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ABSTRACT

A representation for momentum operators corresponding to real

observables is obtained by using functional integration in phase

space.




1. Introductiomn

In quantum mechanics, real observables such as energy and
momentum are represented by operators that are self-adjoint on the
“domain of physically acceptable bound state wave funétions. A well-
known example is provided by the form P= 'f%éb for the momentum
operator conjugate to coordinate 9 where the domain is
the entire real line R . However, if the domain is an
interval E‘,F] of R , a more general representation of P s
necessary to ensure self-adjointness. One such general form for P
has been suggested by Robinson and Hirschfelder (1] , while an
equivalent integral form, which can also be extended to functions of P
has been proposed by Robinson and Lewis [2) . These forms were
obtained in the context of conventional Schrgdinger quantum mechanics.

An alternative way to define operators is possible, however,
through an extension of the Feynman approach to quantum mechanics
due to Davies [3] . 1In this work the equivalence of the Feynman and
Schrgdinger approaches was established by intréducing a suitable
inner product in function space. This inner product was defined for

functions on =00 < §,<®0 , and the usual self-adjoint operators
appropriate to this domain were therefore obtained. But the definition
is readily extended to other domains s, and hence can be used
to obtain general self-adjoint representations for various operators.
This is done here for any real fuaction of P .  The resulting

representation leads to those given in f1] and [2] .



2. Representation of operator FCP)

Following Davies [3] we introduce a function space with
elements f(‘i/) P }M/) s> etc., which are here -
defined on the interval (:06, /SJ of the real line. Then the appropriate

inner product (f, 9‘) is defined as follows:

) = [15a ] [Paimei0) 904} dg”, (1)
where

A@5T39:0) = [dlg)) [dfpe/ar) oxp § 1.'j:pq;M} (2)

is a functional integral over all phase space histories from q/(o)=q,/

to q/(7)=q," » and involves only the classical variables p and 4,
If a division

0=t <bictic - < b= T (3)
of the time interval (O,T) is made, and if

G = dlte) o Pz PT), ey € Te < by, (4)

then A(q,';T;q,', D) is given by
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This is readily evaluated and we find that
n
A(4,7:450) = 8(q-4¢'), (6)

where ¢ is the Dirac delta function. Thus the inner product (f,qo

becomes

t9) = [0 { [fo@-¢) gterag'} s

£
JL £(q,) 94€J a4, , (7

which is the frequently used inner product of function space.
Now we define the operator corresponding to a real function F(P)

of the momentum variable. This is done in terms of the inner product

Bimg) = ["7@n { @00 g dg} 4", ©

where



B(457450) = [dLy(t)) [dLpit)n) FLp)) eap | pr,;d/c}, (9)

in which a time T  has been associated with FLP(T)] such that
O<T<T , and once more the functional integration is over all

phase space histories subject to the restrictions

G =¢ , 41)=4¢". (10)

Making the same division of the time interval (O, T) as before, we

may write B(q,',"f; 4/,, 0) as
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where 1<J$ h . It is then found that
B(45T54,0) = F(4"~4’), (12)
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Hence equation (8) becomes

(nFme) =[50 { TR @) gledy’ ) dg, ()

ol

a result which is independent of the choice of T and | . When
F(?) = T , the identity operator, equation (14) reduces to (7) as
it should.

The condition for F(P) to be self-adjoint on the domain of

the elements of the function space is

(£, FP¢) = (4,F(®F) (15)

Using (14) and the fact that F  is a real function, we find that (15)

implies the relation

Lp;@") {L/’?(q/n.@;) 7(@')%’} d{/”

= (P - A
* 1 e bame) 4} penay

(16)

that is, (14) is independent of the order of integration. Hence we

may represent the self-adjoint operator F(P) by the inner product

(1rmg) = [[[300 Fate) gw) agrayr, 0D



where

A s 1§
Fe) = 35 [Ce Ep)AT, ()

subject to condition (16) for self-adjointness.
3. Alternative forms

Equation (17) may be written as

- F‘ ] ) “ Ug(@“-q/’) n
(hFmye) = [ F4") {[f 3"'.].,. e F(3)d3 g4/ 4} 44,
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and where the order of the ¥ and i/ integrations has been

interchanged. Hence F(P) may be defined by

FMgle) = & [:e”"’F(g)ﬁ(;)df, (21)

with ﬁ(}) given by (20). This is the representation proposed by

Robinson and Lewis [2] .




Next we consider the special case FCP)='P . This operator can

be represented by the appropriate form of (21), but there is another

For F(P)=7

form, which can be obtained directly from (17) and (18).

equation (18) may be written as

F(g) = -13(), (22)

where 6‘ is the first derivative of the delta function. Hence (17)
gives
6?9 = i [[['3@) 8'0¢) g0)
Ab RA 1-4) 9(¢/) a4/, (23)
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If we write

F - -
[ @) ss-4) de = rfepy, (25)



and
ff F4) 8(a4-L)dgy = pf@), (26)
and impose condition (16) for self-adjointness, we find that
A=pm =5 (27)
Thus (24) becomes
#r9) = [[Fa) (12 ) ¢4

41 HFR ) - FE0 g}

(28)
Defining 0_ (F~q/) and (5+ (q;'o(,) by the relations
£
[f@10-0)ay = fp), «su<p, (29)
v
_[( Fla) 6 (q-x)dq, = flx), K<< g, (30)

we may write (28) in the form




A . , :
(£.79) = L f(q/){'t,a—?w 54&(,6@)-5»@(%%)} 4(4)dq,, (31)
L L R TL YT N

This is the representation of P suggested by Robinson and

Hirschfelder [ 1] using quite a different set of considerations.

4, Concluding remarks
A representation for real functions of the momentum operator

? “has been obtained by using functional integration in phase space.
The resulting operators are self-adjoint on the interval El,ﬁ] of
the reai line. lFor the operator P itself, the representation involves
the first derivétive of the delta function, in agreement with the
treatment of‘momentum given by Kramers [4] .

The present‘work has dealt solely with cartesian coordinates.
It would be of interest to extend the method to other coordinate
systems, though this may prove difficult in the light of work by

Edwards and Gulyaev [5] on functional integrals in polar coordinates.
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ABSTRACT

A representation for momentum operators corresponding
to real observables is obtained by using functional inte-

gration in phase space.



MOMENTUM OPERATORS IN QUANTUM MECHANICS

A. M. Arthurs

1. Introduction

In quantum mechanics, real observables such as energy and momentum are
represented by operators that are self-adjoint on the domain of physically
acceptable bound state wave functions. A well-known example is provided by
the form P=-i 8/ 8 g for the momentum operator conjugate to coordinate g,
which is self-adjoint on the real line (-%, ©) . However, if the domain is an
interval [@,B] of the real line, a more general representation of P is necessary
to ensure self-adjointness. One such general form for P has been suggested
by Robinson and Hirschfelder [1], while an equivalent integral form, which can
also be extended to functions of P, has been proposed by Robinson and Lewis
[2]. These forms were presented in the context of conventional Schrédinger
quantum mechanics.

An alternative way to define operators is possible, however, through an
extension of the Feynman approach to quantum mechanics due to Davies [3).

In this work the equivalence of the Feynman and Schrodinger approaches was
established by introducing a suitable inner product in function space. This

inner product was defined for functions on the real line , and the usual self-
adjoint operators appropriate to this domain were therefore obtained. But the

definition is readily extended to other domains, and hence can be used to obtain
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general self-adjoint representations for various operators. This is done here
for any real function of P . The resulting representation leads to those given
in [1] and [2].

2. The inner product

Following Davies[3] we introduce a function space with elements
f(q), g(q), etc., which are here defined on the interval [«,P] of the real line.

Then the inner product (f,g) is defined as follows:

B‘ t i t
(f,9) = [f(@) { [ Aq", T;d', 0) g(q)dg } dq (1)
(24 (03
where
: X T
Alq'', T;q,0) = [dlam)] [dlp(t)/2r]exp {i qudt} (2)

is a functional integral over all phase space histories from gq(o) = q( to

q(T) = q” , and involves only the classical variables p and g . If a division

0=t < = 3
O«tl<t2< <tn T (3)

of the time interval (0, T) is made, and if

tnen A(g'", T;q', 0) is given by

3

0 20 ood Ood
TR - U p p
Ag",T;q,0) = lim qul...qun_l f l..._f n

n-»o —oo -0 -0 2 T o2

xexp{iLP(q—q_l)} . (5)
r r
r=l
This is readily evaluated and we find that

Alg' - - ; - 6
(@', T;q',0) nlimoo b (aq a) (6)
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where 6 is the Dirac delta function. Now qO = q' and q, = q” and hence

>

A(q",T;q',0) = 6(q" - q') , (7)

a result independent of T . Thus the inner product (f,g) becomes

B
(f, 9) f (q">{f g" - a')glq')dq' }dq"

I3
[f(@g(a)dq , (8)

a

1l

which is the frequently used inner product of function space.

3. Representation of operator F(P).

Now we define the operator corresponding to a real function F(p) of the

momentum variable. This is done in terms of the inner product

B_ B
(f,F(P)g) = [f(a){ [B(a",T;q",0)g(q')da' } dq"" (9)
03 o
where
T
B(q",T;q',0) = [dlqt)] [dlp(t)/2m ] F[p(r) Jexp {i [padt} , (10)
O

in which a time T has been associated with F[p(v)] such that 0< 7 < T,

and once more the functional integration is over all phase space histories subject

to the restrictions

a(0) = q' , a(T) = q" . (11)
Making the same division of the time interval (0,T) as before, we may write

B(q", T; q',0) as
2 1 Pn
B(q",T; q',0) = lim_ qul ._foodqn_l [00_27 f

Yo 2t

F(p )exp{12p<q—qr1)} (2)
r=1
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where j 1is an integer such that 1 <j <n. It is then found that

B(q", T:q,0) = F(q" - q') | 13)
where
- 1 * i£q
F(q) = 5= e PTF(E)dE . (14)
- 00

Hence equation (ll1) becomes

B_ B
(f, F(P)g) = [f(a") { [ F(a" - a')gla')dq’ } da" , (15)
a

o

a result which is independent of v and T. When F(P) is equal to the identity
operator, equation (15) reduces to (8), as it should.

The condition for F(P) to be self-adjoint on the interval [o,B] is

(£, F(P)g) = (g,F(P)f) . (16)
Using (15) and the fact that F is areal function, we find that (16) implies

the relation

p

o

(17)
that is, (15) is independent of the order of integration. Hence we may represent

tne self-adjoint operator F(P) by the inner product

BB -
(f, F(P)g) = [ ff(q")F(q"-q’)g(q‘)dq' dq' , (18)
[0 o
wiere
- 1 * itq
Fla) = 5 [ e~ F(g)dg (19)

subject to condition (17) for self-adjointness.

4, Alternative forms.

Equation (18) may be written as

-4~ #679
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Sf@n { [Fla" - aYgla')dq' }dq" = [ { [f(q")F(a'-qa')da" }alq') da' ,
[0 a

v



ﬁ_ © -, " _ ~t
(£, F(P)g) = [ f(a" { f% [ M p)ag g(q) da'} da
o o =00
- fﬂq”){i— fweiéq”r-‘mG(&)da } dg" ()
22 '\/—2—" - 0 ’
in whica
l B -1£ q'
o) = 5= Je g(a')dg' (21)
64

and where we have interchanged the order of the & and q' integrations. Hence

F(P) may be defined by

0
1 iEq
F(P)g(q) = e F(£)G(E)dE (22)
N 2T -l;

with G(£) given by (21). This is the representation proposed by Robinson
and Lewis [2].

Next we consider the special case F(P) = P . This operator can be
represented by the appropriate form of (22), but there is another form, which
can be obtained directly from (18) and (19). For F(P) = P, equation (19) may

be written as

-~

Flq) = -id'(q) , (23)

where &' is the first derivative of the delta function. Hence (18) gives

B p_
(£,Pg) = ~-i [ [f(q")s'(q"-q')g{qa’)dq dg" (24)
o
B_ B s ot g
= 1 [ (@ { J%%,-(q T) g(q')dq }dan
o o
B_ B_
= i ff(as(q-p)data) - i [f(a6(a"-a)dq” gle)
o o
B_
+ [fla) (-ifg )ola)da . (25)
(03
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If we write

jpf(q)é(ﬁ -q)dq = A f(B),

a

and

ff(qmq - a)dq = pi(a) ,

o

and impose condition (17) for self-adjointness, we find that

I |
A= p= —-2-— .
Thus (25) becomes
B_ 5 ) _
(£,Pg) = [f(a)(-i55 Jalada + 3i{f()a®) - fla)g
o

Defining & _(B-q) and 6+(q-a) by the relations

B
ff@)o_(B-a)dq = {(B), @ <u<p ,
u
v
[fa) 6,(q-a)dg =fla),  a<v <P,
o

we may write (29) in the form

B
(f,Pg) = [f

o

(@ {-15% +3i6_(B-a) -6 (a-2) }olarda
or

. 0 . X
P = —152{ + é‘lf)_(ﬁ—q) - ;1316+(CI‘0/)

(26)

(27)

(28)

(@)}« (29)

(30)

(31)

(33)

This is the representation of P suggested by Robinson and Hirschfelder (1]

using quite a different set of considerations.

5. Concluding remarks.

A representation for real functions of the momentum operator

P has been

obtained by using functional integration in phase space. The resulting

operators are self-adjoint on the interval [a,p] of the real line.

-6~
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operator P itself, the representation involves the first derivative of the
delta function, in agreement with the treatment of momentum given by
Kramers [4]. Some related work on operators, from quite a different
standpoint, can also be found in a paper by Fuchs [5].

The present work has dealt solely with cartesian coordinates. It would
be of interest to extend the method to other coordinate systems, though this
may prove difficult in the light of work by Edwards and Gulyaev [6] on
functional integrals in polar coordinates.

I should like to thank Professor J. O. Hirschfelder and Professor B. Noble
for helpful discussions on this subject, and Professor C. A. Coulson for

bringing the paper of Fuchs to my attention.
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