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A METHOD FOR EXPANDING A DIRECTION COSINE MATRIX 

INTO AN EULER SEQUENCE OF ROTATIONS 

By George Meyer , Homer Q.  Lee , 
and W i l l i a m  R .  Wehrend, Jr. 

Ames Research Center 

SUMMARY 

A method has been developed f o r  converting a matrix of d i rec t ion  cosines 
in to  an equivalent Euler sequence. For a desired ro t a t iona l  sequence, the  
analysis  produced a s e t  of  f i v e  equations which require  a sequential  calcula- 
t i o n  of t he  E u l e r  angles.  The first angle is used t o  compute the  second and 
the  second is  used t o  compute the  t h i r d .  For a given d i rec t ion  cosine matrix, 
t he  equations show t h a t  there  a r e  two Euler angle s e t s  which w i l l  generate 
t h a t  matrix and can be considered t o  be t h e  r e s u l t  of e i t h e r  a "positive" or  a 
"negative" i n i t i a l  ro ta t ion .  The r e s u l t s  of t he  analysis  w i l l  work throughout 
t h e  e n t i r e  360° angle range and a l so  fo r  the singular cases.  
cases the  equations become indeterminate but t h e  problem can be resolved i f  
one recognizes t h a t  t he  two angles not involved in  the  singular condition 
simply add d i r e c t l y  and t h a t  o n l y  t h e i r  sum a f f e c t s  the  d i rec t ion  cosines. 

For s ingular  

The r e s u l t s  o f  t he  analysis  have been generalized in to  two sets of equa- 
tions,one of which appl ies  t o  t h e  c l a s s i c a l  or repeating sequences and the  
other t o  the  nonclassical  o r  nonrepeating sequences. These equations have 
been wri t ten as a Fortran IV subroutine and are presented i n  the  appendixes of 
t he  repor t .  

INTRODUCTION 

In a research program fo r  a s a t e l l i t e  a t t i t u d e  control  system it w a s  
found advantageous t o  write the  equations of motion with the  d i rec t ion  cosine 
matrix as t h e  kinematic var iab le .  If parameters such as Euler angles are used 
f o r  these var iables ,  as i s  of ten done, it is necessary t o  be able  t o  convert 
t h e  d i rec t ion  cosine output t o  Euler angles and the  reverse.  The conversion 
of Euler angles t o  d i rec t ion  cosines i s  s imple and can be performed by the  
mult ipl icat ion of elementary ro ta t ion  matrices or by t h e  use of a standard 
(e .g . ,  r e f s .  1, 2, and 3) which gives the  direct ion cosine matrix in  terms of 
E u l e r  angles.  It i s  c l ea r  t h a t  the calculat ion of t h e  Euler angles from the  
d i rec t ion  cosines is a l s o  possible,but a general method was by no means 
obvious from inspection of the  equations involved and no referenee could be 
found that gave a general  method. In t h i s  repor t ,  a technique is given fo r  
performing t h e  conversion. The results a re  given such that i f  a d i rec t ion  
cosine matrix i s  specif ied and a ro t a t ion  sequence given, t h e  E u l e r  angle 



sequence t h a t  w i l l  produce the  d i r ec t ion  cosines can be computed. The results 
f o r  the technique have been wri t ten as a Fortran I V  program presented in  t h e  
appendix. 

TABLE OF SYMBOLS 

Analys i s  Sect ion 

"i j 

A 

1) 

82 

0 

t 

1,JJ 

element of t h e  d i rec t ion  cosine matrix 

d i rec t ion  cosine matrix, 3 X 3 

typ ica l  elementary ro ta t ion  matrix; f i rs t  ro t a t ion  angle 
0 1 ,  about ax i s  3 

eigenvector of t h e  ro ta t ion  subscripted 

r o t a t  ion angle 

Subscripts and Superscripts 

coordinate a x i s  f o r  t he  ro ta t ion  when used as a subscript  
fo r  E; order of ro ta t ion  of t he  angles when used as a 
subscript  f o r  0 

transpose of matrix 

ro ta t ion  sequence 

Computer Program 

T H O )  angle 0 i  

I , J , K  r o t a t  ion sequence 

A(I,J) "i j 

EULANG conversion subroutine name 

m T N ( X ( 1 )  , Y ( I )  ) 
X ( I )  
Y(I) 

arctangent function rout ine,  tan-<-) 

ANALYSIS 

The equations f o r  converting the  d i rec t ion  cosines t o  Euler angles w i l l  
be derived fo r  a spec i f ic  Euler sequence and w i l l  then be generalized f o r  any 
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sequence. 
generated by t h e  mult ipl icat ion of three elementary ro ta t ion  matrices. 

For a 1,2,3 ro ta t ion  sequence, the d i rec t ion  cosines mtrix can be 

The elementary ro ta t ions  a re  given by 

0 

-s in  8 1  cos e l  

Equation (1) may be wri t ten i n  the  following form 

The coordinates of t he  eigenvector of t he  middle ro t a t ion  a r e  given by 

If both s ides  of equation (3) are multiplied by 
results 

62, t he  following equation 
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If  t h e  following two de f in i t i ons  a r e  made f o r  t he  portions of equation (6), 

Then, equation (6)  may be wri t ten i n  the  form below, where 
eliminated from consideration. 

e2 has been 

Equation (9) is  a set of  th ree  equations 

832 COS e l  + a33 s i n  8 1  = 0 

l a= cos e l  + a= s i n  8 1  = s i n  G3 

a22 cos e l  + 823 s i n  8 1  = cos O3 

And from equation ( 3 ) ,  by expanding t h e  left-hand s ide and equating t h e  
and a =  terms t o  t h e  corresponding terms on the  right-hand s ide,  we obtain 

a l l  

a l l  cos G 3  - a21 s i n  e3 = cos e2 

a31 = s i n  8, 

The desired E u l e r  angles can be calculated from equations (10) through (12) .  
It i s  necessary first t o  solve f o r  8 1  from equation (lo), then f o r  8s from 
equation (ll), and f i n a l l y  f o r  e2 from equation (12) .  Note t h a t  a l l  nine 
elements are used. 

The solut ion of  equations (10) through (12) results i n  two sets of  Euler 
angles because the  solut ion of equation (10) i s  double valued. For each value 
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of 0 s  and Q2 are fomd from equations (11) and (12) so 
t h a t  two d i s t i n c t  Euler sequences r e s u l t  for  a given d i r ec t ion  cosine matrix. 
Physically t h e  result means t h a t  it i s  possible t o  reach a given posi t ion by 

t h e  appropriate ro ta t ions ,  e2 and 633, t o  give the  f i n a l  pos i t ion .  For a non- 
c l a s s i c a l  sequence such as the  one used i n  the previous analysis  ( l , 2 ,3 ) ,  t he  
r e l a t i o n  between the  two sequences is as shown below. 

81, unique values of 

s t a r t i n g  with e i t h e r  a "positive" or a "negative" ro t a t ion  ,531 followed by 

I case 1 0 1  , 0 2  7 63 

case 2 e l  & II , -e2 II , e3 k II 
(1-3) 

For the  c l a s s i c a l  o r  repeating type sequence, t he  r e l a t i o n  between t h e  angles 
is d i f f e ren t  and can be shown t o  be of t he  following form: 

case 1 

case 2 6 1  k J[ , - e 2 ,  e 3 + X J  

For each E u l e r  sequence there  is a singular case which requires  spec ia l  
handling. The repeating sequence i s  singular when s ine  e2 i s  zero and the  
nonrepeating sequence is s ingular  when cosine e2 i s  zero. When the  l , 2 ,3  
sequence is s ingular ,  t he  d i rec t ion  cosines 832 and a33 are both zero and 
the  computation of 8 1 is indeterminate. The problem can be resolved by 
noting t h a t  8 1  and 0 3  add d i r e c t l y .  Since the  d i rec t ion  cosine matrix only 
spec i f ies  t he  f i n a l  posi t ion,  8 1  and 63 may have any value so  long as t h e i r  
sum is co r rec t .  In  the  computation it is necessary t o  set 8 1  t o  some value, 
possibly zero, and then proceed. 

Once equations (10) through (12) have been derived, it is  easy t o  see how 
they could have been obtained by d i r e c t  inspection of t he  d i rec t ion  cosine 
matrix wr i t ten  in  terms of Euler angles.  For  the  l , 2 ,3  ro t a t ion  sequence the 
matrix is, 

a32 8x3 

a22 a23 

a32 a33 

cos 8 1  s i n  63 s i n  s i n  e3 
COS e2 COS e3 + s i n  €I1 s i n  G2 cos Q3 - cos e l  s i n  e2 COS e3 

COS e l  COS e3 s i n  e l  cos O3 
- sin e l  s i n  e2 s i n  e3 + cos 8 1  s i n  G2 sin 03 -cos e2 s i n  e3 

s i n  Q2 -sin 8 1  cos 82 COS e l  COS e2 



The following operations 

832 = -sin cos O2 , multiply by cos 

as3 = cos 8 1  cos 02 , multiply by s i n  e l  

and adding the  two equations yields  equation (10) 

a32 cos e l  + a33 s i n  8 1  = 0 

N e x t ,  

a31 = s i n  e2 

together with the  following operations 

l a s  = cos e2 COS e3 , multiply by cos e3 

a21 = -cos e2 s i n  e3 , multiply by -s in  03 

and adding the  last two equations, y ie lds  equations (12 ) .  

I a l l  cos e3 - a21 s i n  e3 = cos O2 

a31 = s i n  e2 

(19)' I 
- 1  

Final ly ,  t o  obtain equations (11) , perform the  following operations: 

a =  = cos 81 s i n  €I3 + s i n  8 1  s i n  e2 cos 83 , multiply by cos 0 1  

a= = s in  8 1  s i n  e3 - cos 8 1  s i n  e2 cos 83 , multiply by s i n  8 1  

and the  two equations add t o  ge t  

a= cos + a =  s i n  8 1  = s i n  63  

Similarly, 

aZ2 = cos  O 1  cos O 3  - sin e l  s i n  e2 s i n  O 3  , multiply by cos 8 1  

823 = sin e l  cos e3 + cos s i n  e2 s i n  e3 , multiply by s i n  8 1  I 
y i e lds  

a22 cos 8 1  + 823 s i n  e l  = COS e3 (26) 

The resu l t ing  equations (24) and (26) a r e  equations (11). 
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An inspection of a d i rec t ion  cosine matrix wri t ten i n  terms of any other  
Euler sequence w i l l  show t h a t  t he  same procedure can be followed with the  

.proper choice of terms. Also it should be noted t h a t  t he  solut ion sequence 
could be i n  reverse order, e3, 8 1, 8, instead of 81, e3, 6,. 

The der ivat ion t h a t  resul ted i n  equations (10) through (12) can be gen- 
e ra l ized  t o  apply t o  any Euler sequence since 
sequence is I, J, K, t he  d i rec t ion  cosine matrix w i l l  be given by 

EJ(e2)6J = 65. If the  ro ta t ion  

The f i rs t  s tep  i s  t o  form the eigenvector of t he  middle ro ta t ion ,  6 ~ ,  and then 
compute the  column vectors 

The equation t o  be used fo r  the  solution of 81 and G3 i s  then 

and 8, can be computed by use of equation (3)  rewri t ten i n  the  form 

A set of f i v e  equations similar t o  equations (10) through (12) w i l l  result 
from the  expansion of equations (29) and (30) .  
t i ons  a re  given i n  appendix A .  

The 12 possible s e t s  of equa- 

The 12 s e t s  of equations t h a t  result from equations (29) and ( 3 0 )  can be 
reduced t o  two s e t s  of equations w i t h  an appropriate method of indexing the  
d i rec t ion  cosine elements. One of  t he  two s e t s  appl ies  t o  t h e  c l a s s i c a l  o r  
repeating sequences and the  other t o  t he  nonclassical  o r  nonrepeating 
sequences. These equations have been writ ten as a Fortran I V  subroutine pre- 
sented i n  appendix B .  For computing, the necessary input t o  the subroutine i s  
the  a r r ay  of nine d i rec t ion  cosines and the  desired ro t a t iona l  sequence. The 
output w i l l  be the  th ree  Eu le r  angles.  Since there  a r e  two Euler sequences 
f o r  a given d i rec t ion  cosine matrix, the  program has been s e t  up t o  compute 
only one. 
the conversion. Also, i n  t he  s ingular  case computations, 8 1  has been set  t o  
zero.  For a sequence of computations t h i s  may cause a discont inui ty  i n  t h e  
output.  Smoothing may be accomplished by extrapolation of previous values of 
81 and using t h i s  as t h e  output value of €I1 and subtracting the  same amount 
from 83. 

If the other i s  desired,  equations (13) o r  (14) can be used f o r  
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CONCLUDING REMclRKS 

I n  t he  preceding analysis  a method w a s  developed f o r  converting a matrix 
of  direct ion cosines in to  an Euler angle sequence. For a given ro t a t iona l  
sequence a set of f i v e  equations can be wr i t ten  which c a l l  f o r  a sequent ia l  
calculat ion of t he  three  Euler angles .  The first angle i s  used i n  the  calcu- * 

l a t i o n  of t he  second and the  second i n  t h e  calculat ion of t he  t h i r d .  The 
equations show t h a t  f o r  a given d i rec t ion  cosine matrix and a specif ied rota-  
t i o n a l  sequence there  are two Euler angle sequences t h a t  s a t i s f y  t h e  equa- 
t i o n s .  The reason i s  t h a t  t he  pa r t i cu la r  values o f  t he  d i rec t ion  cosines may 
be produced by an i n i t i a l l y  pos i t ive  ro ta t ion  followed by two others  of 
correct  magnitude or  an i n i t i a l l y  negative ro t a t ion  and then two addi t iona l  
r o t a t i o n s .  For t he  s ingular  case the  conversion equations become indetermi- 
nate  but t he  first and last  ro ta t ions  add d i r e c t l y .  The indeterminate condi- 
t i ons  a r i s e  because any two values of these angles w i l l  s a t i s f y  the  d i rec t ion  
cosine matrix as long as t h e i r  sum is  cor rec t .  It is  necessary t o  assume some 
value for  the  f i r s t  angle (zero o r  some extrapolated value from previous 
calculat ions)  and proceed with the  computations . 

The equations f o r  the  conversion have been generalized so  t h a t  f o r  a 
given direct ion cosine matrix and any desired ro t a t iona l  sequence t h e  Euler 
angles can be  computed. This s e t  of equations has been wri t ten as a Fortran 
Fortran I V  computer subroutine and is presented in  appendix B.  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  94035, March 10, 1967 
125-19-03-09-00-21 
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APPENDIX A 

EQUATIONS RF,QUIFC3D TO CONVERT DLRECTION COSINES TO EULER ANGLES 

FOR ALL 12 EULER SEQUENCES 

1,2,3 Sequence 

as3 s i n  8 1  + a32 cos 8 1  = 0 

a n  s i n  8 1  + a=  cos = s i n  O3 

a23 s i n  8 1  + az2 cos = cos O3 

a31 = s i n  O2 

-a21 s i n  83 + a11 cos O 3  = cos Q2 

1,3,2 Sequence 

a22 s i n  8 1  - a23 cos e l  = 0 

a= s i n  8 1  - am cos 8 1  = s i n  e3 

-832 s i n  e l  + a33 cos e l  = COS e3 
-a21 = s i n  e2 

a31 sin a3 i a l l  cos 8 3  = cos g2 

2,1,3 Sequence 

-a33 s i n  + 831 cos e l  = 0 

823 sin 8 1  - a21 cos e l  = sin e3 

-a= s i n  + 811 cos e l  = cos O 3  

-a32 = s i n  El2 

a= s i n  e3 + a22 cos O 3  = cos O2 

9 



2,3,1 Sequence 

a l l  s i n  0 1  + am cos 0 1  = 0 

a21 s i n  0 1  + 823 cos 8 1  = s i n  03 

a31 s i n  0 1  + a33 cos 0 1  = cos G3 

a =  = sin 02 

-a32 s i n  O3 + aZ2 cos 03  = cos e2 

3,l,2 Sequence 

aZ2 sin 0 1  + a21 cos 8 1  = 0 

a32 s i n  0 1  + 831 cos 8 1  = sin G3 

a =  s i n  e l  + a11 cos 0 1  = cos 03 

a23 = s i n  02 

-am s i n  €I3 + cos e3 = cos €I2 

3,2,1 Sequeme 

a l l  s i n  8 1  - a =  cos 0 1  = 0 

831 s i n  0 1  - a32 cos 0 1  = s i n  83 

-a21 sin + aZ2 cos 8 1  = cos 03 

-am = sin €I2 

823 s i n  e3 + a33 cos G3 = cos 02 

1,2,1 Sequence 

am s i n  0 1  + a =  COS 0 1  = 0 

a33 s i n  El1 + a32 cos 0 1  = -s in  03 

a23 s i n  0 1  + aZ2 cos 8 1  = cos 0 3  

a21 sin El3 + 831 COS 0 s  = sin 02 

a l l  = cos e2 
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i J 3  ,1 Seqxnce 

a =  s i n  O1 - a- cos e l  = 0 

-a22 s i n  8 1  + a23 cos 8 1  = s i n  El3 

-a32 s i n  + a33 cos = cos e3 

a31 s i n  03 - a21 cos 3 1  = s i n  8, 

all = cos e2 

2,1,2 Sequence 

823 s i n  8 1  - a21 cos = 0 

-a33 s i n  0 1  + a31 cos 8 1  = sin O3 

-au s i n  + a l l  cos = cos e3 

a =  s i n  €I3 - 832 cos e3 = s i n  e2 
a22 = cos 8, 

2,3,2 Sequence 

a21 s i n  8 1  + 823 cos 8 1  = 0 

all s i n  8 1  + a- cos 8 1  = - s in  O3 

a31 s i n  e l  + a33 cos 8 1  = cos e3 

832 s i n  e3 + a =  cos 83 = s i n  O2 

a22 = COS e2 

3,1,3 Sequence 

832 s i n  8 1  + 831 cos 0 1  = 0 

a22 s i n  8 1  + a21 cos 8 1  = - s in  83 

a =  s i n  8 1  + a11 cos 0 1  = cos e3 

aL3 s i n  e3 + 823 cos 8 3  = s i n  e2 

a33 = COS e2 
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3,2,3 Sequence 

831 sin el - a32 COS el = o 

- a l l  sin 8 1  + a= cos 8 1  = s i n  O3 

-a21 s i n  0 1  + a22 cos 0 1  = cos 

a23 s i n  83 - a m  cos 03 = s i n  02 

a33 = cos O2 
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APPENDIX B 

F0RTRA.N IV PROGRAM FOR DETEMNING ELITAR ANGLES FROM 

A GIVEN DIRFCTION COSINE MATRIX 

SUBROUTINE E W G  (I,J,K,A,TH) 
DI"SION X(3) Y Y(3) Y m(3) , A(3,3) 
IF (I.EQ.K) GO TO 103 
L = I - MOD(J,3) 
IF (L.EQ.2) L = -1 
C = L  
x(i) = A(K,J)*C 
~(1) = A(K,K) 
m(1) = ARTN(X(~) ,y(i)) 
x(1) = SIN(TH(~)) 
Y(1) = cos(TH(1)) 

101 x(3) = A(I,K)*x(~) - A(I,J)T*Y(~) 
~ ( 3 )  = A(J,J)*Y(~) - A(J,K)*c*x(~) 
x(2) = -A(K,I)T 
Y ( 2 )  = A(I,I)*Y(3) + A(J,I)T*x(3) 
GO TO 104 

x(i) = A(K,J) 
103 N = 6 - (K + J) 

L = N - MOD(I,3) 
IF (L.EQ.2) L = -1 
C = L  
~(1) = A(K,N)*C 
THO) = ARTN(X(~) , y ( i )  ) 
x(1) = SIN(TB(1)) 
~(1) = COS(TH(~)) 

~ ( 3 )  = A(J,J)*Y(~) - A(J,N)*c*x(~) 

~ ( 2 )  = A(K,K) 
104 m(3) = ARTN(X(3),Y(3)) 

TH(2) = ARTN(X(2),Y(2)) 
€UTURN 
END 

102 ~ ( 3 )  = -A(N,N)*x(~) + A(N,J)*c*Y(~) 

x(2) = A(JyI)*X(3) - A(N,I)*C*Y(3) 
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