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PREFACE 

This report covers the efforts of Fairchild Hiller Corporation and its 

team of subcontractors on NASA Contract (NAS-W-1411). 
organization and responsibilities during the study effort a r e  shown on 

the accompanying chart. The report is divided into eight volumes, a s  

The team 

follow 5: 

Volume 1 
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Volume 5 

Volume 6 

Volume 7 

Volume 8 

Summary 

Systems Analysis 

Vehicle Engineering 

Power System 
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Telemetry and Command Systems 

Program Budgetary Costs and Schedules 
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I. 
/ 

4.0 POWER SUBSYSTEM 

Spacecraft power requirements in t e rms  of magnitude, 

duration, and sequence determine the type and configuration of the most 

suitable system. At the outset, i t  may be stated that implementation of 

the concept experiments is easily accommodated by a solar power system. 

Should the experiment mission demands be scaled upward in 

the future, such a s  addition of high power communications transmitters, 

SNAP power might be required. It is evident that the impact of such a 

change on spacecraft design would be considerable. Up to peak power 

demand on the order of 1 kw, solar power is likely to remain the best 

choice from the standpoints of weight, cost, and development time. 

The concept solar power system discussed in  Section 4. 5 is 

based on consideration of battery and solar panel characteristics, which 

a r e  reviewed in Section 4. 1 through 4. 4. 

briefly discussed in Section 4. 5. 

Load duty factor effects a r e  

4- 1 



4. 1 SOLAR P A N E L  CONFIGURATION STUDY 

A study of several solar panel configurations to determine their 

power output vs time characteristics over the orbital period has been 

completed. 

geometrical considerations. 

power output per unit panel area (array factor) allow comparison of the 

arrangements. While shadow effects a r e  not included, the results a r e  

meaningful in  interpreting panel a rea  requirements a s  a function of gross  

configuration. 

(Figures 4. 1 - 1  through 4. 1-9). The analysis is based on purely 

Results expressed in te rms  of the normalized 

The general configurations considered a r e  compared on a per unit 

a r ea  basis; the per unit effective a rea  figure on the following graphs is the 

a r ray  factor for that configuration. 

considered. 

deviations from this are compromises due to vehicle packaging limitations. 

One and two degrees of freedom were considered and it w a s  found that 

two degrees of freedom provide very little added capability over a 

degree of freedom. 

orbit vehicle a re  shown in the graphs and in general have an a r ray  factor of 

0. 3 .  

number of panels reduces the swing between maximum and minimum and 

increases the frequency of this cycling. 

is desirable, the multi-face version of the fixed panels is favored. 

Both oriented and fixed panels a r e  

Only the flat plate is included in the oriented a r ray  since 

single 

The fixed panel plots for this earth oriented synchronous 

The effect of solstice is shown by the dash curves. Increasing of the 

Since a constant power availability 

From a power system standpoint, the most desirable of the con- 

figurations is the single degree of movement flat plate, which requires 

an orienting system with a long lifetime !undesirable). 

fixed configurations for this orbit is a cylinder. 

cylindrical configuration presents fabrication problems and thus flat plates 

become the practical solution. 

The best of the 

It is realized that a 

The number of flat plates utilized is greatly 
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dependent upon vehicle configuration but three faces  appear to be a minimum 

to reduce the variation in power availability thus reducing the w a s t e  area 

due to this variation. The a r r a y  factorof approximately . 3 holds for both 

faced cylindrical and double faced crossed panels and approaches -$#wt 

a s  the number of panels is increased. 

A selekion of solar panel configuration (the cruciform: two double- 

faced panels) has been made based upon power requirements, vehicle con- 

figuration and maximum system flexibility for  possible future power increase 

with minimum weight, volume and configuration changes. The selected a r r a y  

configuration is discussed in  Section 4.5 Concept Power Subsystem. 

4 . 2  SOLAR CELL RADIATION DEGRADATION 

Cell output decreases with time as a function of total radiation 

Figure 4. 2 - 1  illustrates this effect for  10 ohm - cm, N on P, damage. 

silicon cells subject to 1 Mev electron irradiation. 

is composed of natural background and solar f lare activity. 

estimate of the worst degradation occuring over a two year period must be 

based on the integrated background flux, and the highest estimate of f lare  

activity during the period. 

Total particle radiation 

A conservative 

4 .2 .1  

environment for  synchronous orbit in  the 1969 - 1970 time period have been 

noted for various projects. The Large Aperture Antenna R F P  GSFC 

No. 7 3 3 - 8 5 0 3 7 / 2 3 5  estimates the environment as follows: 

Radiation Env i r onm ent Marked differences in the radiation 

2 Particle Energy 2 Year Integrated 
Particle Electron Volts Flux, Par t ic les lcm 

Electrons 2 1 . 6 ~  1 
240 x 10 

11 
15 

6 2 x lo8  15 

2 x 10 
2 x 10 

!I6 
0 .1  x 1g6 to 5 x 10 Protons 

230 x 10 4 x 10 
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I t  Radiation Due to Solar Flares. 
two year  period in  orbit, solar  flar s of 3+ magni 
yielding an integrated flux of 5 x 10 
will  occur. Over this two year  per i  d, the total flux of protons 
having energiT3greater tha 12 x 10 electron volts is expected 
to be 1 . 3  x 10 

It is expected that during the 
, 5 Yde 

'6 
particles/cm /event, 

?2 1 1  protons/cm . 
The Natural Environment a t  Synchronous Orbital Altitude", a I 1  

special technical report prepared for the Spice Systems Division, 

AFSC as part  of RFP  No. 04-695-66-208 dated June 20, 1966 

presents the radiation environment a s  follows: 

2 Y r .  Flux 2 Particle Energy Range Flux 
Electron Volts Par t ic les / in  / sec  Part icIes/ in  

13 1 . 9 x  10 5 3 x 10 6 Electron > 1 . 6  x 10 
15 1 . 0  x 10 7 3 x 10 3 >40  x 10 

14 6 . 3  x 1 0  6 7  Proton 0. 1, IE- 55x 1 0  10 
9 6 . 3 ~  10 

The solar f lare activity during the two year  period is predicted as 

yielding a proton flux as follows: 
2 > 100 MEV 5. 6 x lo8 protonslin /yr .  

4 x l o9  protons/in 2 /y r .  

0 MEV 1.06 x l o l o  protonslin /yr .  

> 30MEV 

> 2 

The difference between these references in solar  f l a r e  proton flux 

level alone is two orders  of magnitude. 

to a variation in desired design margins. 

These differences may be due in  part  

4.  2 . 2  Background Flux 

The trapped radiation environment used for this study is based 

upon the work of J. Vette; figures employed correspond to integrated ra tes  
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at 2 .9  earth radii. Based upon this altitude the dose rate  should be suf- 

ficiently conservative since the trapped radiation decreases beyond this 

point. At 2. 9 earth radii  the electron flux is found to be less than 

1 2  e e which corresponds to  a two year dose of 6.3 x 10 - 
2 2 cm c m  sec 

(1) 
, l o 5  

(2)  
The proton dose is about 6 .3  x 10 2 which produces an equivalent 

L 12  e (3) damage of 1.3 x 10 - 9 . 
0 

cm 

Solar F la re s  - - Projecting 1969 - 1970 activity based on the 11 year 

cycle, a total of about 1 5  f lares  is expected to occur in those two years. 
9 2 

F l a re  activity wil l  produce a total dose of about 8. 3 x 10  p / cm per  
13 2 flare,  equivalent t o  I .  7 x 1 0  e /cm per  flare. 

Worst Case  Degradation Estimate - - Use of the 2 . 9  earth radi i  

altitude background radiation figures at synchronous altitude (5.6 earth 

radii) is conservative. Assuming the cumulative f lare  activity wil l  be  

5-each on day 1, 10 on day 365, and 15 on day 730, renders a worst ca se  

estimate of power output early in the period. (See Table 4.2.1). Figure 

4. 2 -2  illustrates the drop in power output resulting from the "worst case" 

particle radiation conditions above. 

4.2.3 Power Margin 

The power margin available for operation of secondary experiments, 

or increasing the frequency with which primary experiments c a  be oper- 

ated, is also shown in Figure 4 .2-2 .  Virtually a l l  of the initial panel 

output is available up to 6 months, decreasing by 470 at one year and 13% 

at two years.  

at two years. 

at the load bus. 

2 2 Initial output of 8.9 watts/ft is reduced to  7. 8 watts/ft 
2 Power conditioning further reduces this to 6. 6 watts/ft 

(1) ( 2 )  Models of the Trapped Radiation Environment, NASA SP-3024 
dated 1966 by J. Vette and direct correspondence with J. Vette 
of A er o sp  ac e C orpor at ion 

Conversion figures based upon Handbook of Space-Radiation 
Effects on Solar Cells, NASA SP-3033, Cooley & Janda. 

(3) 
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TABLE 4 . 2 - 1  SOLAR ACTIVITY 

I I I 
Day Background F la re s  * -  

Electron 
electrons protrons no. Equiv. 

1 

180 
365 
730 

R ea1 
2 e / c m  

9 2 9 2 13  8 . 6  x 1 0  e / c m  Day 1 . 7 2  x 1 0  e /cm day 5 8 . 5  x 1 0  
8 . 6  x l o 5  p/cm2 day 

1 . 5 5  x 1 0 1 2 e / c m 2  3 . 1  x 1011 e/cm2 5 8 . 5  1 0 1 ~  
i o  1 . 7  x 1014 3 . 1 4  x 1 0 l 2  e /cm 2 6 . 2 8  x 1 0 l 1  e /cm 2 

6 . 2 8  x 1 0 l 2  e /cm2 1 . 2 5  x 1 0 l 2  e /cm 2 15  2 .6  x 1014 

Total Dose (Power 

8 . 7  1013 
1 . 7 4  x 1 ~ 1 4  
2 . 6 7  x 1014 

13  8 . 5  x 1 0  

. 9 3  

. 9 0  

. 87 

- 9 4  

* 
Indicated dosage due to f lare  activity is between that indicated for 
ASFC R F P  No. 04-695-66-208  (June 1966) and GSFC R F P  No. 733-  
85037 /235 .  

4 . 3  BATTERY CHARACTERISTICS 

Uninterrupted operation of ATS-4 electrical equipment is required, 

therefore, energy must be stored during sun-lit periods for use during dark- 

ness. Even with the nearly continuous illumination of the ATS-4 synchronous 

orbit, a storage system is necessary to accommodate periodic changes in 

power demand. Several types of secondary batteries may satisfy the energy 

storage required, but depending upon many other factors (i. e. life duration, 

number of cycles, weight and volume available, temperature, charge and 

discharge rate, etc. ), only one wi l l  best satisfy all of the requirements. 

Table 4. 3-1 is a comparison of different battery systems. Pr imary and 

secondary batteries a r e  both included for comparison although not all  a r e  

applicable to the spacecraft for different reasons, such a s  non- rechargeable, 

not sealable, low current only, etc. Three secondary battery types a r e  

considered as possibilities: nickel- cadmium, silver- cadmium, and silver- 

zinc. 

It is concluded that the ATS-4 life and cycling requirement (4000 

maximum over two years) is most conservatively met in the 1969-70  period 

by the nickel- cadmium battery. Confidence is enhanced by the considerable 

amount of experience accumulated with this type in space application, and by 
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i t s  successfully exceeding the ATS-4 performance requirements. 

4 . 3 .  I Nickel- Cadmium Battery 

The nickel-cadmium cell is manufactured in two types of 

construction: pocket plate and sintered plate. 

heavy duty batteries employed for terrestr ia l  applications, whereas the 

sintered plate cell is capable of high rate cycling, lower in weight and more 

rugged in  mechanical design which make i t  preferable for space use. In the 

sintered plate construction, the active materials (nickel oxide anode, 

cadmium metal cathode) a r e  held in a highly porous thin flat plate made by 

sintering powders onto a screen or onto a perforated flat plate support. 

These flat plates a r e  then rolled f o r  the cylindrical type cell. Cellulose or 

polymeric woven or  unwoven sheets are used as separator material between 

the closely packed sintered plates. Hermetic sealing of this battery and 

maintaining good overcharge characteristic is possible due to oxygen evolved 

at the nickel anode during overcharging migrating to the cadmium cathode 

where it is recombined. The cycle life of a sealed nickel cadmium battery, 

by comparison, is high, depending upon temperature and percentage of dis- 

charge. 

related to percent of discharge and cell temperature. 

ove rhea t ing , separator and ele ct r ode degradation, ele ct r ode corrosion 

contamination, structural defects and leaks. 

The pocket plate is used in  

Figure 4. 3 - 1  shows t k  cycle life of sealed nickel-cadmium cells as 

Failure modes a r e  

4 . 3 . 2  Silver- Cadmium Battery 

The silver-cadmium secondary battery consists of a silver 

oxide cathode, a cadmium metal anode and an electrolyte of aqueous potassium 

hydroxide. 

creased specific energy. 

watt-hours per pound, 26 watt-hours per  pound can be achieved in  practical 

sealed units. 

The major advantage of the silver-cadmium system is i t s  in- 

4lthough the theoretical energy capability is 150 

The major disadvantages of the silver- cadmium system a r e  
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limited cycle life, and deterioration of separators at elevated temperatures. 

4.3.3 Silver-Zinc Battery 

The silver-zinc rechargeable battery provides the greatest 

energy per  unit weight and volume of the rechargeable types. Components 

of the silver-zinc secondary battery a r e  similar to those of the silver-zinc 

primary battery: silver oxide cathode, zinc metal anode with an electrolyte 

of aqueous potassium hydroxide, except that the separator must be 

considerably thicker to inhibit migration of silver, and to prevent shorts 

caused by separator deterioration associated with an extended wet-life re-  

quirement. Hermetic sealing for space use is difficult because the zinc 

reacts  with the electrolyte to form hydrogen, and, in addition, recombi- 

nation of the oxygen evolved is not complete. Sealed cells, however, have 

been manufactured that can be operated at  low charge-discharge rates, but 

they wi l l  not tolerate overcharge. 

4. 3.4 Batterv CornParison 
~ 

A capacity summary chart of the three types of batteries discussed 

is shown in Table 4. 3-2. 

comparison. 

Figures 4.3-2, -3 and -4. 

following charts a r e  based upon existing state-of-the-art. 

is considered a valid basis for  conclusions applicable to a system for the 

late 1960s (67 - 70) due to the battery technologies steady rate of performance 

improvement. 

battery types, high charge-discharge ra tes  and elevated temperatures are 

disadvantageous to optimum battery utilization. Cycle life is a function of 

depth of discharge among many other factors, but maintaining these factors 

constant and varying only the depth of discharge, the variations in life for 

each of the three battery types a re  shown in Figures 4.3-5, -6, and -7. 

The automotive lead acid battery is included for  

The same type of information is presented in graph form in 

The data presented in Table 4.3-2 and the 

This information 

It can be readily seen from the graphs that for all  of the 
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Figure 4 . 3 - 4  
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6 

The general trend for these three cell types is that the cycle life (beyond 

which the battery is unable to deliver rated capacity) is reduced with 

increased depth of discharge. The figures a r e  based upon testing of 

production quality cells at Gulton Industries, Inc. The apparent low 

current density degradation of silver- cadmium cells for cycling depths 

below about 30% would constitute a disadvantage for lightly loaded systems; 

estimating the magnitude of this effect from the empirical data presented 

may not reflect a sufficient sample to be reliable. By contrast, the nickel- 

cadmium cell data indicates a maximum cycle life at the lowest cycle depth. 

Satellite experience with nickel- cadmium batteries tends to validate this 

Gulton data. 

have operated at  11. 5% cycle depth without failure. 

has experienced about 9000 cycles over a period of 18 months. 

For  example, the three PEGASUS satellites launched in 1965, 

The f i rs t  of the ser ies  

The choice of battery type must be based upon several  factors: 

cycle life, specific energy and volume, reliability, charge rate, discharge 

rate, temperature effects, overcharge rate. Assuming that a maximum of 

5 discharges per 24 hours a r e  made from the battery system for  a period 

of 2 years  and including the requirements of four occult phases (approx. 

40 days each up to 67 minutes/day, see Figure 4.3-8) a total cycle require- 

ment of approximately 4, 000 is required. From the charts of Figure 4.3-6 

and 4.3-7 it can be seen that both the silver-cadmium and the nickel- 

cadmium will satisfy the cycle life requirements a t  a 50 percent depth of 

discharge or  less  (50% depth of discharge selected a s  a practical limit to 

preclude possibility of cell reversal damage). 

ment increases to 10 discharges per 24 hours (8000 per  2 years)  the use of 

silver- cadmium becomes highly marginal at  any depth of discharge. 

2 year orbit life plus the additional "wet life" involved in battery manu- 

facturing and pre  launch storage and fabrication is a very severe require- 

ment on the silver-cadmium battery due to the separator problem a s  stated 

in the brief description of the silver type batteries. 

If the per  day cycle require- 

The 

Two years  is well 
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into the marginal life of the Ag-Cd batteries due t o  the si lver migration. 

If the cycling or 2 year  life requirements were increased at all, the si lver- 

cadmium battery would be unsatisfactory at ita present state of development. 

Recommendation - - The ATS-4 life and cycling requirements (4000 

maximum for 2 years is best satisfied by the nickel-cadmiurn battery. 

considerable amount of experience with nickel-cadmium battery and the 

associated charging and control circuits enhance the confidence that i t  is 

the best system to successfully satisfy the ATS-4 performance requirements. 

In accordance with this selection, the following sections use 12 .  5 watt-hrs. 

per  pound at a recharge efficiency of 66%. 

The 

VERNAL EQUINOX 
FEBRUARY MARCH+-APRI L 

Figure 4 . 3 - 8  Umbra and Penumbra Patterns for a 
Synchronous Equatorial Satellite . 
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4.4 BATTERY CHARGING AND CONTROL 

Several battery charging and control approaches have been 

utilized with the sealed Ni-Cad battery, the most often selected approaches 

a re  : 

0 constant current 

0 constant voltage 

0 modified constant voltage 

0 tapered charge 

With each of the above methods of charging, several  approaches 

to charge termination can be utilized singly or  in combination. 

parameters are: 

The control 

0 pressure 

0 voltage 

0 third electrode voltage 

0 watt-hours 

0 temperature 

4 .4 .1  Constant Current Charging 

Constant current charging is the fastest method of recharging a 

battery. 

discharge times and ra tes  a s  well a s  temperature a r e  firmly established. 

The time for recharge must b e  sufficiently long that the recharge rate  

wi l l  be low enough that i t  does not exceed the allowable continuous over- 

charge rate. 

since there is a minimum current (function of cell capacity) below which 

the battery wi l l  never recharge completely, 

must be returned increases very rapidly a s  temperatures exceed 70 F 

(see Figure 4.4- 1). 

and duty cycle the battery can be subjected to serious under or overcharging; 

This method can be used very successfully when the charge- 

At the same time the temperature must not vary greatly 

The amount of energy that 
0 

Thus with variations of temperature and/or  loading 
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therefore, i f  a simple constant current charger is to be economically 

employed, the electrical and physical environment must be closely con- 

trolled o r  else a gross  oversizing of battery capacity wi l l  be required to 

tolerate a continuous overcharge rate sufficiently high to compensate for  

all  contingencies. 

4 .4 .2  Constant Voltage Charging 

A constant voltage charging is a slow method of complete re- 

charging. 

potential voltage source. 

provide a safe maximum voltage while still  providing complete recharge. 

The rate of gassing, hence internal pressure, is a function of temperature 

a s  illustrated at the two temperatures (40° and 77 

The low temperature pressures  a r e  many times the pressure developed at  

room temperature. 

cells. 

which is equally applicable to constant potential charging. 

potential is not practical unless the temperature range is limited closely. 

A temperature compensating circuit can be added to vary the limiting 

voltage according to Figure 4.4-3. 

long enough to preclude multicycling daily without excessive depth of 

discharge. This means that i f  only 10% capacity is removed, the battery 

cannot be cycled between 90% and 100% capacity because the high terminal 

voltage prevents recharge in the time allotted. The battery must cycle at  

some lower capacity level (i. e. 55% to 65%) at  which point the terminal 

voltage is sufficiently low to permit a charge current high enough to 

return sufficient ampere-hours to replace the ampere-hours removed. 

This forces the system to operate at  a depth of discharge associated with 

a lower cycle life and reserve capacity (see Characteristics, Section 4. 3). 

Essentially, the battery is "floated" directly across  a constant 

The voltage level of the source is selected to 

0 F) shown in  Figure 4.4-2. 

Excessive pressure results in  mechanical failure of the 

The effect of temperature upon cell voltage is shown in Figure 4.4-3 

Thus a fixed 

However, the recharge time is still 

1 
I 
I 
I 
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I 
8 
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4.4.3 Modified Constant Voltage Charging 

The modified constant potential charger is similar to the con- 

stant potential charger and shows i t s  general charging characterist ics 

except at initial charging o r  at  low voltage operation. 

current into the battery for a constant potential charger with a "stiff 

power system" (not current limited) is limited only by the battery 

impedance, a modified constant potential system has a current l imiter 

(ser ies  resistor) in se r ies  with the battery to protect the battery from 

high currents when i t s  voltage is low. 

voltage increases the current decreases and the IR drop across  the current 

limiting resistor becomes negligible. 

Whereas the 

A s  the battery charges and i t s  

4.4.4 Tapered Chargers 

The tapered charger combines the advantages of both systems. 

During the initial recharge a constant current is supplied to the battery 

and thus provides rapid recharge up to a predetermined voltage at  which 

point the charging current is tapered back approaching that of a constant 

potential charging system. 

from the constant current mode is a function of battery temperature and 

is sensed by thermistors buried in the battery pack. 

thermistor on a typical set  of voltage-recharge current is shown in 

Figure 4.4-4. These curves a r e  f rom measurements on a tapered 

charger design which has accumulated 46 months of space flight time f o r  

more than 33,000 charge-discharge cycles. 

The break point voltage at  which i t  departs 

The effect of the 

4.4. 5 Re commendation 

It is concluded that the tapered charging approach is best suited 

to the ATS-4. Not only does the past experience with the tapered charger 

show the approach to be very satisfactory but it also incorporates the best 

features of both the constant current and the modified constant potential 
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chargers while providing sufficient inherent protection for  the battery. 

Supplemental protection can be provided by sensors (thermal, voltage, 

pressure,  etc. ) to initiate battery change over as described in Section 4. 5. 
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4 .5  Concept Power Subsystem 

The power sybsystem design objective is realization of a 

minimum wight system satisfying the mission demands discussed in 

Section 2.3. The estimated power demands (Table 4. 5-1) and power 

profiles (Figure 4.5- 1, - 2  and -3) previously discussed a r e  repeated here  

for completeness. To summarize, the pre-orbital demand is estimated to 

be 100 watts, for the 16 hour duration between shroud ejection and a r r a y  

deployment. The on-station standby o r  occultation demand is 175 watts; 

peak experiment demand is estimated at  350 watts. 

4 .5 .1  Design Approach 

The minimum weight design approach involves analysis of load 

dynamics followed by apportionment of battery capacity and solar a r r ay  

output to produce the minimum weight combination. Total weight, W (lb) 

is composed of battery, panel, and power conditioning component weights. 

This total is related to battery energy to weight ratio and panel power to 

weight ratio by the expression: 

T 

m 
1 

wT= ( 12. 5 D + 13.2 T )i& 1 + 15 r .  (ai - r 
+ 6. r 6 1 

where the symbols a r e  defined as follows: 

D = Repetitive fractional discharge depth of 12. 5 watt-hour 

pe r  pound battery. 

T = Load cycle period (hours); 

7 = Duration of ith load (hours); 

a = Magnitude of ith load (watts); 

r = 

i 

i 
Main load bus input f rom 6 . 6  watts per square foot array.  

The 15 pound constant accounts for  power conditioning, regulation 

and switching circuitry. 

weight equation which shows the minimum total weight is a function of load 

Figure 4. 5-4 is a graphical presentation of the 
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duration, T 

the numerical values a r e  ficticious and chosen for illustration only. 

and apportionment between panel output and battery capacity; i' 

It can be shown that below a certain 7 value, the minimum 

weight system w i l l  utilize minimum panel area;  i. e . ,  just sufficient to 

provide for  battery recharge within the load period, T. Likewise, above 

this certain value of T , minimum weight is realized for a minimum 

battery capacity configuration; i. e . ,  just sufficient to support the 

occult ation load. 

For state-of-the-art battery and solar panel constants, the 

cross-over" value of load durationr is 0.16 hr. A s  ATS-4 experiment 

evaluation test routines a re  expected to require on the order  of an hour, 

it  is evident that the concept power design should be based on minimum 

battery capacity consistent with occultation demands, and of course, 

structural o r  other constraints on the panel a r ea  and weight. 

I 1  

Power subsystem constants a r e  summarized in  Table 4. 5-2. 

The concept power system weights a r e  tabulated in Table 4. 5-3. 

4.5.2 Battery Complement 

The required mission battery capacity may be determined from 

the occultation requirement, which is an  estimated 175-watt load for a 

maximum occultation duration of 1. 1 hours. Utilizing the Ni-Cd cells 

described in Section 4.3, with a packaged specific energy of 12. 5 watt- 

hours per pound, the required battery capacity and weight is determined 

from 

(load) x (duration) capacity = (allowable depth of discharge 

175 = 385 watt-hr - - 
0 . 5  

(load) x (duration) 

I 
weight = (allowable depth of discharge) x (energy to weight ratio) 

(. 5)(12. 5) 
(175)(1' 

= 31 pounds - - 
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TABLE 4.5-2 POWER SYSTEM CONSTANTS 

SOLAR PANELS 

Silicon N-on-P Cell Output 

Panel Output 

Two-year Degradation Factor 

Cruciform Panel Weight 

Normalized Effective Area 

POWER CONDITIONING 

E ff ic ien cy 

BATTERIES 

Redundant Ni-Cd 

Cycle Life 

Discharge Depth 

2 
11.5 watts/ft initially (@ 25OC) 

7.8 wattslft 

Total Radiation 1370 

Thermal 1470 

Area Efficiency 9070 

2 after 2 y rs .  (@ 50°C) 

Aggregate 32.570 
2 

0.66 lb/ft  of cel l  a r ea  

0.3 (Cruciform) 

0.9 (One Deg. of Freedom) 

a 5% 

12.5 watt-hr/lb 

>4400 cycles 

10% during sun-lit periods 

5070 during occulted periods 
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TABLE 4.5-3 MINIMUM WEIGHT ATS-4 POWER SYSTEM 

LOADS 

Pre-orbit  61 

Standby/Occult 

Peak Experiment 

Max, Duration 

BATTERIES 

Mission Main Battery 

Mission Redundant Batt. 

SOLAR PANELS 

Min. Output @ 2 yrs .  

Min. Cruciform A r e a  

Est. Cruciform Weight 

POWER CONDITIONING 

100 watts, nominal 

175 watts 

350 watts 

1 hour 

385 watt-hr; 31 lb  

385 watt-hr; 31 lb  

310 watts 

155 square feet 

103 pounds 

Weight 

POWER SYSTEM 

15 pounds - 

Total Weight - 180 pounds 
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For the comparatively small number of occultations in 2 years  

at  synchronous altitude (about 16 0), 5070 discharge depth is acceptable. 

Allowing for 10070 redundancy, the total mission battery weight is 62  

pounds. No  preorbital battery is required for  launch 8 months of the 

year;  launch at equinox f: 2 months requires a separate battery of 10 

pounds, maximum 

4 . 5 . 3  Solar Array 

The minimum power input to the main load bus, p is related A' 
to the peak power demand, a, i t s  duration, 7, battery capacity, C, and 

permissible fractional discharge depth, D. 

fi  

For  a 385 watt-hr. battery, 1070 depth of discharge, and 350 watt peak 

load duration of 1 hour, the minimum input to the load bus is thus 311. 5 

watts. 

Array size and weight a re  related to this power input by the 

following expression: 

Area = 
f e u O  (1 - d )(I - dth) J rad 

where 

e :  

6 -  
0' 

d: 

f :  

Power conditioning efficiency 
(85 - 90% typical) 

Initial matched panel output pe r  unit a rea  for given 
cell conversion efficiency, temperature, and packaging; 

Degradation factor for  radiation (d 
effects. 

and thermal (dth) rad 

2 Array factor (effective normal a rea  per  ft ) 

0 Using 12.470 efficiency N-on-P cells (AM1 @ 25 C), 8570 conditioning 

efficiency, 1370 radiation degradation at the end of two years, 1470 thermal 
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0 2 
derating fo r  operation at 55 C, yields 7. 34 watts per ft 

panel a r ea  utilization efficiency of 90% results in  6 .6  watts delivered to 

the main load bus  per square foot of panel area operating at  55 C and 

normal to the solar vector (at the end of 2 years). 

cell area.  A 

0 

From the results of Section 4. 1, the cruciform a r r a y  

normalized effective a rea  is 0.3. 
311.5 

thus 0 .3  x 6 . 6  
2 total of 155 f t  to  two double faced panels of 38.8 ft 

The total surface a rea  required is 
2 

= 158 ft . The preferred spacecraft concept allots a 
2 frame a rea  each. 

Utilizing a single degree of freedom rotating single faced - 
2 

= 53 ft , o r  two single faced panels of 311. 5 ~ 

0. 9 x 6. 6 panel would require 
n z 

26 f t  each. Since an actuator is required, the weight advantage of this 

arrangement is  not as great a s  indicated by the a rea  ratio. 

Lightweight aluminum honeycomb construction single face 
2 1 

panels a r e  approximately - structure, - solar cells by weight; a typical - 3 3 
panel weighs about 1 lb/ftZ. 

would weigh about 53 pounds. 
2 2 about 3 lb/ft  . 

103 pounds. 

Hence, the single degree of freedom ar ray  

Double face cruciform panels will weigh 

The panels for the referenced concept will weigh about 

Growth potential may be an important design consideration in  

the initial choice of panel size and structural  support. 

it  is to be noted that the 77. 5 ft 

455 watts to the load bus at the end of 2 years, 522 watts initially. 

In this connection, 

frame area in  a rotatable a r r a y  provides 2 

4. 5.4 Power Conditioning and Control 

A simplified block diagram of the power subsystem is shown 

in Figure 4. 5-5. 

panels. 

derated blocking diodes thus protecting the power system f rom self dissipation 

into a shorted o r  shadowed module. 

The solar a r r ay  is shown as four groups of diode isolated 

Each of the ser ies  - parallel modules will be isolated by a pair of 
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Redundant zener voltage l imiters  a r e  provided with automatic 

o r  ground commandable over-voltage changeover. 

zener voltage limiters is to establish an  upper voltage limit f o r  the unreg- 

ulated bus so that when the solar a r r ay  is fully illuminated and the 

connected load is reduced the bus voltage wi l l  not exceed a permissible 

level. 

volt tolerance on the voltage limit. 

adding loads when other loads a r e  removed in  order  to maintain a voltage 

tolerance. 

inverters reduces the demand upon these units thereby lowering the 

thermal dissipation and reducing the complexity and weight of the power 

conditioning equipment. 

approach is realized by simplifying the thermal control function. 

the solar array output is time dependent, considerable power is normally 

dissipated in  regulation and conversion at  s tar t  of life and reduced to a 

minimum at the end of life. 

permitting the zener package to dissipate this excess energy outside of 

the thermally controlled area. 

The function of the 

Temperature compensating diodes a r e  included to maintain a 1 

This precludes the necessity for 

In addition, the voltage limited input to the regulators and 

A major benefit of the zener voltage limiter 

Since 

Varying thermal input is eliminated by 

Battery charging is accomplished by a redundant system. 
1 1  System 

battery "B" on a low rate  trickle charger. A reversal  of status, "B" 

battery as main and "A" battery on standby, can be accomplished by 

ground command or by the on-board automatic system sensing an over o r  

under voltage condition and/or excessive battery temperature. 

dundant main chargers will be of the tapered charge type. 

be charged at  a constant rate until a predetermined voltage is reached. 

A" selection places battery "A" on a main charger and standby 

The r e -  

The battery will 

This voltage level is a function of battery temperature and is sensed by 

one o r  more thermistors buried in the battery package. 

voltage i s  reached, the charging current is reduced proportional to any 

Once the cut-back 
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further increase in voltage, A lower  limit is established as a minimum 

charge rate  to maintain the battery charge (a temperature dependent 

value). 

the constant current level is much lower, the cutback voltage limit is 

higher, though i t  is also responsive to the battery temperature sensing 

thermistor.  

The trickle charger is similar to the main charger except that 

Another source of energy is available to the main power bus.  

The pre-orbital battery wil l  be required to supplement the folded a r r a y  

output for  a solstice launch. 

primary battery is connected to  the main bus through a commandable 

relay and a ser ies  blocking diode. 

from becoming a load on the main bus in  case of relay failure, or  shorting 

the main bus after separator break down of the dissipated battery. 

This 12-pound, 608. 5-watt-hour si lver zinc 

This is done to prevent the battery 

Both the solid state dc regulators and inverters utilize the 

energy conserving pulse width modulation approach. 

active redundant standby unit is provided with automatic change- over 

upon over o r  under voltage or frequency. 

standby unit may also be accomplished by ground command based upon 

ground observation of telemetry. The ground command has the capability 

of over-riding the spacecraft selection unit. 

The use of an  

The selection of main or  

It has  been found that this described approach provides a highly 

reliable, low weight and volume power subsystem. 

internal control within the ATS-4 provides for quick reaction system 

protection and correction with a minimum amount of ground surveillance. 

The ground telemetry and command link provides an  over-ride capability 

i f  a malfunction should occur plus the additional flexibility of operating 

the power subsystem in  any desired configuration. 

The use of automatic 
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5 .0  ORBITAL ANALYSIS 

5.1 GENERAL 

This section of the ATS-4 final report presents the results of 

studies relating to trajectory and orbital analyses; including launch 

vehicles, apogee injection stages, ascent trajectories and injection 

stations, orbit payloads, orbit injection e r ro r s ,  orbit perturbations, 

orbit guidance, (including injection e r r o r  correction, station keeping 

and station repositioning) and auxiliary propulsion systems. 

Three (3) boost vehicles have been specified by NASA for  con- 

sideration in the ATS-4 mission study: the SLV3A/Agena, the SLVSC/ 

Centaur, and the Titan IIIC. Nominal payload capabilities to synchronous 

orbit altitude for the first two boosters were defined by NASA based on 

the following conditions: 

A due-East launch from ETR 

A standard Agena shroud for the SLV3AIAgena and a standard 

Surveyor shroud for the SLV3C /Centaur 

Use of an initial 100 nautical mile parking orbit 

No orbit plane change by booster upon injection of i t s  designated 

payload into the inclined Hohmann transfer orbit from the 

initial parking orbit to the final synchronous orbit. 

The corresponding synchronous apogee payload for  the SLV3A /Agena was 

given a s  2300 lbs. and for the SLV3C/Centaur a s  4000 lbs. 

Further ground rules  were eetablished by NASA for the SLV3C/ 

Centaur, namely that the factor t o  be used to  re la te  increases in Surveyor 

shroud weight to desired increases in shroud length is 5 . 4  lb/in. and 

coast t ime for the Centaur in the parking orbit (between first and second 

burns) shall not extend beyond the 1st descending node in this orbit. 
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5 . 2  APOGEE INJECTION STAGES 

An Apogee Injection Stage (AIS) must be employed with the 

SLVSA/Agena and the SLV3C/Centaur launch vehicle to provide the 

impulse required at apogee of the t ransfer  orbit to inject the ATS-4 into 

a synchronous equatorial orbit. Two types of AIS'S were found which 

meet these requirements with minimum modifications, both incorpor - 
ating versions of the Surveyor main r e t ro  rocket motor as  the propulsion 

engine. These are: the 3-axis stabilized Burner I1 (References 5-1 and 

5-2) and spin-stabilized AIS'S. 

The main elements of the Burner I1 consist of a Thiokol TE  364 

solid propellant motor, a preprogrammed strapped-down inertial guidance, 

a combination hot and cold gas reaction control system, a battery 

powered electrical system, a destruct system, a stage structure,, and 

a n  airborne data telemetry system. The Burner 11, also designated the 

Boeing Model 946 is supplied in several  versions as  follows: 

946-025 Current Burner I1 stage using the TE 364- 2 motor 

with a 200 pound payload support capability and 

a 43 minute coast capability 

946-027B Same a s  current Burner I1 stage except has new 

payload support structure to  handle 1400 pound 

payloads, uses the TE 364 - 3  motor with up to 1440 

pounds of propellant, and has increased batteries 

and N control propellant for  5. 5 hour coast 

cap ability. 
2 

946-128B Same a s  946-027B except payload support capability 

is 4000 pounds, and uses the T E  364-4 motor which 

has a cylindrical insert  permitting propellant loadings 

of up to  2100 pounds. 
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Spin-stabilized AIS'S using the same TE 364-3 and 364-4 motors 

(Reference 5-3) were also considered. Small solid rocket motors would 

be used for spin-up, and control of the spin axis orientation and coneing 

motions provided during the coasting period in the transfer orbit and 

during the apogee maneuver. Passive yo-yo mechanisms appear most 

effective for  despin, although despin rockets could be employed. The 

attitude control techniques considered for the spin-stabilized AIS'S a r e  

discussed further in Section 6 .  6 .1  of this report. 

The weight characteristics of the various Burner I1 and spin- 

stabilized AIS'S a r e  included in the summary data of Table 5.4-3 presented 

later in this section. The velocity impulses which must be supplied by the 

AIS'S f o r  the different types of ascent trajectories under consideration 

a r e  presented in Table 5.4-1. 

t imes for the subject AIS'S a r e  9000 pounds and 40 seconds, respectively. 

The approximate thrust levels and burn 
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5 . 3  ASCENT TRAJECTORIES 

5.  3.1 Requirements and General Considerations 

In the choice of an ascent trajectory and injection station (ie, the 

Earth longitude associated with the final 24-hour synchronous orbit) 

consideration must be given to  factors such as the following: 

Operational flexibility of the launch vehicle 

Ground tracking facilities for status monitoring and possible 

control during ascent and orbit injection and for identification 

and command correction of orbit injection e r r o r s  

Favorable satellite orientation relative to the sun during 

the transfer orbit, enabling power requirements to  be met  

using the solar paddles rather than launch battery packs. 

Ease and effectiveness of initial satellite checkout and exper- 

imentation following injection and orbit correction 

Ground tracking facilities for identification and command- control 

of required station keeping operations and of desired station 

repositioning operations 

Ground tracking facilities considered for the ascent and orbit 

injection operations included the STADAN network and the ATS-4 stations 

at Rosman and Mojave, as discussed in paragraph 2 . 1 .  2. 

Various classes of ascent trajectories and associated longitude 

injection stations were studied for  the three ( 3 )  launch vehicles under 

consideration in accordance with the preceding mission requirements. 

A l l  of the ascent trajectories assumed a near-East launch from ETR 

(off-Eaet launches to  modify the injection longitude station are briefly 

considered herein) and injection into a 100 nautical mile parking orbit. 

At the first (descending) or  second (ascending) node of this parking orbit, 
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a second burn of the launch vehicle is employed to  inject into an inclined 

Hohmann t ransfer  orbit to synchronous orbit altitude. 

for the Centaur launch vehicle, in order  to maximize the final orbit 

payload, the 28. 5 

due-East launch from ETR at a latitude of 28.5' - -  is reduced a s  the 

t ransfer  orbit is initiated. At  first or second apogee of the t ransfer  

orbit (the choice dictated by consideration of the desired injection longitude) 

the ATS-4 is injected into the final synchronous, circular,  equatorial orbit 

by means of an apogee injection maneuver. 

point into a slightly-elliptical high altitude parking orbit, different longi- 

tude injection stations a r e  available as  wil l  be discussed subsequently. 

In some cases  

0 inclination of the parking orbit - -  associated with a 

By under-injecting at this 

A graphic representation of these various ascent trajectories,  

together with an indication of the final injection longitudes based on a 

due-East launch from ETR, is presented in Figure 5.3-1. The SLV3A/ 

.Agena and Titan IIIC launch vehicles can be permitted to  coast t o  the 

second node of the low altitude parking before second burn to  initiate the 

transfer orbit. Such a procedure would permit the ATS-4 satellite to be 

injected into the final synchronous orbit at first apogee of the transfer orbit 

with an associated longitude station of 87OWest. This is an advantageous 

station from the standpoint of mission experiment command-control from 

the ATS-4 ground stations at Rosman (83' West) and Mojave (117O West). 

Since coasting to  the second node of the parking orbit cannot be 

considered for Centaur, two (2) ascent trajectories have been studied for 

it. The preferred approach involves initiation of the t ransfer  orbit at the 

first descending node of the low altitude parking orbit, coasting for 1 -112  

revolutions (15. 75 hours) in the transfer orbit, and injecting into the final 

synchronous orbit at second apogee of the transfer orbit. 

correction ( a s  necessary) and vehicle checkout and experimentation would 

be accomplished near the injection longitude of 54' West, 

Initial orbit 

The vehicle would 
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then be caused to  drift Westward (if the initial period were  greater  than 

24 hours due to  orbit injection e r rors  this could automatically provide a 

drift in the desired direction) to a more  advantageous location central  

to the Rosman and Mojave station longitudes. 

The second ascent trajectory approach involved subsynchronous 

injection of the ATS-4 at first apogee of the transfer orbit (at a longitude 

station of 104' East), and a consequent Eastward "walk" in the high 

altitude parking orbit to  a final acceptable longitude station. A s  will  

be shown, this approach involves extended waiting periods, and, hence, 

it is not favored. 

5.3. 2 Synchronous Injection - Single Apogee Impulse 

Launch vehicle operations and payload optimization considerations 

dictate an essentially fixed-launchtrajectory into a low altitude (taken as 

100 n.m. ) parking orbit. 

jectory launched eastward from ETR. 

ates in a low altitude waiting orbit inclined 28. 5 O t o  the equator. An 

elliptical t ransfer  orbit to synchronous altitude can be  initiated at any 

equatorial nodal crossing and permit injection into a final synchronous 

orbit at an equatorial station with a single impulse. 

(t ) is given by 

This phase is based on a powered ascent tra- 

The powered ascent phase termin- 

This initiation t ime 

D 1 
- 
- 

where 

t =  
0 

P =  
W 

L 

W t + ( j  - 1 ) ~  
0 

time at first nodal crossing 

period of parking orbit, 1.47 hours 

Integer j describes each successive nodal occurrence. Odd integers denote 

descending node positions, while even integers denote ascending node t rans-  

fer positions. 

5-7  



The parameter t is the t ime of the first nodal crossing. This 
0 

includes the powered launch ascent trajectory a s  well a s  some orbit 

coasting time. Both burning t ime and range angle achieved during the 

powered phase a r e  dependent on the launch vehicle characteristics. It 

will be shown that these parameters  only have a small  influence on the 

phasing requirements necessary to  establish a given station longitude. 

When the appropriate node of the low altitude parking orbit is 

reached, the second burn commences, and the vehicle is transferred to  

a Hohmann path having an apogee altitude which is coincident with the 

synchronous orbit altitude. The characteristic velocity required to  perform 

this maneuver is 8069 f t /sec,  assuming no change t o  the orbit plane incli- 
nation. (1) 

A high altitude node (1st apogee) is attained at t ime t2 given by: 
P,- 

H 
2 t2 = tl  + 

where 

= period of the 

At this instant, the satellite 

pH Hohmann orbit, 10.5 hours 

longitude ( X )is given by 

*E t2)  X =(i+j)T-(GHA + 
0 

where 

"E = rotational velocity of the earth 

GHA = Greenwich hour angle at launch measured from the 
0 

first descending node. 

The right ascension between the descending node and ETR at launch 

is independent of booster characteristics. This angle is dependent on launch 

azimuth only. F o r  a due east launch, the right ascension is essentially -90'; 

- 

(1) Table 5.4-1 of subsection 5 . 4  summarizes the velocity requirements 
associated with orbit plane changes from 0 to 10 degrees 

I 
I 
8 
8 
8 
8 
u 
1 
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hence 

0 GHA =-go- XETR = -9 .5 
0 

Booster burnout conditions (time, t and inertial range angle, R ) 

have only a small  influence on the ability to establish a desired equatorial 

station position when a low altitude parking orbit is employed. 

station position is shifted by the time difference between given boosters 

in transversing a given powered ascent range angle. Consider a nominal 

powered ascent to  orbit specified by a boost t ime (t ) of 0.15 hour and an b 
inertial range angle (R ) of 17. 94'. 

at the 2nd (ascending) node as  for the Agena or  Titan launch vehicles. 

(since P = 1.47 hours): 

b' b 

The final 

Let the Hohmann transfer be initiated b 
Then 

w 
pW 

(72 .06)  + - = 1.18 hour t = 0.15+-- pw 
1 360 2 

and: 

-9. 5 + 15. 03 (6.43) = 87. 2 O  W 3 $ 4 =  2 n -  

Note that the t ime in the Hohmann transfer orbit is 5. 25 hours and 

that X 2 4  is the satellite longitude at injection into a synchronous orbit. If 

burnout were assumed to occur directly over ETR at t ime zero, then t 

would equal 1 , lO hour and X Thus, the phasing require- 

ments essentially do not vary between the launch vehicles under consider- 

ation. 

1 
= 86.0' W. 24 

In the absence of injection e r rors ,  both circularization and orbit 

plane reorientation, a s  desired, are accomplished by the injection maneuver 

at Hohmann apogee altitude. 

itself, but the SLV3A/Agena would require the use of a separate apogee 

injection stage. ) A 6030 f t / s ec  velocity impulse is required to  perform 

this maneuver f o r  the case of a final equatorial orbit. 

applied in the plane of the horizon at an azimuth angle of 52. 7O measured 

(The Titan 3C would provide this impulse 

This impulse is 
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f rom the local direction of motion for this ascent trajectory (departing from 

2nd node of parking orbit with no plane change; injection at 1st  apogee). 

Figure 5.3-2 presents the ground t rack associated with this 

ascent trajectory while Table 5.3-1 summarizes some of its pertinent char-  

acteristics. (2)  

ascent trajectory with a Hohmann t ransfer  initiated at the first (descending) 

node of the low altitude parking orbit. 

ascent trajectory is seen to  be 104 East, while its total maneuver t ime 

is 5.69 hours. 

Data a r e  also presented in this summary table for an 

The final longitude station for this 
0 

F o r  this  lat ter ascent trajectory, if injection into the final syn- 

chronous orbit is delayed until 2nd apogee of the t ransfer  orbit, then the 

injection longitude is shifted to  about 54' Wes t .  

of the 360° range angle transversed by the satellite in its 10.5 hour coast 

in the transfer orbit while the Earth rotates at 15. Oa0/hour for this 

same period, ie, 

This station resul ts  because 

54' West M 104' East  - (15.03) (10. 5 h r )  

0 
= 104OEast - 157.8 = - 53.8 E 

5.3.3 Subsynchronous Injection - High Altitude Parking Orbit 

The ascent trajectory data previously presented has  indicated 

that injection longitudes of about 104' E o r  87' W a r e  available using a 

low altitude parking orbit and a single impulse injection at 1st apogee of 

the transfer orbit. These stations a r e  based on Hohmann t ransfers  being 

initiated at  the first o r  second nodes of the low-altitude parking orbit, 

respectively, following a due East launch from ETR. 

( 2 )  Corresponding velocity data for the cases  where the Centaur vehicle 

is used to  provide orbit plane inclination changes a r e  given in 

Table 5.4-1 of the following subsection. 
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Changes in these injection longitudes fo r  a synchronous, equatorial 

orbit can be  effected by off-East launches (Figure 5. 3 - 3 ) .  This effectively 

shifts the inertial position of the parking orbit nodes with respect t o  Green- 

wich at launch. Only moderate deviations from off-East 

SECOND N O M  
OF 100 NU WOGEE OF K))*IlwI ELLIPTIC ORBIT 

( W E C T W  POINT lNTO.24 HOUR’ 
OR8111.643 HR AFTER L A U K H  

CTION POINT INJECTION INTO IW NU 
PIRKWORBIT 0 IS HOH MAN N 

F E R  O R B I T )  

IO0 150 120 90 60 30 0 30 60 90 120 150 100 

LdllGITUMe DEGREES 
WEST EAST 

Figure 5 . 3 - 2  Earth Track of Ascent Trajectory (2nd Node Departure) 

LAUNCH A Z I M U T H  ANGLE+.rOEGREES 

Figure 5. 3- 3 Injection Station Longitude Variation 
With Off- East  Launch Azimuths 
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launch azimuths (and hence moderate shifts in final longitude stations) can 

be  permitted, however, without incurring excessive characterist ic velocity 

penalties as  illustrated in Figure 5.3-4. 

As noted, the Centaur launch vehicle must initiate the t ransfer  

One orbit at the 1st (descending) node of the low altitude parking orbit. 

method of achieving a favorable longitude station following injection at 1st 

apogee of the transfer orbit is by means of an ascent trajectory incorporating 

a high altitude parking orbit as next described. 

In the high altitude parking orbit method, the desired longitude 

station is established after a Hohmann transfer to an elliptical, equatorial 

parking orbit with apogee at the synchronous orbit altitude. The following 

launch procedure is assumed: 

A 90 degree East launch azimuth is used. 

(Variations from this procedure a r e  discussed later.  ) 

An initial low altitude parking orbit is employed and 

departure f rom this orbit is always at the first node. 

(Direct ascent trajectories into a near-synchronous, ellip- 

tical parking orbit could also be considered. ) 

A Hohmann t ransfer  is effected to  synchronous orbit altitude. 

The satellite is injected into an elliptical, equatorial high 

altitude parking orbit with apogee at synchronous orbit altitude 

using an apogee injection stage (AIS). 

The transfer f rom this parking orbit t o  a circular,  synchronous 

orbit always occurs at the apogee of the parking orbit (af ter  an 

integral number of revolutions in that orbit, which is assumed 

to  have a period less than one sidereal day). 

be  provided by the auxiliary propulsion system of the ATS-4. 

This impulse would 

5 - 1 3  



A V i, INCREASED CHARACTERISTIC VELOCITY 
REWIRED TO REMOVED ADDED z --- .. ORBIT INCLINATION E Avc, INCREASED CHARACTERISTIC VELOCITY 

v) REQUIRED TO COMPENSATE FOR 
Y REDUCED EARTH VELOCITY COMPONENT 

5 SOUTH OF DUE EAST NORTH OF DUE EAST 
LAUNCH AZIMUTH (DEGREES) 

Figure 5.3-4 Effect of Launch Azimuth on Required Increase 
in Characteristic Velocity 
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It is assumed that 

24-hour equatorial orbit is 

the velocity increment required to produce a 

only partially provided at the apogee of the 

Hohmann t ransfer  path. While a high altitude parking orbit with a 

period greater than 24-hours also could be employed, giving r i s e  to 

a westward drift of the satellite, the total characteristic velocity required 

would be higher, which makes this approach less  attractive. 

The high altitude, elliptical parking orbit has its apogee at the 

altitude of the 24-hour orbit and its perigee at some lower altitude between 

the low altitude parking orbit and the 24-hour orbit. The limiting periods 

of the high altitude parking ellipse a re  the period of the Hohmann transfer 

orbit (10. 5 hours) and the period of the 24-hour orbit (one sidereal day). 

Earth longitude shifts of the vehicle a re  eastward, relative to the initial 

longitude of the apogee point of the Hohmann orbit, during each revoluticn 

i:: t h e  high altitude parking orbit. 

Figure 5.3-5 depicts the eastward longitude shifts per  revolution 

( b  X 
velocity increment ( A  V 

also is given a s  a function of P 

the vehicle, when it next reaches apogee of this orbit ( A  ) also is given. 

in the parking orbit as  a function of the orbit period (P ). The H 
) that must be provided to circularize this orbit 

C 

Additionally, the initial longitude of H' 

0 

With the high altitude parking orbit method being discussed, trans- 

fe r  to the final synchronous orbit, again, is effected only at apogee of the 

parking orbit (that is, only after a n  integral number of revolutions in the 

parking orbit). 

parking orbit to achieve a specified longitude and again only makes 

discrete longitude stations available with any given parking orbit. This 

situation is shown in Figures 5.3-6 which shows the satellite trajectory 

ground tracks.  

is assumed, corresponding to a synchronous velocity deficiency, A V 

This can involve extended waiting in  the high altitude 

A high altitude parking orbit period of 0.945 sidereal day 

of 
C' 
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200 feet per second. Approximately 8 days a r e  required to  reach a desired 

longitude station of about 100 W. 

used to  add flexibility and permit intermediate longitude stations to  be 

realized in the final, synchronous orbit with this given parking orbit. 

0 Variations in launch azimuth could be 

It is noted that, for this method of injection longitude control, the 

final impulse, A V  

synchronous speed is assumed to be supplied by an auxiliary thrust device 

in the spacecraft. The launch vehicle would not then be required to  function 

during the waiting period in the high altitude parking orbit. 

maximum mission t ime would be 5.69 hours, assuming that a first nodal 

departure from the initial low altitude parking orbit was used. 

required to bring the spacecraft to the circular, 
C' 

Therefore, its 

5.3.4 Recommended Centaur Ascent Trajectory 

Figure 5.3-7 presents ground tracks of the ascent trajectories 

studied for the SLV3C/Centaur. 

at a synchronous orbit injection station near the continental USA a r e  

shown. 

and, (2 )  injecting at the first apogee with a synchronous orbit velocity 

deficiency of 200 f t /sec which causes the satellite to  drift eastward until 

the desired final orbit station is reached. 

because the injection station is reached in about 16 hours a s  against about 

a week's delay for the latter. It may be desirable to somewhat "over-inject" 

for the preferred second apogee case in order to  cause the satellite to drift  

a bit westward for a more  favorable synchronous orbit station relative to  

the Rosman and Mojave ground stations. 

The two optional techniques for arriving 

They are:  (1) injecting at the second apogee of the t ransfer  orbit 

The former approach is preferred 

F o r  the reference ATS-4 concept using a spin-stabilized, Thiokol 

TE 364-3 solid rocket motor a s  an apogee injection stage (AIS),the Centaur 

would provide a 7 .6  

orbit. 

vehicle would then rotate (yaw) in essentially the local horizontal plane SO 

0 plane change at its second burn, initiating the t ransfer  

The ground track reflects this assumed plane change. The Centaur 
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a s  to orient the thrust vector of the AIS in the required direction for the 

apogee injection impulse. 

about 1 RPM, at which point the spacecraft is separated and spun-up to  

about 60 RPM. During this process and throughout the transfer orbit, 

the pre-orbital spin control system acts t o  preserve the desired 

inertial orientation of the spin axis. 

The Centaur may then be caused to spin to 

Also shown on Figure 5 .3 -7  is a plot of the magnitude of the 

corresponding space angle (e) between the satellite spin axis and the 

instantaneous local vertical vector for the recommended second apogee 

injection case. It can be seen that this angle varies from a value of 90' 

at the nodal crossing down to  a minimum value of about 45 

anomoly of 90' in the t ransfer  orbit and up to  a maximum value of about 

135' at a t rue  anomoly of 270'. 

0 at a t rue  

With the recommended ATS-4 configuration, the solar paddles 

a r e  folded during the launch phase so as  to  permit the generation of solar 

power if a reasonably large angle can be preserved between the satellite 

spin axis and the sun vector. Hence, a study has been conducted of the 

preferred t ime of day for injection into the synchronous orbit (relative to  

the associated longitude subpoint) based on launch dates throughout the year. 

Fo r  the reference ATS-4 concept, using a spin stabilized TE 364-3 

as the AIS, the Centaur is used to provide a 7.6' orbit inclination change for 

the transfer orbit. Hence the apogee injection velocity impulse must be 

directed downward (toward the South Pole) at  an angle of about 20' relative 

to  the equatorial plane, to yield a synchronous equatorial orbit. 

As depicted in Figure 5.3-8, by injecting at sunset into the synchron- 

ous orbit for  a winter launch date (and at sunrise for a summer launch date) 

the angle between the spin axis and the sun vector is most favorable, up to  

a maximum value of 44O. (Acquisition of the nominal earth-pointing attitude 
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by the stabilization and control system is also facilitated by a sunrise or 

sunset injection into the final synchronous orbit. ) At an equinox condition, 

either a sunrise or sunset injection can be employed, and the relative 

incidence angle can be as low as 20 degrees. 
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5.4 ORBIT PAYLOADS 

5.4.1 General 

Payload weight and volume have been treated a s  system parameters 

rather than fixed requirements. 

minimum weight -volume capabilities of the SLV3A/Agena with several  

different Apogee Injection Stages (AIS), through various combinations of 

the SLV3C/ Centaur with different shrouds and AIS'S, through the Titan 

IIIC with shroud modifications to increase its payload volume capabilities. 

Thus, the studies have ranged from the 

5.4.2 SLV3AIAgena and SLVSC/Centaur 

Analysis Procedure - - In calculating the orbit payload capabilities 

for the SLV3A/Agena and SLV3C/Centaur, the basic reference data w e r e  

the payload-to-synchronous-apogee weights provided by the NASA, 2300 

and 4000 pounds, respectively. The procedure used to determine the final 

orbit payload in the desired synchronous (24-hour) equatorial orbit w a s  a s  

follows: 

The nominal payload-to-synchronous-apogee (W w a s  f i rs t  SAN 
reduced for those cases where a larger shroud was employed on the Centaur. 

Fo r  these calculations, the weight increase of the Surveyor shroud per  

inch of extension was taken a s  5.4 pounds/inch (as  specified by the NASA) 

and the change in the W 

as 1 /13 ( a s  specified by the vehicle contractor). 

per pound change in the shroud weight (AWs was taken SA 

The nominal payload to synchronous apogee w a s  also reduced for 

those cases  where the Centaur vehicle was  employed to effect an orbit 

plane change at  the initiation of the transfer orbit. The associated change 

per  footlsec. of additional AV required of the Centaur w a s  indi- in W~~~ 
cated to be 0.632 pound per foot/sec. by the vehicle contractor. 

The modified payload-to-synchronous-apogee (W ) as thus ob- SA 
tained w a s  then reduced by the weight of the attitude control expendables 

during the t ransfer  orbit (W ). For  the case of the 3-axis stabilized 
EXC 
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Burner I1 Apogee Injection Stage (AIS) with only 5.25 hours (1 12 revolution) 

in the transfer orbit, this weight was taken as 5 lbs. (For the cases where 

a second apogee injection w a s  employed, with an associated 15.75 hour 

coast time in the transfer orbit, then a final orbit payload weight reduction 

of 100 lbe. was assumed based on data supplied by the Burner I1 contractor, 

Reference 5-1.) 

For the spin-stabilized AIS'S, the control expendable weights were 

taken a61 35 lbs., including spin-up and control for up to 15.75 hours in the 
(* 1 transfer orbit . 

Further reducing WSA by the weight of the adaptor mating the launch 

vehicle to AISIATS-4 (WA), the start-burn weight (WsB) for the apogee in- 

jection maneuver was obtained. The end-burn weight (WEB) was then 

calculated using the standard formula: 

AV - -  WSB In- - 
W~~ %P 

where: 

AV = 

g = acceleration of gravity 

characteristic velocity required of the AIS to achieve the 
synchronous equatorial orbit 

= specific impulse of the AIS ISP 

The end-burn weight (WEB) was then reduced by the weights of the 

expended rocket motor inert8 of the AIS (W 
pendablee (W 
the AIS to ATS-4 spacecraft adaptor (WA), and the empty weight of the 

AIS (WE). In this way, the final synchronous equatorial payload weight 

the attitude control ex- 
EXR 

including despin elements for the spin-stabilized AIS'S), EXc' 

(W ) w a s  obtained. PL 

(*) Later control analyzes revealed these weights to be conservative; con- 

trol  expendable weights could be as low as 10 pounds. 
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b 

in PL' Orbit Plane Change by Centaur - In order to  maximize W 

some cases  the Centaur w a s  employed to provide an orbit plane inclination 

reduction ( A i  ) at  injection into the transfer orbit. 

as a function of A i  

provided by the Centaur (AV ), the deviation of this AVc value from the 

nominal value for A i  = 0 (AAV ), the associated change in synchronous 
C C 

apogee payload (AW ), the residual inclination of the transfer orbit which 

must be removed by the AIS based on an initial inclination of 28.5'  for an 

Eastward launch from ETR (Ai 

of the AIS to yield a synchronous, equatorial orbit (AVAIs), and the related 

start-burn to end-burn weight ratio, (W 

Table 5.4-1 corresponds to  the case where the ATS-4 is injected with a 

velocity deficiency from synchronous speed of 200 f t /sec.  

Table 5.4-1 summarizes 
C 

the associated characteristic velocity which must be 
C' 

C 

SA 

), the characteristic velocity thus required AIS 

/WEB). The bottom half of SB 

The accompanying vector diagrams depict how the AV values were 

calculated for the transfer orbit and the apogee maneuvers for the syn- 

chronous injection case. The start-burn velocities (V ) and end-burn SB 
velocities (V  ) a r e  shown for each of these maneuvers. EB 

Transfer Orbit 

so 

VsB =25,570 

AvC 

Apogee 

A A v ~ ~ ~  VsB = 5, 232 

\J 
VEB = 10,090 

Maneuver Velocity Vector Diagrams 

In considering use of the TE 364-3 motor (with i ts  maximum pro- 

pulsion loading of 1440 lbs. ) for  either the Burner I1 o r  spin-stabilized 

AIS'S, i t  was established that,by using the Centaur to provide some of the 
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TABLE 5.4-1. TRANSFER ORBIT AND APOGEE MANEUVER DATA 

Aic AvC AAVc AWSA 
(ft. /sec. 1 (ft. /sec. ) =.632AAV (deg . )  ( f t . / sec . )  

( lbs . )  
(deg. 1 

S Y N C H R O N O U S  I N J E C T I O N  

I. 9087 0 8069 0 0 28. 5 6030 

25. 5 5820 1.8661 3 8216 147 95 

4 8319 250 160 24. 5 5753 1.8527 

6 8637 568 3 60 22.5 5624 1.8273 

8 9044 975 615 20.5 5503 1.8057 

10 95 34 1465 925 18.5 5390 1.7820 

~ 

S U B S Y N C H R O N O U S  I N J E C T I O N  (Speed Deficiency = -200 f t / sec)  

0 80 69 0 0 28.5 5854 1.873 

6O 8637 568 3 60 22.5 5430 1. 790 

8' 9044 975 615 20.5 5320 1.770 
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required cancellation of the initial orbit inclination of 28.5" , the final orbit 

payload (WpL) could be increased. 

In order to determine the optimum value for the inclination change 

to be provided by the Centaur ( A i  ), plots w e r e  obtained of WpL and AIS 

propellant weight (W,) as a function of A i  using the indicated analyses 

procedure and the data of Table 5.4-1. These plots are presented in 

Figures 5.4-1 and 5.4-2 for the SLV 3C/Centaur/Burner II-027B and the 

SLV 3C/Centaur/Spin-Stabilized TE 364-3, respectively. (These and all 

subsequent Centaur cases assume the use of a 10 ft. extended Surveyor 

Shroud a s  required by payload volume considerations. ) From Figure 

5.4-1 (Burner I1 case), i t  can be seen that a value for A i  

ponds to the maximum realizable propellant loading of 1440 lbs, 

A i  value, a W of 1365 lbs. is achieved. Figure 5.4-2 for the spin- 

stabilized TE 364-3 case correspondingly indicates a A i  of 7.6" and a 

W S L  of 1615 lbs. Reducing WCL by 10 pounds, the preliminary weight 

estimate for despin elements, the final payload weight (WpL) is 1605 

pounds. 

C 

CJ  

of 7.7"  cor res -  

For  this 
C 

C P L  

C 

Orbit Payload Data -- A summary of the orbit payload data obtained 

by the analysis procedure just presented is given in Table 5.4-2. The 

current Burner I1 with an extended coast capability (BII-025B) is con- 

sidered as  an AIS with the SLV3A/Agena, as is a spin-stabilized AIS 

using the same rocket motor, the TE 364-2. 

the TE 364-3, and the extended motor, the TE 364-4, are considered 

for the SLV 3C/Centaur, both a s  incorporated in Burner I1 AIS'S and in 

spin-stabilized AIS'S. Also indicated a r e  the data for Centaur cases 

where the ATS-4 is under-injected with a final velocity deficiency from 

synchronous speed of 200 ft lsec.  

weight items is the same as that presented in the preceding paragraphs. 

The advanced Delta motor, 

The notation for the various intermediate 

It can be seen that the SLV 3A/Agena payload weight for the BII-025B 

is 730 lbs. and for the spin-stabilized TE 364-2 is 965 lbs. Since these 
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payloads (and associated shroud volume constraints) were found incompatible 

with those required to  meet mission objectives, the SLV 3A/Agena w a s  

dropped from further consideration a s  a launch vehicle for the ATS-4. 

5.4.3 Titan IIIC 

Based upon data obtained from the vehicle contractor (Reference 

5.4), the Titan IIIC payload capability in  a synchronous, equatorial orbit 

is 2100 lbs. based upon use of a standard shroud and a nominal ascent 

trajectory. This assumes as Eastward launch from ETR, that the t ransfer  

orbit is initiated a t  the f i rs t  or second node of the parking orbit, and that 

final injection occurs at f i rs t  apogee of the t ransfer  orbit. 

The additional weight associated with a modified OAO shroud to meet 

The factor relating decrement in ATS-4 volume requirements is 1400 lbs. 

payload weight to increase in shroud weight (AW ) is 0.06. Hence, the 

final synchronous payload would be reduced by 85 lbs. with the use of a 

modified OAO shroud. 

S 

In addition, an adaptor section weighing 125 lbs. would be required 

to mate the OAO shroud with the Titan IIIC transtage. Therefore, the final 

synchronous orbit payload capability (W 

5.4.4 Payload Data Summary 

is reduced to 1865 lbs. PL 

Table 5.4-3 presents a summary of the final orbit payload capabilities 

of the launch vehicles under consideration, including the appropriate shrouds 

8 
1 

I 

and AIS'S. For  the Centaur vehicle, the payload weights associated with under- 

injection (AV = -200 f t /sec)  a t  first apogee of the parking orbit a r e  in- 

dicated, as well as payload weights for synchronous injection a t  2nd apogee 

of the transfer orbit. 

n A s  previously noted, for the recommended SLV 3C/Centaur/Spin- 

Stabilized TE 364-3, the orbital payload weight capability is 1605 pounds. 

For the corresponding SLV 3C/Centaur/BII-O27B (same rocket motor fo r  

the AIS) the payload weight for 2nd apogee injection is 1265 pounds. 

represents a 100 pound reduction from the 1s t  apogee payload weight a s  

previous ly indicated. 

This 
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5 . 5  

5 . 5 . 1  

ORBIT INJECTION ERRORS 

E r r o r  Values 

Because of guidance inaccuracies inherent in the various phases of 

the ascent and orbit injection maneuvers, the final orbit w i l l  deviate from 

the desired synchronous, circular, equatorial orbit. This subsection de - 
scribes the estimates that were obtained of the three sigma (a) values for 

the significant orbit element errors,  how these e r ro r s  affect the deviations 

in  satellite subpoint latitude and longitude (the quantities of greatest interest 

from a mission standpoint) and the velocity impulse requirements associated 

with correcting these errors.  

One error  of particular concern in the transfer orbit was the possible 

lowering of the second perigee altitude when final injection was delayed un- 

til second apogee. It w a s  established that when the Centaur w a s  used to 

initiate the transfer orbit from a parking orbit altitude of 100 n-mi., then 

a 3 sigma minimum value for the perigee altitude during the second re- 

volution in the transfer orbit is 95 n-mi. 

effect was corroborated with the vehicle contractor. 

This fully acceptable orbit e r ro r  

The orbit element e r ro r s  of concern for the final, synchronous 

orbit a r e  those which have a dominant effect on variations in the satellite 

subpoint latitude and longitude; these element e r ro r s  include orbit inclination, 

eccentricity and period errors .  

Because of the general nature of this ATS-4 mission investigation, 

extensive study efforts were not expended to obtain a precise definition 

of expected orbit element e r r o r  values. 

of these e r rors  a re  required to define an acceptable guidance approach 

for their correction and to establish the associated, component velocity 

impulse requirements for the auxiliary propulsion system. 

velocity impulses a re  also needed to meet station keeping and repositioning 

requirements. ) 

Only the general magnitudes 

(Comparable 

Various sets of e r ro r  data were analyzed in order to arrive at 
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'I 
reasonable estimates for final orbit element e r ro r s .  

included the 3 launch vehicles under consideration; the SLV 3A/Agena, the 

SLV 3C/Centaur and the Titan 3C, with both Burner I1 and spin-stabilized 

AIS'S being investigated for the Agena and Centaur launch vehicles. 

The cases  studied 

Table 5.5-1 summarizes the 3 sigma values for final orbit element 

e r r o r s  thus obtained from the various data sources and indicates the design 

values chosen for the ATS-4 mission study. 

5.5.2 Associated Latitude -Longitude Deviations 

As noted, the aspect of the orbit element e r r o r s  of greatest 

concern is the associated variation in satellite subpoint latitude (A@) and 

longitude (Ah). With regard to eccentricity e r r o r  (e), the approximate 

expression for  the relationship between e and AX can be obtained by f i rs t  

expressing the true anomaly, v (See Figure 5.5-1) a s  a power ser ies  in 

the mean anomoly, M. (The satellite is assumed to be initially injected 

near the line of apsides of its final orbit. ) 

v = M + 2e s i n M + ( 5 / 4 )  e sin 2M + ... 2 

Therefore; AX = Y - &2e sin M = 2e s i n q  (t-T) 

Where: q = mean angular motion 

T = time of perigee passage 

Hence, AXmax (degrees)= IL- (57.3) 2e = f 115e, with a daily oscillation 

between these extreme values. 

far removed from the line of apsides, then the 

0 to 230e o r  0 to -230e. 

Should the satellite be injected at positions 

values may range from 

A s  an example of the realizable values for  longitude deviations 

(AX), the reference launch vehicle -AIS (SLVSC/Centaur/Spin-Stabilized 

AIS) is considered. F o r  the 3 sigma value of 0.003 for e a s  indicated in 

Table 5.5-1, the AX values could oscillate daily between f 3.5 degrees, 

o r  0 to +7.0 degrees, o r  0 to -7.0 degrees depending on the satellite injection 
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Z 

SATELLITE 

EQUATORIAL PLAN+_ L/-W 

F =  CENTER OF EARTH v = TRUE ANOMALY 
a = SEMIMAJOR AXIS 
e = ECCENTRICITY = C/a 
d = ASCENDING NODE 
zl = LONGITUDE OF THE SATEL LITE 

o = ARGUMENT OF PERIGEE SATELLITE 
u = ARGUMENT OF LATITUDE=v+ w A B =  LINE OF NODES 

i = INCLINATION OF THE ORBIT PLANE 

7 = RADIUS VECTOR TO THE 
TO THE EQUATORIAL PLANE 

ASCENDING NODE V ‘ORBITAL VELOCITY OF THE 

Figure 5. 5 - 1  Orbital  Geometry and Definitions of Symbols 
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point relative to the line of apsides of i t s  final orbit. 

of this magnitude would be excessive based on mission considerations; and, 

hence, orbit eccentricity must be corrected to relatively low levels. 

The period e r r o r  is even more critical as regards the associated 

Longitude oscillations 

longitude deviations. 

( 7 ;  of aLout 360 degreeslday, a period e r r o r  of 1 minute would result in an 

average lorigitlide drift rate relative to the Earth (Ai) given by Ax = A s  = 

- For the case of the reference launch vehicle -- 
zZIS configuration, with an indicated 3 Q period e r r o r  o f f  45 min., the 

initial longitude drift rate could thus be as high a s  1 1 . 3  deglday. 

to prevent excessive off-station drift, this initial period e r r o r  must be 

corrected as soon as possible after orbit injection. 

Thus, since the satellite has a mean angular motion 

- 

7 5 0  
= 0 . 2 5  deglday. (24  j 0  

In order 

An orbit inclination e r r o r  (i) would cause a daily> periodic oscillation 

in latitude (AO), with A 0  values equal to f i. Thus, for the reference 

case with a 2nd apogee injection, the A@ 

Oscillations of this magnitude would not necessarily be excessive from a 

mission experiment standpoint. However, velocity impulse requirements 

fo r  correcting orbit injection e r r o r s  have been predicated upon compensating 

the initial inclination e r r o r  as wel l .  

max 
values would be f 1.08 degrees. max 

This wi l l  facilitate demonstration of 

the specified North-South station keeping capability. However, since such 

a capability can be demonstrated even in the presence of initial inclination 

e r rors ,  the elimination of guidance maneuvers for inclination e r r o r  cor-  

rection (with a resultant reduction in impulse requirements for the auxiliary 

propulsion system) should be considered. 

5 . 5 . 3  Associated Corrective Velocity Impulse Requirements 

The chosen 3 sigma design values for the 3 orbit element e r r o r s  

under consideration were next related to the velocity impulses required to 

correct them. 

impulses (AV) to the orbit element e r r o r s  are given by: 

The formulas relating the associated corrective velocity 
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0 In-plane (IP) E r r o r s  

(ftlsec) = 2.36 A P  ( m i d  AV*P Period error: 

Eccentricity error: AV (ft /sec) = 5045e e 

Out-of-plane (OP) Error  

Inclination e r ror :  AV. (ft /sec) = 176 Ai  (deg) 
1 

Table 5.5-2 summarizes the associated corrective velocity impulse 

values for the various e r r o r  cases of interest. In establishing the final total 

value for AV i t  w a s  assumed that the eccentricity and period e r r o r  would 

be corrected in concert to minimize the required AV. Hence AV 

a s  the upper bound of the AV and AV values. Independent correction 

of the out-of-plane e r r o r  is assumed, s o  that AVOp is taken equal to AV.. 
The three - u values for  V 

configuration (SLV3C/Centaur/Spin Stabilized TE364-3 with 2nd apogee 

injection) a r e  indicated to  be 150 ft /sec and 195 ft /sec,  respectively, 

IP' 
is taken IP 

e A P  

1 
and V 

1P OP for the reference launch vehicle - AIS 
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5.  6 ORBIT PERTURBATIONS 

5 . 6 .  1 Gener a1 

The ATS-4 is to be established in  a synchronous equatorial orbit. 

For the purposes of the following discussion, it is assumed to be injected 

near a 90 

tive to the earth is limited to two-body mechanics. Inclusion of noncentral 

and/or  non-Newtonian forces cause the satellite to drift from i t s  "ideal 

position". 

station keeping propellant and guidance requirements. 

0 W longitude station. The concept of a "stationary position" rela- 

Knowledge of satellite deviations becomes essential for defining 

The more important perturbation influences relative to the ATS-4 

mission therefore a r e  discussed. 

perturbations a re  included in Subsection 5 . 6 .  2 while perturbations resulting 

from the ear th 's  equatorial ellipticity a r e  discussed in Subsection 5. 6. 3. 

Earth oblateness and extraterrestr ia l  

5.  6 .  2 Earth Oblateness and Extraterrestrial  Perturbations 

General - The perturbative influences due to earth oblateness, 

lunar- solar gravitational forces, and solar radiation pressure forces  were 

developed in studies of synchronous meteorological satellite system problems 

(Reference 5-  5).  

(References 5-6  to 5- 13) and verified by special perturbation techniques 

(References 5-  14 to 5- 17). 

winds, interplanetary dust, solar reradiation from the earth, and electro- 

static and magnetic drag may be neglected, since these forces  a r e  many 

orders  of magnitude less than the perturbations mentioned above. 

These results were based on general perturbation theory 

Orbital perturbation forces ascribed to solar 

Guidance system limitations preclude the achievement of an exact 

circular orbit. Hence, for the initial perturbation studies under discussion, 

an  initial orbit eccentricity of 0. 005 w a s  assumed. (4) The initial location of 

4. 
would have no significant effect on the subsequent perturbation analysis results. 

An increase in  initial eccentricity to the maximum reference value, 0.030, 
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the argument 

osculation of 

of perigee (0) has a moderate influence on the maximum 

the elements. This effect was  considered in determining the 

perturbations of the orbital elements of concern for the ATS-4 mission, 

namely semimajor axis, eccentricity, and inclination. 

11  ( I  Semimajor Axis - The semimajor axis a is the most crucial 

element with regard to longitude drift. 

gravitational perturbations cannot produce a secular change in  a semimajor 

axis. Also, to the accuracy of the subject analysis, A a experiences no long 

period motion from the aforementioned gravitation sources. Solar radiation 

pressure forces, however, induce a semimajor axis change each time the 

satellite enters the shadow. 

for the most critical perigee orientation of an assumed 0. 005 eccentric orbit, 

amounts to about 70 f t /year  Aa reduction. 

perturbations can be safely neglected. 

Solar, lunar, or earth oblateness 

This change, based on 78 hours of shadow time 

Accordingly, secular Aa (5) 

Short period perturbations due to lunar- solar gravitational effects 

a r e  shown in Figure 5. 6- 1 for two moon-sun-satellite initial configurations. 

A 12 /y r  steady easterly subsatellite drift occurs when the sun, moon, and 

satellite a r e  all initially aligned along a common radius. 

0 

Altering the initial configuration (sun and moon located along a 
0 0 common radius and positioned 90 from the satel1ite;u = -90 ; gs =,gmo = 0; 

0 
= 0) a l ters  the osculating level. 

It is emphasized that relative drift, ascribed to Aa,  can be nullified 

- 
'm - 's 

completely by injecting the satellite a t  the "correct altitude" regardless of 

sun-moon- satellite orientation or the earth 's  polar shape. Specifically, once 

the correct mean motion is established, there will  be no secular drift. 

Eccentricity - The earth 's  oblateness contribution to long-period 

eccentricity perturbations is approximately two orders  of magnitude less  than 

- 6  2 f t / sec  . 5. Based on a disturbing acceleration of 1. 6 x 10 
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perturbations arising from other sources. 

dominant perturbing influence on eccentricity. Nevertheless , the A e  

perturbations caused by the foregoing effects over the course of a year will  

be much smaller than the possible residual eccentricity following injection 

e r r o r  correction. 

Solar pressure forces exert the 

Inclination - Inclination excursions result primarily from lunar- 

solar gravitational accelerations. These excursions were computed from 

the planetary equations (Reference 5- 9) using Musen's disturbing function 

(Reference 5- 6) and subsequently were corroborated by special perturbation 

techniques (References 5- 16 and 5-  17). 

The accumulation of inclination perturbations after one year is 
0 small, about 0. 75 , a s  shown in Figure 5. 6-2. Nevertheless, this causes a 

gradual expansion in the latitude deviations from the ideal subsatellite position. 

The "apparent secular growth" i n  inclination is attributed to long period 

perturbations dependent on Zl and w . 
a maximum inclination change of 6.5 

mately 54 years. 

5.6. 3 

e 0 This long period contribution produces 

and has an associated period of approx- 0 

Terres t r ia l  Perturbations - Equatorial Ellipticity 

Longitude station keeping requirements for  a 24-hour equatorial 

satellite largely stem from the dominant perturbations induced by the earth 's  

triaxial shape. 

gravitational harmonic, a satellite in an equatorial, circular orbit a t  synchron- 

ous altitude will exhibit pure harmonic motion about the nearest end of the 

earth 's  minor axis. The amplitude of this motion is equal to f A A  , where 

AA 

minor axis ( Am). 

excursions ( A r )  with maximum amplitude occurring at the crossing of the 

minor axis. 

Considering only the associated second order sectorial 

mO 
is equal to the initial satellite longitude (A,) minus the longitude of the 

Simultaneously, the satellite wil l  trace out periodic radial 
mO 
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Figure 5. 6-1 Satellite Semimajor Axis Perturbation 

3 

Figure 5. 6- 2 Satellite Inclination Perturbation 
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An approximate relationship between radial excursion (Ar, measured 

i n  earth radius) and satellite longitudinal excurisions measured from the minor 

axis (A A ) is given by (Reference 5-16): m 

A r  = 4 J';) sin A 
mO 

m 

mO 

sin2 A X  

sin2 A X  
1 -  

where 

J = coefficient of the second sectorial harmonic of the 
earth 's  gravitational potential function 

Reference 5- 15 indicates that J = -2.32 x and X = 127. 5 m 
degrees west. Based on these data, Figure 5.6-3 presents the expected 

radial and longitudinal excursions for a satellite injected at 90 W longitude 0 

0 (A = 37. 5 ). In the absence of injection e r r o r s  the satellite initially 

moves toward the minor axis a t  longitude 127.5 W and experiences an increase 

in  radial displacement. 

1. 11 years, the satellite is displaced about 75OW from the desired subsatellite 

station. 

m0 0 

The period of this osciallation is 2. 22 years.  After 

(2) Table 5. 6 - 1  indicates the range in values for J a s  determined 2 
by various investigators in recent years. 

for the longitude of the equatorial major axis, Q 2  

Also, shown are calculated values 
(2) . 

More recent data on the earth 's  triaxial shape have been derived 

from SYNCOM I1 orbit observations (Reference 5- 18). These data indicate 

that the nearest end of the earth's minor axis, about which a satellite at 90 

degrees west longitude will oscillate, is at  109 *6 degrees west; further, the 

(2) is calculated as -(1. 70 * O .  05) x value of J 

reasonable agreement with those presented in  Table 5.6- 1 as published since 

1963 by Kaula, Izsak, Newton, Kozai and Guier, and represent an adequate 

basis for designing a station keeping system for a 24-hour satellite. 

These data a r e  in 2 
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TABLE 5.6-1 EARTH EQUATORIAL ELLIPTICITY DATA 

6 (2) 
- J2 ( 2 ) x  10 8 2  Investigator 

1. 

2 .  

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Izsak (1961) 

Kaula (1961) 

Kozai (1961) 

Newton (1962) 

Kaula (1963 a) 

Kaula (1963 b) 

Newton (1 963) 

Kozai (1963) 

Izsak (1963) 

Guier (1963) 

5 .35  

1.68 

2. 32 

4 . 0  

3.89 

3.43 

2 .2  

1 . 9 7  

1 . 0 5  

1 .80  

33O w 

37.5O w 
11° w 
22O w 
21.5O w 
l o o  w 
19.5O w 
1 1 . 2 O  w 
10.4O w 

38.5' W 

I 
90° W E S T  

WEST E AS1 
LONGITUDE EXCURSIONAAm QDEG LONG,TUDE 

F R O M  MINOR A X I S  

Figure 5 .  6-3  Long Period Oscillation for a Satell i te Injected 
into a Synchronous Orbit  at 90' W Longitude 

.(J2 = - 2 . 3 2  x 10  ; A X  m, = + 37.5  Degrees)  (2) - 6  
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5. 6.4 Associated Corrective Velocity Impulse Requirements 

In summary, the major orbit perturbation necessitating a North- 

South station keeping operation is the long-period buildup in orbit inclination 

caused by solar-lunar gravitational perturbations. 

year inclination change would require a velocity impulse of about 130 feet/ 

second for i ts  correction. 

The indicated 0. 75 degree / 

The major longitudinal orbit disturbance effect, giving rise to a 

requirement for East- West station keeping, is that associated with the 

Earth's gravitational perturbation caused by i ts  equatorial ellipiticity, i. e. , 

i ts  second sectorial gravitational harmonic. The longitudinal perturbing 

forces associated with this effect must be countered in order to provide 

east-west station keeping. The maximum perturbing accelerations, and 

associated required corrective velocity impulses, will occur at longitude 

stations 45 degrees removed from the earth's minor and major axes. 

on SYNCOM I1 orbit data (Reference 5-18), these longitudes a re  at 154 degrees 

West, 64 degrees West, 26 degrees East and 116 degrees East. For the 

associated J ( 2 )  value of -1. 7 x 10 

velocity required for a year of east-west station keeping above a triaxial 

earth at any of these longitudes is 5. 36 feet/second. 

Based 

-6 , the associated maximum characteristic 2 

Figure 5. 6-4 presents a corresponding plot of the characteristic 

velocity required per year for east-west station keeping a s  a function of the 

synchronous, equatorial longitude station. At a longitude of 90 degrees West, 

the A V  required is seen to be about 3 ft /sec per year. It is noted that these 

required characteristic velocity values may be low by a s  much a s  15 percent 

because of higher order tesseral  harmonics that were neglected in  the reduc- 

tion of SYNCOM I1 orbit data (Reference 5-18). 

Also shown on Figure 5.6-4 fo r  comparison a re  the characteristic 

velocity requirements per year of east-west station keeping based on the 
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earth triaxial gravity data of Reference 5-15 (J (2) = -2. 32 x and 

= - 127.5 degrees). A A V  of about 7 feet/second is indicated to be 
2 

required for one year of station keeping for a satellite located at  90 degrees 

West longitude. 
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5. 7 AUXILIARY PROPULSION SYSTE 

5.7. 1 Velocity Impulse and Thrust Requirements 

Table 5. 7-  1 summarizes the velocity impulse requirements which 

must be satisfied by the auxiliary propulsion system 

this table incorporate the velocity impulse requirements previously given in  

subsection 5. 5 for injection e r r o r  correction and in subsection 5.6 for 

compensation of orbit perturbations. The 120 ft / sec velocity impulse 

indicated for  East- West station keeping and repositioning includes the 

100 f t /sec repositioning capability specified by NASA. 

approximately a 100% margin on the maximum AV value of 10.6 f t / sec  

required fo r  2 years  of East-West station keeping. 

5. 7 - 1  is a A V  impulse requirement of 200 f t / sec  for final orbit speed 

compensation for those cases  where a subsynchronous injection is considered. 

(APS). The data of 

It also provides 

Also included in  Table 

Initially, thrust levels of from 1 to 5 pounds were considered for 

the APS; a 1-pound level was la ter  specified based on consideration of 

attitude stabilization requirements. 

also considered, ranging from 1 to 5 pound thrusters aligned along the 

satellite Z-axis to several 1 to 5 pound thrusters  aligned t ransverse to the 

Z-axis i. e . ,  along the roll axis (parallel to the direction of motion) and the 

pitch axis (perpendicular to the orbit plane). The final nozzle arrangement 

for  the reference ATS-4 configuration has  two 1-pound thrusters  aligned 

fore-aft along the roll axis and one along the pitch axis (thrusting North). 

Various nozzle configurations were 

5. 7. 2 Initial APS Comparison Study 

Various propulsion systems were studied a s  candidates for the 

APS. The two most promising were a hypergolic bipropellant system, using 

a 50-50 fue l  mixture of hydrazine and UDMH with N 0 a s  the oxidizer, and 

a monopropellant hydrazine system, using the Shell 405 catalyst. 
2 4  

In order to conduct a weight comparison study of these two 
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candidate systems, preliminary total impulse requirements for the APS 

were established. 

Table 5. 7 -  1 and preliminary orbit payload data, the APS total impulse 

requirements given in Table 5. 7 - 2  were calculated for the launch vehicle 

configurations of strongest interest. 

Thus, based upon the velocity impulse requirements of 

Preliminary de signs for hypergolic bipropellant and monopropellant 

hydrazine propulsion systems to meet the three total impulse levels of 

Table 5. 7-2 were established. 

of a single 5-pound thruster aligned along the 2 axis. 

these systems a r e  presented in Table 5. 7-3. 

assumed specific impulse (I 

bipropellant and monopropellant systems, respectively. It is noted that 

nitrogen is used a s  the pressurant for both systems, and that equivalent 

oxidizer and fuel tanks a re  required for the bipropellant system. 

All  of these early APSIS assumed the use 

Summary data for 

Implicit in these data a r e  

) values of 2 7 5  seconds and 2 3 0  seconds for  the 
SP 

The data of Table 5. 7 - 3  indicate that the hypergolic bipropellant 

system has a weight advantage over the monopropellant hydrazine system. 

However, the latter type of APS has been recommended for  the ATS-4 

application because of consideration of such additional factors as :  

0 Long-term reliable operation for  a 2-year mission 

0 Development status 

0 cos t  

0 Safety 

In order to even further improve the simplicity and reliability of 

the monopropellant hydrazine system, a simple blow-down system is pro- 

posed. Thus, the propellant tank pressure wil l  not be regulated; i t  wil l  be 

allowed to decay a s  propellant is expended. While a consequent reduction 

in thrust level will be experienced, no loss  in specific impulse wil l  result. 
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TABLE 5.7-2 PRELIMINARY APS TOTAL IMPULSE REQUIREMENTS 

Launch Vehicle Total Impulse 

(lb - sec)  

SLV3C /Centaur/BII-O27B (2nd apogee) 17 ,100  

SLV3C/Centaur/Spin Stabilized T E  364- 3 (2nd apogee) 27,200 

Titan 3C 19 ,400 
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Status monitoring of tank pressure and temperature wil l  enable the current 

thrust level to be calculated to an accuracy compatible with orbital guidance 

requirements. This is based upon the guidance system concept of using 

ground-initiated on- off thrust commands to execute the required orbital 

maneuvers. 

Figure 5.7-1 presents a schematic of a blow-down, hydrazine 

APS configuration a s  proposed by Hamilton Standard. It is noted that 
squib valves can be actuated on command to shut off the propellant flow 

should a thruster-on type failure occur. Further discussion of system 

development is provided in paragraph 6.4.2. Since a similar propulsion 

approach is recommended for the thrusters for the attitude stabilization 

and control system, system weight economies can be effected through 

the use of common propellant tanks. 
Refined orbit payload data were used to arr ive at  final weight 

Thus, the final payload data of estimates for the recommended APS. 

Table 5.4-3 were combined with the total APS velocity impulse requirements 

given in Table 5. 7- 1, to yield the final total impulse requirements listed in 

Table 5. 7-4. A lower I value of 220 sec, corresponding to the reduced 

(1-pound) thrust levels for the 3 nozzles of the APS, was used to calculate 

the associated fuel weights. 

the various study cases include tank weights, nozzles, plumbing, fuel 

SP 

The total APS weights which a r e  tabulated for 

residuals, etc. 

The "net payload" data of Table 5.7-4 a re  included so a s  to 

provide a more direct comparison of the actual orbit payload capabilities 

associated with the various apogee stages. 

obtained by reducing the nominal payload weights by the APS fuel weights 

required f o r  correcting the maximum anticipated ( 3  a )  orbit injection e r r o r s  

and for compensating the synchronous speed deficiency for the Centaur 1st 

apogee injection cases. 

These payload data were 

It can be seen that despite the greater injection 
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Figure 5.7-1 Blow Down Hydraz ine  APS 
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e r r o r s  associated with the spin- stabilized apogee injection stages, they 

sti l l  provide a "net" payload advantage. 

A breakdown of the indicated APS weight figure of 172 pounds 

for the reference case (SLV 3C/Centaur/Spin Stabilized TE 364-3 with 2nd 

apogee injection) is provided in Table 5. 7-5. 

TABLE 5.7-5 APS WEIGHT BREAKDOWN 
Reference Case 

(Blow -down Monopropellant Hydrazine) 

Item Weight (lbs) 

Fuel  135 

Fuel  Tank 
(Tank diam = 23.5 inches) 

25 

Nozzles (3) 3 

Mi s c e 1 lane ous 
(Valves, tubing, pressurant, 
re 8 i duals ) 

9 

TOTAL 172 
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5.8 ORBITAL GUIDANCE 

5.8.1 General Requirements 

There a r e  a number of separate accuracy requirements imposed 

on the various guidance operations which must be accomplished during the 

ATS-4 mission; including initiation of the thrusting period for the apogee 

injection maneuver, identification and correction of orbit injection e r r o r s ,  

North-South station keeping and East-West station keeping and repositioning. 

In addition, in order  to be able to command the attitude control system to 

provide the proper pitch and roll offset angles for the satellite to point 

at a designated ground station, the ephemeris of the satellite (relative 

to the Earth) must be accurately known. This  includes the requirement 

to identify the daily periodic variations in satellite subpoint latitude and 

longitude, caused by the existing orbit inclination and eccentricity e r r o r s ,  

so that these can be compensated by the SCS during fixed offset pointing mode. 

In order  to suitably res t r ic t  the associated contribution to orbit 

injection e r ro r s ,  it  is required to identify the argument of apogee and the 

instantaneous satellite angular position relative to apogee in the t ransfer  

orbit  to within a central angle accuracy of 0.01 . 
the apogee injection maneuver can  then be commanded from the ground 

comm and-control station. 

0 
Appropriate initiation of 

For the purpose of identifying final orbit injection e r r o r s  so they 

can be corrected, the orbital elements should be measured to  the following 

accuracies  (maximum allowable e r ro r ) :  Period, *O. 025 min; eccentricity, 

0.00005;  inclination, *O. 025 ; right ascension, fO. 025 ; argument of per i -  

gee, fO. 025 ; true anomaly, fO. 025 . Deviations in the orbit elements 

f rom the desired synchronous, 24-hour, c i rcular  equatorial orbit shall be 

corrected to within the following accuracies: Period, fO. 25 min. ( co r re s -  

ponding to a longitude drift ra te  of 0.0625 deglday); eccentricity, 0.0005 

(corresponding to a total periodic daily longitude oscillation of 0.115 ); and 

0 0 

0 0 

0 
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inclination error,  f0. 10 (corresponding to a periodic daily oscillation in 

latitude of fO.lOO). Coarse corrections of the initial period e r r o r  shall be 

initiated within 2 -4  hours after orbit injection so as to prevent excessive 

off-station drift due to the effect of this e r ro r .  

During North-South station keeping, the same inclination measure- 

ment and correction accuracies shall be achieved. 

keeping operations, deviations in the satellite subpoint longitude from i ts  

nominal value (due to longitude drift ra tes  caused by orbit perturbations) of 

up to *lo can be tolerated. Orbit eccentricity shall be kept within 0.001, 

corresponding to a total maximum daily longitude excursion of 0 .23  . 

During East- West station 

0 

5 . 8 . 2  Orbit Injection Error  Correction 

A study has  been conducted to establish the accuracy to which the 

ATS-4 synchronous orbit elements can be determined a s  a function of track 

time after injection, using the ATS-4 stations at Rosman and Mojave. While 

the study assumed an orbital longitude station of 90 West, it  is not expected 

that the results would be substantially different for the reference injection 

longitude of 54 West (second apogee injection with the SLV3C/Centaur/Spin- 

stabilized TE 364-3). 

0 

0 

The final orbit after injection w a s  assumed to be nominally circu- 

lar. The ATS radar  characteristics were taken as described in document 

S2-0000, Appendix A, 5 .0  Ground Stations. This document indicated that 

the ATS radar has the following e r r o r  model: 

Range fl. 5 meters  

Range Rate *. 01 meters / sec  

Elevation fl. 0 milliradian 

Azimuth f l .  0 milliradian 

These e r r o r s  values were considered to be representative of both random 

and bias type e r rors .  
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It w a s  also assumed that the effective data rate is one set of range, 

range-rate, azimuth and elevation measurements per hour. The chosen 

data processing scheme o r  navigation filter w a s  an extended state Kdman 

filter. 

position and velocity states. 

The extended state included the radar  bias te rms  as  well a s  the usual 

The results of the filter e r r o r  analysis were transformed into one 

sigma values for period, inclination and eccentricity measurement e r r o r s  

as  a function of time after injection. 

these analyses. 

Table 5.8-1 presents the results of 

It can be seen that the orbit element measurement accuracies that 

a r e  attainable after four (4) hours of tracking a re  essentially consistent with 

the required measurement accuracies given in the previous subsection. 

Any existing inclination e r ro r  (Ai) in the final orbit wi l l  be corrected 

independently of the in-plane errors ,  using the APS thruster wi th  the North- 

oriented thrust vector (when the ATS-4 is stabilized in the nominal Earth- 

oriented attitude). Positive (negative) inclination e r r o r s  wil l  be removed 

by ground-initiated on-off thrust commands that bracket satellite passage 

through the descending (ascending) node. 

Direct ground control of the proper thrust initiation time and thrust 

termination time for the APS will be based on a calculated current thrust 

level in accordance with received APS status data such as tank pressure and 

temperature. (It is noted that a simple blow-down system is predicated for 

the monopropellant hydrazine APS; hence, i t s  thrust level wi l l  decay a s  the 

system pressure drops with propellant utilization.) 

The satellite's central angle travel in orbit during these corrective 

maneuvers will be restricted to about 10 . 
use of the thrust impulse for correction of the inclination e r ror .  

a maximum satellite weight of 1600 lbs., the 1-lb. thrust level of the APS 

0 This will  ensure most effective 

Assuming 
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T BLE 5 .8-1  SYNCHRONOUS ORBIT MEASUREMENT 
ERRORS VERSUS TIME AFTER INJECTION 

Time 

In je cti on 

Injection plus 1 h r  

Injection plus 2 hrs.  

Injection plus 3 hrs .  

Injection plus 4 hrs .  

Injection plus 5 hrs.  

One Sigma E r r o r  Value 

Period (min. ) I Inclination(dep. ) 

43. 0 

11.1 

. 128 

.015 

.0118 

.0085 

0. 6 

0.575 

0.0196 

0.0127 

0.0116 

0.0102 
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thruster can effect a AV change of about 48 f t /sec 

associated with the indicated angular travel in orbit. 

during the 40 minutes 

A 3 0  value of 195 ft / sec for the required out-of -plane corrective 

velocity impulse AV was given in Table 5.5-2 for  the reference launch 

vehicle-AIS configuration. Hence, as many as  four corrective velocity 

impulses of the 48 f t / s ec  magnitude could be required for correction of the 

initial inclination e r ro r .  

OP 

The in-plane orbit injection e r r o r s  of concern, period e r r o r  A P  

(or equivalently semi-major axis e r ro r  Aa) and eccentricity e r r o r  e, wi l l  be 

corrected in concert to minimize AV requirements. 

West oriented thrusters of the APS wil l  be used to provide appropriate tan- 

gential velocity impulses upon command from the master  ground station. 

To do this, the East- 

The differential changes in the orbital elements of interest (semi- 

major axis (a) and eccentricity (e) caused by small circumferential impul- 

sive velocity corrections, a re  given by: 

2 Aa 2V a c o s y  - = -  
a P V 

where 

y =  flight path angle 

c ) =  true anomaly 

P =  gr  avitational const ant 

The maximum flight path angle ( y )  occurs at a true anomaly given 

by 8 = cos -1 (-e); hence, COSY w 1, since cosy - - d X L 1 .  There- max 
fore  for the nearly circular orbit under consideration, Aa may be further 
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approximated as  

c 

A velocity impulse to correct the semi-major axis error Aa wil l  

alter the eccentricity as follows: 

In order to jointly correct both types of in-planeerrors, i f  the satel- 

lite drifts  Eastward (Aa<O) after injection then a forward corrective velocity 

impulse should be imparted at apogee. A Westward drift (Aa>O) requires a 

braking correction at perigee. If either A a  or Ae should prove to be zero 

following injection, then the use of two appropriate tangential velocity im- 

pulses 12 hours apart wil l  permit correction of one element without affec- 

ting the other. 

By jointly correcting both the period and eccentricity e r rors ,  the 

required in-plane corrective velocity impulse AV is never more than the 

maximum velocity impulse value required to correct eccentricity (AV e ) or 

period e r r o r  (AVAp). A 3 a  value for AVIp of 150 ft /sec,  is given in Table 

5 . 5 - 2  for  the SLV3C/Centaur/Spin-stabilized TE 364-3.  Hence, several 

corrective velocity impulses equivalent to the 48 f t /  sec value previously 

discussed for the out-of-plane e r r o r  case may be required to reduce the in- 

plane injection e r r o r s  to acceptable levels. 

IP  

5 . 8 . 3  Station Keeping and Repositioning 

Based on the orbit perturbation studies previously described, the 

North-South station keeping mode must be designed to correct the long 

period inclination perturbations caused by lunar -solar gravitational effects. 

The East-West station keeping mode is concerned primarily with countering 

the disturbing tangential accelerations caused by the second order, sectorial 

gravitational harmonic associated with the Earth 's  equatorial ellipticity. 
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It w a s  previously indicated that a change in orbit inclination of about 
0 0.75  would occur during the course of a year. Hence, to demonstrate a 

complete North-South station keeping capability for this period, a AV of 

about 130 f t /  sec would be required to compensate the inclination buildup. 

On-off thrust commands initiated near the appropriate orbital node 

b y  

station keeping. 

48 ft /sec,  essentially three such maneuver commands executed every four 

months wi l l  be adequate. 

the master ground station are planned to effect the desired North-South 

Using AV impulses of up to the indicated maximum value of 

In choosing an East-West station keeping or guidance technique for 

maintaining the ATS-4 above a desired longitude station, strong emphasis 

w a s  placed on the following criteria. 

simple to implement and require a minimum of ground track data. A s  has 

been noted, the perturbing accelerations acting on the satellite a r e  very 

small (about 1 . 7  x 10 f t /sec ). Hence, an intermittent, differential mean 

motion guidance concept has been chosen as being simple to implement but 

adequate to meet all requirements. 

The technique should be highly reliable, 

-7 2 

This mean motion correction technique operates basically as follows: 

(It is assumed that a synchronous, circular, equatorial orbit has been 

attained for the desired satellite position. ) 

(1) The disturbing force associated with the equatorial ellipticity 

of Earth causes the satellite to drift Westward relative 

to Earth. 

(2) When this longitude drift (Ax ) is observed to equal the pre- 

selected limit value (Ax = -AA ), the Westward oriented 

thruster of the APS wil l  be activated by ground command. 

(A " LIM 
keeping accuracy requirements. ) 

LIM 

0 value of 1 is compatible with the East-West station 
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(3)  

(4) 

(5) 

This corrective velocity impulse, which is actually a West- 

ward braking impulse, w i l l  increase the mean motion of the 

satellite and cause it to drift Eastward relative to the Earth. 

By properly controlling the magnitude of this impulse, the 

satellite wil l  be caused to drift Eastward to AX = + AXLIM 

before the gravitational perturbing forces stop its relative 

motion and again cause it to drift Westward. 

When the satellite again drifts to i ts  control boundary 

(AA = AXLIM ), another corrective velocity impulse is applied, 

and the sequence is repeated. 

Only one longitude boundary is used to trigger a corrective thrust 

during the subject station keeping mode; this is the boundary toward which 

the terrestr ia l  gravitational disturbing forces  cause the vehicle to drift. 

Because there is a steady disturbing acceleration field, a station keeping 

guidance method based on dual control boundaries on each side of the desired 

longitude station (with possible attendant stability problems) is not required. 

(A modification of this guidance logic could be required if the satellite were 

located near an extension of the equatorial major axis. ) 

As previously indicated in subsection 5.6 of this report (Figure 

5.6-4) a corrective velocity impulse of at most 5 . 4  f t / sec  is required to 

provide one year of East-West station keeping above the most unfavorable 

longitude stations (longitude 64 West is such a location). 

of this velocity impulse every three months, the associated longitude excur- 

sions can be kept within fl 

0 By providing 1 / 4  

0 as desired. 

East-West station repositioning wi l l  be accomplished using ground- 

initiated on-off commands for the East-West thrusters of the APS. Longi- 

tude drift rates of up to 5.35 deg/day can be employed to transfer the satel- 

l i te to a new synchronous longitude station, based on a 100 f t / sec  A V .  
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5.  9 . 2  List of Symbols 

a - - Semimajor axis 

a - - Earth's  mean equatorial radius, 2.0926 x 10 7 feet e 

e 

GHA 

g' 
h 

i 

i' 

m 

P 

Rb 

- - 
m x 

Eccentricity 

Equivalent Greenwich hour angle 

True anomaly of disturbing body 

Altitude 

Inclination 

Relative inclination with respect to plane of 

disturbing body 

Earth-shape constant related to  the second order 

sectorial gravitational harmonic associated with equatorial 

ellipticity 

Mass 

Period 

Range angle 

Satellite orbit radius 

Time 

Impulse time, seconds 

Velocity 

Incremental or impulsive velocity addition 

Flight path angle 

Incremental change 

M e a n  notion 

Longitude 

Minor axis longitude 

= Initial satellite longitude with respect to minor axis m .  AX 
0 
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A A  

m AA 

w 

0 
0 

Longitude excureion 

Satellite longitude excursion measured from 

minor axia 

Mae6 gravitatlonal constant for the earth, 
2 Gm 1.4077 x 10l6 ft3/sec E’ 

Longitude of equatorial major axis 

Satellite true anomaly 

Right ascension of aecendlng node 

Angular vtloclty or argument of perigee 

Angular velocity of earth, 7 . 2 9  x radian/sec 

Subs c r  ipt B 

- - Circularization 
Apogee kick 

C 
K - 
m - - Moon or minor axis of earth equator 

Initial or conatant value 

Sun or  eynchronous value 

Wait orbit 

Synchronous orbit value 

- 

- 0 

- S 
W - 
24 - 

- 
- 
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