
\

1

. ,
-i
,J &

.. ~

I

a -

\

COMPUTING THE PSEUDO-INVERSE
I

\

/

BY
\ CHRISTOPHER R. HERRON

t

NOVEMBER 1966

*.

X-643-66-533

COMPUTING THE PSEUDO-INVERSE

BY

I Christopher R. Herron

November 1966

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

COMPUTING THE PSEUDO-INVERSE

BY
Christopher R. Herron

ABSTRACT

An orthogonalization algorithm for producing the pseudo-
inverse of a matrix is described, and a FORTRAN program which
realizes the algorithm is given in detail.

iii

‘1 . -

I ’

ACKNOWLEDGMENT

E. R. Lancaster, under whose supervision this paper was
written, was particularly helpful in the development of certain
theoretical aspects and supplied many perceptive suggestions on
overall organization. G . H. Wyatt’s programming skill was in-
strumental in the debugging phase of the programming effort.

iv

To every matrix A there corresponds a unique matrix A+ with the following
properties:

AA'A = A

(A+A) ' = A+A (3)

(A A +) T = AA+ (4)

Penrose [l], one of the originators of this concept, called A+ the generalized
inverse of A , and equations (1) through (4) are often called Penrose's Lemmas.
Recent usage applies generalized inverse to any matrix satisfying (l), (1) and
(2), or (l), (2), and (3), referring to the unique A+ as the pseudo-inverse of A.
Other definitions of A+ have been given (e.g. Albert [2], Ben-Israel [31) but the
most common is that given above.

For simplicity's sake, the rest of this paper considers only real matrices,
although most results hold for complex matrices as well. The pseudo-inverse
provides a way to handle the ubiquitous matrix-vector equation

Ax = y . (5)

If A is square and non-singular, A+ is A-' and the vector A + y solves the
equation. The particular advantage of the pseudo-inverse appears when A is
singular o r non-square, since A + y then is the minimal vector for this equation;
that is, i f M is the set of all vectors x o such that

for a l lx , then A + y E M and

Here we use the standard Euclidean norm.

1

A theorem which dates back to the time of Gauss (Newhouse [41) states, in
effect, that if xo E M , then xo is a solution of

ATAx = ATy .

This type of system, often called a set of normal equations, is found repeatedly
in least squares problems. (See, e.g., Rao [51). Since At y E M , the application
of At in these circumstances is evident.

The same theorem also states that if xo E M , then x0 is a projection of y
onto the column space of A. Newhouse later gives a theorem which proves con-
dition (7), that At y is the "shortest" of these projections, giving r ise to
Greville's assertion [6] that At y is the best solution to equation (5) in the least
squares sense.

Naturally, the theoretical existence of such a useful mathematical object
makes a method for its computation very desirable. Most of the methods sug-
gested, however, require that the product AT A be formed and that Gaussian
elimination (or one of its variants such as pivotal condensation or sweep out)
be performed on it. Should we be faced with an ill-conditioned matrix, it is
entirely possible that numerical difficulties will prevent any significant com-
putation using such methods. For example, consider the matrix

1 1
6 7 8 9

- 1 - 1 - -

1 1
5 8 9 10

- 1 - 1 -

The Hilbert matrix is notoriously ill-conditioned with respect to Gaussian
elimination. The upper left-hand 4 x 4 corner of it has a condition number
hmax/Amin given by Marcus (Ref. [71) as 15,514, so our 4 x 4 segment of it
would certainly be suspect. Fox (Ref. [SI) shows that our suspicions a re
justified, giving the Gauss elimination process for H', in which the steady de-
crease in magnitude of the pivots leads to very unreliable quantities. More to
our point, he demonstrates that Gauss elimination fails completely when applied

2

to HT H . We should realize that a bad but workable problem can become path-
ologically unmanageable if such a product is formed, and, as a general rule,
avoid such approaches.

The method of Rust, Burrus, and Schneeberger (Ref. [91) was used to
compute the pseudo-inverse because it does conform to this general rule.
Briefly, it can be characterized as follows: if the m x n matrix A is in the form
[RI SI , where the k linearly independent columns form the submatrix R and the
linearly dependent columns form the submatrix S , make up the n x n identity
matrix and write, symbolically,

Then perform the Gram-Schmidt (G.S.) orthogonalization process on [Rl SI ,
and apply these elementary column operations to the lower submatrix to get

Next, perform the G.S. process on the submatrix I to produce [:!k]

form the matrix

3

and, finally,

A complete derivation
in Appendix A.

given nl Ref. [91 and a few auxiliary notes are given

Of course, not every matrix will be in the convenient [Rl SI form, but if we
can determine which columns of A a re dependent we can certainly permute
columns to produce it; then [RISI'is found and by the authority of Theorems I
and It, Appendix A, the rows of. [RI SI ' are likewise permuted to get A'. Since
the G.S. process not only orthogonalizes the independent columns of A but also
makes the dependent ones zero, we can use it to find the dependent columns.

Now we have a straightforward way to proceed:

(1) Use G.S. to find the dependent columns.

(2) Permute to get [R I SI .
(3) Use G.S. to find [RI SI '.
(4) Permute to get A'.

The reader will have noticed that the G.S. process is used in step (1) and again
in step (3). We could save some computation time if we combined the two steps
and performed the G.S. process only once. A closer examination of the process
reveals that we can, under certain conditions, make this combination.

Our program uses a modified Gram-Schmidt process which is more accurate
than the classic textbook version. A recursive algorithm describing our version
is:

(1) Orthogonalize c j , the next column of A :

4

(2) I s b j 2 O ? If so, zero it out and go to step (1). If not, do step (3).

(3) Re-orthogonalize b j :

and go to step (1).

The initial condition is b,' = c 1. After we run out of columns, we normalize
each one and we have an orthonormal matrix A,.

If we want to duplicate these elementary column operations on another
matrix D, we could save the numbers

c . * bi' b j * bi'
(bl ' - b i) ' (b i - b:) ' and (b j ' b j ') l I2

and then go through the algorithm again, this time letting c be the columns of
D. More precisely, we might save these numbers in an n x n matrix S , defined
as

S j j = (b j ' - bj ') l i2 (l l j L n) .

As an example, let A be [::,11' 3

3 3 9 8

5

Using eight-digit arithmetic and rounding the final answers to three digits,
we have

s =

0 0 - .436_]

- -
3.74 0 0 .213 io-’

1.00 0 0 0

3.00 0 0 0

3.14 0 0 3.27 - -

Once we have done the G.S. process on A , we have done it for all column permuta-
tions of A which do not disturb the relative order of the independent columns. If
P is a permutation matrix such that AP [RI SI , where R is the matrix of inde-
pendent columns of A in their original relative order, the orthonormal matrix
[QI 01 produced by the G.S. process on [R (SI will be A P . In our example,

suppose

Then

P =

-
1 0 O O l

:I. 0

0 0 1

0 0 0

0 1 0 -

We can also produce a new S matrix (F) by permutations. Referring back to
the definition of S, one can see that a particular column c has its initial

6

I
4 + -

orthogonalization coefficients(c. . bI)/(bI . br)on the j th row and below the
diagonal, and its secondary coefficients(bj . bI)/(bl . bI)fall on the jth column
and above the diagonal. Once cj is converted into bj ' , all initial coefficients
having b j ' as a factor fall on the j th column below the diagonal, and all such
secondary coefficients fall on the j th row above the diagonal. When bj ' is
normalized, its 'length" falls on the j th diagonal element. Moving c j to a new
position therefore means that we must move the jth row and column of S to
corresponding positions, o r

F = PTSP ,

In our example,

F 3.00

-
213 10-7 0 0

3.27 0 0

0 0 0

0 0 0 -

If we go through the algorithm with c taken as the columns of a matrix D and
the numbers(cj . b:)/(bi'. bi)and(bj . bi)/(bl . bI)taken as f j i and f i j re-
spectively, we have applied the elementary column operations of the G.S. process
on [R(s] to^.

Now we have the desired result: once the G.S. process on A is complete, it
is not necessary to do it again on [RI SI to derive its effects; merely execute the
indicated permutations on Al and S and we have all the necessary matrices.
Using this result, the procedure (1) through (4) on page 4 can be rewritten:

(1) Use G.S. on A; save the G.S. coefficients in S and save Al. Note which
columns are dependent.

(2) Permute A~ to get [QI 01 ; permute s to get F.

(3) Use the entries of F to operate on

7

producing

(4) Proceed as usual to find [RI SI '.
(5) Permute to get A'.

The program whose flow chart and FORTRAN listing appear in Appendices
B and C h a s been checked with a variety of matrices on the IBM 7094 and appears
to run properly. Two particular cautions might be extended, however: first,
one will note that a decision on the dependency of any column is made by com-
paring the "length" of the generated orthogonal column with the "length" of the
original column. If the check number (bJ . b,) / (c , . c,) is smaller than a certain
tolerance, the column bJ is made zero. When the check number is very close to
the tolerance, any decision made will not be a good one and the resulting per-
turbations can become serious; for example, the Hilbert matrix gives poor
results for this very reason. One might vary the tolerance to suit special cases.

Second, although this program finds the inverse if it exists, there are
routines in general use which get better inverses. For example, the SHARE
routine MATINV was tested against this program on a sequence of Pei matrices
(Ref. [lo] , Ref. [ll]) and consistently got one more accurate digit in the worst
cases. The difference is not great but the prospective user should realize that
it exists.

Finally, an experienced programmer will see that the FORTRAN realization
in Appendix C is not in optimal form. A more streamlined, double-precision
version is being prepared for the IBM 360 as of this writing. The author would
appreciate hearing of mistakes in, o r improvements upon, the original.

8

APPENDIX A

(Supplementary notes for Ref. [91)

Theorem I

If P is a permutation matrix (possibly a product of elementary permutation
matrices) and A + is the pseudo-inverse of A, then

(AP)' = PTA'

Proof: We need only verify that Penrose's Lemmas hold. Noting that PPT
= P T P = I , we have

(c) [(Ap)(PTA+)]' = (AA')T = AA+ = (AP)(PTA+)

= P'(A+A)~P = PT(A+A) P

= (PTA+) (AP) .

Theorem II

Lf P is a permutation matrix and the operation AP effects a column permuta-
tion of A, then PTA effects that same permutation on the rows of A.

Proof: Suppose one of the effects of AP is to change column i to the j th place.
Then Pi j = 1, P; = 1 , and PTA changes row i to the j th place.

We use this result to get A+ from a row permutation of [RI SI +- that same
permutation of columns which transformed A into [RI SI.

The paper states (p. 383, right column) that the G.S. process turns a de-
pendent vector into the zero vector. One might check this statement by referring

9

to Hoffmann and Kunze, p. 230, Theorem III (Ref. [121). If ak+l is a linear
combination of a l , , ak then it is a linear combination of q, , , qk since
the vectors q i span the space of the vectors a i . Furthermore, by the above-
mentioned theorem,

and c k + l 0.

On p. 384, left column we w e to note that In - remains unchanged. Suppose
we are operating on column k t p (p > 0) of the matrix [RI SI. We have

k + p - 1

a k + p - C (akH+pqi) qj
- -

'k+p

i = l

But each q i , k + 1 5 i 5 k + p - 1, has been zeroed out already, since they came
from vectors dependent upon a 1 , , ak , so the above is

Similar column operations on the identity matrix then use only the first k columns,
whose lower n - k entries a re all zero and cannot contribute to any modification
Of In-k

10

APPENDIX B

INITIALIZATION u

..

BUMP COUNTER
N BY I

ORTHOGONALIZE
Nth COLUMN

WITH RESPECT
TO PREVIOUS 1 COLUMNS 1

RE-ORTHOGONALIZE
NO FOR ACCURACY

ZERO THIS
COLUMN OUT

t -
I

t
PUT ITS NUMBER

lU 1 NO

i

I NORMALIZE A L L I
COLUMNS

PERMUTE A
TO GET

[Q. 01 FORM;
PERMUTE FACTOR 1 TO HATCH 1

PUT ITS NUMBER
IN JHOLD

FORM
QT = ATR

ORTHOGONALIZE
LAST i N . K)

COLUMNS OF
A I TO GET

AUGMENT ATR
TO GET

A a ATR = AlNV u
TO AGREE WITH

ORIGINAL

WRITE RESULTS
AND CHECK

11

APPEWIX C

K K = 1
JJ = 0
I 1 = 0
N = l

1 5 2 N L E S S l = N
N = N + l
CHFCK
DO 1 0 1 I = 1 , N L E S S l

DO 1 0 1 J = 1, NROWS
1 0 1 A(J ,N) = A (J , N) - F A C T O R (N , I) * A (J I I)

C H k C K = DOT(A,N,N,NROWS)/4HECK

- - T (A, N r N 9NROWS 1

F A C T O R (N . 1 1 - - T I A r N . T ' q W S 1 /DOT (A , I I ,NROWS I

I F ICHFC K - I) 1 5 0 , 1 5 0 , 1 5 1
-I-'- ' I

- -A - - -
~ ~

~ -_ - _
1 5 0 DO 1 0 3 J = 1,NROWS

- f3--

I

14

I f F (K K , E Q . (N C O L S - l)) GO T O 158

DO 128 J = 1 9 N C O L S
,

t -
L'

c

END

.-

17

1.

2.

3.

4.

5.

6 .

7.

8.

9.

10.

BIBLIOGRAPHY

Penrose, R.:, A generalized inverse for matrices, Proc. of the Cambridge
Philosophical Society, Vol. 51, 1955, pp. 406-413.

Albert, A.: An Introduction and Beginner's Guide to Matrix Pseudo-Inverses,
ARCON, 803 Mass. Ave., Lexington 73, Mass., 1964, particularly pp. III-8
to III-16.

Ben-Israel, A,: An iterative method for computing the generalized inverse
of an arbitrary matrix, Math. of Comp., Vol. 19, 1965, pp. 452-455.

Newhouse, S.: Introduction to Matrix Generalized Inverses and Their
Applications, GSFC X-643-66-34, 1966.

Rao, C. R.: A note on a generalized inverse of a matrix with applications
to problems in mathematical statistics, J. of the Royal Stat. SOC., Series B.
(Methodological), Vol. 24, No. 1, 1962, pp. 152-158.

Greville, T.: The pseudoinverse of a rectangular or singular matrix and
its application to the solution of systems of linear equations, SIAM Review,
V O ~ . 1, NO. 1, 1959, pp. 38-43.

Marcus, M.: Basic Theorems in Matrix Theory, National Bureau of
Standards, Applied Mathematics Series, No. 57, p. 23.

Fox, L.: An Introduction to Numerical Linear Algebra, Clarendon Press,
Oxford, 1964, pp. 136-142.

Rust, B., Burrus, W., and Schneeberger, C.: A simple algorithm for com-
puting the generalized inverse of a matrix, Comm. of the ACM, Vol. 9,
NO. 5, 1966, pp. 381-387.

Pei, M. L.: A test matrix for inversion procedures, Comm. of the ACM,
Vol. 5, No. 10, 1962, p. 508.

11. La Sor, W.: Test matrix for inversion, Comm. of the ACM, Vol. 6, No. 3,
1963, p. 102.

12. Hoffman, K. and Kunze, R.: Linear Algebra, Prentice-Hall, Englewood
Cliffs, N. J., 1961.

19

