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STATUS OF THE 260 I N C H - D W T E R  SOLID ROCKE!I' MOTOR PROGRAM 

by C a r l  C. Ciepluch 

Lewis  Research Center 

Cleveland, Ohio 
National Aeronautics and Space Administration 

SUMMARY 

The progress made toward t h e  t h i r d  260-inch diameter s o l i d  propel- 
l a n t  rocket motor (260 SL-3) t e s t  f i r i n g  i s  reported.  
has been refurbished, rehydrotested and reinsulated.  Development of a 
5076 higher burn r a t e  propellant than t h a t  used i n  260 SL-1 and SL-2 has 
been completed. The propellant incorporates a new and more e f fec t ive  
burn r a t e  ca ta lys t .  Processabi l i ty  of t h e  propel lant  remains very s i m -  
i l a r  t o  the previous propellant.  
i c a l  propert ies  has been encountered. Fabrication of nozzle ablat ives  
i s  nearing completion and fabr ica t ion  of the nozzle s h e l l  and entrance 
r i n g  has been completed. A cold flow aerodynamic invest igat ion of the  
260 SL-3 nozzle geometry has revealed the presence of high veloci ty  c i r -  
cumferential flows behind t h e  submerged nozzle entrance sect ion.  This 
is  a t t r i b u t e d  t o  t h e  asyrmnetric nozzle entrance flow emanating from the 
star por t  geometry. Motor t a i l - o f f  i s  t o  be control led by the use of 
i n e r t  s l i v e r s .  A study of the optimum i n e r t  s l i v e r  s i z e  has indicated 
t h a t  the s l i v e r  should replace about 1% of t h e  motor propellant.  

The 260 SL-1 case 

Some degradation i n  propellant mechan- 

INTRODUCTION 

The 260-inch diameter s o l i d  propellant motor program was i n i t i a t e d  
The objective of t h i s  i n i t i a l  e f f o r t  by t h e  A i r  Force i n  June of 1963. 

w a s  t o  demonstrate t h e  f e a s i b i l i t y  of the  260-inch diameter motor. 
milestones were accomplished during t h i s  f e a s i b i l i t y  program by the  suc- 
cess fu l  t e s t  f i r i n g  of two ident ica l  short-length 260-inch motors (260  
SL-1 and SL-2) by the  Aerojet-General Corporation i n  September of 1965 
and February of 1966. These motors developed a maximum t h r u s t  of 
3,500,000 pounds, with a web action time of about 114 seconds. 

Major 

Development of 260-inch motor technology i s  continuing and a t h i r d  
motor t e s t  f i r i n g  is  planned. This motor, designated 260 SL-3, w i l l  
produce a m a x i m u m  t h r u s t  of about 5,400,000 pounds with a web act ion time 
of 75.2 seconds. 
program are:  t h e  design, fabrication, and performance of very la rge  sub- 
merged ab la t ive  nozzles; high burn r a t e  propellant s u i t a b l e  f o r  l a r g e  
s o l i d  rocket motor processing; and t h r u s t  t a i l - o f f  control.  The motor 
program w a s  i n i t i a t e d  i n  March of 1966 and the  motor t e s t  f i r i n g  i s  
scheduled f o r  June of 1967. 
contractor  f o r  the  motor. 

The major technical areas being investigated i n  t h i s  

The Aerojet General Corporation is  the  prime 

"he object  of t h i s  paper i s  t o  present t h e  design philosophy and 
development and fabr ica t ion  progress t o  date.  
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RESULTS AND DISCUSSION 

. 

The design, fabr ica t ion  and t e s t  f i r i n g  of the  t h i r d  260-inch diam- 
e t e r ,  shor t  length, s o l i d  propel lant  rocket motor ( 2 6 0  SL-3) i s  aimed 
a t  advancing the technology of l a r g e  s o l i d  rocket motors i n  three  main 
areas.  
fabr ica t ion  and performance of very large,  submerged, ab la t ive  nozzles. 
The nozzle t h r o a t  diameter i s  89 inches which approaches the  s i z e  appro- 
p r i a t e  f o r  a f u l l  length 260-inch motor nozzle. The submerged nozzle 
concept of fe rs  advantages due t o  a reduction of nozzle length and r e -  
ductions i n  ab la t ive  requirements and consequently cost .  This type noz- 
z l e  permits a wider se lec t ion  of poten t ia l  t h r u s t  vector control  systems 
f o r  the  260-inch motor. Thus, t h e  fabricat ion problems and performance 
associated with a submerged nozzle design on a s c a l e  equivalent t o  t h a t  
of the f u l l  length 260-inch motor a re  being invest igated i n  t h i s  program. 

One of the  technical  areas being invest igated is  the  design, 

A second technology area being invest igated concerns high burn r a t e  
propel lants .  
boosters w i l l  require  propel lant  burn r a t e s  s i g n i f i c a n t l y  higher than 
t h a t  developed f o r  t h e  260 SL-1 and SL-2 motors. It i s  desirable  t h a t  
t h e  required increase i n  propel lant  burn r a t e  be obtained without un- 
acceptable compromise i n  t h e  processabi l i ty ,  mechanical propert ies  and 
cos t  of the  propellant.  The trade-off of these fac tors  has guided the  
propel lant  development f o r  the  260 SL-3 motor. 

Advanced gra in  designs f o r  260-inch diameter s o l i d  rocket 

Final ly ,  t h r u s t  t a i l - o f f  control has been incorporated i n t o  the  
motor. The method of t h r u s t  t a i l - o f f  control  used i n  t h i s  program w a s  
t h e  incorporation of i n e r t  propellant s l i v e r s .  This method w a s  chosen 
because of the  current gra in  design, t h e  r e l a t i v e  s implici ty  of the  sys- 
tem and t h e  previously demonstrated effectiveness of t h i s  technique i n  
smaller motors. 

The b a l l i s t i c  performance charac te r i s t ics  and some design d e t a i l s  
of t h e  260 SL-3 motor a r e  l i s t e d  i n  t a b l e  I. The maximum t h r u s t  of the  
motor i s  estimated t o  be 5.37X106 pounds. Because of the  reuse of the  
260 SL-1 case and core, the  increased burn r a t e  r e s u l t s  i n  a reduction 
i n  motor web act ion time from 115 seconds f o r  260 SL-1 and SL-2 t o  a 
predicted 75 .2  seconds f o r  the  SL-3 motor. The 260 SL-3 motor i s  shown 
i n  f i g u r e  1. 
ponents of the  motor. 

The following sect ions describe i n  d e t a i l  the  main com- 

Case - 
The 260 SL-1 case is  being reused f o r  the SL-3 motor t e s t .  The 

case w a s  previously hydrotested a t  737 psig i n  March of 1965 and t e s t  
f i r e d  i n  September of 1965. 
removed and t h e  metal surfaces were then sandblasted t o  remove t h e  r e -  
maining insu la t ion  adhesive. A reinspection of t h e  longi tudinal  welds 
by radiograph, ul t rasonics  and magnetic p a r t i c l e s  w a s  made and revealed 
no s i g n i f i c a n t  changes i n  known defects nor generation of new defects .  
On September 28, 1966 the  chamber was successfully rehydrotested, a t  the  
Aerojet  Dode plant ,  t o  a m a x i m u m  pressure of 707 psig or about 2% above 
max imum nominal operating pressure.  

All the b a r r e l  sect ion insulat ion had t o  be 
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No anomalous behavior was noted during t h e  t e s t .  Analysis of t h e  
s t r a i n  gage da ta  indicated t h a t  t he  response t o  t h e  s t r e s s  w a s  as  ex- 
pected. The r e s u l t s  of t he  hydrotest  a r e  reported i n  reference 1. 

Insula t ion  

The case b a r r e l  sec t ion  insu la t ion  was damaged beyond r epa i r  during 
heat soak a f t e r  t he  260 SL-1 t e s t  f i r i n g .  It was therefore  removed and 
replaced with t h e  same type insu la t ion  (V-44) using t h e  same techniques 
t h a t  were used previously. Visual inspection of t he  in su la t ion  remain- 
ing i n  t h e  a f t  and head domes revealed t h a t  it was i n t a c t  and s u f f i c i e n t  
thickness remained t o  withstand a second f i r i n g .  Adequate in su la t ion  
thickness and bonding of t h e  dome segments was confirmed during removal 
and replacement of t h e  dome segment seam insu la t ion .  Some insu la t ion  
buildup a t  t h e  a f t  f lange w a s  required i n  order t o  mate with t h e  nozzle 
insu la t ion  and t h i s  w a s  accomplished using t h e  trowellable (V-61) seam 
insu la t ion .  A photograph of t h e  insu la t ion  process i s  shown i n  f igu re  2.  

I gn i t i on  

Ign i t ion  w i l l  be accomplished with t h e  same s i z e  aft-end i g n i t o r  as  
used on t h e  previous motors. 
e t e r ,  t he  i g n i t o r  gas based on theo re t i ca l  calculat ions,  w i l l  penetrate  
6 1  percent i n t o  t h e  chamber f r e e  volume compared t o  70 percent i n  t h e  
e a r l i e r  f i r i n g s .  This i s  not expected t o  have a s ign i f i can t  e f f e c t  on 
t h e  260 SL-3 i gn i t i on ,  because t h i s  degree of i g n i t o r  gas penetrat ion 
has been found t o  be more than adequate for i gn i t i on  i n  other  experi-  
mental programs. 

However, because of t he  l a rge r  t h roa t  diam- 

Propellant 

The design propel lant  burn r a t e  f o r  t h e  260 SL-3 motor is  0 . 7 1  
inch per second or about a 5% increase above t h a t  f o r  t he  previous 
motors. In order t o  achieve t h i s  burn r a t e  with the  previous propel lant ,  
it would have required t h e  use of a prohib i t ive ly  l a rge  percentage of 
f i n e l y  ground oxidizer .  This i s  i l l u s t r a t e d  i n  f igu re  3 where propel- 
l a n t  burn r a t e  as a function of coarse t o  f i n e  oxidizer blend i s  shown 
f o r  a 1% ion  oxide burn r a t e  ca t a lys t  concentration. Iron oxide con- 
cent ra t ions  about 1% a re  ine f f ec t ive  i n  increasing propel lant  burn r a t e ,  
and therefore ,  a coarse t o  f i n e  oxidizer blend i n  t h e  neighborhood of 
20/80 i s  required t o  achieve the  desired burn r a t e .  
oxidizer  would have degraded propellant processabi l i ty  t o  an unaccept- 
ab le  l e v e l  and a l s o  s ign i f i can t ly  complicated oxidizer grinding and 
handling. 
keep t h e  f i n e  oxidizer concentration t o  a minimum f o r  good processing. 
The one t h a t  w a s  se lec ted  consisted of a combination of equal quant i t ies  
of i r o n  blue and B W O l  (an Aerojet proprietary compound). It can be 
seen i n  f igu re  3 t h a t  a t  a 1% ca ta lys t  l e v e l  t he  required uncured pro- 
p e l l a n t  burn rate of 0.67 i s  a t ta ined  with an oxidizer blend r a t i o  of 
about 70/30 which i s  the  same as used i n  t h e  SL-1 and SL-2 propel lant .  

This l e v e l  of f i n e  

A more e f f ec t ive  burn r a t e  c a t a l y s t  was required i n  order t o  
0 

Propel lant  processed with t h e  new burn rate ca t a lys t  i n  laboratory 
batch s i z e s  proved t o  exhib i t  such high v i cos i ty  t h a t  propel lant  cast ing 
appeared unfeasible.  This was t raced t o  an in t e rac t ion  between t h e  burn 
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r a t e  c a t a l y s t  and t h e  dodecenyl succinic anhydride polymer component. 
Removal of the  anhydride component, along with t h e  incorporation of a 
cure c a t a l y s t  (FEAA) t o  improve cure rate, r e s u l t e d  i n  a s i g n i f i c a n t  
improvement i n  t h e  propel lant  viscosi ty  and s a t i s f a c t o r y  cure chazac- 
t e r i s t i c s .  
duction f a c i l i t i e s  r e s u l t e d  i n  the necessity t o  increase t h e  i ron  blue- 
B R A l O l  burn r a t e  addi t ive  t o  1.3% and a change i n  oxidizer blend r a t i o  
t o  65/35 (coarse/fine) i n  order t o  meet t h e  burn r a t e  requirement. 

Evaluation of t h e  modified propel lant  produced with t h e  pro- 

The r a t e  of v i s c o s i t y  buildup f o r  the  SL-3 propel lant  i s  shown i n  
f igure  4.  
than t h a t  f o r  t h e  SL-1 and SL-2 motors, and the v i s c o s i t y  s l i g h t l y  ex- 
ceeds the desired 15,000 poise l i m i t  a t  10 hours. Low v i s c o s i t y  is  an 
important propel lant  property f o r  the  nonvacuum type of propellant cas t -  
ing t h a t  i s  necessary f o r  l a r g e  monolithic s o l i d  rocket motors. 
fore ,  i n  order t o  evaluate fur ther  the c a s t a b i l i t y  of t h e  propellant 
p r i o r  t o  t h e  a c t u a l  motor loading, a subscale motor (44-in. diameter) 
was  cas t .  The cast ing operation proceeded without d i f f i c u l t y  using s i m -  
i l a r  l a r g e  motor cast ing techniques and a f t e r  propel lant  cure, a radio-  
graphic examination of t h e  propellant revealed no anomalies i n  t h e  pro- 
p e l l a n t  o r  t h e  propel lant  t o  insulat ion bond. A s  a r e s u l t  of t h i s  data  
t h e  propel lant  processabi l i ty  was  considered s a t i s f a c t o r y .  The propel- 
l a n t  t e n s i l e  and s t r a i n  mechanical properties are shown i n  t a b l e  11. 
i s  apparent t h a t  t h e  increased propellant burn r a t e  has resu l ted  i n  a 
moderate reduction i n  mechanical properties from t h a t  of the previous 
propel lant .  These lower propellant mechanical propert ies  a r e  not ex- 
pected t o  have a ser ious impact on propellant g r a i n  s t r u c t u r a l  margins. 
Conversely, the  long term s t r a i n  capabi l i ty  of t h e  propel lant  w a s  found 
t o  be improved over t h a t  of the  previous SL-1 and SL-2 propellant.  
i s  i l l u s t r a t e d  i n  f igure  5 where one week constant s t r a i n  data  i s  pre- 
sented. 

It can be seen t h a t  the  SL-3 propel lant  v i scos i ty  i s  grea te r  

There- 

It 

This 

Nozzle 

The 260 SL-3 ab la t ive  nozzle design i s  based on previous experience 
with t h e  SL-1 and SL-2 abla t ive  nozzles. A cross sec t ion  of the  nozzle 
geometry showing t h e  ab la t ive  component arrangement i s  shown i n  f igure  6.  
Ablative materials f o r  s p e c i f i c  areas a r e  general ly  t h e  same as used pre- 
viously except f o r  t h e  e x i t  cone where t h e  s i l ica-phenol ic  tape has r e -  
placed carbon-phenolic tape i n  t h e  area r a t i o  range from 2 .5  t o  3.0. 
The nozzle a rea  r a t i o  was l imi ted  t o  3.78 f o r  reasons of economy and t h e  
f a c t  t h a t  erosion i s  much l e s s  severe a t  high nozzle expansion r a t i o s .  
The required ab la t ive  thicknesses were determined using t h e  data from 
t h e  e a r l i e r  SL-1 and SL-'2 nozzle f i r ings  because t h i s  resu l ted  i n  grea te r  
a b l a t i v e  thicknesses than a computer prediction. The t o t a l  design thick-  
ness was found by summing erosion multiplied by a safe ty  fac tor ,  char 
heat  e f fec ted  zone and overwrap thicknesses. 
s i o n  r a t e  f o r  chamber pressure differences, the  following r e l a t i o n  was 
used 

SL-3 erosion r a t e  = SL-1 erosion r a t e  g:$*8 - 

To cor rec t  the l o c a l  ero- 

The t o t a l  erosion thickness l o s s  was then found by multiplying the  cor -  
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rec ted  erosion r a t e  by t h e  web ac t ion  time. FPosion s a f e t y  fac tors  of 
3, 2 ,  and 1.5 were applied i n  t h e  nose, t h r o a t  and e x i t  cone areas,  
respect ively.  The ab la t ive  materials and laminate or ien ta t ion  a r e  in-  
dicated i n  f igure  6. 

Ekperience with l a r g e  submerged ab la t ive  nozzles i n  previous A i r  
Force programs ( r e f .  2 )  has indicated t h a t  erosion r a t e s  i n  the  nose 
area and backside of t h e  submerged entrance sec t ion  have i n  some cases 
g r e a t l y  exceeded prediction. These r e s u l t s  plus t h e  f a c t  t h a t  the  SL-3 
nozzle entrance flow w i l l  be highly asymmetric due t o  t h e  star type 
g r a i n  por t  immediately ahead of t h e  nozzle contributed t o  a Signif icant  
degree of uncertainty about t h e  ablat ive performance i n  t h e  region of 
t h e  submerged entrance. A s  a result, two supporting experiments were 
performed t o  inves t iga te  these conditions; t h e  first was a cold-flow 
aerodynamic study and t h e  second was a hot  f i r i n g  of a subscale nozzle. 

The cold-flow aerodynamic flow study was conducted a t  t h e  Lewis 
Research Center using 1/14.2 scaled model of t h e  SL-3 nozzle and a f t -  
end gra in  geometry. The r e s u l t s  of t h i s  study a r e  a l s o  being presented 
a t  t h i s  meeting and therefore  only a br ie f  summary of t h e  study w i l l  be 
presented here along with a discussion of t h e  impact on t h e  SL-3 nozzle 
design. A schematic drawing of t h e  cold flow t e s t  r i g  i s  shown i n  f i g -  
ure  7 .  A Plexiglas a f t  sect ion allowed photographic observation of 
t u f t s  placed behind t h e  submerged l i p .  
pos i t ion  during a c t u a l  operation i s  shown i n  f igure  8. It can be seen, 
as i l l u s t r a t e d  by t h e  arrows, t h a t  the flow emanating from the  grain 
val leys  enters  t h e  cavi ty  behind t h e  submerged l i p ,  turns  and flows 
circwnferent ia l ly  towards t h e  area behind t h e  g r a i n  star points .  The 
flow then turns  toward t h e  g r a i n  star points  moving i n  an upstream 
d i r e c t i o n  toward t h e  submerged nozzle entrance whereupon it flows over 
the  entrance nose and i s  discharged thru t h e  nozzle. The Mach number 
p r o f i l e s  ex is t ing  behind t h e  submerged l i p  a r e  i l l u s t r a t e d  i n  f igure  9 .  
It can be seen t h a t  the  Mach number reached nearly 0.2 a t  the extreme 
end of t h e  cavi ty  behind t h e  submerged nozzle entrance. Examination of 
t h e  Mach numbers with a gra in  shape t h a t  simulated 1/3 of the  web act ion 
t i m e  completed showed t h a t  a maximumMach number of 0.1 s t i l l  existed.  
It was ,  therefore ,  apparent t h a t  high v e l o c i t i e s  would e x i s t  f o r  most of 
t h e  motor duration. 
t e s t s  were made with t h e  blunt aft-end gra in  surfaces aerodynamically 
f a i r e d .  
sequently addi t ional  rubber insulat ion and carbon tape were added be- 
hind t h e  submerged nozzle entrance, as indicated i n  f igure  6, i n  order 
t o  improve ab la t ive  s a f e t y  fac tors  i n  marginal areas .  The Mach number 
p r o f i l e s  on the  i n s i d e  of the  submerged sect ion revealed no s i g n i f i c a n t  
anomalies except f o r  a s l i g h t  decrement i n  flow ve loc i ty  behind the  pro- 
p e l l a n t  star points.  

A photograph showing the  t u f t  

In  order t o  a l l e v i a t e  the  circumferential  flow, 

This f a i r i n g  d i d  not  r e l i e v e  t h e  problem s u f f i c i e n t l y  and con- 

The subscale nozzle t e s t  w i l l  be made using a 44-inch diameter 
Minute Man case loaded with propellant processed during t h e  qua l i f ica-  
t i o n  of t h e  SL-3 propel lant  ingredients.  The nozzle t h r o a t  diameter 
w i l l  be about 15 inches and t h e  action time w i l l  be 1 7  seconds. The 
nozzle w i l l  be an exact geometric subscale of t h e  SL-3 nozzle design 
and t h e  materials and method of fabr ica t ion  w i l l  a l s o  be t h e  same as 
those used i n  fabr ica t ion  of t h e  ful l  s c a l e  nozzle. The aft-end gra in  
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shape w i l l  a l so  be closely simulated. This t e s t ,  t h a t  w i l l  be conducted 
i n  March of 1967, i s  designed t o  determine whether any anomalous erosion 
performance w i l l  be encountered due t o  e i t h e r  a b l a t i v e  design and f a b r i -  
ca t ion  techniques or propel lant  gra in  and nozzle aerodynamic e f f e c t s .  
These r e s u l t s  w i l l  be considered i n  a f i n a l  evaluation of the  SL-3 
nozzle. 

The nozzle ab la t ive  components a t  t h i s  wri t ing a r e  a l l  e i t h e r  com- 
p le ted  or i n  some s tage of fabr icat ion.  
encountered, however, t h e  usual fabr icat ion discrepancies comon t o  la rge  
ab la t ives  have been encountered. Ekperience t o  date  has indicated t h a t  
a more fundamental knowledge of ablat ive fabr ica t ion  process controls 
and techniques is  desirable  i n  order t o  bu i ld  these  expensive components 
on a more r e l i a b l e  basis .  

No major d i f f i c u l t i e s  have been 

The nozzle s teel  s h e l l  and the  support f o r  t h e  nozzle entrance 
sec t ion  have been b u i l t .  
w a s  fabr ica ted  by adding a new a f t  sect ion t o  t h e  salvaged fore-end 
sec t ion  (including flange) of the  SL-1 nozzle s h e l l .  These two pieces 
were joined by a g i r t h  weld. 
weld development program (NAS-3-7965) w a s  conducted i n  order t o  deter-  
mine acceptable weld and weld r e p a i r  techniques f o r  aged 200 grade 
maraging s t e e l  p la te .  This study revealed t h a t  t h e  same welding tech- 
niques and aging cycle could be used f o r  aged p l a t e  as had been used f o r  
t h e  unaged p la te .  The mechanical properties and toughness of the  weld 
made i n  aged p l a t e  were as good as those made i n  unaged p l a t e .  
hydrotest  of the  nozzle s h e l l  i s  planned p r i o r  t o  t h e  motor t e s t  f i r i n g .  
The nozzle e x i t  cone s t r u c t u r a l  member consisted of composite of g lass  
c l o t h  and g lass  filament roving. 

The 200 grade 18% nickel  maraging s t e e l  s h e l l  

Pr ior  t o  t h e  SL-3 nozzle s h e l l  welding, a 

No 

Thrust Ta i l -Of f  Control 

I n  order t o  determine the proper s i z e  of i n e r t  s l i v e r  f o r  e f fec t ive  
t h r u s t  t a i l - o f f  control  of 260-inch diameter motors, an ana ly t ica l  study 
w a s  made a t  Lewis ( r e f .  3 ) .  This study was based primarily on s l i v e r  
e f f e c t  on performance, however, it is a l s o  recognized, but not inves t i -  
gated here, t h a t  other vehicle  considerations may a l s o  influence s l i v e r  
s i z e .  
inch motor booster and a SIVB second s tage.  
described i n  reference 4 .  The 260-inch motor contained a t o t a l  of 
2 .4X106 pounds of propellant,  and t h r u s t  t a i l - o f f  charac te r i s t ics  simi- 
la r  t o  t h e  260 SL-1 and SL-2 motors were used. The pressure-time v a r i -  
a t i o n  during t a i l - o f f  of t h e  motor is shown i n  f igure  10. Also, ind i -  
cated i n  t h e  f i g u r e  is the  t o t a l  propellant consumed a t  various times 
i n t o  t h e  t a i l - o f f .  The motor t h r u s t  during t a i l - o f f  var ies  d i r e c t l y  
with chamber pressure. 

The basic vehicle  i n  t h i s  study consisted of a 3/4 length 260 
Detai ls  of t h i s  vehicle  a r e  

Vehicle payload w a s  calculated f o r  a range of propellant weights 
consumed. During t h e  calculat ions when the given weight of propellant 
consumed w a s  reached, the  t h r u s t  was instantaneously decreased t o  zero 
and s tage  separation sequence commenced. The remaining unused propel- 
l a n t  or s l i v e r  w a s  car r ied  as i n e r t  booster weight during the calcula- 
t i o n s .  The e f f e c t  of i n e r t  s l i v e r  density and propellant consumed on 
payload i s  shown i n  f igure  11. Also shown i n  t h e  f igure  i s  the  payload 
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capab i l i t y  f o r  t he  case of no thrust t a i l - o f f .  
i d e a l  case was assumed where a l l  t h e  propel lant  was burned a t  t h e  nominal 
chamber pressure followed by an instantaneous pressure and t h r u s t  decay 
t o  zero. 
optimum payload f o r  a s l i v e r  densi ty  of 0.028 lb/in.3.  
i n  f igu re  11, there  is  an optimum weight of propel lant  consumed f o r  
m a x i m u m  payload f o r  each s l i v e r  density.  
r e s u l t s  from two competing fac tors .  F i r s t ,  as more propel lant  i s  con- 
sumed, payload increases  due t o  t h e  l a rge r  s tage  t o t a l  impulse, How- 
ever, increasing t h e  t o t a l  propel lant  consumed during t a i l - o f f  a l s o  r e -  
sults i n  subs t an t i a l ly  lower t h r u s t  output and t h e  point  i s  eventually 
reached where grav i ty  lo s ses  overcome t h e  increased s tage  t o t a l  impulse 
and payload decreases. Lower s l i v e r  dens i t i e s  increase  payload by 
v i r t u e  of t h e  increase i n  s tage  propel lant  mass f r ac t ion .  One note- 
worthy conclusion from t h i s  study i s  t h a t  instantaneous t a i l - o f f  i m -  
proves payload performance and a l s o  eliminates t h e  need f o r  s l i v e r s .  
Tail-off control  by means of g ra in  design i s  therefore  a des i rab le  goal 
provided other  disadvantages a re  not encountered. 

I n  t h i s  ca lcu la t ion  an 

The idea l  case provides an 8% increase i n  payload over the 
A s  can be seen 

The reason f o r  t he  m a x i m u m  

The i n e r t  s l i v e r  composition was se lec ted  f o r  t h e  SL-3 motor p r i -  
marily on a bas i s  of obtaining good processabi l i ty  and mechanical prop- 
e r t i e s .  The composition consis ted of 8% by weight of PBAN type binder 
and 1% each of antimony t r iox ide  and asbestos f i l l e r s .  The densi ty  of 
t h i s  s l i v e r  composition was about 0.039 l b / i r ~ . ~ .  From f igu re  11, it i s  
seen t h a t  t h e  optimum propel lant  consumed is 99% f o r  t h i s  densi ty .  The 
s l i v e r  s i z e  i s  therefore  that  required t o  replace t h e  las t  1% of pro- 
p e l l a n t .  A cross-sect ional  view of t h e  required sliver p r o f i l e  i s  shown 
i n  f igu re  14. Since t h e  propel lan t  cross sec t ion  is  p r a c t i c a l l y  constant 
throughout t h e  length  of t h e  motor, t he  s l i v e r  p r o f i l e  was made constant.  
The s l i v e r s  were cas t  i n  10 foot  long molds and subsequently bonded t o  
t h e  case insu la t ion .  The ca lcu la ted  e f f e c t  of t h e  s l i v e r s  on pressure 
t i m e  va r i a t ion  during t a i l - o f f  i s  shown i n  f igu re  15. The ac tua l  e f f e c t  
of t h e  s l i v e r s  w i l l  be evaluated during t h e  s t a t i c  t e s t  f i r i n g  of t he  
SL-3 motor. 

SUMMARY OF RESULTS 

The following summarizes t h e  program made t o  da t e  on t h e  design, 
development and f ab r i ca t ion  of t he  260 SL-3 s o l i d  propel lant  rocket 
motor. 

1. The 260 SL-1 case has been refurbished, rehydrotested and r e -  
insu la ted .  

2 .  The development of a propellant with a 50% higher burn r a t e  
than t h a t  used i n  t h e  260 SL-1 and SL-2 motors is  completed. The i n -  
creased burn r a t e  propel lant  has r e su l t ed  i n  a degradation i n  propel lant  
mechanical proper t ies  and an increase i n  t h e  propel lant  v i scos i ty .  How- 
ever,  t h i s  is  not expected t o  have a sensing implication i n  e i the r  t h e  
propel lan t  s t r u c t u r a l  i n t e g r i t y  or ease of processing and cast ing t h e  
propel lan t .  

3. Fabricat ion of nozzle ablat ives  i s  nearing completion. The noz- 
z l e  s h e l l  and submerged entrance support member have been fabricated.  
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4. A cold-flow aerodynamic study of t h e  260 SL-3 nozzle geometry has 
indicated tha t  c i rcumferent ia l ly  induced flow v e l o c i t i e s  approaching a 
Mach number of 0.2 e x i s t  behind the submerged entrance sect ion.  As a 
r e s u l t  t h e  o r i g i n a l  nozzle design has been modified t o  increase t h e  
erosion safe ty  margin i n  marginal areas. 

5. Motor t a i l - o f f  control  will be obtained by the  use of i n e r t  
s l i v e r s .  
propellant.  

The s l i v e r s  have been s ized t o  replace about 1% of t h e  motor 
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TABLE I. - 260 SL-3 DESIGN AND PERFOFWINCE CHARACTERISTICS 

Nozzle th roa t  diameter, i n .  
Nozzle a rea  r a t i o  

Propellant weight, l b  
I n e r t  s l i v e r  weight, lb 
Web ac t ion  t i m e ,  sec  
Maximum th rus t ,  l b  
Average t h r u s t  ( ac t ion  t ime),  lb 
Maximum pressure,  lb/sq i n .  
Average pressure (web. act ion t i m e , .  lb /sq in .  

89.1 
3.78 

1,645,000 
12,800 

75.2 
5,370,000 
4,698,000 

6 00 
523 

TABLE 11. - MECHANICAL PROPERTIES 260-INCH MOTOR PROPELLANT 

Modulus p s i  

Tensi le  s t r eng th  Sm, p s i  

S t r a i n  a t  maxim s t r e s s ,  
m, k 

S t r a i n  a t  break, b, $ 

260 SL-1, SL-2* 

44 8 

103 

30 

35 

260 SL-3* 

466 

85 

2 1  

22 

* Representative data  for 24-28 day cure, a t  77O F. 
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Figure 1. - 260 SL-3 Motor drawing. 

Figure 2. - Insulation installation. 
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Figure 4. - Viscosity buildup of 260-in. motor propellant. 



% constant strain applied for one week 

Figure 5. - Constant strain 260-in. motor propellant. 
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Figure 6. - 260 SL-3 nozzle cross-section. 
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Figure 7. - Schematic diagram of cold-flow test apparatus. 
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Figure 8. - View of tuft orientation through 
simulated plexiglas aft-dome of case. 
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Figure 9. - Mach number profiles behind submerged nozzle entrance section. 
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Figure 10. - Motor tail-off used for i ne r t  sliver optimization. 



Instantaneous tail-off 
I 

Density of inert sliver, b 
Iblin. 

0 

95 96 91 98 99 100 
Propellant used, % 

5 4 3 2 1 0 
Propellant converted to inert sliver, % 

Figure 11. -Effect of propellant inert sliver density and 
weight on payload. 
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Figure 12. - Cross-section view of slivers. 
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Figure 13. - 260 SL-3 pressure-time curve. 
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