1
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-z
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! T o
+ Yds +azdsz>- = aXdx
1 -2
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Considering that

¢ cos?d-ds = ‘;—“ a?,

we get

bp = Va? < ) (29)

This solution differs from the solution of (28) for a washed small
sphere with a coefficient before the ratio u?/c? in the numerator.

Under the same conditions, the amplitude in the sound field of the
washed small sphere will be sormmewhat greater than in the field of the

permeable small sphere.

c. Body Force

Let us assume that the source of the sound waves is a
body force concentrated in a small volume, Av, which has spherical
symmetry. The body force does not disturb the uniformity of the flow.
For this reason, in order to solve the problem, one can use the
Kirchhoff theorem (19) for uniform flow. For a harmonic dependence
of the body force on the time

1w
& = opet,

the relationship (19) assumes the form:

u? iw u? e_ikR
4m l-—q;p:__ ]__C_Z éodv'

c? c? r!
Av!
>, -ikR
_u —ia@ dv!
c? r! ox!'
Av!
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The second integral, in view of the symmetry of the body force,
changes into zero:

BQO v’ 0% dv = 0.
ox

AV

The first integral is transformed as follows:

/ Qodv| = —"—l_— Qodv -
2
Av! 1 - ':—2 AV ‘ ’ u——z

where Eo is the average value of the potential of the body force in the
volume, Av.

And we get the final solution:

(30)

Thus, the dependence of the amplitude in the sound field on the
speed of the flow for a fixed potential of the body force,go,will be
different from that for a fixed acoustic speed, V, of the pulsating small
sphere {(washed or permeable).

In order for the body force to create a field identical with the field
of the washed pulsating small sphere, the following condition must be
fulfilled:

© 42
= u
i 0
ik@oAV  _ Va? _ 10
4mc 4 c2
6. Flow of Energy
The density of the flow of acoustic energy was calculated by

the author® for a point source of sound in the form of a body force. It
is determined by the formula:

18
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By using the last relationship of the preceding paragraph and
limiting ourselves to the magnitudes of the second order of smallness
with respect to uy?/c? for the washed pulsating small sphere, we get:

o=

I =

W

2 2
u u
0 3 70 1
2y 2.4 I e 2 . —
pock®V4a <1+CZ > =7 cos 0> -
By integrating with respect to all directions, for a complete flow
of energy, we get:

2
1 1 U'0
= 27244 -

II' = 2wpock?Via (1 ts3 C2>.

It follows from this formula that the sound transfer of the pulsating
small sphere increases with increasing speed,ug, of the flow, if the
amplitude of the pulsations of V remains unchanged. Consequently, in
order to maintain the pulsations of the unchanged amplitude, it is
necessary to expend more energy the greater the speed of the washing
flow.

In conclusion, I express deep gratitude to N, N. Andreyev whose

comments on the nonidentity of the washed and permeable sources of
sound has served as the impetus for this study.
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