NASA Tin X: 55757

COMPUTING THE PSEUDO-INVERSE

BY
CHRISTOPHER R. HERRON

NOVEMBER 1966

NASA
GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

COMPUTING THE PSEUDO-INVERSE

By

\ Christopher R. Herron

November 1966

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

COMPUTING THE PSEUDO-INVERSE

By

Christopher R. Herron

Abstract

An orthogonalization algorithm for producing the pseudoinverse of a matrix is described, and a FORTRAN program which realizes the algorithm is given in detail.

ACKNOWLEDGMENT

E. R. Lancaster, under whose supervision this paper was written, was particularly helpful in the development of certain theoretical aspects and supplied many perceptive suggestions on overall organization. G. H. Wyatt's programming skill was instrumental in the debugging phase of the programming effort.

To every matrix A there corresponds a unique matrix A^{+}with the following properties:

$$
\left.\left.\begin{array}{rl}
\mathrm{AA}^{+} \mathrm{A} & =\mathrm{A} \\
\mathrm{~A}^{+} \mathrm{AA}^{+} & =\mathrm{A}^{+} \\
\left(\mathrm{A}^{+} \mathrm{A}\right)^{\mathrm{T}} & =\mathrm{A}^{+} \mathrm{A} \\
(\mathrm{AA} \tag{4}
\end{array}\right)=\mathrm{AA}\right)^{+}=
$$

Penrose [1], one of the originators of this concept, called A^{+}the generalized inverse of A, and equations (1) through (4) are often called Penrose's Lemmas. Recent usage applies generalized inverse to any matrix satisfying (1), (1) and (2), or (1), (2), and (3), referring to the unique A^{+}as the pseudo-inverse of A. Other definitions of A^{+}have been given (e.g. Albert [2], Ben-Israel [3]) but the most common is that given above.

For simplicity's sake, the rest of this paper considers only real matrices, although most results hold for complex matrices as well. The pseudo-inverse provides a way to handle the ubiquitous matrix-vector equation

$$
\begin{equation*}
\mathbf{A x}=\mathbf{y} . \tag{5}
\end{equation*}
$$

If A is square and non-singular, A^{+}is A^{-1} and the vector $A^{+} y$ solves the equation. The particular advantage of the pseudo-inverse appears when A is singular or non-square, since $A^{+} y$ then is the minimal vector for this equation; that is, if M is the set of all vectors x_{0} such that

$$
\begin{equation*}
\left\|A x_{0}-y\right\| \leq\|A x-y\| \tag{6}
\end{equation*}
$$

for all x, then $A^{+} y \in M$ and

$$
\begin{equation*}
\left\|A^{+} y\right\|=\min _{x_{0} \in M}\left\{\left\|A x_{0}\right\|\right\} \tag{7}
\end{equation*}
$$

Here we use the standard Euclidean norm.

A theorem which dates back to the time of Gauss (Newhouse [4]) states, in effect, that if $x_{0} \in M$, then x_{0} is a solution of

$$
A^{T} A x=A^{T} y
$$

This type of system, often called a set of normal equations, is found repeatedly in least squares problems. (See, e.g., Rao [5]). Since $A^{+} y \in M$, the application of A^{+}in these circumstances is evident.

The same theorem also states that if $x_{0} \in M$, then x_{0} is a projection of y onto the column space of A. Newhouse later gives a theorem which proves condition (7), that $A^{+} y$ is the "shortest" of these projections, giving rise to Greville's assertion [6] that $A^{+} y$ is the best solution to equation (5) in the least squares sense.

Naturally, the theoretical existence of such a useful mathematical object makes a method for its computation very desirable. Most of the methods suggested, however, require that the product $A^{T} A$ be formed and that Gaussian elimination (or one of its variants such as pivotal condensation or sweep out) be performed on it. Should we be faced with an ill-conditioned matrix, it is entirely possible that numerical difficulties will prevent any significant computation using such methods. For example, consider the matrix

$$
\mathrm{H}=\left[\begin{array}{cccc}
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\
\frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} \\
\frac{1}{8} & \frac{1}{9} & \frac{1}{10} & \frac{1}{11}
\end{array}\right]
$$

The Hilbert matrix is notoriously ill-conditioned with respect to Gaussian elimination. The upper left-hand 4×4 corner of it has a condition number $\lambda_{\text {max }} / \lambda_{\text {min }}$ given by Marcus (Ref. [7]) as 15,514 , so our 4×4 segment of it would certainly be suspect. Fox (Ref. [8]) shows that our suspicions are justified, giving the Gauss elimination process for H , in which the steady decrease in magnitude of the pivots leads to very unreliable quantities. More to our point, he demonstrates that Gauss elimination fails completely when applied
to $\mathrm{H}^{\mathrm{T}} \mathrm{H}$. We should realize that a bad but workable problem can become pathologically unmanageable if such a product is formed, and, as a general rule, avoid such approaches.

The method of Rust, Burrus, and Schneeberger (Ref. [9]) was used to compute the pseudo-inverse because it does conform to this general rule. Briefly, it can be characterized as follows: if the $m \times n$ matrix A is in the form $[R \mid S]$, where the k linearly independent columns form the submatrix R and the linearly dependent columns form the submatrix S, make up the $n \times n$ identity matrix and write, symbolically,

$$
\left[\begin{array}{c|c}
\mathrm{R} & \mathrm{~S} \\
\hline \mathrm{I}_{\mathrm{k}} & 0 \\
0 & \mathrm{I}_{\mathrm{n}-\mathrm{k}}
\end{array}\right]
$$

Then perform the Gram-Schmidt (G.S.) orthogonalization process on [R|S], and apply these elementary column operations to the lower submatrix to get

$$
\left[\begin{array}{c|c}
\mathrm{Q} & 0 \\
\hline \mathrm{Z} & -\mathrm{U} \\
0 & I_{n-k}
\end{array}\right]
$$

Next, perform the G.S. process on the submatrix $\left[\begin{array}{c}-U \\ I_{n-k}\end{array}\right]$ to produce

$$
\left[\begin{array}{cc}
\mathrm{Q} & 0 \\
\hline \mathrm{Z} & -\mathrm{UP} \\
0 & \mathrm{P}
\end{array}\right] \text {; }
$$

form the matrix

$$
\left[\frac{Q^{T}}{(U P)^{T} Z Q^{T}}\right]
$$

and, finally,

$$
A^{+}=[R \mid S]^{+}=\left[\begin{array}{cc}
Z & -U P \\
0 & P
\end{array}\right]\left[\begin{array}{c}
Q^{T} \\
(U P)^{T} Z Q^{T}
\end{array}\right]
$$

A complete derivation is given in Ref. [9] and a few auxiliary notes are given in Appendix A.

Of course, not every matrix will be in the convenient $[\mathrm{R} \mid \mathrm{S}]$ form, but if we can determine which columns of A are dependent we can certainly permute columns to produce it; then $[R \mid S]^{+}$is found and by the authority of Theorems I and $I I$, Appendix A, the rows of $[R \mid S]^{+}$are likewise permuted to get A^{+}. Since the G.S. process not only orthogonalizes the independent columns of A but also makes the dependent ones zero, we can use it to find the dependent columns.

Now we have a straightforward way to proceed:
(1) Use G.S. to find the dependent columns.
(2) Permute to get $[\mathrm{R} \mid \mathrm{S}]$.
(3) Use G.S. to find $[R \mid S]^{+}$.
(4) Permute to get A^{+}.

The reader will have noticed that the G.S. process is used in step (1) and again in step (3). We could save some computation time if we combined the two steps and performed the G.S. process only once. A closer examination of the process reveals that we can, under certain conditions, make this combination.

Our program uses a modified Gram-Schmidt process which is more accurate than the classic textbook version. A recursive algorithm describing our version is:
(1) Orthogonalize c_{j}, the next column of A :

$$
b_{j}=c_{j}-\sum_{i=1}^{j-1}\left(\frac{c_{j} \cdot b_{i}^{\prime}}{b_{i}^{\prime} \cdot b_{i}^{\prime}}\right) b_{i}^{\prime}
$$

(2) Is $\mathrm{b}_{\mathrm{j}} \approx 0$? If so, zero it out and go to step (1). If not, do step (3).
(3) Re-orthogonalize b_{j} :

$$
b_{j}^{\prime}=b_{j}-\sum_{i=1}^{j-1}\left(\frac{b_{j} \cdot b_{i}^{\prime}}{b_{i}^{\prime} \cdot b_{i}^{\prime}}\right) b_{i}^{\prime},
$$

and go to step (1).
The initial condition is $b_{1}^{\prime}=c_{1}$. After we run out of columns, we normalize each one and we have an orthonormal matrix A_{1}.

If we want to duplicate these elementary column operations on another matrix D, we could save the numbers

$$
\left(\frac{c_{j} \cdot b_{i}^{\prime}}{b_{i}{ }^{\prime} \cdot b_{i}{ }^{\prime}}\right), \quad\left(\frac{b_{j} \cdot b_{i}^{\prime}}{b_{i}{ }^{\prime} \cdot b_{i}{ }^{\prime}}\right), \quad \text { and } \quad\left(b_{j}{ }^{\prime} \cdot b_{j}{ }^{\prime}\right)^{1 / 2}
$$

and then go through the algorithm again, this time letting c_{j} be the columns of D. More precisely, we might save these numbers in an $n \times n$ matrix S, defined as

$$
\begin{aligned}
& S_{j i}=\frac{c_{j} \cdot b_{i}^{\prime}}{b_{i}^{\prime} \cdot b_{i}^{\prime}} \quad(j>i), \\
& S_{i j}=\frac{b_{j} \cdot b_{i}^{\prime}}{b_{i j}^{\prime} \cdot b_{i}^{\prime}} \quad(j>i), \\
& S_{j j}=\left(b_{j}^{\prime} \cdot b_{j}^{\prime}\right)^{1 / 2} \quad(1 \leq j \leq n) .
\end{aligned}
$$

As an example, let A be

$$
\left[\begin{array}{llll}
1 & 1 & 3 & 6 \\
2 & 2 & 6 & 7 \\
3 & 3 & 9 & 8
\end{array}\right]
$$

Using eight-digit arithmetic and rounding the final answers to three digits, we have

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{cccc}
.267 & 0 & 0 & .873 \\
.535 & 0 & 0 & .218 \\
.802 & 0 & 0 & -.436
\end{array}\right] \\
S & =\left[\begin{array}{cccc}
3.74 & 0 & 0 & .213 \times 10^{-7} \\
1.00 & 0 & 0 & 0 \\
3.00 & 0 & 0 & 0 \\
3.14 & 0 & 0 & 3.27
\end{array}\right]
\end{aligned}
$$

Once we have done the G.S. process on A, we have done it for all column permutations of A which do not disturb the relative order of the independent columns. If P is a permutation matrix such that AP $\square[R \mid S]$, where R is the matrix of independent columns of A in their original relative order, the orthonormal matrix $[Q \mid 0]$ produced by the G.S. process on $[R \mid S]$ will be AP. In our example, suppose

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

Then

$$
[R \mid S]=A P=\left[\begin{array}{llll}
1 & 6 & 1 & 3 \\
2 & 7 & 2 & 6 \\
3 & 8 & 3 & 9
\end{array}\right]
$$

and

$$
[Q \mid 0]=A_{\perp} P=\left[\begin{array}{cccc}
.267 & .873 & 0 & 0 \\
.535 & .218 & 0 & 0 \\
.802 & -.436 & 0 & 0
\end{array}\right]
$$

We can also produce a new S matrix (F) by permutations. Referring back to the definition of S, one can see that a particular column c_{j} has its initial
orthogonalization coefficients $\left(c_{j} \cdot b_{i}^{\prime}\right) /\left(b_{i}^{\prime} \cdot b_{i}^{\prime}\right)$ on the j th row and below the diagonal, and its secondary coefficients $\left(b_{j} . b_{i}^{\prime}\right) /\left(b_{i}^{\prime} . b_{i}^{\prime}\right)$ fall on the j th column and above the diagonal. Once c_{j} is converted into $b_{j}{ }^{\prime}$, all initial coefficients having $b_{j}{ }^{\prime}$ as a factor fall on the j th column below the diagonal, and all such secondary coefficients fall on the j th row above the diagonal. When $b_{j}{ }^{\prime}$ is normalized, its "length" falls on the j th diagonal element. Moving c_{j} to a new position therefore means that we must move the jth row and column of S to corresponding positions, or

$$
\mathrm{F}=\mathrm{P}^{\mathrm{T}} \mathrm{SP}
$$

In our example,

$$
F=\left[\begin{array}{cccc}
3.74 & .213 \times 10^{-7} & 0 & 0 \\
3.14 & 3.27 & 0 & 0 \\
1.00 & 0 & 0 & 0 \\
3.00 & 0 & 0 & 0
\end{array}\right]
$$

If we go through the algorithm with c_{j} taken as the columns of a matrix D and the numbers $\left(c_{j} \cdot b_{i}^{\prime}\right) /\left(b_{i}^{\prime} \cdot b_{j}^{\prime}\right)$ and $\left(b_{j} . b_{i}^{\prime}\right) /\left(b_{i}^{\prime} \cdot b_{i}^{\prime}\right)$ taken as $f_{j i}$ and $f_{i j}$ respectively, we have applied the elementary column operations of the G.S. process on $[R \mid S]$ to D.

Now we have the desired result: once the G.S. process on A is complete, it is not necessary to do it again on $[R \mid S]$ to derive its effects; merely execute the indicated permutations on A_{\perp} and S and we have all the necessary matrices. Using this result, the procedure (1) through (4) on page 4 can be rewritten:
(1) Use G.S. on A; save the G.S. coefficients in S and save A_{1}. Note which columns are dependent.
(2) Permute A_{\perp} to get $[Q \mid 0]$; permute S to get F.
(3) Use the entries of F to operate on

$$
\left[\begin{array}{cc}
\mathrm{I}_{\mathrm{k}} & 0 \\
0 & \mathrm{I}_{\mathrm{n}-\mathrm{k}}
\end{array}\right]
$$

producing

$$
\left[\begin{array}{cc}
Z & -U \\
0 & I_{n-k}
\end{array}\right]
$$

(4) Proceed as usual to find $[R \mid S]^{+}$.
(5) Permute to get A^{+}.

The program whose flow chart and FORTRAN listing appear in Appendices B and C has been checked with a variety of matrices on the IBM 7094 and appears to run properly. Two particular cautions might be extended, however: first, one will note that a decision on the dependency of any column is made by comparing the "length" of the generated orthogonal column with the "length" of the original column. If the check number $\left(b_{j} . b_{j}\right) /\left(c_{j} . c_{j}\right)$ is smaller than a certain tolerance, the column b_{j} is made zero. When the check number is very close to the tolerance, any decision made will not be a good one and the resulting perturbations can become serious; for example, the Hilbert matrix gives poor results for this very reason. One might vary the tolerance to suit special cases.

Second, although this program finds the inverse if it exists, there are routines in general use which get better inverses. For example, the SHARE routine MATINV was tested against this program on a sequence of Pei matrices (Ref. [10], Ref. [11]) and consistently got one more accurate digit in the worst cases. The difference is not great but the prospective user should realize that it exists.

Finally, an experienced programmer will see that the FORTRAN realization in Appendix C is not in optimal form. A more streamlined, double-precision version is being prepared for the IBM 360 as of this writing. The author would appreciate hearing of mistakes in, or improvements upon, the original.

APPENDIX A

(Supplementary notes for Ref. [9])

Theorem I

If P is a permutation matrix (possibly a product of elementary permutation matrices) and A^{+}is the pseudo-inverse of A, then

$$
(A P)^{+}=P^{T} A^{+}
$$

Proof: We need only verify that Penrose's Lemmas hold. Noting that PP^{T} $=P^{T} P=I$, we have
(a) $(\mathrm{AP})\left(\mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}\right)(\mathrm{AP})=\mathrm{AP}$
(b) $\quad \mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}(\mathrm{AP}) \mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}=\mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}$
(c) $\left[(A P)\left(\mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}\right)\right]^{\mathrm{T}}=\left(\mathrm{AA}^{+}\right)^{\mathrm{T}}=\mathrm{AA}^{+}=(\mathrm{AP})\left(\mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}\right)$
(d) $\left[\left(\mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}\right)(\mathrm{AP})\right]^{\mathrm{T}}=\left[\mathrm{P}^{\mathrm{T}}\left(\mathrm{A}^{+} \mathrm{A}\right) \mathrm{P}\right]^{\mathrm{T}}$
$=P^{\mathbf{T}}\left(\mathbf{A}^{+} \mathbf{A}\right)^{\mathbf{T}} \mathbf{P}=\mathbf{P}^{\mathbf{T}}\left(\mathbf{A}^{+} \mathbf{A}\right) \mathbf{P}$
$=\left(\mathrm{P}^{\mathrm{T}} \mathrm{A}^{+}\right)(\mathrm{AP})$.

Theorem II

If P is a permutation matrix and the operation AP effects a column permutation of A, then $P^{\top} A$ effects that same permutation on the rows of A.

Proof: Suppose one of the effects of AP is to change column i to the j th place. Then $P_{i j}=1, P_{j i}^{T}=1$, and $P^{T} A$ changes row i to the j th place.

We use this result to get A^{+}from a row permutation of $[R \mid S]^{+}-$that same permutation of columns which transformed A into $[R \mid S]$.

The paper states (p. 383, right column) that the G.S. process turns a dependent vector into the zero vector. One might check this statement by referring
to Hoffmann and Kunze, p. 230, Theorem III (Ref. [12]). If a_{k+1} is a linear combination of a_{1}, \cdots, a_{k} then it is a linear combination of q_{1}, \cdots, q_{k} since the vectors q_{i} span the space of the vectors a_{i}. Furthermore, by the abovementioned theorem,

$$
a_{k+1}=\sum_{i=1}^{k}\left(a_{k+1}^{H} q_{i}\right) q_{i}
$$

and c_{k+1} ㅁ.
On p. 384, left column we are to note that I_{n-k} remains unchanged. Suppose we are operating on column $k+p(p>0)$ of the matrix $[R \mid S]$. We have

$$
\begin{aligned}
c_{k+p} & =a_{k+p}-\sum_{i=1}^{k+p-1}\left(a_{k+p}^{H} q_{i}\right) q_{i} \\
& =a_{k+p}-\sum_{i=1}^{k}\left(a_{k+p}^{H} q_{i}\right) q_{i}-\sum_{i=k+1}^{k+p-1}\left(a_{k+p}^{H} q_{i}\right) q_{i} .
\end{aligned}
$$

But each $q_{i}, k+1 \leq i \leq k+p-1$, has been zeroed out already, since they came from vectors dependent upon a_{1}, \cdots, a_{k}, so the above is

$$
c_{k+p}=a_{k+p}-\sum_{i=1}^{k}\left(a_{k+p}^{H} q_{i}\right) q_{i} .
$$

Similar column operations on the identity matrix then use only the first k columns, whose lower $n-k$ entries are all zero and cannot contribute to any modification of I_{n-k}.

APPENDIX B

APPENDIX C

$1 A 1(10,10), O R I G(10,10), P R O D 110,10), P R O D 1(10,101$,
2 FROD2 (10,10), ATR(10,10), AINV (10,10)
DMENSION UPRF10,10)
DIMENSION AINVI(10,10)
DATA PRA,PRFACT,PRO2/1HA,4HFACT,2HS2/
DATA PRAI/2HAI,
DATA FRAINV/4MAINV/

13HATR/
READ (5,1) NROWS,NCOLS
EORMAT(215)
$\operatorname{READ}(5,2)(A(1, \mu), 2)=1, N C O L S)$
FORMAT(6E12.8)
$T O L=110 . * 0.5 * * 271 * * 2$
DO 110 I $=1$,NROWS
DO $110 \mathrm{~J}=1$, NCOLS
DO $100 \quad 1=1$, NCOLS
IHOLD(1) $=0$
$J H O L D(1)=0$
LO $102 \mathrm{~J}=1, \mathrm{NCOLS}$
$S 2(I, J)=0$.
PRODI (I, J) $=0$.
PROD2 $11, J)=0$.
$\operatorname{ATR}(I, J)=0$.
$\operatorname{FACTOR}(I, J)=0$.
102 Al(I,J) $=0$ •
100 Al(1,I) $=1$.
JHOLD(1) $=1$
$K K=1$
$J J=0$
$11=0$
$N=1$
152 NLESS1 $=\mathrm{N}$
$N=N+1$
CHECK $=\operatorname{DOT}(A, N, N, N R O W S)$
DO $101 \mathrm{I}=1$, NLESSI
FACTOR (N. H$)=\operatorname{DOT}(A, N, I, N R O W S) / D O T(A, I . I, N R O W S)$
$A(J, N)=A(J, N)-F A C T O R(N, I) * A(J, I)$
CHECK $=$ DOT (A,N,N,NROWS)/CHECK
DO $103 \mathrm{~J}=1$,NROWS

PRECEDING PAGE ELANK NOT Fhivit.

$00500 K=1$, NRÖWS

500	$\begin{aligned} & A 1(K, I)=A 1(K, 1)-\text { FACTOR } 1, J) * A 1(K, J) \\ & \text { DO } 502 j=1, \text { LLESS } \end{aligned}$
501	Al(J,I) $=A 1(J, 1) /$ FACTOR(I, I) CALL.WRITE(A1,NCOLS,NCOLS,PRAI)
CALL WRITE (ATR, NCOLS, NROWS, PRATRI	
$1 F(K K . E ゙ Q . N C O L S) ~ G O ~ T O ~$157$15 T=K K+1$	
IF (KK.EQ.(NCOLS-1) $)$ GO TO 158$N=K K+1$	
$\text { 159. } \begin{array}{r} \text { NLESS } 1=N \\ N=N+1 \end{array}$	
001071 F IST,NLESS1	
FACTOR(N. $11 .=$ DOT (A), N. LeNCOLS)/DOT(AI, L, LeNCOLS)	
DO 1081 = IST, NLESS 1	
IF (N.LT.NCULS) GO TO 159	
	CALL WRITE (AI, NCOLS.NCOLS.PRA1)
158 VO $1281=$ IST,NCOLSEACTORIN.	
DO $128 \mathrm{~J}=1, \mathrm{NCOLS}$	


```
123 ATR(ISUB3,J)=PROD2(1, 1)
    CALL WRITE(ATR,NCOLS,NROWS, PRATR)
157 CALL MATMPY(A1,NCOLS,NCULS,ATK,NKOWS,AINV).
    CALL WRITE(AINV,NCOLS,NROWS,PRAINV)
    CALL WRITE(ORIG,NROWS,NCOLS,PROKIG)
    DO 126 1 = 1,KK
    ISUB4 = JHOLU(I)
    DO 126 J = 1,NROWS
126 AlNV1(ISUB4,J) = AINV(I,J)
    IF (KK •EQ.NCOLS) GO TO 160
    KK }=KKK+
    II = 0
    D0 127 I = KK ,NCOLS
    11 = II + 1
    ISUB5 = IHOLD(14)
    DO 127 J = 1,NROWS
127 AlNVI(ISUBS,N)=AINV(I,N)
    KK = KK - 1
160 CALL WRITE(AINVI,NCOLS,NROWS,PRAIN1)
    CALL MATMPY(ORIG,NROWS,NCOLS,AINVI,NRUWS,PROD)
    (ALL WKITE(PROD,NRUWS,NKOWS,HRPK)
    CALL MATMPY(PROD,NROWS,NROWS,ORIG,NCOLS,PROD2)
    CALL WRITE(PROD2,NROWS,NCOLS,PRPR2)
    CALL MATMPY(AINVI,NCOLS,NROWS,PROD,NROWS,PROD2)
    CALL WKITE(PROU2,NCOLS,NROWS,PRPR2)
    CALL MATMPY(AINVI,NCOLS,NROWS,ORIG,NCOLS,PROD)
    (ALL WRITE(PROU,NCOLS,NCOLS,PRPR)
    GU TO 154
    END
    FUNCTION DOT (A,J,K,NROWS)
    DIMENSION A/10.10)
    DOT = 0.
    ON 10 I = = NROWS
    10 DOT = VOT + A(I,J) * A(I,K)
    RETURN
        END
```


4	FORMAT (1HO,8E16.8) RETURN
END	
	SUBROUTINE MATMPY(A,NRA,NCA,B,NCB,PROD)
	.DIMENSION A $(10,10), B(10,10), \operatorname{PROD}(10,10)$ DO $6001=1$,NRA
	$\begin{aligned} & D O 600 J=1, N C B \\ & \text { PROD } 1 \mathrm{I}, \mathrm{~J})=0 . \end{aligned}$
-600	$\begin{aligned} & \text { DO } 600 k=1, N C A \\ & \operatorname{PROO}(1, \mu)=\operatorname{PROD}(I, \mu)+A(I, K) * B(K, \mu) \end{aligned}$
	RETURN END
	SUBROUTINE TRANSP(A,NRA,NCA,ATR) DIMENSION A1 10.10$), A T R(10.10)$
	$\begin{aligned} & \text { DO } 601 \text { I }=1, N R A \\ & D O 601 \text { I,NCA } \end{aligned}$
601	$\begin{aligned} & \operatorname{ATR}(J, I)=A(1, J) \\ & \operatorname{RETURN} \end{aligned}$
	END

PRECEDING PAGE ELANK NOT FILMEX

BIBLIOGRAPHY

1. Penrose, R.: A generalized inverse for matrices, Proc. of the Cambridge Philosophical Society, Vol. 51, 1955, pp. 406-413.
2. Albert, A.: An Introduction and Beginner's Guide to Matrix Pseudo-Inverses, ARCON, 803 Mass. Ave., Lexington 73, Mass., 1964, particularly pp. II-8 to III-16.
3. Ben-Israel, A.: An iterative method for computing the generalized inverse of an arbitrary matrix, Math. of Comp., Vol. 19, 1965, pp. 452-455.
4. Newhouse, S.: Introduction to Matrix Generalized Inverses and Their Applications, GSFC X-643-66-34, 1966.
5. Rao, C. R.: A note on a generalized inverse of a matrix with applications to problems in mathematical statistics, J. of the Royal Stat. Soc., Series B. (Methodological), Vol. 24, No. 1, 1962, pp. 152-158.
6. Greville, T.: The pseudoinverse of a rectangular or singular matrix and its application to the solution of systems of linear equations, SIAM Review, Vol. 1, No. 1, 1959, pp. 38-43.
7. Marcus, M.: Basic Theorems in Matrix Theory, National Bureau of Standards, Applied Mathematics Series, No. 57, p. 23.
8. Fox, L.: An Introduction to Numerical Linear Algebra, Clarendon Press, Oxford, 1964, pp. 136-142.
9. Rust, B., Burrus, W., and Schneeberger, C.: A simple algorithm for computing the generalized inverse of a matrix, Comm. of the ACM, Vol. 9, No. 5, 1966, pp. 381-387.
10. Pei, M. L.: A test matrix for inversion procedures, Comm. of the ACM, Vol. 5, No. 10, 1962, p. 508.
11. La Sor, W.: Test matrix for inversion, Comm. of the ACM, Vol. 6, No. 3, 1963, p. 102.
12. Hoffmann, K. and Kunze, R.: Linear Algebra, Prentice-Hall, Englewood Cliffs, N. J., 1961.
