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I. Introduction 

This report is the final report on National Aeronautics and Space 

Administration Contract No. NASB-11231 (including Modifications No. 1 ond 

No. 2) entitled “Study of Optimal and Adaptive Control Theory”. 

During the study period, which began in May 1964 and continued through 

June 1966, the principal investigator conducted investigations into a variety of 

theoretical questions which arise naturally in the study of modern optimal and 

adaptive control techniques for lorge launch vehicles. The particular topics chosen 

for investigation were selected through consultations with the staff of the Aero- 

Astrodynamics Laboratory of the George C. Marshall Space Flight Center, Huntsville 

Alabama. The principal investigator is especially grateful to Mr. Clyde Baker, Mr. 

Judson Lovingood, Dr. David Ford* and Mr. Tommy Carter, of the Aero-Astrodynamics 

Laboratory, for their many stimulating and informative discussions during this study. 

The material in this report is arranged in chapters, with each chapter represent- 

ing a self-contained exposition of a particular topic. Reference and figure citations 

in the individual chapters refer only to the list of references and collection of figures 

given in that particular chapter. 

The subject of optimal control with a “Minimax-type” performance index received 

particular attention during this study because of its’ potential application in the design 

of load-minimizing control systems for large launch vehicles. Some of the methods 

which have previously been used to solve such problems ore summarized in Chapter II. 

In addition, Chapter II contains a detailed account of an essentially “new” method 

for effectively solving such problems. Application of this proposed new method is 

illustrated by five examples which are worked in detail. 

The study of “worst-case” optimol control problems with unknown disturbances 

leads noturally to the study of variotional problems with “competing controls”. This 

class of problems con be cast as continuous games in function spaces and was first studied 

as such by R. lsaacs in the early 1950’s. A general study of this class of problems wos 

initiated by the principal investigator in the early period of the contract. However, the 

idea of a general study was subsequently abandoned with the publication of Isaac’s 

* 
Now with the Department of Mathematics, Emory University. 



highly original, and now well-known, 1965 treatise on this subject. Instead, 

several specific examples were studied in detail by the principal investigator and 

those exomples ore presented in Chapter III. 

The so-called “phase-variable canonical form” for single-input linear 

dynamical systems has found mony applications in the area of modern linear 

control theory. Two of the most interesting theoretical aspects of this topic ore 

the matrix theoretic structure of ond computotionol algorithms for the required - - 

transformation matrix. The results of studies of these two topics are described in 

Chapters IV and V. 

In many practical applications of modern control theory the concept of in- 

variant hyperplanes in the system state space plays an important role. For instance, 

this concept forms the theoretical foundotion for N.A.S.A.‘s “Drift-Minimum” 

control principle. In the course of the present study the principal investigator 

studied the algebraic theory of invariant hyperplanes for linear dynamical systems and, 

by this means, was able to show connections between that topic and the important 

and related subjects of controllability and observability. These results are described 

in Chapter VI. 

The application of optimal control techniques in the design of large launch 

vehicle control systems has centered around the well-known, and almost completely 

solved, linear optimal regulator problem. During the present study, the principal 

investigator considered several variations on the usual formulation of the linear optimal 

regulator problem. In particular, the fixed-time regulator problem with time-invariant 

feedback control and the unspecified-time regulator problem with bounded control were 

studied in detail. The results obtained for these two problems are described in Chapters 

VII and VIII. 



II. Optimal Control with Chebyshev Minimax Performance Index’ 

C. 0. Johnson 

Summary 

The optimal control of dynamical systems with conventional Mayer, Lagrange, 

and Bolza type performance indices has been studied in some detail [l] ,2 [21, [3J. 

In the present work the optimal control of dynamical systems with a certain minimax 

type performance index, which cannot be expressed in the Mayer, Lagrange, or Bolza 

format, is studied. The form of the optimal control is described ond certain geometric 

properties of the solution are discussed. Several examples are worked in detail to 

illustrate opplicotion of the proposed method of solution. 

1. Introduction 

Consider the class of dynamical systems described by 

k = !(:I t, u(t)) 

where 5 is the system state vector and u(t) is the scalar input or control. The optimal 

control of this class of dynamic01 systems has been studied in detail for the three parti- 

cular cases in which J[u], the performance index functional to be minimized, is: 

(9 a scalar function G of the initial and/or terminal state 

(the Mayer type problem) 

J[ul = G($,L z(T), to, T), 

(ii) a time integral of a scalar function L evaluated along the 

state trajectory between the initial and terminal states 

(the Lagrange type problem) 

J[ul = .rT L($t), u(t), t) dt, 

tO 

1. This research was conducted at the University of Alabama Research Institute and 
was supported by the National Aeronautics and Space Administration under Contract 
NASB-11231 ond Grant No. NsG-381. This paper was presented at the 1966 Joint 

Automatic Control Conference, SeattlqWashington, August 1966 and will appear in the 
A.S.M.E. Transactions, Journal of Basic Engineering, March 1967. 

2. Numbers in brackets designote References at end of paper. 



(iii) a sum of (i) and (ii) (the Bolza type problem) 

J[uJ = Gb$to), z(T), to, T) + ST L($), u(t), t) dt. 

tO 

The theoretical work of Pontryagin, Bellman, LaSalle, Kalman, Berkovitz, and others 

hos led to the development of a relatively complete mathematical theory for this 

particular class of optimal control problems. 

In many practical applications, however, the octuol physical performance 

criterion cannot be expressed as a Mayer, Logrange, or Bolza type performance index. 

For examp le, in the case of regulator type control systems, the actual performance 

index may be expressed as per-cent overshoot due to a step change in load with a 

specified upper bound on settling time. In other practical applications the per- 

formance index may be expressed as the maximum or peak value of velocity, occeler- 

ation, force, torque, stress, temperature, etc., which occurs during some specified 

interval of control. Performance indices of this type fall into the general category 

of what we will call Chebyshev minimax performance indices in which the objective 

is to minimize the maximum value attained by a scalar function C(z(t)), evaluated 

along the state trajectory, over some specified closed interval of time. 
3 

Optimal control problems with minimax performance indices of the type 

described above belong to a brood class of extremal problems which have their origin 

in the highly original researches of the Russian mathematician P. L, Chebyshev 

[ Tchebycheff] . In his 1854 studies [ 151 of mechanical linkages which generate 

approximate straight line motion, Chebyshev introduced the important ideo of 

characterizing the quality of the approximation in terms of the maximum deviation 

from the desired straight line, Those investigations led to the formulation of more 

general mathematical problems of minimax approximation involving functions least 

deviating from zero and ultimately led to the development of the well-known Chebyshev 

3, It is remarked that the term “minimax” has aIs been used (in a basically different 

sense) to describe a variety of confiict-type optimization problems which arise in game 

theory [ 41, statistical communication theory [ 51, [bj , and optimal control theory [7]- 

[ 141. In those problems, the performance index is usually of the conventional Mayer, 

Lagrange, or Bolza type and the minimum and maximum operations are taken with 

respect to the policies or control actions of two conflicting elements. 



polynomials [ 161 and the more general theory of Chebyshev approximation [ 171, [ 181 . 

The extension of Chebyshev’s minimax approximation ideas to problems in approximating 

solutions to ordinary differential equations was considered in a 1907 paper by Young 

[ 191 and more recently by Lanczos [20] and Carter [ 21 J . 

In 1956, Bellman, Glicksburg, and Gross, [22J gave one of the first accounts 

of the application of Chebyshev minimox performance indices to problems of optimal 

control of dynamical systems. In subsequent investigations, Bellman [23], [24], [25], 

Sevin [ 261, and Bellman, Glicksburg and Gross [27] studied a variety of particular 

examples from this class of problems. Some of the more recent researches in this class 

of problems are described in 128 J-[ 351. 

In this paper, we formulate o particular class of optimal control problems with 

Chebyshev minimax [C-minimox] performance index and describe a method of solution 

which is essentially different from those proposed in [22]-1351 . Some geometric properties 

of the optimal trajectory are discussed and a practical technique for computing the optimal 

control is described. Several examples are worked in detail to illustrate application of 

the theory. 

2. Statement of the Problem 

The problem is to find, in the class of piecewise continuous functions, a scalar 

control u = u(t) which minimizes the functional 

J[uJ = max cog (1) 
to.5t<T 

subject to the following conditions 
4 

s = gx_, u(t)) 

x,0,) = ,x0 

(. = d/dt) (2) 

-x0 d D (3) 

,4. The case in which the independent variable t (T) oppears as an explicit argument 
in one or more of the functions C, F, (3) can be case into the form of (l)-(5) by 
introducing an auxiliary stote variable xn+T defined by 

. 
Xn+l = 1 

Xn+l lto) = to 



7($)) = 0 J-2 to (4) 

u(t) au t,,<t<T (5) 

In(l), 2=(x,, . . . . xn) is an n-vector: the system state vector, and C(x) is -- cc 

the performance index: a real, single valued, scalar function of 5 defined throughout 

a set D of the n-dimensional euclidean state space En. In (2), F is a vector function -- 

continuous in u and continuously differentiable with respect to 5 E D. Equation (4) 

defines the terminal manifold, 3~ D, on m-dimensional (m<n) hypersurface of 

admissible terminal states z(T). The terminal time T is specified implicitly, by (4), 

as the first time t 2 to which satisfies g{:(t)) = 0. P ro ems involving more explicit bl 

restrictions on T [for example, such as T = T* or T 5 T* where T* is some specified 

constant J can be accommodated in this formulation by the technique described in 

footnote 4 below. It is assumed that C(z) and y(z) are once continuously differentiable 

and yis connected. 

A piecewise continuous real valued function u(t) with values belonging to the 

closed, convex, and bounded set U is colled an admissible control. An admissible 

control u = u”(t) which yields an obsolute minimum of the functional (l), subject to 

the restrictions (2)-(4), is called optimal.5 An optimal control of the form u’(t) = uO(x(t)) 

is an optimal control law. An integral curve of (2) corresponding to an optimal control, 

is an optimal trajectory. The set D C En is taken as the set of all states x, which are 

controllable to 7. That is, for each initial stote z. e D there exists & least one 

admissible control u(t) such that the corresponding solution of (2) satisfies (3) and (4). 

Hereafter, we assume that D is non-void and u”(2) exists for al I x, E D. 

3. Form of the Solution 

Let u’(c) be an optimal control IaN, and let 

Jb”@; ,“,I = V(x 
-JO 

)t x eD 
-0 

5. lt may be noted that an optimal control for the functional (1) is also optimal for every 

functional of the form J[ u J = t <tcTM[C(z(t))J where M(C) is onymonotonically max 

increasing continuous function :f-CY For this reason, the previously stated assumption 

concerning the differentiability of the performance index con usually be realized, even 

when the original function C($ is not continuously differentiable, by proper choice of 
an alternative performance index M[ C(z)]. 



From (l), it is clear that 

V($ 2 C<$ Y ~=,x~ED (7) 

Thus, any admissible control u(t) is optimal if the corresponding solution of (2) satisfies 

(3), (4) and the condition 

ax_(t)) s a,, to<t<T 

On the terminal manifold (4) 

V(xJ = cc;> (9) 

It is assumed hereafter that V(z) is continuous at each state 2 in the interior of D. 

Let RoDI be th e set of all states x ED with the following properties. For 

each z. E R. an admissible control u = $(t;l,) exists such that (8) is satisfied every- 

where along the corresponding solution of (2) and, in addition 

y($)) = rJ for same T > t 
- 0 (lo! 

x(t) E R. 4( to<tlT 

Clearly, the set R is connected and closed relative to D. It is remarked that 
0 

+(t;I_xo) is not unique, in general, Moreover, the set R ,-T might be empty. Let 

aRo denote the boundary of the set R. and suppose that aRo is defined by B(z) = ri, 

5eD. Suppose also that !B(x) exists at 2 and let $2) be the outward pointing 

normal to the boundary aRo. Thus, ~(5) = f!B($ depending on the choice of B(z). 

If U’(x) c U is the particular open set of admissible values of the control u defined 

bY6 

N 

U’@ =b~ludJ; <‘#, E<x_, u)) < 01, +JRO (12) 

then it follows from the definition of R, that states 2 E RR0 C D, which do not lie 

6. (x, y) denotes the inner product of 2 and y. 
n.e 

7 



on the terminal manifold (4), h ave the following properties wherever ~(2) exists: 
7 

(i) If the set U’(x) is not empty then 
w 

inf (v,W, !<:I u)) = 0 
usU'(x_) " 

XeaR, (13) (y 

(ii) If the set U’(x) is empty then 
” 

xeaRo (14) 

Moreover, for each control u* = U*(E) which satisfies (14) 

(y%), F(x, u*(x)) ) I 0 N -- x EaRO (15) 

It also follows, from the definition of R 
0’ 

thot the regions of BR, at which (14) and 

(15) are satisfied (i.e.: U’(x) 
4b 

is empty) are built up from integrol manifolds of optimal 

trajectories which belong to R,. 

It is clear that u = 4(t; 2,) is an optimal control when -x0 E R,. Moreover, 

an optimal control low u”(z), x, E Ro, satisfies, 
8 

in addition to (8), (lo), (ll), the 

condition 

QC($ 1(x,, u”og ) I 0 (16) 

for every state 2 interior to R and satisfies the appropriate condition (13) or (14), 

(15) whenever zc8Ro (x+3): From (6) it follows that 

7. Equations (13)-(15) remain valid at points on 8R, where B(xJ is not continuously 
differentiable provided that the set U’(z) is interpreted as the set of values u EU which 

“point” the local velocity vector 1(x, u), ~,saR,, into the interior of the set R,. 

8. It should be stressed that C(z(t)) need not be monotonic non-increasing along every 

optimal trajectory which passes through a given initial state z. E R,. However, it is 

evident from (8) and the definition of R, that through each initial state ,x0 E R, there 

passes at least one optimal trajectory along which C(xJt)) is monotonic non-increasing. 

In R,, optimal trajectories of this latter type are the onlyones which possess the 

Markovian property required for application of the Principle of Optimality [ 361. 

It follows that on optimal control law con be defined in R, only for optimal trajectories 

of this latter type. 



It is remarked that the set R. has a convenient intetpretotion in terms of 

Liapunov stability theory. In particular, if the performance index C(xJ is considered 

as a generolized Liapunov function for the system & =I(%, uO($), in the sense of 

LaSalle [37], then the interior of R. is the corresponding estimate of the domain D 

of asymptotic stability with respect to the terminal manifold Y. 
Let Rm c (D - R,) denote the largest (not necessarily connected) set of states 2 

with the following properties. For each z. e R,, an admissible control u = y(t;,xo) 

and a time t 
1 

exist such that the following conditions are satisfied along the corres- 

ponding solution of (2). 

ti) $1 E Rm ’ v to<t<tl (18) 

(ii) z(tl) E aRo (19: 

(iii) Ctz(t)) 5 CtxN(tl)), 4- to-<q (20) 

and 

(iv) (p(t), _F(c(t), Y(t)) > = max (p(t), L(,;Jt), u(t)) ) 5 0, toL+lt, Qi) 
ueu * 

where p(t) = (pi(t), . 0., p,(t)) is a real, contimlofjs n-vector which satisfies thz 

differential equations 

n aF.(x, Y) 
(; = d/dt) 
i=l , DoD, n W) 

and the boundary conditions 

0, if z(t,) E (aRo -37, 
lp + ~ct~o,)) = (23) 

normal to 7, if $t,) E J 

In other words, R m is the largest set of initial states z. E (D - Ro) for which the condition 

(20) is satisfied naturally along solutions of the following, Mayer type, variational 

9 



problem: Find an admissible control u(t), tojtltl, 

to the restrictions9 

which minimizes C(:(t ,)) subject 

Y tolt<tl 

(t 1 is unrestricted) 

(24) 

For this Mayer type variationol problem, let *(E,) =z*(tl(_xo); x ) denote a 
-0 

minimizing “terminal” state corresponding to an initiol condition x E Rm. Then it 
-0 

follows, from (7), (20) and th e minimizing property of 2*(,x0), that for each initial 

state x E R 
NO m 

an optimal control for the original problem (l)-(5) is given by 

Yh zo) to_<t<t 
1 

uO(t) = 

dt; z* (2,)) tl <t<T 

(25) 

The function (6), in this case, is therefore given by 

x eR 

vtx,, = vt~*Q,)) = ct~*t~,N I -O m 
x* (2,) E aRo a 

(26) 

It is evident from (26) that optimal trajectories in the set R 
m 

lie on hypersurfaces of 

constant V(dO Moreover, since C(z) is assumed continuous, the function V(z) defined 

by (17) and (26) must be continuous 
10 

at points 5 where optimal trajectories from R 
m 

cross over common boundaries of R. and Rm. Thus, the equation defining the locus 

of such boundory points con be obtained by equating the two expressions (17) and (26). 

9. Equations (2 1) and (22) ore, respectively, the Hamiltonion function and the canonical 

equations which arise from application of Pontryagin’s maximum principle [ 1 J to the 

Mayer type variational problem (24). Equation (23) is the corresponding transversality 

condition for g(t 1) ond is a consequence of combining the usual transversality condition 

[ i.e. p(tT) +EC(&l)) should b e normal to the terminal manifold] with the natural 

bounda”;y condition (13) 

10. This continuity property of V(z), together with (13) and (17), shows that dV($t))/dt 

along optimal trajectories in R, is also zero at pci nts x E aR, where optimol trajectories m 
from R, cross over aR,. 

10 



It is remarked that, in certain instances, the condition (21) may fail to yield 

a well-defined control Y(t) = Y(z(t), p(t)) d uring some positive interval of time. In 

such cases, the possibility of singulor c;blutions [38], [ 391 of the variational problem 

(24) should be investigated. 

From the properties of the sets Ro, R m it follows that an optimal trajectory 

c(t) which posses through an initial state z. kRo U Rm must necessarily 
11 

enter the 

set R. U R, at some time t2 (to<t2 CT). However, on the boundary of the set RoU Rm, 

(6) is known and is given by 

where aRm denotes the boundary of the set Rm. Thus, the boundary of the set RoU R 
m 

con be treated as a new terminal manifold=li). In this way, the process described above 

for constructing the sets R , R can be repeated for the new terminal manifoldy2 and 

sets R 
2 

0 
and Ri (analogoz tomRo, Rm) can be constructed. Continuing with this 

process the region D may be completely partitioned into the two families of sets 

{Rb} = {rZo, Ro2, Ro3, . s O }; and (Rd} = {R,, Rm2, Rm3, O.. }. When the partitioning 

of D into the sets iRil ,(R ‘} is completed, the optimal control for the original problem 

(l)-(5) is completed, yhe o,“Iimal control for the original problem (l)-(51 is known. 

Suppose, for example, that the initial state x 
-0 

belongs to a set Rok = {R;I, k22. 

The optimal control, during the time interval, to 5 t< tk, when z(t) E Rk, can be 

chosen as any admissible control for which C(z(t)) 5 C(z,) and z(tk) F. 7?,! for some 

R i 
m 

c {R ‘} . The existence of at least one such control follows from the definition of 
m 

the R, type sets. Upon entering the neighboring set Ri, the continuat:oq of the 

optimal control is determined by salving the appropriate, Mayer type, vcrictional 

11. It has been tacitly assumed that the two sets R , R, can, in fact, be constructed 
in the manner described. This constructive proceduye will fail , for exarrple, if 
there exists some neighborhood N 23 such that C(E) > Eax C(x”) Y x 5 (N -3 

and dC(s(t))/dt is sign indefinite along every admissible t?a:%oFy x(t): N which 
satisfies (4). Such cases are degenerate from the point of view of thgpresent theory. 
This degeneracy can usually ge removed, however, by properly re-defining the terminal 
manifold (4) D 

11 



_- _. -_ ._ -_-.--- 

problem (24) h w ere the “terminol manifold” is taken as the boundaries of the immediately 

adjoining sets of the R. type. In this way, the state x,(t) progresses alternately 
12 

and 

optimally through the sets of the R. and Rm type and eventually reaches the original 

terminal manifold . 

4. Minimax Points 

The function V(z), defined in (6), associates a characteristic number with each 

initial state x 
*0 

=zeD. This number represents the maximum value of the scalar 

function C(x,(t)) which occurs along the particular optimal trajectory which starts at 

.x0. It some applications, it may be desirable to identify the actual state (or states) 

x = f, along the optimal trajectory which starts at x at which the maximum of 
- m -0’ 

C(E(t)) occurs. We shall call a charateristic state e = I a minimax point for the 

state x 
WO’ 

Every state -x0 E D has an associated minimox”pLint. However, the minimax 

point z(z,) associated with a given state x is not unique, in general, owing to the 

presence of the equality signs in (8) and (ii). 

From the defirition of the sets { RA} it follows that 

$;,I = x “0 
v_xoe[Rj (28) 

defines at least one of the minimax points associated with each state ,x0 E f Ri} o More- 

i 
over, for each initial state z. E{ Rm}, at least one of the associated minimax points is 

the state13 i 
i 

2 E a{ Ro} ot which the optimal trajectory, starting at x E { Rm} , first 

enters one of the sets { Rb} . 
0 

5. A Constructive Procedure for Identifying the Sets { Rd}, { Rr,!,} 

The set R. can be identified numerically by means of a backward-time flooding 

technique provided that, for every z. E Ro, there exists at least one optimal control 

12. Some of the sets { Rj} might share common boundaries of the type described by 
(14)-(15). In such cases, there may exist (non-unique) optimal trajectories which do 

not progress alternately through the sets { Ri}, { Rr,!,} . Some examples of this type are 
illustrated in Section 8 below. 

13. Here, 31 Ri} denotes the boundary of the union of the sets [ RA} . 

12 



law such that T < 03 for the corresponding optimal trajectory. 
14 

For this purpose, 

we set T = T - t (7 2 0) in (2) and consider the reverse-time solutions Z(T) of (2) 

corresponding to various choices of admissible control functions U(T)., At each state 

x s R, the condition c 

min <~G$, $5 u) ) I 0 xrR y o (29) 
u au 

is satisfied. Thus, in backward time one can always find, at each state z E Ro, at 

least one admissible control value which yields 

dCb(T)) > o -” 
d-r 

x e R. N (30) 

provided the set (Ro-7) is not empty. 

Consider a particular (admissible) reverse-time solution Z(T) with initial 

condition satisfying $T=O) E 7 and along which the condition (30) is always satisfied. 

It is clear that each state 2 E D which can be “reached” by such a solution is contained 

in the set R 
0’ 

Moreover, it follows from the definition of R. that each state x E R, 

must be reachable by at least one such solution. Thus, the set R, is the szt of all 

states 2 which can be reached by admissible reverse-time solutions of (71 4,;tli initial 

conditions satisfying x(T=O) E fand along which the condition (30) is olwayc satisfied, 

It is recalled that the”oppropriate condition (13) or (14), (15) .is satisfie: ;It non-terminal 

states 2 on the boundary of Ro. 

When the boundary of R 
0 

is known, the backward-time technique can be used 

to establish optimal trajectories in Rm by integrating equations (2) and (i7), in reverse 

time, starting on the boundary 
15 

of R,. In this case, the “initial conditions” for (22) 

are given by (23) and the optimal control Y(T) = Y(;(T), E(T)) is determined from (21), 

provided the solution does not contain singular sub-arcs. It is clear from the definition 

of R. that as (2) and (22) are integrated through Rm in reverse time, the */aIue of 

14. Example 3, in Section 8 below, illustrates a case in which this condition is not 
satisfied at each ,x0 E Ron 

15. It is remarked that, in general, not al I states 2 E 3 are necessarily terminal 
states for an optimal trajectory originating outside 3 In particular, if 5R, contains 
points 2 F. gthose points may, or may not, serve as terminal states c(T) for optimal 

trajectories originating in Rm. 

13 
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C(x(7)) must first decrease below its initial value. The reverse-time integration 
N 

through Rm is continued until a point x is reached where any further continuation of 

the reverse-time integration will resuIt:n the value of C(~(T)) exceeding its initial 

value. Each point 2 determined in this manner is a boundary point 
16 

of R 
m’ 

When the boundories of R. and Rm are known, the backward-time procedure 

described above may be used to identify the sets R2 R 2. R3 R3 
0’ m’ 0’ m’ 

etc. in an analogous 

way. 

The procedure described above suggests the possibility of using an anolog or 

digital computer and self-organizing system techniques to search out and determine 

points on the boundaries of the sets (Rd} , { Ri} by completely automatic machine 

solution. This is an interesting area for further research. 

6. Secondarv Performance Indices 

The optimal control law u’(z) is, in general, not unique 
17 

in the sets { Rd} . 

For this reason, the design and instrumentation of C-minimax optimal control laws 

affords a degree of flexibility which is not usually associated with optimal control laws 

for other performance indices. For example, 
i 

in the sets { Ro} it is not unusual to find 

that the same optimal performance is obtained when the controller is expressed as 

either (i) a bang-bang control law, (ii) a linear, continuous, control law, (iii) a non- 

linear, continuous, control law, or (iv) a combination of (i), (ii)‘and (iii), 

The non-uniqueness of the C-minimax optimal control law in the sets [ Ri} 

suggests the possibility of introducing a secondary performance index for those sets. 

Suppose, for examp le , that G(z) is an optimal control law for (2)-(5) with a certain 

Mayer, Lagrange, or Bolza type performance index. Then, the control law z(x) can 

be used as the C-minimax optimal control law for (2)-(5) in a set Ri c [ Ri} pr”ovided 

that 

(v_C($ _F(x_, x4 > I 0 Y ,,Rk 
0 

16. Not all points of 8Rm have this property, in general. In particular, some subsets 

of 8R, may be defined by integral manifolds of optimal trajectories which belong to 

R ma For instance, see Example 4, Section 8. 

17. The optimal control law in the sets [ Ri} can be non-unique in certain exceptional 

cases. See Example 2, Section 8. 

14 



is satisfied together with the appropriate boundary conditions. Some applications of this 

technique are illustrated in Section 8 below. 

7. Some Alternative Methods of Solution 

If the performance index C(z) is a non-negative definite function it can be 

shown that the functional (1) can be written as 
18 

-i 1 ‘h 
max C(z(t)) = lim ~ Q3 ~TK(~Wl’ dt , C($N 2 0 (32) 

to<t<T 0 toltlT 

where (a) “P denotes the real and positive u th root of (0). [A n elementary proof of 

(32) is given in the Appendix.] Thus, for the special case when C(x) is non-negative 

definite, a solution to the original C-minimax optimal control problem (l)-(5) can be 

obtained, through a limiting process, by minimizing instead the Lagrange-type per- 

formance index 

T 
J[u] = lim j- P [C(x(t))l dt 

t - 
P-a 0 

(33) 

subject to the same conditions (2)-(5). It is interesting to note that, although the control 

obtained by minimizing the performance index (33), as u + 00, does coincide with one 

of the optimal controls which minimizes (1), it does not exhibit the same degree of non- 

uniquesness, in general I An application of this alternative method of solution is 

illustrated in Example 1, Section 8. A further discussion of this topic may be found 

in [35]. 

Another alternative method of solution consists in replacing the original 

C-minimax optimal control problem (1 j-(5) by the following problem of controllability 

in restricted state space: Find an admissible control u = u’(t) which transfers the state - -- 

of thedynamical system (2) from the initial state x(to) = -x0 E D to the terminal 

18. Equation (32) may be recognized as the definition of the norm in a &a It,, Tl 
Banach space [ 401 with elements C($t)) _> 0. 

15 
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manifold (4), in some time interval [to, T], subject to the state space inequality 

constraint 

[C($)) - PI I 0 t,lt<T (34) 

where ‘3 is a specified real scalar constant. The solution to this controllability problem, 

if it exists, is not unique, in general. Let i (x *oI P)t ;cxo E D, be the set of all controls 

UC(t) = h zo, P) w ic are solutions and let B(z,) be the set of all p for which h h 

#hot P) is non-empty. It is evident that 

along the solution of 

(35) 

(36) 

Clearly, B(;,) is bounded from below by C(_x,). Let p*(z,) be the greatest lower 

bound of Bk,). Th en 

we have19 

for each -x0 E D, and over the union of all $ko, p), ‘3 E B(z,), 

inf max C($t)) = B*(_x,) 
to<tlT 

(37) 

along the solutions of (36), Therefore, if p*(,xo) E B(zo), a control eC(t;x -olP*(,xo)) 

e Sk01 P*(_x,)) is optimal with respect to the original C-minimax performance index (1). 

In this case p*(z) = V(z) in the sense of (6). 

Wargo [ 301 , [ 311 has developed an elegant alternative method of solution 

by using the result (37) to convert the original problem (l)-(5) into a special Mayer 

problem in restricted state space and then applying a comprehensive set of necessary 

conditions, (developed by Warga), for solutions of Mayer-type optimal control 

19. Suppose, for example, that there exists a 4’ E pwo) *(zor P> such that 

t “<“t”cT c($t)) < p*bJo). Th en, 
o- - 

there must exist a p < p*(z,) such that toTtx<T C(;(t)) IF. 

This latter result implies that FE B(xo) which is a contradiction. 
-- 

16 



problems in restricted state space. In an independent study, Dubovitskii and Milyutin 

[28], [29] used function space techniques involving Stieltjes integrals to develop a 

set of necessary conditions (for C-minimax control problems) which closely resemble 

some of the results given in [ 301. It is remarked that the possibility of using Stieltjes 

integrals in the study of C-minimax control problems was pointed out by Bellman et al. 

in [22]. 

The functional equation technique of dynamic programming has also been used 

to study discrete versions of several special cases of the problem (l)-(5). Some of the 

results are described in [ 231, 1241 and [ 25 J . 

8. ExamDIes 

The following examples illustrate application of the method of solution proposed 

in Section 3. It will be noted that the simplicity of these examples permits the validity 

of the solutions obtained to be readily verified by inspection. 

Example 1. As a special case of (l)-(5), let 

J[u] = max x:(t) (38) 
toleT 

A’ =x2 
(39) 

A2 = u 

xN(to) = -x0 (40) 

$T) = 9 T is unrestricted (4’) 

Iuwl L ’ (42) 

For this problem, it is readily verified by inspection that the set R. consists 

of the closed set of states x, bounded by the curves 

(43) 

(44) 

and lying in the second and fourth quadrants of the x , ,x2 plane. Equation (13) is 

17 



satisfied along the boundary segment defined by (43) and (14)-(15) are satisfied along 

the boundary segment defined by (44). The optimal control +(t; ,x~), z. e R 
0’ 

can be 

chosen as any admissible control which satisfies (8), (11) and (41). An optimal control 

law must satisfy the additional requirement 

$yX12) 5 0 to<tlT (45) 

along the corresponding solution of (39). One control law satisfying these requirements 

is given by 

u”b$ = -w Ix, + i 1x21 x21 x e R, y 

where, in this particular instance, 

i 

+1 if x1 < 0 

sgn [0] = 

-1 if X1 > 0 

(4.4 

(47) 

The control law (47) may be recognized [ 1] as the time-optimal control law for the 

dynamical system described by (39)-(42). 

The set Rm consists of the largest set of states 2 E (E2 - Ro) for which the 

condition 

2 
x, 0) I x, 

2 
(t,) toltq (48) 

is satisfied naturally along solutions of the, Mayer type, variational problem (24). 

The necessary conditions satisfied by such solutions are, from (21)-(23), 

max [p,(t) x,(t) + p,(t) u(t)1 z 0 
141’ 

tolt<tl (49) 

0 

P’ =0 

P, = -p, 

p&t,) = -2x&t,) 

p,(t,) = 0 

(50) 

(5’) 

(52) 

(53) 

18 



From (49) it follows that 

u”(f) = wn P2(t) x(t) e Rm (54) 

Moreover, it is readily verified that in order to satisfy (49)-(53) it is necessary to 

choose 

P2W = -2 lx,wl X’ (t’) (55) 

Thus, (54) can be written in the form 

uO(t) = -vn [x,(t,)l x&sR 
m (56) 

or, since sgn x,(t,) = sgn x,(t), (x2(t) # 0), (56) can be written in the control law 

form 

u”bj)) = -SW [x2(t)] xeR 
N m (57) 

From (39) and (57) the opt imal trajectories in the set Rm are obtained as the one 

parameter family of curves defined by 

xl 
+ ; Ix,1 x2 = k k = real, scalar constant (58) 

Since G,(t) does not change sign along the optimal trajectories in R 
m’ 

it fotlows 

from (58) that (48) is satisfied in the region (E2 - Ro) where 

i 

xl 
+; x22 2 0 

xl 
-;“;(o 

Thus, the set Rm is bounded by the curves 

1 

x2 = 0 
aR : 

m 

x, + f 1x21 x2 = 0 

x2 > 0 

x2 < 0 

(59) 

(60) 

19 



In the complement of RoU R m every admissible control law has the property 

that if $t,) c E2 - (R,U Rm) then :(t2) satisfies the second of (60) for some t2 and, 

in addition, z(t) r E2 - (R,U Rm) and d/dt(x:(t)) 5 0, to<t<t2. It follows that 

E2 - (RoU Rm) is a set Ro2 of the R. type and every admissible control law is an 

optimal control law for 2 B R 
2 

! 
0 

In particular, one can choose 

u”(xj)) = -w [x20)1 xeR 
2 

- 0 
(6’) 

The x,, x2 plane is now completely partitioned into sets of the R. ond Rm 

type. One choice for the corresponding set of optimal control laws is given by (46), 

(57) and (61). It may be noted that (46) g ives a correct optimal control law for all - 

three sets Ro, R R2 
m’ 0’ 

Thus, for this example, the minimum-time control law also 

minimizes (38). 

In the sets R R 2, (6) is given by 
0’ 0 

VC$ = Xl21 zeRoUR 
2 

0 
(62) 

Intheset R 
m’ 

the V(x) = constant contours correspond to the trajectories (58). Thus, 
r* 

in R 
m 

V(z) = [x1 +; 1x21 x212 xeR ~ m (63) 

The sets R 
0’ 

R R2 
m’ 0 

are shown in Fig. 1, together with some representative V(z) = 

constant contours and a typical optimal trajectory corresponding to the optimal control 

law (46). 

In this particular example, it turns out that the sets R, and R 
2 

share a 
0 

common boundary defined by (44) 0 For this reason, the previously selected optimal 

control law for the set RoURo2 [i.e. (46) and (6l)J can be replaced by any admissible 

control law such that (45) is satisfied. One such alternative optimal control law, 

which in view of (57) happens to be optimal for the set Rm as well, is given by 

U”(X) = -sgn [xl 
& +; 1x21 31 xeE 2 z (64) 
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Any control law which minimizes (38) also minimizes 

and vice versa. Moreover, from (32), (33) it follows that the limiting control law 

obtained by minimizing the integral 

J[u] = max Ix,Ct)l (65) 
to<tlT 

Jful = {’ Ix,(t,l’ dt, 
0 

(66) 

as p-w, must coincide with one of the control laws which minimize (38) and (65). 

Fuller [41] has shown that the control law u(x,, t.r) which minimizes (66), subject to 

the conditions (39)-(42), can be written as 

4x, IJ) = -sw [x1 A + ; * lx21 3 1 (67) 

where the parameter k(t.r) is determined from a certain auxiliary algebraic equation 

and has the particular values k(1) = 0.01433, k(2) x 0,05862, and ,lkmw k(p) = l/3, 

Thus, the control law which minimizes (66), as p -, w, coincides exactly with the 

alternative C-minimax optimal control law (64). 

Example 2. The following example illustrates a case in which the performance 

index C(x) is not sign definite and the optimal trajectories in a subset of Rm are not 
h 

unique D 

Suppose the performance index of the problem (l)-(5) has the form 

J[u] = max x,(t) (68) 
t,<tsT 

with (2)-(5) the same as (39)-(42) in Example 1. Then, following the same procedure 

as in the previous example, it may be verified that the set R. is the closed set of points 

in the fourth quadrant of the x , , x2-plane bounded by the curves 

22 



x2 = 0 X’ 20 

aR 

: 
0 

i 

1 2 
xl 

-2x2 =o “2 I 0 

(69) 

The set Rm is likewise found to be the set of $-l points in the first, second, and 

third quadrants of the x1, x2-plane with th e exception of the points on the positive x -axis. 
1 

In the particular subset R,, c R, defined by 

R ml =I_xlx, +$x,220, x2 >Ol 

the optimal control u”(t) is unique and can be written in the control law form 

u”(x,) = -sgn (x2) x sRm 
2 1 

(70) 

(7’) 

In the set Rm2 = R - R,,, 
m 

however, the optimal control, obtained by solving the 

appropriate Mayer problem (24), is non-unique. This is due to the fact that the function 

ax,, =x,, evaluated on the “terminal manifold” aRo, attains its minimum value at a 

state (5= 2) which can be reached, using an admissible control satisfying (20), from 

every initial state -x0 e R m20 That is, the functional J[u] defined by (68) turns out 

to be “independent of path” for every trajectory x,(t) E Rm2, to<t <T, which satisfies 

(41), It follows that 

V(x) = constant = 0 
N 

Y HER, 
2 

(72) 

It may be verified that the set E2 - RoUR isaset R 
2 

m 
o of the R. type. The 

sets R R 
0’ m 

and R 
2 

O1 
together with some representative V(x) = constant contours and 

e 
a typical optimal trajectory, are illustrated in Fig. 2. 

Example 3. As another special case of (l)-(5), let 

J[u] = mox 

to.91T 
lx,(t) + x2w2 (73) 

23 
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with (2)-(5) the same as (39)-(42) in Example 1 0 The absolute minimum of the functional 

(73) occurs on the line 

x, +x2=0 (74) 

which is an integral curve of (39) when u is chosen appropriately. Therefore, the 

construction of the set R. begins by looking for a segment of the line (74) which is 

an integral curve of (39), for some admissible control, and along which the terminal 

condition (41) is satisfied. It is readily verified that such a segment exists and is 

defined by 

x1 +x2 =o IX’I I ’ (75) 

It is observed that the terminal condition (41) is satisfied along the trajectory (75) 

onlya t+w. The remainder of the set R. consists of the set of all states 2 which 

can be joined to the segment (75) by d a missible integral curves of (39) along which 

the performance index [x,(t) + x,(t)] 2 is identically non-increasing. This set is 

bounded in part by the lines Ix,] = 1 and in part by the curved segments defined by 

+ J-2x, - 1’ x, 5 -1 

x2 = (76) 

- JqT x1 2 ’ 

It is observed that aRo is not everywhere differentiable. 

The optimal control law in the set R o can be constructed in a variety of ways 

since the optimal control in that region is non-unique. One possible optimal control 

law is constructed as follows. Equations (75) and (76) together define a continuous 

curve 0 in the x x state plane. 
1’ 2 

In the subset of R. which lies to the right of the 

curve R, the optimal control law can be chosen as 

-sgn $,b$, Jr,(z) # 0, x, > 1 

U”(E) = 

: 

+‘, JI,b$ = 0, x, > 1 

-wn f (z), $ (2) # 0, IX’1 I ’ 

-x 2 - k &L +J =o, lx,l 2 1, k2 0 

(77) 
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where $l($ = /v + x2 and ~(2) = x, +x2. Likewise, in the subset of R. 

which lies to the left of the curve R, the optimal control law can be chosen as 

-w Q2($, ~2($ # 0, x, (-1 

u”($ = 
-1, tip(z) = 0 x, <-1 

-w s(xJ, c (21 # 0, IX’1 5 ’ 

-X 2- k@, (<x,, =O, Ix,1 5 1, k2 0 

(78) 

where Q2(x) = -Jv’ + x2. The arbitrary scalar constant k in (77) and (78) is 

introduced-as a technical device to permit stabilization [ 391 of the integral curve (75). 

Alternatively, the control lavlv in the last members of (77) and (78) can be replaced 

by the expression 

u’(x) = -sgn (x1 + x2), lx,] 5 1 
Iy (79) 

in which case the representative point z(t) will move along the curve (75) in a sliding 

(chattering) mode [ 421. 

The set R 
m 

is determined, as before, by solving the appropriate Mayer type 

variational problem (24) using the boundary of R. as the terminal manifold. In this 

way, it is found that the boundary of Rm is defined, in part, by the lines Ix,] = 1 

and in part, by the curved segments 

i 

-1+2&q x1 5 -’ 

x2 = 

1-2q x1>’ 

The optimal control law in the set R can be written as 
m 

u’(x) = -sgn x2 xeR 
N N m 

(80) 

03’) 

The complement of R. U R 
m 

is a set of the R. type (and is therefore denoted 

by Ro2) because for each initial state -x0 E R 
2 

there exists an admissible control law 

and a time t2 > to such that z(t) e Ro2 and i/dt[xl(t) + x2(t)12 < 0 for all to<tst2 
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- 

and z(t,) e aRmO For example, choose the control law 

uO(x) = -sgn x 
m 2 

In the sets R. and Ro2, (6) is given by 

vy = (x1 + x2j2 

5aR 
2 

0 

xcRoURo2 (83) N 

In the set Rm, V(x) = constant along optimal trajectories and (6) is given by 
N 

V(x)=[x sgnx 
” 1 2 

+;(l +x22)12, zeRrn 

Expressions (80), which define the common boundary segments between R and R 
2 

m 0 

can be obtained, alternatively, by equating expressions (83) and (84). 

The sets R R 
2 

0’ m’ 
and R 

0’ 
together with some representative V(x) = constant 

* 

contours and a typical optimal trajectory, are illustrated in Fig. 3, 

It is interesting to compare the optimal control law (77), (78), (Sl), (82), for 

the present example with the optimal control law for the problem of minimizing the 

Lagrange, integral type, performance index 

J[u] = ST [x,(t) + x2(t)12 dt, U - unspecified) (85) 

tO 

subject to the same restrictions (39)-(42). Th e solution to this latter problem has been 

described in [ 391, [ 43 1, and [ 441 and consists of both a bang-bang mode and a 

singular mode. The singular mode trajectory is identical with the line segment (75) 

and is joined, at Ix I = 1, to two bang-bang switching curves. A comparison of these 
1 

two solutions is shown in Fig. 4. It may be verified, from Fig. 4 and the fact that 

the sets Ro, Ro2 share a common boundary, that the control law which minimizes (85) 

also minimizes (73) for initial conditions x 
J-0 

sufficiently near the origin. 
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Example 4. As another special case of (l)-(5), let 

J[u] = max x:(t) 

toMT 

2, =x2 

G2 = -x1 + u(t) 

$f,) = z. 

x(T) = 0 T- unrestricted 
SW 

lu(t)l 5 1 

636) 

697) 

038) 

(89) 

For this problem it may be verified that R is the connected and closed set of states 
0 

x bounded by the curves 
rd 

x2 
=o 

aR : 
0 

lx1 
+ sgn x2) 

2 
+ x2’ = 1, ix,1 5 2 

and lying in the second and fourth quadrants of the x , , x2-plane, The optimal 

control law for x e R, can be chosen as any admissible control law which satisfies 

WI (ll), (88) ak 

t <t<T 
0- 

along the corresponding solution of (87). One such control law is given by 

u’(x) = sgn [x,~ - 
I* 2)x, I + x221, x e R, 

yv 

with 

r +l if x, > 0 

sgn [O] = 

I -1 if x, < 0 

(90) 

(91) 

(92) 

which may be recognized [ 1] as the time-optimal control law [in the set R,] for -- 

the dynamical system described by (87). 
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The set Rm is determined, as before, by solving the appropriate Mayer problem 

(24). In this way it is found that Rm is the two sets of points bounded by the curves 

x2 = 0 

EIR : 
m 

x, +; lx21 x2 = 0 

(x, + sgn x2)2 + x22 = 9 lx,1 I 2 

(93) 

In Rm the optimal control law can be expressed as 

u”(x) = -sgn x 
N 2’ 

xeR, 

Ygn (0) = sgn (x1) (94) 

It may be noted that the particular boundary segment of Rm defined by the last 

expression in (93) is an optimal trajectory which belongs to RmO 

The set Ro2 C (E2 - RoU Rm) is the largest set of initial states x 

following property. For each z. E R ,’ 

-o with the 

there exists an admissible control u(t), to<t<t2, 

such that, along the corresponding solution of (87), C(z(t)) 5 C(z,) and z(t) E Ro2 

for all to<t <t2 and 5(t2) ERR,. In contrast with the previous examples, the set R 
2 

0 

for the present example is not the complement of RoU R 0 Instead, it is found that - 

R2 

m 

0 
is the two, disconnected, sets of states bounded by the curves 

x2 =0 

aR2: 

f 

x1 
+ f lx21 x2 = 0 

0 

x1 
* - 21x,1 + x2’ = 0 

(x1 
+ sgn x2)2 + x2’ = 9 

(95) 

and lying in the second and fourth quadrants of the x ,,x2-plane0 In Ro2 the optimal 

control law can be chosen as 

u”(x) = sgn 
2 

x 2’ xcR (96) m N 0 
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The set R ,’ is determined, as before, by solving the appropriate Mayer problem 

(24) using 8R,’ as the “terminal manifold.,” In this way, it is found that Rz is 

bounded by the curves 

f 
x2 = 0 

aR2: 

I 

x, +; lx21 x2 = 0 

m (x, + sgn x2)2 + x2’ = 9 

(x, + sgn x2)2 + x22 = 25 

(97) 

It is noted that the set R f shares a common boundary with the set Rm. In R 
2 

the 
m 

optimal control law can be expressed in the same form as (94). 

The remainder of E2 is partitioned into the sets R ,“, Ro4, 000 and Ri, R:, .0o 

by repeating the process described above. It may be verified that, because the sets 

(Rot Rz), (Rz, R:), etc. share common boundaries, the individual control laws for 

the families of sets [ Ri} and { RL} can be replaced by the one control law 

U”(X) = -sgn Ix, + $ 1x21 x21, xeE 
2 

ry Iv 

which is optimal throughout E2. Alternatively, the somewhat more complex time- 

optimal control law [ 1 I for (87)-(89) can also be used OS a C-minimax optimal control 

law for arbitrary 5s E20 

The particular sets R i R i i=l, OOO, 
0’ m’ 

3 together with some representative 

V = constant contours and a typical optimal trajectory are illustrated in Figure 5. 

Example 5. As a special case of (l)-(5), let 

J[u] = max 

toMT 
rx,2ct, * x224)1 (99) 

with (2)-(5) th e same OS (39)-(42) in Example l., 
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For this problem, the set R. is the closed and connected set of states 5 

bounded by the curves 

x2 = 0 1x11 ’ ’ 
3R : 

0 

x1 +; 1x21 3 = sgn x 2 

(100) 

It may be noted that aRo is not everywhere differentiable. 

The optimal control for z. E R, can be chosen as any admissible control which 

satisfies (8), (11) and (41). An optimal control law must satisfy the additional require- 

ment 

& [x;(t) + x22w I 0 toltlT 

along the corresponding solution of (39). 

The set R m consists of the largest set of states 2 E (E2 - R,) for which the 

condition 

[x:(t) + x; (f)l I [x,2o,) + x22o,)1 to<t<t 
1 

(101) 

(102) 

is satisfied naturally along solutions of the Mayer variational problem (24). Proceeding 

as in Example 1, it is found that the set Rm consists of two disconnected sets: (i) the 

set of states 2 lying above the broken curve defined by 

i 

x2 = 0 x, L 1 

aR : 

m 
12 

x1 +2x2 =+l 3 2 0 

and (ii) the set of states 5 lying below the broken curve defined by 

i 

x2 = 0 x, 5 -1 

aR : 

m 
1 2 

x1 -2x2 =-1 3 I 0 

(103) 

(104) 

34 

- _._._. - . . . .._..._ 



In the set Rm the optimal control law can be written as 

u’(x) = -sgn x 
N 2 

xaR 
- m (105) 

R2 

The complement of RoU R 
2 

m is a set of the R. type and is therefore denoted by 

O0 
For any state 2 c R 

0 
it is always possible to find an admissible control law such 

that along the corrrsponding solution of (39) the following conditions are satisfied 

x(t) e Ro2 
N 

test <t2 (106) 

$t2) E aRm (107) 

4 [x,2(t) + x22(t)l 5 0 

for some t > t 
2 0’ 

For example, one such control law is 

uO(x) = -sgn x2 
N 

xeR 
2 

- 0 

The x, ,x2 plane is now completely partitioned into sets of the R and R 
0 m 

type. In the set R. and R ,‘, (6) is given by 

V(x) = (x,2 
N 

+ x22) 

and in the set Rm, (6) is g iven by (compare with (63)) 

2 
V(x) = lx, N +; I9 31 

xcRoUR 
2 

N 0 

xcR 
- m 

(1W 

(109) 

(110) 

Since V(x) is continuous across the common boundary segments of Rm and R,’ the 

equations”for those boundary segments, previously given in (103) and (104), can be 

obtained directly by equating (110) and (111). 

The sets R o, Rm, and Ro2, together with some representative V(z) = 

.constant contours and a typical optimal trajectory are illustrated in Fig. 6. 

35 



R 
m 

FIGURE 6 

R 
m 



9. Performance Improvement with C-Minimax 
Control - A Geometric Interpretation 

Suppose that th e uncontrolled dynamical system described by 

k = Np($ (112) 

is asymptotically stable with respect to the terminal manifold (4) for all initial states 

z. E Dot D. Suppose further that the same dynamical system, when subjected to an 

external control u(t), obeys the differential equation 

where I(;, 0) = E”(z). 

The maximum value of the performance index C(z(t)), to<t<T, which occurs 

along the solutions of the uncontrolled system (112) [with x 
-0 

E Do], can be studied 

by the same techniques used in Section 3. By this means, the two sets a0 and g 
m 

defined by 

(114) 

can be constructed in the state space En of the system (112). Then, proceeding as 

in (6), one can define a function V(z,) on the subset Do c En by 

V(;,) = max a$)) x eD 
0 

-0 
(11% 

to<t<T 

so that 

(116) 
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The function V(z,) in (115) indicates the quality of C-minimax performance which 

is realized from the transient response of the uncontrolled system (112). The result 

(116) can be visualized geometrically in the product space E’ X En: z, x,, x2, l 00, xn 

by considering the two surfaces vand c” defined as 

v= {(z, ,x) c E’ X En 1 z - V(z) = 0) 

(‘17) 

According to (116), the surface v lies “above” the surface @ at each state x E 
dz, 

while, at each state x E IR o, the surfaces 9/and @ intersect (coincide). Thus, the 

set a0 c Do is the projection, onto the subspace En, of the “points of contact” between 

the two surfaces vand e. 

It follows from (7), (115) and (116) that, for initial states z. E go, the quality 

of C-minimax performance of the uncontrolled system (112) cannot be improved by 

application of external control u(t). That is, the application of external control u(t) 

cannot improve the quality of performance if the initial state x -o corresponds to a 

“point of contact” between the two surfaces ?/und 6. 

3/ @ 

On the other hand, if z. E ‘8 
m 

the surface lies “above” the surface and therefore the quality of C-minimax 

performance for that initial state can be improved by the application of external 

control, provided that an admissible control (satisfying (4)) can be found which moves 

the surface VI closer” to the surface co The new “points of contact” between v and 

@ achieved by this means, 

I A 

correspond to states 2 which leave the set 61 
m 

and join 

the set 
O0 

In addition, any initial state z. E En - Do which can be controlled to the 

terminol manifold (4) by some odmissible control u(t) becomes a member of one or the 

other of the sets bi or R 
0 m’ 

In this way, the set D is obtained as the union of Do 

and the set of all states .x0 E En - Do which can be controlled to 7 with an admissible 

control 0 

Thus, the effect of applying a C-minimax optimal control to the system (113) 

1 
can be viewed in E X En as a “depressing” of the surface v down onto the surface c 
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in such a way as to (i) increase the areas of contact between vand Cwherever 

possible and (ii) decrease the original “distance” between %nd c at those states 

EE D where contact between vand dcannot be achieved. The absolute “best” 

performance, in the sense of C-minimax control, is achieved when the two surfaces 

gnd ccoincide for every state 2.~ D. 

10. A More General Class of C-Minimax Performance Indices -~ 

The particular class of C-minimax performance indices considered in the present 

study does not admit. those cases in which the performance index C(o) is an explicit 

function of the control u(t). On the other hand, there appear to be many practical 

situations where such a performance index is physically meaningful. It is of some 

interest, therefore, to consider the possibility of extending the techniques described 

above to the more general class of C-minimax performance indices of the form C = 

ax, u). Two methods for accomplishing this are described below, 
w 

One method which permits application of the C -minimax theory developed 

above to the case C = C(z, u) consists of introducing the new state variaiablex 
n+l 

= u(t) 

and considering w(t) = du(t)/dt OS the new control variable. In this way, the additional 

state variable equation 

ic 
n+l 

= w(t) (‘18) 

can be appended to (2) and the resulting performance index C(z, u) =C(c, xn+,) can 

be expressed in the form of (1). Application of this method is complicated by the 

necessity for selecting a suitable class of admissible control functions w(t) [it may 

be necessary to introduce an artificial bound on admissible values of w(t)] and by 

the presence of “hard” (inequality) constraints imposed on the new state variable 

X n+l through the original control set (5). 

An alternative method for treating the case C = C(z, u) consists of introducing, 

as before, the new state variable x 
n+l 

= u(t) and requiring that x 
n+l 

satisfy the 

special state variable equation 

ic 
n+l = -k(xn+, - w(t)) (“9) 
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where k is a positive scalar constant and w(t) is a new control function which belongs 

to the same class of admissible functions as the original control u(t). By this means, 

(119) can be appended to (2) and the performance index C(> x 
n+l 

) is reduced to the 

form (1). The exact solution to the original problem [i.e.: the attainment of the 

condition x n+l(t) = 4) q w(t)1 is obtained, through a limiting process, by letting 

k + OD in (119). This method has the advantages that the new optimal control function 

w(t) is sought in the same class of functions as u(t) and, except for the initial condition 

requirement xn+, (to) e U, _ no inequality constraints are imposed on x 
n+l (t)O 

The two techniques described above can be used to study a variety of the 

cases Cf.:, u). However, if C(o) has the special form C = C(u), the C-minimax 

optimal control can be obtained by means of an essentially different method based 

on the theory of functional analysis. Some particular results which have been obtained 

by this method are described in [ 45]-[50]. 

11 0 Areas for Further Research 

The deterministic C-minimax problem considered in the present study can be 

generalized to include dynamical systems with non-deterministic parameters. In 

particular, one might consider dynamical systems described by stochastic differential 

equations and replace C (z(t)) in the functional (1) by the expectation of C(c(t)). 

Stochastic optimal control problems of this type have apparently been studied relatively 

little [51], [52]. 
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Appendix 

An Integral Representation for the Maximum of a Non-Negative 
Continuous Function - An Elementary Proof 

Theorem 

Let f(t), t s [t 
0’ 

T], be a real, non-negative definite, single-valued, bounded, 

and continuous scalar function defined on [to, T] D Suppose 

Then 

max f(t) =M 

t ~b,,Tl 

VP 

=M 

Proof 

Choose a constant 0 < E < M and define the comparison function T(t), 

t e [to, T] , as follows 

i 

0, if f(t) < (M - e) 

T(t) = 

M- E, if f(t) _> (M - B) 

Clearly, 

;(t, 5 f(t) 5 M ‘+ t E If,,Tl 

so that 

[{oT [?(t)lpdj”p~ [,‘arr(t)]pdtj”ps [{;Mpdt]“p 

'+tdto,Tl,p>O 

(120) 

(‘2’) 

(122) 

(‘23) 

(‘24) 
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which can be written 

< M[ T - to] “P (125) 

where the B;(e), i = 1 I l -•, k,kdenote the k positive intervals of time for which 

f(t) 2 (M - e). Note that 0 < f B;(a) < (T - to) for all 0 < E <M. Taking the 

limit as t.r -* a0 in (125) there obtains 

(M - E) 5 lim ~~oo [( ItBilp~~“p 5 M (‘26) 

Since (126) is valid, in particular, for arbitrarily small positive e the result (121) 

follows as e + 0. 

It can be shown [40] that the result (121), with M interpreted as the essential 

supremum of f(t), remains valid (almost everywhere on [to, T]) even when f(t) is 

only a measureable function. 
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Ill. Three Examples of Differential Game Problems in Optimal Control Theory -- 

C. D. Johnson 

The purpose of this study is to illustrate, by examples, the type of optimal 

control problems which can be solved by application of the theory of differential 

games. The method of solution is based on the combined application of the classical 

Hamilton-Jacobi-Corathgodory theory of a value function and the Principle of 

Optimality. The theoretical foundations for this method are omitted here since 

they are described, in detail, in the recently published treatise on differential 

gomes by R. lsaacs [ 11. The reader is assumed to have some familiarity with this 

basic reference. The first example illustrates a differential game with quadratic 

performance index and hard inequality constraints on both controls. The second 

example illustrates a bounded control differential game which possesses a singular 

solution - a situation which is quite common in this class of problems. The last 

example is the differential game analogue of the classical optimal linear regulator 

problem. 

Example 1 - A First Order System 

In the class of piecewise continuous functions, find a pair of minimax controls 

I u” (t) , w” (t) I such that the minimax condition 

J] u=‘, w] < J \ u; w” ] < J ] u, w” ] (1) - - 

is satisfied for all admissible controls u (t), w (t) 

where T 

J [u, 
1 

WI = 7 

s 

[ x20) + u2 (t) 1 dt 

0 

(2) 

(3) ;(= -ax +u+w 
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and 

x (o)= x0 

x (T) = 0 

T - unrestricted 

1 I 
w (t) < M 

Iu 011 1 N (N > M > 0) (4) 

In (3), a is a real scalar constant and u (t), w(t) are real scalar functions of time. 

Proceeding in the spirit of differential game theory, we define the value of 

the game payoff V (x) as 

V(x) = minmaxJ [u, WI ,x0= x 

ueu wew 

(5) 

where U and W represent the set of admissible values for the controls u and w 

respectively. It is assumed here, and in all examples which follow, that the game 

has a proper saddle point so that -- 

min max J [ u,wl = max min J [ u,wl 

u eu wew wew ueu 

Then, the value V (x) satisfies the Hamilton-Jacobi equation 

ax%-M 1g1 

2 
+N~sat(~~)-~sat2(N~)-$x2=0 

and the minimax controls u”(t), w”(t) are given by 

1 

(6) 

(7) 
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The pair { u”(t), w”(t) 1 can be determined by solving (7) directly, or, alternatively, 

by solving for the characteristic strips of (7). Here, we solve (7) directly. 

Assume that 

O<g< N (9) 

Then, w” = + M and, noting the required boundary conditions (4), it follows 

from (7) that 

av 
ax =-(ax - M) + (sgn x) -/(ax - M)2 + xT (10) 

From (9), it is clear that (10) is valid in the region 

I 
0(x< +aN + N2 (a2+1) - 2NM 

In a similar manner, it is found that in the region 

-N< 2 <(I 
- ax 

(7) is satisfied by 

av 2 2’ 
-= 
ax - (ax + M) +(sgn x) (ax+ M) + X 

which holds in the region 

-aN-,/mG<x < 0 - 

It may be noted that (11) and ( 4) define real upper and lower boundaries, 

respectively, only if 

(11) 

(12) 

(13) 

(14) 

(15) 

Finally, from (10) and (13) the minimax optimal controls (8) can be written in the 

state variable feedback form 
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u’(x) = N sat N 
-1 

ax - (sgn x) (M + /(ax - M sgn x)~ + 

we(x) = Msgnx 06) 

Example 2 - A Second Order System 

In the class of piecewise continuous functions, find a pair of minimax controls 

{u”(t), w”(t)} such that (1) is satisfied for all admissible controls u(t), w(t) where 

T 

J[u,wl = 1/2 
f 

[ x:(t)+ x22 (t) 1 dt (17) 

0 

Al= x2+w (18) 

ic2 = u (19) 

,x (0) = -” 

x,(T) = 0 

x2 (T) = unrestricted 

T - unrestricted 

Iw (t)l ‘_ M 

Iu(t>l 2 N (20) 

In this case, the value V(z) of the game satisfies the Hamilton-Jacobi equation 

x2 e + M Ia;1 -N 1Ei +; x12+; X; = 0 (21) 

and the minimax controls ore given by 
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av (5 (t) ) u”(t) =-Nsgn z 
2 

w”(t) =-M sgn av b 0) 1 
ax - 

1 
(22) 

In this exomple, it is not so easy to solve (21) directly. However, if there exists a 

singular solution 12 ] , it may be possible to effectively solve for 1 u”, w” ) by 

tracing out the characteristic strips of (21) starting on the singular manifold. 

Proceeding as in [ 2 ] we find that there are two possible singular solutions. The 

particular singular condition 

Z(x_ 0) ) - 0 
ax = 

1 

implies that 

x,(t) f 0 

d 
at 2 I I 

x (t) = min 

(23) 

(24) 

This yields the minimin solution ; i.e., both controls “working together” to achieve 

an absolute minimum of (17). Th is solution is of no interest in the present study. 

The other singular condition 

implies that 

uy) = x,(t) , I ()I- xlt <N 

(25) 

w”, (t) = - M sgn x,(t) (24 
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From (21), (26) and the given terminal and constraint conditions (20), the singular 

manifold for this case is found to be described by the expression 

x2 
= sgn x2 [M + 

which is defined over the regions 

(27) 

-Nzxl (0 if x2 > 0 

01 x1 < +N if x2 <0 (28) 

There is some reason to suspect that this singular solution does play a role in 

the present minimax problem. For instance, as M + 0 (i.e. as the “player” w(t) 

becomes less and less potent) the singular manifold (27), (28) degenerates to 

“2 = -x1 ’ x1 5 N I I (29) 

However, the solution to the case M = 0 is already available [3] and it is true that, 
1 

for that problem, the singular manifold (29) E optimal. A rigorous proof of the 

minimax optimality of the singular manifold (27), (28) can be established by showing 

that the derived function J[u, w], 5, =,x, evaluated throughout an e neighborhood 

of the singular manifold (27), (28), d oes indeed satisfy the Hamilton-Jacobi equation 

(21). This process usually involves somewhat lengthy calculations and will not be 

attempted here 0 Hereafter, we proceed on the assumption that this proof has been 

established. 

On the singular manifold (27), (28) the values of W/ax,, N/ax2 are given 

bY 
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av = 
3q -x2 

I 
S 

av co z$ I S 

(30) 

Also, the general expressions for the characteristic strips of (21) are (setting: pl = 

-av/axl, p2 = -av/ax2; see [4~) 

I$= -P1 +x2 (31) 

Thus, by computing the reverse time solutions to (18), (19) and (31), using the initial 

conditions (30) with u”(T) = +N, we may “flood” the x1 - x2 space with minimax 

“optimal” trajectories which have one end lying on the singular manifold. This 

process does not completely “cover” the x1 - x2 space with trajectories. The voids 

are filled by reverse time trajectories of (18), (19) and (31) which start on the specified 

terminal manifold: xl(T) = 0. In this case, we replace the initial conditions (30) by 

corresponding values computed from the transversality condition which yields 

2 
x2 

2(M- 

2 

T&g 

i x2 > M 

; x <-M 
2 

av =o ax, I t=T 

(32) 
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It may be noted that there are no minimax optimal trajectories which terminate on - 

the sector of the terminal manifold defined by: x1 = 0, 1x21< M. This result is 

characteristic of “minimax” differential games. 

As theflood paths described above are traced out in backward time, the 

set of points {Ei(t)}p2, at which p (t) = 0, build up a “switching manifold” across 
2 2 

which u”(t) switches from ?N to TN. This u” switching boundary joins with the 

singular manifold (27’), (28). This corrpletes the solution to this minimax problem. 

The results are summarized in Figure 1 0 

Example 3 - An n 
th 

Order System 

In the class of piecewise continuous functions, find a pair of minimax 

controls [ u”(t), wO(t)} such that (1) is satisfied for all admissible controls u(t), 

w(t), where 
3 

J[u,wl = ; ST iG$t), Q:(t)> + c2 u2(t) - r2w2(t)] dt 
0 

(33) 

(34) 

and 

_x(O) = x -0 

_xU) = ,o 

T- unrestricted (35) 

In (33), 5 is a real n-vector, Q is a rea I n x n, constant, positive definite matrix, 

and c and r are real, non-zero scalars. In (34), 4 is a real n xn, constant 

matrix and f and ,b are real n-vectors. In this example, the values of u(t), w(t) 

are not restricted . - 

2 
It turns out that the function pT(t) has no zeros along the flood paths, Thus, 

wO(t) = M sgn xl(t). 

3 
Here, <,x, y > denotes the inner product of ,x and y0 
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Figure 1 -- Field of Minimax Optimal Trajectories for 

Example 2. 



We need to assume this game is proper. That is, for any initial condition 

z. and any admissible w(t) there is at least one admissible u(t) which can satisfy 

the terminal conditions (35). This requirement is the differential game analog of 

controllability. Under these assumptions, the value of the game V(z) satisfies 

the Hami Iton-Jacobi equation 

whereyV=(g, OO., and the minimax controls are given by 

1 n 

uO(t) = -c 
-2 

<pwx_w, p 

wO(t) = r 
-2 

qwx_w,_b> (37) 

In this particular example, the direct solution of (36) can be carried out by 

assuming the solution V(z) is a quadratic form in 5. More precisely, let 

(38) 

4 
where @ is a real, constant, positive definite, nxn matrix, Then, (38) is a solution 

of (38 if M satisfies the matrix equation 

l$ +A’M +F(r -2_bl&’ - c-2 g/g -F 9 = 0 (39) *a 

Under appropriate conditions on the matrix [r -2 bb’ - cS2ffl], (39) has a unique 

real, positive definite solution I$0 Using this solution, the minimax controls (37) can 

be written in the state variable feedback form 

u”(z) = -c-2 <i$,f> 

w”($ = r 
-2 

c&b> (40) 

4 
It is clear from (33) that V(x) must be positive definite. ad- 
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It may be noted from (40) that U”(E) and wo($ are linear functions of the state 

variables x 1’ ***I Xn” 

The case of the above problem with bounded controls, Iu(t)l 5 N, Iw(t)l 5 G, 

can be solved, in principle, by employing the techniques which were used to solve 

the Problem of Letov [5]. -- 

1. 

2. 

3. 

4. 

5. 
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lV. A Note-on the Transformation to Canonical (Phase-Variable) Form 

C. D. Johnson and W. M. Wonham 

Introduction 

Consider the control system defined by 

d 

l = Sit 
(1) 

wherex_=(x,, . . . , xn) is the state vector of the plant, 9 is an (n x n) 

constant matrix, I= (f,, . . . , f,’ is a constant n vector and u(t) is the 

scalar control function. 

It is well known’ ’ * that, if the pair (b,:) is controllable, there exists 

a nonsingular linear transformation 

which reduces (1) to the canonical (phase-variable) form 

i = A y + u(t) -f, 
w -o- 

where 

-A0 = 

3 1 0 . . . 0 

3 0 1 . . . 0 
. . 

. . 
. . 

1 

al a2a3”’ ar 

If = 
0 . 

(2) 

This work was supported in part under Contracts No. NA.%-11231, AF 49 
(638) - 1206 and AF 33 (657) - 8559. 
C. D. Johnson is with the Department of Electrical Engineering, University 
of Alabama, Huntsvi I le, Alabama. 
W. M. Wonham is with the Center for Control Theory, Research Institute for 
Advanced Studies, Baltimore, Maryland. 
1 

R. E. Kalman, “Mathematical description of linear dynamical systems,” 

SIAM J. on Control, ser. A, vol. 1, ppO 152-192; 1963. 
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R. E. Kalman, “When is a linear control system optimal?” ASME Trans., J. 
of Basic Engrg, Vol. 86, pp. 51 - 60, March, 1964. 

59 



In a previous paper,3 a general procedure for obtaining the. matrix K 
h 

was described but no explicit expressions for ,K were given. In the present note, 

an expression for ,K is derived in terms of the Vandermonde matrix and a modal 

matrix of ,A, on the assumption that the eigenvalues of fi are distinct. 

Main Resu It -- 

Let the eigenvalues of fi be X1, . . . , X and let _a,, . . . , -an be a 
n 

corresponding set of eigenvectors. We recall that the Vandermonde matrix 

of fi is the matrix y, with elements 

(M ).. = Xii-’ 
-v II 

(i, i=‘, . . . , n). 

The modal matrix M is 
-- 

and has the property 

M-l@ =A (4) 

where 

G=diag [A,, . . . , AnI. 

The pair (b,j is controllable if the vectors:, Af, . . . , An-‘f are linearly 
- .w’ 

independent. 

It will be shown that the required transformation is 

K = $‘M -’ 
WV 

where B is a diagonal matrix defined in the following theorem. 

(5) 

Theorem 

Let b,i be real and let (1$,3 be controllable. Suppose the eigenvalues 

A’,. l .I n A of A are distinct. Let M be the modal matrix of 6 and let M be 

the Vondermonde matrix of ,A. 
WV 

Th en a nonsingular diagonal matrix! exists such 

that 

M&‘f = f . (6) u -0 

3 
W. M. Wonham and C. D. Johnson, “Optimal bang-bang control with quad- 

ratic performance index,” ASME Trans., J. of Basic Engrg., vol. 86, pp. 107-l 15; 
March, 1964. 
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Moreover, the matrix 

\ 
A = MB~-‘,A3?g’~, 

Al 

“0 

is of canonical form (2) with real elements. If 

2 = &a + u(t) ,f, 

then the transformation 

x =MB-‘M 
-1 

M #us% #WV .! 
reduces (8) to 

9 =_Aoy_ + u”,-f,* 

Proof 

The transformation 51% reduces (8) to 

(7) 

(8) 

;=A= + u(t): 
Al e..-- 

where 

c = M-‘f - N .u- (9) 

Since (A f) is controllable, the vectors c 
*’ ,.a 

(_, 42, . . . ,G-“z are linearly 

independent; it follows, since the X i are distinct, that the components c. of c 
I - 

are all nonzero. 

Let s=diag (cl, . . . , c ); then M C is nonsingular. Define 
n -v- 

k=(b,, . . . , bn)’ 

= cy,E)- ‘fo; (‘0) 

and let 

B =diag (b,, . . . , b,). 0’) N 

By (9) and (lo), y,BM-lf = y?,k, = y,Cb,= f 
-0’ 

so that (6) is satisfied. 

The bi are all nonzero. For suppose bi = 0 if i = i,, . . . , ik. By 

(‘(3, yvC_IF =-f,* Let 55 be the matrix obtained from y?,E by deleting the 

last k rows and i , . . . , i 
1 k 

th columns. Then y?,C_ is nonsingular; the last 

equation implies bi =O for the remaining hi’s; and this contradicts (6). Hence 

i is nonsingulor, b. is well defined by (7); and (4), (7) give 

A 
-0 

=pv& M -! 
NV 

(‘2) 
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Writing [yv-‘jii = pii and using (3) and (12), 

Molii =k 2 A;-’ Ar srs psi 
r=ls=l 

= I 
8 

i + 1,i 
(i=l,. . . ,n- l;i=l,. . . ,n) 

n 

,> 
X,” pri (i = n; i = 1, . . . , n). 

r=l 

Thus_Ao is of form (2) and, since 5, ho have the same eigenvalues, 

An - e ai Xi” z (A-A,) . . . (A-An), 
i =l 

so that the a. are real if ,$ is real. This completes the proof. The transfomation 
I 

to canonical form is illustrated in Fig. 1. 

An Example 

As an application of the theorem, consider a third-order system (1) with 

- 2 -1 1 

b= i 1 0 1 

-1 0 1 I ; f= 1 iI 1 . 

1 

The eigenvalues of 6 are 

A, = 1 

x2 = - l+i 

“3 = - l- i (i=n) 

and the modal matrix of A is 

M= 
Y 

r 
0 5 5 

1 - 3 - 4i -3 +4i 

1 2 +j 2-i I . 

(‘3) 
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k= 4,x+ lJH)f 

ARBITRARYt CONTROLL,‘IBLE)FOR 

xi DISTINCT 

DIAGONAL FORM CANONICAL FORM 

GIVEN BY (2) 

FIGURE 1 



From (3), the Vandermonde matrix of 2 is 

With these values of!, I$ and &Av the matrix _B-‘is found from (6) to 
I 

be i 20 0 0 l-3j 0 0 1 0 0 +3j 1 o 

The matrix l$ is then given by (5), 

.I ,K=o 2 0 -1 3 1 1 1 1, I 

and the transformation 2 = -K,r takes (13) into the canonical (phase-variable) 
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V. Another Note on the Transformation to Canonical (Phase-Variable) Form 

Introduction 

C. D. Johnson* W. M. Wonham** 

The problem of determining a nonsingular linear transformation 5 = I$ 

which will take an arbitrary, completely controllable, single-input, time- 

invariant linear dynamical system 

i=@- + 4of c ( l = d/dt) (1) 

into the canonical (phase-variable) form 

where 

A = 
-0 

;=A I . ” + 4wo .vo :. 

0 100 . . . 0 

0010 . . . 0 

0 001 . . . 0 
. . 

. . . 

. ‘1 ;, 

0 0 1 

‘1 3 l - - On-’ an. 

i f = 
-0 

69 

(3) 

was posed and completely solved in [ 11. Since the publication of that result 

various features of the transformation method described therein have been re- 

discovered and published as “new results,” [2], [ 31, [ 4 . The purpose of this 

note is to point out, in more detail, some of the inherent computational features 

of the transformation method originally described in [ 11. 

This work was supported by the National Aeronautics and Space Administration 
under Contract No. NAS8-11231 and Grant No. NsG-381. 
*Department of Electrical Engineering, University of Alabama in Huntsville, 

Huntsvi I le, Alabama. 
** Center for Dynamical Systems, Division of Applied Mathematics, Brown 

University, Providence, Rhode Island. 
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A General Method for Determining the Matrix K 

In Appendix 1 of [ 11, it was shown that, given an arbitrary completely 

controllably ‘pair (fi, -0, the required transformation matrix ,K could be effectively 

computed by the following procedure. 

1) Form the controllability matrix’ ‘j defined by 

H = [ f, Af, A*f, . . ., An-‘:1 
N mn.I.I*- (4) L) 

2) Compute t-J 
-1 

3) Compute the coefficients a: of the characteristic polynomial 

of h[i.e., last row of hoi by the following rule* 

ai= <ii, b”L> i=l, . . . , n 

.th 
where hi is the I 

-1 
rowof! . 

4) Form the symmetric matrix k defined by 

L= 

5) Set 

-a 
2 

-a 
3 

-a 
4 

. 

. 

. 
-a 

n-l 

-a 
n 

1 

-a 3 -a 4 l ** -a,-, -an 

-a 
4 

. . . -a 1 
n 

1 0 

, 
-a 

n 

1 ‘. 0 

0 . . . 

K=Ej,. 

This gives, by direct calculation, 

~=[~,r,k*, - - 0 ,,kn 1 

1 

0 

0 

. 

. 

. 

0. 

(3) 

(6) 

(7-a) 

(7-b) 

1. It is recalled that the pair ($, fJ is completely controllable if and only 
if rank H_= n. 
2. <,x, y> denotes the scalar product of 2 ond y. 
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I 

where n-r 

k = - I a,% As-‘f +Anmrf, r=l,*,...,n-1 (7-c) 
mr 

s=l 
- ..M N m 

It may be noted that the vectorshr in the first equation of (7-c) satisfy the 

recursion equation 

k = -a,+,: + ,Al,k,+’ r=l,* I --a, n-l 
-r V-4 

The constructive procedure described above is so designed to provide a 

“built in” check on the validity of the assumption that the poir (4,3 is completely 

controllable leg., Step 2)]. M oreover, the apparent excess of information 

generated in Step 2) [to check controllability it is only necessary to compute i’il ] 

Is effectively used in Step 3) to evaluate the characteristic polynomial of 6 and 

thereby avoid the necessity of directly expanding the determinant IA - q. 

Of course, if one knows a priori that the pair (A,f) is completely controllable -,I*- 

then Step 2) can be ignored and the elements ai, i = 1, . . . , n in Step 3) can be 

determined alternatively by the more common procedure of evoluoting the character- 

istic polynomial of 4 
n 

/iJ - x,II=h” - I ai Ai-’ . (8) 
1 

A possible disadvantage of this alternative, albeit more direct, procedure is that 

by it the matrix ,K defined in (7) can be formally constructed even when the system 

(1) is not completely controllable. The possibility of using the set of vectors 

,k’, “‘fun k defined in (7-c), as a basis for the canonical (phase-variable) form was 

pointed out in [ 51 .3 This result has also been described in a recent textbook [6]. 

In practical applications of the transformation to phase-variable form one 

usually needs both ,K and K 
-1 

. Using the procedure outlined above, we have 

K-1 -1 =L-‘H 
N N (9) 

3. Equations (7-c) coincide with the results given in [5] if the term a02 in [5] 
is replaced by a,g. This is apparently a typographical error. 

c 
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The matrix l-J-’ has already been computed in Step 2). 

easily computed4 to be 

0 1 b 

- I 
. . . 

00 1 b .’ ’ 

0 1 b b; , . . . b3 

1 bn b; , . . . b3 b2 -- . 

The expression for L 
-1 

is 
AI 

(‘0) 

where 

bn =a 
n 

n 

bi =ai + I i=n-1, n-2, . . . . 3,2. 
i =i+l 

an+i+l-] b] ’ 

Other Methods for Determining the Matrix K 

The general procedure described above for computing the pair (K, 5-l) 
N 

may offer certain advantages in numerical calculation since it does not require the 

computation of eigenvalues or eigenvectors and does not involve an exp,licit evalu- 

ation of the determinant 16 - XIJ . On the other hand, it is of some interest to ..N 

study the algebraic structure of the matrix 5 = _K($, J in terms of the fundamental 

matrix theoretic notions of eigenvalues and eigenvectors. In such a study, the 

relative efficiency of numerical computing schemes is not of primary importance. 

The result given in [7] showed how, when the pair (b,J is completely controllable 

and A has distinct eigenvalues, the matrix K can be written as 

K=MM -’ 
” -‘vv (‘1) 

where $ is a certain modal matrix of /J (the columns of I$ are n linearly independent 

column eigenvectors of the matrix 4 which have been normalized 
5 

in a special way) 

and v, is the Vandermonde matrix of 4. In later ond independent studies of this 

problem, Mufti [8] and Ainsworth and Gunderson [9] generalized the result in [7] 

to allow for the possibility of non-distinct eigenvalues. 
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-1 
4. For example, set _LL_ =I, . 

5. In the notation of [ 71, $= I$-’ where the columns of M are n linearly independent 

column eigenvectors of 4, and B is a non-singular diagonal matrix which acts as a nor- 

malizing factor. 



Relationships with Controllability and Observability 

A study of controllability and the structure of K in terms of the spectral m 

properties of the matrix ,A, brings to light some facts which may have practical 

value. Some of these results have been described in [ 10). In addition we 

have the following result 

Proposition 

Let 5 be a real,constant n x n matrix with at least one 

repeated eigenvalue. Let E denote a nonsingular matrix which 

transforms fi to the diagonal formh= diag. ( X1, . . . , X,) 

-’ ,A! =A, (‘2) 

and let T denote a nonsingular matrix which transforms A to Y 

the companion farm -A0 [defined as in (3)] 

T-’ AT=A . (‘3) ,-” M,.. -0 

Then if k exists L does not exist. 

Proof 

If kexists, ,A must possess a total of n linearly indepen- 

dent column eigenvectors. On the other hand, if L exists, the 

minimal polynomial of 6 must equal the characteristic polynomial 

of b. The latter condition is satisfied if and only if 4 has no more 

than one (within a constant multiplier) column eigenvector corres- 

ponding to each set of repeated eigenvalues. It follows that, when 

A, has repeated eigenvalues, L cannot exist if R exists. 

In the literature on control theory, the concept of complete controllability of 

the linear dynamical system (1) is often illustrated by transforming the matrix A, 

to diagonal or Jordan canonical form and then observing the effect of this 

transformation on the vector 1, [ 111, [ 12 1, [ 131. As a complement to this 

procedure, the above result has the interesting 

Corollary 

Suppose the matrix 2 in (1) has repeated eigenvalues. 

Then, if A, is similar to a diagonal matrix4, the linear dynamical 
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system (1) is always uncontrollable for any choice of the vector f. c1 

Moreover, if y= <z,z> is the scalar “output” of (1) then, under 

the conditions stated, (1) is always unobservable for any choice 

of the vector c. 
LI 

In light of this fact, qualifying statements such as that found in the footnotes 

on pages 350-351 of [ 121 are seen to be unnecessary. The Corollary also shows 

that, from the viewpoint of controllability and observability, the case when A 

hos repeated eigenvalues actually does exhibit certain special propetiiesP 

6. It is recalled that every real, 

diagonal matrixb. Thus, th 

symmetric matrix ,A is similar to a strictly 

e presence of repeated eigenvalues is a necessary 

and sufficient condition that (l), with a real symmetric ,A, be always uncontrollable 

and unobservable for any choice of the vectors Land 2. - 
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VI. Invariant Hyperplanes for Linear Dynamical Systems 

C. D. Johnson 

Abstract - In certain problems associated with the control of linear dynamical 
systems, theconcept of invariant hyperplanes in the system state space plays an 
important role [ l] - [8]. This paper gives conditions for the existence of in- 

variant hyperplanes for linear dynamical systems and describes some geometric 

properties of these hyperplanes. In addition, some relationships between invariant 
hyperplanes and the concepts of controllability and observability are discussed. 

Introduction 

An important class of linear dynamical systems, with scalar input and 

output, can be described by’ 

ic = 45 + u(t)i (’ = d/dt) (14 N 

y =<h, x> (lb) n, ry 

where x = (x , . . . , 
1 

x 
n 

) is a real n-vector (the state vector of the system), 4 is 

a real, constant n x n matrix, u(t) is a real, scalar function of time (the system 

input or control),iand h are real, constant, non-zero n-vectors, and y is a real 

scalar (the system output). Many of the mathematical properties associated with 

the dynamical system of (1) have convenient geometrical interpretations in the 

system state space, a euclideon n-space En whose points have coordinates x 1’ *a- , xn. 

This paper concerns a question about the existence of a certain property of 

the solutions of (la) for the special case when u(t)rO. In particular, the following 

question is posed. What conditions are required for the existence of a linear form 

‘2, x> = 0 (2) 

which is invariant along solutions of 

A=AX 

for arbitrary initial cond*iionizatisfying (2) 

(3) 

? In (2), c=(c , . . . ,c ) is a real, 
- 1 n 

constant, nonzero n-vector. In addition to onswering this question, this paper gives 

a characterization of the stobility of (2) along solutions of (3) and shows relationships 

This work was supported,in part,by the National Aeronautics and Space Administration 

under Contract NAS8-11231 and Grant NsG-381. 
The author is with the Dept. of Electrical Engineering, University of Alaboma, 
Huntsville, Ala. 
. 
‘The notation <z, y> denotes the inner product of 2 and y. 
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between the form (2) and the real eigenvalues and eigenvectors of .b. Finally, 

a solution is given for certain inverse problem associated with (2) and there is 

presented, for a special class of problems, a simple geometric interpretation of 

Kalman’s concepts of controllability and observability. 

The linear form (2) can be associated with an (n-l)-dimensional hyperplane 

in the state space En. This hyperplane has the property that if ‘2, z(O)>= 0 then 

<E, z(t) > ~0 for all tX when z(t) is a solution of (3). In the following, a linear 

form (2) having the above property is referred to as an invariant hyperplanegof (3). 

If <c,, z> = 0 is an invariant hyperplane of (3) and if an arbitrary solution 

x(t) of (3) satisfies 
c <O(>O) 

<c, A (t) > 

for < 2, .x(t)> > 0 

= (4) N SW 

i 
>O(<O) for <z, x(t)> < 0 

then the invariant hyperplane is called stable (unstable). -- 

Let the eigenvalues of A, be X,, . . . , hn and let -Q,, . . . , -Q~ be a correspond- 

ing set of column eigenvectors. It is recalled that the column eigenvectors of b 

are nonzero and satisfy 

Aa. = La (i= 1, . . . , n). (5) e-1 1 -i 

It is further recalled that corresponding to each eigenvalue Xi, i = 1, . . . , n, there 

is an associated nonzero row eigenvector @t which satisfies - I 

p.: 4 = Xi Ei’ (’ denotes transpose). (6) 

Results 

The conditions for the existence of invariant hyperplanes of (3) are summarized 

in the following. 

Theorem 1 

Let 6 be a real, constant n x n matrix and let the real, nonzero eigenvalues 

ofbbedenotedbyh,, . . . , X ;m< n. 
m - 

Then, corresponding to each eigenvalue 

i) (i= 1, . . . , m), there exists a real, constant, nonzero n-vector c. satisfying 
-1 

=A c A’.Zi i~i i= 1, . . . , m 

and such that 

<q, z(t)>= 0. (8) 
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along every solution of ic = Ax which satisfies 
n. e* 

<q, $0 >= 0 (9) 

Moreover, ,c i ’ is a row eigenvector corresponding to X and the invariant 
I 

hyperp lane 

fli = { ,xl<q, z> =Ol 

is stable (unstable), in the sense of (4), if Xi< 0 (> 0). 

Proof: Let fj denote the n x n matrix whose columns ore 

(‘0) 

, 2 ‘n-l 
c, A c, A c, . . . , A c. 
a.va ..Ta m. ..d 

Then, from repeated differentiation of (2) it may be seen that (8) is satisfied 

along solutions of (3) for each x(0) satisfying (9), if and only if rank E= 1. This -#” 

latter condition is satisfied if and only if 

A’ c =pc (‘2) c - 

for some real scalar e. It follows from (6) that (12) has real, nonzero solutions 

pi = ~, pi =~i corresponding to each real nonzero eigenvalue $, i = 1, . . . , m. 

Setting ‘i 
= <q, 2 >r q =_Bi, the derivative of 5. along an arbitrary solution of 

I 
(3) is found to be 

c+(t) = t q 0) i = 1, . . . , m. (‘3) 
dt 

It follows that the invariant hyperplane ;W i = { XI< &, z>=O) is stable (unstable) 

if Ai <O(>O)i=l, . . . , tn. 

Corol larv 

Let z,, . . . ,-Q~ be the set of real column eigenvectors of A, and let 2, , 

. . . , zrn be the set of normal vectors associated with the corresponding m invariant 

hyperplanes of ic = &. Then the vectors c., a. satisfy the following orthogonality 
-1 -1 

equation 

<Zi,Zk > = 0; x. f I X,(i, k=l, . . . ,m). (‘4) 
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Proof: The proof follows immediately from the well-known result that the row 

eigenvector corresponding to any eigenvalue is orthogonal to the column 

eigenvector corresponding to any different eigenvalue. 

Remarks 

1) If 4 has repeated real eigenvalues, it is sometimes, but not always, 

possible to find more than one linearly independent row eigenvector corresponding 

to the same (nondistinct) eigenvalue. Since any linear combination of such row 

eigenvectors is also a row eigenvector, it follows that in such a case an infinitude 

of distinct invariant hyperplanes will be associated with the same (nondistinct) 

eigenvalue. 

2) The assumption that the real ); are nonzero (i = 1, . . . , m) assures that 

(13) has a unique equilibrium state E(t)zO. In this case, the corresponding in- 

variant hyperplanes Hi always pass through the origin 5 = ,O. In the case of a distinct 

zero eigenvalue the corresponding vector zstill satisfies (7) but the equilibrium states 

of (13) are then defined by 

E = ‘2, X> = Z 

where z is an arbitrary real scalar constant. Thus, to each distinct zero eigenvalue 

there corresponds an infinite number of parallel invariant hypetplanes (15). The 

parallel hyperplanes corresponding to a zero eigenvalue are neutrally stable in the 

sense that along solutions of (3) 

ei, i(t) >= 0 (‘6) 

for all values of <c , x(t) >. - urn a 

3) The Corollary shows that the eigenvector a 
-k’ 

corresponding to the real 

eigenvalue 
xkl 

lies on the intersection of the set of invariant hyperplanes 

#i =( ~I<;~,$=01 where_ci =_ei(Ai), Xi#Ak, i, k= 1, . . . , m. In certain 

special cases, this result leads to a useful geometric interpretation of eigenvectors. 

Consider, for example, the case n = 3 and suppose that the corresponding three eigen- 

values h 
1 I x2t x3 

are all real, distinct, and nonzero. In this case there are three 

distinct invariant hyperplanes which pass through the origin x= 0. The pair-wise inter- 

sections between these three hyperplanes generate three lines that pass through the 

origin x= 0 and are collinear with the three eigenvectors a ,, a2’ and a3. This resu It 

is illustrated in Figure 1. 
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Figure 1 - Showing the eigenvectors a,, 4, -a3 lying on the intersections 

of the invariant hyperplanes #, , $f2, f13. 
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4) From (13) it is clear that in the state space En the integral curves of 

2 
the system (3) cannot cross over the invariant hyperplanes of that system. Thus, 

the set of invariant hyperplanes of i= +- define boundaries of n-dimensional convex 

subsets of the state space which are invariant for the corresponding solution z(t). 

This fact, together with the fact that an arbitrary solution z(t) always monotonically 

approaches (recedes from)3 each stable (unstable)#, is useful in establishing relative 

bounds on components of z(t). 

An Inverse Problem 

In this section the following inverse problem is considered: Find a real, 

constant n-vector y = ( y, , . . . , r,) such that the hyperplane 

(‘7) 

is invariant for the linear dynamical system described by 

;(=Ax+< ‘y hM ,rJ ,” >i (‘8) 

where 2 and f are real, constant n-vectors, and A is a real, constant n x n matrix. 

This problem differs from the previous problem inI;hat the hyperplane (17), (i.e., 

the vectorz) is assumed to be spec; Fied a priori. 

From the results of Theorem 1, it is clear that y must be chosen so that 
& 

1) the matrix 

$+fy’ 
-..a 

(‘9) 

has at least one real eigenvalue, and 

2) one of the invariant hyperpiclles of (18), corresponding to one of the 

real eigenvalues of (19), is defined Sy (i 7). 

A vector y which has the required properties is given in Theorem 2. 

Theorem 2 

Let A, be a real, constbnt n x n matrix, and let y, f, and c be real, constant 
e-4 

n-vectors. Then, the hyperplone 

-g={+~,~>=o} (20) 

is invariant for the linear dynamical system 

2.More precisely, i f ~KQ#“di th en z(t) cannot enter S!. in finite time. 

3.Here, the “distance” from 2(t) togis taken as ]k,/I-“<z, z(t)>. 

78 



i=$-+<y,x>f (2’) 
a...- 

if y satisfies 
ad 

,r = <z, L>-’ (-A’+ k I)c (22) ,“..a 

where k is an arbitrary, real scalar constant. 

Moreover, for the system of (21) and (22), the invariant hyperplane (20) is 

stable (unstable), in the sense of (4), if k< 0 ( > 0). 

Proof: Using the notatqon 4 = ‘2, ru -- x>, the derivative d e/dt along an arbit- 

tory solution of (21) is computed to be 

-$ = Cc, (A +f y’) x (t)> 
N - -a, - 

=k,+<c, f><]{ -<c, f>-‘(-A’+ kl) c 1, x(t) >. (23) ..f’II N e “.u ,.d 

The last term on the right of (23) vanishes when 

and in this case 

-’ r,=‘“,f’ (-_A’ + kj) c, (24) 

along an arbitrary solution of (21). This completes the proof of Theorem 2. 

Remarks 

Equation (18) defines the vector i in terms of the two components &- and 

< y, x >f. For the special case -Cc, f> = 0, the component <y, x >f is always in the 
MY.-. SW M ,.d - - 
hyperplane <c, x> = 0. It follows that, for this special case, <c, x> = 0 is an in- 

* N ne c 

variant hyperplane of (18) if and only if <,c, c x>= 0 is an invariant hyperplane 

ofz?=Ax k NW. Under this condition, the choice of the vector y is immaterial. 

Relation with Controllability and Observability 

The linear dynamical system (1) is said to be completely controllable [ 91 7 [ 121 

in the state space En if and only if, for each finite pair of states (x Mor zTT) E En, 

there exists a finite interval [0, T] and a control u = o (t; -x0, ,x~), 0 5 t < T, such 

that if $0) = -x0 then x.(T) =_ T x along the corresponding solution of (1). In a like 

manner, the linear dynamical system (1) is said to be completely observable [ 9]-[ 121 

in the state space E n if and only if, for each finite output y(t), 0 <t <T>O, which -- 

satisfies (1) [with u(t)sO], there corresponds a unique initial state z(O). 
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Let E be the n x n matrix whose columns are j, hi, Azf, . . . 
nrl 

, and ,A 1, and 

let E be the n x n matrix whose columns are?, $‘,h, ht2~, . . ., and 4’ 
n-l 

h. 

Then a necessary and sufficient condition for the linear dynamical system (1) to 

be completely controllable (observable) is that rank!= n (rank E= n) [ lo]. In 

other words, the system (1) becomes uncontrollable (unobservable) if and only if 

the vectorL(h) lies in a proper *-invariant (4’ -invariant) subspace of En with 

dimension less than n. 

The invariant hypetplanes discussed in Section II are (n-l)- dimensional 

$-invariant subspaces of En. It follows from the previous remarks that the linear 

dynamical system (1) becomes uncontrollable, in particular, whenever i lies in 

one or more of the invariant hyperplanes of (3). Suppose, for example, that 

<zi, i>= 0 for somezi which satisfies (7). Then, the derivative of r=<,ci, E> 

along an arbitrary solution of (la) is 

(26) 

which shows that, irrespective of the choice of u(t), the integral curve .x(t) 

cannot cross over the hyperplane <zi, z>= 0. 

An important connection between the h-invariant and h’-invariont sub- 

spaces of En is summarized in the following well-known result of matrix theory: 

If S is an &invariant subspace of En then the orthogonal complement of S is an 

b’invariant subspace of’En. Since the real column (row) eigenvectors of 6 are 

one-dimensional &invariant @‘-invariant) subspaces, this result shows that 

1) each real row eigenvector of 4 is orthogonal to an (n-l)-dimensional 

&-invariant subspace, and 

2) each real column eigenvector of b is orthogonal to an (n-,)-dimensional 

4’ -invariant subspace. The first of these facts is recognized as an alternative 

proof of the existence of the invariant hyperplanes described in Section II. The 

second fact shows that the linear dynamical system (1) becomes unobservable, in 

particular, whenever the vector IJ lies in one or more of the (n-I)-dimensional 

4. A subspace SCE” is said to be &invariant if X,E S implies ,,A’ S for all 

XES. N 
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hyperplanes orthogonal to the real column eigenvectors of A,. 

In the state space En, the union of all &invariant subspaces with dimension 

less than n is the set F(b) of all vectors;for which the system (1) is uncontrollable. 

Likewise, the union of all b’-invariant subspaces with dimension less than n is the 

set H(2) of all vectors b for which the system (1) is unobservable. The case when 

either of the sets F(b) or H(e) is n-dimensional is particularly important since, in 

that event, both F(A),H(A) are n-dimensional and the system (1) is always un- -m- - 

controllable and unobservable irrespective of the choice of the vectors f and h! 

/ .’ This degenerate condition occurs if and only if ranki<n for arbitrary i. In other 

words, if and only if there exist real scalars r o, r, , . . . , rk, (kc_ n- 1), not all 

zero, such that 

r&+r,A +,,A_ 
2 

+... +r,b 
k 

=O. (27) 

An n x n matrix &which satisfies (27), with k< n - 1, must necessarily5 possess 

repeated eigenvalues and is said to be derogatory. That is, the minimal polynomial 

of A, is of lower degree than the characteristic polynomial. The nature of the 

geometric structure that causes this degenerate condition can be illustroted by con- 

sidering the special case n=2. For that case, the only proper &invariant @‘-in- 

variant) subspaces of dimension less than n are the real column (row) eigenvectors 

of b. Thus, the second-order system (1) is uncontrollable (unobservable) if and 

only if the vector f(h) is collinear with one of the real column (row) eigenvectors 151,” 

of ,A. If the 2 x 2 matrix 2 #g is derogatory, it follows from (27) that the two 

eigenvalues of IJ must be real and repeated, X, = P2 = X j 0, and 4 must have 

the diagonal form 

h=hI x # 0. (28) c 

It is readily verified from (5) and (6) that the column and row eigenvectors of 

(28) are nondistinct and can be chosen as any vector in E2. That is, the state 

space portrait of (3), with b given by (28) consists of the family of all straight 

lines that pass through the origin 2 = 2. It follows that every vector f~ E2 (h E E2) 

5. The presence of repeated eigenvalues is a necessary but not sufficient con- 
dition for ,A to be derogatory. A necessary and sufficient condition for ,A to be 
derogatory is that there exists more than onexearly independent column eigen- 
vector corresponding to the same (repeated) eigenvalue. 
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is collinear with one of the column (row) eigenvectors of 9. 

In general, the proper &invariant and 4 ‘--invariant subspaces of En appear 

with a variety of dimensions. 
6 

For this reason, the loss of controllability and/or 

observability of the general nth-order system (1) cannot always be characterized 

solely in terms of the particular one-dimensional and (n - I)-dimensional invariant 

subspaces previously discussed. It is possible, however, to give such characteriza- 

tions for the special cases n = 2 and n = 3 since, for those two cases, the real eigen- 

vectors and their respective orthogonal complements are the only invariant subspaces 

of interest. These characterizations, which follow immediately from the results 

previously described, may be summarized as follows. 

Theorem 3 

The second order, n = 2, linear dynamical system (1) is: 

1) alwayscompletely controllable and completely observable, irrespective 

of the choices of the vectors f and h, if and only if A has no real eigenvalues e u N 

(i.e., if and only if the system is “underdamped”). 

2) uncontrollable (unobservable) if and only if the vector:(\) is collinear 

with a real column (row) eigenvector of b. 

3) always uncontrollable and unobservable irrespective of the choices of 

the vectors i and h, if and only if A = r 
* OT 

for some real scalar constant ro. 

Theorem 4 

The third order, n = 3, linear dynamical system (1) is: 

1) always uncontrollable (unobservable) for some cho.ices of the vectori(fj, 

2) uncontrollable (unobservable) if and only if the vectori(tj is either collinear 

with a real column (row) eigenvector of A or lies on a 2-dimensional plane that is 

orthogonal to one of the real row (column) eigenvectors of b. 

3) always uncontrollable and unobservable, irrespective of the choices of 

the vectors Land ,h, if and only if either 

A2=r,a +r,I 

6. For example, there is a real 2-dimensional &invariant subspace and a real 

2-dimensional $‘-invariant subspace associated with each distinct pair of complex- 

conjugate eigenvalues of $. 
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for some real scalar constants ro, r,. 

In both Theorem 3 and Theorem 4, the absence of repeated eigenvalues is 

sufficient to guarantee the nonexistence of the degenerate condition 3). 

Cone lusion 

In this paper, the set of (n-,)-dimensional hyperplanes (2) that are invariant 

along solutions of (3) h ave been identified as the orthogonal complements of the real 

row eigenvectors of ,A. A stability property of these hyperplanes, along solutions 

of (3), has been defined and characterized in terms of the associated real eigenvalues 

of 9. In addition, some geometric relationships between the concepts of controllability 

and observability and the real column and row eigenvectors of b have been described. 

By means of these relationships, the notions of controllability and observability for 

second and third-order linear dynamical systems (1) can be completely explained 

in terms of simple geometric characterizations. 
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VII. Optimal Control With Quadratic Performance Index And Fixed Terminal Time _ 

C. D. Johnson+ J. E. Gibson* 

Summary 

The conventional solution for the optimal control of a linear stationary 

regulator with quadratic performance index and fixed terminal time leads to a 

linear feedback law with time varying gain coefficients [ 11.’ In addition to 

the usual disadvantages of time variable controllers, these time varying gain 

coefficients approach infinity as the specified terminal time is approached. 

In the present paper, it is shown that the optimal control for the above 

problem can be expressed as a time invariant nonlinear feedback law. Certain 

parameters in the nonlinear feedback law are functions of the initial time and 

initial state of the system. The conventional time varying linear feedback law 

can be obtained directly from the time invariant nonlinear feedback low. 

The results of the present paper are applicable to a more general class 

of optimal control problems involving linear and nonlinear systems. Two examples 

are given to illustrate the method. 

1. Statement of the Problem 

The problem is to find a control u(t) which minimizes the functional2 

J[ul = f AT [<s(t), &ttt,> + c2u2 (t) ] dt 
0 

+ Electrical Engineering Department, University of Alabama in Huntsville, 

Huntsville, Alabama. This work was supported in part by the National Aeronautics 

and Space Administration under Grant No. NsG-381 and Contract No. NAS8-11231. 
-l-l- 

Control and Information Systems Laboratory, School of Electrical Engineering, 

Purdue University, Lafayette, Indiana. 

1 
Numbers in brackets designate references at end of paper. 

2 
<z,y> is the scalar product of 5 and y. 
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subject to the following conditions: 

i = ~~ +u(t)i (- = d/dt) (2) 

x(t 
-0 

) = x 
-0 

(3) 

z(T) = 2 (T is fixed) (4) 

In (l), 9 is a symmetric, positive semi-definite constant matrix and c is a non-zero 

scalar constant. In (2), x, = (x,, . . . , xn) is the state vector of the plant, 4 is an 

(n x n) constant matrix, f = (f,, . . . , fn) is a constant n-vector and u(t) is the scalar 

control function. It is assumed that u(t) is piecewise continuous but otherwise 

unrestricted. It is further assumed that the pair (b,$ is controllable. Then OS 

shown in [2], there is no loss of generality in assuming that h,f have the canonical 

form 

0 1 0 . . . o- 

0 0 1 0 

f= ’ M 0 (5) 

0 

a 

T . he optimal control u for the above problem can, in principle, be found 

by straightforward application of the Hamilton-Jacobi theory. Since the details 

of the Hamilton-Jacobi formulation of this problem have already been given in 

[ I] we will only summarize the results. 

. 
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2. Form of the Optimal Control Law 

Let u” = #o (3 t, T) be an optimal control law, and let 

V(z,t,T) = J[u”l; $to) = x,, to = t. (6) 

Then it can be shown [ l] that V satisfies the Hamilton-Jacobi equation 

-2 
g(z’t’T) + <yV(s,t,T), &> -; <yV(“,,t,T),f>2 +&ax_>=0 (7) 

where 

xv = (E, .-.+. 
1 n 

03) 

Further, the optimal control law is given by 

G”(x,t,T) = c-~ <-yV(x, t, T), f>. (9) 

The control law (9) may be determined by solving (7) directly or, alternately, 

by solving for the characteristic strips of (7). The direct solution of (7) is discussed 

below. The method of characteristic strips, which in this particular case leads 

to Pontryagin’s canonical equations, is discussed in Appendix 1. 

3. Solution of the Hamilton-Jacobi Equation 

The term N/at in (7) is related to Pontryagin’s Hamiltonian function H by 

the relation 

3’ (x(t)’ t’ T, = H(x(t) - VV(x(t) t T) t) 
37” au ’ - u II I (‘0) 

which holds along optimal trajectories x_(t). For the problem (1) - (4) it is well 

known that the Hamiltonian (10) is constant along optimal trajectories. 
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H($), - ~V<$t), t, T), t) = P (to I t I T) (11) 

(p = constant) 

From (10) and (11), ‘t I is clear that a complete integral3 of (7) must be linear in t 

and of the form 

V = 7X5, alI oa., an-,’ PI + Pt + a0 02) 

where j3 is given by (11). The ai and fi in (12) are n+l integration constants 

(constants of motion) which can be evaluated from the specified initial and terminal 

states (3), (4).4 Thus 

‘i 
= ai(zo, to, T) 

P = P&,, toJ) . 

(i = 1 , eo.a,n- 1) (13) 

(14) 

Moreover, it can be shown [see Appendix 21 that along optimal trajectories 

there are an additional n constants of motion given by 

i 
(i = 1 , ooo, n- 1) 

av 
ap =kn 

(ki = constant; i = 1, 0.0, 4 (15) 

It is at this point that the present method of solution differs from 

conventional methods. In the conventional methods of solving the problem (1) - (4); 

[l], 131, [4], [5], [6], [7], [8], [9], [lo], it isassumed that the solution to (7) 

is a positive definite (or semi-definite) quadratic form 
5 

3 See Appendix 2. 

4 It should be noted from (6) that two boundary conditions for (12) are V(c,t,T) = 0, 

Yt,< t 5 T and V(x_, T, T) = +oo, Yz # 0. 

‘In 171, [8], L91 , a solution is assumed in the form of a finite series with 

time variable coefficients. 
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V = ; ‘x,, Aj(t,T)z> 06) 

where the elements of the (n x n) matrix M are functions of time m.. = m..(t, T) 
‘I ‘I 

i,i = 1 , oo., n. Upon substituting (16) into (7) the mii(t, T) are determined 

as the solution to an ordinary nonlinear matrix differential equation of the Riccati 

type. By this means, the assumed solution (16) leads to a time varying linear feedback 

control law of the form 

$(z, t, T) = < r(tr T),z> 
an 

(17) 

where y(t, T) = (y, (t, T), 0 0 D, y, (t, T)) is a time varying gain vector. 

A wellznown practical disadvantage of the solution (17) is that 1 y(t, T) 1 +co 

ast +T. 
6 

In the present method of solving the problem (1) - (4), the solution to 

(7) is sought in the form of a complete integral of the type (12).7 By this means, 

the optimal control (9) is obtained as o time invariant nonlinear feedback law of 

the form 

where 

u o = $“(zt zo,to, T) (18) 

q” = c-2 < -TJd (5, E,, to, T),_f>. (19) 

It is remarked that in some special cases it may be possible to obtain the expression 

(19) without solving for (12) explicitly. 

In (19) the initial conditions x mo, to are arbitrary for to 5 T. Thus, the 

nonlinear control law (19) can easily be transformed to the conventional time 

varying linear control law (17) by setting x “o =x,(t) and to =t in (19).8 This 

6 
Rekasius [lo] has proposed a method for avoiding the infinite gain associated with 

(17) by expressing (17) 
7 = constant 0 

in the alternate form $0 (x_,t,T) =<g,x_> +j#(t,zo,T) where 

7 Complete integrals of the form (12) may differ considerably from the quadratic 

form (16) [see Example 1 below]. 

8 It is for this reason that (19) is termed a control “law”. By definition, a control 
law should depend only on the instantaneous values of x,(t), t. 
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latter step illustrates the relationship between the two alternate forms of 

solutions (17) and (19), That is, in the solution (19) the time varying portion 

of (17) is replaced by the constants of motion (13), (14).9 The control 

functions (17) and (19) are mathematically equivalent solutions which differ 

only in functional form. 

In the problem (1) - (4), if the fixed terminal time T is infinite (or, 

equivalently, if T is unrestricted) then p in (11) becomes zero and the optimal 

control (9) reduces to a time invariant linear feedback law of the form [ 111 

(20) 

where y = (y,, 00 ., yn) is a constant n-vector. 

-A variation of the problem (1) - (4) ’ IS obtained by fixing the elapsed 

time-c=T-t 
0’ 

In this case, one may arbitrarily set to = 0, T = -r and (19) 

contains one less parameter. 

4. Comparison of Alternate Solutions 

The conventional time varying linear feedbock law (17) is illustrated 

in Figure 1. This form of solution has the advantage of being independent of 

the initial state z(to)Q That is, the control ~~(2, t, T) is always optimal with 

respect to any instantaneous state x_(t), (t < T). A practical disadvantage of this 

solution is the physical unrealizability and extreme sensitivity of the feedback 

controller as t + T and 1 y(t, T) 1 + co. 

The time-invariant, nonlinear feedback law (19) is illustrated in Figure 2. 

The switches s,, 2 s represent devices which, when activated, will sample and 

hold the initial conditions x,(to), t 0 
0 

An apparent disadvantage of this solution 

is the fact that the control u”(x x , t 
N’“O 0 

, T) is optimal only for states x,(t) lying 

on the optimal trajectory passing through the initial state $to). Thus if, after 

9 Note that the reverse transformation [from (17) to (19)] requires a priori 

knowledge of the constants of motion. 
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FIGURE 1 
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sampling the initial conditions z(t,), to, the actual state z(t) should deviate 

from the theoretical optimum trajectory (for instance, due to momentary external 

disturbances) then the control ~~(2, x t 
-0’ 0’ 

T) would not continue to be optimal 

with respect to the actual state x_(t). However, if such a disturbance should 

occur, the optimal control for the disturbed state x,(t) can be obtained by 

momentarily activating the sample and hold devices s and s 
1 

20 By this means, 

the disturbed valuesx(t),t become the new initial conditions x.(t,), to. This 

technique allows the step-wise readjustment of the nonlinear feedback law to 

account for any deviations of z(t) from the original optimal trajectory. lo In 

the limit, as s, and s2 sample x,(t) and t continuously, the control u”(~, zo, to, T) 

becomes ~‘(5, t, T) and the alternate solutions of Figures 1 and 2 become identical. 

By employing this dual mode property of the solution (19) it may be possible to 

eliminate some of the practical disadvantages of the conventional solution (17). 

5. Example 1 - A Linear Regulator of First Order 

As a special case of (1), (2), let” 

j; = -x + u(t) (x = scalar) 

J[u] =; s,T (x(t)2 + u(t)2)dt 
0 

(21) 

(22) 

with 

x(T) = 0 (T = fixed) 0 (23) 

The Hamilton-Jacobi equation (7) is 

av av --x- 
at ax 

- ;(E)2+;x2=o (24) 

lo The readjustment of the nonlinear control law is equivalent to a re-evaluation 

of the constants of motion (13), (14) for the disturbed state r(t)0 This may be 

viewed as a mechanization of the Principle of Optimality [ 121 0 

” This example has been considered by Rekasius [ lo] D 
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and a complete integral of (24) is of the form 

v = 3(x, PI + Pf + a. (25) 

It can be verified that a complete integral of (24) is 

Ln(fix+/m)+Pt+a (26) 

where 

a=a(x ,t ot T) 

P = P(, tot T). 

From (19) and (23) the optimal control is 
12 

Go = +X -(sgn x) &G-G? (w 0 4 0). (27) 

Substituting (27) in (21), the expression for 8 is found to be 

p =x ‘, csch2 1 fi (T - to) I. (28) 

Therefore, the optimal control (27) can be written 

$(~,~o,to,T) = +x -(sgn x) 4x2 + 2x20 csch2 [ fl (T - to) I. (29) 

The field of trajectories for the plant (21) with control (29) is illustrated in Figure 3. 

A plot of the constant of motion 8 given by (28) is shown in Figure 4. The contours 

8 = constant in Figure 4 may be interpreted as optimal trajectories. If T =OD (or, 

if T = unrestricted) then 8 in (28) becomes zero and the optimal control (29) becomes 

12 Since (21) is only first order, this result can be obtained directly from (24) 

by observing that c$O = - N/ax. 
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4”(x) 1 T=oo=(l - fl)x. (30) 

The conventional time varying linear control law (17) can be obtained 

directly from (29) by setting x 
0 

=x, to = t ‘in (29). The result is 

@‘(x, t, T) = [ 1 - n ctnh [ fl (T - t) ] ] x. (31) 

It may be noted in (31) that ctnh [fi (T - t)] + co as t + T. 

The expressions for the constants of motion provide a simple method for 

deriving expressions for x(t). In the present example, (28) yields directly the 

expression 

x(t) = x 
sinh [ fl (T - t)] 

o sinh [ fl (T - to)] . (32) 

6. Example 2 - A More General First Order Problem 

An advantage of the complete integral method of solution is that, in 

principle, it may be applied to a more general class of problems. Consider, 

for example, the problem of finding a control u(t) which minimizes the functional 

J[u] = s,‘[g(x(t)) + c2u2(t) ]dt 

0 
(33) 

subject to the following conditions: 

>i = f(x) + u b(x),(x= scalar) (34) 

xOo) = x0 

x(T) = 0 (T = fixed) (35) 

In (33), g(x) is a non-negative definite continuous function of x and c is a non- 

zero scalar constant. In (34) f(x) and b( x are continuous functions of the scalar x. ) 
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It is assumed that u(t) is piecewise continuous but otherwise unrestricted. 

Then, using the complete integral method described above, it is found that 

the optimal control u” (if it exists) can be expressed as 

, 
u”(z,_xo,to,T) = -8) - @$ Af(x# + c-~ [b(x)12 [g(x) -+-PI .(36) 

The B = P(X,, to, T) in (36) is a constant of motion which can be evaluated from 

the initial and terminal conditions (35). 

If the terminal time T in (35) is unrestricted, then p is zero and (36) 

becomes 

u”$$) = - 3 - m J[f(x)12 + ~-~[b(x)]~ 9(x).(37) 
(sgn 4 

1 

This method of solution con, in principle, be extended to problems of 

higher order. In the case of higher order problems, it may be necessary to 

evaluate several of the constants of motion (13), (14), (15). 

7. Conclusions 

The conventional solution for the optimal control of a linear regulator 

with quadratic performance index and fixed terminal time leads to a time varying 

linear control low which is physically unrealizable. It has been shown that the 

optimal control for this problem can be expressed as a time invariant nonlinear 

feedbock law. Certain parameters in the nonlinear law are functions of the 

initial conditions z(t,), to. 

The time invariant nonlinear control low can be transformed to the 

conventional time variable control law by setting 50,) = z(t) and t = t. By 
0 

this means, it may be possible to design o physically realizable optimal controller 

which retains some of the desirable feotures of the conventional linear control 

law. The method of solution used here is applicable, in principle, to a more 

general class of optimal control problems. 
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The purpose of the present paper is to point out the possibility of 

employing the complete integral method in the solution of certain problems 

of optimal control. Although the principle is relatively simple, application 

of this method is complicated by the practical difficulties of finding complete 

integrals. 

8. Appendix 1 - Characteristic Strips of the Hamilton-Jacobi Equation 

The equations of the characteristic strips of the Hamilton-Jacobi 

equation (7) are [ 131 

G=&+c -2 
<p, f>f 

a. - y 

r; = cpb’,p (’ denotes transpose) (38) 
m 

;r =o (39) 

where 

,p= - p 

=E 
q at* 

Equations (38) are equivalent to Pontryogin’s canonical equations [ 141 and (39) 
dH 

is equivalent to the relotion - = 0. 
dt 

When h,i are of the canonical form (5), the first of equations (38) 

can be written as the single n th order differential equation 

snx -2 
1 

- <a, T(S) >x, - c .., w p, = 0 (40) 

and the set of equations (38) can be written OS one 2n th order linear differential 

equation of the form 

2n 
S x1 - sn < a,, (z(s) + (-l)“$-s)bx, + (-1)” c-2 <z(s), (9 + c2aa’)I(-s)>xl = 0 (41) 
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where 

k 
dkxl 

sx 
1=2. 

a=(a, 
1 

. . . . d “n) 

z(s) = (1, s, s2, . . ., s 
n-l 

). 

It may be noted that the 2n roots of the characteristic equation of (41) occur 

in pairs (A, -A). Eq ua ion (40) represents the differential equation of the t 

optimally controlled plant with u”(t) = ce2pn(t). Equation (41) may be 

considered as a 2nth order differential equation which is obtained by taking 

n successive derivatives of (40). 

The order of (41) can be reduced to n by taking n successive first 

integrals of (41) to obtain 

8 (x1, sx,, . . ., snxl, c,, . . ., Cn) = 0 (42) 

where c 
1 

, . . . . c 
n 

ore n constants of integrotion. Equations (40) and (42) may 

now be solved jointly to obtain 

0 -2 
U =c 

‘n 
= $(x_# Cl’ *a., cn). (43) 

The constants of integration ci (i = 1, . . . , n) are chosen to satisfy the specified 

boundary conditions x_(t,) =-x0, x_(T) = ,O. By this means, there is obtained 

C. 
I = ci (~o,to’T) (i =l, . . . . n). (44) 

However, since any state x_(t) along an optimol trajectory can be considered as 

the instantaneous initial state z(t,), the constants of integration in (44) can be 

written as 
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C. 
I 

= ci’~, t, T) (i=l n). , -*-I (45) 

In this way, the control function (43) can be expressed in the form 

0 
U = $(s, t, T) 

which leads to the conventional time varying linear control law (17). 

9. Appendix 2 - Complete Integrals of the Hamilton-Jacobi Equation and 

Constants of Motion Along Optimal Trajectories 

The Hami Iton-Jacobi equation can be written as [ 1 ] 

z- H( 
at 5, -yv, t, UO($ t, -p/)) =o 

04 

(47) 

where H&, ,p, t, ~‘(5, t, _p)) is Pontryagin’s Hamiltonian function [ 141 and 

p = - EV is the so-called conjugate variab,le. 

If 5 is an n-vector then, following Lagrange, a complete integral of (47) 

is defined [ 131 as any solution of (47) which contains n essential constants of 

integration ai (i = 1, . . . , n). Thus a complete integral of (47) is of the form l3 

V = V(X,, as-I X , t, a,, .--, an) 
n w 

The 2n + 1 canonical or characteristic strip equations associated with (47) 

are [ 131 

dxi (t) aH(x(t), _p(t), t, uO(W dpiO) 
dt=ap;- 

wx(t)l P(f), t, u”(t)) (49) 
;dt=--- * axi 

(i=l n) , ***I 
and 

N(t) _ aH(x(t), i+ t, u”(t)) ---c 2! 
dt at ;q at* (50) 

13 Since V does not appear explicitly in (47), it is always possible to append on 

arbitrary additive constant to a solution (48). 
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It will now be shown that, if V is sufficiently continuous in its arguments, the 

expressions 

(i = 1 , l *-I n). 

are constants of motion (first integrals) along solutions of the canonical equations. 
14 

The time derivative of (51) is 

(52) 

If 

and 

a2v a2v -=- 
athi asp 

a2v a2v 
- =m (i,k=l, . . ..n) 
aaiaxk k i 

(53) 

then (47) yields 

& =-y aH a2v 

ataoi k=l 
3qzpy 

Substituting (54) in (52) there is obtained 

(54) 

(%-aH 
dt F)’ (55) 

k 

It is clear from (55) that along solutions of (49) 

z = constant = k 
aa; i 

(i = i,..., n). 

l4 This result is well known in classical mechanics [ 151. 

(56) 
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av (xl, . . . . xnr b y# --*I “,,,I and 
From the expressions pi = - z 

av (x,1 ---I xn# t# alr -.-I an) = i 
ao; i’ 

there is obtained 

X. 
I 

=xi(t,a, . . . . an,k,, . . . . kn) 
1 

pi = Pitt, a,# . . . . a , k,, -.., k,.,) (57) 
n 

(i = 1, . . . , n) 

which constitute a general solution of the2hcanonical equations (49). The 2n 

constants ai, ki (i = i, . . . . n) are evaluated from the specified initial and 

terminal conditions of (57). 
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VIII. On a Problem of betov in Optimal Control’ 
C. D. JOHNSON W. M. WONHAM 

Eloctricol Engineering Dapwtmant, 
University of Alabama, 

lhtwille Center, Huntsville, Ala. 

C.dw for Cadrd Thwry, 
RIAS, Bdtimoro, h4d. 

In a series of papers [I, 21.x A. M. Letov discussed an optimal regulator problemfor a 
liuear plant wilh bounded control variable and quadratic petformance index. This 
problem was also discussed by Chang [3]. Krasovskii and Lctov observed later [4] 
that the solution proposed in [I, 2, and 31 may be correct only for special choices of the 
initial value of the state vector, In the present note, further aspects of the solution in the 
general case are &scribed and three exampks are given. The possible existence of a 
regime of unsaturated-nonlinear optimal control is demonstrated. The presence of this 
regime in the optimal control law was apparently overlooked in [f-4]. 

Statement of the Problem 
T HE problem is to find a continuous control function 

a = u(t) which minimizes the functional’ 

J[u] = $ 
s 

T 
[(x(t),Qx(t)) + C~U’(l)ldf (1) 

0 

subject to the following conditions: 

Ii = Ax + uf (. = d/dt) (2) 
x(0) = x0 (3) 

x(T) = 0 (T is unrestricted) (4) 

lu(Ol 5 1 (0 6 1 5 T) (5) 

In (l), 0 is s positive semidefinite symmetric constant matrix 
and e is a scalar constant. In (2), x = (z,, . . . , a,,) is the state 
vector of the plant, A is sn (n X n) constant matrix, f = 
(fi, . . ., f”) is a constant n-vector and u is the scalar control 
function. It is assumed that the pair (A, I) is controllable; that 
is, the vectors 

I, Al, . . .) A”-‘f (6) 
sre linearly independent. Then, ss shown in [5], there is no loss 
of generality in assuming that A, f have the form 

0 0’ 
1 0 

A= 

a, 
1 

a, lJ I 
0 

f= : 

0 
1. 1 (7) 

It is further assumed that the state x = 0 is reachable from xo 
using sn admissible control (5). Then, if 0 is appropriately re- 
stricted, an optimal control u exists 191 and can in principle be 
found by straightforward application of Pontryagin’s principle 
or dynamic programming. Since the details have already been 
given in [2 and 41 we first summarize the results. 

Form of the Optimal Control Law 
1 Let ~0 = @o(x) be an optimal control law, and let 

V(x) = J[?P], x(0) = x (6) 

1 This research was supported in part nt the respective institutions 
by the Nations1 Aeronautics and Space Administration under Grant 
No. NsG-381 (nnd Contract No. NAS 811231) and Grant No. 
NASw-845. 

2 Numbers in brackets designate References at end of pspsr. 
3 (x. y) is the scalar product of x and y. 

We shell assume that V is continuously differentiable in x. 
.Then V satisfies the Hamilton-Jacobi equation 

@‘V(r), Ax) - ‘; (W’(x), f)z + f (x, Ox) = 0, 

if Ic-*@V(x), f)] $ 1 (9a) 

and 

(VW& A=> - I(VV(x), f)j + f + ; (x, Ox) = 0, 

if Ic-~(VV(X), f)/ t 1 (9b) 

In (9) 

(10) 

Further, the optimal control is given by 

#O(X) = Bat[C-‘(-VV(X), f)] 

where 
(1’) 

(12) 

Equation (9a) holds in the set of states x where the control is 
unsaturated (i.e., l@(x)[ < 1) and (9b) holds in the set of states x 
where the control is saturated (i.e., I@(x)) = 1). Consider first 
the set where (9a) is satisEed. In the absence of the constraint 
(5), the restriction Ic-‘(VV(x), f)] 5 1 disappears and (90) holds 
at all states x. For this case it is well known [6] that the solution 
of(9a)ls 

V(x) = + (x, Mx) (13) 

where the matrix M is symmetric, positive deErrite, and uniquely 
defined by 

A’M + MA - c-‘MI I’M + 0 = 0 

(’ denotes transpose) (14) 

Further, the optimal control law is linear and is given by 

@#Q(x) = c-‘(-VV(x), 0 = (7, x) 

where 
(15) 

y = -c-‘MI (16) 
2 To introduce the constraint 1~1 5 1 we proceed ss in 151. 

Let L be the set of states xs such that, if x(0) = x0 and if u = +L(x) 
in (2), then I+Jx(t)] I 5 1 fort L 0. In other words, L is the set of 
initial states for which the constraint 1~1 5 1 is satisfied along the 
corresponding trajectories when the control law is &‘(x). It ia 
clear that if x(O) l L then x(t) e L fort t 0; and it csn be verified 
that L is an Ir-dimensional, convex, and in general proper subset 
of the set of states x deEned by the inequality 
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Ih( 5 1 (17) 

Obviously L contains the origin x = 0. It follows that 

p(x) = &t(x), when x l L (18) 

In general v(x) is not given by (18) in the entire strip (17); 
the set L coincides with the strip (17) only for special choices of 
the matrices A and Q (see section, “Example 3”). Moreover 
#P(x) is not given, in general, by the eimple rule 

p(x) = sat f&(x), for all x (19) 

The control law (19) is the solution (in general, incorrect) pro- 
posed in [l-3]. 

The set L is the largest set of states I for which one can state 
Q priotithat (13) ia a valid solution of (9a).’ In general (So) has 
solutions dilferent from (13) which are valid in a certain region N. 
For x in W, the optimal control is again unsaturated, i.e., Ic-~- 
@V(x), f)l < 1, but Q(x) is a nonlinear function &Iv(x) of the 
state x. The possible existence of N was apparently overlooked 
in [I-4]. Failure to include the nonlinear regime, when it exists, 
will lead to the apparent discontinuities in V(x) which were de- 
scribed in the last paragraph of [4]. 

The interior of L U N is the set of states x where the optimal 
control Q(x) is unsaturated (I@(x)1 < 1). In the complement 
of L U N, which we shall denote by S, the control is saturated; 
i.e., Ic-a(VV(x), f)l> 1 and v(x) = @s(x) = fl. In principle, 
analytic expressions for &(x) and the boundaries of N and S are 
determined by solving (9) in N and Sand then applying (11). In 
practice this procedure is complicated by the fact that the solution 
of (9) does nat have the same analytic form throughout N and S. 
Some resu1t.s of applying thii procedure to a concrete example are 
given later in Example 1. Further research is needed to deter- 
mine more practical methods for obtaining, or approximating, 
@w(X). 

3 The theory of characteristic strips [7] suggests an alterna- 
tive and practical technique for determining the boundaries of N 
and S. In this technique the equations of the characteristic strips 
of (9) are integrated in reversed time, starting from states on the 
boundary of L. For this problem the equationa of the charac- 
teristic strips are equivalent to Pontryagin’s canonical equations 
[S] and are 

ir = Ax + UOf 

u”(t) = sat [c-*(p(t), f)] 

fi = Ox-A’p 

(20) 

wherep = -VV(x). AtatatesxeL(13)yields 

p = -Ah (21) 
where M is given by (14j. Integration of (20) for 1 I 0 (with 
initial conditions x(0) = x, p(0) = -Ma and x on the boundary 
of L) presents no problem in principle, since the “sat” function is 
Lipschitz-continuous. In thi way states on the common 
boundary of N and S are determined as the values of x(t) when 
c-‘(p(t), f) = zkl.6 

Example 1 
As a special case of (l), (2), let 

.i, = 2, 

- 

’ Here the term “valid” means that V(x) satisfies the definition (8). 
1 The computation of 110(l), t 5 0. also allows one to determine 

numerical V~UCS of V(X). This information may be useful in com- 
paring various suboptimal control laws. 

JIUI = ; 
s 

T 
(2,' + 22' + ctiu')dl (23) 

0 

The linear control law is found from (14), (15) to be 

#Q(x) = -c-x1 - c-*(1 + 2c)“‘zr (24) 

The set L is the largest subset of the strip Ic$L(x)~ $ 1 which 
is invariant for the system 

s = x2 

i? = &(x1 (f z 0) 

Thue L is bounded in part by the straight lines 6‘(x) = fl, and 
in part by the two trajectories of the system (25) which are tan- 
gent to these lines, Fig. 1. A trajectory of (25) is tangent to the 
line +dx) = fl at the state fxc where 

% = 11 + c, -(I + 2c)‘/!] (26) 
The state far, at which a trajectory tangent to $‘(x) = fl in- 
tersects the opposite boundary I$~( x) = F 1 is determined by in- 
tegration of (25) fort 5 0, with x(O) = fxs. 

The boundaries of N and S are now established by integrating 
the canonical equations for t d 0. The matrix M is found from 
(14) to be 

M = (1 + W” C 

c( 1 + 2c)‘/” 1 (27) 
c 

and the canonical equations (20) become 

z1 = z: 6, = x1 

i, = sat (c-Zp2) $2 = --p, + 22 
(28) 

The integration of (28) for 1 =( 9 need be started only from states 
x on the linear boundary segments I-x,, x6] and [xc, -as].8 The 
corresponding initial values of pr, pl are given by (21) and (27). 
For c = I, the results, obtained with an analog computer, are 
shown in Fig. 2. As an optimal trajectory is traced backward 
from L, the state trajectory first enters S, where the control uQ(t)- 
= sat [c-Zp2(t)] remains constant at the saturation level fl. 
The trajectory then.passea through N (the curved strip in Fig. 2), 
where Q(l) varim continuously from fl to Fl; and so on. As 
shown in Fig. 2 the set S can be divided into two subsets S* 
where &O(x) = *I. The behavior of p2(t) and of d(t), t d 0, is 
illustrated in Fig. 3. 

As c + 0 the set L reduces to the linear segment z, + zz = 0, 
1~11 s 1, and the boundaries of N approach a common switching 
curve. The optimal control then has a bang-bang and a singular 
mode, Fig. 4. The general problem (l)-(5) with c = 0 has been 
discussed in [5]. 

The following results (for c = 1) were obtained by analytic 
solution of the Hamilton-Jacobi equation. From (9), 

?lV 
-321 . 

- 2 + ; + ; (z,* + 22’) = 0, 
I I I I 

g ;r 1 (2%) 
2 

’ In the set L, the solution of (29a) is given by (13) and (27): 

VL(X) = ; (dzid + 221% + v521’) (30) 

In the subset S, of S, shown in Fig. 5, (29b) has the solution 

V&(X) = (1/30)[ -343 + 15z,‘z* + 102121’ + 1521 

+ 52,’ + 2221 + 2)(1 + 221 + x,yqj. (31) 

6Integration need not be started from the segments (Sx,. Ax,) 
since these are characteristic curves of (9). 
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It can be verified that the .qolution (31) satisfies the requirement 
that V be continuous on the (L, S,) boundary, defined by ZL- 
+ dSz* = 1, Izzl 5 43. 

The boundary segment between L U N and St, Fig. 5, is de- 
termined by se&gaV(x)/& = +I in (31). The result is 

-3 + 32,’ + 6zd + 32,’ + 2x1’ 

+ 2ztl(1 + 2z, + d/~l = 0 (32) 

If 1~11 5 43, the left aide of (32) vanishes when ZI + 4321 = I; 
if zl Z 43, the mode boundary (N, S,) defined by (32) in a 
curved negment lying between the parabola 1 + 221 + ZZ’ = 0 
and the line z, + 4%~~ = 1. The fact that the boundary seg- 
ment (N, S,) is not linear shows that the control law in the region 
.V must be a nonlinear function of the state variables. 

Example 2 
The following example was discussed briefly in [4], Let 

i, = z, 

f2 = -2, + u luwl 6 1 
(33) 

J[u] = ; 
s 

T 
(d + U2)dl 

0 

The construction of the L, N, and S boundaries for this 
problem proceeds in the same manner as for Example 1 and the 
results are shown in Fig. 6. The trajectories in S+(S-) are circu- 
lar arcs centered at z, = +l( -l), zz = 0. 

Example 3 Optimal Dual-Mode Control 
As mentioned earlier in the paper, the set L coincides with the 

entire strip I+‘(x)1 5 1 only for special choices of the matrices A 
and 0. Expressed geometricslly, a necessary condition is that 
the hyperplane bL(x) = 0 be invariant for the linear system de- 
fined by setting u = tiL in (2). Sufficient conditions can be 
simply expressed algebraically when A, f are of canonical form 
(7), and in thia case we have the following result. 

Theorem 

Let the eigenvalues of A be a,, . . ., an. lj (i) Re (Y, < 0 and the 
a,,, are diatincl, m = 1, . . ., n - 1, (ii) (Y, is real, (iii) 0 = [qjh b 
so chosen that q,l > 0, Q is symmetric positive semidefinite, and 

n 
2 c Pi*% i-q -am)k-l = 0, n, = 1, . . ., n - 1 (34) 

j=lk-1 

then the oplimal conlrol law is 

P(x) = sat If#~dx)l (35) 

If a,, 5 0, the origin x = 0 is reachable from all xp; ifa.> 0 the 
origin is reachable from xo if, and only if, 

I&(xo)l < 1 + [l + qn(c d-*1” 

A proof is given in the Appendix. 
Under the conditions of the theorem the optimal control law 

is of the very simple “dual-mode” form proposed in [l-3]. 
If n = 1 the conditions hold trivially. 
For n 2 2 the condition Re a, < 0 (m = 1, . . ., n - 1) is some- 

what restrictive and cannot be relaxed. However, it is always 
possible to choose 0 such that (iii) is satisfied; for instance, 
choose real numbers el = 1, e2, . . ,, e. such that 

5 e,a,j-1 = 0 (7% = 1, . . .) n - 1) 
,=I 

and put 

961 = wi (i, j = 1, . . ., n) 

If the conditions of the theorem are satisfied, then as c -, 0, 
the atrip I~A(x)I d 1 reduces to the (n - I)-dimensional hyper- 
plane &(x) = 0 and the optimal control law becomes 

h(x) # 0 
Am = 0 

(36) 

Here the control Q(x) = 0 is aingular. This, case of optimal 
hear switching haa been diicussed in [5]. 

As an application of the theorem let 

J[u] = $ 
s 

T 
(cc,% + z? + ct’)dl (3% 

0 

By (35) the optimal control is 

@(x) = -sat [( 1 + (1 + c-‘)‘/‘)(zr + ZZ)] (39) 

and the origin is reachable from x = (z,, 2,) provided 

121 + 22) < 1 (40) 

The results, for c = 1, are shown in Fig. 7. 
As c -t 0 the strip L in Fig. 7 reducea to the line z, + zz = 0 

and the optimal control law becomes 

The results for this case are shown in Fig. 8. 

Conclusions 
The linear-saturation control law proposed in [l-3] is correct 

only for special choices of the problem parameters. Sufficient 
conditions are obtained for validity of this law. In general the 
optimal control law has three modes; namely, linear, nonlinear, 
and saturation. Some aspects of the general case have been 
illustrated with an example. A scheme has been proposed for 
computing the boundaries of the regions of linear, nonlinear and 
saturated optimal control. Further research is needed to deter- 
mine explicit expressions or suitable approximations for the non- 
linear control law. 

The examples suggest some intereating theoretical problems. 
One is to obtain a more explicit description of the regions L and 
N. Another is to relate the mode boundaries with the switching 
surface of time-optimal control. 
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APPENDIX 
Proof of Theorem, Example 3 

1 Let x = x(t), p = p(l) = -VV,(z(l)) be a characteristic 
strip of VL. We shall put c = 1. Then from (20) 

i = Ax + (P, f)f 

p=ox-A’p 
(42) 

When A and f are given by (7) the characteristic polynomial of 
the system (42) is easily found to be 

P(A) = 2 2 q&i-y--xy 
1 1 

+ x-2 
[ 

alAi- I[ (-X)n - 2 aJ -A)*-' 1 (43) 
1 1 

Let the zeros of P(X) be (XI, -Xi), ., (A,, -A.), where Re A,,,- 
$ 0, ??I = 1, . . .) n. Actually Re X,,, < 0 (VI. = 1, . ., n), for if 
X = iv (v real) 

> 
1’ 
(iv)n - k +)tJ2> 0, V#O = 1 

Qll > 0, lJ=ll 

Hence the optimal linear control law r$r,(x) = (y, x) exists; 
and the optimal linear system is 

i = Ax + (y, x)f (44) 

with eigenvalues Xi, . . ., X.. 
2 It will first be shown that the set L coincides with the strip 

I(y, a)] 6 1. Equivalently, 

(y, i) < 0 (or >O) (45) 

if 

(y, n) = +1 (01. -1) (46) 

where i is given by (44). 
From (34) and (43) 

n-l 
P(A) = q,,(cr, . . a.A)-’ n 0 - a,)(--x - a,) 

+ ii (X - a.,)(-X - 4 
1 

n-1 
= (A - A.)( -A - A”) n (A - a,)( -A 

1 

where 

A. = - ‘a.(a,l-‘(a,’ + 411)“~ 

and we have used the fact that 

ja*l = ICYI . . . a.1 

Thus, from (47) 

A,‘= a,, m = 1, . .) n - 1 

112 

a,) (47) 

(48) 

(49) 

(W 

Since XI, . . ., X. are the eigenvalues of the system (44), we have 
ala0 

n 
L” - kq car + YJLt-’ = 0, nr = 1, . . ., n (51) 

Hence by (50) 

2 -y‘a,- = 0, m = 1,. . ., It - 1 (52) 
k-l 

A simple calculation from (48), (50), and (51) shows that q,, > 0 
implies yn f 0. From (52) we now have the identities 

n n-1 
c YJ@’ = Y. l-I (A - %) (53) 
1 1 

and 

5 -&A- = x-f, “fg (X - a_) - -y.Xn (54) 
1 1 

where 70 = 0. Also from (47) and (51) 

x* - 5 (at + yr)P-’ = (X - X,) “;;I (A - %J (55) 
1 1 

On combining (53)-(55) it now follows that 

5 [%.I + r.(ar + YJW’ = A, 2 -y*Xt-’ 
k-l 1 

and therefore 

Yk-I + Y.(% + rr) = X,Yl, k = 1,. . ., n (56) 

From (56) we have 

(us 4 = UY, x> (57) 

for all x in L. Since X, < 0, (46) implies (45), as was to be shown. 
3 It will now be shown that 

P(x) = w (y, 4 if I(y, 41 2 1 (55) 

To this end the original optimization problem will be reduced to an 
equivalent problem for a system of first order. By (34), (52), and 
a slight extension of the results in Section 5 of [5] we can write 

where VO is a homogeneous quadratic form in z,, . . ., z,,-,. Let 

.E = qll”ty,-qy, x) (60) 
We shall show that [ satisfies a first-order dih’erential equation. 
From (44) and (60) 

qn-“% = (A’y, n) + y,u (61) 
BY (56) 

“it-1 + QY” = 0” - YJYh k = 1, . . ., n; 

hence 

A’Y = 0. - Y.)Y 

Thus (61) can be written 

k = 0. - r,# + qnl’%-‘YnU (62) 
It is seen now that the original problem is equivalent to that of 

miniiizing 

J[UI = f S T([’ + u*)dt (63) 
0 
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subject to (62) and the condition t(T) = 0. Since (62) is of first 
order this problem is easily solved. The result is 

Y(x) = Ifat re9 41 w 

where 

* = r, -x,- Kr. - X.1’ + w*-~‘J” ~- (65) 
Y. 

It remains to check that 8 = 1. From (55) 

or, since 

Yn = A” - a. 

Also, from (53) 

(66) 

71 = (-lP+y.a,. . . a.-, 

7,’ = 7 ‘a -%I,2 I I (67) 
Substitution of (48), (66), and (67) into (65) gives the desired 
result. 

The second statement of the theorem can be verified easily from 
(62) and (66). This completes the proof. 
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