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ABSTRACT 

The prebuckling state and the stability behaviour of thin-walled 
isotropic and orthotropic shells under axisymmetr ic  loads (axial  load 
and internal p r e s  sure)  i s  investigated, applying a nonlinear shell  theory 
(finite deformations).  

At f i r s t  the unbuckled equilibrium state which i s  ax isymmetr ic  
under the given load i s  described. 
l inear  differential equations i s  solved by a difference method with 
approximation of higher order .  F o r  isotropic conical shells,  an exact 
solution for  the l inearized sys tem can  be obtained ( l inear  bending 
theory). 

The derived sys tem of ordinary non- 

In the second pa r t  of this  paper the buckling loads a r e  calculated. 
The buckling (bifurcation) state i s  governed by an eigen-value problem, 
the eigen-values of which a r e  the buckling loads and the eigen-functions 
of which a r e  the additional s t r e s s e s  and deformations. 
value problem i s  a l so  solved i teratively by the difference method. 

The eigen- 

The influence of shell  p a r a m e t e r s  and of an axisymmetr ic  predefor -  
mation on the buckling load is  discussed. 
agreement with the experiments ,  par t icular ly  for  a conical shell  under 
axial load and high internal  p re s su re .  

The r e su l t s  a r e  in good 
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1. 1 Introduction 

d 

The s t r e s sed  s t ruc tures  in  aviation and rocket construction 
consis t  to a la rge  par t  of thin-wall isotropic,  orthotropic,  and rein-  
forced shells.  
wall  shells i s  required if the construction elements a r e  to be designed 
a s  light a s  possible in favor of a high payload. 

Detailed knowledge of the car ry ing  capacity of thin- 

The elast ic  stability behavior of cylinder shells has  been intensively 
investigated during the las t  y e a r s  according to the l inear a s  well  a s  to 
the nonlinear theory of stability. F o r  conical shells only buckling loads 
have been determined s o  fa r  according to  the l inear  theory, because the 
basic equations describing the s t r e s s  and deformation state of the coni- 
c a l  shel l  a r e  m o r e  complicated compared with those f o r  the cylinder 
shell. These loads have been determined among others  by Mushtar i  
and Sachenkov', Schnel15, and Seide'51'8,2' f o r  the isotropic conical 

for  the orthotropic 
shell. 

shel l  and by Leyko", Serpico", and Singer 6 , 2 0 , 2 2  

By means  of the l inear  theory the qualitative effect of the geometri-  
c a l  charac te r i s t ics  and of the rigidity pa rame te r  on the buckling load 
can be determined. However, the resulting buckling loads deviate 
greatly f r o m  the buckling loads obtained experimentally, especially in  
the case ,  herein considered, of the conical shell  under axial load and 
inner  p r e s s u r e .  This discrepancy between experiment and theory i s  
greatly due to the fact  that according to the l inear  theory of stability 
the basic  s ta te  of the s t r e s s e s  of the shell--that i s  the s ta te  of the shel l  
before reaching the c r i t i ca l  load--is replaced with the state of diaphragm 
s t r e s s ,  which neither satisfies the compatibility condition nor a l l  
boundary conditions (no circumferent ia l  expansion). 

In  the following discussion, f i r s t  the basic  state of the s t r e s s e s  of 
the orthotropic conical shell  (with the special  case  "isotropic") shal l  
be descr ibed,  taking into account nonlinea? members .  The derived 
nonlinear differential equations a r e  approximately solved with the dif-  
fe rence  method. 
investigated (axial  load and inner  p re s su re ) ,  the solution is axially 
symmetr ic .  

With the given boundary conditions and for  the load 

F o r  the l inearized basic equations of the isotropic cone describing 
the s ta te  of the s t r e s s e s  and of the deformation under sma l l  loads a t  
the edge, a general  solution in  closed fo rm can  be stated. 
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.The second pa r t  of the discussion deals  with the determination of 
the buckling loads. After exceeding the c r i t i ca l  load, the axially 
syrnmetric basic state of the s t r e s s e s  becomes unstable and the shel l  
buckles into a nonaxially symmetr ic  state of equilibrium. The de ter -  
mination of the additional s t r e s s e s  and deformations occurr ing in  the 
instance of buckling leads to an eigen-value problem, the eigen-value 
of which is  the c r i t i ca l  load. 
problem is obtained by means  of the difference method. 

The i terat ive solution of this  eigen-value 

If the calculation of the buckling loads is based on the basic  state 
of the s t r e s s e s  which r e su l t s  f r o m  the basic nonlinear equations when 
the boundary conditions a r e  completely satisfied, the buckling loads 
determined a r e  i n  good agreement  with the experimental  values for  high 
inner  pressure .  The discrepancy between the buckling loads calculated 
fo r  an  ideal cone and the experimental  buckling values for  low inner 
p r e s s u r e  (especially for  p = 0) i s  essentially t raced  to the existence of 
prebuckling in  the t e s t  shells.  

In o r d e r  t o  be able to investigate the effect of such a predeforma-  
tion on the stability, the differential  equations of the prebuckled conical 
shel l  a r e  derived and i teratively solved. The applied method of solving 
permi ts  us  to  take into account any a rb i t r a ry  axially symmetr ic  p r e -  
buckling. 

The investigations descr ibed he re  principally apply a l so  to the 
conical shell  under outer p re s su re .  

1. 2 Glossary of Symbols 

bA Width of prebuckling 

B(YY c p o )  Differential opera tor  

Cik, c i k  

Dik 
E Modulus of elasticity 

f ,  Fi Fin S t r e s s  functions 

G Modulus of rigidity 

h 

hk Height of the cone 

M Y )  Differential  opera tor  

m 

Stretching and shear ing rigidity p a r a m e t e r  

Flexural  st iffness and tors ional  st iffness 

Distance between the equidistant intermediate  points 

Number of the equidistant intermediate  points 

2 



I 

11 

NV 

W 

WA 

Number of bucklings. along the generatr ix  

Section momentum 

Edge momentum 

Number of bucklings in  the direction of c i rcumference 

Section forces  

Edge forces  

Section force parameter  No = 

Dimensionless loadparameter Nv = - 

2 2  
s 1  e 

Nse D11 
-No 
2x 

Deformation parameter  of the basic state of s t r e s s e s  

Transve r sa l  edge forces  

Inner p r e s s u r e  

Dimensionless inner p r e s s u r e  parameter  

Axial load 

End radi i  of the cone 

Coordinate along the generatr ix  

Length of the generatr ix  to the ends of the cone 

W a l l  thickness of the shell  

Local displacement of a point along the generatr ix  

Local displacement of a point in the direction of 
the circumference 

Local displacement of a point perpendicular with 
respec t  to the central  surface of the shell  

Predeformation perpendicular with respect  to the 
cent ra l  surface of the shell  

z Dimensionless coordinate along the generatr ix  

z =  Qn-  S 

S 1  

3 



ZO 

Z A Po  sition of the p rebuc kling maximum along the 
gene r a t  r ix 

a Half-angle of the cone 

vse  
E S  I € 8  

Shearing of a shell  element s de d s  

Stretchings of the cent ra l  surface of the shel l  

rl 

e,  G 
k 

n 
sin a 

- - -  

Circumference coordinates e = 5 sin a 
- m k  

ZO 

-- 
- -  

ks,  keg k s e  Curva tures  of the cent ra l  surface of the shell 

x 

V 

s1  cot a Shell pa rame te r  X = 

Poisson ' s  ra t io  

n 
Index ( 

Potential  energy of the deformed shel l  

)O for s t r e s s e s  and deformations designates the s ta te  of the 
basic s t r e s s e s  

Index ( ) 1 de signate s the additional s t r e s s e s  and deformations 
occurring in  the instance of buckling. 

2. Basic Equations of the Orthotropic Conical Shell 

2. 1 The Law of Elasticity of the Orthotropic Shell 

The geometr ical  designations used in  the investigations a r e  
Each point of the cen t r a l  surface of the shel l  can given i n  Figure 1. 

be fixed by the distance s and the circumferent ia l  angle e ;  s and the 
angle O--where 8 = 6 s in  a - - r ep resen t  the polar  coordinate sys tem of 
the development of the shell. The a r r o w s  of the coordinate axes  point 
in the direction of positive values. Because of the s ingular i t ies  
occurring at  the tip of an axially loaded cone only truncated cones a r e  
investigated. 
uniquely determined by a, SI, s2. 

The geometr ical  configuration of a truncated cone i s  

The  law of elasticity of the orthotropic shell ,  the ma in  axes  of 
rigidity of which coincide with the coordinate axes  s and 8, can  be 
stated in  decoupled fo rm f o r  the section fo rceSNs ,  N e ,  N s e  and f o r  

4 



Figure 1. Dimensions and Designations of the 
Truncated Cone 

the section momentums M,, Me,  Mse utilizing the usual a ~ s u m p t i o n s ~ ~ 9 ’  
f o r  the investigation of plates and shells. 
momentums with positive sign a r e  indicated f o r  an element of the shell. ) 

(In Figure 2 the forces  and 
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Figure 2. Section F o r c e s  and Section Momentums on an 
Element of a Conical Shell 

Here  cS and €8 represent  the expansions of the cent ra l  surface of the shell  
in  the direction of the genera t r ix  and i n  the direct ion of the c i rcum-  
ference.  
2) .  
face of the shell. 
the Dik the flexural and tors ional  r igidit ies.  

yse is the shear  of one element of the shel l  s de  d s  (F igu re  
ks and ke are the curva tures ;  kse i s  the tors ion  of the cen t r a l  s u r -  

The Cik designates the expansion and shea r  rigidit ies,  

In the fur ther  investigations, the first e las t ic i ty  equations of (2.  1) 
a r e  used i n  inverse f o r m  

[:I 
NS e 

where the relation between the c i k  and the Cik is  given by the following 
equations: 

6 



c 22 e,, = 
c11 c 2 2  - c,"z 

t 

1 -c12 

c11 c 2 2  - c12 
e 1 2  = Y e33 = 

2 c 33 

F o r  the isotropic conical shell, the rigidity pa rame te r s  assume 
the values 

where t designates the wall  thickness, E the modulus of elasticity and 
G the modulus of rigidity, and v i s  Poisson's ratio. 

2. 2 The Kinematic Relations 

The expansions of the central  surface of the conical shel l  
utilizing the essent ia l  m e m b e r s  of second o rde r  i n  the displacement 
derivatives5 and taking into account the predeformation can be 
expressed by the following relations: 

1 
awA aw 

as 2 as  as 

2 
h S  = - a U  +l (g) + - - ,  

1 t 11 - w c o t  a 
S ' W  

Here  u,  v, w designate the local displacements of a point along 
the generatr ix  in  direction of the circumference and perpendicularly 

7 



with respect  to the cent ra l  sur face  of the shell  (F igure  1). 
init ial  deformation) represents  a predeformation of the shel l  perpen- 
dicular with respec t  to the cent ra l  surface of the shel l  i n  the same 
sense of direction as  the displacement w. 

WA ( A - 

The displacement-expansion relations of the ideal  conical shel l  
(WA = 0) reduce to  the famil iar  equations of the theory of thin plates24 
for  the case  a = 9 0 "  (sl-rl, ~ 2 - 1 - 2 ,  ds-dr) .  

Making the t ransi t ion to the cylinder ( 0 - 0 ,  s-00, s s in  a-R, 
d s h d x )  f rom (2 .  5) ,  the relations follow which Margue r re '  and Donnell' 
have derived f o r  the predeformed cylinder shell. 

With Donnell 's simplifications extended for  the conical shel l5 ,  f o r  
the curvatures  of the cent ra l  surface of the shell  follows 

1 aw 1 a 2 w  
ke = - -  

s a s s2  sin a 

By means of the equations of elasticity (2.  1) and the relations (2.  5) 
and ( 2 . 6 ) ,  the section fo rces  N s ,  N e ,  N s e  and the section momentums 
M s ,  Me,  M s e  can be expressed with the displacements  u, v, w, and 
their  derivatives. The differential  equations f r o m  which the displace- 
men t s  u, v,  w can  be determined can be der ived f r o m  equilibrium 
considerations on the deformed shell  e lement  o r  by means  of the 
calculus of variations f rom the energy. 
second way i s  used. 

In the present  discussion the 

2. 3 The Potential  Energy of the Deformed Conical Shell 

The total  potential energy of a conical she l l  deformed by edge 
loads and inner  p r e s s u r e  

I ( 2 .  6)  . -  I 

J 
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I -  

I .  

i s  composed of the following contributions: The expansion energy of 
the cent ra l  surface of the shell 

the bending energy 

the potential of the edge load at  the edges s = constant 

the potential of the edge load at  the edges 5 = constant 

and of the potential energy of the inner p r e s s u r e  

9 



- 
where fis. . , as. . , Q s .  . , 0 0  are the edge loads. 

2.4 The Differential Equations of the Stress. and Deformationstate  I 

-~ 2.4. 1 Derivation of the Differential Equations I 

The sys tem of differential  equations descr ibing the 
state of the s t r e s s e s  and deformation of the orthotropic conical she l l  
is derived via the potential energy, the f irst  variation 6 ll of which m u s t  
go to zero f o r  a l l  s ta tes  of equilibrium of the deformed shell. 
(2.  5 ) ,  (2 .6) ,  and (2 .7)  and the substitution (2.  8),  

With 

the f i r s t  variation of the total  energy is  formed and is a r ranged  accord-  
ing to the displacement differentials 6u, 6v, 6w. I 

In  o rde r  to sat isfy 6 II = 0 ,  the double integrals  over  the su r face  of I 

the shell have to vanish individually since 6u, bv, and 6w a r e  independent 
vir tual  displacements. 
ditions: 

This leads to the following equilibrium con- 

7 
- - a (sN,)  t N e  - - a N s e  = o  

a s  ae 

a s  a - N e  cot a -- a e  a [+Ne (E t %)I 1 ( 2 ' 9 )  

Mse t p e s  = 0. a 
as  

The boundary conditions at the edges s = constant and 8 = constant 
a r e  obtained f r o m  the single integrals  i n  6l-L 
ditions a t  the upper ( s = s1) and lower ( s  = s 2 )  edge of the shel l  
fo  IIOW s : 

F o r  the boundary con- 

10 



I -  

Me t s N s  (* t -) t N s g ( s  t -) 
a s  as ae 

I -  

Ms =Gs 

o r  6u = 0 

o r  6v = 0 

F o r  the closed conical shell  (0  < 8 d 2rr sin a), which is t reated here ,  
the boundary conditions at the edges 8 = constant a r e  replaced with the 
periodicity requirement with the period   IT s in a. 

In  (2. 10) the general  static and geometrical  boundary conditions of 
a conical shel l  a r e  given for a rb i t ra ry  edge loads. 
investigations a r e  res t r ic ted to shells under axially symmetr ic  load 
(axial load and inner pressure ,  Figure 3 ) .  

The fur ther  

P 

Figure 3 .  The Load of the Conical Shell 
Investigated 

Corresponding to the tes t   condition^'^, the following necessary  
geometr ical  conditions shall apply to the edges of the shell caused by 
the s t i f f  end-disks bordering the shells at the edges s = s1 and s = s 2  
(F igure  4): 

11 



u - w cot a = 0. (2.11) 

- I  

Figure 4. Displacement of the Lower Edge of the Cone 
( s  = s 2 )  for  Constant Radius of the End 

For  such a conical shel l  under axially 
ing axially symmetr ic  boundary conditions 
s = S I  and s = s2. 

U 
w = const =- 

cot a, 

M s  = 0 

o r  

= o  aw 
a s  
- 

Ns = N, 

o r  

u const 

v = o  

symmetr ic  load, the follow- 
a r e  obtained a t  the edges 

In o r d e r  to be able to investigate the effect of the boundary con- 
ditions on the buckling load, the condition (2a)  - -pin- jointed edge- -as  
well  a s  the  condition (2b) --fully res t ra ined  edge-- is  taken into account 

12 



/ in  the fur ther  considerations. 
to  the t e s t  conditions13 since the shell  has  been lap-glued to the end 
disks.  The sys tem of different ia l  equations (2 .9)  ,with the boundary 
condition (2. 12) generally descr ibes  the s t r e s s  and deformation s ta tes  
of the axially loaded orthotropic conical shell. 

The boundary condition (2b) corresponds 

These a re :  

1) The state of the shell  before  buckling--here called basic  s ta te  
of the s t r e s ses .  

2) The s ta tes  of equilibrium a t  the branching point start ing f r o m  
which the shell  buckles to  as sume another configuration- - the edge load 
RS of the branching point is  called cr i t ical  load o r  buckling load in  the 
fur ther  investigations. 

3) The postbuckling range. 

The following considerations a r e  res t r ic ted  to  the determination 

F o r  these s ta tes  (1  and 2) special  fo rms  of the sys tem of 
of the basic  s ta te  of the s t r e s s e s  and to the determination of the branch- 
ing point. 
differential  equations (2.  9) can be given. 

First the state of the shell  p r io r  to buckling shal l  be investigated. 

2.4. 2 The Differential Equations for  the S t r e s s  and 
Deformation State P r i o r  to  Buckling 

In the fur ther  investigations a predeformation WA( s) 
is  taken into account which i s  independent of 0 and includes the special  
case WA = 0 (ideal cone). 

Considering f i r s t  the state of the shel l  for  smal l  load (axial  load and 
inner  p r e s s u r e )  it can  be assumed that the s t r e s s e s  and deformations 
a r e  s m a l l  of first order .  
ized. 
conditions (2.  12) only one solution exists. -Under the given boundary 
conditions (2. 12) the solution is  independent of the circumferent ia l  
angle e, it i s  axially symmetr ic .  
tions of the isotropic conical shell  obtained f r o m  (2.  9) by linearization, 
a solution in  closed f o r m  is given in Section 3. 1 of this  paper.  

Thus the system of equations (2. 9) is l inear-  
F o r  the sys tem of l inear  differential equations with the boundary 

F o r  the sys tem of differential  equa- 

I n  the following pa r t  of the paper, the axially symmetr ic  basic  
s ta te  of the s t r e s s e s  shall  be investigated f o r  large loads a s  well  ( e .  g . ,  
in the region of the buckling load). 
basic  equations--corresponding to equation (2 .  9 ) - - a re  taken into account. 
Because of the axial symmetry ,  all derivatives of the section forces  and 

Thus the nonlinear m e m b e r s  i n  the 

13 



sect ionmomentums and deformations with respec t  to 8 go to zero.  
Thus the sys tem of different ia l  equations (2. 9) simplifies 

1 

with the boundary conditions (2. 12). 
section momentums, and displacements designates the basic s ta te  of 
the s t r e s ses .  

The index ( ) o  of the section forces ,  

NSeo E 0 and vo = 0 (2. 14) 

r e  spec tive ly. 

Due to  the axial  symmetry  of the s t r e s s e s  anddeformat ions ,  vo 

The two 
and Nseo become identically zero.  
(2 .  13. 2) and the boundary condition (2 .  12.4) a r e  satisfied. 
differential equations (2.  13. 1) and (2.  13. 3) represent  the basic  equa- 
tions of the axially symmetr ic  state of the s t r e s s e s  which in the fu r the r  
investigations shall  be descr ibed by the section fo rces  Nso  and the 
displacement wo . 

Thus the differential  equation 

F r o m  equation (2.  13. 3), the section force Neo can  be  eliminated 
by means  of (2 .  13. 1). After integrating once f r o m  (2. 13. 3) follows 

t a) t d ( s M s o )  - Meo t 7 1 2  p s  t KO = 0 ,  
d s  d s  

(2. 15) 

where  KO designates an integration constant still to  be determined. 
additional differential equation, the compatibility condition f r o m  the law 
of elasticity ( 2 . 2 )  is der ived by replacing the expansions E S O  and € e O  
with the displacements uo and wo corresponding to  (2.5) and by then 
eliminating UO. 
that 

AS 

Taking into account the relationship (2. 13. 1) i t  follows 

14 



(2. 16) 

With (2.  1) and(2.  6), Mso and Meo in  (2.  15) a r e  replaced with the 
displacement wo and its derivatives.  
differential  equations f o r  Ns,  and wo a r e  obtained i n  which wo appears  

(f; ; 9 = 1, 2,  3 and the only i n  its derivatives with respec t  to s - 
axially symmetr ic  prebuckling WA only in the f o r m  dwA/ds. 

Then two coupled nonlinear 

1 
To reduce the o r d e r  of the differential equation (2. 15) it is thus 

substituted: 

(2. 17) 

The result ing sys tem of differential equations i s  fu r the r  simplified 
by the coordinate t ransformation 

z 
s = s ,  e 0 < z  < Z O  

zo =en(%) 
(2. 18) 

A sys t em of two nonlinear coupled differential  equations of second o r d e r  
fo r  qo and Nso is obtained, 

1 
D11 q'l, - D22q0 = sle '  [slez Nso (co t  a t qo t q d  --ps;ezZ 2 - KO] , 

(2. 19) 

d (  1 where  ( ) I  =- 
dz e 

Introducing the dimensionless functions No and Qo , the new 
p a r a m e t e r s  (C22, C11, C12; Dl l ,  D12, D22; s1 Z O ,  cot a) essent ia l  f o r  
the behavior of the solution of (2. 19) with the boundary conditions (2.  12) 
can  be combined to six character is t ic  quantities (Cll/C22, C12/C22, 
D22/D11, D1z/Dll, z o ,  1). With the substitution 
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sys tem (2. 19) becomes 

1 '  
No = - eZQo (x t 7 Qo t c11 "b - - c 22 

where 

s1 cot a x =  

KO = 
2 cot a 

(2.20) 1 
(2.21) 

(2.22) i 
The solutions No and Qo of the sys tem of differential  equations 

(2.21) must  satisfy the boundary conditions (2. 12. 1) and (2. 12. 2). 
to  the axial symmetry--vo = 0--condition (2. 12. 1)--  wo = uo/cot a-- 
m e a n s  that the circumferent ia l  expansion c o o  at the edges z = 0 and 
z = zo becomes zero.  
and the coordinate t ransformation (2. 18), the boundary conditions 
(2.  12. 1) and (2. 12. 2) a r e  expressed by the var iables  No and Q o :  

Due 

With the aid of the substitution (2. 17) and (2.20) 
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I -  

I .  

C22 N'O t C12 No = 0 

( this  means  Eo0 = 0 )  

Di2 Qo = 0 Dii  Qb 

(pint jointed edge) 

1 

(fully res t ra ined edge) 

F r o m  the condition (2. 12. 3a) and (2. 12. 3b) respectively,  the 
integration constant KO in  (2.21) is determined. 
axially symmetr ic  s ta te  of the s t r e s ses  up to  buckling which will  be  
investigated i n  this portion of the paper fo r  each edge load mo there  
exists a one-to-one correlat ion of an  edge displacement Eo. F o r  the 
numer ica l  evaluation Eo is  given, and f r o m  the solution of the sys tem 
of differential  equations (2.21) the edge displacement Ti0 and the edge 
load Eo a r e  determined. 

F o r  the range of the 

The determining equation f o r  the displacement wo perpendicularly 
with r e spec t  to the cent ra l  surface of the shell  is derived f rom the 
relat ion (2. l?), 

(2.  24) 

Without affecting the generality, the integration constant K1 can  be set 
equal to zero.  
shel l  is  deformed, while the edge z = z o  can move (F igure  4): 

This means  that the edge z = 0 is  retained while the 

z = o :  wo = o  and uo = 0 
(2. 25) - 

and - UO z = z o :  wo = w o  = - 
cot a 

UO = Eo 

2.4. 3 The Svstem of Differential Eauations f o r  the Additional 
S t r e s s e s  and Deformations at the Branching Point 

The axially symmetr ic  basic  s ta te  of the s t r e s s e s  which 
has  been descr ibed i n  the las t  section is maintained a s  long a s  the edge 
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load R;Jo is sma l l e r  than the c r i t i ca l  load FJcr. When reaching the 
c r i t i ca l  load (branching point) at least  two positions of the equilibrium 
exist ,  one axially symmetr ic  (identical  with the basic state of the 
s t r e s ses )  and one m o r e  o r  l e s s  nonaxially symmetr ic  ( s ta r t ing  of 
buckling). 
r ende r  the basic state of the s t r e s s e s  unstable; a nonaxially symmetr ic  
state of equilibrium is assumed. 

At the branching point the smal les t  external  perturbations 

In this portion of the paper the sys tem of differential  equations 
shall  be derived f rom which the nonaxially symmetr ic  s t r e s s e s  and 
deformations occuring for  buckling can  be determined. 

With the equation of elasticity (2. l ) ,  the relations concerning the 
state of deformation (2. 5) and ( 2 . 6 ) ,  and the equilibrium relat ions 
(2.  9),  the section f o r c e s  Ns,  Ne ,  Nse,  the section momentums Ms ,  
Me, Mse,  the deformations E S, €0 ,  yse, ks, ke,  kse,  and the d is -  
placements u, v, w can be determined for  every  state of equilibrium 
of the shell. By introducing a s t r e s s  function, 

(2. 26) i 
which, corresponding to equation (2. 26), is  defined i n  such a way that 
the two f i r s t  equations of (2. 9) a r e  identically satisfied; the sys tem of 
nonlinear par t ia l  differential  equations can  be reduced to two equations 
fo r  the s t r e s s  function f and the displacement w. The first re la t ion f o r  
f and w follows f rom equation (2.9. 3) by expressing the section momen- 
tums by means  of the law of e las t ic i ty  (2. 1) and by means  of the equa- 
tions (2 .6)  by w and its der ivat ives ,  and the section fo rces  a r e  e l imi-  
nated by means  of (2 .6) .  

Due to the condition of compatibility, the second differential  equa- 
t ion for f and w i s  given. F r o m  the relat ions concerning the s ta te  of 
deformation (2.  5 ) ,  u and v a r e  eliminated. The expansions 6s and €8 
and the shear  yse  a r e  replaced by m e a n s  of the law of e las t ic i ty  (2. 2) 
and. the substitution (2. 26) with the stress function f. Equation (2.9.  3) 
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and the condition of compatibility form a system of two nonlinear, 
partial differential  equations of fourth o r d e r  i n  s and 8 f o r  the s t r e s s  
function f and the displacement w: 

t -  1 - a 2 f )  ( a a  + a2wA) 

s2 ae2 as2 as2 

(2. 27) 

- -  a2w [: ( , , tat  
a s2 2 a s  a s  

Lo(y) r ep resen t s  a l inear  differential  operator:  

1 a3y 1 a2y 1 a Y  
- P y  - - + P y -  - 

a s4 s as3 s2  as2 s3 as 

Lo(y) = "y - a4Y t 2 a y  -- 

where  

19 



Pw = D 2 2  Pf = c11 

The boundary c'onditions for  the system (2 .  27) a r e  given in  (2. 12). 

The system of differential equations (2.  27) generally describing 
the states of s t r e s s e s  and deformation of the orthotropic conical shel l  
ag rees  with the system of differential equations given by Schnel15 f o r  
the ideal isotropic conical shel l  (WA =.O). 

As described in  Section 2.4.  2 ,  the conical shel l  first deforms 
axially symmetrically fo r  the given geometrical  boundary conditions 
and under the load of axial  load and inner pressure .  When reaching 
the c r i t i ca l  load nonaxially, symmetr ic  contributions a r e  added to  the 
axially symmetr ic  s t r e s s e s  and deformations so that f o r  the branching 
point i t  can be set: 

(2. 28) 

where fo  and wo designate the s t r e s s e s  and deformations of the axially 
symmetric basic state of the s t r e s ses .  
symmetric s t r e s s e s  and deformations which are added when making the 
transit ion t o  the buckled state. 
in  the system of differential equations (2. 27) it i s  obtained: 

f l  and w1 a r e  the nonaxially 

If these expressions (2.  28) a r e  inser ted  
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Lo (mot  w1) = (- 1 - a f l  t - 1 -t afo - 1 - a 2 f j  (a2wl t a2wo t a2WA) 

a s2 a s2 a S' 2 s a s  s a s  s ae2 

and 

Lo (fo + fl)  

t - 1 -1-p  azwl 
s Z  aez  

(2.29) 

1 awl 1 aw0 - (a;; - + -  2 0 )  [;(cot a tz as -I- as 

~ 

The axially symmetr ic  contributions f,3, wo may  be expressed with 
the relat ions (2.  26) and ( 2 .  17) by Nso  and 9 0 .  

F o r  the branching point, system (2. 19) can be split into two de ter -  
mining equations for  Nso  and qo (and f o  and w o ,  respectively)--identical  
with equations (2.  19) of the axially symmetr ic  state of s t r e s s e s  and 
deformations- -and into two determining equations f o r  the nonaxially 
symmet r i c  contributions f l  and w1 which may  be writter! i n  the following 

i 
I 
I 
I form:  
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1 a f l  1 a2f l  ,. Nso) 2 ( 3 0  L 0 ( W l )  =(; - + - - 
as  

s 2 ae2 as 

and I 
1 azWl 1 1 - a2wl t - -  1 aso 

q o ) ( ~  as  2 as s s s ae2 s 
Lob1) = -(: t - - t - 

2 

(2. 30)  I 

If we r e s t r i c t  ourselves  to the determinat ion of the buckling loads, 
it can  be assumed that in  the region of the branching point the functions 
f l  ( s ,  e) and w1 ( s ,  e) as well  as their  der ivat ives  a r e  sma l l  of first 
order .  Neglecting m e m b e r s  of second o r d e r ,  the following sys tem of 
l inear  differential  equations i s  obtained fo r  the nonaxially symmetr ic  
contributions f l  and w l .  

\ 
~ o ( W 1 )  = ~o (wi , s  sol + BO ( f i  , cot  a -+ qo + q A )  

~ o ( f i )  = - B O  (w1, cot  a t qo t qA) 
(2 .  31) 

where Bo ( ~ 1 ,  90)  r ep resen t s  the following different ia l  operator :  
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In o r d e r  to obtain an overa l l  picture of the essent ia l  pa rame te r s  of 
the sys tem,  dimensionless functions F1 and W1 a r e  introduced. 

With equations ( 2 .  20) with the substitution 

( 2 .  32) 

and with the coordinate t ransformation ( 2 .  18), the sys tem of differential 
equations (2 .  32) becomes 

( 2 . 3 3 )  

where  

t I.. PY (yl  + 2y;' + ) r q  (4) - a Y  + P Y  
L1 (Yl) = Y1 Y1 +E y1 

aY aY aY 

i s  a different ia l  operator  with the constant coefficients 

O F  = c 2 2  3 P F  = c l l  9 yF = 2 c 1 2  + c 3 3  

and 

In  ( 2 .  33 )  the differential quotients a ( ) /az  and a ( ) /a0 have been 
replaced with the following symbols: 

a (  ) = ( ) I  and -- a ( ) - ( )  . 
a2 ae  
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The determination of the nonaxially symmetr ic  s t r e s s  and defor- 
mat ion and contributions F1 and W1 is  per formed under the condition 
that i n  the instance of buckling--during the transit ion f r o m  the axially 
symmetr ic  basic state of the s t r e s s e s  to an infinitesimally adjacent 
nonaxially symmetr ic  s ta te  of the equilibrium--the axial edge load Es 
(2.  12. 3a) and'the rad ia l  edge displacement W (2. 12. 1) remain  constant. 
The axially symmetr ic  s t r e s s  and deformation contributions No and Q o  
sat isfy the boundary conditions corresponding to  (2.  12) .  
additionally occurring nonaxially symmetr ic  s t r e s s e s  and deformations 
appearing i n  the instance of buckling m u s t  satisfy the following homo- 
geneous boundary conditions at the edges z = 0 and z = z o :  

Thus the 

o r  

W,' = 0 

(Ns)l = 0 ( 3 )  

v1 0 (4) J 
Index ( )1  designates the additional s t r e s s e s  and deformations 

occurr ing in  the instance of buckling. 

From the boundary condition (2 .  34. 1)--Wl = 0 ,  i. e . ,  a l so  a W l / a e  
= 0--and condition (2 .  3 4 . 4 ) - - v l  = 0 ,  likewise avl /ae  = 0-- i t fol lows,  due 
to the necessary geometr ical  condition (2.  17), that for  the edges z = 0 
and z = z o  

  EO)^ = 0 and because (Ns)l = 0 it follows that 1 = 0.  (2 .  35) 

With the aid of the law of elasticity (2.  l ) ,  the definition of the s t r e s s  
function (2 .26) ,  and the substitution ( 2 .  32) f r o m  ( 2 .  34) and (2.  35), the 
following boundary conditions for  functions F1 and W1 can be formulated: 

24 



w1 = o  

o r  

(2. 36) 

Since the system of l inear  par t ia l  differential equations (2 .  33) a s  
well  a s  the boundary conditions (2.36) a r e  homogeneous, the de te r -  
mination of the nonaxially symmetr ic  s t r e s s  and deformation contr i -  
butions F1 and W1 is  an eigen-value problem. F1 and W1 a r e  the 
associated eigen functions; the axial  edge load No (and the edge d is -  
placement uo o r  the constant EO, respectively) of the axially symmetr ic  
basic  s ta te  of the s t r e s s e s  r ep resen t s  the eigen-value of the system. 

To solve the sys tem of differential equations (2 .  33), the functions 
F1 and W1 which a r e  periodic with   IT s i n a  in  the direction of the 
c i rcumference  a r e  expanded with = n / s i n a  into s e r i e s  of the f o r m  

00 

F~ = F ~ ,  ( z )  C O S  T e  
n= 1 

M 

(2.37) 

and a r e  inser ted  into the system of differential equations (2. 33). By 
comparing the coefficients, sys tems of l inear ,  homogeneous ordinary 
differential  equations a r e  obtained, 
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(2 .  38) 

represent  the ordinary differential 
operators  , 

The functions Fln (z)  and W1n ( z )  have to satisfy the following 
boundary conditions according to (2.  36): 

o r  ( 2 . 3 9 )  1 
For  each n (number of bucklings i n  the direct ion of the c i r cum-  

ference in the instance of buckling) a sys tem of differential  equations 
(2.  38) with the boundary conditions (2 .  39)  ex i s t s ,  the solutions of 
which Fin and Win represent  the eigen functions with the associated 
eigen-value No (n).  
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3. Solutions and Solution Methods 

3. 1 Exact Solutions of the Simplified Svstem of Differential * 

Equations for  the Axially Symmetric State of S t r e s ses  and 
Deformation 

The determination of the buckling s t r e s s ,  i. e . ,  a solution of 
the system of differential  equations (2.38), a s sumes  the knowledge of 
the axially symmetr ic  s t r e s s e s  and deformations (No, Q o )  of the 
unbuckled region--here  called the basic s ta te  of s t resses- -cor responding  
to equation (2. 21). 
of the axially symmetr ic  s ta te  of s t r e s s e s  and deformations can be 
solved l inearly and i n  closed form. 
differential  equations of the conical shell (2.21) remains nonlinear 
even in  the axially symmetr ic  case.  
nonlinear system of differential equations for  the basic  state of the 
s t r e s s e s  i s  not possible with the known methods. Therefore ,  f i r s t ,  
two methods shall  be stated ( a  and b) by means  of which solutions fo r  
No and Qo can be found when the system of different ia l  equations is 
simplif i ed. 

For the cylinder shell3, the different ia l  equations 

The corresponding system of 

A general  closed solution of this  

a) Diaphragm s t r e s s  s ta te  

Under the assumption that the deformations of the shell  
perpendicular with r e spec t  to the central  sur face  of the shell  a r e  con- 
s tant  over the ent i re  shell  of the cone--this means  that QO i s  identically 
zero--and that no prebuckling occurs  (QA = 0), No is determined from 
equation (2. 2 1. 2) : 

With the abbreviations (2. 20) and (2. 22), th is  becomes 

1 S KO Nso - - - p - t  8 

2 c o t a  s c o t a  

(3.1) 

(3.2) 

the solution for  the flexural-free state of diaphragm s t r e s s  correspond-  
ing to Schne11's5 Equation (2) and Schiffner's8 Equation (7) i f  the axial 
load (F igu re  3) is set 

2 p =-2.rrsin a KO . (3.3) 

F o r  Ne0 follows then f rom equation (2.  13. 1): 
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(3.4) 

The diaphragm s t r e s s e s  Nso and N%corresponding to equations 
(3.2)  and (3.4) sat isfy the equilibrium conditions (2.  13) and the 
boundary conditions 

. I  

- 
Nso = Ns at  the edges z = 0 and z = z o  , 

not, however, the compatibility condition and the boundary condition 

investigated here .  
= 0 and thus are no valid solution of the boundary value problem 

E 8 0  

b) Linearization of the System of Differential Equations 

F o r  smal l  edge loads and smal l  
deformations and s t r e s s e s  of the ideal  cone 
order .  If ,  therefore ,  the sys tem of 
l inearized- -this l inearization means  a neglect of Qo compared with 1- - 
the following system of differential  equations i s  obtained: 

the 

(3.5)  

and af te r  eliminating Qo, respectively 

Equations (3.5)  and (3 .6 ) ,  respectively,  correspond to the dif-  
25 ferent ia l  equations of the l inear  bending theory 

s t r e s s e s  and deformations (container theory).  
fo r  axially symmetr ic  

For the isotropic conical shel l  the rigidity p a r a m e t e r s  of which 
may  assume the value C11/C12 = D22/D11 = 1 according to (2.4) the dif-  
ferent ia l  equation (3 .6)  can  be solved i n  closed form.  
cylinder she l l ,  the par t icular  solution of ( 3 .  6) is  identical  with the 
diaphragm s t r e s s  (3 .  1). 

As f o r  the 

Together with the solution (modified cylinder 
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16 function- -Kelvin function 1 of the homogeneous different ia l  equation 
it is obtained 

+ K3 her2 (2&) t K4 heiz ( 2&) (3.7) 

F o r  the range of pa rame te r s  (Section 4. 1) investigated here- -  
argument x = 2 f i >  l o 3 ,  o rder  T = 2--these functions a r e  not tabulated. 
However, Jahnke16 gives a f i r s t  approximation of the Kelvin functions 
for  the pa rame te r s  x >> 1, x >>V2. Inserting this approximation into 
solution (3. 7) f o r  No is obtained 

Here  the constants El, R z ,  K T 3 ,  E4 a r e  to  be determined f r o m  the 
boundary conditions (2.23) and Ro f r o m  the condition (2 .  12. 3a) o r  
( 2 .  12. 3b). 
then the edge load To and the edge displacement Go is  calculated, 
respectively. 

F o r  the numerical  evaluation, however, Ro is given so that 

The approximate solution (3.7) and (3 .  8 ) ,  respectively,  of the 
l inearized system of differential  equations f r o m  (2.  21) represents  a 
good approximation for  the basic state of the s t r e s s e s  f o r  smal l  
edge loads and smal l  inner  p re s su re .  
determining the buckling load since the system of differential  equa- 
t ions (2.  31) fo r  the additional s t r e s ses  and deformations f l  and w1 
appearing in the instance of buckling has been derived under the con- 
dition that No and QO (and Nso and wo, respectively) a r e  solutions of 
the nonlinear system of differential equations (2.  2 1). 

However, it cannot be used for 

3. 2 Approximate Solution of the Linear Buckling Equations by 
Means of the Energy Method 

In the following portion of the discussion, the state of the 
diaphragm s t r e s s  (3.  1) described in  Section 3. 1 shall  be applied to 
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the determination of the buckling load. 
(3. 1) into the system of differential  equations (2.  38), the buckling equa- 
tions of the l inear  theory of shells is obtained: 

~2 (win) = 132 (win 9 NO) + ~2 ( F i n ,  1) 

Inserting the diaphragm s t r e s s e s  

( 3 . 9 )  

The system of differential equations agrees  with the buckling equa- 
tions given in several  sources  5p6’8’ 12’ ls provided the appropriate sub- 
stitutions are observed. 

Except f o r  the special  ca se  7 = 0 (r ing buckling) which has  been 
t reated by Seide15 f o r  the isotropic conical shel l  with the aid of fur ther  
simplifications,no solution in  closed fo rm is known for the system of 
differential equations (3.  9). 

I t  i s  stated once m o r e  that the state of the diaphragm s t r e s s  does 
not represent  an axially symmetr ic  solution of the shell  problem 
investigated he re  since the compatibility condition as well  as the 
boundary condition E o 0  = 0 a r e  not satisfied. 
according t o  the l inear theory has  only the a im to  der ive a reference 
parameter  for  the buckling loads calculated according to the nonlinear 
shell  theory. 

The fur ther  investigation 

Since a general  solution of the l inear  buckling differential  equa- 
tions (3.9)  is not known, an  approximate solution according to the 
energy method is  determined in  the following. An appropriate formu-  
lation f o r  the deformations perpendicular with respec t  to the cent ra l  
surface of the shell is  chosen, and f r o m  the condition of compatibility 
a s t r e s s  function is determined with the formulation for  Win. 
f r e e  values Ak of the formulation are determined f r o m  the condition 
fo r  the energy minimum arr/aAk = 0 corresponding to  the variation 
requirement 6rr = 0. 

The 

I 

- 1  

For  a basic state of the s t r e s s e s  according to  equations ( 3 .  2) and 
(3.4)--diaphragm s t r e s ses - - the  following expression is obtained f o r  
the total energy of the deformed shel l  in  the branching point.‘ 
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(3. 10) 

where the first two double integrals  represent  the deformation energy 
of the f o r c e s  and deformations occurring additionally during buckling. 
Since these additional fo rces  and deformations a r e  sma l l  of f i r s t  o r d e r ,  
the nonlinear contributions i n  E sl, E e l ,  y s e l  a r e  neglected 

F o r  the displacement Wln appearing i n t h e  instance of buckling 
perpendicular  with respec t  to  the cent ra l  surface of the shell, the 
formulat ion 

- Z  Eli 
Win = A e  sin k z with k =- 

=0 
(3. 11) 

i s  chosen. 
at the edges z = 0 and z = Z O ;  Win = 0 and cor responds  to  the so-called 
"checkerboard buckling configuration" with fi-half-wave,s in the longi- 
tudinal direct ion and n-wave s i n  the circumferent ia l  direction, where 
because of s = s1 ez the half-wavelength inc reases  along the coordinate 
s. F o r  a given W1, the stre 'ss function can be found f r o m  the compati-  
bility condition( 3.9.2) by integration. It is composed of a par t icular  solution, 

This formulation satisfies the boundary condition (2. 39. 1) 
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= A k R  ( cos  k z t k sin k z )  (Fin) P 

and of the solutions 

of the homogeneous differential equation. 

With these solutions the boundary conditions for  the stress function 
can  be satisfied. Investigations on isotropic conical shel ls ,  however, 
indicated that the effect of the boundary conditions on the buckling loads 
i s  small  according to the l inear theory. 
particular solution is taken into account. 

F o r  this  reason  only the 

Inserting ( 3 .  11) and (3.  12) into ( 3 .  10) and after integration, the 
total  energy of the orthotropic conical shel l  i s  calculated f r o m  ( 3 .  10). 

F r o m  the minimum condition 

= o  an 
a A2 
- 

in addition to the t r iv ia l  solution k2 = 0 (no buckling), 
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P - ' p k s l s i n  2 2  a 
- 

N s o  - - 
2 k s1 s i n a c o s  a 

2 - cot a 
1 t 4k2 Nso = - 

(1 - e-z3)(1 t 2k") 

A 

( 3 .  14) C11 (1 - 1')' t (C11 t CZZ k2 t Czz k4 t (2C1ztC33)kZq2 

4- e 2 0  - 1 
[ ( l t 2 k 2 ) ( l - e - z o )  t 4  q2] 

1 + 4 k 2  2 c o t a  

is  obtained for  the force at the edge z = 0 (tension positive according 
to  F igure  2) .  

A genera l  evaluation of ( 3 .  14) is  involved while by restr ic t ing to 
ce r t a in  shel l  pa rame te r s  equation (3. 14) can be essentially simplified. 
In the following only shel ls  shall  be  considered the geometry of which 
sat isf ies  the equation 

( 3 .  15) 

and the opening angle a of which i s  smaller  than 45 ( see  Figure 5). 

F o r  this  range of the shell  pa rame te r s  it is 

so  that it may  be se t  

k2 f 1 = k2 

2 2 q 1 1 - q  . 
3 3  



Figure 5. Possible  Cone Configurations With 
r z  / r l  = sz / S I  = 2 and e, Respectively, f o r  
Various Opening Angles of the Cone a < 4 5  O 

F r o m  ( 3 .  14) follows then 

2 2 k2 
N s o  - -- - z o  [T cot a 

1 - e  74 C 11 t C 11 k2 t C 22 k4 t (2C 12 t C 33)k2 7' 

t - 1 (1 - e-"') [Dll k2 t 2 (D12 t2D33)qz t D 2 2  

4 sl" 

If first the special  ca se  of the axially symmet r i c  buckling con- 
figuration ( r ing  buckling) is  investigated, i. e . ,  = 0, f r o m  



l -  

I 

a number of the half-waves in  longitudinal direction can  be determined 

k2 =&* 61 cot a -- c 11 

c 22 

( 3 .  17) 

with the associated ring buckling s t r e s s  

- - (ezo-  1) -!?!- . ( 3 .  18) 
cot a, 

t -(1 1 + e m Z o )  D22 (1 - 
2 s1 

F r o m  this formula i t  follows that the buckling load increases  
l inearly with the inner pressure .  
buckling stress of the l inear theory of stability stated by Schnel15 for  
the special  case  of the isotropic shell. 

This solution ag rees  with the ring 

The general  investigation of the buckling equation ( 3 .  16) is  
res t r ic ted  to isotropic and longitudinally reinforced orthotropic shells. 
F o r  these she l l s4 t  is  

and because of ( 3 .  15) 

F o r  a fur ther  calculation, i t  turns out to  be pract ical  to combine 
the orthotropic rigidities to  three rigidity character is t ics4,  lo, l1 : 

1 - 
(3. 20) 

$s = disc  character is t ic ,  GP = plate character is t ic  y N =  main rigidity 
character is t ic .  Equa- 
tion ( 3 .  16) can be fur ther  simplified with ( 3 .  19) and ( 3 .  20): 

F o r  the isotropic shell it i s  as = ap = Y N =  1. 
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where 

(3 .21 )  

2 

p2 k2 

Now the minimum buckling load is  determined i n  dependence of the 
wave number rat ios  10 and p. F r o m  

follows 

1 1 

In (3. 23) only the positive root i s  of significance since Xo < 0 
r e su l t s  in complex 155 and n which i s  geometrically meaningless.  
With (3. 22) it follows then that for  the c r i t i ca l  buckling load mCr 
(dimensionless load parameter )  

where 
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ps1 zo -e 
A cot a 
P =  

I 

F o r  the conical shells (20 d 1) considered here ,  the value of the 
root 9 ,  i s  about 1, 

and when making the transit ion to the cylinder (ZO - 0) it is  exactly 1. 

The ratio of the wave numbers  p, is  determined f r o m  the minimum 
condition a(rcr/ap2 = 0: 

( 3 .  24) 

F o r  a given orthotropic conical shell satisfying the geometrical  
requi rements  according to (3. 15) and the rigidit ies of which a r e  within 
the limits given by ( 3 .  19), f r o m  (3. 23) thk c r i t i ca l  buckling s t r e s s  Tcr 
can  be determined for  any inner  p re s su re  wherep2  is  to  be determined 
f r o m  equation (3. 24). 

Observing the pa rame te r s  matched to  the geometry of the cone 
equations, (3 .  23) and (3.  24) a r e  identical with the buckling conditions 
of the longitudinally compressed orthotropic cylinder shel l  discussed 
by Schnell” . 
investigated in  this paper. 

Therefore  equations (3.23) and (3. 24) a r e  not fur ther  
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3 .  3 Iterative Solution by Means of the Difference Method 

Closed solutions of the system of nonlinear differential equa- 
tions (2 .21)  for  the basic state of s t r e s s e s  and of the eigen-value problem 
(2 .  38)  fo r  the s t r e s s  and deformation contributions in the instance of 
buckling a r e  not known. 
problems ( 2 . 2 1 )  and ( 2 .  38)  is described in  this section of the paper.  
The derivatives with respect  to z and the differential operators  L(yIn) 
and B(yln, cpo) --generally described by 

Thus an  approximation method for solving both 

--appearing in  the sys tems of differential equations (2 .  21) and (2.  38)  
a r e  expanded into difference expressions of the form 

The u k  a r e  the function values a t  m equidistant intermediate points 
in the interval 0 < z < 2 0 .  The distance h between the points is  

The residual  member  0 (ha) gives the o rde r  of the f i r s t  nonvanishing 
member of G i f  the Taylor expansions a r e  balanced, i. e . ,  balancing has  
been performed up to the m e m b e r s  with h' inclusively. 
s ider  the axially symmetr ic  state of the s t r e s s e s  and deformation. 

We f i r s t  con- 

3 .  3. 1 Approximate Solution for  the Basic State of S t r e s s e s  

Finite expressions of the f o r m  

3 8  
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k= 1 

f o r  i = 1 , 2 ,  3 

ar'e derived fo r  the system of differential  equations. 
values No and Qo at the m intermediate points; 6u follows f rom the 
coefficients of the differential  equation (2.21). 

U i  a r e  the function 

The boundary conditions (2.23) a r e  taken into account in  the finite 
express ions  fo r  the edge-near points ( i =  1, 2, 3 ;  i = m  -2, m - 1,  m) in 
the f o r m  

h I  - u i  t u i = o  (i = 0 ,  i = m t 1). ku l !  

The fac tor  means  

- corresponding to  (2.  23. 1) kN=-- 1 c 2 2  

h c12 

- corresponding to (2. 23. 2a)  1 - D11 
h D12 

kQ = - 

3 9  



o r  

kQ = 0 - corresponding to (2 .23.2b) .  

I f  the differential equations at  any intermediate point a r e  replaced 
with the finite expressions formed according to equations ( 3 .  26) a 
sys tem of differential equations i s  obtained which can be combined to 
m a t r i x  equations l 7  : 

1 

(3.28) 1 
J 1 < i ,  k < m  

(a$) repre  sent quadratic ma t r i ces  

( j )  with the elements  a ik  
finite expressions (3.  25). 

which a r e  composed of the coefficients of the 

2 
(Qoi), (NO;), (Qoi Noi ) ,  (Qoi) t (ci) a r e  vec tors  the elements  Qoi 

and N o i  of which a r e  the function values Qo and No a t  the m intermediate  
points and the elements c i  of which are  determined f r o m  the equation 

(bkk) i s  a diagonal matrix 
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b 22 

- 
0 

b33 

d 

- 
Q O l ,  0 

Qo22 

Qo33 

0 

with the elements 

Fur thermore ,  the vector (Qoi Noi) can be replaced with 

(Qoi Noi) = 

Qo, No, 

Qo, No, 

Qo3 NO, 

whereby the following relation exis ts  between the elements Qoj of the 
vector and the elements Qojj of the diagonal ma t r ix  

F r o m  equation (3. 28. 1) vector (Noi) -can be eliminated with (3. 28. 2) 
s o  that a ma t r ix  equation$ (Qoi) i s  obtained for the vector (Qoi). 

This  nonlinear matrix equation i s  solved by means  of Newton's 
i teration: F o r  a vth approximation (Qo * ( V ) ) ,  the ma t r ix  equation6 
is  satisfied except for  the defects (Ai(V1). 

(3 .29)  

By m e a n s  of correct ions (A Qoi ( VI) which a r e  determined f rom the 
sys t em of l inear  equations 
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( 3 .  30) 

and a re  added to the vth approxim tion (Qo i  (’)), the nonlinear matrix 
equation ( 3 .  28) is i teratively solved step-by-step. 
car r ied  out until two successive approximate solutions differ by m o r e  
than a previously specified amount. 
i teration scheme can be given: 

The i teration i s  

In ma t r ix  fo rm the following 

1 

where 

(0) If the initial approximation of this  i terat ion is  set Qoi = 0 ,  the 
approximate solution Qoi(’) represents  a n  approximate solution of the 
linearized differential equations for  the axially symmetr ic  state of 
s t r e s s  and deformation according to equation (3.5) .  

3 .  3 .  2 Approximate Solution for  the Eigen-Value Problem 

The differential equations (2.  38) for  the determination 
of the s t r e s s e s  and deformations in  the instance of buckling a r e  replaced 
with difference expressions of the form given in  ( 3 .  25):  

4 2  
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(3 .  32) 

for  i = 1 ,  2 ,  3 , 4  

.[.(ui), B p i  ,,Oi)] tg aik u k  = 0 
k=i-4 

for  i = 5 , 6 .  . . m = 4  

- %+I ] = o  
l !  

I for  i = m - 3 ,  m - 2 ,  

1 

m - 1 ,  m J 
The Ui  a r e  the function values F1, and Win at m equidistant 

intermediate  points. 
basic  s ta te  of s t r e s s e s  have to be inserted.  

F o r  ' p o i  the s t r e s s e s  and deformations of the 

In ( 3 .  32) the homogeneous boundary conditions (2.  39) were  com- 
bined to the fo rm 

(3. 33) 
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F o r  the coefficients 9 l U ,  9 z U  it is then 

91, = 0 

meaning W1n = 0 

I I  1 

W1n t Wln = 0 D 11 

D11 t D22 
meaning 

o r  

1 1 

h 1 - q 2  
91F = -  - 

I I  

meaning Fin t (1 - v2) Fin  = 0 

I I I  

meaning F i n  t F i n  = 0. 

(2.39 

( 2.3  9.2a) 

( 2.3 9.2b) 

(3) 

(2.39.3) 

(4) 

( 2.39.4) 

- 1  

~ 

(3.34) 

F r o m  the difference equation at each  intermediate  point, a sys tem 
of linear equations fo r  the Flni  and W1ni is  obtained which is combined 
in  mat r ix  equations. 

where  

(3. 35) 

1 s i ,  k G r n  
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The elements bik(j) and Cik(j) of the m a t r i c e s  a r e  composed of the 
coefficients of the finite expressions.  
system of linear homogeneous equations (3.  35) exis t  only i f  the coef- 
ficient dete rminant vanis he s. 

Nontrivial solutions of this 

( 3 .  36) 

The c r i t i ca l  eigen-value i s  the smallest  edge load No with the 
associated displacement of the edge uo of the axially symmetr ic  state 
of s t r e s s e s  and deformation for  which the determinant  (3 .  36) become 
zero.  
bucklings in the direction of the circumference the absolute smal les t  
yields the buckling values (buckling load Noc r ) . 

Of the eigen-values determined fo r  var ious numbers  n of 

With the approximation methods given he re ,  the boundary conditions 
can  be completely taken into account without difficulty. 

F o r  the numerical  evaluation, the number m of the equidistant 
intermediate points--i.  e . ,  the number of the unknowns--is increased 
as long a s  the difference of the cr i t ical  values of two successive 
approximations Nocr (n ,  m) - Nocr (n ,  m t 1 )  stays above a given e r r o r ’  
limit. 

4. Numerical  Evaluation and Discussion of the Resul ts  

4 .1  Dimensions of the Shell and Pa rame te r s  

The sys tems of differential equations (2 .  21)--for the de t e r -  
mination of the basic state of s t resses- -and  (2.  38)--for the de te rmi-  
nation of the c r i t i ca l  load- -with the associated boundary conditions 
(2 .  23) and ( 2 .  39) contain the following eight pa rame te r s  

Dl2 c 12 

c 22 D11 
and - , - 

which are  composed of the three geometrical  charac te r i s t ics  s l ,  2 0 ,  
and cot  a and the eight rigidity parameters  C22, C 1 l ,  C12, C33, D l l ,  
Dz2, D ~ z ,  and Dz3. 
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For  the isotropic conical shell, the rigidity pa rame te r s  of which 
a r e  given in  equations (2.4), the eight pa rame te r s  reduce to  

J'm, v ,  
SI cot  a 

z o ,  x = 
t 

The mentioned shell  parameter  X is identical with the cone cha r -  
acter is t ic  stated by Weingarten e t  a l l4 .  
systems of differential equations ( 2 .  21) and (2.  38) with the boundary 
conditions (2.23) and (2.  39) A is  not sufficient, however, fo r  the de te r -  
mination of the buckling load of the isotropic cone ( a s  stated by 
Weingarten e t  a1 
of the end r ad i i62  /r l  = sz / S I  = e'') has  an  effect. 

As can be seen f rom the 

14 ) but--aside f rom Poisson ' s  ratio v--also the rat io  

The numerical  evaluation is performed for conical shells for  the 
stability behavior of which experimental  resu l t s  a r e  a ~ a i l a b l e ' ~ ' ~ .  
Because of the extent of the computation--compared with the computer 
IBM 1620/23 available- -the investigation was  limited to conical shel ls  
(F igure  6) with constant height hk and constant radius  r z  of the base  
while the half angle a was var ied (a a =  10 O ,  20 O ,  30 O ) .  

conical shells have a wal l  thickness of t = 0.255 mm. 
modulus has  been regarded as constant, E = 525 kg /mmz.  
number was v = 0 .3 .  

The investigated 
The elast ic i ty  

Poisson ' s  

Figure 6. Dimensions of the Conical Shells Investigated 
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In Table I the dimensions af the investigated shel ls  are listed. 
F o r  the isotropic shel ls  the shel l  pa rame te r s  zo.and X i n  the last two 
columns suffice for  the determination of the s t r e s s  and stability 
behavior. 
height hk fo r  which the buckling load has been determined by Fischer3  
is used. 

F o r  comparison, the cylinder (a = 0) with radius  r z  and 

Desig- ‘ Cone Geometry 
nation 

Si! 
cot a - 

SI [=I s1 

00 1 00 JOO 

J10 9. 75877.10’ 1. 18022 5.67128 

520 4.00440.102 1.46030 2.74748 

530 2. 00000~102  2.00000 1.732051 

Table I. Lis t  of the Dimensions and P a r a m e t e r s  of the Cone 

I Cone P a r a m e t e r  

2 0  x 
0 00 

0. 165705 7. 17212.104 

0. 378639 1.42575 . l o 4  

0. 693147 4.48913 . l o 3  

In o r d e r  to  be able to  compare the r e su l t s  of the calculation fo r  
var ious shells,  dimensionless load and inner  p r e s s u r e  pa rame te r s  
(Nv and P) a r e  used in the graphic presentations. 
loads at the edge of the cone z = 0 a re  re la ted to  the c r i t i ca l  r ing 
buckling load of an isotropic cone under pure axial  load which had been 
obtained according to  the l inear  theory according to  equation (3. 18). 

The computed edge 

Nso (P  - O ) = -  - 
2 cot a 4 7  - d r  (4. 1) 

2 e z O -  C z z  isotrope S 1  

F o r  the orthotropic shells,  the ring buckling load of the comparison 
she l l  (J 30, shel l  of the same weight and of the same geometr ical  
dimensions) i s  used a s  reference load. 

F o r  the investigated conical shells (0 5 z o  5 l n 2 )  the root can  be 
se t  

(4.2) 

47 



so that 

De sig- 
nation 

applies fo r  the r ing buckling load ( l inear  theory) of a n  isotropic conical 
shell’*. 

O t 1  
ZO 

In  Table II the exact values of root (4. 2) a r e  l isted for  the conical 
shel ls  of Table I. 

J O O  

J10 

J20 

J30  

Table 11 

0 1 

0. 165705 1.001 14 

0.578639 1.00594 

0.693147 1.01967 

Going in the limit to  the cylinder ( a  - 0 ,  cot a / s l  - 1 /R, zo - 0) 
f r o m  the equation (4. 3) follows the so-called c l a s s i c  buckling load of 
a n  infinitely long cylinder3 : 

Et2 

R 
= 0.605 - . Et2 1 (4.4) 

For  the dimensionless  load p a r a m e t e r  Nv, the re ference  value 

is  obtained with the c lass ic  ring buckling load according to  fo rmula  
(4 ,  3) and for the orthotropic shel ls  

(4.  6) 
21 
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As inner p r e s s u r e  parameter  i s  used according to formula 
( 2 . 2 2 ) ,  

p = - 7  

In the case  of the orthotropic shell for D11, C22 the rigidity 
pa rame te r  of the isotropic comparison shel l  a r e  to  be inser ted.  

4. 2 Axially Symmetr ic  Basic State of S t r e s s e s  and Buckling 
Loads of Ideal Isotropic Conical Shells 

The axially symmetr ic  basic state of s t r e s s e s  of the isotropic 
conical shell  can  be described with a closed solution of the l inearized 
sys tem of differential equations ( 3 .  5) f o r  smal l  edge load and smal l  
inner  p re s su re .  
cone J 3 0  is  depicted f o r  pure axial  load (5 = 0) as a function of the 
r ad ia l  displacement of the edge WR (proportional to the compression 
of the cone) and the axially symmetr ic  configurations of buckling along 
the generatr ix  for  var ious edge loads, it is seen that fo r  sma l l  edge 
loads N, the curves  A (l inearized, system of differential  equations 
( 3 .  5)) and B (nonlinear, sys tem of differential  equations (2. 21)) a r e  in 
good agreement.  With increasing edge load, r ing buckling appears  in 
the edge zones of the cone--analogously to the cylinder shell--which 
can  b e  comprehended only by the solution of the nonlinear differential 
equations (2 .  2 1). 

F r o m  Figure  7 where the edge load Nv of an isotropic 

In  F igure  8 curves  N, vs. I Qomax 1 a r e  plotted f o r  various inner  
p r e s s u r e s  fo r  the cone J30 (pin jointed edge) ( for  comparison the curve 
calculated f r o m  the sys tem of l inearized differential equations for  
p = 0 is included). First IQomax increases  l inearly with the axial  
edge load, fo r  higher edge load i t  increases  nonlinearly. 
ing the c r i t i ca l  load, the axially symmetr ic  basic state of s t r e s s  
becomes unstable ( for  this reason the curve above the c r i t i ca l  load i s  
dashed).  The shell  s t a r t s  to a s sume  a new state of equilibrium. 
the f ramework  of the calculation performed he re  (l inearization a t  the 
branching point) the branching point with the number,  n, of bucklings 
over  the circumference appearing i n  the beginning of buckling i s  
determined.  
nothing can  be stated. In the e ~ p e r i r n e n t ' ~  a s  well  a s  in  the calculation 
the d e c r e a s e  of the number of bucklings, n, with increasing inner 
p r e s s u r e  could be observed (however, in  the experiment the number of 
bucklings was determined only for  the stable postbuckling region),  

I - 
When reach-  

In 

Concerning the fur ther  course of the curves N, ( l Q o m x l )  , 
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The axially symmetr ic  configurations of the bucklings for  var ious 
inner  p r e s s u r e s  a r e  plotted in  Figure 9 for  a constant edge load which 
equals the buckling load of the conical shell  f o r  jj = 0 ,  i. e. , Nv = Nvcr 
a t  (p = 0). F o r  a pure axial  load (5 = 0) ,  axially symmetr ic  buckling 
configurations.begin to f o r m  beginning a t  the edges,  decaying towards 
the center  of the cone. Due to  the inner  p re s su re ,  the radial  s t r e s s  
increases  with increasing radius,  i. e . ,  with increasing z f o r  which 
reason the radial  deformation in the edge zone z = zo is suppressed. 
The tendency that with increasing inner  p r e s s u r e  the axially symmetr ic  
buckling configurations a r e  formed only a t  the edge z = 0 and there  
with increasing amplitude, typically for  cones,  is  seen. F o r  high 
inner  p re s su re ,  r ing buckling could be observed at the edge z = 0 of 
the tes t  shells before reaching the c r i t i ca l  load. 

A comparison of the measured  buckling loads (four tes t  shel ls  J 3 0  
of the same dimensions13) shown in  Figure 10 with the c r i t i ca l  loads 
calculated according to the nonlinear theory for  a fully res t ra ined  ideal  
cone (curve 111) shows good agreement  fo r  la rge  inner  p re s su re .  How- 
ever ,  for smal l  inner  pressure- -espec ia l ly  for  j5 = 0--the experimental  
values deviate f r o m  the theoret ical  buckling loads for  an ideal  conical 
shell. The discrepancy between theory and experiment  can be e s sen -  
t ially t raced to the existence of prebuckling in  the test shells.  
investigation of the effect of the predeformation on the buckling loads 
is performed i n  Section 4.4 of this paper.  

An 

The theoret ical  buckling loads of the pin-jointed cone (curve  11) 
are-- l ike for  other stability problems (buckling of a rod, cylinder 
buckling) - -below those calculated buckling values for  the fully res t ra ined  
shel l  (curve 111). 
culated according to the l inear  theory for  one-member approximation 
formulation ( r ing  buckling)--corresponding to  formula ( 3 .  18). Com- 
pared with curves (11) and (111), the buckling loads determined accord-  
ing to  the l inear theory represent  only a cour se  approximation to  the 
stability problem investigated here .  

Curve (I) contains the c r i t i ca l  loads which w e r e  cal-  

In Figure 11 the buckling loads according to the l inear  ( cu rve  I) 
and according to the nonlinear theory ( cu rve  11) fo r  pin-jointed conical 
shel ls  of the same height and the sarne base  radius  rz--according to 
Table I - - a r e  plotted versus  the opening angle a. It is seen, as shown 
by the corresponding  experiment^'^, that the thus normalized buckling 
load Nv--equation (4.4) --is  pract ical ly  independent of the cone angle 
which o n  the other  side means  that the l inear  buckling load ( 3 .  18) used 
a s  reference quantity properly r ep resen t s  the e f f ec t  of the cone angle 
on the buckling load. 
a = 0) entered into the d iagram a r e  taken f r o m  F i s c h e r 3  and 

The values for  the cylinder shel l  (curve  11, 
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N" 1.0 

o 0.8 

a 3  - 
2: 0.6 

0 
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(I) Buckling loads according to the l inear theory 
[formula ( 3 .  18)5] .  

-. 

(1) --- 
cn1 

' 

(II) Buckling loads according to the nonlinear 
theory [formulas (2 .21 )  and (2.  38)] for  pin- 
jointed edge buckling load of cylinder JO03. 

n= 22 /23 

n: Number of bucklings in  c i rcumferent ia l  
d i  r e.c tio n. 

n=22 n=18 n=15 

Figure 11. The Effect of the Opening Angle of the Cone 
on the Buckling Load of Pin- Jointed Isotropic Con- 
ica l  Shells of the Same Height and the Same Base 
Radius 

sat isfactor i ly  supplement the he re  performed cone investigations 
(a = l o " ,  Z O O ,  30") concerning the buckling load a s  well  a s  with 
r e spec t  to  the number of bucklings n. 
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4.3 Investigation of an Orthotronic Conical Shell 

With the approximation methods given he re  (Section 3.4) 
orthotropic conical shells can be investigated a s  well  without additional 
difficulties, provided the neutral  plane coincides with the cent ra l  s u r -  
face of the shell  (c lass ic  orthotropicz3)or i s  s o  close that the eccen- 
t r ic i ty  can  be neglected. 

The polar orthotropic t e s t  shel ls ,  which a r e  shells with constant 
rigidity along the main  rigidity axes  forming a polar coordinate system, 
have been fabricated by cementing 72  conical s t r ip s  uniformly d is t r i -  
buted o v e r  the ci rcumference along the generatr ix  to an isotropic skin 
(Mylar) .  
and the same c r o s s -  sectional a r e a  ( s a m e  weight) a s  the isotropic con- 
ica l  shell 530. 

These orthotropic shells had the same geometrical  dimensions 

The calculation of the rigidit ies of these tes t  shel ls  has  been done 
under the following assumptions: 

1) 
contraction. 

The reinforcements  are f r ee  from the effect of t r ansve r se  

2) Shearing i s  exclusively t ransmit ted by the isotropic skin. 
The contribution of the reinforcement to the tors ional  rigidity of the 
shell  i s  calculated according to FlUggez5. 

3) The f lexural  rigidity Dl l  i s  determined fo r  one beam element--  
consisting of skin and reinforcement-  -around the common neutral  plane 
(F igu re  13a). 

4) The effect  of the eccentr ic i ty  of the neut ra l  plane f r o m  the 
cent ra l  sur face  of the shel l  on the law of elasticity i s  not taken into 
account so that the elasticity equations may  be wri t ten in the decoupled 
f o r m  (2 .  1). 

5) It i s  assumed that when reaching the c r i t i ca l  load skin and 
reinforcement buckle simultaneously. 

F o r  the orthotropic t e s t  shell-  -designation 0 30-  1 - - the following 
shell  parameters  have been determined. 

Geometry pa rame te r s :  

z0 =In  2 = 0. 693 147 
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Rigidity character is t ics :  

c11 c 12 2c12  -t c 3 3  
-- - 0,519 , -= - 0.154 , = 2.41 c 22 c 22 c 22 

D 22 Dl2 

D11 D11 D11 
-= 0.0573 , - = 0.0172 , = 0.435 . 

The resu l t s  of the stability calculation together with the measu red  
values a r e  depicted in Figure 12. 
buckling values according to the l inear  theory,  according to  formula 
(3. 18), and i l lus t ra tes  properly the qualitative relationship between 
buckling load and inner  p re s su re .  
however, a r e  above the experimental  values. 

The s t ra ight  line (I) represents  the 

The buckling loads themselves ,  

The c r i t i ca l  loads for  a pin-jointed (111) and a fully res t ra ined  cone 
(IV) determined according to the nonlinear shell  theory- - formulas  
(2.21) and (2 .  38)--agree with the measu red  buckling values for  smal l  
inner  p re s su re .  
that  i n  the reinforced t e s t  shells local prebuckling can occur  only 
between the reinforcements which have respectively l e s s  effect  on the 
buckling load. 
buckling values for  p = 0 i s  t o  be t raced to the orthotropic rigidity 
p a r a m e t e r s  which have been calculated only approximately (especially 
the assumption that the reinforcements are f r e e  f rom t r ansve r se  con- 
t rac t ion  and that shearing is  transmitted only by the isotropic skin 
r e p r e  sent a course  approximation to the he re  investigated reinforced 
shel ls) .  

On the one side this  can be explained in such a way 

On the other side, the strong decrease  of the theoretical  

F o r  high inner p re s su re ,  the measured  values increase  m o r e  than 
the theoretically determined buckling loads (curve  I V  for  the boundary 
condition: fully res t ra ined) .  This  can be explained in  such a way that 
due to  the inner  p r e s s u r e  the isotropic skin i s  stretched between the 
reinforcements  (F igure  13b), whereby the axial flexural rigidity i s  
additionally increased (corrugated sheet metal) .  
flexural rigidity D11 with increasing inner  p r e s s u r e  has  been attempted 
to  comprehend theoretically by calculating the rigidity pa rame te r  D l l  
around the common neutral  plane of an infinitely long segment of a 
cylinder shel l  with sectionally constant rigidity precurved under inner  
p r e s s u r e  (F igure  13b: Section I - isotropic skin, Section I1 - skin and 
reinforcement) .  
to the nonlinear theory of shells taking into account the f lexural  rigidity 
dependence on the inner  p r e s s u r e  agree well  with the experimental  
values  even f o r  high inner  pressure .  

The increase  of the 

The buckling loads (curve  V) determined according 
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-mzTm-l SHELL (SKW) 7 

NEUTRAL PLANE I 

I t 
I V  I I I \  L I 

Figure  13. The Deformation of the Reinforced Conical Shell 
Due to Inner P r e s s u r e  

A comparison between the buckling loads (F igu res  10 and 12) found 
f o r  the orthotropic (longitudinally reinforced) conical shell  030- 1 and 
that for the isotropic comparison shell 130 ( s a m e  weight) shows that 
under inner  p r e s s u r e  the orthotropic shell buckles at  higher loads than 
the isotropic  shell. 

4.4 The Effect of Axially Symmetric Prebuckling on the Stability 
Behavior 

In  the sys tem of differential equations (2.  21)--for the de t e r -  
mination of the basic  state of s t resses- -and  (2. 38)--to determine the 
buckling load- -axially symmetr ic  prebuckling QA( Z) has been taken 
into account. 
descr ibed  he re  it does not present  any difficulties to investigate a rb i -  
t r a r i l y  axially symmetr ical ly  precurved conical shells. 

F o r  the approximation method (difference method) 
, 

Since the predeformation of the test shells is  not known, a fictitious 
axially symmetr ic  prebuckling of the following f o r m  is assumed fo r  
the theore t ica l  investigations: 
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(4 .6)  

Here 50 designates the prebuckling amplitude related to the wall  
thickness, bA represents  the width of the prebuckling, and Z A  gives 
the position of the prebuckling maximurn along the generatrix.  

The numerical  evaluation of the ‘ sys tems of differential  equations 
(2 .  21) and ( 2 .  38) resu l t s  in  the c r i t i ca l  loads plotted ve r sus  the p r e -  
buckling amplitude i n  F igure  14 f o r  a prebuckling according to  Equa- 
tion (4.6) with bA/zo = 0. 25, Z A / Z O  = 0. 5.  
buckling load dec reases  with increasing amplitude 5 0 .  

As was to  be expected, the 

Figure 15 i l lus t ra tes  the effect of the position of prebuckling on 
the c r i t i ca l  load. 
in  a grea te r  decrease  of the load than the same prebuckling a t  the edge 
z = z o .  
f r o m  a comparison of the cu rves  I1 (prebuckling a t  the edge z = 0) and 
I11 (prebuckling a t  the edge z = 20) in  Figure 16. 

It i s  seen that prebuckling a t  the edge z = 0 r e su l t s  

This tendency is even increased with inner  p r e s s u r e  a s  i s  seen 

An additional phenomenon i s  to be noted in  F igure  16. 

With increasing inner p r e s s u r e  i n  agreement  with experiment  and 
theory,  the effect of prebuckling on the c r i t i ca l  load becomes sma l l e r  
and smaller.  
shel ls  sca t te r  greatly for  low inner  p re s su re - -due  to the predeformation 
which i s  different fo r  each t e s t  shell--while f o r  high inner  p r e s s u r e  the 
experimental  buckling loads a r e  about the same and agree  well  with the 
theoretical  buckling loads of the ideal  a s  wel l  as of the precurvedfu l ly  
res t ra ined conical shell. 

The buckling values measu red  fo r  four different t e s t  

Taking into account prebuckling, the dec rease  of the buckling loads 
can  be explained for  low inner  p r e s s u r e .  An absolute comparison 
between measured  and calculated buckling loads i s ,  however, not pe r -  
mit ted since no measu red  r e su l t s  a r e  available concerning the p r e -  
deformation of t e s t  shells and prebuckling on which the calculation has  
been based has  been assumed a rb i t r a r i l y .  

6 0  
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Configuration of the predeformation: 
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W A  
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Figure  14. Effect of the Prebuckling Amplitude on the 
Buckling Load of an Isotropic Cone (J30, j5 = 0) 
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Figure 15. Effect  of the Posi t ion of Prebuckling on the 
Buckling Load of an Isotropic  Cone (530, = 0 )  
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5. Summarv 

The previously known investigations of the stability behavior of 
thin-wall conical shel ls  under axial  load and inner  p r e s s u r e  have shown 
that by means  of the l inear  theory the qualitative effect of the geomet- 
r i ca l  charac te r i s t ics  and the rigidity pa rame te r s  on the buckling load 
can  be determined. However, the calculated c r i t i ca l  loads deviate 
greatly f r o m  the buckling values found experimentally. To gain a be t te r  
agreement between experiment and theory, the derivation of the dif-  
ferential  equations of the s ta te  of s t r e s s e s  and deformation in  this  
paper takes into account nonlinear members .  
nonlinear differential equations generally de scr ibes  the s t r e s s  and 
deformation s ta tes  of a conical shell .deformed, prebuckled orthotropic 
(special  ca se  "isotropic") conical shell  under inner  p r e s s u r e  and 
arb i t ra ry  edge loads. 

The derived sys tem of 

By restr ic t ing ourselves  to axially symmetr ic  edge loads and to 
an axially symmetr ic  predeformation, special  fo rms  of this sys tem of 
differential equations for  the basic state of s t r e s s  and fo r  the additional 
s t r e s s e s  and deformations a t  the branching point can  be stated. 
investigations in this  paper  a r e  limited to these special  fo rms  of sys tem 
of differential  equations. 

The 

The sys tem describing the axially symmetr ic  basic  state of s t r e s s e s  
consis ts  of two coupled nonlinear ordinary differential  equations of 
second order  in z fo r  the section force  No and for  the deformation 
parameter  Qo (1  s t  derivative of the displacement w perpendicular with 
respec t  to the cent ra l  surface of the shel l  with respec t  to 2). 

l inear  theory of stability i t  has  been assumed that the conical shel l  
assumes  a state of f lexure-free diaphragm s t r e s s  until buckling occurs .  
I t  can be shown that by means  of the diaphragm s t r e s s  the equilibrium 
conditions a t  the shell  element,  but not the compatibility condition and 
all boundary conditions, can  be satisfied. The state of diaphragm 
stress i s  thus no solution of the shell  problem considered here .  

In the 

A general  solution in closed f o r m  of the sys t em of nonlinear dif-  
fe ren t ia l  equations fo r  the basic  state of s t r e s s  is not possible with 
the familiar methods. 
s t r e s s e s  and deformations for  smal l  loads,  a solution i n  closed f o r m  
has  been found for  the isotropic ideal  conical shell. 
solution of the l inearized sys tem is identical  with the s ta te  of dia- 
phragm s t r e s s . )  The i terat ive solution of the nonlinear sys tem is 
performed with a difference method enabling the satisfaction of all 
boundary conditions. The finite equations at each intermediate  point 
can  be combined to  a nonlinear m a t r i x  equation which was  i terat ively 

F o r  the l inearized sys tem descr ibing the 

(The  par t icu lar  
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solved by means  of Newton's method. 
values (extrapolation with the approximate solution of next lower load 
steps) the approximate solutions according to.Newton' s method converge 
rapidly (af ter  3 to  4 i teration steps the agreement  includes the fifth 
decimal). The convergence of the difference method is assured  i f  the 
approximate solutions with increasing number of intermediate points 
tend toward a common limiting value. The number of the equidistant 
intermediate points was increased until the difference between two 
successive approximations remained below a specified e r r o r  limit. 
The required number of points to maintain this limit increased with 
increasing load. 
maximum of 45 intermediate points could be used in  the calculation) 
the axially symmetric basic state of the stresses could not be de te r -  
mined fo r  a rb i t ra r i ly  large loads. F o r  the range of inner  p r e s s u r e s  
(0  ~ i 5  G 1. 0)  investigated here ,  this load limit is  above the c r i t i ca l  
load, i. e . ,  in  the unstable range of the basic  state of s t r e s s .  

By calculating suitable initial 

Because of the size of the available computer (a  

Because of the investigation of the basic  state of s t r e s s  according 
to the nonlinear theory the appearance of ring buckling below the 
c r i t i ca l  load--as has been observed i n  the experiment f o r  high inner 
p re s su re -  -can be theoretically explained as well. 

A second special  form of the general  system of differential equa- 
tions can be stated for  the additional s t r e s s e s  and deformations in the 
branching point. 
states of equilibrium exist  which a r e  infinitesimally close: 
symmetric--identical with the basic state of s t ress - -and  one nonaxially 
syrnmetric character ized by the existence of nonaxially symmetric 
s t r e s s  and deformation contributions in addition to the basic state of 
stresses. 
mat ions,  a system of two l inear homogeneous par t ia l  differential  equa- 
tions (of fourth o r d e r  for  the s t r e s s  function F and the deformation W) 
with homogeneous boundary conditions can  be derived. The solution of 
this  l inear  system of equations (eigen-value problem, the cr i t ical  load 
r ep resen t s  the eigen-value) requires  the -knowledge of the s t r e s s e s  
and deformations of the basic  state of s t r e s s e s ,  i. e. , the solution of 
the nonlinear system fo r  No and Qo.  If, instead, the diaphragm s t r e s s e s  
a r e  inser ted  for  the basic state of s t r e s ses ,  the fami l ia r  equations of 
the l inear  theory of stability a r e  obtained. 

When reaching the cr i t ical  load (branching point) two 
one axially 

F o r  the nonaxially symmetric additional s t r e s s e s  and defor- 

Since a general  solution of this eigen-value problem in closed 
f o r m  is not known, an  approximate solution has  been determined by 
m e a n s  of the difference method. Solving i teratively the eigen-value 
problem a smal le r  number of equidistant intermediate points resulted 
in  the same degree of approximations as for  the determination of the 
axially symmetr ic  basic s t r e s s e s  and deformations. 
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The numerical  evaluation of the buckling equations of the nonlinear 
theory--nonlinear because the axially symmetr ic  s t r e s s e s  and defor- 
mations determined f r o m  the nonlinear basic  equations have been 
inser ted in the eigen-value problem--shows that for  high inner  p r e s -  
s u r e  the determined buckling loads agree  well  with the experimental  
values. 
shel ls  and the experimental  buckling values for  low inner  p r e s s u r e  
(especially f o r  p = 0) i s  to be t raced  to  prebuckling of the t e s t  shells. 
Investigations where the effect of such predeformations on the buckling 
behavior has  been taken into account a r e  so far known only f o r  the 
cylinder shell  where most ly  an affinitive prebuckling with respec t  to 
the buckling configuration occurr ing has  been assumed i n  the calcu- 
lation, 
conical shell  has  been derived, and i t  has been solved approximately 
fo r  the case  of an  a rb i t r a ry  axially symmetr ic  fixed (nonaffinitive) p r e -  
buckling . 

The deviation of the c r i t i ca l  loads calculated f o r  ideal conical 

In the present  paper the differential  equation of the predeformed 

Taking into account a predeformation, the dec rease  of the buckling 
loads f o r  low inner p r e s s u r e  could be proved. An absolute comparison 
between the measured  r e su l t s  and the buckling loads calculated for  a 
predeformed shell  is  not permit ted 'since the a rb i t r a r i l y  assumed p r e -  
deformation is  cer ta inly not in  agreement  with the predeformation of 
the tes t  shell. 

Because of the large extent of the calculation (operat ions with 
la rge  mat r ices)  the numerical  evaluation was  limited to  a few conical 
shells.  
computer program with which--assuming a suitable computer--an 
a rb i t r a ry  degree of approximation can  be  achieved. 

The approximation method stated can  be combined to  a genera l  
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