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ABSTRACT

The prebuckling state and the stability behaviour of thin-walled
isotropic and orthotropi¢ shells under axisymmetric loads (axial load
and internal pressure) is investigated, applying a nonlinear shell theory
(finite deformations).

At first the unbuckled equilibrium state which is axisymmetric
under the given load is described. The derived system of ordinary non-
linear differential equations is solved by a difference method with
approximation of higher order. For isotropic conical shells, an exact
solution for the linearized system can be obtained (linear bending
theory).

In the second part of this paper the buckling loads are calculated,
The buckling (bifurcation) state is governed by an eigen-value problem,
the eigen-values of which are the buckling loads and the eigen-functions
of which are the additional stresses and deformations. The eigen-
value problem is also solved iteratively by the difference method.

The influence of shell parameters and of an axisymmetric predefor-
mation on the buckling load is discussed. The results are in good
agreement with the experiments, particularly for a conical shell under
axial load and high internal pressure.
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1.1 Introduction

The stressed structures in aviation and rocket construction
consist to a large part of thin-wall isotropic, orthotropic, and rein-
forced shells., Detailed knowledge of the carrying capacity of thin-
wall shells is required if the construction elements are to be designed
as light as possible in favor of a high payload.

The elastic stability behavior of cylinder shells has been intensively
investigated during the last years according to the linear as well as to
the nonlinear theory of stability. For conical shells only buckling loads
have been determined so far according to the linear theory, because the
basic equations describing the stress and deformation state of the coni-
cal shell are more complicated compared with those for the cylinder
shell, These loads have been determined among others by Mushtari
and Sachenkov’?, Schnell®, and Seide’® 2! for the isotropic conical
shell and by Leykolz, Serpico'?, and Singer"”zo’22 for the orthotropic
shell.

By means of the linear theory the qualitative effect of the geometri-
cal characteristics and of the rigidity parameter on the buckling load
can be determined. However, the resulting buckling loads deviate
greatly from the buckling loads obtainzd experimentally, especially in
the case, herein considered, of the conical shell under axial load and
inner pressure, This discrepancy between experiment and theory is
greatly due to the fact that according to the linear theory of stability
the basic state of the stresses of the shell--that is the state of the shell
before reaching the critical load--is replaced with the state of diaphragm
stress, which neither satisfies the compatibility condition nor all
boundary conditions (no circumferential expansion).

In the following discussion, first the basic state of the stresses of
the orthotropic conical shell (with the special case "isotropic') shall
be described, taking into account nonlinear members. The derived
nonlinear differential equations are approximately solved with the dif-
ference method. With the given boundary conditions and for the load
investigated (axial load and inner pressure), the solution is axially
symmetric,

For the linearized basic equations of the isotropic cone describing
the state of the stresses and of the deformation under small loads at
the edge, a general solution in closed form can be stated.



‘The second part of the discussion deals with the determination of
the buckling loads. After exceeding the critical load, the axially
symmetric basic state of the stresses becomes unstable and the shell
buckles into a nonaxially symmetric state of equilibrium. The deter-
mination of the additional stresses and deformations occurring in the
instance of buckling leads to an eigen-value problem, the eigen-value
of which is the critical load. The iterative solution of this eigen-value
problem is obtained by means of the difference method.

If the calculation of the buckling loads is based on the basic state
of the stresses which results from the basic nonlinear equations when
the boundary conditions are completely satisfied, the buckling loads
determined are in good agreement with the experimenté.l values for high
inner pressure, The discrepancy between the buckling loads calculated
for an ideal cone and the experimental buckling values for low inner
pressure (especially for p = 0) is essentially traced to the existence of
prebuckling in the test shells.

In order to be able to investigate the effect of such a predeforma-
tion on the stability, the differential equations of the prebuckled conical
shell are derived and iteratively solved. The applied method of solving
permits us to take into account any arbitrary axially symmetric pre-
buckling.

The investigations described here principally apply also to the
conical shell under outer pressure.

1.2 Glossary of Symbols

ba Width of prebuckling

B(y, ¢o) Differential operator

Ciks Cik Stretching and shearing rigidity parameter
Dk Flexural stiffness and torsional stiffness

E Modulus of elasticity

f, 1, Fin Stress functions

G Modulus of rigidity

h Distance between the equidistant intermediate points
hj Height of the cone

L(y) Differential operator

mA Number of the equidistant intermediate points




ry, r;

S1, S2

WA

Number of bucklings along the generatrix

Section momentum

Edge momentum

Number of bucklings in the direction of circurnference
Section forces

Edge forces

2 2

s
Section force parameter Ng = —%‘Nse
Dimensionless loadparameter Ny = -21\;0

Deformation parameter of the basic state of stresses

oWy S)

qo = ) Qo = qo
ds an Caz

Transversal edge forces

Inner pressure

Dimensionless inner pressure parameter

- _ 1 s} Ca
p Tz p cotZa Dy

Axial load

End radii of the cone

Coordinate along the generatrix

Length of the generatrix to the ends of the cone
Wall thickness of the shell

Local displacement of a point along the generatrix

Local displacement of a point in the direction of
the circumference

Local displacement of a point perpendicular with
respect to the central surface of the shell

Predeformation perpendicular with respect to the
central surface of the shell

Dimensionless coordinate along the generatrix

S
zZ = (p —
nsl



Zo = fn vy
ZA Position of the prebuckling maximum along the
generatrix
a Half-angle of the cone
YsO Shearing of a shell element s d6 ds
€5, €p Stretchings of the central surface of the shell
n

N " sina
e, ) Cir_c_:Emference coordimtes 6 = 6 sin a

mk
k = g
kg, kg, ksp Curvatures of the central surface of the shell
A\ Shell parameter X\ = Sicota

1nGaz

v Poisson's ratio
I Potential energy of the deformed shell

Index ( )¢ for stresses and deformations designates the state of the
basic stresses

Index ( ), designates the additional stresses and deformations
occurring in the instance of buckling.

2. Basic Equations of the Orthotropic Conical Shell

2.1 The Law of Elasticity of the Orthotropic Shell

The geometrical designations used in the investigations are
given in Figure 1, Each point of the central surface of the shell can
be fixed by the distance s and the circumferential angle 8; s and the
angle 6--where 6 = § sin a--represent the polar coordinate system of
the development of the shell, The arrows of the coordinate axes point
in the direction of positive values. Because of the singularities
occurring at the tip of an axially loaded cone only truncated cones are
investigated. The geometrical configuration of a truncated cone is
uniquely determined by a, s;, s2.

The law of elasticity of the orthotropic shell, the main axes of
rigidity of which coincide with the coordinate axes s and 8§, can be

stated in decoupled form for the section forces Ng, Ng, Ngg and for
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a(8)

Figure 1. Dimensions and Designations of the

Truncated Cone

the section momentums Mg, Mg, Mgg utilizing the usual assuu’]rlptionsz?”7
for the investigation of plates and shells. (In Figure 2 the forces and

momentums with positive sign are indicated for an element of the shell.)

Ng Cy Ciz O €s Mg| [P, Dz © kg
Ne 612 (_:22 0 ee and Me Dlz Dzz 0 ke
C Msp 0 0 2D3s |kso

Nse 0 O C33 ‘Ys

(2.1)



/

Figure 2. Section Forces and Section Momentums on an
Element of a Conical Shell

Here ¢ and ¢g representthe expansions of the central surface of the shell
in the direction of the generatrix and in the direction of the circum-
ference., +vygg is the shear of one element of the shell s d6 ds (Figure

2). kg and kg are the curvatures; kgg is the torsion of the central sur-
face of the shell. The C;) designates the expansion and shear rigidities,
the D;) the flexural and torsional rigidities.

In the further investigations, the first elasticity equations of (2.1)
are used in inverse form

€s Cn Ciz O Ng
€| - ClZ sz 0 Ne (2- 2)
YSG 0 0 C33 NSB

where the relation between the Eik and the Cjk is given by the following
equations:




= Caz2 = Cn

Cll - 5 ’ CZZ = 2 ’
Cu Ca2-Cy2 Ci1C2a2-Ca2
(2. 3)
- -C - 1
Ciz = 12 al Ca3 =
C11C22 -Cy2 Css

For the isotropic conical shell, the rigidity parameters assume
the values

1 v 1
Cu—czz—ﬁ , sz—--ﬁ ) C33—a
(2. 4)
Et? Et3 Et3
Dy=Dpp=———, Dj2 = — Y, 2Dj3 = ————
12(1-\/2) 12 (1 - v 12 (1 +v)

where t designates the wall thickness, E the modulus of elasticity and
G the modulus of rigidity, and v is Poisson's ratio.

2.2 The Kinematic Relations

The expansions of the central surface of the conical shell
utilizing the essential members of second order in the displacement
derivatives® and taking into account the predeformation can be
expressed by the following relations:

Lo, 1 fowy, wa
s os 2 \as ds 9s '’
c _u—wcota+ 1 av+_l_ 1 _a_\lz
G s s sina 06 2 \s sina 08
+ 1 \2 9w OJwa r (2.5)
(s sina] 280 26 "’

s sina 06 s \s sina 00

).

Here u, v, w designate the local displacements of a point along
the generatrix in direction of the circumference and perpendicularly

LA A S +8_W(_1__8W)
S

€

N 1 (awe aw . 3wa 3

s sin a d6 Os ds

(@3}
Dl

s



with respect to the central surface of the shell (Figure 1). wa ( A -
initial deformation) represents a predeformation of the shell perpen-
dicular with respect to the central surface of the shell in the same
sense of direction as the displacement w.

The dispiacement-expansion relations of the ideal conical shell
(wA = 0) reduce to the familiar equations of the theory of thin plates2
for the case a=90°(s;—r,, sz—r,, dg—dr).

4

Making the transition to the cylinder (a—0, s—w, s sin a—R,
ds—dx) from (2.5), the relations follow which Marguerre1 and Donnell”
have derived for the predeformed cylinder shell.

With Donnell's simplifications’ extended for the conical shell®, for
the curvatures of the central surface of the shell follows

2
kg = 2%
9s?
1 1 z
ke =—-a—-+ 0w L (2.6)

s 0s s sin a 06°

0 1 ow
kse:——_—_
0s (s sin a 8@)
J

By means of the equations of elasticity (2. 1) and the relations (2. 5)
and (2. 6), the section forces Ng, Ng, Ngg and the section momentums
Mg, Mg, Mgp can be expressed with the displacements u, v, w, and
their derivatives, The differential equations from which the displace-
ments u, v, w can be determined can be derived from equilibrium
considerations on the deformed shell element or by means of the
calculus of variations from the energy. In the present discussion the
second way is used.

2.3 The Potential Energy of the Deformed Conical Shell

The total potential energy of a conical shell deformed by edge
loads and inner pressure

I =T, + I+ I + Ty + I (2.7)




is composed of the following contributions: The expansion energy of

the central surface of the shell

62 s2

]11:_;.// {NSES+NGEG+NSQYSG s sin a ds d6 ,

61 s
the bending energy
B2 sz
nzz—;—// {Msks-k Mg kg + 2Mgg kgg!| s sin a ds df ,

61 s

the potential of the edge load at the edges s = constant

62
H3 = —/ {S (ﬁsu + ﬁs@V"'I\_AS aw +I\_/.[Se 1 aw
5 0s ssina 96
1

+ st)} I sin a d6 ,

the potential of the edge load at the edges § = constant

S2
- _ — 1 —
n4=_/:Nev+Nseu+Me—-a—‘f’_ Msei‘l
& ssina 90 0s

and of the potential energy of the inner pressure

S2

0,
H5=f/ pw s sin a ds d8 ,
0

81




ey Qg ., C_)e are the edge loads,

where Ng. . , Mg.

2.4 The Differential Equations of the Stress and Deformation State

2.4.1 Derivation of the Differential Equations

The system of differential equations describing the
state of the stresses and deformation of the orthotropic conical shell
is derived via the potential energy, the first variation § Il of which must
go to zero for all states of equilibrium of the deformed shell. With
(2.5), (2.6), and (2.7) and the substitution (2. 8),

0 =06 sina , (2. 8)

the first variation of the total energy is formed and is arranged accord-
ing to the displacement differentials &u, 6v, &w.

In order to satisfy §II = 0, the double integrals over the surface of
the shell have to vanish individually since u, &v, and 6w are independent
virtual displacements, This leads to the following equilibrium con-

ditions: N

0 0
--é'; (SNS)'*'NB’% Ngg =0

d 0
‘a—e Ne +$ (S NSG) +NSG:0

<+

3 aw , awa\] 2 [1 ow . awall P (2.9
———— [SNS(W"I' as )-‘ -Ne Cota-% [?Ne (ﬁ+—-a_e—)l

-i[Nse (—aﬁ + —aWA) - ai [Nse (aw + aWA\] + o (SMS)

ds 00 a6 0 ds ds | ds®
2 ﬁ(Me) 3_(Mso 32 _
- 5= Mg + =z [ +289(s)+28589 Mse+p.s_o.J

The boundary conditions at the edges s = constant and 6 = constant
are obtained from the single integrals in §IL. For the boundary con-
ditions at the upper ( s = s;) and lower (s = s;) edge of the shell
follows:

10




Bw y 2A) 4y (80, 2ua ]
Mg + s Ng (a + =X +Nse(89 + ae)

0s 0  — =
'g(SMs)'Z%MSO"”'aEMse'st:O or 6w=20 L

— ) (2.10)

Mg = Mg or 6(5‘%)=0
Ng = Ng or 6u =0
Nsgg = ITlse or §v =0 J

For the closed conical shell (0 <6< 27 sina), which is treated here,
the boundary conditions at the edges 6 = constant are replaced with the
periodicity requirement with the period 27 sin a.

In (2. 10) the general static and geometrical boundary conditions of
a conical shell are given for arbitrary edge loads. The further
investigations are restricted to shells under axially symmetric load
(axial load and inner pressure, Figure 3).

' EERBREBRERR

P

Figure 3. The Load of the Conical Shell
Investigated

Corresponding to the test conditions'?, the following necessary

geometrical conditions shall apply to the edges of the shell caused by
the stiff end-disks bordering the shells at the edges s = s; and s = s;
(Figure 4):

11



u-wcota=0.

R

(2.11)

Figure 4., Displacement of the Lower Edge of the Cone

(s = s2) for Constant Radius of the End

For such a conical shell under axially symmetric load, the follow-
ing axially symmetric boundary conditions are obtained at the edges

s = s; and s = s3.

w = const =

cota
Mg =0
or
g
Ng = Ng
or

u @ const

(2b)

(3a)

(3b)

(4)

& (2.12)

-

In order to be able to investigate the effect of the boundary con-
ditions on the buckling load, the condition (2a)--pin-jointed edge--as
well as the condition (2b)--fully restrained edge--is taken into account

12




in the further considerations. The boundary condition (2b) corresponds
to the test conditions'® since the shell has been lap-glued to the end
disks. The system of differential equations (2. 9) with the boundary
condition (2. 12) generally describes the stress and deformation states
of the axially loaded orthotropic conical shell., These are:

1) The state of the shell before buckling--here called basic state
of the stresses.

2) The states of equilibrium at the branching point starting from
which the shell buckles to assume another configuration--the edge load
Ns of the branching point is called critical load or buckling load in the
further investigations.

3) The postbuckling range.

The following considerations are restricted to the determination
of the basic state of the stresses and to the determination of the branch-
ing point, For these states (1 and 2) special forms of the system of
differential equations (2. 9) can be given.

First the state of the shell prior to buckling shall be investigated.

2.4.2 The Differential Equations for the Stress and
Deformation State Prior to Buckling

In the further investigations a predeformation wa(s)
is taken into account which is independent of 6 and includes the special
case wa = 0 (ideal cone).

Considering first the state of the shell for small load (axial load and
inner pressure) it can be assumed that the stresses and deformations
are small of first order. Thus the system of equations (2. 9) is linear-
ized. TFor the system of linear differential equations with the boundary
conditions (2. 12) only one solution exists., -Under the given boundary
conditions (2. 12) the solution is independent of the circumferential
angle 0, it is axially symmetric. For the system of differential equa-
tions of the isotropic conical shell obtained from (2. 9) by linearization,
a solution in closed form is given in Section 3.1 of this paper.

In the following part of the paper, the axially symmetric basic
state of the stresses shall be investigated for large loads as well (e. g.,
in the region of the buckling load). Thus the nonlinear members in the
basic equations--corresponding to equation (2. 9)--are taken into account.
Because of the axial symmetry, all derivatives of the section forces and

13



section momentums and deformations with respect to 6 go to zero.
Thus the system of differential equations (2.9) simplifies

7
d
- d_S— (SNSO) +N60=0 s
d —
d—s S Nseo) + Nseo - 0,
L(z.m

d dwgy  dwa dz
_a-s-[s Ng, (_?1? + ds)] - Ng, cota +H—S—E (s Mso)

d
--a—;- Meo+p-s=0

Y

with the boundary conditions (2.12), The index ( )¢ of the section forces,
section momentums, and displacements designates the basic state of
the stresses,

Nseo =0 and vg =0 (2.14)

respectively,

Due to the axial symmetry of the stresses and deformations, vg
and Ngg, become identically zero. Thus the differential equation
(2.13.2) and the boundary condition (2. 12,4) are satisfied. The two
differential equations (2. 13, 1) and (2. 13. 3) represent the basic equa-
tions of the axially symmetric state of the stresses which in the further
investigations shall be described by the section forces Ng/ and the
displacement wy.

From equation (2. 13, 3), the section force Ng, can be eliminated
by means of (2.13.1). After integrating once from (2. 13. 3) follows

dWo dWA d 1 2
- SNS0 (cot a+—£ +—ds_) +?E(SMSO)_M60 +E Ps + K0: 0,

(2.15)

where K, designates an integration constant still to be determined. As
additional differential equation, the compatibility condition from the law
of elasticity (2.2) is derived by replacing the expansions €go and eg
with the displacements up and wy corresponding to (2.5) and by then
eliminating uy. Taking into account the relationship (2. 13.1) it follows
that

14
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2
d
2 d*N NSo + (Cll - sz) NSQ

2
a
ds S (2. 16)

_ dwyg 1 dwyg dw A
T ds (C"t‘”E ds T Tds ) -

With (2. 1) and (2. 6), Mg, and Mg, in (2. 15) are replaced with the
displacement wo and its derivatives. Then two coupled nonlinear
differential equations for Ng, and wo are obtained in which wqo appears

dw

only in its derivatives with respect to s (‘a‘:;; i9=1, 2, 3) and the

axially symmetric prebuckling wa only in the form dwp /ds,

To reduce the order of the differential equation (2. 15) it is thus
substituted: ‘

dwg _ . dwa _
ds - qO ) dS - qA' (2' 17)

The resulting system of differential equations is further simplified
by the coordinate transformation

Z

(2.18)

A system of two nonlinear coupled differential equations of second order
for qo and Ng  is obtained,

1
-CZZNHSO - 3C22N'So + (Cu - sz) NSO = do (COt at—= do + qA)

2
z 1 z
Dy q'y - D22qo = sie [slez Ng, (cota +qo + qA) ._2_ps,‘;'e2 -Ko] ’

(2.19)

d( )
dz °

where ( )' =

Introducing the dimensionless functions Ny and Qq, the new
parameters (sz, Ci1, Ciz2; D11, Dz, Dyz; sy zg, cot a) essential for
the behavior of the solution of (2. 19) with the boundary conditions (2. 12)
can be combined to six characteristic quantities (Cu/sz, Ci2/C,2,
D22/Dyy, Dy2/D11, 2, )\.). With the substitution

15



1 1 D il
Ng, = — 1N,
slez S
VD C
Qo = —lis—l—ﬁ- Qo \ (2.20)
_ \YDu Cz

system (2. 19) becomes

C 1.
Nlé___l_l. NO— —eZQO ()\ +EQ0+QA)

C
22 (2.21)
D _ —
Q- _5% Qo = e {No (A +Q0+QA)- A2 (pe® +Ko)§ ;
where
N = s) cota |
ansz
, .
— _1 S [CZZ
P =— - S (2. 22)
2 cot Dn

el

Ko lC
0= 22
cot? a an

The solutions Ny and Qg of the system of differential equations
(2.21) must satisfy the boundary conditions (2,12, 1) and (2. 12.2). Due
to the axial symmetry--vy = 0--condition (2,12, 1)-- wg = ug/cot a--
means that the circumferential expansion eg, at the edges z = 0 and
z = zg becomes zero. With the aid of the substitution (2. 17) and (2. 20)
and the coordinate transformation (2. 18), the boundary conditions
(2.12.1) and (2. 12, 2) are expressed by the variables Ny and Qg:

7/
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Cz2 N+ Ci12 Ny =0 (1) W

(this means eg, = 0)

D Qp +D12Qo =0 (2a)
> (2.23)
(pint jointed edge)
or
QO = 0 (Zb) Y,

(fully restrained edge)

From the condition (2. 12.3a) and (2. 12. 3b) respectively, the
integration constant Ky in (2. 21) is determined. For the range of the
axially symmetric state of the stresses up to buckling which will be
investigated in this portion of the paper for each edge load Ny there
exists a one-to-one correlation of an edge displacement G,. For the
numerical evaluation K, is given, and from the solution of the system
of differential equations (2.21) the edge displacement T, and the edge
load Ny are determined.

The determining equation for the displacement w, perpendicularly
with respect to the central surface of the shell is derived from the
relation (2. 17),

Z
wo =f YDucCm et Qo (D ag+ K . (2. 24)
0

Without affecting the generality, the integration constant K; can be set
equal to zero. This means that the edge z = 0 is retained while the
shell is deformed, while the edge z = zq can move (Figure 4):

z=0: wog=0 and u =0
(2.25)
Uy -

Uo

and Ug

N
i

3

3
1

sl
I

cota

2.4.3 The System of Differential Equations for the Additional
Stresses and Deformations at the Branching Point

The axially symmefric basic state of the stresses which
has been described in the last section is maintained as long as the edge

17



load Ny is smaller than the critical load N.y. When reaching the
critical load (branching point) at least two positions of the equilibrium
exist, one axially symmetric (identical with the basic state of the
stresses) and one more or less nonaxially symmetric (starting of
buckling), At the branching point the smallest external perturbations
render the basic state of the stresses unstable; a nonaxially symmetric
state of equilibrium is assumed.

In this portion of the paper the system of differential equations
shall be derived from which the nonaxially symmetric stresses and
deformations occuring for buckling can be determined.

With the equation of elasticity (2. 1), the relations concerning the
state of deformation (2.5) and (2. 6), and the equilibrium relations
(2.9), the section forces Ng, Ng, Ngg, the section momentums Ms,
Mg, Mgp, the deformations €s, €g,vyggs ks, kg, ksp, and the dis-
placements u, v, w can be determined for every state of equilibrium
of the shell, By introducing a stress function,

1 af 1 9%
s 0s s* 9e°

z S (2.26)

o /1 of
NSG e — —},
os \s 06

which, corresponding to equation (2. 26), is defined in such a way that
the two first equations of (2. 9) are identically satisfied; the system of
nonlinear partial differential equations can be reduced to two equations
for the stress function f and the displacement w, The first relation for
f and w follows from equation (2. 9. 3) by expressing the section momen-
tums by means of the law of elasticity (2. 1) and by means of the equa-
tions (2. 6) by w and its derivatives, and the section forces are elimi-
nated by means of (2. 6).

-

Due to the condition of compatibility, the second differential equa-
tion for f and w is given. From the relations concerning the state of
deformation (2.5), u and v are eliminated. The expansions €s and e¢g
and the shear ygg are replaced by means of the law of elasticity (2. 2)
and the substitution (2. 26) with the stress function f. Equation (2.9. 3)
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and the condition of compatibility form a system of two nonlinear,
partial differential equations of fourth order in s and 9 for the stress
function f and the displacement w:

2 2 2
Lo(w) = (£ &£ 4 1 af) a‘”+aWA)
s ds s 90?2 os? 9s?

2 2
+ O L [ ota+ OW 4 WA +l__aw]
asz s Js os s? d 2

1 3af 1 azf)(l ow 1azw)
2 (= — - = - — - = -p
s? 20 s 09s36/ \s® 36 s 3sd

o%w\ (1 % BZWA)
Z 50%/\2 as? 9s?

(2.27)

Lo(f)'" =

]
'
—
w |~
IQ)
€
+
n | =
@
€

+(1 dw 1 a"-w)2
s> 30 s 9s06

Lo(y) represents a linear differential operator:

Lo(y)

1l
<
+
N
[=]
<
I
!
W
<
|
+
>
<
|

aZ 1 a4
tBy+vyy) = & vy 2 2Y
¥ 2 4 4

s° 06 s 6

where
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ayw =Dn af = Cp

Bw = D22 Bf = Cy

2 (D2 + 2Dg;) Vi

YW chz + C33

The boundary conditions for the system (2,27) are given in (2. 12).

The system of differential equations (2, 27) generally describing
the states of stresses and deformation of the orthotropic conical shell
agrees with the system of differential equations given by Schnell® for
the ideal isotropic conical shell (wp =0).

As described in Section 2. 4, 2, the conical shell first deforms
axially symmetrically for the given geometrical boundary conditions
and under the load of axial load and inner pressure. When reaching
the critical load nonaxially, symmetric contributions are added to the
axially symmetric stresses and deformations so that for the branching
point it can be set:

€
1

wo (s) + w; (s,0) (2.28)

[,
1

= fo (8) + £, (s, 0),

where fy and w, designate the stresses and deformations of the axially
symmetric basic state of the stresses. f; and w; are the nonaxially
symmetric stresses and deformations which are added when making the
transition to the buckled state, If these expressions (2.28) are inserted
in the system of differential equations (2. 27) it is obtained:
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1 of 1 oaf 1 ¢ 2 2 2 WA
2 2 2 2 2
s 08 s 0Os s“ 8o 9s 9s 9s

of 1 azfl\(_l_ ow, .1 azwl)

s” 90 s 8s86/ )

s> 90 s 98906
2 2 .
+(8 fy + 0 fo) i (Cota+ ow + dwg + awA>

s?  9s?/|s ds ds s
+ 1 a?‘wl -p
s e
and (2.29)
2 2
Ly (fo + f_1) = - ._1_ ?& + 1_ 0Wo + l 9 Wl)(i oWy
s 08 5 gs s? 0%/ \2 as2
L1 3%wo aZWA) +(i gwy _ 1 azwl) i
2 2st ds? LY s 0s9d6

2 2
) 8W1+3wo _l_cota+_1_8W1+_1_3Wo
98t 9s?/ |s 2 Js 2 Js

-+

aWA + i _1_ azwl
2

os SZ eZ

The axially symmetric contributions fy, wy may be expressed with
the relations (2. 26) and (2.17) by Ng, and q.

For the branching point, system (2.19) can be split into two deter-
mining equations for Ngg and qqo (and f, and wy, respectively)--identical
with equations (2.19) of the axially symmetric state of stresses and
deformations--and into two determining equations for the nonaxially
symmetric contributions f; and w; which may be written in the following
form:
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2 2
+an>i.a_fi PR PRI L PSS
os S 0s s’ aez asz s
2 2
+q s 0w\, 1 9w +i(sto)<lm 1____3‘:‘)
0s s ae° os s Os s® 96

and (2. 30)
2
Lo(fl)_-_}_aw1+.1_ awl+-1-q0 1 9wy 1 99
s ds s? aez S 2 as2 2 0s

+ an l m-_l_ azwl\Z- azw1+8qo ! cot a
‘0s s 96 s 0sgd6 s’ ds s

2
_l_qo+qA+_.l_aW1 +l-}-awl
2 2 3s 2 s® 26

-+

If we restrict ourselves to the determination of the buckling loads,
it can be assumed that in the region of the branching point the functions
f, (s, 08) and w; (s, 6) as well as their derivatives are small of first
order. Neglecting members of second order, the following system of
linear differential equations is obtained for the nonaxially symmetric
contributions f; and w;,

Lo(wl) By (wl, sto) + By (fl, cotatqot qA)

Lo(fl) = - By (wl, cota+qp t+ qA) (2.3

where By (yl, cpo) represents the following differential operator:
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- 1 1 1 1 .
Bo (Yl: CDo) = 8 9y — +(__ dy1 + - d Yl) ool

'asz s? s g0s s 862 ; os

In order to obtain an overall picture of the essential parameters of
the system, dimensionless functions F; and W, are introduced.

With equations (2. 20) with the substitution

Z y
wy = e JDu Co, W,

fy

(2.32)
Z
e Du Fl

and with the coordinate transformation (2. 18), the system of differential
equations (2. 32) becomes

L, (Wl)
L, <F1)

where

B, (Wl, No)+ B, (Fl,x+Qo +Qa)
(2. 33)

‘B1<W1,)\+Qo+ QA) ,

a + 1 11, . 0
Ly <Y1> =Y1(4) -—Y——B—Y- y1 + ¥ y1r *t EZ (Y1+2Y1 +yi1 )

ay ay ay
is a differential operator with the constant coefficients

2Ci12 + Cgss

It
n

ap =Ca , Br =Cn » YE

aw =Dy , Bw = Daz , YW= 2 (D12 + 2 D33)

and

Z " "
B, (Ylv coo)= e jPoy1 + (cpo+ wo')yl' + oo (Y +Y1)

In (2. 33) the differential quotients 3 ( )/9z and 3 ( ) /26 have been
replaced with the following symbols:

=() and a___)_=()

dz 96
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The determination of the nonaxially symmetric stress and defor-
mation and contributions F; and W, is performed under the condition
that in the instance of buckling--during the transition from the axially
symmetric basic state of the stresses to an infinitesimally adjacent
nonaxially symmetric state of the equilibrium--the axial edge load Ng
(2.12.3a) and the radial edge displacement W (2. 12. 1) remain constant.
The axially symmetric stress and deformation contributions Ng and Qo
satisfy the boundary conditions corresponding to (2.12). Thus the
additionally occurring honaxially symmetric stresses and deformations
appearing in the instance of buckling must satisfy the following homo-
geneous boundary conditions at the edges z = 0 and z = zp:

)
W1 =0 (1)
(Mg)s =0 (2a)
or Y (2.34)
W' =0 (2b)
(Ng)s = 0 (3)
v, 80 (4) ]

Index ( ); designates the additional stresses and deformations
occurring in the instance of buckling.

From the boundary condition (2.34.1)--W,; =0, i.e., also gW,;/36
= 0--and condition (2. 34.4)--v, = 0, likewise 9v;/96 = 0--itfollows, due
to the necessary geometrical condition (2. 17), that for the edges z =0
and z = zg

(56)1 = and because (Ns>1 =0 it follows that (Ne)l = 0. (2.35)
With the aid of the law of elasticity (2. 1), the definition of the stress

function (2. 26), and the substitution (2. 32) from (2. 34) and (2. 35), the
following boundary conditions for functions F; and W; can be formulated:
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W, =0 (1)
D D .
__i__ Wlll + Wl' + _—12._.. Wl =0 \Za)
D31 + Dy2 Dy + Dy

means <Ms>1 =0

or
W' =0 (2b) >(2' 36)
Fi'+F1+F;" =0 (3)
means (Ns)'l =0
Fi"+F,'=0 (4)

means (NG)I =0

J

Since the system of linear partial differential equations (2. 33) as
well as the boundary conditions (2. 36) are homogeneous, the deter-
mination of the nonaxially symmetric stress and deformation contri-
butions F'; and W, is an eigen-value problem. F; and W; are the
associated eigen functions; the axial edge load Ny (and the edge dis-
placement up or the constant K,, respectively) of the axially symmetric
basic state of the stresses represents the eigen-value of the system.

To solve the system of differential equations (2. 33), the functions
F; and W; which are periodic with 27 sina in the direction of the
circumference are expanded with n = n/sina into series of the form

0
F, = Z Fin (z) cos 16
n=1

(2.37)

00
W, 22 Win (z) cos o

n=1

and are inserted into the system of differential equations (2. 33). By
comparing the coefficients, systems of linear, homogeneous ordinary
differential equations are obtained,
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™
~N
=
N
|

= Bz (Win, No) + B2 (Fin , X + Qo + Qa)
(2. 38)

-
~n
-
B
e
|

—-B2<Wm,)\+Qo+QA) ’

where Lz<yln) and B, (ym , cpo) represent the ordinary differential
operators,

ay + + 6 n 2
L. (Yln)= Yln(6) _ oy Py Y Yin +F3_Y (1 - nz) Yin
ay ay
with G.F = sz, BF = C”, 6F = 'qz (2 CIZ + C33)

aw=Dn, Bw = D22, dw= 2112 (DIZ + 2D33)

z
Bz(Yln, CDo): e

11 1 1 ! 2
®o YVin t (CPo + CDo) yin + Qo (1 -n ) Ylnl

The functions Fjn (z) and Wi (z) have to satisfy the following
boundary conditions according to (2. 36):

Win=0 (1) 1
—D11 Wllln + W'In =0 (2a)
Dy + Dy
or > (2.39)
Win = 0 (2b)
Fin + (1 - nz)Fm=o (3)
Fin+ Fm=0 (4) )

For each n (number of bucklings in the direction of the circum-
ference in the instance of buckling) a system of differential equations
(2. 38) with the boundary conditions (2. 39) exists, the solutions of
which Fin and Wn represent the eigen functions with the associated
eigen-value Ny (n).
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3. Solutions and Solution Methods

3.1 Exact Solutions of the Simplified System of Differential
Equations for the Axially Symmetric State of Stresses and
Deformation

The determination of the buckling stress, i.e., a solution of
the system of differential equations (2.38), assumes the knowledge of
the axially symmetric stresses and deformations {(Ny, Q) of the
unbuckled region--here called the basic state of stresses--corresponding
to equation (2.21). For the cylinder shell?, the differential equations
of the axially symmetric state of stresses and deformations can be
solved linearly and in closed form. The corresponding system of
differential equations of the conical shell (2. 21) remains nonlinear
even in the axially symmetric case. A general closed solution of this
nonlinear system of differential equations for the basic state of the
stresses is not possible with the known methods. Therefore, first,
two methods shall be stated (a and b) by means of which solutions for
No and Q¢ can be found when the system of differential equations is
simplified.

a) Diaphragm stress state

Under the assumption that the deformations of the shell
perpendicular with respect to the central surface of the shell are con-
stant over the entire shell of the cone--this means that Qg is identically
zero--and that no prebuckling occurs (Qa = 0), Ny is determined from
equation (2.21.2):

No = A(pe? + o) . (3.1)
With the abbreviations (2. 20) and (2. 22), this becomes

p —S 4 Ko (3.2)

1
2 cota s cota

Ngo =

the solution for the flexural-free state of diaphragm stress correspond-
ing to Schnell's® Equation (2) and Schiffner's® Equation (7) if the axial
load (Figure 3) is set

p =27 sin® a K, . (3.3)

For Ng, follows then from equation (2. 13. 1):
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_ _Pb-s
Neo cot a (3.4)

The diaphragm stresses Ng, and Ng,corresponding to equations
(3.2) and (3.4) satisfy the equilibrium conditions (2. 13) and the
boundary conditions

N =ﬁs at the edges z = 0 and z = z, ,

So
not, however, the compatibility condition and the boundary condition

€g, = 0 and thus are no valid solution of the boundary value problem
investigated here.

b) Linearization of the System of Differential Equations

For small edge loads and small inner pressure, the
deformations and stresses of the ideal cone QQA = 0) are small of first
order, If, therefore, the system of differential equations (2. 21) is
linearized- -this linearization means a neglect of Q¢ compared with \--
the following system of differential equations is obtained:

Ng" C Ng = ~e Qo\
22 (3.5)
D —
Qo' _.iz..Qo = ez NNy - N (I_) eZZ + Ko)}
Dn
and after eliminating Qq, respectively
i " C
No -2 Np +(1-210 Daz )ty o Cu by fDz Culy
Czz Dun Ce Dy Cz
= _ e2Z 32 [No _ )\(I_)ezz + Ro)l ) (3.6)

Equations (3.5) and (3. 6), respectively, correspond to the dif-
ferential equations of the linear bending theory for axially symmetric
stresses and deformations (container theory),

For the isotropic conical shell the rigidity parameters of which
may assume the value C;,/Cj2 = D;;/D;; = 1 according to (2. 4) the dif-
ferential equation (3. 6) can be solved in closed form. As for the
cylinder shell, the particular solution of (3. 6) is identical with the
diaphragm stress (3.1). Together with the solution (modified cylinder
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function--Kelvin function'®) of the homogeneous differential equation
it is obtained

Ng = )\_p_ sz+I—{-o + Kj ber; (2 )\s)+ K; beiz(Z )\s)
si
+ K3 her; (2 )\s) + Ky heiz(Z )\s) . (3.7)

For the range of parameters (Section 4. 1) investigated here--
argument x = 2JX?> 10°, order ¥ = 2--these functions are not tabulated.
However, Jahnke 16 gives a first approximation of the Kelvin functions
for the parameters x > 1, x > ve. Inserting this approximation into
solution (3. 7) for Ny is obtained

No = M B 2 + Ry )+ 1 |sinh 2\s [ﬁl sin 2\s
2
S1

4\/2)\5

+ K, cos V2\s ]—&cosh 2\s K3 sin V2\s + I_<_4 cos \/2)\s:|

L

(3.8)

Here the constants K,, K;, K3, K4 are to be determined from the
boundary conditions (2. 23) and Ky from the condition (2. 12. 3a) or
(2.12.3b). For the numerical evaluation, however, Kj is given so that
then the edge load Ny and the edge displacement G, is calculated,
respectively,

The approximate solution (3.7) and (3. 8), respectively, of the
linearized system of differential equations from (2. 21) represents a
good approximation for the basic state of the stresses for small
edge loads and small inner pressure. However, it cannot be used for
determining the buckling load since the system of differential equa-
tions (2. 31) for the additional stresses and deformations f; and w;
appearing in the instance of buckling has been derived under the con-
dition that Ny and Q¢ (and Ng, and wo, respectively) are solutions of
the nonlinear system of differential equations (2. 21).

3.2 Approximate Solution of the Linear Buckling Equations by
Means of the Energy Method

In the following portion of the discussion, the state of the
diaphragm stress (3. 1) described in Section 3. 1 shall be applied to
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the determination of the buckling load. Inserting the diaphragm stresses
(3.1) into the system of differential equations (2. 38), the buckling equa-
tions of the linear theory of shells is obtained:

L, (Wm) = B (Wm, No) + B, (Fln»)\)

L. (Fln) =- B (Wln')\) } (3.9)
where B, (Ym, x>= Ne” (Y';n t Ylm)
and Np = 2 (f) e2? ¢ Ko). J

The system of differential equations agrees with the buckling equa-
tions given in several sources® ®812:15 provided the appropriate sub-
stitutions are observed.

Except for the special case n = 0 (ring buckling) which has been
treated by Seide'® for the isotropic conical shell with the aid of further
simplifications,no solution in closed form is known for the system of
differential equations (3. 9).

It is stated once more that the state of the diaphragm stress does
not represent an axially symmetric solution of the shell problem
investigated here since the compatibility condition as well as the
boundary condition €g, = 0 are not satisfied, The further investigation
according to the linear theory has only the aim to derive a reference
parameter for the buckling loads calculated according to the nonlinear
shell theory.

Since a general solution of the linear buckling differential equa-
tions (3.9) is not known, an approximate solution according to the
energy method is determined in the following. An appropriate formu-
lation for the deformations perpendicular with respect to the central
surface of the shell is chosen, and from the condition of compatibility
a stress function is determined with the formulation for W;u. The
free values Ak of the formulation are determined from the condition
for the energy minimum 9w /9Ak = 0 corresponding to the variation
requirement §m = 0,

For a basic state of the stresses according to equations (3. 2) and

(3.4)--diaphragm stresses--the following expression is obtained for
the total energy of the deformed shell in the branching point.
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1 (L (L) L
H:_/f ’Ns1 esl) +N91691 + Ngg, yéel)l s ds d6
2

(o)

1 ]
+-—// {Ms1 ks, + Mg, kg, + 2 Msg, kgg,
2

(o)

11,

2a sina R  aw 1 Bw S2
- s[NSu1+Nsev1+MS__.L+ Mse——-i” de
GE s 06 s,

s ds d6

Nso €s, + Neo esll s ds d6

0

'}// pPwW1 s ds de ’ (3' 10)

(0)

where the first two double integrals represent the deformation energy
of the forces and deformations occurring additionally during buckling,
Since these additional forces and deformations are small of first order,
the nonlinear contributions in € €9,» Ys@, are neglected

(L L L
(esl)’ eé1 g Yéel)) ’

S’

For the displacement W, appearing in the instance of buckling

perpendicular with respect to the central surface of the shell, the
formulation

mq

Win= Ae ~ sinkz with k= (3.11)

Zo

is chosen, This formulation satisfies the boundary condition (2. 39. 1)

at the edges z = 0 and z = zg; Wyn = 0 and corresponds to the so-called
"checkerboard buckling configuration" with ffi-half-waves in the longi-
tudinal direction and n-waves in the circumferential direction, where
because of s = s; e? the half-wavelength increases along the coordinate
s. For a given W, the stress function can be found from the compati-
bility condition(3.9.2) by integration, Itis composed of a particular solution,
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(Fm)p=AkQ(coskz+ksinkz) ]
where
> (3.12)
f= C +c2+2(2c)\+c C
(C22 11 n 12 33) 11 2\2
6 2, =L 1 -
k> + C.z k* + Czz n

and of the solutions
_ pz
of the homogeneous differential equation.

With these solutions the boundary conditions for the stress function
can be satisfied. Investigations on isotropic conical shells, however,
indicated that the effect of the boundary conditions on the buckling loads
is small according to the linear theory. For this reason only the

particular solution is taken into account,

Inserting (3.11) and (3. 12) into (3.10) and after integration, the
total energy of the orthotropic conical shell is calculated from (3.10).

From the minimum condition
== -0 (3.13)

in addition to the trivial solution k* = 0 (no buckling),
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P -'pks%sin2 a
NS = -
0

2ks;sinacosa

4K?
Ng, = - 1+ Zo cot’a

° (1-e)(1+212) | 2

A}

1 + k?
2} 2 2 4 2 2
Cu (1-73)° + C11+sz)k + Caz k* +(2C 13+ Cy3 Jk% 1

(3. 14)

Zo—l

+ S B2 [(1+2k2)(1-e'z°) +4 n?‘]

1 +4Kk? 2cota

1 -2z 2 (l-nz)z
+ (1 - € ) Du (2+k)-4D12+D22 1+

4st 4 +k?

+ 2 nZ (DIZ +2D33)]

is obtained for the force at the edge z = 0 (tension positive according
to Figure 2).

A general evaluation of (3. 14) is involved while by restricting to
certain shell parameters equation (3. 14) can be essentially simplified,
In the following only shells shall be considered the geometry of which
satisfies the equation

zo= dn 22 <1 2 <o (3.15)
Sy S

and the opening angle a of which is smaller than 45° (see Figure 5).
For this range of the shell parameters it is
K> 1, #>»1

so that it may be set
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Figure 5. Possible Cone Configurations With
rp/r; = sz /s; = 2 and e, Respectively, for
Various Opening Angles of the Cone a<45°

From (3. 14) follows then

2

2 Zo k

N S —— cotz a
4 2 4 2 2
2 n*C11+Cri k24 Capk* + (2C12+Caa K%

2
+ L (ez° - 1) P [<l-e-z°)+ 2n

4 cota k2

1 -2 4
+ (1-e z°) [D11 kz+2(Dlz +2D33)-qz+Dzz <1+“_>]}(3.16)
K2 .

2
481

If first the special case of the axially symmetric buckling con-
figuration (ring buckling) is investigated, i.e., =0, from

aNs, _
ok?
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a number of the half-waves in longitudinal direction can be determined

229 s, cot a L (3.17)

- L
A -2 Z
chz Dy (1 -e o) C22

with the associated ring buckling stress

kZ

—zo

- cot a 14+e Dll
Socr 220 z
s 1-¢ 70 Ca2
1 - Ci1 D 1
+ __-(1+e Z°) Dy (1 - 221210} 2 (ez°- 1) P°1  (3.18)
281 \ 2

Cz22 D22 cota

From this formula it follows that the buckling load increases
linearly with the inner pressure. This solution agrees with the ring
buckling stress of the linear theory of stability stated by Schnell ® for
the special case of the isotropic shell,

The general investigation of the buckling equation (3. 16) is
restricted to isotropic and longitudinally reinforced orthotropic shells.
For these shells-it is

Cin<Cz; Dn=Dz (3.19)
and because of (3. 15)

Cyy + Czz K* = Cpz K?

Dy; k% + Dy, = Dy, k% .

For a further calculation, it turns out to be practical to combine
the orthotropic rigidities to three rigidity characteristics* 1%,

1

o,- C2t2Cs 4 Du+2s  _DuCy (5. 20)

VCu Cz2 \/Dn D22 D;; Cp;

'35 = disc characteristic, l’p = plate characteristic yyy = main rigidity
characteristic. For the isotropic shell it is ¥ = 0p = yn=1. Equa-
tion (3. 16) can be further simplified with (3.19) and (3. 20):
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2 tZ _ =Zo _

N - _ Zgp CO a 1 + (]. e )‘\IDIIDZZ o q)z
-22 —_

l1-e 0 2 qCu Cz2 Mo b1 4S§ \"\/N

cota HZ Cin (3.21)
where
k\? |[C _
pLZ:(-——) 22 ¢1:1+208l~l2+|¢4
yl Cn
1 .1 [Cu = ¢
No=—m =73 ;G2 1 H 205 Ayt vk
p k” ¥Ca22

Now the minimum buckling load is determined in dependence of the
wave number ratios\o and p. From

aN,,

d\o

=0

follows

1
cota s IiZZo ! (3.22)

v 1-¢ 7% Cz Dz m

In (3. 23) only the positive root is of significance since o < 0
results in complex M and n which is geometrically meaningless.
With (3.22) it follows then that for the critical buckling load o 4
(dimensionless load parameter)

_ o+
Moo=

%2 4 %

1
Cop = — (3.23)
\
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/ﬁ _ cot a
cot a /Dzz
2 -
S Vsz
1 ps; ( zo
o Nso -7 Zota ( ) 1\’
Ocr =
cot a }Bzz
2 J
S1 VCu T
zo l+e -0
9. = : —
2 1-¢e 0

For the conical shells (z¢g <1) considered here, the value of the
root J, is about 1,

—ZO
1
01- - IZQ + e ~ 1’

2 l-e_zo

and when making the transition to the cylinder (zo — 0) it is exactly 1.

The ratio of the wave numbers . is determined from the minimum
condition oy /0p? = O:

4 [f 2 2 .
~ F [(GPVN- OPVYN) b "’(YN' 1) +(t’p V- "s)]
p = - ==
$o qdn ¥
For a given orthotropic conical shell satisfying the geometrical
requirements according to (3. 15) and the rigidities of which are within
the limits given by (3.19), from (3. 23) the critical buckling stress o¢cp

can be determined for any inner pressure where Nz is to be determined
from equation (3. 24).

(3. 24)

Observing the parameters matched to the geometry of the cone
equations, (3.23) and (3. 24) are identical with the buckling conditions
of the longitudinally compressed orthotropic cylinder shell discussed
by Schnell!!. Therefore equations (3.23) and (3. 24) are not further
investigated in this paper.
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3.3 Iterative Solution by Means of the Difference Method

Closed solutions of the system of nonlinear differential equa-

tions (2. 21) for the basic state of stresses and of the eigen-value problem

(2. 38) for the stress and deformation contributions in the instance of
buckling are not known. Thus an approximation method for solving both
problems (2.21) and (2. 38) is described in this section of the paper.
The derivatives with respect to z and the differential operators L(yin)
and B(yin, ®o) --generally described by

G (h* @ n* v h
\ Yn ¢ Yn > Yn» ¥n
41 2! 11

--appearing in the systems of differential equations (2.21) and (2. 38)
are expanded into difference expressions of the form

ht h? " h
G (4—' U(r) roT Uy , 1 Uk Uk) +Z ak Uk+0(h8) = 0. (3.25)
k

The Uy are the function values at m equidistant intermediate points
in the interval 0 <z <zo. The distance h between the points is

The residual member 0(h® gives the order of the first nonvanishing
member of G if the Taylor expansions are balanced, i.e., balancing has
been performed up to the members with h’ inclusively. We first con-
sider the axially symmetric state of the stresses and deformation.

3.3.1 Approximate Solution for the Basic State of Stresses

Finite expressions of the form
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’ ]

hz L h .
G?'_ U1+6uUi+E aikUk+r10 I—!kuU°+U° =0

k=1
fori=1,2,3
2, it3
k=i-3

fori=4,5. ..(m-3) 43 2¢)

h? 1" 10 h !
Gl37 Ui +6y Ui +z : aike Uk + Timt1 (_' Ky Upnes
k=m-¢ I

t Um+1) =0

fori=m-2, m-1, m

P

are derived for the system of differential equations. Uj are the function
values Ny and Q¢ at the m intermediate points; 6 follows from the
coefficients of the differential equation (2. 21).

2 C
by = —— 11
h? C;
2
5Q - D;2
2
h" Dp

The boundary conditions (2. 23) are taken into account in the finite
expressions for the edge-near points (i=1, 2,3;i=m-2, m-1, m) in
the form

!

h . .
kul—!Ui+Ui: (i=0,i=m +1).

The factor means

_ 1 Cqp .

ky = h o - corresponding to (2.23.1)
_1 Dy )

kg = h Dy - corresponding to (2. 23, 2a)
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or

kQ:0

- corresponding to (2.23.2b).

If the differential equations at any intermediate point are replaced
with the finite expressions formed according to equations (3. 26) a
system of differential equations is obtained which can be combined to

. . 1
matrix equations 7

( (1)

( @

(aiﬁ) represent quadratic matrices

STt
) N . .
<ai{(> - azJ1) a(sz) azJ3) .

aik) (Qo3) - (brac) (No3) = (o3 Nog) + (ei) = 0

aik) (Noi) + (bkk) (Qo) +% (Qoiz)= 0

\ (3.28)

J

G
with the elements ai{() which are composed of the coefficients of the

finite expressions (3. 25).

2
(Qoi), (Noi), (Qoi Noi), (Qo i) ) (Ci) are vectors the elements Qoj
and Ngj of which are the function values Qo and Ny at the m intermediate
points and the elements ci of which are determined from the equation

zh

ci=(f>e 1+R0))\2.

(bkk) is a diagonal matrix
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bz

| o
with the elements

Furthermore, the vector (Qoi Noi) can be replaced with

FQ()I No1 FQOH 0- rNol-
Qo No QOZZ NOZ
(Qoi Noi) = 2 2 = (Qo kk) (Noi) =
Qo, No, Qog, No,
0
- _J L. p L -

whereby the following relation exists between the elements Qoj of the
vector and the elements QOjj of the diagonal matrix

Qoj = QoJ'j .

From equation (3. 28. 1) vector (Nyj) can be eliminated with (3. 28. 2)
so that a matrix equation< (Qo i) is obtained for the vector (Qqj).

This nonlinear matrix equation is solved by means of Newton's

iteration: For a vth approximation (Qo~(v)), the matrix equation ¢
is satisfied except for the defects (Ai(V}).

3 (20! = (&) (3. 29)

By means of corrections (A Qo i( v)) which are determined from the
system of linear equations
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a E) (Qo i( V))

aQoJ'

A Qoj + AJ-(") =0 (3. 30)

(v)

and are added to the vth approximation (Qoi ), the nonlinear matrix
equation (3. 28) is iteratively solved step-by-step. The iteration is
carried out until two successive approximate solutions differ by more
than a previously specified amount. In matrix form the following
iteration scheme can be given:

(aslx)() (Qoi™) + (dkk(V)) (ei(V)) + (ci) = (a:¥)

;(aﬁl) (dkk(V)) (aik(Z))_l (dkk(V)) + (ekk(V))E (A Qoi(v)) > (3.31)
= - (A i( V)»)

(o:™) + (aQ0s™) = (o) ,

where

(dkk(V)) = [(bkk) + (Qo kk(v))]

() = (aik(Z))” [(bkk) (Qoim) . % (Qoimz)]

If the initial approximation of this iteration is set Q(oo)i = 0, the
approximate solution Qg ) represents an approximate solution of the
linearized differential equations for the axially symmetric state of
stress and deformation according to equation (3.5).

3.3.2 Approximate Solution for the Eigen-Value Problem

The differential equations (2. 38) for the determination
of the stresses and deformations in the instance of buckling are replaced
with difference expressions of the form given in (3. 25):
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h !
A Uk + rio [9111 — Up +U0]
11

hz 1" h 1
+ Sio[gzu—— Uo + — Uo] =0

2! 1!
fori=1,2,3,4
i+4
G[L (Ui), B(Ui ,voi)] + E aj Uk = 0
k=i-4
fori=5,6...m=4 5(3 32)

Imn
h
G [L (Ui)’ B (Ui""01>] "‘E : ajp Uk + am+ [Qm— Um+1
k=m-5 1!

2 1

h
+ Um+1] + Sim+1 [gzu — Um+1
2!

+‘——h Ufn+1] =0
1!

fori=m-3, m-2,

m-1, m

The U; are the function values Fin and Win at m equidistant
intermediate points, For ¢; the stresses and deformations of the
basic state of stresses have to be inserted,

In (3. 32) the homogeneous boundary conditions (2. 39) were com-
bined to the form

h 1
1!

(3.33)
h? v h !

924 — Uy + — Ui = 0.
21 1!
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For the coefficients 9, w’ Q24 it is then

W
Qhiw =0 (1)
meaning Win=20 (2.39.1)
2 D
Qpgy = —— M1 (2a)
h Dj; + Dp;
Dll 1 !
meaning Win+t Win =0 (2.39.2a)
Dy + D22
or
%F =0 (2b) > (3. 34)
1
meaning Wimn=0 (2.39.2b)
1 1
AF = — (3)
h 1- nz
1 11
meaning Fin+ (1 - nz) Fin=0 (2.39.3)
2
QzF = — (4)
h
| "
meaning Fin + Fin = 0. (2.39.4)

-

From the difference equation at each intermediate point, a system
of linear equations for the Fin; and Wnj is obtained which is combined
in matrix equations.

(b(ilL) (Wmi) (Cglll) (F mi) - (Cg?il) (Wlni)

(3.35)
(b(ﬂ() (Flni) = - (C(ii() (Wmi) 1<i, k<m
where
@ @ @ 6 G 6
Cik = Cik (X+on+QAk>, Cik :Cik (N(,k), Cik:Cik <X+on+QAk>,
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and cik(J) of the matrices are composed of the
coefficients of the finite expressions. Nontrivial solutions of this

The elements bik(J)

system of linear homogeneous equations (3. 35) exist only if the coef-
ficient determinant vanishes,

det {(b;;g) D) 4 () (69) (c;;g)’ P (5. 36

The critical eigen-value is the smallest edge load Ny with the
associated displacement of the edge uy of the axially symmetric state
of stresses and deformation for which the determinant (3. 36) become
zero. Of the eigen-values determined for various numbers n of
bucklings in the direction of the circumference the absolute smallest
yields the buckling values (buckling load Nocr).

With the approximation methods given here, the boundary conditions
can be completely taken into account without difficulty.

For the numerical evaluation, the number m of the equidistant
intermediate points--i, e., the number of the unknowns--is increased
as long as the difference of the critical values of two successive
approximations Nocr (n, m) - Nocr (n, m+1) stays above a given error
limit,

4, Numerical Evaluation and Discussion of the Results

4.1 Dimensions of the Shell and Parameters

The systems of differential equations (2.21)--for the deter-
mination of the basic state of stresses--and (2. 38)--for the determi-
nation of the critical load--with the associated boundary conditions
(2.23) and (2. 39) contain the following eight parameters

” X = sy cot a Cui D,y 2Ci 4+ Cas 2(Dj2 + 2D33)
0 » - ’ ’ ’ ) — »

VDn Czz2 Ca2 Dy Ca22 Dy,
Ciz and D2
Caz D

which are composed of the three geometrical characteristics s;, zg,
and cot a and the eight rigidity parameters Czz, Cy1, Cjz2, Cs3, Dy,
D2z, Djz2, and D3,
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For the isotropic conical shell, the rigidity parameters of which
are given in equations (2. 4), the eight parameters reduce to

t !—
zO,X:w 12(1_‘,2)’ v

t

The mentioned shell parameter \ is identical with the cone char-
acteristic stated by Weingarten et al'*., As can be seen from the
systems of differential equations (2.21) and (2. 38) with the boundary
conditions (2. 23) and (2.39) \ is not sufficient, however, for the deter-
mination of the buckling load of the isotropic cone (as stated by
Weingarten et al') but--aside from Poisson's ratio v--also the ratio
of the end radiir;/r; = sz /s; = e?°) has an effect.

The numerical evaluation is performed for conical shells for the
stability behavior of which experimental results are available!'®8,
Because of the extent of the computation--compared with the computer
IBM 1620/23 available--the investigation was limited to conical shells
(Figure 6) with constant height hy and constant radius r; of the base
while the half angle a was varied (a'= 10°, 20°, 30°). The investigated
conical shells have a wall thickness of t = 0.255 mm. The elasticity
modulus has been regarded as constant, E = 525 kg/mmz. Poisson's

number was v = 0, 3,

fe—— hy = 173,2 —]

a— r,= 400 —>

Figure 6. Dimensions of the Conical Shells Investigated
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In Table I the dimensions of the investigated shells are listed.
For the isotropic shells the shell parameters zp-and X\ in the last two
columns suffice for the determination of the stress and stability
behavior. For comparison, the cylinder (a = 0) with radius r; and
height hi for which the buckling load has been determined by Fischer?
is used.

Table I. List of the Dimensions and Parameters of the Cone

Desig- Cone Geometry Cone Parameter
nation
S2
sy [mm)] S1 cot a Zo \
JOo 0 1 © 0

J10 9.75877-10%]1.18022]5.67128 |[0.165705 |7.17212-10*
J20 4.00440-10%1.46030} 2.74748 ||0.378639 {1.42575-10*
J30 2.00000-10%{2.00000{ 1.732051|/0. 693147 |4.48913 .10

In order to be able to compare the results of the calculation for
various shells, dimensionless load and inner pressure parameters
(Ny and P) are used in the graphic presentations. The computed edge
loads at the edge of the cone z = 0 are related to the critical ring
buckling load of an isotropic cone under pure axial load which had been
obtained according to the linear theory according to equation (3. 18).

Z0
2 cot a zg € + 1 D
Ng,(p=0) = - ——22 "_0 = 1 (4.1)
s 2 e -1 C22/ isotrope

For the orthotropic shells, the ring buckling load of the comparison
shell (J 30, shell of the same weight and of the same geometrical
dimensions) is used as reference load. |

For the investigated conical shells (0 = z¢ £ {n2) the root can be
set

A
_212;_+_1z1 (4.2)
2 e -
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so that

N. (p=0) = 2 cota (Dn) _ cota Et? (4. 3)
So - - T - - ‘
s1 C;2/ isotrope S \’3(1 - v2)

applies for the ring buckling load (linear theory) of an isotropic conical
shell'®,

In Table II the exact values of root (4.2) are listed for the conical
shells of Table I.

Table IT
Desig- Z o ezo + 1
nation Zo 2 e”0 -
Joo 0 1
J10 0.165705 1.00114
J20 0.578639 1.00594
J30 0.693147 1.01967

Going in the limit to the cylinder (a — 0, cota/s; — 1/R, z¢o—0)
from the equation (4. 3) follows the so-called classic buckling load of
an infinitely long cylindera:

2 2
N, =2t ! ~0.605 = (4. 4)

R \B (1 - v2) R

For the dimensionless load parameter Ny, the reference value

N, = s - (4. 5)

NScl(p = 0) AN

is obtained with the classic ring buckling load according to formula
(4, 3) and for the orthotropic shells

11) 11) (4. 6)
Ca EC 22/ isotrope :

NV:_

Vi

No
AN
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As inner pressure parameter $ is used according to formula
(2.22),

-— 1 S, 2 CZZ
P=— P
2 \cota D
In the case of the orthotropic shell for D;;, C;; the rigidity
parameter of the isotropic comparison shell are to be inserted.

4.2 Axially Symmetric Basic State of Stresses and Buckling
Loads of Ideal Isotropic Conical Shells

The axially symmetric basic state of stresses of the isotropic
conical shell can be described with a closed. solution of the linearized
system of differential equations (3. 5) for small edge load and small
inner pressure. From Figure 7 where the edge load Ny of an isotropic
cone J30 is depicted for pure axial load (p = 0) as a function of the
radial displacement of the edge wr (proportional to the compression
of the cone) and the axially symmetric configurations of buckling along
the generatrix for various edge loads, it is seen that for small edge
loads Ny the curves A (linearized, system of differential equations
(3.5)) and B (nonlinear, system of differential equations (2. 21)) are in
good agreement, With increasing edge load, ring buckling appears in
the edge zones of the cone--analogously to the cylinder shell--which
can be comprehended only by the solution of the nonlinear differential
equations (2, 21).

In Figure 8 curves Ny vs, IQomax I are plotted for various inner
pressures for the cone J30 (pin jointed edge) (for comparison the curve
calculated from the system of linearized differential equations for
P = 0 is included). First IQOmaxl increases linearly with the axial
edge load, for higher edge load it increases nonlinearly. When reach-
ing the critical load, the axially symmetric basic state of stress
becomes unstable (for this reason the curve above the critical load is
dashed). The shell starts to assume a new state of equilibrium. In
the framework of the calculation performed here (linearization at the
branching point) the branching point with the number, n, of bucklings
over the circumference appearing in the beginning of buckling is
determined. Concerning the further course of the curves N, (IQOmaxl) ,
nothing can be stated. In the experimemt13 as well as in the calculation
the decrease of the number of bucklings, n, with increasing inner
pressure could be observed (however, in the experiment the number of
bucklings was determined only for the stable postbuckling region).
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The axially symmetric configurations of the bucklings for various
inner pressures are plotted in Figure 9 for a constant edge load which
equals the buckling load of the conical shell for p = 0, i.e., Ny = Nycr
at (p = 0). For a pure axial load (p = 0), axially symmetric buckling
configurations.begin to form beginning at the edges, decaying towards
the center of the cone. Due to the inner pressure, the radial stress
increases with increasing radius, i,e., with increasing z for which
reason the radial deformation in the edge zone z = zy is suppressed.
The tendency that with increasing inner pressure the axially symmetric
buckling configurations are formed only at the edge z = 0 and there
with increasing amplitude, typically for cones, is seen. For high
inner pressure, ring buckling could be observed at the edge z = 0 of
the test shells before reaching the critical load.

A comparison of the measured buckling loads (four test shells J30
of the same dimensions!®) shown in Figure 10 with the critical loads
calculated according to the nonlinear theory for a fully restrained ideal
cone (curve III) shows good agreement for large inner pressure. How-
ever, for small inner pressure--especially for p = 0--the experimental
values deviate from the theoretical buckling loads for an ideal conical
shell. The discrepancy between theory and experiment can be essen-
tially traced to the existence of prebuckling in the test shells. An
investigation of the effect of the predeformation on the buckling loads
is performed in Section 4, 4 of this paper.

The theoretical buckling loads of the pin-jointed cone (curve II)
are--like for other stability problems (buckling of a rod, cylinder
buckling) - -below those calculated buckling values for the fully restrained
shell (curve III), Curve (I) contains the critical loads which were cal-
culated according to the linear theory for one-member approximation
formulation (ring buckling)--corresponding to formula (3. 18). Com-
pared with curves (II) and (III), the buckling loads determined accord-
ing to the linear theory represent only a course approximation to the
stability problem investigated here.

In Figure 11 the buckling loads according to the linear (curve I)
and according to the nonlinear theory (curve II) for pin-jointed conical
shells of the same height and the same base radius r;--according to
Table I--are plotted versus the opening angle a. It is seen, as shown
by the corresponding experimentsm, that the thus normalized buckling
load Ny --equation (4.4)--is practically independent of the cone angle
which on the other side means that the linear buckling load (3. 18) used
as reference quantity properly represents the effect of the cone angle
on the buckling load. The values for the cylinder shell (curve II,

a = 0) entered into the diagram are taken from Fischer® and
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JOO J1i0 120 1J30

n=22/23 n=22 n=\8 n=i%
o | |

o° 10° 20° 30°

OPENING ANGLE OF THE CONE a—»

(I) Buckling loads accordingtothe linear theory
[formula (3. 18)5] .

(II) Buckling loads according to the nonlinear
theory [formulas (2.21) and (2. 38)] for pin-
jointed edge buckling load of cylinder Joo?3,

n: Number of bucklings in circumferential
direction.

Figure 11. The Effect of the Opening Angle of the Cone
on the Buckling Load of Pin-Jointed Isotropic Con-
ical Shells of the Same Height and the Same Base
Radius

satisfactorily supplement the here performed cone investigations
(a =10°, 20°, 30°) concerning the buckling load as well as with
respect to the number of bucklings n.



4.3 Investigation of an Orthotropic Conical Shell

With the approximation methods given here (Section 3. 4)
orthotropic conical shells can be investigated as well without additional
Jdifficulties, provided the neutral plane coincides with the central sur-
face of the shell (classic orthotropic23)or is so close that the eccen-
tricity can be neglected,

The polar orthotropic test shells, which are shells with constant
rigidity along the main rigidity axes forming a polar coordinate system,
have been fabricated by cementing 72 conical strips uniformly distri-
buted over the circumference along the generatrix to an isotropic skin
(Mylar). These orthotropic shells had the same geometrical dimensions
and the same cross-sectional area (same weight) as the isotropic con-
ical shell J30.

The calculation of the rigidities of these test shells has been done
under the following assumptions:

1) The reinforcements are free from the effect of transverse
contraction,

2) Shearing is exclusively transmitted by the isotropic skin.
The contribution of the reinforcement to the torsional rigidity of the
shell is calculated according to Fliiggezs.

3) The flexural rigidity D;; is determined for one beam element--
consisting of skin and reinforcement--around the common neutral plane
(Figure 13a).

4) The effect of the eccentricity of the neutral plane from the
central surface of the shell on the law of elasticity is not taken into
account so that the elasticity equations may be written in the decoupled
form (2.1).

5) It is assumed that when reaching the critical load skin and
reinforcement buckle simultaneously.

For the orthotropic test shell--designation 0 30-1--the following
shell parameters have been determined.

Geometry parameters:

7o =In2=0,693147 X = 2.24471.10° .
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Rigidity characteristics:

Cn Ci 2C12 + C33
= 0,519, = -0.154, —m/— = 2.41
Ca2 Cz: Ca2
D2z D1 2(D1z + 2D3y)
=0,0573, = 0,0172 , ' = (0.435
Dy Du Dy

The results of the stability calculation together with the measured
values are depicted in Figure 12, The straight line (I) represents the
buckling values according to the linear theory, according to formula
(3.18), and illustrates properly the qualitative relationship between
buckling load and inner pressure. The buckling loads themselves,
however, are above the experimental values,

The critical loads for a pin-jointed (III) and a fully restrained cone
(IV) determined according to the nonlinear shell theory--formulas
(2.21) and (2. 38)--agree with the measured buckling values for small
inner pressure. On the one side this can be explained in such a way
that in the reinforced test shells local prebuckling can occur only
between the reinforcements which have respectively less effect on the
buckling load. On the other side, the strong decrease of the theoretical
buckling values for P = 0 is to be traced to the orthotropic rigidity
parameters which have been calculated only approximately (especially
the assumption that the reinforcements are free from transverse con-
traction and that shearing is transmitted only by the isotropic skin
represent a course approximation to the here investigated reinforced
shells).

For high inner pressure, the measured values increase more than
the theoretically determined buckling loads (curve IV for the boundary
condition: fully restrained). This can be explained in such a way that
due to the inner pressure the isotropic skin is stretched between the
reinforcements (Figure 13b), whereby the axial flexural rigidity is
additionally increased (corrugated sheet metal). The increase of the
flexural rigidity D,;; with increasing inner pressure has been attempted
to comprehend theoretically by calculating the rigidity parameter Dy,
around the common neutral plane of an infinitely long segment of a
cylinder shell with sectionally constant rigidity precurved under inner
pressure (Figure 13b: Section I - isotropic skin, Section II - skin and
reinforcement). The buckling loads (curve V) determined according
to the nonlinear theory of shells taking into account the flexural rigidity
dependence on the inner pressure agree well with the experimental
values even for high inner pressure.
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Figure 13, The Deformation of the Reinforced Conical Shell
Due to Inner Pressure

A comparison between the buckling loads (Figures 10 and 12) found
for the orthotropic (longitudinally reinforced) conical shell 030-1 and
that for the isotropic comparison shell 130 (same weight) shows that
under inner pressure the orthotropic shell buckles at higher loads than
the isotropic shell,

4.4 The Effect of Axially Symmetric Prebuckling on the Stability
Behavior

In the system of differential equations (2.21)--for the deter-
mination of the basic state of stresses--and (2. 38)--to determine the
buckling load--axially symmetric prebuckling QA (z) has been taken
into account. For the approximation method (difference method)
described here it does not present any difficulties to investigate arbi-
trarily axially symmetrically precurved conical shells.

Since the predeformation of the test shells is not known, a fictitious

axially symmetric prebuckling of the following form is assumed for
the theoretical investigations:
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Here £, designates the prebuckling amplitude related to the wall
thickness, bp represents the width of the prebuckling, and zp gives
the position of the prebuckling maximum along the generatrix.

The numerical evaluation of the systems of differential equations
(2.21) and (2. 38) results in the critical loads plotted versus the pre-
buckling amplitude in Figure 14 for a prebuckling according to Equa-
tion (4. 6) with ba /zo = 0.25, zA/zp = 0.5. As was to be expected, the
buckling load decreases with increasing amplitude §g.

Figure 15 illustrates the effect of the position of prebuckling on
the critical load. It is seen that prebuckling at the edge z = 0 results
in a greater decrease of the load than the same prebuckling at the edge
z = z9. This tendency is even increased with inner pressure as is seen
from a comparison of the curves II (prebuckling at the edge z = 0) and
III (prebuckling at the edge z = zg) in Figure 16,

An additional phenomenon is to be noted in Figure 16.

With increasing inner pressure in agreement with experiment and
theory, the effect of prebuckling on the critical load becomes smaller
and smaller. The buckling values measured for four different test
shells scatter greatly for low inner pressure--due to the predeformation
which is different for each test shell--while for high inner pressure the
experimental buckling loads are about the same and agree well with the
theoretical buckling loads of the ideal as well as of the precurved fully
restrained conical shell.

Taking into account prebuckling, the decrease of the buckling loads
can be explained for low inner pressure. An absolute comparison
between measured and calculated buckling loads is, however, not per-
mitted since no measured results are available concerning the pre-
deformation of test shells and prebuckling on which the calculation has
been based has been assumed arbitrarily.
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5. Summary

The previously known investigations of the stability behavior of
thin-wall conical shells under axial load and inner pressure have shown
that by means of the linear theory the qualitative effect of the geomet-
rical characteristics and the rigidity parameters on the buckling load
can be determined. However, the calculated critical loads deviate
greatly from the buckling values found experimentally, To gain a better
agreement between experiment and theory, the derivation of the dif-
ferential equations of the state of stresses and deformation in this
paper takes into account nonlinear members., The derived system of
nonlinear differential equations generally describes the stress and
deformation states of a conical shell-deformed, prebuckled orthotropic
(special case "isotropic') conical shell under inner pressure and
arbitrary edge loads.

By restricting ourselves to axially symmetric edge loads and to
an axially symmetric predeformation, special forms of this system of
differential equations for the basic state of stress and for the additional
stresses and deformations at the branching point can be stated. The
investigations in this paper are limited to these special forms of system
of differential equations.

The system describing the axially symmetric basic state of stresses
consists of two coupled nonlinear ordinary differential equations of
second order in z for the section force Ng and for the deformation
parameter Qo (1st derivative of the displacement w perpendicular with
respect to the central surface of the shell with respect to z). In the
linear theory of stability it has been assumed that the conical shell
assumes a state of flexure-free diaphragm stress until buckling occurs.
It can be shown that by means of the diaphragm stress the equilibrium
conditions at the shell element, but not the compatibility condition and
all boundary conditions, can be satisfied., The state of diaphragm
stress is thus no solution of the shell problem considered here,

A general solution in closed form of the system of nonlinear dif-
ferential equations for the basic state of stress is not possible with
the familiar methods. For the linearized system describing the
stresses and deformations for small loads, a solution in closed form
has been found for the isotropic ideal conical shell. (The particular
solution of the linearized system is identical with the state of dia-
phragm stress.) The iterative solution of the nonlinear system is
performed with a difference method enabling the satisfaction of all
boundary conditions. The finite equations at each intermediate point
can be combined to a nonlinear matrix equation which was iteratively
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solved by means of Newton's method. By calculating suitable initial
values (extrapolation with the approximate solution of next lower load
steps) the approximate solutions according to Newton's method converge
rapidly (after 3 to 4 iteration steps the agreement includes the fifth
decimal). The convergence of the difference method is assured if the
approximate solutions with increasing number of intermediate points
tend toward a common limiting value, The number of the equidistant
intermediate points was increased until the difference between two
successive approximations remained below a specified error limit,
The required number of points to maintain this limit increased with
increasing load. Because of the size of the available computer (a
maximum of 45 intermediate points could be used in the calculation)
the axially symmetric basic state of the stresses could not be deter-
mined for arbitrarily large loads. For the range of inner pressures
(0 <p <1.0) investigated here, this load limit is above the critical
load, i.e., in the unstable range of the basic state of stress.

Because of the investigation of the basic state of stress according
to the nonlinear theory the appearance of ring buckling below the
critical load--as has been observed in the experiment for high inner
pressure--can be theoretically explained as well,

A second special form of the general system of differential equa-
tions can be stated for the additional stresses and deformations in the
branching point. When reaching the critical load (branching point) two
states of equilibrium exist which are infinitesimally close: one axially
symmetric--identical with the basic state of stress--and one nonaxially
symmetric characterized by the existence of nonaxially symmetric
stress and deformation contributions in addition to the basic state of
stresses. For the nonaxially symmetric additional stresses and defor-
mations, a system of two linear homogeneous partial differential equa-
tions (of fourth order for the stress function F and the deformation W)
with homogeneous boundary conditions can be derived. The solution of
this linear system of equations (eigen-value problem, the criticalload
represents the eigen-value) requires the -knowledge of the stresses
and deformations of the basic state of stresses, i.e., the solution of
the nonlinear system for Ny and Qp. If, instead, the diaphragm stresses
are inserted for the basic state of stresses, the familiar equations of
the linear theory of stability are obtained.

Since a general solution of this eigen-value problem in closed
form is not known, an approximate solution has been determined by
means of the difference method. Solving iteratively the eigen-value
problem a smaller number of equidistant intermediate points resulted
in the same degree of approximations as for the determination of the
axially symmetric basic stresses and deformations,
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The numerical evaluation of the buckling equations of the nonlinear
theory--nonlinear because the axially symmetric stresses and defor-
mations determined from the nonlinear basic equations have been
inserted in the eigen-value problem--shows that for high inner pres-
sure the determined buckling loads agree well with the experimental
values, The deviation of the critical loads calculated for ideal conical
shells and the experimental buckling values for low inner pressure
(especially for p = 0) is to be traced to prebuckling of the test shells.
Investigations where the effect of such predeformations on the buckling
behavior has been taken into account are so far known only for the
cylinder shell where mostly an affinitive prebuckling with respect to
the buckling configuration occurring has been assumed in the calcu-
lation, In the present paper the differential equation of the predeformed
conical shell has been derived, and it has been solved approximately
for the case of an arbitrary axially symmetric fixed (nonaffinitive) pre-
buckling.

Taking into account a predeformation, the decrease of the buckling
loads for low inner pressure could be proved. An absolute comparison
between the measured results and the buckling loads calculated for a
predeformed shell is not permitted ‘since the arbitrarily assumed pre-
deformation is certainly not in agreement with the predeformation of
the test shell,

Because of the large extent of the calculation (operations with
large matrices) the numerical evaluation was limited to a few conical
shells, The approximation method stated can be combined to a general
computer program with which--assuming a suitable computer--an
arbitrary degree of approximation can be achieved.
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