

ANALYTICAL STUDY
OF THE FRACTURE OF LIQUID-FILLED TANKS
IMPACTED BY HYPERVELOCITY PARTICLES

by
Pei Chi Chou Richard Schaller James Hoburg

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center

MARCH 1967

NASA Contract NsG-270

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:
A) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be reffered to:

> National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: AFSS-A Washington, D.C. 20546
3 ANALYTICAL STUDYOF THE FRACTURE OF LIOUID-FILLED TANKS
IMPACTED BY HYPERVELOCITY PARTICLES 6
by
6 Pei Chi Chou
Richard SchallerJames Hoburg
Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONLewis Research Center
$9_{\text {MARCH }} 196710 \mathrm{CV}$
26 Grant cont Ns G-270 29A
Technical Management
NASA Lewis Research Center
Chemical Rocket Division
Cleveland, OhioRichard N, JohnsonDrexel Institute of Technology32nd and Chestnut StreetsPhiladelphia, Pennsylvania 19150

TABLE OF CONTENTS

ABSTRACT. iv
SYMBOLS v
SUMMARY 1
I. INTRODUCTION 2
II. SHOCK WAVES IN WATER. 5
III. STRESS WAVES IN TANK WALLS. 9
IV. THRESHOLD IMPACT ENERGY 16
V. PARAMETRIC CALCULATIONS AND FRACTURE KINETIC ENERGY 18
VI. CONCLUDING REMARKS 22
VII. FIGURES 23
APPENDICES
A. Approximate Treatment of the Jump Conditions 43
B. Computer Program for Numerical Calculations 471. Comparison of the exact and approximate shock front positions, shockradius versus time, K.E. $=140 \mathrm{ft}-\mathrm{lbs}, \mathrm{r}_{0}=7 / 64 \mathrm{in} . \quad23$
2. Comparison of the exact and approximate peak pressures as functionsof radius, $K_{0} E$. $=140 \mathrm{ft}-1 \mathrm{bs}, \mathrm{r}_{0}=7 / 64 \mathrm{in} . \quad$. 24
3. Pressure distribution behind the shock front in water due to impact 25
4. Values of the pressure at grid points during early time after impact. 26
5. Characteristic network for application of numerical procedure. 27
6. Comparison of the response of a plate, M_{θ} versus time at $r=r_{0}$ for three different mesh sizes, under a projectile kinetic energy input of. $140 \mathrm{ft}-1 \mathrm{~b}, \mathrm{r}_{\mathrm{o}}=7 / 64 \mathrm{in}, \mathrm{h}=1 / 32 \mathrm{in}$. 28
7. Response of a 7075-T6 aluminum plate at several radii under an impact kinetic energy of $140 \mathrm{ft}-\mathrm{lb}, \mathrm{r}_{0}=7 / 64 \mathrm{in} ., \mathrm{h}=1 / 32 \mathrm{in}$.
a. Moment M_{θ} versus time. 29
b. Moment M_{r} versus time. 30
c. Shear force Q_{r} versus time 31
d. Transverse velocity of the plate w_{t} versus time. 32
e. Transverse displacement of the plate w versus time. 33
8. Transverse plate displacement versus radius, for a $1 / 64$ in. thick7075-T6 aluminum plate under a projectile kinetic energy of $50 \mathrm{ft}-\mathrm{lb}$. . . . 34
9. Threshold kinetic energy versus plate thickness for 7075-T6 aluminum
with an inner radius $r_{0}=7 / 64 \mathrm{in}$. 35
10. Threshold kinetic energy versus plate thickness for 5AL-2.5 Sn (ELI)
titanium with an inner radius $r_{0}=7 / 64 \mathrm{in}$. 36
11. Threshold kinetic energy versus plate inner radius for 7075-T6 aluminum with a constant plate thickness, $h=1 / 32 \mathrm{in}$. 37
12. Comparison of "exact" numerical solution and approximate solution neglecting jump conditions. 38
13. Comparison of "exact" numerical solution and approximate solution neglecting jump conditions for a Timoshenko beam. 39
TABLE I . 21

ABSTRACT

The problem of the fracture of liquid-fuel tank walls due to hypervelocity particle impact is investigated. A semi-empirical formula is used for the shock wave generated by impact in water. The numerical method of characteristics is adopted for the calculation of stress waves in the tank wall. Values of threshold impact kinetic energy, defined as the projectile energy above which fracture will occur, for a few wall thickness and materials are determined.

```
a,b,c= constants
c
c}2=\mathrm{ shear wave velocity = (G/O) (1/2
D = flexural rigidity = Eh }\mp@subsup{}{}{3}/12(1-\mp@subsup{v}{}{2}
E = modulus of elasticity
F(r,t) = surface traction, function of radial distance and time
        (force/unit area)
G - shear modulus = E/2(1+v)
h = plate thickness
K - constant
k}\mp@subsup{}{2}{2}=\mathrm{ shear correction factor
KE - kinetic energy of the impacting projectile
Mr_ radial bending moment
M
P
P
Q ( - transverse shear stress resultant
R = shock front radius
I = radial distance
ro = inner radius of plate
t = time
U = shock front velocity
u = particle velocity in water
```

= transverse displacement of the midplane
$\gamma=$ constant
$\theta \quad=$ tangential direction
$\nu \quad=$ Poisson's ratio
$\rho \quad=$ density of plate
$\rho_{0}=$ density of water ahead of shock front
$\rho_{1} \quad$ density of water behind shock front
$\sigma=$ normal stress due to M_{θ}
$\tau \quad=$ shear stress due to Q_{r}
$\phi \quad=$ rotation of the cross-section about the tangential axis

Subscripts r and t designate partial differentiations (except Q_{r} and M_{r}).
by

Pei Chi Chou, Richard Schaller, and James Hoburg

SUMMARY

This is a report on a study of the problem of the fracture of liquid-fuel tanks due to hypervelocity particle impact. The impact generates a shock wave in the liquid fuel. Calculations for the response of tank walls which are initially prepunched, i.e., have a hole at the center, and subjected to an axisymmetric moving shock wave are made. For simplicity, the liquid behind the tank wall is assumed to be water. Calculations for the magnitude of the pressure distribution behind the shock are made, utilizing the shock Hugoniot data for water, along with a semi-empirical formula relating the position of the shock front as a function of time and impacting kinetic energy.

Values of impact kinetic energies that produced a stress equal to the dynamic fracture strength of the material, assumed to be twice the value of the static yield strength, are found for 7075-T6 aluminum and 5AL-2.5 Sn titanium alloy tank walls with various hole sizes and thicknesses.

For the case of unpunched walls an estimation is made of the kinetic energy absorbed by the wall during perforation. A correlation is then made between the experimental energy necessary to produce fracture and the calculated energy necessary to produce fracture, (i.e. the sum of the threshold and perforation energies), for several unpunched walls under various impact conditions. The results are found to be in general agreement.

I INTRODUCTION

This report deals with the catastrophic failure (fracture) of a liquid-fuel tank wall due to hypervelocity particle impact. This particle may be an uninterrupted meteoroid, or from the debris of the protective thin bumper after being impacted by a high speed meteoroid.

The process from the moment of impact to the final failure of the tank wall may be generally divided into three stages, namely, the initial perforation, or puncture, the subsequent shock wave produced in the liquid fuel, and the final motion and fracture of the wall.

The perforation of thin plates by hypervelocity particles has been studied recently by many investigators. Bull (Ref. 1) assumed a onedimensional compressible-fluid model and performed both theoretical and experimental studies. Chou (Ref. 2 and 3) and Kraus (Ref.4) assumed a vsico-plastic model and a perforation criterion, from which the critical impact velocity and mass of the projectile may be calculated. Recently, this visco-plastic model has been verified by Kruszewski of NASA Langley Research Center, (Ref. 5). Other perforation studies have been carried out by Watson (Ref. 6), and Maiden and McMillan (Ref. 7). All of these perforation studies are for thin plates without liquid behind them. Very little information is available for the perforation of plates with water or other liquid behind them. Stepka and Morse (Refs. 8 and 9) made experimental investigation of the overall problem of impact fracture of fuel tanks; they did not investigate in particular the perforation phase of the problem.

Shock waves produced in liquids due to high speed particle impacts have been measured by Stepka, Morse, and Dengler (Ref. 10), and also Ferguson (Ref. 11). Stepka, et al, made extensive measurement of the shock waves produced in water, while Ferguson made limited measurements of shocks in liquid hydrogen. Presented in Reference 12 is a semi-emperical formula for the shock front radius and velocity, which agrees fairly well with the experimental results in both References 10 and 11。 Because of the uncertainity of the shock Hugoniot data, the pressure behind the shock front cannot be calculated accurately for liquid hydrogen. For this reason, the present report will be limited to discussion on water filled tanks only. The technique presented here may be applied to any liquid as long as its shock Hugoniot data is known. The semi-emperical formula of Reference 12 , which is based on the kinetic energy of the projectile, will be used in this report for calculating the shock radius in water.

It will be shown that the maximum stress in the tank wall is due to bending created by the shock wave in liquid, and occurs a few microseconds after impact. In Reference 13, a numerical method of characteristics was presented for the calculation of bending waves in plates due to stationary concentrated ring loads applied at the edge of the plate. In this report, the method of Reference 13 is extended to include the moving load of the traveling shock wave. It is found that the maximum stress always occurs at the edge of the perforated hole of the wall. After the maximum stress is calculated, a failure criterion is adopted, which stipulates that the wall will crack if the maximum stress is larger than twice the static yield stress of the wall material. In other words, the dynamic strength is assumed to be twice the static yield stress. Once a crack occurred, the additional pushing from the high pressure region in water should keep it propagating to complete failure.

Combining the shock wave formulas, the stress wave in tank wall calculation, and the failure criterion, a threshold impact energy is established for a plate of given material, thickness, and hole diameter (approximately the projectile diameter). For impacts with kinetic energies entering water above the threshold value, fracture will occur. A parametric calculation of the threshold kinetic energy as functions of wall plate thickness and projectile diameter for 7075-T6 aluminum and 5AL-2.5 Sn titanium alloy was made and results presented in this report.

In order to compare the present calculated results with the experimental results of References 8 and 9, an estimation of the energy required for the initial perforation is made. Values of the sum of the perforation energy and the threshold energy are in general agreement with the kinetic energies of projectiles that actually perforated and burst the tanks.

Two appendices are included: the first one gives justification of some of the assumptions used in the stress wave calculation, the second appendix contains the basic computer program for the calculations of this report.
A. Shock Front and Peak Pressure

The high pressure region created in water after being impacted by a high velocity projectile has been studied in Refs. 10 and 12. In Ref. 12 a simple semi-empirical equation is presented which gives the shock radius and peak pressure as functions of time. The experimental results reported in Ref. 10 are in agreement with this equation. In this report, the semi-empirical equation of Ref. 12 will be utilized,

The equations for the shock radius, R, and shock velocity, U, as derived in Ref. 12, are

$$
\begin{align*}
& R=0.05678 t+0.0197(K E)^{1 / 3} \log _{e}(t+1) \tag{1}\\
& U=\frac{d R}{d t}=0.05678+\frac{0.0197(K E)^{1 / 3}}{t+1} \tag{2}
\end{align*}
$$

where R is in inches, t in microseconds, kinetic energy in ft-1bs, and U in inches per usec. As can be seen, eqs. 1 and 2 are based on the assumption that the shock wave in water depends only on the kinetic energy of the projectile, and is independent of other properties of the projectile. The particle velocity, u, may be calculated from U once the shock Hugonoit is known. We shall use the semi-empirical shock Hugoniot relation for water presented by Rice and Walsh (Ref. 14).

$$
\begin{equation*}
U=1.483+25.306 \log _{10}\left(1+\frac{u}{5.19}\right) \tag{3}
\end{equation*}
$$

Where u and U are expressed in $\mathrm{Km} / \mathrm{sec}$.
From the conservation of mass and momentum across the shock front, the following simple equations may be obtained.

$$
\begin{equation*}
u=\frac{\rho_{1}-\rho_{0}}{\rho_{1}} U \tag{4}
\end{equation*}
$$

$$
U=\left[\begin{array}{ll}
\rho_{1} & \rho_{1}-P_{0} \tag{5}\\
\rho_{0} & \frac{\rho_{1}-\rho_{0}}{}
\end{array}\right]^{1 / 2}
$$

where P is pressure in psi, ρ is density in $\frac{1 b f-\mu s e c^{2}}{i n^{4}}$ and subscripts
1 and 0 refer to properties behind and ahead of the shock, respectively.
Substituting eq. (4) into eq. (5) and rearranging we obtain

$$
\begin{equation*}
P_{1}=U u \rho_{0}+P_{0} \tag{6}
\end{equation*}
$$

For a given impact kinetic energy, U may be calculated from (1) and (2) as a function of R; then u can be calculated from (3); and P_{1} as a function of R from (6).
B. Approximate Shock Front and Peak Pressure

For convenience in computer calculation, the shock radius vs. time curve as given by eq. (1) is approximated by two straight lines in the $r, c_{p} t$-plane. The equations of these two straight lines are

$$
\begin{align*}
& c_{p} t-a r=0 \tag{7}\\
& c_{p} t-b r=c
\end{align*}
$$

A comparison of the curve given by eq. (1) with the corresponding curves by (7) is shown in Figure 1, which is for an impacting particle with a $7 / 32$ in. diameter and an impact $K . E$. of $140 \mathrm{ft}-\mathrm{lbs}$. In this case, for a 7075-T6 aluminum plate the value of $c_{p}=2.10334 \times 10^{5}$ $\mathrm{in} / \mathrm{sec}$, and the values of a, b and c are

$$
\begin{aligned}
& a=1.8476 \\
& b=2.8889 \\
& c=0.5978
\end{aligned}
$$

The peak pressure vs. shock radius curve, as calculated from eqs. (1), (2), (3), and (6), is likewise approximated by a simple equation for easy computer application. This equation is of the form

$$
\begin{equation*}
P_{1}=K R^{\gamma} \tag{8}
\end{equation*}
$$

Figure 2 shows, for a $140 \mathrm{ft}-1 \mathrm{bs}$ impact, the curve of eq. (8) as compared to the one from eq. (6). In this case $K=2.0656 \times 10^{4}$. $\gamma=-1.65$. The value of one of the constants, K or γ, is determined by the condition that the value of P_{1} from eq. (8) is exact at $r=r_{0}$. The other constant is fixed by the simple inspection of curves plotted from various values of this constant. C. Pressure Distribution Behind the Shock Front

The pressure in water between the shock front and the edge of the hole is acting on the tank wall. in addition to the peak pressure at the shock front. The exact distribution of this pressure is not known precisely, although Stepka and Morse (Ref. 8) have made some preliminary experimental measurements. Their experiment consisted essentially of placing two pressure sensing devices in water at distances of 1.44 in , and 1.87 in . respectively, from the point of impact. The measured pressure vs. time curves shown in Figure 9 of Ref. 8 contain considerable oscillations. However, if the oscillations are ignored, the average values of each of these curves may be used to estimate the pressure distribution behind the shock front.

It is reasonable to assume that at the edge of the plate, $r=r_{0}$, the pressure is zero, or, atmospheric, which for our practical purposes may be considered zero. We shall further assume that the pressure behind the shock front varies according to the fourth power of the radius measured from r_{0}; this may be expressed as

$$
\begin{equation*}
\frac{P}{P_{1}}=\left(\frac{r-r_{0}}{R-r_{0}}\right)^{4} \tag{9}
\end{equation*}
$$

Figure 3 shows a plot of this equation together with a few experimental points as obtained by Stepka and Morse in Ref. 8. In plotting
these points, eq. (1) is used for the position of the shock front, and the value of r_{0} is $7 / 64 \mathrm{in}$. As can be seen, equation (9) agrees fairly well with the test data.

In the numerical calculation, a constant pressure distribution behind the shock front is assumed for early times after impact, up to one $\mu \mathrm{sec}$. This assumption was introduced because of the limited number of grid points in the $r, c_{p} t$ plane (physical plane) during the early times. Within a short time after impact, the peak pressure decays quite rapidly along the shock front, this, coupled with the rapid decay behind the shock, causes a very large difference in values of pressures at two neighboring points in the physical plane. For example, for a kinetic energy of $140 \mathrm{ft}-\mathrm{lbs}_{\mathrm{o}}$, the pressures at the first few points in the physical plane are shown in Figure 4 for a mesh size of $\Delta r=0,00625$ in. Along the constant time lines where there are only one or two points with pressure different from zero, the total force on the plate is much higher than it should be. For example, along one constant time line (ABD) there is only one grid point to the left of the shock, at this grid point; B, the pressure is 100,000 psi。 Within the finite-difference scheme of calculation, this is equivalent to assuming that this pressure is uniformly distributed from the shock front to the boundary, $r=r_{0}$, $i_{0} e A$ to D_{0} The total force, eg. $100,000 \pi\left(r_{D}^{2}-r_{0}^{2}\right)$, acting in such a case is much higher than that produced by equation (9) at this time. Furthermore, this total force at a given time varies with the mesh size used in the numerical calculation.

To remedy this situation, a constant pressure distribution is assumed for time less than one usec. Along each constant time line, a constant pressure of one-fifth that at the shock front is used. The
total force acting on the plate due to this constant pressure is approximately the same as that due to the actual pressure distribution of equation (9) at any particular time。

After one $\mu s e c$, the pressures no longer vary drastically from point to point, the total force is no longer highly dependent upon mesh size, and there are more grid points along each constant time line. Thus, after this time, we use the true pressure distribution as given by eq. (9).

III STRESS WAVES IN TANK WALLS

A. Characteristic Equations

The Uflyand-Mindlin equations, in polar coordinates, for an elastic plate with surface tractions under axisymmetrical loading conditions are:

$$
\begin{align*}
& \frac{\partial M_{r}}{\partial r}+\frac{1}{r}\left(M_{r}-M_{\theta}\right)-Q_{r}=\frac{\rho h^{3}}{12} \frac{\partial^{2} \theta}{\partial t^{2}} \tag{10}\\
& \frac{\partial Q_{r}}{\partial r}+\frac{1}{r} Q_{r}+F(r, t)=\rho h \frac{\partial^{2} w}{\partial t^{2}} \tag{11}\\
& M_{r}=D\left(\frac{\partial \phi}{\partial r}+\frac{\nu}{r} \phi\right) \tag{12}\\
& M_{\theta}=D\left(\frac{\phi}{r}+v \frac{\partial \phi}{\partial r}\right) \tag{13}\\
& Q_{r}=K_{2}^{2} G h\left(\phi+\frac{\partial w}{\partial r}\right) \tag{14}
\end{align*}
$$

Due to the axisymmetrical loading conditions, it is evident that $M_{r \theta}=Q_{\theta}=\frac{\partial}{\partial \theta}=0$. Equations (10), (12), (13), and (14) are identical to equations (1), (3), (4), and (5) of Ref. 13. Equation (11) differs from equation (2) of Ref. 13 in that it has an added surface traction term $F(r, t)$. The system of equations (10) to (14) are hyperbolic
equations and their characteristic directions and characteristic equations have been derived by Jahsman in Ref. 15. In this report, we shall follow the displacement approach which uses a system of two second-order equations involving ϕ and w. The method of characteristics is applied to this set of second-order equations. Substituting eqs. (12), (13), and (14) into eqs. (10) and (11) we have

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial r^{2}}-\frac{\rho h^{3}}{12 D} \frac{\partial^{2} \phi}{\partial t^{2}}=\frac{k_{2}{ }^{2} G h}{D}\left(\phi+\frac{\partial w}{\partial r}\right)+\frac{1}{r^{2}} \phi-\frac{1}{r} \frac{\partial \phi}{\partial r} \tag{15}\\
& \frac{\partial^{2} w}{\partial r^{2}}-\frac{\rho}{k_{2}{ }^{2} G} \frac{\partial^{2} w}{\partial t^{2}}=-\frac{1}{r}\left(\phi+\frac{\partial w}{\partial r}\right)-\frac{\partial \phi}{\partial r}-\frac{F\left(r_{\rho} t\right)}{k_{2}{ }^{2} G h} \tag{16}
\end{align*}
$$

Equations (15) and (16) are also hyperbolic in nature and their physical characteristics, or characteristic directions, are, as demonstrated in Ref. 13,
$\left.I^{-} I^{-}\right\} \frac{d r}{d t}= \pm c_{p}$
$\left.\begin{array}{l}\mathrm{II}^{+} \\ \mathrm{II}^{-}\end{array}\right\} \frac{\mathrm{dr}}{\mathrm{dt}}= \pm \mathrm{k}_{2} \mathrm{c}_{2}$
Equations (17) and (18) represent four physical characteristics. For a plate in which E, ρ, and v are constant, the two wave speeds, as given by eqs. (17) and (18) are constant, and the physical characteristics are straight lines when represented in the $r, c_{p} t-p l a n e$.

The characteristic equations along I^{+}and I^{-}are, respectively,

$$
\begin{equation*}
\frac{1}{c_{p}} d \phi_{t} \mp d \phi_{r}=\mp\left(\frac{k_{2}^{2} G h}{D}\left(\phi+w_{r}\right)+\frac{\phi}{r^{2}}-\frac{\phi_{r}}{r}\right) d r \tag{19}
\end{equation*}
$$

where the upper signs refer to I^{+}, and the lower signs to I^{-}. The
characteristic equations along II^{+}and II^{-}respectively.

$$
\begin{equation*}
d w_{r} \mp \frac{1}{k_{2} c_{2}} d w_{t}=-\left(\frac{1}{r}\left(\phi+w_{r}\right)+\phi_{r}+\frac{F(r, t)}{k_{2}^{2} G h}\right) d r \tag{20}
\end{equation*}
$$

Again, we see that equation (20) differs from equation (11) of Ref. 13 by an added surface traction term, $F(x, t)$, which is a known function. These four equations, (19) and (20) govern the variation of the variables W_{T}, W_{t}, ϕ_{r}, and ϕ_{t}, along the physical characteristic directions. Two additional equations, based on the continuity of ϕ and w, or

$$
\begin{align*}
& \mathrm{d} \phi=\phi_{r} \mathrm{~d} r+\phi_{t} \mathrm{dt} \tag{21}\\
& \mathrm{dw}=w_{r} \mathrm{dr}+w_{t} \mathrm{dt} \tag{22}
\end{align*}
$$

can be written along any direction. For instance, along a vertical direction $\mathrm{dr}=0$, (21) and (22) may be written as

$$
\begin{align*}
& d \phi=\phi_{t} d t \tag{23}\\
& d w=w_{t} d t \tag{24}
\end{align*}
$$

We now have a system of six equations (19), (20), (21), and (22)
for the six variables $w_{r}, w_{t}, \phi_{r} \phi_{t}, \phi_{\theta}$ and w.
B. Initial and Boundary Conditions

The problem treated in this report involves an infinite plate with a circular hole of radius r_{0}. Thus, the region is specified by $r_{0} \leq r<\infty$. The proper initial conditions for this problem require the specification of the four variables $\phi_{r}{ }^{\prime} \phi_{t}, w_{r}$, and w_{t} at $t=0$. For the case of our infinite plate under no initial loads and velocity, the initial conditions are

$$
\begin{equation*}
\phi_{r}(r, 0)=\phi_{t}(r, 0)=w_{r}(r, 0)=w_{t}(r, 0)=0, r_{0} \leq r<\infty . \tag{25}
\end{equation*}
$$

At $r=r_{0}$, a properly posed boundary condition requires the specification of one of the two functions ϕ_{r} and ϕ_{t}, and one of the two functions w_{r} and w_{t}. Or, alternatively, by using equations (12), (13), and (14), any two of the five functions $M_{r}, M_{\phi}, Q_{r}, \phi_{t}$, and w_{t} may be specified along $r=r_{0}$. For the present fuel tank problem the proper boundary conditions are

$$
\begin{equation*}
Q_{r} \equiv M_{r} \equiv 0 \text { at } r=r_{0} \tag{26}
\end{equation*}
$$

As discussed before, the moving load on the tank wall will be due to a spherical hydrodynamic shock wave that travels through the fuel after impact. The position, velocity, and pressure of the shock front as well as the pressure distribution behind it have been discussed in Section II。

Since the wave front travels along a line specified by equation (1) or (7), the region between this line and $t=0$ in the physical plane (r vs. $c_{p} t$) is free of surface tractions. Therefore, this region contains the trivial solution of vanishing derivatives of ϕ and w.

In Ref. 13 the problem of discontinuities in the first derivatives of displacement due to step or jump inputs at the boundary was treated. With a step input in stress, moment, or particle velocity at the boundary, discontinuities in stress, moments, or the first derivatives of displacement could exist across the two right running physical characteristics (eqs. (17 and (18), with the upper sign) emitted from the mesh point $r=r_{0}$ at $t=0$ 。

For the present problem the peak pressure front of the moving load is actually a discontinuous surface traction (step input) moving out
over the plate. This means that discontinuities (jumps) in the first derivatives of ϕ and w could occur along all physical characteristics eminating from the shock front line in the physical plane. This condition would make the problem extremely difficult to solve from the numerical standpoint.

To eliminate the condition of lines of possible discontinuities in the physical plane, jump conditions were simply neglected. Justification for this approach is given in Appendix A.

C. Numerical Procedures

The procedure for numerical calculations is adapted from that presented in Ref. 13. Evenly spaced I^{+}and I^{-}characteristics are used as the main network as shown in Figure 5. Although there are four families of characteristic lines in the physical plane, only properties at the grid points, the intersections of I^{+}and I^{-}characteristics, will be calculated. The values at points 5 and 6 of Figure 5 which lie along II^{+}and II^{-}characteristics are found by linear interpolation. For example, the values at point 5 are found by linear interpolation between those at points 2 and 4. Therefore ${ }_{0}$ assuming that the values of the variables at the back points $2,3,4,5$ and 6 are known we can now write eqs. (19). (20) (with the upper and lower signs along the corresponding characteristics), (21) and (22) in finite difference form. This gives us six equations to solve for the six unknowns $\phi_{\boldsymbol{\prime}} \phi_{r}, \phi_{t}$, $w_{0} w_{r^{0}}$ and w_{t} at point $l_{\text {。 }}$

For points on the boundary $\mathrm{r}=\mathrm{r}_{0}$ the I^{+}and II^{+}characteristics represented by eqs. (19) and (20) with the upper signs are absent. For
this problem, M_{r} and Q_{r} are specified along $r=r_{0}$. Therefore, eqs. (12) and (14) along with eqs. (19), (20) (with the lower signs), (21), and (22) form a system of six equations necessary for the determination of the six variables $\phi_{\theta} \phi_{r}, \phi_{t}, w_{0} w_{r}$, and w_{t}.

D. Specific Example

The problem considered in detail involved a plate made of 7075-T6 aluminum with the following dimensions and elastic properties:

$$
\begin{array}{ll}
\rho=0.2613 \times 10^{-3} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} & \mathrm{k}_{2}^{2}=0.85 \\
G=3.9 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2} & E=10.4 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2} \\
r_{0}=7 / 64 \mathrm{in} . & v=0.33
\end{array}
$$

$$
h=1 / 32 \mathrm{in} .
$$

This plate is of the same dimension and material as one in the experimental tests made on plates with prepunched holes by Stepka and Morse ${ }_{8}$ as presented in Table 1 of Ref. 8. The projectile had a mass of $0.042 \mathrm{lbm} / \mathrm{cu} . \mathrm{in}$. and a velocity of $6300 \mathrm{ft} / \mathrm{sec}$. which gave an impact kinetic energy of $140 \mathrm{ft}-\mathrm{lbs}$.

The calculations were performed on an IBM 7040 computer, with an average running time of 30 minutes to obtain a plate response history of $20 \mu \mathrm{sec}$. For the assumed pressure distribution discussed in Section II, it was found that the solutions converged to a stable value when a mesh size of $\Delta r=0.00625$ was used. Figure 6 shows a plot of M_{θ} (the bending moment in the θ-direction) versus time at the boundary ($r=r_{0}$) for three different mesh sizes, $\Delta r=.0125$, . 00625 and .003125. As can be seen, the difference between the curves with the two smaller mesh sizes is very slight. It was also found that the same order of magnitude of difference existed for all the dependent variables, both at the boundary and at interior points in the plate.

- Figures 7a through 7e show the distribution $M_{\theta_{\theta}} M_{r}{ }^{\theta} Q_{r}, w$ (plate deflection) ${ }_{0}$ and w_{t} (plate velocity) at several radii.

The maximum bending moment generated in the plate occured at the boundary $\left(r=r_{0}\right)$. This can be obsorved by comparing values of M_{θ} and M_{r} at several radii in Figures $7 a$ and $7 b$ to the values of M_{θ} at the boundary ($r_{0}=7 / 64$ in.) in Figure 6. The maximum normal stress generated in the plate due to bending can be obtained from the following formula (see Ref. 16).

$$
\begin{equation*}
\sigma_{\theta}=\frac{6 M_{\theta}}{h^{2}} \tag{27}
\end{equation*}
$$

We see from Figure 6 that M_{θ} reaches a maximum of 24.75
in-1b/in。in 1.66 pec. Therefore the bending stress for this impact reaches a maximum value of $152,000 \mathrm{psi}$ in the same time interval.

The shear stress at any point in the plate is given by (Ref. 17).

$$
\begin{equation*}
T=\frac{3}{2} \frac{Q_{r}}{h} \tag{28}
\end{equation*}
$$

We see from Figure $7 c$ that Q_{r} (transverse shear stress resultant) builds up to a maximum value of $-800 \mathrm{lb} / \mathrm{in}$, at $\mathrm{r}=0.25$ inch within 1.4 usec. Substituting this value of Q_{r} into eq. (28) gives a value for the maximum shear stress of $40,000 \mathrm{psi}$, which is about one-fourth the value of the maximum bending stress. From other impact conditions it was also observed that the maximum value of the shear stress did not become much larger than one-fourth of the maximum value of the normal stress in the plate. Therefore it can be concluded that the stress governing failure is the bending stress obtained from eq. (27).

Rinehart and Pearson in Ref． 18 have listed experimental values of the critical normal fracture stress for several metals under the action of dynamic or impulsive loads．Their results indicate that the dynamic fracture stress of a metal under dynamic loading conditions is approximately twice the value of the static yield strength of the metal．

We shall define a threshold impact energy as the kinetic energy that will create，in a plate，a bending stress twice the value of the static yield stress of the material。 Therefore，any kinetic energy less than the threshold kinetic energy is a safe value

For 7075－T6 aluminum the static yield strength is $77,000 \mathrm{psi}$ ， therefore the dynamic fracture stress of this metal would be 154,000 psi。 It was found in the previous section that a projectile kinetic energy of $140 \mathrm{ft}-\mathrm{lb}$ 。generated a bending stress of $152,000 \mathrm{psi}$ in a $1 / 32$ in。 thick 7075－T6 aluminum plate with an inner radius of $r_{0}=7 / 64$ in．Calculations made for the same plate thickness and the same projectile diameter，but at a higher impact velocity corresponding to an impact kinetic energy of $210 \mathrm{ft}-1 \mathrm{bs} \mathrm{o}_{0}$ ，yielded a maximum bending stress of $194,000 \mathrm{psi}$ ，con－ siderably higher than the dynamic fracture stress．By interpolation， the threshold kinetic energy of $143 \mathrm{ft}-\mathrm{lb}$ 。is obtained for this plate． Experimental results reported in Ref． 8 indicated that a kinetic energy of $210 \mathrm{ft}-\mathrm{lb}$ 。failed a $1 / 32$ in．plate，whereas a kinetic energy of 140 $\mathrm{ft}-\mathrm{lb}$ ．did not fail the plate；in agreement with our calculation．

In all cases that we considered in this report，the plates were assumed to be prepunched，therefore all the kinetic energy of the
projectile was transferred into the water behind the plate. Stepka and Morse only stated results for one prepunched plate which was for 7075-T6 aluminum with a plate thickness of $1 / 32$ of an inch see Table 1 of Ref. 8. This case gave good correlation with the results found in this report as was previously pointed out. In order to compare the results of this report with the rest of the tests in References 8 and 9, which are for unpunched plates, we must now consider the amount of projectile kinetic energy that is necessary to puncture the plate.

In an unpunctured plate there is a partition of the impact energy into the amount necessary to puncture the plate and the remaining amount that creates a high pressure region in the water. A comparison of the threshold kinetic energy as obtained in this report with the experimental values of References 8 and 9 will be pointed out in the following section.

In the analysis of the moving load problem the linear plate equations (10) to (14) were used. These basic equations are only valid under the conditions of small deflections. If large deflections occur in the plate then the non-linear Von Karman equations or the membrane equations must be used to describe the plate behavior, as was done in Ref. 19.

It was found that for a $1 / 64$ in。 thick $7075-\mathrm{T} 6$ aluminum plate, which was the thinnest plate studied, the maximum plate deflection did not exceed 0.017 inches for a kinetic energy of $50 \mathrm{ft}-1 \mathrm{~b}$, which is the threshold kinetic energy for the plate. Figure 8 shows a plot of the transverse displacement of the midplane of the plate, w_{θ} versus r at the time when the maximum bending moment M_{θ}, and the maximum bending stress occur in the plate. At this time the wave front in the plate is at a radius of 0.48 inches. Since 0.017 inches is not a large deflection for a plate radius of 0.48 inch. it can be concluded that the linear plate equations sufficiently described the behavior of the plates for the present case.

The stresses generated in a plate subjected to a moving load depend upon the material used, $i_{0} e_{0}, E, G, V_{1}$ and ρ_{0} and the geometry of the plate, in this case the inner radius r_{0} and the plate thickness h. Therefore, if we consider the problem of a particle with a given kinetic energy impacting into water through a hole in a plate, the stresses generated in the plate due to the high pressure in the water may vary considerably if the geometry or the material of the plate is changed.

Included in this report is a parametric study of two materials, 7075-T6 aluminum and 5AL-2.5 Sn (ELI) titanium alloy. The first material was studied because there is sufficient experimental data available in references 8 and 9 for comparison purposes. The second metal was chosen because of its potential use in the application of liquid fuel tanks.

Figures (9) and (10) are plots of threshold kinetic energy versus plate thickness for the two different materials, both with $r_{0}=7 / 64$ in Note that as the plate thickness is increased, a higher impacting kinetic energy is needed to fail the plate. This is because the resistance due to bending increases as the plate thickness increases. It was previously pointed out that the critical stresses generated in the plate were the normal stresses due to bending, therefore it takes a higher impacting kinetic energy to generate the same critical bending stress σ_{θ} in a thicker plate. It should be noted that the points on these curves are computer calculated, not experimental data.

Figure (11) is a plot of the threshold kinetic energy versus the plate inner radius r_{0} for a $1 / 32$ in. thick $7075-T 6$ aluminum plate. It is interesting to note that for the same kinetic energy input if the inner radius of the plate is allowed to decrease, the bending moment M_{θ} at the boundary $\mathbf{r}=\mathrm{r}_{\mathrm{o}}$ increases。 Hence, it takes a smaller threshold kinetic energy to fail
a given plate with a smaller inner radius. This fact is illustrated in Figure (11) of this report and also in Table I of Reference 9, assuming that the given projectile radius is equal to r_{0}.

The threshold kinetic energies which are obtained in this report for a $1 / 32$ in. thick $7075-\mathrm{T} 6$ aluminum plate with different inner radii are consistently lower than those presented in Reference 9. The reason, as was pointed out earlier in this report, is that in our calculation the impacting particle is assumed to deliver all of its kinetic energy to the water behind the plate. This condition is physically analogous to the case where a particle impacts into water behind a plate through a prepunched hole. Since all but one of the test firings in References 8 and 9 were for un-punched plates, it took a higher kinetic energy than the threshold kinetic energy to fail the plate; some of the kinetic energy was absorbed by the plate, hence only a percentage of the impacting energy was transmitted to the water behind the plate.

The actual mechanism of the perforation of a plate after being impacted by a high speed projectile is quite complex. Immediately after impact strong shock waves are produced both in the plate and in the projectile. These shock waves, which initially are plane waves, are attenuated from the lateral free surfaces of the projectile; upon reaching the back surface of the projectile and the back surface of the plate they also reflect into rarefaction waves. Depending on the impact velocity and plate material, the viscoplastic effect may be important.

In general terms, there are three processes for energy dissipation during perforation. The first one is shock dissipation; it is well known that a shock wave is an irreversible process, across which kinetic energy is dissipated into heat energy. The second process of energy dissipation is the back splash of the projectile material. Strictly speaking, this is not a dissipation, but rather a transfer of part of the energy into the material that moves backward, not into the tank. The third process is the viscous dissipation; kinetic energy transfers into heat energy through viscosity of the material. For simplicity, it will be assumed that the viscous dissipation is negligible. For impact situations where the plate thickness is small compared with the projectile diameter it will be assumed that the other two processes combined will constitute a kinetic energy loss equal to the kinetic energy possessed by a cylinder of the plate material having a thickness twice that of a plate, a diameter equal to that of the projectile and traveling at a velocity equal to the original projectile velocity. Based on this assumption the perforation kinetic energy is calculated.

Shown in Table I is the results of calculated perforation energy and threshold energy for a few impact cases. The corresponding experimental results as reported in References 8 and 9 are also included in Table 1 .

It can be seen that the sum of the perforation energy and the threshold energy, which will be called the fracture kinetic energy, is in general agreement with the energy possessed by projectiles that actually perforated and burst fuel tanks during experiments.

TABLE I

CRITICAI KINETIC ENERGIES FOR $1 / 32 " 7075$ T-6 ALUMINUM PLATE

				CALCULATED			EXPERIMENTAL
TEST	PROJECTILE DIAMETER (in)	$\begin{aligned} & \text { PRO- } \\ & \text { JECTILE } \\ & \text { MATERIAL } \end{aligned}$	PREPUNCHED PLATE	THRESHOLD ENERGY $(f t-1 b)$ $(K E)_{T}$	PERFORATION ENERGY (ft-lb) ${ }^{(K E)}{ }_{P}$	$\begin{aligned} & \text { FRACTURE } \\ & \text { ENERGY } \\ & (\mathrm{ft}-\mathrm{lb}) \\ & (\mathrm{KE})_{\mathrm{F}}=(\mathrm{KE})_{\mathrm{T}} \\ & \quad+(\mathrm{KE})_{\mathrm{P}} \end{aligned}$	ENERGY THAT PRODUCED FRACTURE $(\mathrm{ft}-1 \mathrm{~b})$
1.	7/32	Aluminum	yes	143	0	143	210 (Ref. 8)
2.	7/32	Aluminum	no	143	142	285	330 (Ref. 8)
3.	1/8	Aluminum	no	95	190	285	253 (Ref. 9)
4.	1/16	Steel	no	55	76	131	140 (Ref. 9)

CONCLUDING REMARKS

The problem being studied in this report is primarily for an unprotected fuel tank impacted by hypervelocity particles. If the velocity of the projectile is extremely high, it is conceivable that for a bumper-protected fuel tank the debris of the bumper and the projectile will still possess enough kinetic energy to penetrate the tank wall and create a high pressure region in the liquid fuel. For those cases the calculations performed in this report are still applicable. However, for a properly designed bumperprotected tank, the debris and the remnants of the projectile should not possess too much kinetic energy, and should not be able to puncture the main wall and create a high pressure region in the liquid fuel. In this case, the main wall is loaded primarily on the front face by the debris cloud of the impacted bumper. The pressure created in the liquid fuel will not be too high; the deflection of the wall will be inward, instead of the outward deflection of the unprotected wall. The problem of the stress, deflection, and failure of a bumper-protected wall will be studied in the next phase of this project.

$c_{p} \dagger$

Figure 4. Values of the pressure at grid points during early time after impact.

Figure 5. Characteristic Network for Application of Numerical Procedure.

Figure 6. Comparison of the response of a plate, ${ }^{M} \theta$ versus time at $\mathbf{r}=\mathbf{r} \mathbf{r}^{\prime}$ input of $140 \mathrm{ft}-1 \mathrm{~b}, \mathrm{r}_{0}=7 / 64 \mathrm{in} ., \mathrm{h}=1 / 32 \mathrm{in}$.

(u!/qI-U! $)^{8} W^{`} \perp$ NヨWOW

Figure 7. Response of a 7075-T6 aluminum plate at several radii under an impact

VIII REFERENCES

1．Bull，C．Vo，et al．o＂Review of Hypervelocity Impact Studies at McGill University，＂Report No．63－15，Dec． 1963.

2．Chou，P．C．＂Perforation of Plates by High－Speed Projectiles，＂Vol．I of Developments in Mechanics，J．E．Lay and L．E．Malvern，eds．． Plenum Press ${ }^{\text {© }} 1961$.

3．Chou，P．C．＂Visco－Plastic Flow Theory in Hypervelocity Perforation of Plates，＂Proc．of the Fifth Symposium on Hypervelocity Impact， Vol．$I_{\text {，}}$ Pt．$I_{\text {，Apr．}}$ 1962 pp．307－328．

4．Kraus，Ho＂Two－Dimensional Analysis of a Hypervelocity Impact Upon a Visco－Plastic Plate ${ }^{\prime \prime}$ Proc．of the Sixth Symposium on Hypervelocity Impact，Vol．III，Aug．1963，pp．13－40．
（Sponsored by U．S．Army，U．S．Air Force and U．S．Navy．）
5．Kruszewski，E．J．，＂Protection of Spacecraft from Meteoroid Impact，＂ presented at Highwater Laboratory Conference on Meteoroid Impact，＂ July 14，1966。

6．Watson，R．W．，＂The Perforation of Thin Plates by High Velocity Fragments ${ }_{0}$＂Proc．of the Fifth Symposium on Hypervelocity Impact ${ }^{\prime \prime}$ Vol．I，Pt．2，Apr． 1962.

7．Maiden，C．J．，and McMillan，A．R．，＂An Investigation of the Protection Afforded a Spacecraft by a Thin Shield。＂AIAA Journal， Vol．2，No．11，November 1964，pp．1992－1998．

8．Stepka，F．S．and Morse，C．R．，＂Preliminary Investigation of Catastrophic Fracture of Liquid－filled Tanks Impacted by High－Velocity Particles』＂NASA TN D－1537，May 1963.
9. Morse, C. R. and Stepka, F. S., "Effect of Projectile Size and Material on Impact Fracture of Walls of Liquid-filled Tanks," NASA TN D-3627, September 1966.
10. Stepka, F.S., Morse, C. R. and Dengler, R. P。。"Investigation of Characteristics of Pressure Waves Generated in Water-filled Tanks Impacted by High Velocity Projectiles," NASA TN D-3143; December 1965.
11. Ferguson, C. W., "Hypervelocity Impact Effects on Liquid Hydrogen Tanks" NASA CR-54852, March 31, 1966.
12. Chou, P. C., Sidhu, H. S. and Karpp, R. R., "Analysis of Peak Pressure Generated in Water by High Velocity Impact," DIT•Report No. 160-1, NASA CR-50249, April 1963.
13. Chou, P. C. and Koenig, H. A., "Flexural Waves in Elastic Circular Plates by Method of Characteristics," DIT Report No. 160-6, August 1965.
14. Rice, M. H. and Walsh, J. H., "Equation of State of Water to 250 Kilobars," Journal of Chemical Physics, Vol. 26, P: 824, 1957.
15. Jahsman, W. E., "Propagation of Abrupt Circular Wave Fronts in Elastic Sheets and Plates," Proc. of the 3rd National Congress of Applied Mech., 1958, pp. 115-202.
16. Timoshenko S. and Woinowsky-Krieger, S. "Theory of Plates and Shells," McGraw-Hill Book Co. Inc., 2nd Edition, 1959, p. 108.
17. Timoshenko, S. and Woinowsky-Krieger, S.. "Theory of Plates and Shells," McGraw-Hill Book Co. Inc., 2nd Edition, 1959, p. 82.
18. Rinehart, J. S., Pearson, J., "Behavior of Metals Under Impulsive Loads," American Society for Metals, 1954, p. 128.
19. Llorens, R. E., Chou, P. C. and Gold, L., "Axisymmetric Large Deflections of Circular Plates with a Central Hole," DIT Report No. 160-2, April 1963.
20. Chou, P. C. and Mortimer, R, W., "A Unified Approach to OneDimensional Elastic Waves by the Method of Characteristics," DIT Report No. 160-8, NASA CR-78493, September 1966.
21. Boley, B. A. and Chao, C. C., "Some Solutions of the Timoshenko Beam Equations," Jour. of Appl. Mech., Vol. 77, 1955, pp. 579-586.

APPENDIX A

APPROXIMATE TREATMENT OF THE JUMP CONDITIONS

When a discontinuity in stresses, or in the derivatives of displacements, exists on the boundary, $r=r_{0}$ or on the initial value line, $t=0$, it propagates along the characteristics in a manner as discussed in Ref. 20. In carrying out the numerical integrations of a problem, the location of these discontinuities in the $\mathrm{r}_{\mathrm{p}} \mathrm{t}$-plane must be traced and the jumps in all quantities must be accounted for. In the present problem where the applied load has a moving wave front, discontinuities are excited at every point on the wave front in the $r_{0} t-p l a n e . ~ I f ~ t h e ~$ propagation of these discontinuities were to be handled exactly, the numerical work would be prohibitive. In this appendix, it will be demonstrated by simple examples that the propagation of these discontinuities may be treated in a simple approximate manner. More specifically, the propagation of these discontinuities may be ignored completely.

In the first example, we shall consider the following differential equation governing the variable $u_{\text {, }}$

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} u \tag{A,1}
\end{equation*}
$$

where a value of $\alpha^{2}=3664$ is used. An initial value problem is considered with the initial conditions at $t=0$ as follows

$$
\begin{array}{ll}
u_{t}=0 & \text { for }-\infty<x<\infty \\
u=0 & \text { for }-\infty<x<1.5 \tag{A.2}\\
u=x-1.5 & \text { for } 1.5<x<\infty
\end{array}
$$

Thus, u_{x} is 0 for $x<1.5$, and 1 for $x>1.5$, with a unit discontinuity at $x=1.5$. From eq. (17) of Ref. 20, and the corresponding equation for C_{k}^{-}, we have

$$
\begin{align*}
& u_{x^{2}}-u_{x^{3}}=-\left(u_{t 2}-u_{t 3}\right) \tag{A,3}\\
& u_{x^{2}}-u_{x 1}=\left(u_{t 2}-u_{t 1}\right)
\end{align*}
$$

where subscripts $1_{0} 2$, and 3 refer to regions adjacent to the discontinuity point as shown below

Since it is known that $u_{x 1}=0, u_{x^{3}}=1$, and $u_{t 1}=u_{t 3}=0$, it can be shown readily that the imposed discontinuity propagates along the line $x-t=1.5$ with magnitudes

$$
\begin{align*}
& {\left[u_{x}\right]=-0.5,} \tag{A,4}\\
& {\left[u_{t}\right]=+0.5}
\end{align*}
$$

and along $x+t=1.5$ with

$$
\begin{align*}
& {\left[u_{x}\right]=+0.5,} \tag{A.5}\\
& {\left[u_{t}\right]=+0.5}
\end{align*}
$$

Using these jump conditions and the numerical integration procedure of Ref. 20, the exact distribution of u is determined. Next, an approximate scheme which neglects all jumps across the lines $x \pm t=1.5$, but otherwise unchanged, is used and an approximate field of u is calculated. A
comparison of the exact u field with the approximate one is demonstrated in Figure 12 , where the u_{x} at $x=1.25$ from the two calculations are plotted. As can be seen, the solution with no jump conditions differs from the one with correct jump conditions only during the first few oscillations, After this, the solutions merge and show little difference for all later times. The results at other \times locations, and for u and u_{t} are of the same form as those shown for u_{x} at $x=1.25$. The second example is a calculation made for a Timoshenko beam, with the governing equations in dimensionless form, (see Ref. 20).

$$
\begin{align*}
& u_{x x}-\frac{1}{c_{1}^{2}} u_{t t}=f_{2} u+f_{3} v_{x} \tag{A.6}\\
& v_{x x}-\frac{1}{c_{2}^{2}} \quad v_{t t}=g_{\theta} u_{x}
\end{align*}
$$

where subscripts x and t designate partial differentiations.
Values of the coefficients used are

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=0.5774 \\
& f_{2}=1 / 3 \\
& f_{3}=1 / 3 \\
& g_{1}=1
\end{aligned}
$$

which agree with those used in Ref. 21. The problem consists of a semiinfinite beam initially at rest and loaded suddenly at $x=0$ by a constant shear force. This loading condition may be expressed as

$$
\begin{align*}
& \text { at } t=0,0 \leq x \leq \infty, u=v=u_{t}=v_{t}=0 \tag{A.7}\\
& \text { at } x=0, t>0, v_{x}-u=1, u_{x}=0
\end{align*}
$$

Thus, at $x=0, t=0$, a jump of $\left[v_{x}\right]=-c_{2},\left[v_{t}\right]=1$ is excited, which will propagate along the line $x-c_{2} t=0$ with undiminished magnitude, Again,
two sets of calculations were made, one with the correct jump conditions, the other neglecting the jumps. The results are shown in Figure 13 as shear force, Q_{0} against time at two x locations. It can be seen that the discrepancy between calculations with and without jumps is very slight; except at the beginning, the two cases are almost the same. Plots of curves of other quantities, such as velocity and moment, indicate the same comparison is true. Calculations for other type of inputs for the Timoshenko beam show that fumps can always be neglected.

In conclusion, it can be said that neglecting jumps in the method of characteristics causes a relatively small difference in the results obtained. In all of the results plotted, the greatest error occured at the time the discontinuity arrived, and at long times the error became negligible. This fact is very significant, since it allows the simple solution of problems too complicated for the method of characteristics merely because of the existance of jump conditions.

COMPUTER PROGRAM FOR NUMERICAL CALCULATIONS

The program used for this problem is a very general one, which can also be used for all of the problems stated in Ref. 20. For this reason many of the input quantities in this program are not relevant to the problem studied in this report, but because of the general nature of the program they must still be defined. Other input quantities are dependent upon the parameters of the plate and may be expressed as simple functions of them, as will be seen below.

The following variables from the plate problem must be known: r_{0} in inches, h in inches, Kinetic Energy in $f t-1 b$. Material characteristics: E in $\mathrm{lb} / \mathrm{in}^{2} \quad G$ in $\mathrm{lb} / \mathrm{in}^{2}$ ν (dimensionless) K_{2} (dimensionless) c_{p} and c_{2} in in/sec.

The input for the program consists of 37 cards, containing the following quantities in the formats given at the right:

1. MZERO, MEFN1, MEFN2, MEFN3
$(14,312)$
2. XZERO, PINC (2E15.8)
3. CEE1, CEE2
4. VA1, VA2, XCUT1 (3E15.8)
5. VB1, VB2, XCUT2
(3E15.8)
6. VC1, VC2, XCUT3 (3E15.8)
7. AKAY1, GAMA1 (2E15.8)
8. AKAY2, GAMA2 (2E15.8)
9. AKAY 3, GAMA3
10. A11, A21, A31, A41
11. A51, A61, A71
12. CONSA
13. B11, B21, B31, B41
14. B51, B61, B71
15. CONSB
16. C11, C21, C31, C41
17. C51, C61, C71
18. CONSC
19. CKF1, CKF2 , CKF3, CKF4
20. CKF5, CKF6
21. CKG1, CKG2, CKG3, CKG4
22. CKG5, CKG6

23 CKH1, CKH2, CKH3, CKH4
24. CKH5 С CKH6
25. CKF2A
26. AZ1, AZ2, AZ3, AZ4
27. AZ5, AZ6, AZ7
28. BZ1, BZ2, BZ3, BZ4
29. BZ5, BZ6, BZ7
30. CZ1, CZ2, CZ3, CZ4
31. CZ5, CZ6, CZ7
32. FUU1, FUU2, FUUX1, FUUX2
33. FUUT1, FUUT2
34. FUV1, FUV2, FUVX1, FUVX2
35. FUVT1, FUVT2
36. FUW1, FUW2, FUWX1, FUWX2
37. FUWT1, FUWT2
(3E15.8)
(E15.8)
(4E15.8)
(3E15.8)
(E15.8)
(4E15.8)
(3E15.8)
(E15.8)
(4E15.8)
(2E15.8)
(4E15.8)
(2E15.8)
(4E15.8)
(2E15.8)
(E15.8)
(4E15.8)
(3E15.8)
(4E15.8)
(3E15.8)
(4E15.8)
(3E15.8)
(4E15.8)
(2E15.8)
(4E15.8)
(2E15.8)
(4E15.8)
(2E15.8)

The following quantities remain invarient for the plate problem and are equal to the numbers indicated:

```
MEFN1 = MEFN2 = +3 MEFN3 = +2
```

VA1 $=V A 2=V B 1=V B 2=0$.
AKAY1 $=$ AKAY2 $=$ GAMA1 $=$ GAMA2 $=0$.
$\mathrm{A} 31=\mathrm{A} 41=\mathrm{A} 51=\mathrm{A} 1=\mathrm{A} 1=0$.
CONSA $=0$.
$\mathrm{B} 11=\mathrm{B} 31=\mathrm{B} 41=\mathrm{B} 61=\mathrm{B} 71=0$.
CONSB $=0$.
$\mathrm{C} 11=\mathrm{C} 21=\mathrm{C} 31=\mathrm{C} 51=\mathrm{C} 61=\mathrm{C} 71=0 . \quad \mathrm{C} 41=1$.
CONSC $=0$.
CKF1 $=-1 . \quad$ CKF2 $=1$.
CKF3 $=$ CKF4 $=$ CKF6 $=0$.
CKG1 $=$ CKG2 $=$ CKG3 $=$ CKG4 $=$ CKG5 $=$ CKG6 $=0$.
CKH1 $=$ CKH2 $=$ CKH5 $=-1$.
CKH3 $=$ CKH4 $=$ CKH6 $=0$.
$A Z 2=A Z 3=A Z 4=A Z 5=A Z 6=0$.
$\mathrm{BZ1}=\mathrm{BZ3}=\mathrm{BZ4}=\mathrm{BZ6}=\mathrm{BZ7}=0$ 。
$\mathrm{CZ2}$ - C23 = CZ4 $=\mathrm{CZ5}=\mathrm{CZ6}=0$.
FUU1 $=$ FUU2 $=$ FUUX1 $=$ FUUX2 $=$ FUUT1 $=$ FUUT2 $=0$.
FUV1 $=$ FUV2 $=$ FUVX1 $=$ FUVX2 $=$ FUVT1 $=$ FUVT2 $=0$.
FUW1 $=$ FUW2 $=$ FUWX1 $=$ FUWX2 $=$ FUWT1 $=$ FUWT2 $=0$.

The following quantities vary with the variables of the plate problem as follows:

MZERO $=$ number of points along $t=0$ line (and thus also along boundary) at which properties are to be evaluated.

XZERO $=r_{0} \quad$ PINC $=\Delta r \quad$ XCUT1 $=$ XCUT2 $=r_{0}$
$\operatorname{CEE} 1=c_{p} \quad \operatorname{CEE} 2=\mathrm{k}_{2} \mathrm{c}_{2}$

VCł and VC2 = velocities from eq. (7) which approximates actual
shock for a given kinetic energy.
XCUT3 a radius at which shock wave velocity changes from VC1 to VC2.
AKAY $3=\frac{-K}{k_{2}{ }^{2} \mathrm{Gh}}$ and GAMA $=\gamma$ in the expression for peak pressure along
the shock front: $P_{0}=K^{\gamma}$
$A 11=D, \quad A 21=\frac{D V}{r_{0}}$
$\mathrm{B} 21=\mathrm{B} 51=\mathrm{K}_{2}{ }^{2} \mathrm{Gh}$
CKF5 $=\frac{\mathrm{K}_{2}{ }^{2} \mathrm{Gh}}{D}$
CKF2A $=\frac{\mathrm{K}_{2}{ }^{2} \mathrm{Gh}}{\mathrm{D}}$
$A Z 1=D$ A $\quad A Z 7=D V$
$\mathrm{BZ2}=\mathrm{BZ5}=\mathrm{K}_{2}{ }^{2} \mathrm{Gh}$
$\mathrm{CAI}=\mathrm{D} \mathrm{D}_{\mathrm{g}} \quad \mathrm{CZ7}=\mathrm{D}$
The output of the program gives the values of several variables at
$a l l$ points in the physical plane. The quantities printed out, as they appear in the output, are:

$$
\begin{array}{lllllllll}
\mathrm{r}, & \mathrm{t}, & 0, & 0, & \frac{\mathrm{P}}{\mathrm{k}_{2}^{2} \mathrm{Gh}}, & \phi_{0} & \phi_{x^{\prime}} & \phi_{t} \\
0_{0} & 0_{0} & 0, & w_{0} & w_{x}, & w_{t}, & M_{r} & Q_{r}, & M_{\theta}
\end{array}
$$

The quantities which are listed as being printed out as zero at all points have no significance for this problem. Some small truncation error is introduced in the evaluation of the systems of equations at each point. The values of M_{r} and Q_{r} at the boundary are many orders of magnitude smaller than those at all interior points. Thus, they may effectively be considered to be zero. On the following pages is a listing of the general computer code that was used in the analysis of the examples presented in this report.
computer code

UNITS IN IN-LB-SEC SYSTEM

W1BFTC $\mathrm{N}=3 \mathrm{NL}$
LINENSIONX $(2,30 C), T(2,300), P L 1(2,3 C C), P L 2(2,300), P L 3(2,300), U(2,30$ $10), 11 \times(2,300), U T(2,300), V(2,300), V X(2,3 C 0), V T(2,300), W(2,30 \cap), W \times(2$, $13(10)$, WT $(2,300), Y(6,6), Z(6), \cup U(\in)$
$\therefore \quad$ INPUT FORMATS
1 FURMAT(14,3I2)
2 FORMAT(2515.3)
3 Fundat (3E15.8)
7 FORMAT(F15.8)
120 FQRMAT(4E15.8)
CUTPUT FGRIMATS
4 FİRMATILH

, FORAATILH, 8HXZERO $=,[15.8,5 X$, 9HDELTAX $=$, E15.8)
G FURNAT(1H, JHC1 = ,E15.8,5X,5HC2 $=$, E15.8)
9 FURMAT(IH ,/)

10 FOR:ATIIH, 4JHLOAD 1 UNIFORM TC LEFT OF LINE FOR ANY TI
11 fidmat(1H,52hlgad 1 linearly cecreasing to left of line for any t $1)$
12 FCRMat(in , 30hloal 1 concevtrated along live)

306 FCRITT(1H, 4OHLOAD 2 UNIFORN TC LEFT OF LINE FOR ANY T)
307 FJRUAT(IH, j2hlGAD 2 Linearly Cecreasing to left of line for airy t 1)

303 fletat (ll , 30hload 2 ccincentrateo alling line)
309 FORNAT(1H, 2lhLCAD 2 aLONG LINE $=(, E 15.8,6 H) / X * *(, E 15.8,1 H))$
HIG FURMAT(1H, 4)HLCAD Z UNIFORN TC LEFT OF LINE FOR ANY TI
311 forinatilh, szhlcad 3 linearly cecreasing io left of line fer any t 1)

Zl2 FURMAT(1H, 3OHLOAD 3 CONCEMTRATED ALUNG LINE)
813 FURA, T (1H, 21HLGAO 3 ALGNG LINE $=(, E 15.8$, (GH)/X**(,F15.?,1H))
 $12 x, 1$ HU, $15 x, 2$ HUX, $14 x, 2$ HUT $)$
122 FOR:4AT(1H, $7 \mathrm{X}, 1+\mathrm{V}, 14 \mathrm{X}, 2 \mathrm{HVX}, 14 \mathrm{X}, 2 \mathrm{HVT}, 15 \mathrm{X}, 1 \mathrm{HW}, 14 \mathrm{X}, 2 \mathrm{HNX}, 14 \mathrm{X}, 2 \mathrm{HWT}, 12 \mathrm{X}$, $12 H 51,11 \times, 2 H S 2,11 \mathrm{~K}, 2 \mathrm{HS} 3,1 / 1$
300 FIRSAT(1H , 8(E15.8,1X),1HO)
QOI FURMAT($1 \mathrm{H}, 3(E 15.3,1 \times$), 1HB)
302 FUR: \triangle T($1 \mathrm{H}, \mathrm{A}(E 15 . \mathrm{B}, 1 \mathrm{X}), 1 \mathrm{HI})$
303 FOQNAT(IH , \& (E15.8. $1 \times$), IHT)
121 FURIMT(1H, o(E15.8,1X),2(E11.4,1X),F11.4)
17 FURMAT(IH, 3GHMAIN CIAGCNAL OF SOLUTION MATRIX FCRI
5960 FiJROAT (IH , 33HTHIS POINT CONTAINS A C. ELENENT.)
124 FIBRAT $1 \mathrm{H}, \mathrm{HHSI}=(, E 15.8,6 \mathrm{H}) *(X+(, E 15.8,5 H) * U+(, E 15.8,6 \mathrm{H}) * V X+(, E 1$ 15. (2, $5 H) * V+(, E 15.8,6 H) * W X+(, E 15 \cdot 2,4 H) * W+$)

125 FGRiAAT(1H, $2 \mathrm{H}+($, F15.3, 5 H) *U/X)
126 FIJRMAT(1H, OHS $=(, E 15.8,6 H) *(X+(, E 15.8,5 H) \# U+(, E 15 . X, 6 H): V X+(, E 1$ $15 \cdot 3,5 H) * v+(, E 15.8,6+1 * w x+(, E 15.8,4 H) * W+1$

127 FORMAT($1 \mathrm{H}, 4 \mathrm{HAl}=, \mathrm{E} 15.8$)
12 G FURMAT(1H, $4 \mathrm{HB}=$, E15.8)
$12 \exists$ FLRVAT(1H,4HCl = , E. 15.8)


```
    IH)*V+(,E15.8,6H)*WX+(,E15.8,4H)*W+)
    131 FORMAT(1H, 2H+(,E15.8,7H)*UT=A1)
    132 FORMAT(1H, 2H+(,E15.8,7H)*VT=B1)
    133 FORMAT(1H, 2H+(,E15.8,7H)*WT=C1)
    134 FQRMAT\1H,7HFUU1 = E15.8,3X,7HFUU2 = ,E15.8,3X,8HFUUX1 = ,El5.8.
    13X,8HFUUX2 = F15.8)
7031 FORMATIIH,8HFUUT1 =,E15.8,3X,QHFUUT2 =,E15.81
    135 FORMAT(1H,6HF1 = (, E15.8,3H)/X)
    136 FORMAT(IH, 6HF2 = (,E15.8,8H)/X**2+(,E15.8,1H))
    137 FORMAT(1H, SHF3 = E15.8)
    138 FORNAT(1H ,5HF4 = E15.8)
    139 FORMAT(1H,5HF5=,E15.8)
    140 FORMAT(1H ,5HF6 = ,E15.8)
    141 FORNAT(1H,5HG1=,t15.8)
    142 FORMAT(1H,5HG2 = ,E15.8)
    143 FORMAT(1H,5HG3=,E15.8)
    144 FORMAT(1H,5HG4 = E15.8)
    145 FORMAT(1H,5HG5 = ,E15.8)
    146 FORMAT(1H,5HG6 = ,E15.8)
    147 FURMAT(IH,5HH1 =,E15.8)
    148 FOKMAT(1H,6HH2 = (,E15.8,3H)/X)
    149 FORMAT(1H, JHH3 =, E15.8)
    150 FORMAT(1H,5HH4 = ,E15.8)
    151 FURMAT(LH, GHH5 = (,E15.8,3H)/X)
    152 FORMAT(1H,5HH6 = ,E15.8)
    153 FORNAT(1H, 7HFUV1 = , E15.8,3X,7HFUV2 =, E15.8,3X,8HFUVXI = ,E15.8,
        13X,8HFUVX2 = ,E15.81
    7032 FORMATIIH, 8HFUVTL =,E15.8,3X,8HFUVT2 =,E15.8)
    154 FORMAT(1H, THFUW1 = , E15.8,3X,7HFUW2 = E15.8.3X,8HFUWX1 = . El5.8,
        13X,7HFUWX2 = E15.81
    7033 FORMAT(1H.,8HFUWT1 =,E15.8,3X,&HFUWT2 =,E15.8)
C REAO INPUT DATA
    REAO 1,MLEKO,MEFN1,NEFN2,MEFN3
    READ 2,XZERO,PINC
    READ 2,CEEl,CEE2
    KEAO 3,VA1,VA2,XCUT1
    KEAD 3,VB1,VB2,XCUT2
    REAO 3,VC1,VC2,XCUI3
    READ 2,AKAY1,GAMAl
    REAU 2,AKAY2,GAMAZ
    REAU 2,AKAY3,GAMA3
    REAO 120,A11,A21,A31,A41
    REAC 3,\triangle51,A61,A71
    READ 7,CUNSA
    READ 120,B11,B21,B31,B41
    REDD 3,E51,B61,871
    REAL 7,CONSB
    REAU 120,C11,C21,C31,C41
    REAO 3,C51,C61,C71
    REAO 7,CONSC
    READ 120,CKF1,CKF2,CKF3,CKF4
    RE\triangleO 2,CKF5,CKF6
    REAU 120,CKG1,CKG2,CKG3,CKG4
    READ 2,CKG5,CKG6
    READ 120,CKH1,CKH2,CKH3,CKH4
```

```
    READ 120,CKG1,CKG2,CKG3,CKG4
    READ 2,CKG5,CKG6
    READ 120,CKH1,CKH2,CKH3,CKH4
    READ 2,CKH5,CKH6
    READ 7,CKF2A
    READ 120,AZ1,AZ2,AZ3,AZ4
    READ 3,AZ5,AZ6,AZ7
    READ 120,BZ1,BZ2,BZ3,BZ4
    READ 3,BZ5,BZ6,HZ7
    READ 120,CZ1,CZ2,CZ3,CZ4
    READ 3,C25,CZ6,CZ7
    READ 120,FUU1,FLU2,FUUX1,FUUX2
    READ 2, FUUT1, FUUT2
    READ 120,FUV1,FUV2,FUVX1,FUVX2
    READ 2, FUVT1, FUVT2
    READ 120,FUW1,FUW2,FUWX1,FUWX2
    READ 2,FUWT1,FUWT2
    EM=CEE1/CEE2
    FAKl=(EM-1.)/(2.*EM)
    FAK2=(EM-1.)/(EM+1.)
C PRINT ELEGANT PRELIMINARY PRINTCUT
    PRINT 8
    PRINT 4,MZERO
    PRINT 5,XZERO,PINC
    PRINT 6,CEEl,CEE2
    PRINT 9,VA1,VA2,XCUT1
    PRINT 804,VB1,VB2,XCUT2
    PRINT 805,VC1,VC2,XCUT3
    PR[NT 13,AKAY1,GAMAL
    GO TO (15,16,123),MEFN1
    15 PRINT 10
    GO TG 18
    16 PRINT 11
    GO TO 18
    123 PRINT 12
    18 PRINT 809,AKAY2,GAMA2
        GO TO (814,815,816),MEFN2
    814 PRINT 806
    GO TC 817
    815 PRINT 807
    GO TC 817
    816 PRINT 803
    817 PRINT 813,AKAY3,GAMA3
    GO TC (818,819,820),MEFN3
    818 PRINT 810
    GO TO 821
    8L9 PRINT 811
    GO TC 821
    820 PRINT 812
    821 PRINT 130,A11,A21,A31,A41,A51,A61
    PRINT 131,A71
        PRINT 127,CONSA
        PRINT 130,B11,B21,B31,B41,B51,E61
        PRINT 132,B71
        PRINT 129,CONSB
```

```
    PRINT 130,C11,C21,C31,C41,C51,C61
    PRINT 133,C71.
    PRINT 129,CONSC
    PRINT 134,FUU1, FUU2,FUUX1,FUUX2
    PRINT 7031,FUUT1,FUUT2
    PRINT 153,FUV1, FUV2,FUVX1,FUVX2
    PRINT 7032,FUVT1,FUVT2
    PRINI 154,FUW1,FUW2,FUWX1,FUWX2
    PRINT 7033,FUWTI,FUWT2
    PKINT 135,CKF1
    PRINT 136,CKF2,CKF2A
    PRINT 137,CKF3
    PRINT 138,CKF4
    PRINT 139,CKF5
    PRINT 140,CKF6
    PRINT 141,CKG1
    PRINT 142,CKG2
    PRINT 143,CKG3
    PRINT 144,CKG4
    PRINT 145,CKG5
    PRINT 146,CKG6
    PRINT 147,CKH1
    PRINT 148,CKH2
    PKINT 149,CKH3
    PRINT 150,CKH4
    PRINT 151,CKH5
    PRINT 152,CKH6
    PRINT 124,AZ1,AL2,AL3,AZ4,AZ5,AL6
    PRINT 125,AL7
    PRINT 126,BZ1,BZ2,BZ3,BZ4,BZ5,BZ6
    PRINT 125,B27
    PRINT 9817,CZ1,CZ2,CZ3,CZ4,CZ5,CZ6
    PRINT 125,CL7
    PRINT }
    PRINT }1
    PRINT 122
    GO TG }10
C LOAD DEFINITIONS
    20 GO TO (850,851,852),IDIOT
    850 Vl=VAl
        V2=vA2
        XCUT=XCUT1
    AK AY = AK AY I
    GANMA=GAMA1
    NSTOP=NSI
    MEFN=MEFNI
    GO TC 860
    851 V1=VB1
    V2=VB2
    XCUT=XCUT2
    AK AY=AK AY2
    GAMMA=GAMAZ
    NSTOP=NS2
    MEFN=MEFN2
    GU TC 860
```

```
    852 VI=VCl
    V2=VC2
    XCUT=XCUT3
    AK AY =AKAY 3
    GAMMA=GAMA3
    NSTOP=NS3
    MEFN=MEFN3
    86C GO TG (21,41,61),MEFN
C LOAD UNIFORM TO LEFT OF LINE FOR ANY T
    21 IF {XP-XCUT ) 22,32,32
    22 IF(TP-((XP-XZERC)/V1))23,24,24
    23 P=0.
        GO TU 81
        24 IF(TP-({XCUT-XZERO)/V1))25,26,26
        25 IF(VI*TP+XZERO)7CO,701,7C0
    701 P=AKAY
    GO TO 81
    700 P=AKAY/((V1*TP+XZERO)**GAMMA)
    GO TO 81
    26 P=AKAY/((XZERD+(V2*TP)+(1.-V2/V1)*(XCUT-XZERO))**GAMMA)
    GO TO 81
    32 IF(TP-(((XP-XCUT)/V2)+((XCUT-XZERO)/V1)))33,34,34
    33 P=0.
        GO TO 81
    34 P=AKAY/((XZERO+(V2*TP)+(1.-V2/V1)*(XCUT-XZERO))**GAMMA)
        GO TO 81
C LOAD LINEARLY DECREASING TO LEFT OF LINE FOR ANY T
    41 IF(XP-XCUT)42,52,52
    42 IF(TP-((XP-XZERC)/V1))43,44,44
    4 3 \mathrm { P } = 0 .
        GO TO 81
    44 IF(TP-((XCUT-XZERO)/V1))45,46,46
    45 IF(VI*TP+XZERO)702,703,702
    703 P=AKAY
        GO TO }8
    702 IF(TP-(+0.10000000E-05))760,76C,761
    760 P=(+0.20000000E+00)*AKAY/((X2ERC+V1*TP)**GAMMA)
    GO TO 81
    761 P=(((IXP-XZERO)/(VI*TP))**4.)*AKAY)/((XZERO+V1*TP)**GAMNA)
    GO TO 81
    4 6 ~ I F ( T P - ( + 0 . 1 0 0 0 0 0 0 0 E - 0 5 ) ) 7 6 2 , 7 6 2 , 7 6 3
    762 P = (+0.20000000E*CO) #AK.AY/(:(XZERO+(V2*TP)+(1.-V2/V1)* (XCUT-XZERO))*
    1*GAMMA)
        GO T0 81
    763 P=((((XP-XZERO)/((V2*TP)+(1.-V2/V1)*(XCUT-XZERO)))**4.)*AKAY)/((XZ
    1ERO+(V2*TP)+(1.-V2/V1)*(XCUT-XZERO))**GAMMA)
    GO TO 81
    52 IF(TP-(((XP-XCUT)/V2)+((XCUT-XZERO)/V1)))53,54,54
    53 P=0.
    GO TO 81
    54 [F(TP-(+0.10000COOE-05))764,764,765
    764 P=(+0.20000000E+00)*AKAY/((XZERC+(V2*TP)+(1.-V2/V1)*(XCUT-XZERC))*
    1.*GAMMA)
        GO TO 81
    765 P=((((XP-XZERO)/((V2*TP)+(1.-V2/V1)*(XCUT-XZERO)))**4.)*AKAY)/((XZ
```

```
    1ERC+(V2*TP)+(1.-V2/V1)*(XCUT-XZERO))**GAMMA)
    Gu TU 31
    luad concentrated along line
    61 GO TO (63,62),NSTOP
62 P=0.
    go rc 31
    63 IF(XP-XCUT)64,70,70
    64 [F(TP-((XP-XLERO)/V1))65,66,66
    65 P=0.
    30 TL %1
    66 [F(XP)705,706,705
706 P=AKAY
    NSTUP=2
    GU TE Pl
7Cつ D=AKAY/(XP**FAMNA)
    MSTUP=?
    GO TC \Omegal
    70 [F(TP-(((XP-XCUT)/V2)+((XCUT-XLERU)/V1)))71,72,72
    71 P=?.
    G! TC R1
    72 P=AKAY/(XP##GANNA)
    NSTUP=?
    GU TE Ol
    pikeliminary definitions
100 X(1,1)=XZEKO
    T(1,1)=0.
    U(1,l)=FUU1
    UX(1,1)=FUUX)
    UT(1,1)=FUUT1
    v(1,1)=FUV1
    VX(1,1)=FUVX1
    VT(1,1)=FUVT1
    w(1,1)=f(1)w
    WX(1,1)=FUW\times1
    WT(1,1)=FUNTL
    IF(x(1,1))1(1,101,1C2
101 PLI(1,1)=AKAY1
    PL2(1,1)=AKAY2
    PI.3(1,1)=AKAY3
    S1=AZ1*UX(1,1)+AZ2*U(1,1)+AZ3*VX(1,1)+AZ4*V(1,1)+AZ5*WX(1,1)+Al6*W
    1(1,1)
    S2=FLL|UX(1,1)+BL2*U(1,1)+BZ3*VX(1,1)+BZ4*V(1,1)+BZ5*WX(1,1)+BZ6*W
    l(1,1)
    S3=CZ1*UX(1,1)+CZ2*U(1,1)+CZ3*VX(1,1)+CZ4*V(1,1)+CZ5*WX(1,1)+C26*W
    1(1,1)
    G0 TL 103
102 PLI(1,1)=AKAY1/(X(1,1)##GAMA1)
    PLZ(1,1)=AKAY2/(X(1,1)*#GAMA2)
    PL3(1, l)=AKAY3/(X(1,1)**GAMA3)
    S1=AL1*1)X(1,1)+AL2*U(1,1)+AL3*V (1,1) +AL4*V(1,1)+AL5*W\times(1,1)+Al6*W
    1(1,1)+AZ7*(1)(1,1)/x(1,1)
    S<=とZl#UX(1,1)+&Z2*U(1,1)+BZ3*VX(1,1)+BZ4*V(1,1)+BZ5*WX(1,1)+BZ6*W
    1(1,1)+1427*U(1,1)/x(1,1)
    S3=C71*UX(1,1)+CZ2*U(1,1)+C,23*VX(1,1)+CZ4*V(1,1)+CZ5*WX(1,1)+CZ6*W
    1(1,1)+C.27*U(1,1)/X(1,1)
```

```
    103 PRINT \(802, X(1,1), T(1,1), P L 1(1,1), P L 2(1,1), P L 3(1,1), U(1,1), U X(1,1)\),
        IUT(1,1)
        PRINT \(121, V(1,1), V \times(1,1), V T(1,1), W(1,1), W X(1,1), W T(1,1), S 1, S 2, S 3\)
        PRINT 8
    LI \(=2\)
    XLI=LI
        NS \(1=1\)
        NS 2 \(=1\)
        NS \(3=1\)
        GO JO 200
C REINDEXING OPERATIONS
    \(110 \mathrm{LI}=\mathrm{L} I+1\)
    IF(LI-MZERO)111,111,9999
    \(111 \mathrm{XLI}=\mathrm{L} 1\)
    \(K F F=2 * L I-3\)
    DO 112 KFJ \(=1, K F F, 1\)
    \(X(1, K F J)=X(2, K F J)\)
    \(T(1, K F J)=T(2, K F J)\)
    \(P L 1(1, K F J)=P L 1(2, K F J)\)
    \(P L 2(1, K F J)=P L 2(2, K F J)\)
    PL3(1, KFJ) \(=P L 3(2, K F J)\)
    \(U(1, K F J)=U(2, K F J)\)
    \(U X(1, K F J)=U X(2, K F J)\)
    UT(1,KFJ) =UT(2,KFJ)
    \(V(1, K F J)=V(2, K F J)\)
    \(V X(1, K F J)=V X(2, K F J)\)
    VT(1,KFJ) \(=V T(2, K F J)\)
    \(W(1, K F J)=W(2, K F J)\)
    \(W \times(1, K F J)=W X(2, K F J)\)
    112 WT(1,KFJ)=WT(2,KFJ)
    NS \(1=1\)
    NS 2 \(=1\)
    NS 3=1
C INPUT POINT DEFINITIONS
    \(200 \times(2,1)=X Z E R O+2\).*PINC*(XLI-1.)
    \(T(2,1)=0\).
    \(X P=X(2,1)\)
    \(T P=T(2,1)\)
    MAMA \(=1\)
    IOIOT=1
    GO TO 20
    201 GO TC (870,871,872),IDIOT
    \(870 \mathrm{PL} 1(2,1)=\mathrm{P}\)
    NSI=NSTOP
    IDIOT=2
    GO TC 20
    \(871 \operatorname{PL} 2(2,1)=P\)
    NS2 \(=\) NSTOP
    IDIOT=3
    GO TO 20
    872 PL3(2,1) \(=P\)
    NS 3=NSTOP
    214 U(2,1)=FUU1
    UX 2,1\()=\) FUUX1
    \(\operatorname{UT}(2,1)=\) FUUT 1
```

```
    V(2,1)=FUV1
    VX(2.1)=FUVX1
    VT (2,1)=FUVT1
    W(2,1)=FUH1
    WX(2,1)=FUWX1
    WT (2,1)=FUWT1
    X(2,2)=X(2,1)-PINC
    T(2,2)=PINC/CEEI
    XP=X(2,2)
    TP=T| 2,2)
    MAMA=2
    IDIOT=1
    GO TC 20
202 GO TO (880,881,882),IDIOT
80 PLI(2,2)=P
    NS1=NSTOP
    10IOT=2
    GO TO 20
881 PL2(2,2)=P
    NS2=NSTOP
    IDIOT=3
    GO TO 20
882 PL3(2,2)=P
    NS3=NSTOP
    X1=x(2,2)
    x3=x(2,1)
    x9=x(1,1)
    U3=U(2,1)
    UX3=UX(2,1)
    UT 3=UT (2,1)
    V3=V(2,1)
    VX3=V (2,1)
    VT3=VT(2,1)
    W3=W(2,1)
    W\times3=W\times(2,1)
    WT3=WT(2,1)
    U9=U(1,1)
    U\times9=UX(1,1)
    UT9=UT(1,1)
    v9=v(1,1)
    v\times9=v\times(1,1)
    VT9=VT(1,1)
    W9=W(1,1)
    WX9=WX(1,1)
    WTS=WT(1,1)
    X6=X9+2.*FAK1*PINC
    X4=X3-2.*FAK1*PINC
    U6=FUU1
    U\times6=FUUX1
    UT6=FUUT1
    V6=FUV1
    VX6=FUVX1
    VT6=FUVT1
    WG=FUW1
    WX6=FUWX1
```

```
    WTG=FUWT1
    U4=FUU1.
    UX4=FUUX1
    UT4=FUUT1
    V4 = FUV1
    VX4=FUVX1
    VT4=FUVT1
    W4=FUW1
    W\times4=FUWX1
    WT4 = FUWT1
    FLC1=PL1(2,2)
    FLC3=PL112,1)
    FLC9=PL1(1,1)
    GLC1=PL2(2,2)
    GLD3=PL2(2,1)
    GLD9=PL2(1,1)
    HLC1=PL3(2,2)
    HLC3=PL3(2,1)
    HLC9=PL3(1,1)
    HLC4=HLD3+FAK1*(HLC9-HLD3)
    HLD6=HLD9+FAK1*(HLD3-HLD9)
    GO TO 210
    211UX(2,2)=UU(1)
    UT (2,2)=UU(2)
    VX(2,2)=UU(3)
    VT(2,2)=UU(4)
    WX(2,2)=UU(5)
    WT (2,2)=UU(6)
    U(2,2)=U3+((UX(2,2)+UX3)/2.-(UT (2, 2)+UT3)/(2.*CEE1))=DX13
    V(2,2)=V3+(IVX(2,2)+VX3)/2.-(VT(2,2)+VT3)/(2.*CEE1))*OX13
    W(2,2)=W4+((WX(2,2)+WX4)/2.-(WT(2,2)+WT4)/(2.*CEE2))*DX14
        I=1
        XI= I
    300 IF(2*LI-3-1)301,301,203
    OROINARY POINT CEFINITIONS
    203 X(2,I+2)=X2ERO+PINC*(2.*XLI-XI-3.)
    T(2,I+2)=(XI+1.)*PINC/CEEI
    XP=X(2,I+2)
    TP=T(2,I+2)
    MAMA=3
    IDIOT=1
    GO TC 20
    204 GO TO (890,891,892),IDIOT
    890 PL1(2,I+2)=P
    NS 1=NSTOP
    IDIOT=2
    GO TO 20
    891 PL2(2,I+2)=P
    NS 2=NSTOP
    IDIOT=3
    GO TO 20
892 PL3(2,I+2)=P
    NS3=NSTOP
    X1=X(2,I+2)
    x3=x(2,I+1)
```

```
X9= X(1,I+1)
X6=X9+FAK2*PINC
X4=X3-FAK2*PINC
U3=U(2,I+1)
UN3=UX(2,I+1)
UT 3=UT (2,I+1)
V 3 = V (2, I+1)
v\times3=v\times(2,I+1)
VT3=VT(2,I+1)
W3=W(2,I+1)
W\times3=WX(2,I+1)
WT3=WT (2,I+1)
UG=U(1,1+1)
U\times9=UX{(1,I+1)
UTg=UT(1,I+1)
vg=v(1,I+1)
v\times9=v\times(1, I+1)
VT9=VT(1,I+1)
W9=W(1,I+1)
WX9=WX(1,I+1)
WT9=WT(1,I+1)
U4=U3+FAK2*(U(1,I)-U3)
UX4=UX3+FAK2*(UX(1,I)-UX3)
UT4=UT3+FAK2*(UT(1,I)-UT3)
V4=V3+FAK2*(V(1,I)-V3)
VX4=V M 3+FAK2*(VX(1,I)-VX3)
VT4=VT3+FAK2*(VT(1,I)-VT3)
W4=W3+FAK2*(W(1,I)-W3)
W\times4=W\times3+FAK2*(WX(1, 1)-WX3)
WT4=WT3+FAK2*(WT(1,I)-WT3)
U6=U9+FAK2*(U(1,I)-U9)
UX6=UX9+FAK2*(UX(1,I)-UX9)
UT6=UT9+FAK2*(UT(1,I)-UT9)
V6=V9+FAK2*(V(1,I)-V9)
VX6=V\times9+FAK2*(VX(1,I)-VX9)
VT6=VT9+FAK2*(VT(1,I)-VT9)
W6=W9+FAK2*(W(1,I)-W9)
W\times6=W\times9+FAK2*(WX(1,I)-WX9)
WT6=WT9+FAK2*(WT(1,I)-WT9)
FLO1=PL1(2,I+2)
FLC3=PL1(2,1+1)
FLC9=PL1(1,1+1)
GLCl=PL2(2,1+2)
GLC3=PL2(2,I+1)
GLD9=PL2(1,I+1)
HLCl=PL3(2,I+2)
HLC3=PL3(2,I+1)
HLC9=PL3(1,I+1)
HLO4=HLD3+FAK2*(PL3(1,I)-HLC3)
HLD6=HLD9+FAK2*(PL3(1,I)-HLC9)
GO TO 210
212UX(2,I+2)=UU(1)
    UT(2,I+2)=UU(2)
    vx(2,I+2)=UU(3)
    VT(2,I+2)=UU(4)
```

```
            WX(2,I+2)=UU(5)
            WT(2,I+2)=UU(6)
            U(2,I+2)=U3+((UX(2,I+2)+UX3)/2.-(UT(2,I+2)+UT3)/(2.*CEE1)
            V(2,I+2)=V3+((VX(2,I+2)+VX3)/2.-(VT(2,I+2)+VT3)/(2.*CEE1))*DX13
            W(2,I+2)=W4+((WX(2,I+2)+WX4)/2.-(WT(2,I+2)+WT4)/(2.*CEE2))*OX14
            I=I+1
            XI=I
            GO TC 300
C BOUNDARY POINT CEFINITIONS
301 X(2,I+2)=X2ERO
    T(2,I+2)=(XI+1.)*PINC/CEE1
    XP=X(2,I+2)
    TP=T(2;I+2)
    MAMA=4
    IDIOT=1
    GO TO 20
    302 GO TO (900,901,902),IDICT
    900 PLI(2,I+2)=P
        NS1=NSTOP
        IDIOT=2
        GO TO 20
901 PL2(2,I+2)=P
    NS2=NSTOP
    IDIOT=3
    GO TO 20
902 PL3(2,I +2)=P
    NS3=NSTOP
    Xl=X(2,I+2)
    X3=x(2,I+1)
    X4=X3-FAK2*PINC
    U3=U(2,I+1)
    UX3=UX(2,I+1)
    UT3=UT (2,I+1)
    V3=V(2,I+1)
    V X = v X (2,I+1)
    VT3=VT (2,1+1)
    W3=W(2, I+1)
    W\times3=WX(2,I+1)
    WT3=WT (2,I+1)
    U4=U3+FAR2*(U(1,I)-U3)
    UX4=U苂+FAK2*(UX(1;I)-UN3)
    UT4=UT3+FAK2*(UT(1, I)-UT 3)
    V4=V3+FAK2*(V(1,I)-V3)
    V\times4=V\times3+FAK2*(VX(1;I)-V\times3)
    VT4=VT3+FAK2*(VT(1,I)-VT3)
    W4=W3+FAK2*(W(1,I)-W3)
    WX4=WX3+FAK2=(WX(1,I)-WX3)
    WT4=WT3+FAK2*(WT(1,I)-WT3)
    FLD1=PL1(2,I+2)
    FLD3=PL1(2,I+1)
    GLD1=PL2(2,I+2)
    GLD3=PL2(2,I+1)
    HLD1=PL3(2,I+2)
    HLD3=PL3(2,I+1)
    HLD4=HLD3+FAK2*(PL3(1,I)-HLD3)
```

```
    Al=CONSA
    B1=CONSB
    C1=CONSC
    DX13=X1-X3
    DX14=X1-X4
    Y(2,1)=A11+A21*DX13/2.
    Y(2,2)=A71-A21*DX13/(2.*CEE1)
    Y(2,3)=A31+A41*DX13/2.
    Y(2,4)=-A41*DX13/(2.*CEE1)
    Y(2,5)=A51+A61*CX14/2.
    Y(2,6)=-A61*DX14/(2.*CEE2)
    Z(2)=A1-A21*DX13*(UX3-UT 3/CEE1)/2.-A21*U3-A41*DX13*(VX3-VT3/CEE1)/
    12.-A41*V3-A61*DX14*(WX4-WT4/CEE2)/2.-A61*W4
    Y(4,1) =C11+C21*CX13/2.
    Y(4,2)=-C21*DX13/(2.*CEE1)
    Y(4,3)=C31+C41*CX13/2.
    Y(4,4)=-C41*DX13/(2.*CEE1)
    Y(4,5)=C51+C61*DX14/2.
    Y(4,6)=C71-C61*DX14/(2.*CEE2)
    Z(4)=C1-C2l*DX13*(UX3-UT3/CEE1)/2.-C21*U3-C41*DX13*(VX3-VT3/CEE1)/
    12.-C41*V3-C61*DX14*(WX4-WT4/CEE2)/2.-C61*W4
    Y(5,1)=B11+B21*DX13/2.
    Y(5,2)=-B21*DX13/(2.*CEE1)
    Y(5,3)=B31+B4I*DX13/2.
    Y(5,4)=B71-B41*CX13/(2.*CEE1)
    Y(5,5)=B51+861*DX14/2.
    Y(5,6)=-B61*DX14/(2.*CEE2)
    Z(5)=B1-B21*DX13*(UX3-UT3/CEE1)/2.-B21*U3-B41*0X13*(VX3-VT3/CEE1)/
    12.-B41*V3-B61*DX14*(WX4-WT4/CEE2)/2.-B61*W4
    GOTO 215
213UX(2,I+2)=UU(1)
    UT (2,I+2)=UU(2)
    VX(2,I+2)=UU(3)
    VT (2,I +2) =UU(4)
    WX(2,I+2)=UU(5)
    WT(2,I+2)=UU(6)
```



```
    V(2,I+2)=V + ((VX(2,I+2)+VX3)/2.-(VT(2,I+2)+VT3)/(2.*CEE1)) & OX13
    W(2,I+2)=W4+((WX(2,I+2)+WX4)/2.-(WT(2,I +2)+WT4)/(2.*CEE2)) *DX14
    IF(X(2,I+2))220,221,220
221S1=AZI*UX(2,I+2)+AZ2*U(2,I+2)+AZ3*VX(2,I+2)+AZ4*V(2,I+2)+AZ5*WX(2.
    II+2)+AZ6*W(2,I+2)
    S2=BZl*UX(2,I+2)+BZ2*U(2,I+2)+BZ3*VX(2,I+2)+BZ4*V(2,I+2)+BZ5*WX(2,
    II+2)+BZ6*W(2,I +2)
    S3=C2l*UX(2,I +2)+CZ2*U(2,I+2)+CZ3*VX(2,I+2)+CZ4*V(2,I +2)+CZ5*WX(2.
    1I+2)+CZ6*W(2,I+2)
    GO TO 222
220S1=AZI*UX(2,I+2)+AZ2*U(2,I+2)+AZ3*VX(2,I+2)+AZ4#V(2,I+2)+AZ5*WX(2.
    1I+2)+AZ6*W(2,I+2)+AZ7*U(2,I+2)/X(2,I+2)
    S2=BZI*UX(2,I+2)+BZ2*U(2,I+2)+EZ3*VX(2,I+2)+BZ4*V(2,I+2)+BZ5*WX(2,
    II+2)+BZ6*W(2,I+2)+BZ7*U(2,I+2)/X(2,I+2)
        S 3 = C 21*UX(2,I +2) +CZ2*U(2,I+2)+CZ3*VX(2,I+2)+CZ4*V(2,I+2)+CZ2*WX(2*
    1I+2)+CZ6*W(2,I+2)+CZ7*U(2,I+2)/X(2,I+2)
222 PRINT 801,X(2,I+2),T(2,I+2),PLII2,I+2),PL2(2,I+2),PL3(2,I+2),U(2,I
    1+2),UX(2,1+2),UT(2,I+2)
```

PRINT $121, V(2, I+2), V X(2, I+2), V T(2, I+2), W(2, I+2), W X(2, I+2), W T(2, I+2$ 1), $\$ 1, \$ 2, \$ 3$

PRINT 8
GO TO 110
81 GO TO $(201,202,204,302)$, MAMA
210 DX13 $=\times 1-\times 3$
D $\times 14=\times 1-\times 4$
DX16=x1-X6
D×19=x1-x9
F119=(CKF1/2.)*(+1./X1+1./X9)
F219 $=($ CKF2/2.)*(1./X1**2+1./X9**2) + CKF2A
F319=CKF3
F419=CKF4
F519=CKF5
F619=CKF6
G119=CKG1
G219=CKG2
G319=CKG3
G419=CKG4
G519=CKG5
G619=CKG6
H116=CKH1
H216=(CKH2/2.) ($1+1 . / \times 1+1 . / \times 6)$
H316=CKH3
H416=CKH4
H516 = (CKH5/2.) *($+1 . / \times 1+1 . / \mathrm{XE})$
H616=CKH6
F719 = (FLD1+FLD9)/2.
G719=(GLD1+GLD9)/2.
H716=(HLDl+HLD6)/2.
$Y(2,1)=C E E 1 *(-1 .+F 119 * D \times 19 / 2 .+F 219 * D \times 19 * D \times 13 / 4$.
Y(2,2)=1.-F219*DX19*DX13/4.
Y(2,3)=CEE1*(F319*DX19/2.+F419*DX19*DX13/4.)
$Y(2,4)=-$ F419*DX19*DX13/4.
Y(2,5) $=$ CEE1*(F519*DX19/2.+F619*DX19*DX14/4.)
Y(2,6) $=-$ CEE1*F619*DX19*DX14/(4.*CEE2)
Z(2) $=$ UT9-CEE1*UX9-(CEE1*DX19/2.) * (F119*UX9+F219*DX13*(UX3-UT3/CEE1
1)/2. $+\mathrm{F} 219 *(\mathrm{U} 3+\mathrm{U} 9)+\mathrm{F} 319 * V \times 9+F 41 \mathrm{~S} * \mathrm{DX} 13 *(\mathrm{VX} 3-\mathrm{VT} 3 / \mathrm{CEE} 1) / 2 .+\mathrm{F} 419 *(\mathrm{~V} 3+\mathrm{V} 9$
2) + F5 19*WX9 +F619*DX14*(WX4-WT4/CEE2)/2. + F619*(W4+W9) +2.*F719)

Y(4, 1) $=$ CEE1*(G119*DX19/2.+G219*DX19*DX13/4.)
$Y(4,2)=-G 219 * D \times 19 * D \times 13 / 4$.
$Y(4,3)=$ CEE1*(-1。+G319*DX19/2.+G419*DX19*DX13/4.).
Y(4,4)=1.-G419*CX19*DX13/4.
$Y(4,5)=$ CEE1*(G519*DX19/2.+G619*DX19*DX14/4.)
Y(4,6) $=-$ CEE1*DX19*DX14*G619/(4.*CEE2)
Z(4) =VT9-CEEl*VX9-(CEE1*DX19/2.)*(G119*UX9+G219*DX13*(UX3-UT3/CEEI
1)/2.+G219*(U3+U9) +G319*VX9+G41S*DX13*(VX3-VT3/CEE1)/2.+G419*(V3+V9
2) +G519*WX9+G619*DX14*(WX4-WT4/CEE2)/2.+G619*(W4+W9)+2.*G719)
$Y(5,1)=C E E 2 *(H 116 * D \times 16 / 2 .+H 216 * D \times 16 * D \times 13 / 4$.
$Y(5,2)=-C E E 2 * D \times 16 * D \times 13 * H 216 /(4 * * C E E 1)$
$Y(5,3)=C E E 2 *(H 316 * D \times 16 / 2 .+H 416 * D \times 16 * D \times 13 / 4$.
$Y(5,4)=-$ CEE 2*DX16*DX13*H416/(4.*CEE1)
$Y(5,5)=$ CEE $2 *(-1 .+H 516 * D \times 16 / 2 .+H 616 * D \times 16 * D \times 14 / 4$.
$Y(5,6)=1 .-H 616 * D \times 16 \geqslant D \times 14 / 4$.
$Z(5)=$ WT 6-CEE2*WX6-(CEE 2*DX16/2.)*(H116*UX6+H216*DX13*(UX3-UT3/CEE1
1）／2．＋H216＊（U3＋U6）＋H316＊VX6＋H416＊DX13＊（VX3－VT3／CEE1）／2．＋H416＊（V3＋V6 $2)+H 516 * W X 6+H 616 * D \times 14 *(W X 4-W T 4 / C E E 2) / 20+H 616 *(H 4+H 6)+120 * H 7161$
215 F113 $=($ CKF1／2．$) *(+1 . / \times 1+1 . / \times 3)$
F213＝（CKF2／2．）$\# 11.1 \times 1 * * 2+1 \cdot / \times 3 * * 2)+$ CKF2A
F313＝CKF3
F413＝CKF4
F513＝CKF5
F613＝CKF6
G113＝CKG1
G213＝CKG2
G313＝CKG3
G413＝CKG4
G513＝CKG5
G613＝CKG6
H114＝CKH1
H214＝（CKH2／2．）＊ $1+1 . / \times 1+1 .(\times 4)$
H314＝CKH3
H414＝CKH4
H514＝（CKH5／2．）＊ $1+1 . / \times 1+\overline{1 . / \times 4)}$
H614＝CKH6
F713＝（FLDI＋FLD3）／2．
G713＝（GLD1＋GLD3）／2．
H714＝（HLD1＋HLD4）／2．
$Y(1,1)=C E E 1 * 11,-F 113 * D \times 13 / 2 \cdot-F 213 * D \times 13 * * 2 / 4$.
$Y(1,2)=1 .+F 213 * 0 \times 13 * * 2 / 4$ ．
$Y(1,3)=C E E 1 *(-F 313 * D \times 13 / 2 .-F 413 * D \times 13 * * 2 / 4$.
$Y(1,4)=F 413 * D X 13 * * 2 / 4$ ．
$Y(1,5)=C E E 1 *(-F 513 * D \times 13 / 2$－$-F 613 * D \times 13 * D \times 14 / 4,1$
$Y(1,6)=$ CEE1＊DX13＊DX14＊F613／（4．＊CEE2）

14．＋F213＊U3＋F313＊VX3／2．＋F413＊DX13＊（VX3－VT3／CEE1）／4．＋F413＊V3＋F513＊WX
23／2．＋F613＊DX14＊（WX4－WT4／CEE2）／4．＋F613＊（W4＋W3）／2．＋F713）
Y（3，1）＝CEE1＊（－G113＊DX13／2．－G213＊DX13＊＊2／4．）
$Y(3,2)=G 213 * D X 13 * * 2 / 4$ 。
$Y(3,3)=C E E 1 *(1,-G 313 * D \times 13 / 2 .-G 413 * D \times 13 * * 2 / 4$.
$Y(3,4)=1 .+G 413 * D X 13 * * 2 / 4$.
$Y(3,5)=$ CEE1＊（－G513＊DX13／2．－G613＊DX13＊DX14／4．）
$Y(3,6)=C E E 1 * D X 13 * D \times 14 * G 613 /(4$＊ （CEE2）
Z（3）＝VT3＋CEE1＊VX3＋CEE1＊DX13＊（G113＊UX3／2．＋G213－DX13＊（UX3－UT3／CEE1）／
14．＋G213＊U3＋G313＊VX3／2．＋G413＊DX13＊（VX3－VT3／CE日1）／4＊＋G413＊V3＋G513＊WX
$23 / 2 .+G 613 * D \times 14 *(W \times 4-W T 4 / C E E 2) / 4 .+G 613 *(W 4+W 3) / 2+\operatorname{CT13})$
$Y(6,1)=C E E 2 *(-H 114 * D \times 14 / 2 .-H 214 * D \times 14 * D \times 13 / 4 \cdot)$
$Y(6,2)=$ CEE2＊DX14＊DX13＊H214／（4．＊CEE1）
Y（6．3）$=$ CEE2＊（－H314＊DX14／2．－H414＊DX14＊DX13／4．）
Y（6，4）＝CEE2＊DX14＊DX13＊H414／（4．＊CEE1）
$Y(6,5)=$ CEE 2＊（1．－H514＊DX14／2．－HE14＊DX14＊＊2／4．）．
$Y(6,6)=1 .+H 614 * D \times 14 * * 2 / 4$ 。
Z $(6)=W T 4+C E E 2 * W \times 4+C E E 2 * D \times 14 *(H 114 * U \times 4 / 2 \cdot+H 214 * D \times 13 *(U \times 3-U T 3 / C E E 1) /$

23＋V4）／2．tH514＊WX4／2．＋H614＊DX14＊（WX4－WT4／CEE2）／4．HH6140W4＋H714）
$M=6$
C THE MATRIX SUBROUTINE
5000 DU $5900 \mathrm{JJJ}=1, M, 1$
$\operatorname{IF}(\mathrm{Y}(J J J, J J J)-0.15900,5850,590 \mathrm{C}$
5850 PRINT 17

National Aeronautics and
Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland，Ohio 44135
Attn：Contracting Officer，M．S．500－210（1）
Liquid Rocket Technology Branch， M．S．500－209
Technology Utilization Office， M．S．3－16
Technical Report Control Office， M．S．5－5
AFSC Liaison Office，M．S．4－1
Library， $\mathrm{M}_{0} \mathrm{~S}_{\text {。 }}$ 60－3
Office of REQA，M．S．500－203
F．S．Stepka，M．S．49－1
J．F．Mondt，M．S．500－309
Robert Johns，M．S．49－1
（1）

National Aeronautics and
Space Administration
Langley Research Center
Langley Station
Hampton ${ }_{2}$ Virginia 23365
Attn：Mrs．E．Re Gilman，Librarian
Mr．Do Davis，Jr．
Mr．Richard Heldenfels
Mr．William Kinard
Mr．Edwin Kruszewski，M．S． 188
National Aeronautics and
Space Administration
Ames Research Center
Moffett Field，California
Attn：C．Robert Nysmith
James Summers
Library
National Aeronautics and Space Administration
George C．Marshall Space Flight Center Huntsville．Alabama

Attn：Tech．Documents Library
Research Projects Div．（M－RP－R）
James Wo Carter，Future Projects
Office。MFPO

National Aeronautics and
Space Administration Headquarters
Washington，D．C。 20546
Attn：MLPL
Melvin Rosche；Code RV－2
National Aeronautics and Space Administration
Manned Spacecraft Center
Houston，Texas

> Attn: Library

Jet Propulsion Laboratory
4800 Dak Drive
Pasadena 2，California
Attn：Ear1 E．Newham，Reports Group Dr．V．Jaffe

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt，Maryland
Attn：Code 250
Wright Patterson Air Force Base
Ohio
Attn：Lt．Lloyd Hedgepeth，ASRMFP－1 W．P。 Conrardy，Chief， Applications Lab－ Materials Control
Commander，Air Tech．Intelli－ gence Center Attn：AFOIN－4B1A

Scientific and Technical Information Facility
P．O．Box 5700
Bethesda，Maryland
Attn：NASA Representative
（S－AK／RKT）
University of California
Los Alamos Scientific Laboratory
（1）P．O．Box 1663
Los Alamos，New Mexico

```
    PRINT }596
    GO TO 9999
    5900 CONTINUE
    N=M-1
    DO 5200 NN=1,N,1
    NNN=NN+1
    OO 5100 JJ=NNN,N,1
    FRAC=-Y(JJ,NN)/Y(NN,NN)
    DO 5050 KK=NN,M,l
    5050 Y(JJ,KK)=FRAC#Y(NN,KK)+Y(JJ,KK)
    5100 Z(JJ)=FRAC*Z(NN)+Z(JJ)
    5200 CONTINUE
    DO 5500 NN=1,N,1
    NNN=M-NN
    JJ=NNN+1
    DU 5400 KK=1,NNN,1
    5400 Z(KK)=-Z(JJ)*(Y(KK,JJ)/Y(JJ,JJ)) +Z(KK)
    5500 CONTINUE
    DO 5600 KKK=1,M,1
    5600 UU(KKK)=Z(KKK)/Y(KKK,KKK)
    C SOLUTION CONTROL
    GO TC (214,211,212,213),MAMA
    9999 CONTINUE
    STOP
    ENC
```

Prof. Pei Chi Chou
Dept. Mechanical Engineering
Drexel Institute of Technology
Philadelphia, Pennsylvania 19104
New York University
College of Engineering
Research Division
University Heights
New York 53, New York
Attn: Dr. Paul F。Winternitz
Harvard College Observatory
Cambridge, Massachusetts
Attn: Prof. F. L. Whipple
Cornell Aeronautical Laboratory, Inc. Buffalo, New York

Attn: Dr. William Rae
Stanford Research Institute Menlo Park, California

Attn: Mr. P. R. Gillette
Arthur D. Little Inc. Cambridge, Massachusetts

Attn: Dr. J. M. Bonneville
Research and Technology Division, AFSC Bolling Field
Washington, D.C.

> Attn: J. W. Minette
E. A. Kritzer

Aerojet-General Corporation
Von Karman Center,
Azusa, California 91703
Attn: J.F. Cullinane-Downey Plant
Avco Corporation
Wilmington, Massachusetts 01887
Attn: Robert R. McMath - RAD
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio

> Attn: R.E. Bowman - Rad. Effects Information Center

Boeing Company
Seattle 24, Washington
(1) Attn: Jack Lundeberg

Chance Vought Corporation Library
Box 5907
Dallas 22: Texas
Chrysler Corporation
P. O. Box 26018
(1) New Orleans 26, La.

Attn: Elayne M. Brower-AEB-2761
Douglas Aircraft Corporation
(1) 3000 Ocean Park Blvd.

Santa Monica, California

$$
\begin{array}{ll}
\text { Attn: G. W. Ferguson } \\
& \text { H. H. Dixon } \tag{1}
\end{array}
$$

Fundamental Methods Associates
31 Union Square West
New York 3, New York

> Attn: Dr, Carl Klahr

General Dynamics/Convair
P. O. Box 1128

San Diego 12, California
Attn: Library \& Information
Service (128-00)
General Electric
Valley Forge Space Tech. Center
(1) P. O. Box 8555
(1) Philadelphia 1, Pennsylvania

$$
\begin{array}{ll}
\text { Attn: } & \text { T. D. Riney }- \text { TEMO } \tag{1}\\
& \text { J. F. Heyda - TEMO }
\end{array}
$$

General Motors Defense Research Labs.
 Santa Barbara, California

> Attn: C. J. Maiden
Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York
Attn: Library
John Tlasmati

IIT Research Institute
10 West 35 Street
Chicago 16; Tliinois

Attn: Dr. R。H. Cornish

Lockheed Missiles and Space Company Palo Alto, California

Attn: P.E. Sandorff

The Martin Company
Science Technology Library
Mail Stop 398
Baltimore 30 Maryland
North American Aviation Space \& Information Division
Downey, Califormia
Attn: Allan J. Richardson, D/192 GB83
Northrop Space Laboratories 3401 West Broadway
Hawthorne, California 90250
Attn: Ro Do Johnson \quad Space Materials Laboratory
Republic Aviation Corporation Farmingdale, Long Is land, New York

Attn: K. Singer, Space Systems Structures

TRW Systems
Physical Research and Analysis Section
P. O. 95001

Los Angeles 45: California
University of Denver
Denver Research Institute
University Park
Denver, Colorado 80210
Attn: Rodney F, Recht. Mechanics Division

Utah Research and Development
2175 South 3270 West
Salt Lake City。 Utah
Attn: Boyd Baugh

Computing Devices of Canada Limited P. O. Box 508

Ottawa 4, Canada

Naval Ordnance Laboratory Corona, California

Attn: Roy L. Nicholi
F. E. Winters, Jr.

Space Systems Division, AFSC
Attn: Major R. L. Hayford
Ballistic Research Laboratory
Aberdeen, Maryland

$$
\begin{aligned}
\text { Attn: } & \text { Stanley Taylor } \\
& \text { Robert J. Eichelberger }
\end{aligned}
$$

A. F. Cambridge Research Laboratory Hanscom Field, Mass.

Attn: Robert K. Soberman
Aero-Space Corporation
E1 Segundo, California
Attn: Robert Cooper
Verne C. Frost
Robert Herndon
J. McClelland

Milton Weiss
Aerospace CorporationSan Bernardino, California
Attn: Rene B. Mortensen (1)
D. B. Singer (1)
University of Toronto
Toronto, Canada
Attn: I. I. Glass(1)
Pennsylvania State UniversityUniversity Park, Pennsylvania
Attn: Norman Davids(1)
Sandia Corporation
Albuquerque, New Mexico
Attn: Walter Herrmann(1)
AROTullahoma, Tenn.
Attn: Julius Lukasiewicz(1)
Space Research Center
McGill University
892 Sherbrooke Street, West
Montreal, Quebec
Canada
Attn: G. V. Bull(3)
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

13. ABSTRACT

The problem of the fracture of liquid-fuel tank walls due to hypervelocity particle impact is investigated. A semi-empirical formula is used for the shock wave generated by impact in water. The numerical method of characteristics is adopted for the calculation of stress waves in the tank wall. Values of threshold impact kinetic energy; defined as the projectile energy above which fracture will occur, for a few wall thickness and materials are determined.
[14.

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of $\mathrm{De}-$ fense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
5. ${ }^{\text {R }}$ REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written
$8 b, 8 c, 88 d$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and contralled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
6. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination" of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for Edditional explanatory notes.
12. SPÓNSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If odditional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S). (C), or (U).

There is no limitation on the length of the absiract. However. the suggested lenpth is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selepcted so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geopraphic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

