
NASA CONTRACTOR

REPORT

STOP - A COMPUTER PROGRAM
FOR SUPERSONIC TRANSPORT
TRAJECTORY OPTIMIZATION

by Lawrence H. Stein, Malcolm L. Mathews, and Joel W. Freak

Prepared by

THE BOEING COMPANY

Seattle, Wash.

for Langley Research Cede?
/

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION l WASHINGTON, 0. C. l MAY 1967 l

TECH LIBRARY KAFB, NM

NASA CR-793

- A COMPUTER PROGRAM FOR

SUPE TRANSPORT TRAJECTORY OPTIMIZATION

By Lawrence H. Stein, Malcolm L. Matthews,
and Joel W. Frenk

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS l-5293 by
THE BOEING COMPANY

Seattle, Wash.

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 - CFSTI price $3.00

ABSTRACT

An IBM 7094 digital computer program using the steepest ascent technique
has been developed for optimizing the flight path of a supersonic transport air-
craft from the start of climb through cruise and descent. The program is suf-
ficiently versatile so that other vehicles besides the SST may have their flight
paths optimized. These vehicles include: space boosters, ICBM’s, reentry
vehicles, scramjets, and vehicles with air-augmented rocket propulsion.

The program incorporates a 3-D point mass simulation of a vehicle moving
in relation to a spherical, rotating earth. The inverse-square law for gravity
and 1962 U. S. standard atmosphere are used. ‘;-

The optimization is accomplished with an automatic step-size controller
and with automatic control variable weighting matrices to allow problem solu-
tion in a single computer run. Automatic plotting capability is included. Mul-
tistaged vehicles and problems involving variable initial conditions may be
optimized.

Pitch angle, bank angle, wing sweep, and throttle setting are the control
variables for the program. Inequality constraints are available on all control
variables as well as on parameters affecting geopolitics, passenger comfort,
structural loads, and engine operation. The geopolitical constraints include
sonic boom over-pressure and maximum and minimum altitude.

ii

FOREWORD

This report was prepared by the Missile and Information Systems Division
of The Boeing Company, Seattle, Washington. It presents the final documentation
of the analytical development and user’s manual for the Supersonic Transport
Optimization Program (STOP). The program was developed by Boeing for the
Langley Research Center under contract NAS l-5293. The contract was admin-
istered by the National Aeronautics and Space Adminstration under the direction
of Mr. J. R. Elliott, with Mr. David F. Thomas, Jr. acting as contract mon-
itor.

The Supersonic Transport Optimization Program was obtained from the
NASA Request for Proposal L-5347. Development of the program began in
August 1965 and was completed in September 1966. Dr. L. H. Stein was
responsible for program development. The closed loop guidance techniques and
the control formulation were developed by Mr. M. L. Matthews. Mr. Matthews
also assisted in a major part of the program development as well as in the solu-
tion of the twenty check cases. Mr. J. W. Frenk was in charge of programming
and was assisted by Mr. D. A. Watson. Mr. Watson was also responsible for
the plotting capability for the program. The work was performed under the direc-
tion of Mr. E. G. Haugseth of the Boeing Missile and Information Systems Di-
vision.

This report, together with a companion document, Supersonic Transport
Trajectory Optimization - Example Solutions (NASA Contractor Report No. 66247)
plus the FORTRAN source program listings, binary object deck, and symbolic
object deck concludes the work prescribed under contract NAS l-5293.

iii

CONTENTS

SUMMARY

INTRODUCTION

SYMBOLS

ANALYTICAL DEVELOPMENT

Equations of Motion

Coordinate System
Control Variables
Kinematic Equations
Applied Forces.
Basic Equations of Motion
Auxiliary State Variables
Inequality Constraints

Steepest-Ascent Technique

Statement of Problem
Adjoint Equations
Variational Equations

Automatic Convergence

Iterative Procedure
Variable Initial Conditions
Weighting Functions Matrix

Nominal Trajectory Generation

Angle of Attack from Known 9
Angle of Attack for a Known V
Throttling for a Known V
Guidance Modes
Use of Guidance Options

Additional Options

Gamma Tilt
Circular Satellite
Maximum Payload

Conclusions and Recommendations

PROGFXM USER’S MANUAL

Program Assumptions and Limitations

As sum ptions
Limitations

Page

1

4

5

10

10

10
10
12
13
18
19
20

25

25
26
30

34

34
37
39

42

43
44
45
45
47

48

48
48
49

49

50

50

50
51

V

CONTENTS (Cont.)

Page

Input Data Preparation 52

PR0GRA.M OPERATION 77

Nomenclature - FORTRAN COMMON 77

Output Description

Printed Output
Punched Card Gutput
Magnetic Tape Output

Sample Problem

Statement of Problem
Sample Input
Sample Output

Operating Information

Program Setup
Data Setup

92

92
97

100

102

102
103
103

114

General Machine Operation

114
116

116

Tape or Disk Requirements 116

End-of-Run Indication 116

Special Machine Operating Information 119

Programming Information 122

Basic Program Flow
Subroutine Descriptions and Flow Diagrams
Program Flexibility
Program and Data Overlay
Equivalence
Trouble Shooting

Plotting Information

Limitations

122
127
279
284
287
287

297

Input Controls Required for Plotting
Multiple-Curve Identification

297
297
298

REFERENCES 299

APPENDIX A - Control Variable Choice for Point Mass Equations
of Motion 300

vi

CONTENTS (Cont.)

Page

APPENDIX B - Program Equations, Variables, and Constants
Defined

Equations of Motion

Partial Derivatives

Auxiliary Printout Variables

VAR Array

CONST Array

Miscellaneous COMMON

Internal Program Indicators

APPENDIX C -Program Control Logic 322

305

305

306

313

314

316

317

319

vii

STOP- A COMPUTER PROGRAM FOR
SUPERSONIC TRANSPORT TRAJECTORY OPTIMIZATION

By Lawrence H. Stein, Malcolm L. Matthews, and Joel W. Frenk
Boeing Aerospace Group

SUMMARY

An IBM 7094 digital computer program using a steepest-ascent procedure
has been developed for optimizing the flight path of supersonic transport aircraft
from the start of climb through cruise and descent. This document describes
the analytical development of the supersonic transport optimization program
(STOP) and presents a manual for program users.

Program capability is summarized below.

1. The program is capable of optimizing the entire flight of an SST from a given
low-speed, low-altitude condition at the start of the flight to a given low-speed,
low-altitude condition at the end of the flight. The program will also optimize
the climb, cruise, and descent phases of a mission separately.

2. The program incorporates a 3-D point-mass simulation for a vehicle moving
in relation to a spherical, rotating earth. The inverse-square law for gravity
is used. The 1962 U.S. standard atmosphere is included as a single subroutine.

3. The optimization is accomplished with an automatic step-size controller so
that, in general, only one pass on the computer is required for a solution.
The program will generate a nominal trajectory for starting the iterative
procedure. Automatic plotting capability is included. STOP is sufficiently
versatile so that other vehicles besides the SST may have their flight paths
optimized. These vehicles include: space boosters, ICBM’s, reentry vehicles,
scramjets, and vehicles with air-augmented propulsion. Even problems com-
pletely divorced from flight path optimization may be solved with a minimum
of reprogramming.

4. Payoff functions, terminal constraints, and stopping parameters may be
selected from the list of 40 state variables (defined by equations of motion
and enroute placards) given in figure 1. The program will optimize any one
of the state variables while simultaneously satisfying 14 terminal constraints
(one of which is considered to be the stopping condition). Inequality con-
straints, imposed by the user, are considered as terminal constraints.

5. Pitch angle, bank angle, wing sweep, and throttle setting are the control vari-
ables for the program. The user may select any subset of these variables
for a given problem.

1

L

VARIABLE VARIABLE NC PLOT FORTRAN SYMBOL DESCRIPTION . UNITS
TYPE INDEX INDEX INDEX NAME

STATE
(EQUATION :

121 1 X(Kl) W WEIGHT LB
122 2 XlK2) H ALTITUDE Fr

OF MOTION) 3 I23 3 xK3t Y RELATIVE FLIGHT PATH ANGLE DEG
4 124 4 X(K4) RELATIVE VELOCITY FPS
5 I25 5 XW) ; LATITUDE ANGLE DEG
6 126 6 XlK6)
7 127 7 X(K7) !t"

RELATIVE HEADlNG ANGLE DEG
LONGIlUDE ANGLE DEG

a 128 a X(K8) TD DUMMY TIME SEC
9 9

iii 10
X(K9) RNG PATH RANGE ALONG EARTH'S SURFACE N MI

10 XiKlD) AHI AERODYNAMIC HEATING INTEGRAL F-T-LB/FT2
11 11 X(Kl1) A V IDEAL RELATIVE DELTA VELOCITY FPS
12 z:

E
X(K12) GL GRAVllY LOSS FPS

I3
14 ;i 14

X(Kl3) DL DRAG LOSS FPS
X(K14) TVL THRUST VECTORING LOSS FPS

ii
135 15 X(K15) ER RELATIVE SPECIFIC ENERGY Fl
136 16 X(K161

:i
137 17 X(K17)
138 la X(K18) AVAILABLE FOR EXPANSION

19 139 19 X(K19)
1

NOT DEFINED

‘I 20 140 20 X(K2D)
STATE

ii
141 21 X(K21) 0" PITCH ANGLE PLACARD = Fit) DEG2SEC

(ENROUTE 142 22 X(KiZ) q+ BANKANGLEPLACARD =F(t) DEG'SEC
PLACARD) 23 143 23 X(K23) ?* THROTTLE PLACARD = F(H,M) SEC

24 144 24 X(K24) 11' WING SWEEP PLACARD = F(H,M) DEG'SEC

iii
145 25 X(K25) (Y. ANGLE OFAllACK PLACARD - F1H.M) DEG2SEC
146 26 X(K26) NOT DEFINED

27 147 27 X(K27) HD' ALTITUDE RATE PLACARD = F(t) FPS
28 148 28 X(K28) Q DYNAMIC PRESSUREPLACARD = F(t) ,PSF12 SEC

:i
149 29 XlK291 DYNAMIC PRESSURE PLACARD * F(M) (PSFI'SEC
150 30 X(K30) L Q"PlACARD = F(M) (PSF-DEGj2SEC

31 31
:: 32

X(K31) TEMT' TOTAL TEMPERATURE PLACARD - F(t) I"R12SEC
32 X(K32) N' NORMAL LOAD FACTOR PLACARD = F(H,M)

;'4
33

z 34
X(K33) RPA" RESULTANTPHYSIOLOGICALACCEL. PLACARD = Fit1 ZSEC~I~SEC
X(K34) H' ALTITUDE PLACARD = F(M) FT2SEC

;'6
155 35 ~(~35) AP SONIC BOOMOVERPRESSURE PLACARD nF(A,B) (PSFI2SEC
156 36 X(K36t M" MACHNUMBER PLACARD =F(H) SEC

;'B
157 37 xK37l NOT DEFINED

si ;;
Xw38l Y" GAMMA PLACARD =F(H,M) DEG2 SEC

39 X(K39) NOTDEFINED
* 40 160 40 X(K40) NOTDEFINED

-. -..-- - --_--. .- ~
FIGURE I: STATEVARIABLES

-.- . -. .---.--- _I... ._

6. Aerodynamic and engine options are available for receiving the data in the
forms commonly used for most types of vehicles.

7. Multistaged vehicles and those where external stores are jettisoned as a
function of time may be optimized.

8. Inequality constraints may be imposed on parameters affecting geopolitics,
passenger comfort, control limitations, structural loads, and engine opera-
tion. The geopolitical constraints include sonic boom overpressure and
maximum and minimum altitude.

9. The initial conditions can be varied by the program to obtain increased per-
fo rmance . This option eliminates the need for a preliminary search to deter-
mine the neighborhood of initial conditions for an optimal flight path.

INTRODUCTION

The need to optimize transport aircraft flight paths is becoming apparent
because (IL) the next generation will include supersonic transports for which the
climb and acceleration phase consumes an appreciable part of the vehicle fuel,
and (2) a large part of the flight is constrained by enroute placards.

The steepest-ascent method has been successfully used to optimize rocket-
boost trajectories, reentry-vehicle trajectories, and orbital transfers giving
substantial performance gains. There have been numerous attempts to optimize
flight paths of airbreathing interceptor-type aircraft with a relatively high thrust-
to-weight ratio using the steepest-ascent technique (ref. 1). These methods have
been successful to a degree, but, when applied to low-thrust-to-weight-ratio air-
craft, have resulted in flight path instability problems that have made convergence
difficult.

Recognizing that, in the past, optimization techniques have produced significant
performance gains for many classes of vehicles, NASA initiated the present study
under RFP L-5347 (ref. 2). The purpose of the study was development of a digital
computer program that would optimize the flight path of a supersonic transport
with realistic operational constraints. A sufficient number of cases would be
run to substantiate the program and define the most appropriate flight paths for
selected SST configurations. A computer program general enough to optimize
the SST would have the capability to optimize trajectories for many classes of
vehicles including rockets, air-augmented rot kets, airbreather vehicles, and
gliders.

The technique used for optimization is the steepest-ascent method given by
Bryson (ref. l), which follows the direct approach of determining a maximum.
The optimum flight path for the present study is the solution to the nonlinear dif-
ferential equations of motion that satisfy the imposed constraints and maximizes
or minimizes one of the state variables.

The development of a computer program to satisfy the SST requirements and
overcome problems associated with the flight path instabilities and complex engine
characteristics required some changes in the usual methods used in optimization
program s. Significant contributions to the program were made by NASA/LRC
personnel. The use of pitch angle as a control variable was suggested by J. R.
Elliott as a technique to overcome the flight path instabilities. The formulation
of jet engine data into a form compatible with the optimization procedure was
suggested by W. E. Foss, Jr. This form of data uses thrust input as T/P and
weight flow as W/P, where P is the ambient atmospheric pressure. Contribu-
tion to the form of the SST aerodynamic data representation was made by C. M.
Jackson, Jr.

4

I
‘_”

A

a

a

A (t - 7)

Ae
AH1

an

“t

aP

CA

CD

cDo

CL

QJo!

CL,,0

-!M
CN

WY
cNor3

CT
D

Do, Dl, D2

DL

w2
df

df0

df*

df,”

- -___
.-

SY!MBOLS

axial force (pounds)

speed of sound (feet/second)

inertial acceleration vector (feet/second2)

indicial response at time t due to a unit step in f(t) at
time T (see Duham ells integral, equation 81)

nozzle exit area (square inches)

aerodynamic heating integral (foot-pounds/feet2)

component of acceleration normal to relative velocity vector

component of acceleration along the velocity vector

component of acceleration completing the right-hand set
(an, at, ap) = ii

axial force coefficient, A/q S

drag force coefficient, D/q S

minimum drag force coefficient

lift force coefficient, L/q S

aCJJaa (per degree)

lift force coefficient at Q = 0

lift force coefficient for minimum drag

normal force coefficient, N/q S

acN/a@ (per degree)

acN/i%t3 (per degree3)

thrust force coefficient, T/q (square feet)

drag force (pounds)

drag constants (defined by equation 151)

velocity loss caused by drag forces (feet/second)

control variable perturbation magnitude (see equation 100)

predicted change in a function f (see fig. 8)

trial value for df

actual change in a function f (see fig. 8)

trial value for df*

5

i

dB
dtD> CG, dfi

&no, dii,

F, F(t)
f, f (x(t)> u(t),

fNL

f(t)

G, G(t)

g

g(t)

go
GL

GF

h

href

h (t

IsP

bP

k

Km

KR

KT

L

M

m

N

n

P

AP

7)

Idw’ Iw

combined changes in the constraints and initial state variables

change in payoff, constraint, and stopping functions

trial values for d@ and dT

n x n matrix of partial derivatives, .afi/axj

an n x 1 matrix of functions defining the time derivatives
of the state variables

a value determining the degree of nonlinearity of the func-
tion f

forcing function of Duhamel’s integral (see equation 81)

n x m matrix of partial derivatives, 6fi/6uj

local acceleration of gravity (feet/second)

forcing function of the convolution integral (see equation 99)

gravitational acceleration at earth’s surface (feet/secondz)

velocity loss due to earth’s gravitational field (feet/second)

function defined by equation 140

altitude above earth’s surface (feet)

reference altitude used for skin friction drag calculations (feet)

response of a system at time t, due to a unit control varia-
ble impulse at time 7 (see convolution integral, equation 99)

specific impulse, Tfi (pounds thrust/pounds fuel per second)

integrals defined by equations 108b, c , and d

step size coefficient (see fig. 8)

fuel flow correction factor for rockets

constant used in sonic boom calculations

total impulse correction factor for rockets

lift force (pounds); reference length for sonic boom calcu-
lations

Mach number

number of control variables

force normal to body axis (pounds)

number of state variables plus enroute placards

number of terminal and enroute constraints

sonic boom overpressure (pounds/fee@)

6

p, p*

pref

PSL

Y

YQf

r

‘D

RPA

Ro

S

SL6 u

CD
su

SFC

T

t

t0

tD

Tref

TT

Ttota1

T vat

TVL

u, u(t)

7, v,

vcs

TR

VF

W

wii

Wf

ambient pressure (pounds/feet2)

G (pounds/feet2)

sea-level ambient pressure (pounds/feet2)

dynamic pressure, l/2 p V2 (pounds/feet2)

dynamic pressure times angle of attack (pounds-degree/feet2)

position vector measured from earth’s center to vehicle (feet)

desired final altitude for circular orbit (feet)

resultant physiological acceleration (feet/second2)

radius of a spherical earth (feet)

aerodynamic reference area (square feet)

integrated payoff function sensitivities (see equation 134)

instantaneous payoff function sensitivities (see equation 130)

specific fuel consumption (pounds fuel per hour/pounds thrust)

actual. thrust component along body axis (pounds) ; static
temperature (degrees Rankine) ; final trajectory time (seconds)

independent trajectory variable, time (seconds)

initial trajectory time (seconds)

dummy time (seconds)

uncorrected thrust as input for airbreathers (pounds)

total corrected thrust for rockets (pounds)

total temperature (degrees Rankine)

uncorrected vacuum thrust as input for rockets (pounds)

velocity loss caused by thrust vectoring (feet/second)

an m x 1 matrix of control variables

inertial velocity vector (feet/second)

circular satellite velocity (feet/second)

relative velocity vector (feet/second)

function defined by equation 150

weight (pounds); an m x m weighting matrix

elements of the weighting matrix W (equation 137)

fuel weight (pounds)

X

x9 Y

- -
x.3 x(t)

yc

01

QO

B

BG

Blocal

Bm

Y

6

%

r)

0

A

h

A, x(t)

XG

hlocal

xQy XQ m

A@, x$(t)

xgp An(t)

path range (feet)

coordinates of points on the forward shock signature (see
fig. 7)

an n x 1 matrix of state variables and enroute placards

lateral extent of forward shock signature (see fig. 7)

angle of attack (degrees)

angle of attack of the previous integration step (degrees)

latitude of vehicle (degrees)

latitude at which the overpressure intersects the ground
(degrees) (see fig. 7)

latitude of a point on the forward shock signature (see fig. 7)

dix-l

flight path angle (degrees); specific heat ratio

Kronecker delta; indicates variance

thrust cant angle (degrees)

throttling control variable

pitch angle ; control variable, y -t a (degrees)

sweepback control variable (degrees)

longitude of vehicle (degrees)

adjoint variables

longitude at which the overpressure intersects the ground
(see fig. 7)

longitude of a point on the forward shock signature (see fig. 7)

payoff function adjoint variables, measures sensitivity of
Q at time T, to state variable changes at time t

constraint function adjoint variables, measures sensitivity
of a constraint at time T, to state variable changes at time t

stopping function adjoint variables, measures sensitivity of
the stopping function at time T, to state variable changes
at time t

see equations 98a and b

Lagrange multiplier (see equation 112); first Lagrange
multiplier (see equation 713)

8

f

v, vs.

P

7

Q

@

T

sz

w

Subscripts

0

R

I

max

req

vat

ref

m

Superscripts

()’

(j-l

()*

a 1 x p matrix of Lagrange multipliers (see equations 108
and 114)

ambient density (slugs/foot3)

dummy time used in Duhamel’s and the convolution integral

payoff function; bank angle (degrees)

heading angle, measured in degrees north of east

a p x 1 constraint vector

stopping function

angular velocity of earth (radians/second)

sea level or earth surface; initial; variable based on the
angle of attack of the previous integration step and current
state variables

refers to relative coordinate system

refers to inertial coordinate system

maximum

required

vacuum

reference

ambient condition

transpose of a matrix ()

inverse of a matrix ()

indicates nominal value

- -

9

ANALYTICAL DEVELOPMENT

Equations of Motion

Coordinate system. -The flight-path coordinate system is used to define the
vehicle position and atitude with respect to a spherical, rotating earth. This sys-
tem is sometimes regarded as the Watural” coordinate system because the state
variables of flight-path angle and velocity are explicit coordinates. The basic
state variable coordinates are longitude (X), latitude (fl) , altitude (h) , relative
velocity (VR), relative flight-path angle (YR), and relative heading angle (#R)
(fig. 2).

Control variables. -The total force acting on the vehicle has three distinct
sources: (1) gravitational force as a result of mutual mass attraction between the
vehicle and earth; (2) aerodynamic force resulting from the vehicle motion through
the atmosphere; and (3) thrust force from the vehicle propulsion system. There
is no way of controlling the gravitational force since it is a function only of the
state of the system.

The aerodynamic forces are determined by the geometry of the vehicle and its
attitude with respect to the free-stream air mass. For fixed-geometry aircraft,
the aerodynamic force is dependent on the angle of attack (defined as the angle be-
tween the vehicle longitudinal axis and the velocity vector). The angle of attack
is used primarily to establish lift that is normally in a vertical plane. Out-of-
plane maneuvers are made by banking the vehicle to direct the lift vector out of
the vertical plane, thus permitting lateral translations. The bank angle, Q , is
defined as the angle between the vertical plane containing the velocity vector and
the vehicle plane of symmetry as viewed along the velocity vector (fig. 3).

A problem exists with angle of attack as a control variable for the point mass
equations of motion when simulating the flight of a low thrust/weight, winged, air-
breathing vehicle. The angle-of-attack control variable has been satisfactorily
used for high thrust/weight vehicles, but the use of angle of attack for SST-type
vehicles results in an unstable, oscillatory flight path during cruise which is not
representative of the actual path. The use of a pitch angle (8) given by

e=y+a! (1)
as a control variable resolves the problem and results in a stable, well behaved
flight path in all cases checked. The analysis of this problem is given in appendix
A. Note that if the vehicle is banked, 8 is not the pitch angle in the usual sense
(that is, the angle between the longitudinal axis and horizontal plane), but instead
is the algebraic sum of the flight-path angle and the angle of attack as given by
equation 1. Therefore, for nonzero bank, 8 is not a physical angle.

Since some of the more advanced aircraft permit changing vehicle geometry
by varying the wing sweep, the effect of this variable must be considered in

10

!

i, ,_ .I ,..;”
,. .‘: , ~’ ::; J .. ‘.,P ..:’

.I ,,,/ :
--,--,e-
,.

--- ‘_ I

VR

HORILONTAL

figure 2. BASIC COORDINATE SYSTEM

Figure 3. VEHICLE ORIENTATION

11

establishing the aerodynamic force on the vehicle. The wing sweep, h, is de-
fined as the angle between the lateral body axis and a reference line on the wing
(e. g. , leading edge, quarter chord, and half chord).

The remaining control variable to be considered is the throttle setting, r) ,
for controlling the thrust. This parameter is defined as the ratio of thrust at a
given state to the reference thrust at that same state. Thrust is considered to
act along the vehicle body axis.

Therefore, to determine the aerodynamic and thrust forces required for con-
trolling the vehicle, four control variables are required: 8, Q , h, and q.

Kinematic equations. - The basic state equations of motion are defined in
this section. Details of the development are not given here because the methods
are standard.

The kinematics of a point mass vehicle for a rotating, central-force field is
given by

where V is the inertial velocity vector

vR is the relative velocity vector

z is the earth’s rotation rate

r is the position vector of the vehicle

a is the inertial acceleration vector.

Substituting equation 2 into equation 3 gives

diT,
‘= dt

-+2wxVR+WX(wXr)

Using the coordinate system of figure 2, equation 4 can be written in corn -
ponents along the flight path, normal to the flight path in the plane containing the
r and the v vector, and perpendicular to the plane containing r and v.

12

at = +R + a2 r ‘cos 6 (sin fl cos yR sin $R - cos fi sin yR)

vR2
an =VR~R-~COSYR-~UVRCOS~COS$R

- u2 r cos fl ,(cos p Cos yR + sin fl sin yR sin QR)

ap = VR cos YR & f
vR2
r tan fi cos2 yR cos #R

- 2 cd VR (sin yR sin $R cos 6 - sin fl cos yR)

+ a2 r sin p cos fl cos qR

where YR is the relative flight-path angle

qR is the relative heading measured north of east.

Other equations which follow from the procedures are

j=
vR cos yR sin #R

r

>;=
VR cos YR cos #R

r cos /3

i-l = vR sin YR

. RO
x= vR r c”s YR

(5)

(6)

where X is the longitude angle

h is the altitude

x is the path range.

The change in weight of the vehicle is given by the differential equation

&- weight flow

where the weight flow is a combination of fuel flow and inerts.

(7)

The gravitational, aerodynamic, and thrust forces are required to complete
the system. Other “auxiliary” state variables that are required will be defined
in a later section.

Applied forces. -The forces acting on the vehicle which are not a result of
the vehicle kinematics are discussed in this section.

13

,
I
i
i
I

----.._ I

. ‘, _,_ :. :,

Gravitational forces: The gravitational forces are determined for the cen-
tral force field by representing the gravitational acceleration by the inverse
square law

(8)

Aerodynamic forces: The aerodynamic forces for aircraft are written for
the wind axes system with lift (L) normal to the flight path and drag (D) parallel
to the flight path. Side-slip is assumed to be zero, i.e. , all turns are assumed
to be coordinated such that no side-slip results.

Drag

Figure 4. AERODYNAMIC FORCES - WIND AXES

If the bank angle is not zero, the lift vector is rotated about the velocity
vector through the angle Q (bank angle).

The aerodynamic forces may be expressed as

L=cLqs (9)

where

D = CD q S (10)
L is the lift force

D is the drag force

CL is the lift coefficient

CD is the drag coefficient

q is the dynamic pressure = i p V2
y?m 2

or - M
2

S is the reference area.

Aerodynamic data input options are available for accepting data in the most
common forms. For vehicles with fixed wings, the data are considered as

C L = f (h, M, q)

14

(11)

C J-j = f 01, M, a) (12)
if not represented in polar form. If available as drag polars, the data are repre-
sented as

where

CL = CL, 01 (13)

aCD
CD = CD0 + -

acL2 CL2

% = lift curve slope, f (M) per degree

cDO
= minimum drag coefficient, f (M)

aCD
- = induced drag constant, f (M).
acL2

(14)

The aerodynamics for variable-geometry aircraft with wing sweep as a con-
trol variable are formulated as

CL = f (A, M, a) (15)

CD = f (A, M, a) (16)

or if the data are given as drag polars

CL = CLo,.-o + CL, cx (17)

aCD
CD = CD0 + -

8cD2

where CLQ=O = lift coefficient for Q = 0, f (A, M)

(‘L - ‘LMj2 (18)

%Y = lift curve slope, f (A, M) per degree

CD0 = minimum drag coefficient, f (A, M)

acD
- = induced drag constant, f (A, M)
acL2

cLM
= lift coefficient for minimum drag, f (A, M).

The effect of altitude on drag (skin friction, AC,,) is included as a linear
function of altitude,

A ‘Do
*CD

= K fh - href) (19)

where &CD/Ah is a function of the reference altitude.

15

The aerodynamic forces on a missile are quite often referenced to the body
axis with the normal force perpendicular to the body axis and the axial force
along the body axis.

N=cNqs (20)

where

A = CA q f-3

N is the normal force

A is the axial force

CN is normal force coefficient

CA is axial force coefficient.

(21)

FlGURE5: AERODYNAMIC FORCES - BODY AXES

The normal and axial force coefficients are given by

CN = cNa Q! + CNa3 a3

cA =C Ao (not dependent on Q)

(22)

(23)

where WY = f (M) per degree

CQ~ = f (IM) per degree3

cAO = f (M).

The forces in the body axis system are transformed to the wind axis by

CL = cN cos o! - CA sin 01 (24)
CD = CN sin a + CA cos a (25)

for use in the program.

16

Thrust forces: The thrust forces on a vehicle are considered to act in a
direction fixed relative to the body axis so that the resultant thrust along the body
axis is

where

T = TT COS 6,

T is the thrust along body axis

TT is the total thrust force

6, is the thrust cant angle.

(26)

(The angle 6, is used only for symmetric nozzle configurations where the normal
thrust component from two opposing engines cancel.)

T,
2 Figure 6. THRUSTREPRESENTATION

The computation of thrust for airbreathing engines follows the form

where

TT = Tref q

Tref is the reference thrust = F (cy , h, M, or V)

TJ is the throttling parameter.

The thrust may also be given by

T ref = cT q

where CT is thrust coefficient. = F (dl , h, M, or V)

A thrust option that has particular use for the jet engine is

T
ref

- = f (O!, h, M)
P

(27)

(28)

(29)

which was formulated to give a smooth, consistent set of data over the entire
operating range of the engine. P is the atmospheric pressure (psf).

The reference thrust for rocket engines is based on
total thrust is given by

T? = KT TV,, r) - P, A,/144

17

vacuum conditions. The

(30)

where Tvac is the vacuum thrust (pounds), f (time)

P, is atmospheric ambient pressure (psf)

A, is the exit area (square inches), f (time)

KT is the total impulse correction factor.

Fuel flow: The fuel flow for airbreathing engines can be specified in terms
of fuel flow directly or in terms of thrust specific fuel consumption.

The fuel flow and specific fuel consumption can be expressed as

tif, SFC = f (q, h, V)

= f (o!, h, V)

= f 01, M, h)

= f (a!, M, h)

(32)

depending on the independent variables required for adequate representation.
The fuel flow for jet engines is also formulated as

.

wf
-= fth, M, q P (33)

and is designed to give a consistent set of data from idle speeds through maximum
augmentation. Again P is. the atmospheric pressure (psf).

For rocket engines, the fuel flow is obtained from the specific impulse by
the relation

(34)

where Km is fuel flow correction factor.

Isp is specific impulse (seconds), f (time).

The options of thrust and fuel flow available will handle most types of engine
data formulations.

Basic equations of motion. -The basic equations are summarized below with
the effects of gravity, aerodynamics, and propulsion included.

SR =
T cos cc - D

m
- g sin yR + a2 r cos B (cos fl sin yR

- sin fl cos YR sin $R)

18

(35)

+R = (
T sin O! + L) cos cp _

m vR
‘OS YR + 2w cos fl cos GR

n

0’: r
+ - cos p (cos p cos yR + sin @ sin YR sin $R)

VR

k = VR sin yR
.

W = - tif - tiinert (38)

(36)

(37)

$R = _ (T sin cy + L) sin ge vR
m VR cos yR

- y tan p cos yR cos GR

- 2 w (sin fl - tan yR sin $R cos 8)

W2 r sin /3 cos /I3 cos #R,

VR co.5 ~
(3%

VR cos yR sin @R

r (40)

VR cos YR cos GR
r cos /3 (41)

These equations are sufficient to define a vehicle trajectory for a spherical,
rotating earth. The equation of motion for path range on the earth’s surface is

RO j,=- r VR c”s YR (42)

Auxiliary state variables. -Variables required for optimization, stopping
or constraining a flight path, but which do not fall in the category of basic state
variables, are defined as auxiliary state variables. The differential equations
for these variables are integrated when desired by the user. The additional
variables and their defining equations are given below.

Dummy time: The dummy time, introduced so that it may be used as a
state variable, is defined by

(43)

Aerodynamic heating integral: The aerodynamic heating integral, a meas-
ure of the heat encountered by a vehicle during flight, is defined by

19

dAHI
dt

= $ p VR3 (44)

where pis the atmospheric density.

Ideal relative AV: The ideal relative AV, the velocity change a vehicle would
experience in the absence of atmospheric and gravitational effects, is defined by

dAV
dt

= 2 + 2 1: cos /3 (cos /3 sin y
R

- sinBcosy R sin 9,)

where m is the vehicle mass.

Drag loss: Drag loss, the velocity decrement resulting from motion
through the atmosphere, is defined by

dDL D -=-
dt m

(45)

(46)

Gravity loss: Gravity loss, the velocity decrement resulting from motion
in the earth’s gravitational field, is defined by

d GL
- = g sin yR

dt (47)

Thrust vector loss: Thrust vector loss, the velocity decrement resulting
from the thrust vector not aligned with the flight path velocity vector, is defined by

dTVL
dt (48)

Inequality constraints. -During the course of a flight path, a function
may be required to be less than or equal to and/or greater than or equal to a
particular value or set of values. Inequality constraints arise from a number
of different considerations: (1) geopolitical limitations; (2) passenger comfort;
(3) control limits; (4) structural limits; and (5) engine limits.

Geopolitical: This class of inequality constraints is related to consideration
of other than aircraft limitations. The maximum and minimum altitude may be
imposed by the FAA for traffic control. Aircraft noise and sonic boom (ref. 7)
are important in vicinity of cities, airports, etc. The sonic boom is of special
consideration to SST flight paths because the boom signature and overpressure
(AP) on the ground may design the flight path. The sonic boom overpressure on
the ground, in the plane of the velocity vector, may be found from the following
expression:

AP @I/L) 3/4

KR 8m1'4 'ref

= f (M, h, pm CLS/ZL~) (49)

20

where

P
ref

= 21 P
SL poJ

KR
= 1.9

and f (M , h, &-, CL S/2L2) is a tabular function. The overpressure generated
by an airplane at a latitude and longitude (p , A) will intersect the ground ahead of
the airplane in the plane of the velocity vector at a latitude and longitude of

R
m 0

(50)

h cos QR

‘(2 = A + pm R. cos fl (51)

The shock pattern on the ground is considered to be the intersection of a
cone (with the half apex angle equal to the complement of the Mach angle) with
the ground plane (fig. 7). This intersection, or shock signature, is a hyper-
bola with the equation

h2 + y2 =x

where h is the vehicle altitude

y is lateral distance from the flight path

x is distance along the flight path from the vehicle to the point on the
shock signature.

9 -/
’ ‘\

/ 1 \ / / “I \
(“LOCAL, pLOCAL)

/

/’ / / /

/I(W)

Figure 7: SONIC BOOM GEOMETRY

(52)

21

The lateral extent of the shock wave is given as a tabular function

yC = f 01, M) (53)

The geographical location of a point along the shock signature is expressed
in term s of longitude, latitude , heading angle, and altitude

B local =fi+$ o
[
si;GR KyT+ y cos GR]

m

x1 ocal =A+ IL
Rocos P [

‘OS ‘R {w - y sin GR
B m 1

where y can go from - yc to + yc to cover the entire shock signature.

The overpressure along the shock signature is related to that given in
equation 49 (APy=6) by

h [I 314
AP(Y) = Apy=6

J/m

The maximum allowable overpressure over the ground is given by

AP = AP
max max (local’ ’ local)

where hocal and ~local are the points along the shock signature.

The next step is to derive a function in terms of the instantaneous vehicle
state that represents the integral of the overpressure violation along the shock
signature from - yc to + yc. The overpressure violation is given by

AP -Ax’ ‘o
S max

where the AP, is given by equation 56.. A true integral of the violation along
the signature is not practical, therefore an approximation is made by summing
the overpressure violations for several selected points as follows.

2

d BOOM PF
dt = (AP - AP S max) 1 i

6 = 0 i.fAps<Apmax

6 = 1 ifAps ?.APmax

(54)

(55)

(56)

(57)

(5 9)

NP is the number of points selected for the approximation. At present 7 points
are used spaced at an interval of yc/3. Equation 59 which defines the sonic
boom penalty function, is integrated as one of the equations of motion along the

22

path with a terminal constraint value of zero. The partial derivatives of equa-
tion 59 with respect to the state and control variables are determined numerically
(appendix B) .

Passenger comfort: The comfort of a passenger is significant to the air-
lines who are trying to please the customer. To insure that the vehicle does not
fly into areas of discomfort, placards may be imposed on normal load factor (n),
pitch angle (6)) bank angle (cp), resultant physiological acceleration (RPA), and
altitude rate (h). The altitude rate controls such items as rate of change of cabin
pressure. The magnitude of cabin pressure is determined by altitude and mechan-
ical or compressor limitations.

Control : These placards result from physical or mechanical limitations on
the system. The control variables limited are pitch angle, bank angle, throttle
setting, and wing sweep.

Structural: The structural requirement on airframe requires that the state
of the system be constrained so that dynamic pressure, dynamic pressure times
angle of attack (Qa), stagnation temperature, and cabin pressure differential do
not exceed prescribed limits. The stagnation temperature is given by the adia-
batic equation

T
total

= T (1 +
y-l 2
-y-M)

where y = specific heat ratio and T is the ambient temperature. Cabin pressure
differential can be formulated as a placard on altitude rate.

Engine : The engine is protected from flight conditions that would produce
undesirable results by bounding the altitude Mach number region in which the
vehicle can operate. In addition, maximum and minimum throttle setting may
be bounded by a control placard as a function of altitude and Mach number.

Several methods of handling inequality constraints have been devised, i. e. ,
integral method (ref. 3)) penalty function method (ref. 4)) and a method by
Bryson, Denham, and Dreyfus (refs. 5 and 6). The method used during this
study is based on the square of the violation. This method is similar to the
integral method but produces a form more satisfactory for use with analytical
partial derivatives. Consider a typical problem as shown in figure 8.

Let C be the time history of the function to be constrained, which violates
the placard shown as P. The region of constraint violation is shaded. A meas-
ure of the total constraint violation is the areas shaded, or

T
A=

s
(C - P) 6 dt (61)

to

23

I --

where 6 = 0 when there is no violation

6 = 1 when there is a violation.

This formulaf;ion is not satisfactory for analytical partials since the partial de-
rivative of dA/dt with respect to the state or control variables does not have a
measure of the violation. A form which does have the required nature is

A= (C - P)2 6 dt (62)

where the partial derivative with respect to the state variables does have the
proper form

ai 6C 6P - = 2 (C - P) 6j - e
8X ()

(63)

which is still dependent on the violation.

Each of the inequality constraints is formulated in the same manner and permits
a minimum as well as a maximum limit. Each is treated in the same manner.
Inequality constraints can be imposed for the placards shown in figure 1.

PLACARD
VIOLATED

-P

I

5

‘0
T I

Figure 8: INEQUALITY CONSTRAINT

t

24

Steepest-Ascent Technique

The analysis of trajectories by the steepest-ascent method has been treated
extentensively in the literature (refs. 1,. 3, and 4). The derivation given here
follows that of Bryson and Denham, reference 1. Since the steepest-ascent
method is basic to this study, the derivation is included here for completeness.

Statement of problem. - The steepest-ascent solution is formulated to deter-
mine the control variable history, u(t), so as to maximize a function (payoff
function)

@ = G+(T), T] (64)

and meet the terminal constraints

c, = +(T), T] = 0 (65)

where cp = performance index to be optimized

x = state variable matrix (order n x 1)

T = time at the stopping condition

$ = a matrix of terminal constraint functions (order P x 1).

The stopping time, T, is established by the condition

St3 = s+(T), T] = 0 o-33

where a is referred to as the stopping condition.

The equations of motion defining the state of the system can be written in
terms of first-order differential equations. The form of these equations is

x(t) = T [x(t), u(t), t] (67)

where i(t) is an (m x 1) matrix of control variables

f is an (n x 1) matrix of functions defining the time derivatives of
the state variables.

The initial values of the state variables, x(t,), are generally known for a
given problem. If some of the initial values are not specified, they may be deter-
mined along with the control matrix to optimize ge. If it is desired to optimize
some function other than one of the normal state variables, it is necessary to
introduce an additional state variable and another differential equation defining
the state variable and solve it simultaneously with the required equations of motion.

The steepest-ascent process is started by _assuming a control variable time
history, u(t). About the only requirement on u(t) is that the trajectory generated
must reach the stopping condition.

25

I -

The nominal trajectory is generated using the assumed u(t), vehicle and engine
characteristics, and the initial conditions. The equations of motion (equation 67)
are integrated numerically to obtain the nominal state variable program until the
stopping condition is satisfied. For convenience, the nominal conditions will be
designated by ()*, i.e.,

i(t)nomiml = ;*lt) w9
-*

XWnomiml = x @) . (69)

The steepest-ascent procedure uses the concept of local linearization about
a nominal flight path. For small perturbation in the control variables

u(t) = ii*(t) + s;(t) (70)

the state variables are perturbed

x(t) = x*(t) + 6x(t) (71)

Substituting equations 70 and 71 into equation 67, the linear differential equa-
tion for 6; is obtained

w’her e

G=

-$ 6x(t) = F 6; + G 6;

(order n x n)

(order n x m)

(72)

(73)

(74)

Again the ()* indicates that the partial derivatives are evaluated along the nomi-
nal flight path.

Adjoint equations. -The effects of the control variable perturbations on the
payoff quantity, stopping condition, and constraint functions must now be determined.

26

Equation 72 is a linear equation that describes the small perturbations about
the nominal path. To this is added a linear differential equation adjoint to equa-
tion 72

dX - = -
dt

F’ X (75)

where the X Is are a matrix of adjoint variables. The significance of the X’s
and their role as influence functions for Q , T, and S2 will be demonstrated.
To show this, premultiply equation 72 by X ’ , equation 75 by 6 x’ (where () ’
indicates the transpose of the matrix), and add the transpose of the second product
to the first

x 1 do; dh’
- + --g 6,; = A’ F 6;; + A’ G 6; - A’ F 6;

dt

which can be written as

(76)

(77)

Integrating equation 77,

(78)

Examining this equation gives much information on the nature of the adjoint vari-
ables. The product G 6U gives the rate of change of the state variables due to
changes of the control variables only:

2
6x = G 6u (79)

therefore, equation 78 can be written

(ii’ 6ii)t=T =
t0

A’ 6; dt + (X’ 6x)t=to s
T .

but this is exactly the form of the Duhamel integral, which is

S
t z(t) = A (t - 7) y dr + A (t - to) Wo)

t0

(80)

(81)

where A (t - T) is the indicial response at time t due to a unit step in f(t) at
time 7. The f(t) is the arbitrary forcing function; z(t) is the response of the
system to the arbitrary forcing function. Making a comparison between the two
equations for t = T, the X’s are the indicial response of the system due to a
unit step in each element of the state variable vector, 6 2. The variables of
interest for this work are the payoff function cp , the stopping condition Sz , and
the terminal constraints T. A set of X’s can now be defined corresponding. to
Q, a, and the vs. The adjoint variables are identified as

27

a(8 A’Q = 23
6X

(82)

where A’
!f

is a (1 x n) matrix, X’ is a (p x n) matrix, and X’Q isa (lxn)

matrix. he X’s are influence fun&ions and may be considered as

‘Qi = 2 (83)

or the change of Q due to a unit step change of Xi. Similar interpretation can be

made for X9 and X0. A set of boundary conditions can now be written for the
X’s at t = T giving

XQj(T) = j = 1, n (84)

Ai (T)
0

OGi
= -

% axj T
i = 1, p j=l,...., n (85)

j = 1, n (86)

1f the payoff, constraint, and stopping functions are restricted to state variables,
the X(T)‘s are either zeroes or ones.

Starting from the terminal values of the X’s, equation 75 may be integrated
backwards along the flight path (i. e. , from T to to) uying martial de’rivatives which

were stored during the forward trajectory to obtain X (4 A’$, and X 0 as functions
of time.

Substituting the functions from equations 84, 85, and 86 into equation 78 and

noting that

(h’Q 6;)~ = 6@(T) (87)

(A’$ 6G)T = 6F(T) (88)

(‘C’n 6i)T = sa(T) (89)

the following are obtained

~Q(T) = IT X’Q G 6; dt + (X’Q 6$t=t,

t0

(91)

28

T
6n(T) = X1,

G 63 dt + (x’o 6;;,t=t
0

(92)

These equations would give the changes in the payoff function, stopping conditions,
and terminal constraints if the final time (T) at the stopping condition did not
change. In general, this is not true and, due to small perturbations, the stopping
time is at some time, T + AT. To account for this change equations 90, 91, and
92 become

dQ = X’Q G 6; dt + (X’Q 6&, + Q(T) AT (93)

T
d+ = G &dt+ (A’

t0
Q

6$+, + z(T) AT

.
dC-2 = A’, G 6; dt + (X’a d$to + n(T) AT

(94)

(95)

Note that these equations are now total differentials. This set of equations gives
the changes in (8, F, and Sz for the perturbed trajectory.

The stopping condition does not change from one iteration to the next, there-
fore dsI (T) = 0, giving the relation

b2l
1

G 6; dt - -
fiZ(T)

(96)

the equation for Q and 7 from equations 93, 94, and 95 can now be written as

dQ =
xlQS2

G 6; dt + (X’Qsl 6&,
0

(97)

where

@a)

Pb)

The xQ(j- and X9n are modified influence functions, which account for a change
in the time at the stopping condition.

The integral terms of equations 97 and 98 may be compared with the convolu-
tion integral used for determining the response of a system to a continuous control
variable forcing function by first obtaining the impulse response functions, i. e. ,

+
L

z(t) = S h (t - T) g(r) d7 (99)
t0

where h (t - T) is the response of a system at time t due to a unit control vari-
able impulse at time T. The function g(T) is the continuous control variable
forcing function and z(t) is the response at some arbitrary time t to that forcing
function.

If the arbitrary time is taken to be the final time T, and the forcing functions
are the perturbed control variables 6;) the functions X ‘Qa G and x ‘Q 0 G are
shown to be the responses of the final values of the payoff function and terminal
constraints to a unit impulse of each of the elements of 6u at some time t.

Variational equations. -For steepest ascent, the control variable history,
Si, that maximizes dQ given by equation 97 for a given dF and dSZ = 0 is de-
sired. An additional requirement is that dU defined from

(dU)2 = JT 6$(t) W s;(t) dt

to

be chosen to ensure that the perturbations, 6<, will be small enough for the
linearizations leading to equations 84, 85, and 86 to be within reason. W is an
(m x m) symmetric weighting matrix chosen to improve convergence during the
steepest-ascent procedure. The automation of logic for the selection of (dU)2
and the weighting matrix are discussed in later sections.

The values of dv are chosen to bring the nominal solution closer to the de-
sired terminal constraints, T-= 0. It is desirable, in many cases, to restrict
the change of constraints, d# , allowed for each iteration.

The procedure now follows the calculus of variations using the method of
Lagrange multipliers. A linear combination of equations 98 and 100 with equa-
tion 97 gives

30

T
dQ =

s X’Qi-2 G 6u dt + A’,, o (t 1 6;; Go)

t0
T

+ v’
[

dT -
J &&2 G 6; dt - X’en (to) 6; (to)

“0

or combined gives

I

T
&ii’ W 6u dt

t0 1
T

dQ =
S[

XIasl G - v’ dqn G -p 6&v 1 6udt to
(to) - v’ X1@ (to> 1 62 (to)

+ v’ dF -c c1 (dU)2 (102)

(101)

where v is a (1 x p) matrix of constant Lagrange multipliers, and P is a con-
stant . Both u and p can be chosen for convenience, since they were assumed
arbitrary.

Taking the variation of equation 102 with respect to the control variable gives

T
6(dQ) =

S[
G - v’ XfQsl G - P 6i’ W) S2u - Cc 62,’ w 6; dt (103) 1

t0
(X’QS2

where 6; (to), dF,, and dU are considered to be constants. Since this is a
scalar equation

s21? w 6; = 6U’ w ti2u (104)

i.e., the transpose is equal to the matrix where W is a symmetric matrix.
Therefore the expression for the variance of dQ is reduced to

T
&dQ) =

J[
X’QQ G - v’ X’qa G - 2 Cr 6ii’ w tj2ii dt 1 (105)

t0

The optimal dQ will occur where its variance is zero. Therefore, since b2u # 0,

A’& - v$,G - 2p &iii’ w = 0

Solving for 6ii gives

6U = LW
2P

-’ G’ (XQn - $,V)

31

(106)

(107)

where the ()
-1

indicates the inverse of a matrix. Substituting the expression

back into equation 98 and solving for V gives

where
dj=d5,- A' (108a)

XiaGW
-1

G’ $dt

T

s

-1
I+~= to xlllinGW G’ A&t

S T
I A’

lpnGW
-1

QQ =
G’X dt

t0
Qn

In the computer program, reference is made to the ‘It1 matrix, which is
defined as

h’ GW-1 G’ h dt

(108b)

(108~)

(108d)

where A is the n x (p + 1) matrix, which may be represented as a partitioned
matrix as

(109)

nxl nxp

The I matrix can be partitioned as follows

I=

[

I
QQ ---

I$Q

I
I
I IQ@ _-----
I
I Iw 1

(110)

(111)

This is a symmetric matrix since IQ$ = I’$$,@and I @+ is symmetric, where

lQQ’l$Qf and1$$ are defined by equation 108b, c, d.

Using the expression for v (equation 108) and the equation for 6< (equation
107)) substituting into equation 100 and solving for p gives

a- -l l/2

(112)

32

The Lagrange multipliers referred to in STOP are of different form than
those given by equations 108 and 112. For convenience, the “‘first Lagrange
multiplier” in the program, /l,, is

p, +=*
[

(d u)2’ - d6 ’ I$@ dfi 1
l/2

IQQ - I&o ‘s$k I$Q
(113)

and the array of Lagrange multipliers are denoted by

% = -G =- % v (114)

The form of the perturbed control variable (equation 107) therefore can be
written as

(115)

The complete expression for 6; can now be obtained by substituting the
equations for ,u and v into equation 107, which gives

hi(t) = zk w-l G’ (XQn - X
@ Ii; ‘@Q)

+w
-1 ’

G XQn I;‘$ dB (116)

This equation is the foundation for changing the control variable to improve
the performance for each iteration. The payoff function change predicted for an
iteration is obtained by substituting equation 116 for 6U (t) into equation 97 for
d 0, giving

dll) = f
l/2

- d;’ I,; d/3
-I(

IQQ - I;icaI-;/,I+Q

+ I;iQ I,; dP + X;b#,) 6% (to)
(117)

where the + sign is used to increase Q and the - sign to decrease Q. This pro-
cedure will give the optimum trajectory as discussed under the statement of the
problem. The method for perturbing the free initial condition 6ii (to) will be
discussed in a later section. The e_ffects of varying the initial conditions enter
the problem through its effect on d @ as well as 6ji (to).

33

Automatic Convergence

Iterative procedure. -A major problem encountered in steepest-ascent cal-
culations is the choice of the step size, (dU)2. Too small a step results in regu-
lar, but slow convergence; too large a step results in irregular progress and
probable convergence failure. Therefore, to insure convergence in a minimum
amount of computer time, it is desirable to automatically select the largest step
size possible, per iteration, consistent with the linearity requirements of the
steepest-ascent technique. The selection technique used in this program is pat-
terned after a method developed by D. S. Hague (ref. 3).

A function fi (a payoff or constraint function) rarely is -nor does it have to
be -perfectly linear to be acceptable for steepest-ascent calculations. The
degree of linearity or nonlinearity is, however, important and is defined as

fNLi = Jdfi*iiai 1
018)

where fNLi is the degree of nonlinearity representing the percentage error of
the linear prediction to a parabolic approximation of the actual change of a pay-
off variable or a constraint. dfi* is the actual change in fi and dfi is the linear
prediction of the change in fi. Both the degree of linearity and choice of the func-
tio,l used to measure linearity must be chosen with care and are discussed below.

On a perturbed trajectory the predicted payoff function change is given by

Essentially the step size may be defined as a choice of (dU2) and d$. Con-
sider the one parameter set of perturbations

(dU)2 = k2 (dUo)2 WO)

d$i = k d$oi (121)

where duo2 and d~oi are arbitrary nominal changes. It follows on substituting
equations 120 and 121 into equation 119 that

W (k) = k dq, 022)

Here dcP, is the change in performance resulting from the nominal step, (dUo)2
and d&i, which results from the choice of k = 1. Consider figure 9 where
the nominal step is denoted by the “trial” step and fi is any of the functions Cp
or iJ.

34

C
.-o
;j
5 dfo

Predicted linear change

bolic approximation

i
.5 I .o 2.0

Stepsize - paiameter k.

Fiqure 9. PARABOLIC APPROXIMATION

The predicted linear variation with k is the straight line through the origin
and the point (l. 0, df,). For a small enough step the actual nonlinear change
will substantially agree with this line. As the step size increases the two results
will, however, tend to diverge. Suppose a parabola is fitted through the origin
and the point (1.0, df,? having the same slope at the origin as the linear change.
The equation of this parabola is

df” = @fo* - dfo)k2 + dfok 023)

Provided a trial step is reasonably chosen, this expression will approximate
the actual nonlinear change over a considerably greater region of step sizes than
did the linear prediction. Essentially, the combination of a trial result and the
linear prediction allow a second-order approximation to the variation of a function
with step size.

Assuming for the moment that df, > dfo*, and df, (0)/k > 0, we can antici-
pate from equation 123 that the greatest change in f will occur when

k df0
M’

2 (dfo” - dfo) 024)

Further, on substituting this result into equations 123 and 118, it follows that
at this point the nOIdineaI?ity, fNL, will be about 0.5. If the actual nonlinear
variation were to be parabolic this value would be the desired nonlinearity. in
practice, it has been found that this value is too high. Using 0.5 in conjunction
with the parabolic approximation leads to steps that are “over the hump. l’ Experi-
ence has shown that using a nonlinearity of fNL = 0.3 practically eliminates this
problem and leads to satisfactory steps.

35

Now that a satisfactory degree of nonlinearity has been determined, the sec-
ond question, “which Of the fNL to use?” has still to be answered. This is equi-
valent to deciding which of the functions of interest should be used to control the
step size. One approach is to control with the worst-behaved function, i.e., the
one whose nonlinearity is greatest. If this approach is taken, difficulties immedi-
ately appear. For example, it may be that only one function is behaving badly,
the remainder being extremely linear. In this case, small steps with resulting
slow convergence, or failure to converge, may result. Failure to converge here,
however, does not mean divergence, but that (dU)2 is so significantly reduced due
to the nonlinearity of the control function that the changes in constraints and pay-
off functions become lost in computer noise. This results in negligible or random
variation of the constraint and payoff variables from iteration to iteration. The
conclusion is made, therefore, that the control must be made with the best be-
haved function, that is, the one having the most linearity.

To ensure that the remaining functions do not wander too far, various tests
are designed to maintain convergence consistent with the linearity requirements
of the steepest-ascent method. These tests, though based on experience to some
extent, have proven to be a successful means of ensuring convergence.

Majority vote test: The majority vote test consists of the examination of the
changes in the constraint and the payoff functions based upon the results of the
previous trial. Only those functions that axe more than a specified tolerance
from their desired value are examined. If at least the same number of functional
changes are in the proper direction as those with adverse travel, then the test is
satisfied. Otherwise, the step size, (du)2, is reduced and a new trial is com-
puted. The majority vote test, in addition to the adverse Q test discussed below,
is also used to determine whether or not a valid step is acceptable, prior to
going into a reverse integration of the adjoint equations of motion. A valid step
is performed after a limited number of trials or a successful trial and consists
of the forward integration of the equations of motion together with the partial deri-
vative calculations.

Step size coefficients: The step size coefficients are based on the func-
tional nonlinearities as shown in figure 9. Using the parabolic approximation,
the step size that causes the best-behaved function to have a nonlinearity of 0.3
is computed. If the resulting step size coefficient, k , fails to satisfy the condi-
tion 0.5 < k < 2.0, then a further trial at the upper or lower limit is undertaken.
Experience has indicated that these bounds are reasonable ones to impose on inter-
polation or extrapolation using the parabolic approximation.

Adverse Q test: The adverse Q test follows the calculation of the step size
coefficient. The test ensures that, if adverse travel occurs in the payoff function
Q, it will not exceed a specified tolerance. When the adverse travel exceeds this
tolerance, the problem is regarded as too nonlinear and (dU)2 is again reduced,
followed by a new trial computation.

36

Successful completion of the above tests is necessary to perform a valid step.
Other logic, however, is incorporated to force a valid step under certain circum-
stances. Such tests are discussed in the user’s manual.

Figure 10 is presented to illustrate the flow of the automatic convergence
process.

Variable initial conditions. - The steepest-ascent technique determines, as
a by-product of the optimization process, a set of influence coefficients that defines
the perturbation of the payoff quantity per unit-step-change in the initial state
vector. The problem is to determine the correct direction to perturb the initial
conditions in order to increase performance on the next iteration. In addi-
tion, logic must be incorporated to guarantee convergence of the initial conditions
to their optimum values. It is usually desirable to allow the initial condition
vector to be free only in a bounded region.

The performance predicted for an iteration, given by equation 117, provides
the basis for selecting the optimum initial conditions. Consider the equation

For a given problem solution, the payoff function has been optimized; that is,
dQ (I’) = 0, the constraints have been met, d q = 0, and the initial conditions
are at their optimum values so that 6x (to) = 0. Then, since (dU)2 # 0, the
relation must hold that

'QQ - f&Q I$$ I@Q = 0 026)

Now restricting this to the case where the constraints are met but the initial
conditions have not yet been optimized, equation 125 can be reduced to

dQ p) =[(& (to) - I;Q I;$ $0 (to))]~~ (to)

if it is assumed (as is the case for the optimum) that equation 126 holds.

This expression allows the variation of the free initial conditions for each
iteration but is exact only for the optimum path. The correct direction to perturb
x (to) is the direction to improve performance. In obtaining optimum perform-
ance, perturbation of each free initial condition is considered independently since
equation 127 shows that the effects of the perturbations are uncoupled.

Convergence is guaranteed by bounding the perturbations. The perturbation
size is controlled using the rule that if the perturbation is in the same direction

37

I Calculate G(t)
Based on New (dlJ12 I

W ‘)

I Calculate Step
Size Coefficient I

<
Adverse

>
NO

Phi OK

Yes JL

I Valid Step
I

Figure IO AUTOMATIC
38

CONVERGENCE FLOW

for two successive iterations, then the value of the perturbation is doubled, or
halved if the perturbation changes sign. The maximum initial condition change
per iteration and the limiting values are specified for each free variable.

Weighting functions matrix. - A cursory glance at the steepest-ascent method
might lead to the conclusion that the choice of weighting matrices is not a signifi-
cant problem, but in practice this is not always so. The control variables, for
example, may have widely differing abilities to affect the final values of the pay-
off and constraint functions. It is necessary, therefore, to differentiate between
powerful and weak control variables, based on their ability to affect the optimi-
zation functions, particularly in their ability to affect the payoff function. Even
with a single control variable, this problem remains, since along some subarcs
the control may be weak and on others strong.

Two types of weighting are implied, one resulting from the differences in
sensitivity of the multiple control variables and the other resulting from differ-
ences in sensitivity of a single control variable along a trajectory. There are
two basic reasons for the use of weighting matrices. One is to speed up conver-
gence and the other is to ensure convergence. It is fairly obvious that a well-
chosen weighting matrix can improve convergence even in a well-behaved problem
that involves both a weak and a strong control variable. The steepest-ascent
process can be speeded up by forcing larger perturbations in the weak control
variable in the initial iterations, rather than waiting for the stronger one to con-
verge before making significant changes in the weaker one. What is not so
obvious is the fact that, without a reasonably chosen weighting matrix, it is pos-
sible that the steepest-ascent method may fail to converge entirely. Generally,
it is a relatively straightforward process to develop the control history of a single
control variable until it lies within the neighborhood of the optimal solution, pro-
vided the problem does not involve weak and powerful subarcs.

However, the control history can only be developed into the neighborhood
of the optimum since there is a region about the optimal history in which the con-
trol variable is ineffective by definition. If the problem involves terminal con-
straints, however, it is only ineffective for those perturbations that leave the
terminal constraints unchanged. For a perturbation that merely seeks to gain
performance, it may well, and usually does, remain powerful. If now there are
two control variables, one weak, the other strong, it may be that even though the
strong variable is in the neighborhood of the optimal solution, it still dominates
the perturbations that occur as it alternates about the ideal solution. In this case,
the method may fail to converge the weak control variable at all, since the effect
of the weaker control can be completely obscured by the noise level of the stronger
variable. Further discussion on weighting functions is given in reference 3.

Control variable power: The control variable power is used as a basis for
determining a weighting function that will ensure convergence with respect to the
payoff function.

39

The change in the payoff function resulting from a perturbation in the control
variable was given by equation 97

028)

For a unit impulse perturbation in the control variables &i, it was shown
in a previous section that the response of the payoff function was

6 (dQ) = A;aG 029)

where again hIQo is a 1 x n matrix and G is an n x m matrix resulting in
6 (d@) as a 1 x m matrix giving the response of the payoff function to a unit
impulse of each of the m control variables. The elements of 6 (dcp) are referred
to as the instantaneous payoff function sensitivites and will be designated as

G 030)

These quantities measure the power of a control variable with respect to the
payoff function, provided no restrictions are imposed on the terminal constraint
changes.

The control variable perturbations are closely related to the instantaneous
payoff sensitivities. For the case with no terminal constraints, the control pertur-
bations are

-1
6ii=+W G’h - (131)

or in terms of the instantaneous payoff sensitivities

Thus the optimum (steepest-ascent) perturbation varies directly with the
inverse weighting matrix and the instantaneous sensitivities. If terminal con-
straints are considered in the problem, the control variable perturbations are
(from equation 116 with fixed initial conditions)

_ l/2

6ii = f W-l s; - G’ x &; I#Q
(W2 - d$’ I;;dz,6

I c133)

+W-lG’A @I& d 3)

The results above suggest an approach to the problem of false convergence.
The problem is due to small perturbations in the weak control variable. The

40

inverse weighting matrix based on the control variable sensitivities can be used
to amplify the effect of the weaker control variables. Using this type of weighting
matrix, effectively the basis of optimization is changed from that perturbation
having the greatest change in the payoff function to that perturbation having the
greatest change in o with all control variables being equally important and must
therefore be perturbed by a reasonable amount.

The possibility of failing to converge to the desired constraints is more re-
mote than that of failing to converge the payoff function. The dominant control
variables for the payoff function are very often the dominant control variables for
the constraints and hence will continue to be perturbed until the constraints are
achieved. The terminal constraints may often be met without the optimum con-
trol history. The failure to meet the terminal constraints is immediately recog-
nized whereas the optimum performance is verified only by starting from a con-
siderably different nominal. Weighting matrices based on constraint sensitivities
(G’ Ati,) and a mixed payoff and constraint sensitivity have been .discussed by
Hague in reference 3 but are not considered here.

The overall control variable power may be determined by integrating the
instantaneous payoff sensitivities where the constraints are again ignored

The elements of this column matrix are referred to as the integrated payoff
sensitivities . Both the integrated payoff sensitivities and the instantaneous pay-
off sensitivities may be used as the basis for the weighting functions.

The instantaneous payoff sensitivities can be used to construct a weighting
matrix to balance weak and strong subarcs for a given control variable. The
integrated payoff sensitivities are used to obtain the weighting matrix to balance
the power of the multiple control variables. The matrix is of the form

[-1 W.. =- l+
.g SC

J i = m 11 1 m-t-1 1 [
sQ

13 1, 2, 035)

U
i

where the wii are the diagonal elements of a square matrix. Note that when all
the control variables are equally powerful, i.e., SQ =sQ

ui
-1 1 Q -

=-
m+l [1 1+mS =

SQ
I 036)

the identity matrix.

41

This weighting matrix will ensure that each control variable is perturbed to
the same order. A time-varying weighting matrix based on the instantaneous
payoff sensitivity can have the form

CWii j-’ = [l + T$ax] (137)

u:

where s
0

umax
is the largest value of s $ along the trajectory. This weighting

matrix was not automated in STOP since it was felt that a satisfactory matrix
could be input based on the knowledge of the problem by the user. This also
allows the user to weight regions of the trajectory as his experience dictates.

Nominal Trajectory Generation

The steepest-ascent method begins with a nominal flight generated by an
initial choice for the control variable history. Essentially, the only requirements
on the nomin.al flight path are that it meet the stopping condition and be in the
neighborhood of the optimum. A reasonable flight path can sometimes be gener-
ated open loop, that is, by inputing a table for the control variable history. In
many cases, however, it is difficult and time consuming to determine a control
table that will even meet the stopping condition. Therefore, capability is in-
cluded to generate closed-loop trajectories for the nominal. The nominal guid-
ance modes are shown in table I.

Table I: NOMINAL GUIDANCE OPTIONS

Mode Guidance Type Control Variable
0 8 =f(t) 8
1 CL=0 8
2 cr=f(t) 8
3 Y =f(t) 8
4 ^j=f(t) 8
5 h=f(V) 8
6 h =f (M) 8
7 p=0 8
8 y=O 8
9 v=o 8

10 iI= 0 8
11 $=o r)
12 i!I=O rl

The basic method for determining the control variable in STOP is a table
lookup of all the selected variables as functions of time, The function of the
guidance mode is to override the, tabulated input value for one of the control

42

variables. Therefore a control table must always be input with values for each
control variable. The values of the control variables in the table which will be
overriden may be a dummy value since it is not used. A brief discussion of
several methods for obtaining angle of attack or throttling is given prior to dis-
cussing each guidance mode. The three schemes are: (1) determine angle of
@tack to produce a given y; (2) determine the angle of attack to give a required
V; and (3) determine the throttling parameter to produce a given ?.

Angle of attack from known ? , -The equation of motion for flight path angle is
given by

-jS sin CY + L) cos Q

R m vR
- (e - ?) cos YR

a2 r
+ yy cos B (cos f3 cos y, + sin B sin y, sin G-R)

+ 2 ocos fi cos 2j.q

or for simplicity

T sin 01 + L) cos cp
mV

f GF
R

038)

039)

where

+ sin fi sin y, sin $R) + 2 wcos fl cos +R

If the angle of attack and bank angle are small so that CY E sinol and COSQ 4 1,
equation 139 can be written as

;=
(T + La) CY + L,=o

m vR
+ GF V-41)

For a given G, the angle of attack required is obtained by solving equation
141 for cy,

a= (yreq - GF) m VR - L,+)

T + L, (142)

43

Angle of attack for a known G , -The angle of attack for a required V is
based on equation 35

0 = T cos 01 - D
req m

- g sin yR

+ a2 1” cos fl (cos B sin yR - sin fl cos yR sin z,!&) 043)

or for simplicity

Ti _ T cos o! - D + VF
req - m 444)

where

VF = - g sin yR + a2 r cos fl (cos fl sin yR - sin p cos yR sin #)
R 045)

Making the assumption that cos CY GZ 1 - c~2/2 and expanding the drag in
terms of angle of attack gives

D = Do + DI ~11 + D2 a2 (146)

where

Do = zz 0 - %M)’ ’ ’ 1
acD

D1=2-
acL2 'L, ('L, = 0 - 'LM) q '

Equation 144 can be written as

T
t

- DO - D1 o!

req =

- (; + 4 Q2 + VF
c147)

m

For a given f,,, the angle of attack can be obtained by solving the quadratic
equation

(:+D2)cu2+D10L+(iTreq-VF)m-p-Do)=0 (148)

Equation 148 yields two values for CX. The larger value is used since it
represents the usual case.

In some cases the ? required may be larger than the maximum V that can
be attained. In this case the best that can be done is to fly at the angle of attack

44

for maximum 0. This indicates that the input h - V or h - M curves exceed
the capability of the vehicle through adjusting 9. The angle of attack for maximum
V is obtained by setting

-Dl - 2 (5 + D2) (Y
=

o

m 049)

and solving for CY ,

Throttling for a known c. -The equation for thrust is given in general as pm Ae
144

cos 6 051)

Solving for r) gives
T Pa Ae

cos 6c +144
T)=

ELr Tvac 052)

where T is obtained by solving equation 144

T=
@req - VF) m + D

cos a V-53)

Substituting into equation 152 gives
.

(Vreq - VF) m + D P Ae

cos CY cos tic
+L

144
7’

KT Tvac
(154)

There are no approximations here since T is defined as a linear function
of Q.

Guidance Modes. - Each of the nominal guidance modes, given in table I, is
detailed below. Modes 3 through 10 calculate the 8 control variable from
O=C!!+y.

Mode 0: This open-loop guidance table is used as it was input by the user.

Mode 1: The angle of attack is zero. The control variable 8 is obtained by

e=y 055)

Mode 2: The program interprets the first control variable input in the control
table as angle of attack for the nominal trajectory only. The control variable 8
is calculated as

45

e = ainput + Y c1 56)

Mode 3: This mode calculates 8 where the flight path angle is given as a
function of time by a guidance table input, and uses the techniques of calculating
the angle of attack required to fly a given 3 (equation 142). The required 3 is
obtained by

(Y -
Preq=?I- At

YI)

057)

where fI is the slope of the input y with respect to time

y is the state variable

yI is the desired flight path angle from the input table

bt is an increment of time to correct for the y error (currently
bt = 1 set)

Mode 4: This mode calculates 8 when the 9 is given as a function of time
by a guidance table input. The angle of attack is calculated by equation 142 from
the 9 in the guidance table.

Mode 5: This mode calculates 8 where the altitude is given as a function of
velocity by a guidance table input. The required V is obtained from

c
h

req = (a/dv) req

The-desired h - V curve is flown by adjusting angle of attack to

058)

give the
proper V. Inaccuracies in the numerical procedure may cause drift from the
desired h - V. This is compensated by adding a feedback term as

(~)req = (~)input * ~ -2~ut’ (159)

The + sign is used for descent phases and the - sign is used for ascent along
the h - V or h - M curves. The angle of attack is obtained from equation 148.

Mode 6: This mode calculates 8 where altitude is given as a function of
Mach number by a guidance table input. The slope dh/dM is obtained from the
input data. The technique of mode 5 is used where

dh (1
1 dh

TiV
input = a Zii input ()

where a is the speed of sound along the flight path

Mode 7: This mode calculates 8 which produces 7 = 0. Equation 142, for
calculating angle of attack for a given 3, is used as in mode 4 but no input guid-
ance table is required.

46

Mode 8: This mode calculates 8 which will give y = 0. The method described
under mode 3 is used but no guidance tables are input. If the flight path angle is
not zero at the start of the phase, the feedback term causes the vehicle to pitch
until y = 0.

Mode 9: This mode calculates 8 for which the flight path acceleration &)
is zero. Equation 148 is used to calculate the angle of attack for which q = 0.

Mode 10: This mode calculates 8 for which the Mach number is constant.
The requirement of l% = 0 is obtained through a creq. Since V = M a

which, since k = 0 for this mode, reduces to

req =MEi 062)

The angle of attack is obtained from equation 148.

Mode 11: This mode c’alculates the throttling (q) for constant velocity. The
throttling is calculated from equation 154 for 3,, = 0.

Mode 12: This mode calculates the throttling (7) for constant Mach number.
The throttling is calculated using equation 162 for Vreq and equation 154.

Use of guidance options -A nominal trajectory generation relies on the user
to input various modes that will take the vehicle to the stopping condition. The
flight path is divided into various guidance phases , each controlled by one of the
guidance modes described above. A phase ends upon reaching an input value of
any of the 85 state, auxiliary, and control variables or time. The number of phases
is limited to 12, of which only 5 can use the input tables reserved for guidance
modes. The tables required for modes 0 and 2 are not included in the five
reserved tables a An example statement of a guidance phase buildup is:

Phase 1. Fly a prescribed h - V (mode 5) to an altitude of 30,000 feet

Phase 2. Fly a 9 = -0.2 degree per second (mode 4) and decrease to a y of
0 degree

Phase 3. Fly at constant velocity using throttling as the control variable (mode
11) to a range of 1000 nautical miles

Phase 4. Fly a 9 = -0.2 degree per second (mode 4) decreasing to a,y of
-1 degree

Phase 5. Fly a prescribed h - V (mode 5) to a velocity of 500 feet per second.

47

The generation of nominal trajectories using modes 3 through 10 is limited
to vehicles with aerodynamics given by

or

cD

cL = CL,, Q

CD
acD

= ‘Do ac +y-z CL2

(163)

064)

065)

(166)

and thrust is independent of angle of attack. This restriction is made because the
amount of computer time required to generate a nominal can be reduced by using
the simpler representations given in equations 141 and 147.

Additional Options

Several options are included in STOP which permit the user to optimize
special problems with fewer inputs than required in the usual sense. These are
referred to as the gamma tilt, maximum payload, and circular satellite options.
Each is discussed briefly below.

Gamma tilt. -The gamma tilt option is required for vertical takeoff (VTO)
boosters. The tilt angle, rtilt, is input as a function of time in a table. Termi-
nation of the tilt maneuver is accomplished by a stage stopping time; consequently,
the tilt maneuver must be counted as a stage. If flight path angle, y, is selected
as a free initial condition, then the perturbation on y occurs at the end of tilt.

Circular satellite. -This option permits the usage of relative circular
satellite velocity, V csp ’ as a stopping condition or constraint. The option
eliminates the calculations by the user as given below

V CSR = rD ucos fi- v
CSI

cos $$ + (VCSI sin $g2y2 c167)

where V CSI =

and
Cc = 14.081718 x 1015

rD = desired final radius

48

Maximum Payload. ----If weight is the payoff variable and also a free initial
condition, then the program will add payload and adjust the last-stage propellant
weight at launch so that the burnout weight will be a maximum. A plot of payload
versus last-stage propellant illustrates the manner in which this option operates
(figure 11) .

B
0

5

2

maximum payload
-- --

/
2
.k
3

F

3

Last-Stage Propellant

k
.
-YE

maximum paylo

Last-Stage Propellant

Figure II. MAXIMUM PAYLOAD OPTtON

Notice that when the fuel required for maximum payload is less than the
maximum last-stage propellant, the true maximum payload is attainable. Cther-
wise, the payload limit is restricted by the amount of fuel the last stage may hold.

Conclusions and Recommendations

The computer program developed for the contract meets all requirements of
the statement of work (ref. 1) and in addition has the capability to select the opti-
mum initial conditions for a case with free initial conditions.

For multistage vehicles, the staging times must be input in the present
program. It would be desirable, in a future modification, to have the optimal
staging capability using the algebraic steepest-ascent method that allows staging
on variables other than time. This option would permit optimization of coast and
burn times to increase performance and give added flexibility to the program.

Multiple-vehicle capability is also desirable in a program of this type. This
would enable optimization of intercept problems involving fighter aircraft, rendez-
vous between spacecraft and satellites, space rescue, etc.

49

PROGRAM USER’S MANUAL

Program Assumptions and Limitations

The assumptions and limitations that were made in the development of STOP
are detailed in this section. The manner in which the assumptions affect the
utility of the program are indicated. The effects of the limitations on the prog-
ram are apparent.

Assumptions. -Simulation: The basic assumption for STOP is that the
vehicle is represented as a point mass lifting body. This precludes any effect
of the vehicle short-period dynamics on the optimum flight path. The results
of the program in optimizing the flight path for a vehicle having high pitch rates
have not been thoroughly substantiated. For aircraft and most boosters, the
pitch rates do not affect the optimal results appreciably.

Earth model: The earth is assumed to be a rotating sphere with an inverse-
square gravity field. The effect of the differences between the actual and assumed
earth representation on the optimum flight path are small for the type of vehicles
for which the program is designed.

Aerodynamics and propulsion: The aerodynamics and propulsion data for
the vehicle can be input in several ways, depending on the availability of the
data or type of vehicle. The most used aerodynamic representation for aircraft
is the drag polar and lift as a linear function of angle of attack.

Generation of nominal flight paths: The generation of nominal flight paths
by STOP for modes 3 through 10 assumes the drag polar and the linear lift
representation and that thrust is not dependent on angle of attack. This restric-
tion is not considered serious because this is the most common aerodynamic and
thrust representation for aircraft. A method using more general aerodynamics
and engine data can be formulated but the calculations require iterative procedures
and are very time consuming.

Control variables: The control variables selected for STOP are pitch angle,
bank angle, throttling, and wing sweep. The pitch angle is defined as ,g = y + Q.
The bank angle is used to perform out-of-plane maneuvers and assumes coordinat-
ed turns with no slideslip. Note that, for nonzero bank, 8 is not a physical angle.

Payoff, constraints, and stopping conditions : The steepest-ascent procedure
as formulated for STOP allows only state variables to be used as the payoff,
constraint, and stopping functions. Enroute placards are formulated as auxiliary
state variables for which terminal constraints are applied.

50

Atmosphere: The earth atmosphere is input as a single subroutine, using
a calling sequence to transmit the data. Any subroutines using the same calling
sequence can be used for the atmosphere calculation.

Staging: The trajectory can be staged only on time. Weight jettisons can
be performed only at staging.

Limitations. - State variables: The number of state variables is limited
to 15. These may be selected from the 20 state variables defined by equations
of motion and 20 state variables defined by enroute constraints. Altitude,
flight path angle, and velocity must always be selected.

Control variables: The maximum number of control variables is four.
Pitch angle, bank angle, throttling, and wing sweep are incorporated.

Constraints: A maximum of 13 constraints plus a stopping condition can be
imposed on a problem. Of the 13, the number of enroute constraints is limited
only by the number of data tables allowed for input of maximum and minimum
placards. Twenty tables are reserved for the placards, which allows a maxi-
mum of 10 placards.

Stages: A maximum of 14 computer stages are permitted. The number of
physical stages is not necessarily the same as the number of computer stages.

Data deck: A maximum of 1000 data cards are allowed for tables 1 through
30 plus 31 through 34 for any stage.

Equations of motion: The point mass equations of motion include the follow-
ing limitations

+=O if VR
I I < 100 fps or during a tilt maneuver

4 = 0 if IVR\ < 100 fps or

Igo * YRI < 0.1 degrees or

p-B 1 < 0.1 degrees

>; = 0 if I90 & /3 1 < 0.1 degrees.

51

Input Data Preparation

The following section presents a brief listing of the purpose of each of the
nine (9) card sets that make up the Input Data Deck. This is followed by detailed
instructions for preparing the data deck for a problem solution. Comments and
notes are included to give the user further information to aid the setup. Prior
to sending the data through the computer, it should be checked for the most com-
mon errors made in data preparation, as discussed under “Trouble Shooting. I’

Input Deck Summary - The Input Data Deck is composed of nine (9) card sets
of which card sets 1 through 5 and 9 are required. Card sets 6, 7, and 8 may or
may not be included in the Input Data Deck, depending on the problem to be solved.

Card Number Reference
Set of Cards Pages

1 1 53

2 1 53

3 l-23 54-63
(See also
figs. 12
and 13)

4 3-5 64-65

5 8-16 65-66

6 o-13 66-67

7 o-7 67

8 o-12 67-68

Purpose

Title

Print and Storage frequencies, type of solution,
number of iterations and computer stages.

These cards, by use of control (NC) numbers,
define the input options, output options, the
state, auxiliary, and control variables as well
as the use of a number of special-purpose op-
tions. Included in this selection are the equa-
tions of motion and the enroute placards.

Initial condition data including various physical
constants, value of stopping condition, integra-
tion error limits, stopping condition tolerance,
DUSQ, and initial values of the various state
variables.

Computer stage dependent parameters such as:
initial weight, final stage time (trajectory time),
aerodynamic reference area, nozzle cant angle,
total impulse correction factor, weight flow
correction factor, inert weight flow and mini-
mum allowable integration step.

Constraint dependent parameters; desired values
and final tolerances for the various terminal
constraints and enroute placards.

Free initial conditions, inputs maximum and
minimum value and initial increment per iter-
ation of each free initial condition.

Nominal guidance data; defines the various op-
tions used in the nominal trajectory generation
for each stage.

52

Card Number
Set of Cards

9 2- 58

Reference
Pages

68-76

Purpose

All the tabulated input such as control function,
weighting function, gamma tilt program, en-
route placards, aerodynamic data (lift, drag,
etc.), and engine data.

Controls Format 1415

Card 1

Column Name Description

l-5 IPRNTl Printout of forward trajectory occurs every IPRNTl
integration steps.

6-10 IPRNTS Printout of influence coefficients occurs every IPRNTB
integration steps during backward integration if NC(7) = 1.

11-15 ISTORl Storage of time, partials, and plot data occurs every
ISTORl integration steps along forward trajectory. (Recom-
mended value = 1 for rockets, 2 for airbreathers.)

Preparation - The following are detailed instructions for preparing the data
deck for a problem solution:

Card Set 1

Title Card

Card 1

Format A72 1 Card

The contents of this card will be printed at the start of the case. It may contain
any desired information in columns l-72 or left blank, but it must be the first
card in the data case.

Card Set 2

1 Card

16-20

21-25

ISTORB Storage of impulse response functions occurs every
ISTORB integration steps along backward trajectory.
(Recommended value = 1 for rockets, 2 for airbreathers.)

NARBY Degree of problem solution indicator

= 0 Integrate nominal trajectory only and quit
= 1 Integrate nominal trajectory and backward trajectory

only and quit
= 2 Iterate
(NARBY = 2 required for optimization)

53

Column Name Description

26-30 NITC

31-35 MSTAGE

Maximum number of iterations

Number of (computer) stages

(1s MSTAGE I: 14)

Card Set 3

NC Controls Format l4I5 1-23 Cards

Each card contains seven pairs of integers. The first integer is the index of the
NC to be set and the second integer is the desired value of the NC. Every card
must contain seven pairs of integers, except the last card. The NC’s may be in-
put in any order. The reading of the NC’s is terminated by a blank field in col-
umns 61-65 of the last card. Thus, if the number of NC’s to be read is not a
multiple of 7, the last card will contain one to six pairs of integers. Otherwise,
the last card will be blank. The explanation of the NC’s is as follows. NC’s not
read in will be zero.

NC Index Name Description

1 NC (1) Plot paper option

= 0 use 11 x 17 millimeter paper
= 1 use 8-l/2 x 11 millimeter paper

2 NC (2) Not used

3 NC(3) Plot identification option

ORTHOMAT (NC(ll) < 0)

= 0 Use symbols
= 1 Use colors

SC 4020 (NC(ll) > 0)

= 0 9 x 9 vellum only
ZZ 1 microfilm only
= 2 9 x 9 vellum only
= 3 9 x 9 vellum and microfilm plots

4 NC(4) Number of constraints + 2

(Count both terminal constraints and enroute placards)

(2s NC(4) S 15)

54

NC Index Name

5 NC(5)

6 NC (6)

7 NC(7)

8 NC(g)

9 NC (9)

Description

Number of free initial conditions

OS NC(5)< 7

Note: If a tilt maneuver is selected (NC (14) = l), and if
gamma is a free initial condition, then the free initial
condition will be applied at the end of tilt (start of com-
puter stage 2)

Maximum payload option

= 0 Ignore option
= 1 Last-stage propellant will be limited to the maximum

last-stage propellant (MLSP, input in CARD SET 4).
Weight must be a free initial condition for this option and
NC(19) = 1 is required.

Note: If NC(6) = 0 and NC(19) = 1, final weight is
maximized by minimizing last-stage fuel.

Influence coefficient print option

= 0 Do not print influence coefficients
= 1 Print influence coefficients

(Usual value = 0)

Punch option

= 0 Do not punch control and restart tables used for last iteration
= 1 Punch control and restart tables used for last iteration

(Usual value = 1)

Notes : 1) If a guidance mode is selected (NC(13) > 0)
for a nominal trajectory (NARBY=O), then if
NC (8)=1, STOP will punch a control table
(table 0), which may be used to generate the
same trajectory open loop (NC(13)=0).

2) The control table punched by STOP is in
octal (Format 6 8 12).

Extremal option

= 1 maximize payoff variable
= -1 minimize payoff variable
= 0 solve boundary value problem

55

NC Index Name

10

11

12

13

14

15

16

NC(l0)

NC(ll)

NC(12)

NC(13)

NC(14)

NC(15)

NC(16)

Description

Circular satellite option

= 0 Ignore option
= -1 Stop on V at desired final altitude. (NC(18) = 4

is required or this option ES
= N Nth constraint is V = Vcs

This requires NC(N+19)=4

Plot option

= 0 Do no plot
= N Plot first, last, and every Nth iteration on SC 4020

plotter
ZZ -N plot first, last, and every Nth iteration on ORTHO-

MAT plotter

Note: Only stored points are plotted.

Numerical partial check option

= 0 Do not check partials
= N Check partials every Nth stored integration step and

printout analytical and numerical values

(Usually NC(12) = 0)

Nominal trajectory guidance mode option

= 0 Open loop (control history from table 0)
= N Closed loop, N phases (see card set 8 if NC(13) > 0)

(Usually NC(13) = 0), l< N 512

Tilt maneuver option

= 0 Do not use tilt maneuver
= 1 Use tilt maneuver for stage 1 (table 2)

(NC(14) = 1 for VT0 systems) and the tilt maneuver
counts as a stage

Skin friction option

= 0 NoCDF
= 1 Href, a CD/a H = f (M). This requires that table 23

be input

Control table input option

= 0 input decimal table
= 1 input octal table

Note: NC(16) = 1 is required to accept tables punched by
the program

56

NC Index Name

17 NC(17)

18 NC(18)

19 NC(19)

20 NC (20)

21 NC (21)
1 I
I 1
1 1
I t

32 NC (32)

33 NC(33)

34 NC(34)
r r
1 1

46 NC (46)

Description

Restart table option

= 0 No restart table (use for nominal trajectory)
= 1 Input restart table after table 0

Note: A restart table is obtained whenever a control variable
table is generated by the program as a result of previous
iterations. See punched card output discussion;

State variable index for stopping condition (figure 12,
column 2). See input instructions check list.

State variable index for payoff quantity (figure 12, column 2)

State variable index for first constraint (figure 12, column 2)

State variable index for second constraint (figure 12, column 2)

State variable index for 13th constraints (figure 12, column 2)

Note: Enroute placards are state variables and count as
constraints. See figure 12 for list of state variables.

Engine option for stage 1

Engine option for stage 2

Engine option for stage 14

Note: The engine option for each stage is input as a two-
digit number. The left digit specifies the type of thrust
table as follows:

VARIABLE VARIABLE NC PLOT 'ORTRAN
TYPE INDEX INDEX INDEX NAME

STATE
(EQUATION

1
2
3
4
5
6
7
B
9
10
11
12
l3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

121
122
123
124
125
126
127
128
129
l3Q

z:
I33
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
I51
152
153
w
I.55
156
157
158

1
2
3
4
5
6
7
8
9
10
11

::
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

K(KU
K(K2)
X(K3)
X(K4)
X(K5)
X(K6)
XiK7)
XIK8)
X(K9)
X(K10)
X(K11)
X(K12)
X(K13)
X(K14)
X(K15)
X(K16)
X(K17)
X(K18)
X(K19)
X(K20)
X(K2U
X(K22)
X(K23)
X(K24)
X(K25)
X(K26)
X(K27)
X(K28)
X(K29)
X(K30)
X(K3l.l
X(K32)
X(K33)
X(K34)
X(K35)
X(106)
X(K37-l
XIK38)
X(K39)
X(K40)

OF-I ITION)

STA
(ENROUTE

RDI

jYMBOL

N
i
Y

Ii
tR
h
TD
RNG
4HI
AV
SL
DL
rvL
ER

HD'
Q"

El*
TEMT'
N+
RPA'
H'
A P*
M'

DESCRIPTION JNITS

WEIGHT
ALTITUDE
RELATIVE FLIGHT PATH ANGLE
RELATIVE VELOCITY
LATITUDE ANGLE
RELATIVE HEADING ANGLE
LONGITUDE ANGLE
DUMMY TIME
PATH RANGE ALONG EARTH'S SURFACE
AERODYNAMIC HEATING INTEGRAL
IDEAL RELATIVE DELTA VELOCITY
GRAVITY LOSS
DRAG LOSS
THRUST VECTORING LOSS
RELATIVE SPECIFIC ENERGY

LB
FT
DEG
FPS
DEG
DEG
DEG
SEC
N Ml
FT-LBIFT2
FPS
FPS
FPS
FPS
FT

I

AVAILABLEFOR EXPANSION
NOT DEFINED

PITCH ANGLE PLACARD= F(t)
BANK ANGLE PLACARD = F(t)
THROTTLE PLACARD * F&(M)
WING SWEEP PLACARD = F(H,M)
ANGLE OF ATrACK PLACARD = F(H,M!
NOT DEFINED
ALTITUDE RATE PLACARD = F(t)
DYNAMIC PRESSUREPLACARD = F(t)
DYNAMIC PRESSURE PLACARD = F(M)
Q'IPLACARD = F(M)
TOTAL TEMPERATURE PLACARD = F(t)
NORMAL LOAD FACTOR PLACARD = F(H.M)
RESULTANT PHYSIOLOGICALACCEL. PLACARD = F(t)
ALTITUDE PLACARD = F(M)
SONIC BOOMOVERPRESSURE PLACARD = F(A,BI
MACHNUMBER PLACARD = F(H)
NOT DEFINED

DEG2SEC
DEG'SEC
SEC
DEG'SEC
DEG'SEC

FPS
iPSF1' SEC
(PSF)*SEC
(PSF-DEGI*SE
I"R?iEC
SEC
(FT/SEC212SEC
FT2SEC
(PSF+SEC
SEC

SAMMA PLACARD = F(H,MI
NOT DEFINED
NOTDEFINED

DEG'SEC

FIGURE 12: STATEVARIABLES

Thrust Option

Thrust Table -- Digit

0

1

2

Digit

0

1

2

3

Coast (no thrust table)

Vacuum thrust (lb), nozzle exit area (in2), vacuum specific
impulse (set) = F (stage time). Table format 1 for 3 depen-
dent variables

Vacuum thrust (lb), nozzle exit area (in2), vacuum specific
impulse (set) = F (total time). Table format 1 for 3 depen-
dent variables

T = F (ar, H, V)

T = F (a, H, M)

T = F (CY, M, II)

T/P.= F (ar, I-I, M)

CT = F ((u, H, V)

CT = F (01, II, M)

CT = F (a, M, H)

Table format 2 for one, two, or
three independent variables

Note: (1) P is atmospheric pressure for option 6 ; (2) For
thrust options 3 through 9, the number of engines is input
in columns 11 to 20 on the first data card in table 31. If
this field is left blank, STOP will assume one engine. The
thrust from table 31 (and fuel flow from table 32 if a WDOT
option is selected) will then be multiplied by the number of
engines.

The right digit specifies the type of fuel flow table as follows:

Fuel Flow Option

Fuel Flow Table

Coast (no fuel flow table)

WDOT = F (H, M, q)

SFC = F (q, H, V)
Table format 2 for one, two, or
three independent variables

SFC = F (a, H, V)

59

Digit

4

5

6

7

8

9

NC Index Name Description

47 NC(47)

48 NC(48) I 1 I 1
6b NC{60)

NC Value

0

1

2

Fuel Flow Table (Continued)

WDOT = F (?j, H, V)

WDOT/P = F (H, M, ?j)

SFC = F (Q, M, H)

1

Table format 2 for one, two,
SFC = F ((u, M, H) or three independent variables

WDOT = F (7, M, H)

WDOT = F (a!, M, H)

Note: P is atmospheric pressure for option 5

Aerodynamics option for stage 1

Aerodynamics option for stage 2

Aerodynamics option for stage 14

Note: The aerodynamics options available are given below
and are identified by the value assigned to NC(47) - NC(60).

Aerodynamic Option

Aerodynamic Table

Vacuum (no aerodynamic table)

CD = F (H, M, Q)
CL = F (H, M, a)

CD = F (A, M, (u)
CL = F (A, M,ar)

CD,, WD/ aCL2, 6CL/dOr = F (M)

CA, aCN/aar, aCN/dCY3 = F (M)

CDo, dCD/dCL2, CLmin 5 acL/d~!, CLcrco= F (A, M)
drag

Note: (1) Options 1 and 2 use table format 2 for one, two, or
three independent variables ; (2) Options 1 and 2 require two
tables -the first is a CD table; the second, a CL table;
(3) Options 3 and 4 are table format 1 for three dependent
variables; (4) Option 5 uses table format 3 for two independent
and five dependent variables; (5) CD, in option 5 is CDmfn;
(6) All angles and slopes are in degrees.

60

NC Index

61

62

63

64

73

74

75 NC(75)

Name

NC(61)

NC (62)

NC (63)

NC (64)
I
I

NCi73)

NC(74)

76 NC(76)

77 NC(77)

78 NC(78)

79 NC(79)

80 NC(80)

81 NC(81)

82 NC (82)

I 1
1 1
I 1

Description

Index of dependent variable for 1st plot

Index of independent variable for 1st plot

Index of dependent variable for 2nd plot

Index of independent variable for 2nd plot

Index of dependent variable for 7th plot

Index of independent variable for 7th plot

Note: See figures 12 and 13 for plot index

Sonic boom placard option (Table 30 must be input)

= 0 Planar sonic boom
= N Area sonic boom

N is number of points to be used along the shock to deter-
mine the placard violation. N must be odd and greater
than one. (Recommended value is 7.)

Not used

Pitch angle option

= 0 Do not use pitch angle
= 1 Use pitch angle

Bank angle option

= 0 Do not use bank angle
= 1 Use bank angle

Engine throttling option

= 0 Do not use throttling
= 1 Use throttling

Wing sweep option

= 0 Do not use wing sweep
= 1 Use sweep

AK (1) print option

= 0 Do not print AK (1)
= 1 Print AK (1)

AK (2) print option

= 0 Do not print AK (2)
= 1 Print AK (2)

61

VARIABLE
TYPE
4UXILIARY
'RINTOUT

CONT*ROL

1
INDEPENDEF

VARIABLE
INDEX

I
,
I
I
i
5
I
3
3
10
11
12
l3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4

FIGURE 13 AUXILIARY, CONTROL AND INDEPENDENTVARIABLES

1c
NDEX

;I
2

Ii
I5
I6
I7
I8
19
K1

ii

s
35
96
31
98
w
100
101
1CQ
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
17
78
79
80

PLOT
INDEX

11
12
13
I4
15
16
17
I8
19
50
51
52
53
54
55
56
57
58
59
60
61

ii
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
19
80
81

ii
84
85

FORTRAN
NAME
AK(l)
AK(2)
AK(3)
AK(4)
AK(5)
AK(6)
AK(7)
AK181
AK(9l
AKilDl
AK(11)
AK1121
AK(U)
AK(14)
AK(l5)
AK061
AK(17)
AK(18)
AKU9)
AK(20)
AK121)
AK(22)
AK1231
AK(24)
AK(25)
AK(26)
AK(271
AK(28)
AK1291
AK(301
AK(31)
AKUP)
AK(33)
AK041
AK(35)
AK06)
AK(371
AK(38)
AK(39)
AK1401
U(Il)
U(l2)
lJ(l3)
U114)
T

;YMBOL DESCRII'TION

;
3
H
XR
NDOT
YI

;I

F;MP
VA
P
P
TEM
WM
HM
RPA

!a
c

Lb
CL
CD
UD
SFC
VM
TM
LM

:M"
WDOTM
VIM
QaM
iPM
SFCM

THRUST
LlFl
DRAG
DYNAMIC PRESSURE
MACH NUMBER
GREAT CIRCLE RANGE
WEIGHT FLOW
INERTIAL VELOCITY
INERTIAL FLIGHT PATH ANGLE
INERTIAL HEADING ANGLE
ANGLE OF ATTACK
TOTALTIMPERATURE
SPEED OF SOUND
AMBIENT PRESSURE
AMBIENT DENSITY
AMBIENT TEMPERATURE
WEIGHT (METRIC)
ALTITUDE (METRIC)
RESULTANT PHYSIOLOGICAL ACCELERATION
NORMAL LOAD FACTOR
DYNAMIC PRESSURE TIMES ANGLE OF Al-TACK
LOCAL GRAVITY
RADIUS VECTOR
SONIC BOOMOVERPRESURE
LIFTCOEFFICIENT
DRAG COEFFICIENT
LIFT/DRAG RATIO
SPECIFIC FUELCONSUMPTION
RELATIVE VELOCITY (METRIC)
THRUST (METRIC)
LIFT (METRIC)
DRAG (METRIC)
DYNbMIC PRESSURE (METRICI
WEIGHTFLOW (METRIC)
INERTIALVELOCITY (METRIC)
DYNbMIC PRESSURETIMES ANGLEOF AllACKtMETRIC
SONIC BOCMOVER PRESSURE (METRIC)
SPECIFIC FUELCONSUMPTION (METRIC)

> NOT DEFINED

PITCH ANGLE
BANK ANGLE
ENGINE THROTTLE
WING SWEEP ANGLE
TIME

JNITS

.B

.B
B
'SF
-

'4 Ml
-B/SEC
:Ps
IEG
IEG
IEG.
'R
'PS
%F
SLUGIFT'
'R
VEWTONS
METER

1 FTlSEC
-
PSF-DEG
FTnSEc2
Ff
PSF
PSF

l/SEC
M/SEC
NEWTONS
NEWTONS
NEWTON
NWTSIM T

KGFlSEC
M/SEC
NWT-RAD/M*
NWISIM2
KFGINWT-SEC

DEG
DEG
-
DEG
SEC

NC Index

120

121 NC (121)

122 NC (122)

140

141

142 NC (142)

160 NC(160)

Name

NC (120)

NC (140)

NC(141)

Description

AK (40) print option

= 0 Do not print AK (40)
= 1 Print AK (40)

X (1) state variable option

= 0 Do not integrate X (1)
= 1 Integrate X (1)

X (2) state variable option

= 0 Do not integrate X (2)
= 1 Integrate X (2)

X (20) state variable option

= 0 Do not integrate X (20)
= 1 Integrate X (20)

X (21) state variable option
= - 1’ Observe minimum placard
= 0 Ignore placard
= 1 Observe maximum placard
= 2 Observe both maximum and minimum placards

X (22) state variable option

= -1 Observe minimum placard
= 0 Ignore placard
= 1 Observe maximum placard
= 2 Observe both maximum and minimum placards

X (40) state variable option

= -1 Observe minimum placard
= 0 Ignore placard
= 1 Observe maximum placard
= 2 Observe both maximum and minimum placards

Note: (1) kigures 12 and 13 list state variables and AK’s; (2)
X (2), X (3), and X (4) must always be selected; (3) Two tables are
reserved for each placard in the order selected, beginning with
table 3; (4) Two tables must be input for a placard only if table
format 2 is required and both max and min are $0 be observed.
Otherwise, one table is required; (5) For table format 2, the odd
numbered table is reserved for the min placard, the even num-
bered table for the max placard; (6) For table format 1, both
limits are always input in the odd numbered table with min plac-
ard first; (7) A maximum of 15 state variables may be used.

63

Card Set 4

Initial Condition Data Format 7FlO 3-5 Cards

Card 1

Column

l- 10

11-20

21-30

31-40

41-50

Card 2

l-10

11-20

21-30

31-40

Name

XSTP

GR

Description

Desired value of stopping condition (checked in last stage only)

Earth gravitational constant times lo-l5 (Recommended
value = 14.081718)

RO

OMEGA

Earth radius (feet) (Recommended value = 20,902,992)

Earth rotational rate (rad/sec) times lo4 (Recommended
value = 0.72921152)

GO Sea level gravity (ft/sec2) (Recommended value = 32.174)

DUSQ
T

Initial value of 6ii’W 6ii dt (may be left blank)

FINNER Forward trajectory integration error limit for variable
step integration (Recommended value = 18 for rockets,
15 for airbreathers)

BINNER Backward trajectory integration error limit for variable
step integration (Recommended value = 18 for rockets,
15 for airbreathers)

Note: FINNER and BINNER are in some respect the number
of binary bits of accuracy to be held during integration.
Eighteen yields four to five significant figures of accuracy.
Changing FINNER and BINNER by 3 amounted to changing
accuracy by about 1 significant figure. Decreasing FINNER
and BINNER is the direction of decreasing accuracy and
decreasing computer time

EPSLN Maximum allowable tolerance in stopping condition.
(Usually EPSLN should be adjusted to give six to eight
significant digits for XSTP. For example, if XSTP =
25,000, EPSLN should be about 0.01. If XSTP = 0,
EPSLN should be about 0.000001)

64

:ard 2

:01umn Name -- -

X-50 MLSP

11-60 TSTART Trajectory starting time (Usual value = 0)

il- 70 L Reference length for sonic boom calculations

lard 3

Zolumn Name

i-10 x0 (1)

i l-20 x0 (2)
, f
1 ,
, ,

31- 70 x0 (7)

Description

Maximum last-stage propellant (A value required if
NC(6) = 1)

Description

Initial value of first state variable selected from figure 12

Initial value of second state variable selected from figure 12

Initial value of seventh state variable selected from figure 12

(Additional cards are required if more than seven state
variables are selected.)

Note: These values are input in ascending variable index
order (as selected from figure 12) with no blank fields.

Card Set 5

Stage-Dependent Parameters Format 7FlO 8-16 Cards

Each card subset contains the stage-dependent parameter values in fields of 10;
i.e., columns 1 to 10, value for stage 1; 11 to 20, value for stage 2, etc. Two
cards are required in each subset if MSTAGE > 7.

Card Subset Parameters --~

Name

1 WO (NSTAGE) Initial weight (lb) of each stage
Note: (1) A positive value will be used as an
initial weight; (2) A zero value will use the end
weight of the previous stage at the start weight
of the stage; (3) A negative value will use the end
weight of the previous stage minus the input value
for the stage.

2 TSTP (NSTAGE) Stopping trajectory time for each stage
Note: The last stage does not stop on time (except
dummy time if it is a state variable) unless the trajec-
tory exceeds the input stopping time for the last stage,
in which case the run will be aborted.

65

Card Set 5

Card Subset Parameters

Name

SRE F (NSTAGE)

DE LC (NSTAGE)

XKT (NSTAGE)

6 XKM (NSTAGE)

7 WDOTI (NSTAGE)

8 DTMIN (NSTAGE)

Aerodynamic reference area (ft2) for each stage

Nozzle cant angle (deg) for each stage measured
from body centerline

Total impulse correction factor (XKT) for each stage

Note: These values may be used to correct total
impulse or each stage since

m

I s
‘BO

TOT = (XKT) (TVAC) dt
TSTART

(Usually use XKT’s = 1)

Weight flow correction factor (XKM) for each stage

Note: These values may be used to correct the final
weight of each stage since

W
final = Winitial - S’“” [(XKM) (WDOT)

TSTART

- WDoTinerts dt I
(Usually use XKM’s = 1)

Inert weight flow (lb/set) for each stage

Minimum allowable integration step for each stage
(Recommended Value = 0.1 second)

Card Set 6

Constraint-Dependent Parameters Format 7FlO O-13 Cards

Card 1 Parameters

l-10 PSI Desired value for first terminal constraint

11-20 DPSI Desired final tolerance for first terminal constraint

Card 2

l-10 PSI Desired value for second terminal constraint

11-20 DPSI Desired final tolerance for second terminal constraint

Note: (1) Enroute placards are treated as terminal constraints
and require a desired terminal value of zero; (2) The desired

66

-

Card Set 6 (Continued)
value of the constraints and the tolerances must be ordered
as selected by the NC(20) - NC(32) controls. For instance,
if NC(20) = 5, then the first terminal constraint will be lati-
tude as indicated in figure 12; (3) One card required for each
constraint.

Card Set 7

-Free Initial Conditions Format 110, 3FlO O-7 Cards

One card is input for each desired variable initial condition as follows:

Column Name Description

l-l.0 IX Index of state variable with free initial condition (See figure
12) (Right adjusted)

11-20 XOIMAX Maximum allowable value

21-30 XOIMIN Minimum allowable value

31-40 DELX Initial increment per iteration

Note: (1) This card set will be missing if NC(5) = 0; (2) If
YTILT is a free initial condition, then the maximum allow-
able value must be 200.

Card Set 8

Nominal Guidance Data Format 215, 6FlO O-12 Cards

Column Name

l-5 MODE

6-10 NSW

11-20 SWVAL

21-30 AMIN

31-40 AMAX

41- 50 TMIN

51-60 TMAX

Description

Guidance mode index

Index of variable used to switch guidance modes (see figures
12 and 13, plot index). NSW is input positive if SWVAL is to
be approached from below, or negative if it is to be approached
from above

Value of the variable on which guidance mode is switched

Minimum allowable angle of attack

Maximum allowable angle of attack

Minimum allowable throttling

Maximum allowable throttling

Note: (1) The guidance modes available (MODE) are as
follows :

6’7

Card Set 8 (Continued)

Guidance Mode Options

Mode Descriptions Table Format

0
1
2
3
4
5
6
7
8
9

10
11
12

e=

cY=
01=

Y=
jb

h=
h=
i/Z
Y=
+=

&
+=
R;I=

f(t), open loop
0, calculate 8
f(t), calculate 8
f(t), calculate 8
f(t), calculate 8
f(V), calculate 8
f(M), calculate 8
0, calculate 8
0, calculate 8

0, calculate 8

0, calculate 8
0, calculate 7
0, calculate rl

(2) The maximum number of phases is limited to 12, of which
only five may be phases requiring tables; (3) Modes 0 and 2
use the input control variable table (table 0) and therefore are
not included in the five reserved guidance tables (Note 2);
(4) TMIN and TMAX are input only for MODES 11 and 12;
(5) If SWVAL occurs before XSTP on the last phase, the re-
mainder of the trajectory will be flown open loop using table 0;
(6) The trajectory will always stop on XSTP; (7) The guidance
mode option is for the nominal trajectory only. If NARBY = 2,
STOP will iterate from the nominal in the usual open loop mode;
(8) This card set will be missing if NC(13) = 0; (9) Aerodynamic
option 3 or 5 must be used when modes 3 through 10 are used;
(10) For modes 5 and 6, MODE is input as a positive number
for ascent or negative for descent. In either case, the H-M or
H-V table must be monotonically increasing in the independent
variable.

Card Set 9

Tables Format 215, A60/ (7FlO) 2- 58 Tables

Every table must begin with a title card as follows:

Column Description

1-5 Table number

6-10 Number of data cards in the table (do not count this card)

ll- 70 Any desired information

68

Card Set 9 (Continued)
Input Data Tables

Table
Number

0

1

2

3

4
.
.
.

21

22 Second table for 10th enroute placard

23

24

Description

Control function table (U)

Table format 1, NU dependent variables vs time where NU is the
number of control variables selected. This table must always be
present as the first table and will not be extrapolated.

Note : Restart table follows table 0 if NC(17) = 1 and is also
assigned as table 0.

Weighting function table
-1

(W diagonal elements). Table format 1,
NU, dependent variables vs time. ’ This table must always be pres-
ent as the second table and allows the user to aid in assigning the
value of DUSQ along the trajectory and among the control variables.
A zero value will cause no change in a U, and a 1. will allow the
full change determined by the gradient. As an example, it is a
good idea to restrict pitch angle changes during a tilt maneuver and
during the low-speed portion of a VT0 trajectory. For instance,
this table might be as follows for a VT0 liquid rocket tilting at 8
seconds after launch (8 control):

0. 0. 15. 0. 30. 1.
1.

Gamma tilt table

10000.

Table format 1, 1 dependent variable vs time (Used only if NC(14) = 1)

First table for 1st enroute placard (Format specified by card
set 3 and figure 12)

Second table for 1st enroute placard

First table for 10th enroute placard

Skin friction drag table (required if NC(15) = l)H ACD
REF’ H-HmF

= F(M)

Table format 1, 2 dependent variables vs Mach number

First guidance table (Format specified by card set 8)

25
: .

Second guidance table

69

Table
Number

28

29

30

Description

Last guidance table

Lateral cutoff distance (required if NC (75) >l), yC0 = F (M, H) Table Format 2

Sonic boom table (required if NC(104) or NC(135) = 1

APJ = F (H, M, DENOM) Table Format‘2

where :

H 3/4 0 l/4
APJ = (AP) y iKRfi pref .

AP = Overpressure - psf

KR
= Sonic boom constant z 1.9

B DENOM = 2 CL+

31 1st engine table for stage 1

32

33

34

31

32

33

34

Note: Engine options 10 and 20 require only one table

2nd engine table for stage 1

1st aerodynamics table for stage 1

Note: Aero options 3, 4, and 5 require only one table

2nd aerodynamics table for stage 1

1st engine table for stage 2

2nd engine table for stage 2

1st aerodynamics table for stage 2

2nd aerodynamics table for stage 2
(Repeat tables 31 through 34 for each stage)

Note: (1) Some or all of tables 2 through 34 may be missing, depend-
ing on the options selected from card set 3; (2) The first-stage.depend-
ent table (31-34) of each stage must be preceded by a card with the word
STG in columns l-3 (remaining columns must be blank); (3).The last-
stage dependent table for the last stage must be followed by a card with
the word END in columns l-3 (remaining columns must be blank); (4)
The STG cards are required even for stages with no tables; (5) All
tables except table 0 may be extrapolated; (6) The total number
of data cards for tables 1 through 30 + 31 through 34 for any

.&age is limited to 1000.

70

Card Set 9 (Continued)

Three formats are available for data table input.
linear interpolation and will extrapolate, although
should be avoided if possible.

The table lookup routines use
the extrapolation feature

Table Format 1 1 Independept by 1, 2, 3, 4, or 5 Dependent

X = independent variable

Yi = dependent variables

NDV = number of dependent variables,

x, Y1, Y2, --- Y NDV’ x, Y1’ Y2’ --- YNDV’ x, ---

7 entries per card

Figure 14 shows an example for two dependent variables

Table Format 2

Cardset 1 --

Column Name

l-10 NPL

11-20 ENG

1, 2, or 3 Independent by 1 Dependent

Description

Number of planes I @nay = 1)

Number of engines (used only for thrust options 3-9)

Cardset 2 (All data for first plane) --

Card Subset 1

Column Name Description

l-10 Xl Value of the first plane (Xl = 0, if only one plane)

11-20 NCV Number of curves on first plane pay = 1)

Card Subset 2 (All data for first curve)

Card 1

Column Name Description

l-10 x2 Value of the first curve (X2 = 0, if only one curve)

11-20 NPT Number of data points on first curve (must be > 1)

21-30 X3 Value of the 1st point
31-40 Y Value of the dependent variable
41-50 x3 Value of the 2nd point

51-60 Y Value of the dependent variable

61-70 X3 Value of the 3rd point

71

Card Set 9 (Continued)

Card Subset 2

Card 2

l-10 Y Value of the dependent variable

11-20 x3 Value of the 4th point
I 1 !
1 I

7 values per card until all points for the first curve are input

Card Subset 3 (All data for the 2nd curve)

Same format as card subset 2.

Card subsets continue until all curves on the first plane are input.

The next plane is input in the same manner, beginning with card set 2.

Note: (1) Each plane begins with a new card; -(2) Each curve begins with a new
card; (3) All data in the table is input floating point (Every value must have a
decimal point); (4) The table lookup routine uses linear interpolation and will
extrapolate linearly in all directions.

Figure 15 shows an example for Table Format 2.

Table Format 3 2 Independent by 5 Dependent

This format is used only for the aerodynamics option 5 as follows:
Cardset 1

column Name Description

l-10 NSWP Number of constant sweep curves (may be 1)

Cardset 2 (All data for first sweep)

Card Subset 1

Column Name Description

l-10 Sl Value of first sweep curve

11-20 NM1 Number of Mach number points on first curve

Card Subset 2

Card 1

Column Name

l-10 Ml

11-20 CD0

Description

Value of first Mach number

72

C ardset 9 (Continued)

Card Subset 2

Card 1

Column Name

21-30 BCD/BCL2

31-40 CL
min

41- 50 6C L/8 OL

51-60 CL0

61-70 M2 Value of second Mach number

Card 2

Column Name -- ~

l-10 CD0

11-20 6 CD/BCL2

Description

Description

(7 values per card until all data for first sweep or input)

Repeat cardset 2 for each sweep angle.

Figure 16 shows an example for Table Format 3.

73

OV OV t t I I I I I I I I I I / /
0 0 .2 .2 .4 .4 .6 .6 .8 .8

MACH NUMBER MACH NUMBER

1111111111111111111111lll,l,lll,ll,l,,l,,

NOTE: ADDITIONAL POINTS INCLUDED TO
PREVENT TABLE LOG KUP
EXTRAPOLATION

Figure14 EXAMPLE OFTABLE FORMAT 1

74

-1 .o

t

ANGLE OF ATTACK ANGLE OF ATTACK

0. 4. !-510. I I- .!3 -110. -. 3
.3 . .3 ! I I I I I I I I I I I I
.s 6. -5 0. ;d. 5 -1’0. -. 5 Ilj-5!.(1IlIIII
‘. 3 5.’ .3 .5 50. T I rrt I I I I r I I I i

I I I-JI I I I I I I I I

.6 6. L5 0,. 7
-. 5, 5. .5 ;o’ *

-1 0,. -. 7 5. , , ,-, , , , , , , , ,
.I 50 . 1 1 I.71 1 1 1 1 1 1 1 1 I

10 . I 2. -5ln n ml n. I I I I I I I Ii I II 1

1 1 1 r-li0.i i i i - . is i i i C ’ i i i i i i i i 51.
I I AI I I I hl I I I I Al I I I I I I I I

NOTE: ADDITIONAL POINTS INCLUDED
TO PREVENT TABLE LOOKUP
EXTRAPOLATION

Figure 15 EXAMPLEOFTABLE FORMAT2

75

2

a

A-0

cDo b

I I I
0 .5 I .o

MACH NUMBER

h-200

2-

A I 1
0 .5 1.0

MACH NUMBER

Figure 16 EXAMPLE OFTABLE FORMAT3

‘76

PROGRAM OPERATION

Nomenclature - FORTRAN COMMON. - The table that follows is a list of
the FORTRAN names, mathematical symbols, units, descriptions, and sub-
routines where computed for all items in COMMON.

77

FORTRAN
Name

AHS

Symbol Units Description

set Maximum step size that the
RKVS integration package
(STEP1 and STEPB) will take
for its next integration step.
(This may be decreased, but
never increased for the step
to be taken)

AK(40)

AK11 cl

AMAG(15)

deg

Auxiliary printout variables
(see appendix B)

Angle of attack

Array used by RKVS for the
integration of the forward
trajectory

AP(40)

BINNER Input backward trajectory inte- INITAL

CAKll cos Q

CD
cD

Cl1 cos 8

c12 cos q

CK3 cos YR

CK5 cos J3

CK6 cos +R

CL CL

C@EFK

C@F(2,5)

C@N(W

Subroutine
Computed
STEP1
STEP2

AKSTP
STPl

AKSTP

INITAL

A packed array containing only STPl
those auxiliary variables (AK’s)
to be printed at each time point
on forward trajectories.

gration error limit for Runge-
Kutta variable step integration

Cosine of the angle of attack

Drag coefficient

Cosine of the pitch angle
(Set to 1. if NC(77) = 0)

Cosine of the bank angle
(Set to 1. if NC(78) = 0)

Cosine of the flight path angle

Cosine of the latitude (Set to
1. if NC(125) = 0)

Cosine of the heading angle
(Set to 1. if NC(126) = 0)

Lift coefficient

Step-size coefficient

An array containing aerody-
coefficients (see Appendix B)

Array of constraint(s) and
performance name(s)

78

AKSTP

TLD

INITAL
C@NTR

INITAL
C@NTR

AKSTP

INITAL
AKSTP

INITAL
AKSTP

TLD

KCALC

TLD
IMTCG

INITAL

FORTRAN
Name

CaNST(30)

CPsI(13)

DEG

Subroutines
Symbol units Description Computed

Array of program constants (see INITAL
appendix B) BLOCK

Nondimensional constrain INITAL
change(s) asked for VALID

Radians to de-grees conversion BLOCK
factor

DELC(14) 6
C

DE LU(4) SJ

DELX(7’) Go

DELXI(7)

deg Input nozzle cant angle for each INITA L
stage measured from body center-
line. Assumes zero thrust compo-
nent normal to body centerline.

Increment added to u vector for UCALC
next trajectory

Array of incremental changes in INITAL
free initial conditions VARIC

Input maximum allowable incre- INITAL
ment by which a free initial con-
dition can change per iteration.

Array of incremental changes in INITAL
variable initial conditions in order VARIC
of selected free initial conditions

DELXS(7)

DENaiM

DESXUK(170)

DESXUP(120)

DPHI

DPHID

DPHIP

Denominator of first Lagrange
multiplier

MATRIX

An array of alphanumeric BLOCK
characters containing all of the
state, auxiliary (AK), and control
variable names that can be selected
for printout via the NC array. Each
name is defined by two sequential
words in this array.

A packed array of alphanumeric TITLES
characters containing the printout
headings for a given computer run.

Change in performance (with MATRIX
respect to last accepted iteration)

Predicted change in performance MATRIX
due to DUSQ

Total predicted change in
performance

MATRIX

79

FORTRAN
Name

DPH13

DPSIM(13)

DPBBAR

DPBHI

DP2L0

DP2NMl

DPBTMY

DRHQ)

DTMIN(14)

DUSQ

DXNUM

EPSLN

ERR(15)

F(15)

FEFEI

FINNER

Symbol
Subroutines

Units Description Computed

Predicted changed in per- MATRIX
formance due to variable
initial condition(s) .
Input desired final tolerance(s) INITAL
for terminal constraints.
Value of DUSQ at the start of MATRIX
the first trial of any iteration.

Smallest value of DUSQ attained MATRIX
on any trial of an iteration that is
greater than the current DUSQ.

Largest value of DUSQ attained MATRIX
on any trial of an iteration that is
less than the current DUSQ.

Value of DUSQ used on previous
trial or valid step.

MATRIX

Equal to dDPSBAR*DUSQ and set MATRIX
only when too many trials for an
iteration have been run.

I
w

Constant used by RKVS integration BLOCK
package

set Input minimum allowable integra- INITAL
tion step for each stage

Defined by equation 100 INITAL
VALJD
MATRIX

DUSQ required for DBETA MATRIX

Input maximum allowable tolerance INITAL
in stopping conditions

Array of predictor-corrector STEP1
errors
Array of derivatives for the FPR@G
equations of motion (see appendix PLAC

B) B@Q)M

Value of I
w

MATRIX

Input forward trajectory integra- INITAL
tion error limit for Runge-Kutta
variable step integration

80

FORTRAN
Name Symbol Units Description

FSAVE (15)

FSIGN

FXTRAl

FXTRA2

FXTRA3

FXTRA4

DU2min

Go ft/sec2

GR P

GUIDN(10,3)

HITIM

HMIN

IDIAG

ID#NE

IERR@R

IN

Values of F array from previous
integration step

Stopping condition indicator

Constraint change factor. That
part of the constraint error re-
quested for the next iteration.

Minimum allowable DU2

Not used

Saved value of time when
DVALB was last called

Input mass to weight conversion
factor

Input earth gravitational constant
times lo-l5

Array of guidance phase names
plus words used in printout of
stopping condition and optirniza-
tion parameter

The last, or highest, time stored
in the TIMEU array

Current minimum step size
for a given stage

RKVS diagnostic print indicator

RKVS step completed indicator

RKVS error message indicator

RKVS control parameter (see
ref. 8)

Subroutines
Computed

EXEC

EXEC

INITAL VALID

MATRIX

LAMBDA DVALB

INITAL

INITAL

BL@CK

INITAL
EXEC
UCALC

EXEC

BL@CK

STEP1
STEP 2

BL@CK

STEP1
STEP2
GUIDE

EXEC
LAMBDA
PARTIAL

81

FORTRAN Subroutines

Name Symbol Units Description Computed

INC@R Number of meaningful data words INITAL EXEC
in the TIMEU array at a given
time UCALC

INDBNL DUSQ ‘bounce test” indicator MATRIX

INDSIC (13) Number of consecutive accepted VALID
iterations since a constraint has
been inside its temporary
tolerance band.

INDTMY

INDZER

INPe,

INST

INT#T

IPF(10)

IPRNTl

IPRNTB

IST@Ri

IST@R2

ITC

ITR8

Too many trials indicator INITAL
MATRIX

End point search mode indicator MATRIX

Printout counter for forward and EXEC LAMBDA
backward trajectory STPl STP2

Storage counter for forward and EXEC LAMBDA
backward trajectory STPl STP2

Counter for the total of words EXEC UCALC
read into the TIMEU array

Packed array containing state TITLES
variable indices of the placards

Input variable used to control INITAL
printout of forward tra jet tory

Input variable used to control INITAL
printout of influence coefficients
occurs during backward inte-
gration if NC (7) = 1

Input variable used to control INITAL
storage of time and partials along
forward trajectory

Input variable used to control
storage of adjoints along back-
ward trajectory

INITAL

Current iteration counter INITAL
MATIX

Number of iterations that have INITAL
been plotted EXEC

82

FORTRAN
Name

ITW@27

Symbol Units
Subroutines

1X(7)

IXKU(G0)

IXTRAl

IXTRAB

IXTRA3

IXTRA4

KDAT

KINP

KLAM

K@U T

KPAR

Description Computed

Constant used by RKVS integra- BLOCK
tion package. Computer word
size dependent

Input array of indices for the
free initial condition desired

INITAL

Packed array of the plot indices TITLES
of the state variables, AK’s, and
control variables selected

Thrust option indicator

Fuel flow option indicator

Aerodynamic option indicator

Not used

INITC@, TLD

INITC@, TLD

INITCQi, TLD

Logical tape number assigned to BLOCK
the data tape. KDAT contains all
input tables except table 0. KDAT
is written in INITAL and LAMBDA
and read in EXEC and CARDS
Logical tape number assigned to BLOCK
the input tape, KINP, is read in
INITAL
Logical tape number assigned to BL@CK
the adjoint tape. KL4M is written
in STP2 and contains T, UULAM
array, and U array of each point
stored during adjoint integration.
KLAM is read in UCALC to build
new control history.
Logical tape number assigned to BL@CK
the output tape. K(bUT is written
inINITAL, CARDS, STPl, STPB,
STEPl, STEPB, MAT@UT, VALID,
MATRJX, KCALC, VARIC, PRTIAL,
AKSTP

Logical tape number assigned to BLOCK
the partial tape. KPAR contains
NETA records of T, PFX, PFU,
and U. KPAR is written in STPl
and read in DVALB. Also, sub-
routine UCALC uses KPAR for scratch storage.

83

FORTRAN Subroutines
Name Symbol Units Description Computed

KPLT Logical tape number assigned to BL@CK
the plot tape. KPLT is written in
STP 1 and contains the data to be
plotted. KPLT is read by PLOTZ

KPUN Logical tape number assigned to BLOCK
the punch tape. KPUN is written
in CARDS

KSCR Logical -tape number assigned to BI@CK
the scratch tape. KSCR is written
in STPl and contains the control
variable history of every accepted
valid trajectory.

KTAN

KTC

LP)

LETA

LINES

LINETl

LINET2

LV

Logical tape number assigned to BLOCK
the control history overlay tape.
KTAN is written in INITAL and
UCALC and contains the part of
the control history that would not
fit in the TIMEU array. KTAN is
read by EXEC.

Index of weight in the IX array onlyINITAL
if weight is a free initial condition.

Array of program control indicators
(see appendix B)

Number of stored integration points STP2
generated during a backward
trajectory LAMBDA

Printout line counter during the EXEC LAMBDA
forward and backward trajectory.
Subroutines STPl and STP2 will STPl STP2
page when LtNES exceeds 57.

Number of lines (including blank INITAL
lines) printed at each printed time
during the forward trajectory

Number of lines (including blank INITAL
lines) printed at each printed time
during the backward trajectory

Total number of equations being INITAL
integrated during backward
trajectory

84

FORTRAN
Name Units Symbol

MAL

MI TC

M NDIAG

M@DZ

MSTAGE

NAM(2)

NARBY

NC(160)

ND(112)

NDS(34)

NE@M

NERR(15)

NERRSl

NERRSB

NERRS3

NETA

Subroutines
Description Computed

Current closed-loop mode number IMTAL
GUIDE

Largest value of J in the PFX(I , J) INITAL
array for a given problem

Desired maximum number of BLOCK
diagnostics printed from RKVS per
(computer) stage

RKVS parameter that determines
the method of integration

Input total number of (computer)
&ages

EXEC!
LAMBDA

INITAL

Two alphanumeric words (STG and BLOCK
END) used as indicators during
reading of data. First word deter-
mines when stage-dependent data
is to be read. Second word deter-
mines when all the data for a case
has been read.
Input degree of problem solution
indicator

INITAL

See input description INITAL

Start and end location of all input INITAL
stage dependent tables in Z array

Starting locations of all input INITAL
tables in Z array for a given stage EXEC

Number of equations of motion TITLES
being integrated, excluding enroute
constraints

Array used by RKVS for error con- INITAL
trol during integration of forward
trajectory
RKVS error message control BLOCK

RKVS error message control BLOCK

RKVS error message control BL@CK

Number of stored integration points EXEC
generated during a valid forward
trajectory STPl

85

FORTRAN
Name Symbol Units

NETAP(6)

NETLST

NEZ

NITC

NK

N@UP

NP(40)

NPF

NPHASE

NPLTZ

NPP

NR;CC

NSE

NST

NSTAGE

NTB

Subroutines
De scription Computed

Number of dated points saved for EXEC
each trajectory to be plotted

Number of integration steps taken IAMBDA
for the previous valid forward
trajectory

Location in Z array that contains
last data point of last nonstage
dependent table

INITAL

Input maximum number of iterations INITAL
desired

Number of selected auxiliary print- TITLES
out variables (AK’s)

Total number of points in the con- INITAL UCALC
trol table at any time
Packed array of auxiliary printout TITLES
variable indices

Number of penalty functions to be TITLES
integrated

Current closed-loop phase number INITAL

Number of plots to be made for a TITLES
given data case

Index of the state variable to be
used for the payoff variable

INITAL

Number of sets of partial deriva- LAMBDA
tives that will fit in allowable stor-
age during backward integration at
any one time.
Abort error indicator MATRIX INITAL

AKSTP EXEC
STPl STP2

Index of state variable to be used INITAL
as stopping condition

Current (computer) stage INITAL
Closed-loop guidance table counter. INITAL GUIDE
(Initialized to 23 and increm ented
each time subroutine GUIDE re-
quires a new guidance table)

86

NUPl

NV

NV4M

NWPR

FORTRAN
Name Units Symbol Description

NTRY Current trial number (set to 1 at
the start of every iteration)

Nu Number of control variables
selected

NUMNC Total number of input nonzero
plot indicating NC’s (NC(61) -

NC(74))

Number of control variables
selected plus 1

Subset of the equations being
integrated in the predictor-
corrector mode during the forward
trajectory

Location in the FB array preced-
ing the first adjoint derivative

Number of words per record
written on KPAR tape on sub-
routine STP 1

Subroutines
Computed

INITAL MATRIX
VALID

TITLES

TITLES

INITAL .

INITAL

INITAL

INITAL

Total number of equations of motion TITLES
being integrated during the forward
trajectory

NXUK The sum of the selected number of TITLES
state variables, auxiliary printout
variables, and control variables
plus 1

NBUK Two times NXUK and indicates the TITLES
total number of words needed to
print the trajectory heading

N4 Number of constraints plus the TITLES
performance and stopping condition

N4Ml N4-1 TITLES

N4M2 N4-2 TITLES

@MEGA w rad/sec Earth rotational rate INITAL

PFU(15,4) Array of 82, /6UJ I = 1, NX, ANPRTL
J = 1,NU

87

F’WIX’I’JXAN

Name

PFX(15,7)

PHIGRN

PHIK

PHIMl

PHINL

PHINLD

PLTNAM(28)

PMPH

PMPV

PQPH

PQPM

PQPV

PSI(13)

PSIMl(13)

RAD

RADIC

Subroutines
Units Symbol Description C om puted

Array of a’FI/aXJ I = 1, NX, ANPRTL
J = 1, MITC

Largest value in magnitude MATRIX VALID
that performance parameter has
attained on any previous accepted
iteration

Step-size coefficient with respect KCXLC
to performance

Performance value for the last VALID
accepted iteration

Nonlinearity of performance KCALC
variable

Desired nonlinearity of performance BLOCK

Array containing hollerith data TITLES
used for plot titles Each plot
title is defined by four words
of this array

8 mach/c?altitude AKSTP

amach/dvelocity AKSTP

d dynamic pressure/aaltitude AKSTP

adynamic pressure/amach AKSTP

adynamic pressure/bvelocity AKSTP

Input desired value(s) for terminal INITAL
constraint(s)

Terminal constraint value(s) for
previous accepted iteration

Degrees to radians conversion
factor

VALID

BLOCK

ft

Absolute value of first Lagrange MATRIX
multiplier

Input earth radius INITAL

Array used to transmit placard PLAC
value and derivatives of the placard
input table (see subroutine PLAC)

88

FORTRAN
Name Symbol

SAKll Sin Q!

SIl Sin 8

S12 Sin tp

SK3 Sin yR

SK5 Sin p

SK6 Sin $R

SREF(14) S

T t

TI

TIMEU(1000)

TITL(12)

TOMAX

TSTP(14)

TToL(13) -

U(4) U

Ull 8

UI2 cp

U13 rl

UI4 A

units Description

Sine of the angle of attack
Sine of the pitch angle (set to zero
if NC(77) = 0)

Sine of the bank angle (set to zero
if NC(78) = 0)

Sine of the flight path angle

Sine of the latitude (set to zero
if NC(125) = 0)
Sine of the heading angle (set to
zero if NC(126) = 0)

ft2 Input aerodynamic reference area
for each stage

set Trajectory time measure from
zero at launch

set Total time increment to be inte-
grated for a stage

The first 1000 words of the input
control table. The remainder of
the control table (if any) is written
on KTAN in record sizes of
NUPI words
Alphanumeric case title

set

set

Terminal trajectory time -up-
dated every accepted iteration
Input stopping time for each stage
measured from time zero at launch

Temporary tolerances (one for each VALID
constraint)

deg

deg

Array of control variables

Pitch angle (set to zero if
NC(77) = 0)

Bank angle (set to zero if
NC(78) = 0)
Throttling parameter (set to 1 if C@NTR GUIDE
NC(79) = 0)

deg Sweep angle (set to zero if
NC(80) = 0)

89

Subroutines
Computed

AKSTP
C@NTR

C@NTR

AKSTP

AKSTP

AKSTP

INITAL

EXEC LAMBDA
STEP1 STEP2

EXEC LAMBDA

INITAL EXEC
UCALC

INITAL

MATRIX

INITAL

CQ)NTR GUIDE

C@NTR

C@NTR

C@NTR

FORTRAN Subroutines
Name Symbol units Description Computed

VAR(50) Array of variables (see appendixB) AKSTP TLD

mN(4) wii

VINP(4)

WD@T(14) *inert

W&14)

X(15)

XKM (14)

XKT(14)

XKl W

XNAME(19)

XNC9

XNUM

X0(15)

X&M AX(7)

XJ;?IMIN(7)

XRHJb

XSAVES(15)

XSTP

XXLAM (15,14)
A

Automatic weighting matrix
elements

Input weighting matrix elements

lb/set Input inert weight flow for each
stage

lb Input initial weight of each stage

Array of state variables being
integrated

Input weight flow correction factor
for each stage

lb

Input total impulse correction fac-
tor for each stage

Weight (set to initial weight if
NC(121) = 0)

Alphanumeric adjoint headings

Floating point value equivalent
to NC(9)

Numerator of first Lagrange
multiplier

Input initial values Of state
variables

Input maximum allowable value of
free initial condition

Input minimum allowable value of
free initial condition

Constant used by RKVS integration
package

Terminal value of state variables
from previous valid trajectory
Input desired value of stopping
condition
Influence coefficients corrected
for stopping time variation

INITAL

LAMBDA

DVALB

INITAL

INITAL

INITCO STEP1
EXEC INITAL

INITAL

INITAL

INITCQ)

BLOCK

INITAL

MATRIX

INITAL

INITAL

INITAL

BLOCK

VALID

INITAL STPl

DVALB

90

FORTRAN Subroutines
Name Units Symbol Description Computed

YNAME(14) Alphanumeric adjoint headings BL@CK

z (7000) General data storage array for INITAL EXEC
non&age-dependent tables (per CARDS UCALC
stage) during forward trajectory.
Used for storage of partial sets
during backward integration
(See program equivalencing)

91

Output Description

The program produces three types of output: the printout, punched cards,
and magnetic tape.

Printed output. -The printout gives listings of the basic input data, controls
for the program, trajectory data for both forward and backward integrations, con-
vergence information, a control variable printout, and a trajectory summary. A
partial derivative check is printed out during the nominal forward trajectory if
selected.

Preliminary trajectory printout:

Page 1

Program title

Data case title

Initial condition data

Stage dependent parameters

Constraint dependent parameters

Optimization parameter

Stopping parameter

Free initial condition parameters

Guidance phase dependent parameters

Page 2

Control card (see card set 2)

NC array

Page 3

(Number of pages are dependent on number and size of tables)

The input tables are printed in the order they are input

The nonstage dependent tables are printed first, followed by
the tables for each stage.

Forward trajectory: The forward trajectory printout follows the tabular out-
put. At the top of each page, the names of each variable selected for printout
appear. These headings are printed eight per line, beginning with TIME. The
state, auxiliary, and control variable headings are printed next, beginning with
the first state variable and ending with the last control variable. Any heading
followed by an asterisk (9 indicates metric units for that variable. The print-
out of the forward trajectory data occurs every IPRNTl integration steps, with

92

two blank lines between each printed step. A line counter, assuming 57 lines per
page, ensures that each page will begin with the headings described above. For
data cases with more than one stage, the beginning of each stage starts a new page.

Partial derivative check printout: The forward trajectory printout format
is altered if the numerical partial check option is being used. The partial deriv-
ative printout will occur every NC (12) stored integration steps immediately
following the forward trajectory printout of the same time point. The’format for
the partial check follows: The word TIME and the current time are printed on
the first line. The partials are printed eight per line with lPEl4.7 format.

The analytical partial derivatives of the first equation of motion with respect
to the first MITC state variables are printed first, followed by the equivalent
numerical partials. This is repeated for each of NX equations of motion in fol-
lowing rows. The printout of the partial derivatives with respect to the state
variables has the form of the array PFX (I, J) where I (the row) represents the
equation of motion and J (the column) represents the derivative state variable.

The analytical partial derivatives of the NX equations of motion with respect
to the first control variable are printed next, followed by the equivalent numerical
partials. This is repeated for NU control variables. The printout of the partial
derivatives of the equations of motion with respect to the control variables has
the form of the array PFU (I, J) where I (the column) represents the equation
of motion and J (the row) represents the derivative control variable.

Backward trajectory printout: The backward trajectory is printed only if
NC (7) is nonzero. The backward trajectory begins at the final time of the valid
step and integrates to the trajectory starting time, printing the influence coeffi-
cients and instantaneous impulse responses every IPRNTB integration steps.
Both the influence coefficients and impulse responses are corrected for vari-
ations in the stopping condition. At the top of each page is printed a block of
headings identifying each variable. The work TIME and the current time are
printed on the first line. The second line consists of the influence coefficients
for MITC state variables on performance. Next are printed the influence coef-
ficients for MITC state variables on the first constraint, followed by the influence
coefficients for MITC state variables on the second constraint, etc., through all
the constraints. Following the influence coefficient printout, the instantaneous
impulse responses for the first control variable on performance, on the first con-
straint, the second constraint, etc., are printed. The next row of print is the
impulse response for the second control variable on performance, on the first
constraint, the second constraint, etc., through all constraints. This is repeated
for all the control variables selected. The backward trajectory printout uses the
same line count and paging control as the forward trajectory printout.

Matrix printout (convergence information) : The convergence printout gives
information used by the stepsize controller in making decisions concerning trial
trajectories, valid steps, etc. The printout is given as notes and as arrays of

93

values used by the program. The information aids the user in determining the
nature of convergence. The printout information and notes are given below. The
underlined statements and statements preceding a colon are for clarification in
describing regions of the printout and are not part of the printout.

Printout from convergence logic after a valid step or trial.

Iteration number

Trial number

Number of integration points stored during forward trajectory
integration (NETA)

Number of integration points stored during backward trajectory
integration (LETA)

Printout from convergence logic after a valid step only,

Majority vote counter

Messages printed under special conditions are:

“Number of tries plus rejected valid steps for current iteration
exceeds 10 -abort”

7YI’oo many functions with adverse travel”

“Adverse phi too great”

“DUSQ modified because of too many tries:

“Reject valid step”

Printout from convergence logic after a reverse integration only.

I matrix

Minimum allowable DUSQ

Denominator of first Lagrange multiplier

Diagonal elements of automatic weighting matrix

*Derivatives of performance with respect to variable initial
condition (DPDX)

*Elements of DPDX (SUM, XXLAM)

Note: (I) The items with * are printed only when the variable
initial condition option is selected, NC(5) # 0.

94

(2) XXLAM is the performance change resulting from a unit
step in X0 (first term in the bracket in equation 127) and
STJM is the performance change that would result if the
control function were modified to bring the constraint
vector back to the state prior to the application of X0
(second term in the bracket in equation 127).

Messages printed under special conditions are:

“Convergence failed”

“Converging but gradient too large for extremal”

“The last trajectory appears to be an extremal”

“Gradient of phi too negative to continue”

“Overflow occurred in matrix inversion-abort”

“Singular matrix-abort”

Printout from convergence logic after a trial only.

Majority vote counter

*Maximum permissible changes in constraints

*Controlling function and the step-size coefficient

*Function or functions reducing step-size coefficient and the
new value of the step-size coefficient

*Final step-size coefficient

Note: The notes above with * are written only if the majority vote
is 1 zero

Messages printed under special conditions are:

“Controlling with constraint within tolerance band which reduces
the step-size coefficient -repeat-step-size-coefficient calculation”

“Too many functions with adverse travel”

“Adverse phi too great”

“End point search and step-size coefficient greater than 2 - force
valid step”

“Penalty function violation - force valid step”

“Performance improved and step-size coefficient equals 0.5,
accept current trial and force valid step”

“All constraints outside tolerance band improved but DUSQ reduced
too much, accept current trial and force valid step”

95

TfDUSQ was increasing and wants to decrease accept previous trial
and force valid step”
“DUSQ was decreasing and wants to increase accept current trial
and force valid step”

Printout from convergence logic after a reverse integration, trial, or a
rejected valid step.

Step-size (DUSQ) required for A B
Numerator of first Lagrange multiplier

Lagrange multipliers

Accuracy check for step-size (DUSQ) (this value should agree with
the value of DUSQ for next trajectory)

Heading block of constraint and performance names

Current end point values of constraints and performance

Previous valid step end point values of constraints and performance

Change in constraint and performance end point values

Constraint travel indicator (0 if inside tolerance band, 1 if constraint
change is toward desired constraint value, and -1 if constraint change
is away from desired constraint value)

Constraint tolerance indicators (number of consecutive iterations a
constraint has been outside its tolerance band)

Allowable nondimensional forward constraint change (in the direc-
tion of the desired constraint value)

Allowable nondimensional backward constraint change (in the
direction away from the desired constraint value)

Nondimensional constraint change asked for (percentage of constraint
error to be eliminated by this iteration)

Constraint tolerance bands

Nonlinearities of constraints and performance

Step-size coefficients of constraints and performance

Maximum step-size coefficients of constraints (based on maximum
permissible constraint travel)

Predicted changes in constraint and performance end points (total)

Predicted changes in constraint and performance end points due to
step-size (DUSQ)
Predicted changes in constraint and performance end points due to
changes in variable initial conditions

96

Changes in variable initial conditions to be made on next trial or
valid step (printed only if variable initial condition option is
selected, NC@) # 0)

Final step-size coefficient

DUSQ for next trajectory

Messages printed under special conditions:

“DUSQ too small to meet DBETA”

“DUSQ set equal to DUSQ required for DBETA”

“End point search”

“Scale DBETA to match DUSQ”

“DUSQ set to minimum allowable value”

“DUSQ too small for optimization -DUSQ reset”

“G tries are too many -force valid step”

“8 tries are too many -force valid step”

“Next trajectory will be a trial”

“Next trajectory will be a valid step”

Control variable table and restart table: The control variable table and the
restart table are printed following the last iteration. The restart table is not
printed following the running of a nominal trajectory only.

Trajectory summary: The trajectory summary follows the printout of the
control variable table and restart table if one or more iterations have been run.
The heading block that appears at the beginning of the trajectory summary is
identical to the one which appears during the printout of the forward trajectory.
The format of the trajectory summary is also identical to the forward trajectory
format. The summary contains the end points for each successful iteration.

Punched card output. - The program produces punched cards in the form of
control variable and restart tables. These tables are used to restart a problem
from the point where it was stopped.

Punched output is produced when either or both of the following options are selected:

1) NC(8) >OandNARBY=2

2) NC(8) >OandNC(13)>0

97

The control table is punched six words per card in octal format (6812) and
the restart table is punched in 2413/6E12.5. Both tables are preceded by title
cards in the format required for input to the program. A restart table is not
punched following a nominal trajectory.

The restart table consists of previous valid step convergence information,
used by the MATRIX subroutine. Included in this table are DUSQ, performance
and constraint end points, constraint temporary tolerance bands, and the stopping
time of the previous valid step.

Note: If punched cards are not produced due to machine error or program
abort, the control variable table can be recovered from the magnetic tape (KSCR).

Restart table output description:

Card 1

Column

l-5

6-10

Name

12-23

24-47

Card 2

Column

l-3

Name

INDTMY

4-6 INDSIC (1)

INDSIC (2)

10-12 INDSIC (3)
I 1
I I
1 t
I I

40142 INDSIC(13)

Description

Restart table number (0)

Number of cards in restart table (title card not in-
cluded in this count)

Alphanumeric word RESTART

Case title as input on title card of data case

Format 2413

Description

Forced valid step indicator
= 0 valid step not forced
= 1 valid step forced because too many,trials were run
= 2 valid step forced because control logic is using

the minimum allowable value of DUSQ

Number of consecutive iterations a constraint has
, been outside its respective temporary tolerance band.

A value is present for each constraint (None of these
values appear for a no-constraint problem.)

98

Card 3

Column

1-12

13-24

Name

DUSQ

FXTRAl

25-36 DPBTMY

37-48 T@MAX

49-60 PHIMl
1 I
1 1
1 1
I 1
I 1
1 I

Format 6E12.5

Description

Value of DUSQ used for -last successful valid step

Amount of nondimensional constraint error asked
for on the last valid step. (This value will be zero
for a no-constraint problem.) This is the maximum
amount of constraint error that can be asked for by
any one constraint.

(DPBBAR x DUSQ)1/2 where DPBBAR is the value
of DUSQ used on the second-to-last su&essful valid
step and DUSQ is the current value of DUSQ.

Note: DUSQ is set equal to DP2TMY only when the
indicator INDTMY has been set equal to 1.

Trajectory time for last successful valid step.

Value of the performance function on the second-to-
last successful valid step.

(The following values occur only if the problem has one or more constraints.)

61- 72 PSIMl(l)

Card 4
(If needed)

Column Name

l-12 TT@L(l)

13-24

25-36

37-48

49-60

CPSI(1)

PSIMl(2)

TTtiL(2)

CPSI(2)
1

Terminal value of the first constraint on the second-
to-last successful valid step.

Format 6E12. 5

Description

The temporary tolerance band corresponding to the
first constraint (expressed as half of the total band
width).

The amount of nondimensional constraint error asked
for on the last valid step.

Note: This value is normally equal to FXTRAl but
under the conditions mentioned in appendix C, the
value may be 0.1.

Values for second constraint

99

Special notes :

1) The value of DUSQ input through the use of a
restart table will override the value of DUSQ
input in the initial condition data section of the
input;

2) The values of the temporary tolerances input
through the restart table will override those
normally computed by the control logic using
the final input constraint tolerances;

3) If it is desired to change the amount of constraint
error asked for all that is necessary is to change
the value of FXTRAl.

(FXTRAl must never be greater than 1.)

The individual values of CPSI are set equal to
FXTRAl or . 1 (under special conditions men-
tioned above).

The values of CPSI never need to be reset.

Magnetic tape output. - The program produces a magnetic tape when plotting
(KPLT) and another magnetic tape when iterating (KSCR).

Plot tape (KPLT): The tape KPLT is produced when NC(11) # 0. This tape
contains the data for the variables selected for plotting. For each valid trajectory
that is plotted, NETA records are written on KPLT in binary format. The number
of points stored when plotting (NETA) must be less than or equal to 1000. (The
absolute value of NC(l1) defines which iterations will be plotted.) The number of
words written per record is two times the number of plots to be made, or the num-
ber of nonzero elements in the NC array from NC(61) through NC(74). The plot
data is written on tape every ISTORl integration steps in the order selected by input.

Control table tape (KSCR): The tape KSCR contains the control variable
history for the nominal and each accepted valid trajectory of a data case in
binary format. This tape is generated when NC (8) > 0; and NARBY = 2 and/or NC
(13) > 0. For each valid trajectory there are NETA records written on tape,
where each record consists of TIME and NU control variables. This tape (KSCR)
is used to recover the control table for any iteration, in the event a data case is
interrupted and doesn’t punch cards.

The procedure used to recover a control table is described below. A short
FORTRAN IV program called ffTHETAff is included in the source decks for the
STOP program. This program reads the binary tape (KSCR) on logical unit 2
and produces a listing and punched cards (OCTAL FORMAT 61d’12) of the control
variable table selected by input. Input to this program is described below.

100

CARD NUMBER 1 (315, 4A6)

CCLS 1-5, ITC, Number of control tables written on KSCR UP to, but
not including, the desired table. (The nominal
and every accepted valid step will have a control
table written on tape.) Equal to ITC printed immedi-
ately following desired valid step.

CCLS 6-10, NU, Number of control variables used.

CCLS 11-15, NTABLE, Number of copies of control table desired.

COLS 21-44, TITLE

Any information desired on the title card of the
punched control table.

CARD NUMBER 2 (145)

COLS l-5, NETAS(1)

Number of points stored during nominal

6-10, NETAS(2)

Number of points stored during first valid trajec-
tory.

11-15, NETAS(3)

Number of points stored during second valid
trajectory.

16-20, NETAS(4)

Number of points stored during third valid trajec-
tory.

l 0

l l

l l

l l

NETAS(ITC)

Number of points stored during valid trajectory
preceding the one from which restart is desired.

NETA

Number of points stored during valid trajectory
from which restart is desired.

101

Both the printed and punched tables produced contain one additional point at the
end of the data to prevent extrapolation off the end of the table.

Sample Problem

A sample problem is given which demonstrates the data setup and output for
a simple, single-stage, air-launched rocket. One iteration is given showing the .’
nominal trajectory, the control logic output, one trial, a valid step, an output
control table and restart table, and the trajectory summary.

Statement of problem. -The flight path and control variable history are
required to maximize the final weight of the rocket with the following initial con-
ditions.

wO
= 1500 pounds

hO
= 500 feet

yO
= 60 degrees

V = 600 fPs
0

The terminal constraints imposed are:

vf
= 2000 fps

h
f

= 1200 feet

The final velocity is selected as the stopping condition. The initial weight
and flight path angles are free to change to improve performance. The initial
conditions W, and y, above are the starting values.

The aerodynamics and propulsion data are given in tables II and III. The
reference area is 2 square feet.

TABLE II Aerodynamic Data

M

0

1.5

10

cD
0

.2 .5

.4 .5

.4 .5

.075

.075

.075

102

TABLE III Propulsion Data

Thrust 7000 pounds

Specific impulse 280 seconds

Nozzle exit area 144 square inches

Sample input. -The statement of problem is transformed into data input
cards through the use of the STOP input instructions given under “Input Data
Preparation. ” The data input cards are listed below.

EXAMPLE ROCKET CHECK CASE
1 5 1
4 --+w-- 3 2 19 I3 .2 16 0 17

18 4 19 1 20 2 33 1; 47 3 77 1 7
81 1 82 1 87 1 84 1 85 1 87 1 171 1

122 1 123 124 1 91 1
2000. 14.08171812090Z992. Oa 32.174

-100. 18. . 18. 0001 ~ .-
1500a 500e 609 600e
1500e

20
0.
19 -. --
l*
O*

85 400.
1 THETA TABLE

Oa 60m 100. 60e
1 1 WEIGHTING TABLE

0. 16 lOO* 1. -. ~
STG

31 2 ENGINE TABLE
OI 7000. 144m 280, lOO* 7000. 144.
280a

33 2 AERO TABLE
00 a2 05 9075 1.5 l 4 -5

10. 04 05 9075

Sample output. -The results of the problem for one iteration are given
below. A complete description of the printed output is given in the section on
output description.

103

--- .---_- ---._ .--.--..- __.._.. ____
SUPERSCNIC TR4NSPORT OPTIMIZATION PROCRPM (STDPI THETA CONTROL 7094 IRSVS 13 VERSICK

Eg)rPLE ROCKET CFECK CI\SE ~-___-_____ ----- - -.-_- -- - -. . - ._ -. . ._ ..-_ _ __

INITIAL CONDITIGN DATA - ________ -_--___ -__--_ .--_ _

XSTP = .?.OOOODOOE 03 CR = 1.40E1718E 16 RO = 2.0902992E 07 OMEG4 = O.GUOOUUOE-39 GO = 3.2174WCE Gl

p.I--.- -.------.1. DUSO 1.0000000E 02 FIhNER= 1 e~.O~u~C.E__~.L__.~~N.~~~~._l,IOI)’)C~?E_~l . ..FRSLN_ .~.1.-,O.~ou.~cE._C3. _.MLrP .=,C.C~j?C’O((?E-39 _ _, _ _ _
TSTART=-0.0000000E-39 L =-O.COCOOOOE-39 XOI I)= 1.5000000E 03 XIII 21= 5.ooo1)ucck 02 X0(=,I= b.CCOP%DE 01
X0(4)= 6.00COOOOE 02 X0(

.___----_----._. ___
STAGE DEPENDENT PARAMETERS

STAGE IrE ICHT TSTP SREF DELC XKT XK’! wnuf UTPIN --. . -- ._ .--..
1 1500.00000 4CC.00000

2;-~ob~~.-~--~.;o.~o~~ --‘---I;ob’Bab----- i.obbii’o--. ..-.- .
I, .cl~oc:~ L;. l(‘,,j(),i ...

CONSTRAINT DEPENDENT PARAPETERS -___-_.-- .-_. --__-----

VARIABLE PSI DPSIIIAX

ALTI T%E l2ood.coocc
- .-_-- - -..-__- ---- -----. .- .-_. -_. . _.

1CO.CcC00

HAXIYIZE hEIGHT -_---.

STOP ON VELOCITY R _--__

z
FREE INITIAL CONDITION PPRAMETERS --.-.---.-. ._

Ip VARIABLE XMAX XM IN DELX

_---
IdEIGHT 2000.OCCCO lOoO.COCcO -rlsmGm0

.---_-_-- --__- -...... -.. --.

GAMMA R 70.00000 50. cc000 2.00000

--- .-____.__----.- --..
GUIOANCE PHASE DEPENDENT PARACETERS

PHASE. MCIDE- SkITCH VARIABLE SWITCH VfUE ALPHA MIN ALPHA YAX THROTTLE YIN THROTTLE MAX -__---_ -_-._-.- ..- - _.._ -__- _.. ,_..... __,_. _.______^_

1 ALPHA
2 ALPHA

INCREASE TO VELOCITV R 1000.3n0c~0 -0.0000G -0.00070 -lJ.000P0 -0. ooocc --. -- -. ___--__-.-.__ .._- -.-. ---
INCREASE TO TIME 400.00000 -o.ouoco -0.00000 -o.couc’l -C.C9OC%

._. .-__ __ --__--..-..---.- ._____-..- .-_____-.-..-_.-.._-.- .._ ____- .___._ --.-._-_ -Ts&q

INTEGER TABLES
__I. _- _ __-..- _.___... -__-- -__--- _-. ___ 1----------- --__-.-.----_-

IPRNTI = 1 IPRNTZ = 5 ISTORI = I lSTCR2 = 1 NARdY = 2 NlTC = 1 +fsrAcE =

~cmIm&p---- ..__. - .-----.- - ---.---.- -.-.- .-- --- -------- ----.--..- - -...-.. .--..-

NCI II= 0 NCI 2l= 0 NC1 3l= 0 NCt 4l= 3 NCI 5l= 2 NCI 61; 0 NC1 7)=-O NC t 9l= I NCI 9l= 1 WI lOI= 0
NC1 111 0 NCl 12) = 0 NCI 131= L_“CC.L1_4I.~~O__NCL.U~~UC_~_16r~O!C(._1Z)~=~._.~C(.ldlY +- NCL?_9)~...-~-~c!-~~~=-?~
NCI 21,: 0 NCI 22l= 0 NC1 23l= 0 hCI 24). 0

.-
NCI 251= ‘3 YCI 2bl= 0 NCt 271= 0 NC{ 2YI= II NCI 29l= 0 NCI 3?1= c.

NCI 31l= 0 NCI 32l= 0 NC1 ?3l=lO NCI 34)= 0 WI 35l= 0 YCI ?bl= 0 NCl 37)= 0 NC1 3811 0 NCI 391. 0 MI 4Ul= F
NCI 41l= 0 FICI.~Jr_~.NC1._43L~_C._hCL 44)= 0. NC{ 45l= 0 XI 4bl= 3 NCI 471: 3 WI 4ttJ= 0 4ci. 4Ql= 6 Y’cI 50): c .._. -.. -.
NCI 51l= 0 WI 5211 0 NCI 53l= C hCl 54). C NCI 55)= 0 NC1 56)= 0 NC(57J= r) NC{ 581. 0 h;Cl 5il= C! NC1 bOl= C
NCI bll= 0 NCI 621= 0 NCI .t31= 0 &Cl C41= C NC(65l= 0 htl tbl= 0 NC(bTI= 0 Xl hAI= 0 NCI tSl= 0 hCl 7n1= c

-NC1 71) = 0 hC(72l= 0 N~_/4.l=-~_,NCl_75)~.0.._ NC{ 761=..?-‘JCI. 77!=_.l_NCI .7P!? O--.hCt .7?l.=.._C_.P;C!_Pc)!.~..!-___- NC-1 7311 0
NCI 81l= 1 NCI 8215 1 NCI i?3l= I hC1 84)~ I NC1 .35l= 1 ;YCf !!bl= 0 NC1 87l= 1 NC(89l= c htl 8$1= 0 VCI $01= c
Ntl 91l= 1 NC(92)~ 0 NC1 53)~ 0 hCI 54l= 0 MI 95)= 0 NCI 96)= 0 NCI 97J= C NCI 9Sj-5 0 WI 55)= I! NCflOrJl- is

_ NCl~~).= 0 hC.~l~2,~~-_N~.!~.C,3l~O_- hC(l.C4); O~..NCllO51= !l..yC(lObl= 0 NCI 1371.= C .UCl 109l.= 0. hCIlC9)= ‘I- ‘!C.l.llq)= C __.__.. ___
NCfllll= 0 hCl112l= 0 KCllL?l= 0 hC(114)= 0 NCll151= 0 NClllhl= 0 Nc11171= c Xl 1191= 0 kCI119~= n NCllZOl= lj
NCllZll= 1 NCl122l= 1 hCl123l= 1 hC(124)= 1 NCl125l= 0 hCl1261= 0 NC(1271= C hCi12Jl= 0 NCI lZSl= 0 NCl13Ul= 0

YCl1371~~,~. NCl131l= 0 NCl132)= 0 NCl133!=~._h_C~~3_41= 0 NCl1351= 0 NFl.l!CI= 0 ..--_._. .__ -_ _--._ N!Cl 13R!:.-C-?!Cl 13,91.=..1’__.. NTl.~~?l.= 0
NCI 141)= 0 NC1142l= 0 NCt14?1= 0 NCl144)= 0 NCl145)= 0 YCI 14bJ= 0 NCI 147l= C wzilca)= c hC1145)= r, NC I 153 I= f-s
NC(151l= 0 NCl152l= 0 hCl15?1= 0 NCl154l= 0 NCt1551= 0 !dCl15bl= 0 NCl157l= C W-ul15Al= (r NCl155l? C NCI lbOl= 0

--- -.____-.-. __ __.__ -_._-__--_---.---.--------.-----.----.

G --
--

cn

NON-STAGE OEPENOENT TAELES

TABLE 0. 1 CARD(S) THETA fA8L E
0.000000 60.000000 100 .cooooo bO.OOi3000 -0.000000 -0.000000 -o.ooo_oco

TABLE 1. 1 CARCISI ME IGbTING TABLE
0.000000 1.cooooo 100.c00000 1.000000 -0.000000 -0.00G000 -c. 000000

STAGE DEPENDENT TA8LES

SiAGE 1

TABLE 31. 2 CARDIS) ENGINE TABLE
0.000000 7000.0000c0 144.cooooo 280.060000 7000.000000

280.000000 -0.000000 -0 .cncooo -u.oooooo 100: 0 0 oo”ocLJ”o” 00 0.000000 1”4ao+,“O”,’ . c

TABLE 33. 2 C*RolSl AERC TAELE
-- --

0.000000 0.200000 o.5coooo 0.075000 1.500000 P.401)OOO o.5cooPo
0.075000 10.000000 0.400000 0.500000 0.075000 -0.000000 -c..ooooco

_ --__- .------ _--- __--- -- --__----- -. -. ------.- -_---

TIVF AEU;tiI--ULLll!2E GAFlMPLR -mu.--VECUCLIY-R.- THRUST LIFT D!G(dC
0 MACH NUMBER ;IE IGHr FLCW ALPHA PITCH ANGLE

_ ~o...ow.~~- . -_- 1500.000 mo..coP--~ - 60.@30 6CO.C~Om ____._ _C~2l_.~2.?-~-_0,P_nr-_-~- 229.249 -.. --- _-.--- _____
421.757 0.538 25.oco 0.000 60.000

O.5ao 1487.5&C 7 6 6.7 ZIZ70 1 b 3&..5_69 4941.750 49.412 261.514

471.027 0.572 25.coc 0.699 60.000

1.L5U14&3.7%-- LLe..l!tL 5a.ftB3 - ___. 4973 434 -__ b92eO75 ---.-~..--_12_5_t!45 3eL8.30.!
549. a01 0.622 25.CCO 1.517 60.000

2.375 1440.625 ia93,w 5 7_..aLp 776.490 --.--- 5 023-.. 4 237.181 4l&467
677.911 0.700 25.000 2.332 60.000

4.062 1398.438
000.706 0.819

5.750 1356.25C
1116.151 0.942

6.250 1343.75c -------ilI37.299 0.979

6.583 1335.417
1235.379 1.005

3Ce_LS?9- 306.9OC --.- 591.8&-.--.---
25.COO 5.1,4?p....____l)~~-~~~___5109.458--_ 2.902 .

4461 .oa9 57.013 1035.342 5203.335 5oc.c92 782.826 _-.-
25.000 2.987 bO.CW

56.574 1074.978 5232,699 C.COC 785.@42 4s_oZ,Tj~L--_ 25.000 0.000 . . - ---. 56.574 - ---___ -.._. --

5204.788 56.262 1101.560 5252.571 O.O’lC P25.16A -_-
25.COC 0.000 56.262

7.083
1308.197

1322.917
1.043

5669.E62 --
25.OOC

55.803 - -.^- - 1141.597 --._.- --_---.--.-______ 5282.aco O.OCb 887.150
o.coo 55.803

7.833
1418.583

1304. Lb7
1.101

6393.E07
25.&C

55.135
0.000

1201.988
5 5x35

5329.009 ---- U.CO@ 983.961

a.958 i276.042 7538.446 54.174 1293.208 5400.005 o.ooc l137.t-‘28 ^ ---- - .-_-__---.-
d-ooo~.-.~.-. 54.174

--.__I-._-..
1585.342 1.190 25.COG

10.646 1233.8fr4 9 3 85.487 52 .-S_l7 1431.095 5509.389 --- o.ooe 13sl.lc2
1833.245 1.325 25.COO 0.000 52.817

13.177 1170.573 12440.834 50.943 1639.415 5676.950 o.coc 1747.49r 2ia4.373 .____--_-.--___- 1.536 2s.coo -.- 0.000 Sd;94~-.----‘---

15.708 1107.292 15829.469
2505.158 1.760 25.000

49.234 1954.644
0.000 49.234

5044.557 o.ocr 2CJs 2 b

17.345 -__
2693.640

1066.387 la198.317 48.207 ~-~zoco,o_o_o
1.915 25.000 0.000 48.207

5951.141 0.000 215u.912 ---- -_---__

___-- __- __--.-. ____ -
liERATION 0 TRIAL 0 NETA= 26 LETA= 0

____--_ __.. - ..__ - _._._.. -_._---. -.-~ - ___ - - .--- -- -.~-. ---

I MArRlX
0.33_~iP_b_8E-O1 -0.517~~~g8_!E~cl

-0.51741087E 01 0.29956934E 04
IrlNlWM ALLOUABLE DUSO 0.12824789E 03
I PHI PSI*1 PSI PSl_lNyERSE+I qS1 P4.1. ____.- . -_-.. ..-- il,89365292Ey02 _
DENO?llNATOR OF FIRST LAGRANGE PULTIPLIEP 0.24814069F-01
AUTOYATIC UEIGHTING YATRIX ELEHEhTS 0.10000000E q1
VARIC CHECKO~IT PRexr - DPDXISM~XXLAM 0.72270353E 00 -0.ltEl8235E-01 0.7051853rE O!, ~-_-.- ----__-- - .-._ -___-__---- __- -..
VARIC CHECKOUT PRINTOUT - DPOX,SL~.XYLAf4 0.260563156 00 -0.33655244E-01 0.22689191E 00
DUSO REOUIRED FOR ORETA 0.58396113E 03
NUMERATOR OF FIRST LAGRANGE P~~LTIPLIEH -0.38396113E 03 ___ __-.---- __ _ - ---- - ._.. ----
DUSO TOO SMALL TO MEET DRETA
SCALE DEETA TO MATCH DUSO
OUSQ TOO SMALL FOR OPTIMILATIGN-CLSO RESET -.-
DUSC REOIJIRED FOR OBETA CI.~OOCOCOCE 03
NUMERATOR OF FIRST LAGRANGE PULTIPLIER 0.21WOOUOE 03
LAGRANGE MULTIPLIERS --.___-
ACCURACY CHECK FOR DUSP

C.91994244E 02 -0.99493583E-01 -.- - .-.._ - --~ - -___
0.40955999E--03

AI TII
CURRENT END PCINT V4LUES “t----r%%520 18198.317139 .
PREVIOUS VALlO STEP END PCINT VALUES 0.000000 o.ooooco
CHANGE IN END POINTS --.
CONSTRAINT TRAVEL INiTnATOR IS 1

o.oocJooo
23159

1066.386520

CONSTRAINT CROSS-OVES lNOlCATCR(S) 1
ALLOUABLE FORYARD CCNSTRAINT CbbhGE(N-DI
ALL~S~~T~A~~~.D.~S~R~TCH~~G~~N-O~
CONSTRAINT CHANGE ASKED FORlk-Cl

0.000000
0. US@00
0.05cc00

CONSTRAINT TOLERANCEIS)

STEP-SIZE COEFFLCIENTS

- _----
Ftd-Ti Nz%k-fT I E 5

f4AXlMlJM STEP-SIZE COEFFIClENTt 51 ._,- ____. -__-
PRECICTED END POINT CHANGE(S) (TOTAL1
PRECICTED EN0 POINT CHANCE(S) (DIJSG)
PREDICTED END POINT CHANGE(S) IVICI ~- .- __-.
CHANGE IN UEI Cl-IT VIC
CHANGE IN GAUMA R VIC
FINAL STEP SIZE COEFFICIENT
OUSO’ FOR NEXT TRAJECTORY
NEXT TRAJECTORY WILL BE A TRIAL

1000.000000

c~.oocGoo 0.000000
0.000000

0.000000

0.000000

._-____
-181.370571 45.195420
-774.0404RZ 3.619660

592.669907 41.575759
58.522521

1.170450
0. oocooo

409.999996

-rL!!E- wEutiLALuBlnEC~bzLauJx-E THRUST UFT WAC-
cl MACH NUMBER WE ICHT FLGW 4LPHA PITCH ANGLE

-2.000 ___._ 155_8.5z?~.5.00 ..COO.~~~ 6.~.-17_0.-----~CO.NQ- C-S~.L..~~~~ e-e-2%-32?-- ____ 2?9,764 ----_-_
421.757 0.538 25 .ooo 4.614 65.785

,a,l_fi I 1104.493 I aE.L,tP1 44.945 2000.0~0 5949.163 131p.1362 2319.637
2697.753 1.915 25.COO 3.262 48.207

-- .-

-. _.___. ---

ITERATION 1 TRIAL 1 NETA= 0 LETA= 73

--. .____--

MAJORtTY VOTE TEST 1
l ** ENTERING KCALC *+* -- -~
NAXIHUN PERMISSABLE CHANGE Ih ALTITUOE -1503.091888
CONTROLLING WITH UE IGHT
STEP-SIZE COEFFI_C_IENT __~ ia.
FINAL STEP-SIZE COEFFICIENT 1.912763

G

l ** LEAVING KCALC l **
OUSO REWIRED FOR OBETA- 0.99495189E ‘03

W NWERATOR OF FIRST LAGRANGE PULTIPLLER 0.50510020E 03
OUSO TOE SMALL FOR OPTlMIZATICh-CUSO RESET
OUSC REWIRED FOR OBETA 0.99495189E 03 ..___-_-_--_ .-- --... _. -. -
NUMERATOR OF FIRST L4GRANGE CULTIPLIER 0.1044b995E 04
LAGRANGE MULTIPLIERS 0.20513551E 03 -0.22191217E 00
ACCURACY CHECK FOR DUSP 0.20396513E 04

CURRENT END POINT VALUES
----i%fi&WS VALIO STEP END POINT VALbEi

ALTITUOE UE IGHT
-1_R1_SJ :. 6013 1.8 1104,493439

lal98.317139 1066.386520
CHANGF IN ENC POINTS -45.715820 38.106918
CONSTRAINT TRAVEL INOICATOR(St 1 -_ ~___ -----.
CONSTRAINT CROSS-OVER INDICATOR(S) 1
ALLGilABLE FORYARO CONSTRAINT ChAhGE(N-U) 4. a50000
ALLOWABLE aACKWARC CONSTRAINT CHAhGElh-Cl

------t-ONmb-t%T -G-AT% ~ti--l=EKtfX-l
1 .ccoooo
o.o5coor)

CONSTRAINT TCLERANCE(SI 1000.000000
NON-L1 NEAR LT IES -- -._- ~
FTFP-SIZE COEFFICIENTS
MAXIMUM STEP-SIZE COEFFICIENTtSI
PRECICTED END POINT CHANGE(S) (TOTAL) -- - - -~ ..___
PREOICTED END POINT CHANGEIS) (OUSC)
PRECICTED EN0 POINT CHANGE(S) (VICI
CHANGE IN YEIGHT VIC --
CHANGE IN GAMMA R VIC

-0.747942
0.401no

1o.ccoooo
-552.795692

-1726.432968
1133.637283

111.939734
2.238795

-0.156841
1.912763

e7.597941 --
8.073352

79.524590

FtNAL STEP SILE COEFFICIENT 1.912763
OUSC FOR NEXT TRAJECTORY 2039.651367 . ..- ._.. -
NEXT TRAJECTCtiv.uILL RE A -V.ATfb-$-rcF

.-- -- --

-.- ---..--.-___ ----___ --- - -___--.-- .____-- _.._. - -__.

Tl !!E ‘dELGHL.-PLLLNDE GAUUA- YELQC LT.Y .RTEllSlET
0 YACH NUM8ER CE IGHT FLOW 4LPHA PITCH ANGLE

JR&G-----

-.~-..--~o~.wo. ___ 161.1 .p4c 5oc..~co~ 6’TO.OQO -..-- -----..62.234- _.. -.- 4921.T_zp_-..--~6674.~63.1.-- ---.- .- --49’..Cc ___._ --.- -. - -___. 421.757 0.538 L5.000 10.664 72.903

0.500 1599.440 me73 62.E71 629.861
461.069 0.566 25.000 a.Doa 70.879

4942.210 553.R34 420.293

~.-2_5_0--~-1580,690 .-.___
526.418 0.609

-L&%892 -y’-fK&--A;.~;~
25.000 . .

4974.67@ 323.963 _34wdk-- .--_-__-_-

2.000 1561.940 1679.385 62.8C7 727,192 5 no2.m 7 35-746 344.409
598.354 0.655 25.CtO 0.398 63.205

2./50
674.735

3.500
751.867

4.625 --
854.745

5.750
908.956

5.972
931.452

1543.150
0.702

1524.440
0.748

1496.315
0.810

1468.190
0.848

1462.t34
0.861

2179-021 -- -_ - 61.634 -- 777.954 - _.-.- .-. 5045.171 - -_____ - 3 3je,13a !! ?.a,se4__------
25.COO -3.341 58.293

2704.175 59.632 827.638 5082.532 -817.511 673.505
25 .OOO -7.249 52.384

3520.164 54.843 893.304 5139.474 -1776.120 1449.194 _.-. -..-_ -. --- --.---_ --..------ -
25.OOC -13.853 40.990

4324.671 47.413 932.396 5194.183 -2830.61A 2772.875
25 .OOO -20.761 26.652

4416.731 46.567 946.030 5204.382 829.263 77~.940
25.CCO 5.935 52-502

-

6.194 1457.075 4630.588 46.877 961.043 5214.681 1277.296 1032.216
956.783 0.075 25.COC 8.900 55.777

6.417 1451.523 4788.485 47.177 976.188
982.488 0.889 25.OOC a.229 55.4C16-

6.750 1443.150 5030.155 47.560 999.446
1022.336 0.911 25.00C 7.276 54.836

5225.147 1212.6R9 lCO~.I5@

5241.149 1115.758 961.77@

--

7.250 1430.690 5407.516 47.989 1035.413 5265.801 :67.?47 922.927 -
1084.772 0.945 25.CCO 5.944 53.934

8.000 1411.940 6001.e56 48.325 1091.357 5304.118 732.86P 9c1.957
1183.553 0.998 25.000 4.129 52.453

9.125 1383.815 6555.196 48.199 1178.465 5364.1‘42 359.691 946.9C2
1340.342 1.082 25.000 1.789 49.978

10.250 1355.690 7974.733 47.350 1267.674 5426.412 -34.541 ll169.472
1502.966 1.168 25.000 -0.153 47.197

11.375
1666.614

1327.565 5C48.618 45.892 1357.352 5489.906 -421.016 1251.19P ---
1.255 25.000 -1.684 44.208

__T!Y_E.-..-- -..!!E IW-.---. ALTlTUDE .-.M!!MA -R---. VEL?CITV.R -_ ._ JHII’JST ____- CI.FT_-.---- DRAG -. ___ ---.-- __-..
cl MACH XUMBER dE ItiHT Fcau ALPHA PITCH ANGLE

13.062 1295,371
1906.894 I. 387

lC730.372 42.836 1490.702
25.000 -2.978 39.857

5585.130 -851.944 l5b3.3Ek -

- 14.750- 1243.150 12458.354 39.553
2142.732 1.521 25.COO -2.177

1624.168 5677.865 -699.156 1771.316 - -.--- - _---
37.376

16.437
2383.9AO

1201.002 14236.133 38.003 1762.885
1.662 25 .ooo 2.801 40.803

5768.072 lPOl.489 2012.363

17.187 1182.252 - -. .--__
2466.939 1.720

1501o.L46 38.913 1 tlL7.-732 5808.590 2812.498 2775.167 -- ------
25.COO 7.601 46.514

17.937 1163.502 15954.615 40.828 lRb0.691 5850.402 7779.515 2778.078
2511.187 1.766 25 .OC'O 7.379 48.207

18.437 LLcil.o>Z
2548.264 1. RO2

165:s 791
25 .OOO

41.060 1893.591 5878.99R 2425.586 .---
.6,3~i--.- 48.207

2bL6.!l,n5
.

19.187 1132.252 i7547.8se 43.093 1947.788 5922.707 2(,02.734 2472.697
2610.777 1.860 25.000 5.114 48.207

19.860 1115.440 18462.139 43.944 2000.000 5962.500 1707.145 24PB.R75
2669.995 1.917 25.000 4.263 40.207

z
0

ITERATION 1 TRIAL 2 NETA= 46 LETA= 73

MAJORITY VOTE TEST -I

-__.. _--. - .--- .____ _--. _- --..--__
TOO NANY FUNCTIONS YITH ADVERSE TRAVEL

OUSC REWIRED FOR OBETA 0.17390345E 03

-_NUnERCl_~~F_F_IR_ST-.LI1GR~GECULIlL TER Pd34cQq39E. 03 __--. ._ --.- ___
LAGRANGE MlJLT IPL I ERS 0.11635616E 03 -0.39952482&01
ACCURACY CHECK FOR OUSO 0.50991284E 03

CURRENT END POINT VALUES
PREVIOUS VALID STEP EN0 POIhT VALUES -___-.-...---- ---.. -_--
CHANGE IN EN0 POINTS

ALTITUDE HEIGHT
18462.139404 1115.440140

---- -. -..____. 10h6.3~.6520m ta19s. 317139 _..
263.022266 49.053619

CONSTRAINT TRAVEL INOICATCRISI -1
CONSTRAINT CROSS-OVER INOICATGRISI
ALLOWABLE FORWARD CCNSTRAINT ChbhCElN-01

1
0.000000

ALLOHAELE BACKYARD CONSTRAINT CHAhGElN-Cl 0. ocoooa
CONSTRAINT CHANGE ASKED FOR(N-C) -.. O.WOOO. _- .__
CONSTRAINT TOLERANCE{ Sl loco .cLoooo
NON-LINEARITIES o.oocoon -0.156841
STEP-SIZE COEFFICIENTS
MAXIYUH STEP-SIZE COEFFIClEhT(S1

C.@OCCOO 1.912763 -.-_-.
0.000009

w PRECICTED EN0 POINT CHANGE(S) (TGTAL) -154.957928 43.896452

=:- PREOTCTEO EN0 POINT CHANGE(S) (DLS.0) -721.776566 4.134153 --..-.-- __.-- - -~-__. . _--
PRECICTED END POINT CHANGEIS) (VICI 566.818642 p-jq.-762i95
CHANGE IN WE1 GHT VIC 55.969867
CHANGE IN GAUUA R VIC ---
FINAL STEP SIZE COEFFICIENT
LIUSO FOR NEXT TRAJECTORY
NEXT TRAJECTCRY HILL BE A VALIC STEP -

1.119397 ---
o.5ouooo

5C9.912R42

--.-

TIME -. .'cC IGHT IL_[!TUOE ..__
----cl----- HACH NUM8ER UElGHT FLCU

GAYMA R
ALPHA

VELOCITY R THRUST LIFT DRAG - ---- . .--~ .____--------___
PLTCH ANGLE

-c!.ooc
421.757

0.500
456.171

1.250
537.785

2.000 ____--
515.17a

3.125
740.791

4.250
073.922

5.315
1004.851

1555.970
0.538

1543.470 --
0.559

1524.720
0.515

1505.97c
0.664

1477.045
0.739

1449.720
0.815

1421.595
0.888

5co.cco
25.000

770.210
ZS.hti-0

1203.t42
25.olJc

1670.359
25.COO

2430.178
25.COO

3254.055 ---
25.000

4124.881
25.000

51.119 500. COO 4921.729 424.471 336.05lJ --
6.710 57.829

61.290 533.312 4942.011 378.055 331.821 ~ -- --
5.4c7 66.696

51.264 504.577 4974.209 280.574 343.Gll
3.470 64.742

50.882 737.245 5008.420 142.118 363.235 - -- ..-- _
1.540 52.422

59.581 819.194 5053.112 -151.037 451.064
-1.449 58.132

57.252 R99.559 5121.03@ -63C.281 653.142
-4.808 52.444

53.592 577.405 5180.710 -1347.066 1091.385
-8.937 44.55-

5.708 1413.262 4387.550 52.182 958.503 5198.4C7 -1531.839 1307.993
1040.442 0.9ca . G -10.455 .

6.042 1404.528 4551. EC5 51.555 1022.555 521b.OCB 934.577 903.552
1082.712 0.931 25.CCO 5.755 57.310

5.264 1399.373 4831.407 51.710 1038.944 5227.991 ea7.C3fl 9C2.@5(' -_ -
1111.425 0.946 25.500 . 1 5mi30

5.597 1391.c35 5105.a21 51.897 1063.654 5245.149 R16.657 905.229
1155.270 0.970 25.coo 4.713 55.510

7.097 1378.539 5533.209 52.084 L101.318 5273.969 709.754 919.939
~2-zrz3 7 r----- 1.006 25.ooQ . 0 55.954

7.047 1359.789 52tl2.458 52.169 115R.852 5316.895 547.583 962.273
1325.350 1.051 25.COO 2.752 54.921

0.972 1331.564 7269.720 51.895 1246.938 5383.562 299.734 1063.712
1485.182 1.145 25.000

-__
1.345 53.241

10.550 1209.477 9001.749 50.712 1381.293 5407.179 -72.ObC 128O.t?92
1728.448 1.277 25.000 -0.278 50.435

12.347 1247.289 1caba.727 40.705 1515.505 5592.759 -392.434 1545.421 -__-.---.-___
1954.861 1.412 25.000 -1.332 47.453

- --

14.035 1205.1c2 12843.152 46.455 1552.085 5597.825 -511.069 1781.726
2189.885 . . - m 4.9

_ _. ------ .._--- __-_-. -___- -.-----__

TI?fE .WlCHTF T.*nw* R VFI IlClTY R THPlfCT 1 IFT RB---
a MACH NUMRER WEIGHT FLCh ALPHA PITCH ANGLE

--.- _ .-. 15.??2..e.e 1162,914~_1491P.199._~_~~..44..447.__1791.8Z4___1BILO.B99 --113,222---__-l.yzq.129...__--.~..
2409.748 1.694 25.COO -0.313 44.129

17.410 1120.727 17=-265 44.322 1933.tl14 5902.731 1521.8Q3 2311.3Of1
2612.022 1.844 25.COC 3.384 48.207

--1&d 1 B- UO.O~.52? _-.. lAzl6_tl4L. 4.4L9.94 ?.OOO .O-OQ _
2691.904 1.915 25.000 3.213 48.207

5951.93R ---12S7,2-3_C 23@9.tibP ______ ___..- .^_. _

--

ITERATION 1 TRIAL 3 NETA= 36 LETA- 73
--.---- ------

MAJORITY VOTE TEST 0

-

THETA TABLE 11 LINES

-0.000000
65.76C060

2.5625CO -.--

52.444272 5.708333
57.170612

b.047222
54.920916
10.659722
46.046348
18.217864

67.820964 0.25cc00 67.281850
1.250000 b4.?417C3 1.625000

60.429440 3.125o_qp 58.131>@

41.726336 4.812500 49.851157 5.e75cco 49.142176 5.375000
6.263889 57.0303t5 6.430555

56.203332 7.C97222 55.954317
0.409722 54.1coa31 0.972222

So.434552 ll.E03471 48.9_4.3_4_18
14.034721 44.895663 14.878471
4a.tot633 182.17EC42 40.206633

0.500000 66.696447
63.633300 2.OO~I'300

3.@7500 55.520065

44.655149 6.041667 57.309796 5.541667
56.819995 5.5972??

7.472222 55.443790
53.240920 9.815972
12.347272 47.423438
44.153043 15.722221

c.e750(‘0
62.422361

4.25Oi)l'O _- _-

43.236309 6.152778
56.609626

7.A47222
51.e75994
13.190_971
44.1291Pl

RESTART TABLE

-
0 1

509.912842 0.05c000 -o.coooco 17.344538 1066.386520 1l3198.317139 1000.000000
0.050000

TRAJECTCRY SUMMARY
++*+*****+++*********************************** _-__.-..--_--__.- ._._ --

TIME YEIGHT ALTITUDE GAMYA R
0 MACH NUM9ER UEIGHT FLOY ALPHA

VELOCITY R THRUST LTFT DRAG
PITCH ANGLE

17.345 1066.387 18198.317 48.207 2000.000 5951.141 0.000 2154.912
2693.640 1.915 25.000 0.000 48.207

18.218 1100.523 13216.741 44.994 2000.000
2691.904 1.915 25.000 3.213 48.207

5951.938 1297.23C 2309.Abb

-AZ.------- ---

Operating Information

Program setup. -The program is divided into nine logical blocks or links,
where each link performs a particular job. These links are required to ensure
that the program will fit into a 32K core computer. Additional information is
given in the section on program and data overlay.

Link 0: Controls the flow of the program from link to link and remains in
core at all times. The link consists of the following subroutines:

LOAD LOOKlD

ATMOS UNITZ

BLOCK DATA

Link 1: All operations related to the forward trajectory are performed.
The subroutines included in the link are:

AKSTP EXEC PLAC

ANPARP FPROG STEP1

ANPRTL INITCO STPl

BOOM LOOK3D TLD

CONTR

Link 2: The numerical partial derivative check is made using the subroutine:

PRTIAL

Link 3: The control variable history for the nominal trajectory generation
is made using the subroutine:

GUIDE

Link 4: The operations related to the automatic convergence logic are per-
formed. The subroutines included in the link are:

KCALC MATRXB VALID

MATOUT UCALC VARIC

MATRIX

Link 5: All operations and controls related to the backward trajectory are
performed. The link consists of the following subroutines:

DVALB STEP2

LAMBDA STP2

114

Link 6: This link performs the initialization that is required once per data
case. The subroutines included are:

INITAL

TITLES

Link 7: The final output of trajectory data that is required only once per
data case is performed. The subroutine called is

CARDS

Link 8: The last link controls the plotting of data and is called once per run,
The subroutines used are

PLOTZ

SKALZ

A set of auxiliary subroutines are required for plotting similar to the Boeing
numerical plotting system (NPS).

Organization of links: The organization of the computer links and the approxi-
mate core storage required are shown in figure 17. This chart shows that all
links of origin one are called from the basic link 0. Links 2 and 3 (origin two)
are called only by the forward trajectory, link 1.

-
Stop Subroutines

Link 0

Labeled Common

System Subroutines

Link I
(8500)

Origin Two

I 1
Link 2

@W

Link

I I
Link 4

W-3
Link 3
(I 200)

Figure 17. PROGRAM ORGANIZATION

115

Physically in the computer, links 1, 4, 5, 6, 7, and 8 occupy the space
beginning with the same storage location (ORIGIN ONE) but at different times as
governed by the main program (LOAD). Similarly links 2 and 3 occupy the stor-
age beginning with the same location (ORIGIN TWO).

Program deck: The recommended program deck setup is shown in figure 18.
The control cards required for machine operation precede link 0. The data deck
for a given problem is placed following link 8.

To speed up the overlaying of links, two additional tape (or disk) units are
used to store the program, The forward integration routines (links 1, 2, and 3)
are stored on SYSLB3. The convergence logic routines (link 4) are stored on
SYSC El. All other links are stored on SYSUT2.

Data setup. -The setup of the data is performed as detailed in “Input Data
Preparation. ” The physical setup of the data deck is shown in figure 19. Note
that each set of stage-dependent data must be preceded by an STG card. A STG
card must be present for a stage even if no stage-dependent tables are input.
The last card in the data deck is an END card.

General Machine Operation

Tape or disk requirements. -STOP may use a maximum of 10 I/O units during
execution, excluding the system units reserved for input, output, punch, and
normal link loading (i. e. , SYNINl, SYSOUl, SYSPPl, SYSUTB) 0

Listed in figure 20 is a brief description of all I/O units used-their prograr
symbol, system name, function, mode, and buffer size. (Buffer sizes are set
in subroutine UNITZ.)

Figure 21 shows the I/O units used during execution of a typical data case.
This data case is set to complete 1 iteration (NARBY = 2, NITC = l), punch the
control table used for the last iteration (NC(8) = l), and plot the nominal and last
iteration (NC (ll) = -1).

End of run indication. - The program will normally exit successfully by
reading an end of file on the input tape (SYSINl). The monitor will print out the
comment “END OF FILE READING. ” The program has the capability to run
multiple data cases, and always terminates one case by trying to read the next.

116

[(FOR PLOT LINK) A I/

f $ INCLUDE

LINK 7

INCLUDE FOVERF 11 P .
ORIGIN ONE, SYSCKI., REW

LINK 3

Figure 18. PROGRAM SETUP

117

WEIGHTING TABLE

RESTART TABLE

NOMINAL GUIDANCE

CONSTRAINT DEP. PARAM. /

STAGE DEP. PARAMETERS

INITIAL CONDITION DATA /

NC CONTROLS

CONTROL CARD

TITLE CARD A

Figure 19. DATA DECK SETUP

118

Program
Symbol

System
Name Function Mode

KINP SYSINl Input BCD

Buffer Size
(decimal)

14

KOUT SYSOUl Printed output BCD

KPUN SYSPPl

SYSUTB

SYSLB3

Punch output

Link storage

Forward inte-
gration link

Matrix link

BCD

BIN

BIN

120

22

SYSC Kl BIN

KDAT SYSUT6 Input data
storage

BIN 256

KLAM SYSUTB Impulse response
storage

BIN 256

KPAR SYSUT4 Partial storage BIN 256

KPLT SYSUTl Plot data storage BIN 20

*KSCR SYSUT9 Control table
storage

BIN 20

KTAN SYSUT5 Control table
overlay

Scratch tape for
the NPS gener-
ated code

Plot output

BIN 256

SYSUT7

*sysc K2

BIN 256

BCD 22

* These units must be assigned to TAPE, as they may be saved

Figure 20. INPUT/OUTPUT (l/O) USAGE

Remarks

1 System Units

1 Link storage

Scratch units
required by STOP

i

Used only when
plotting

Special-machine operating information. - The two I/O units, KSCR and
SYSCK2, must be assigned as physical tape units and comments inserted asking
that these tapes be saved.

119

Routines
Loaded From

CORE

SYSUTB

Link
Number

0

6

I/O Unit I/O Unit
Read Written

KINP

SYSLB3 1 KDAT

SYSC Kl

SYSUT2

4

5 KPAR

SYSC Kl 4 KLAM

SYSLB3 1

SYSC Kl 4

KDAT
KTAN

KLAM
KPAR

SYSLBS 1 KDAT
KTAN

SYSUTB 7

SYSUT2

SYSUTB

8

KSCR
KDAT

KPLT

6 KINP

Purpose

KOUT
KDAT
KTAN

Initialize data

KOUT
KPAR
KSCR
KPLT

Forward integration of
nominal

KOUT

KLAM
KOUT
KDAT

Majority vote test

Backward integration

KTAN
KOUT
KPAR

1. Steepest ascent logic
2. Build new control table

KOUT Forward integration of try 1

KTAN
KOUT
KPAR

Analyze try 1, make another
try or run valid step

KOUT
KPAR
KSCR
KPLT

Forward integration of itera-
tion 1

KOUT
KPUN

Print and punch final output

KOUT
SYSUT7
SYSCKB

Prepare plot tape

Exits trying to read next
data case

Note: KTAN will not be used if the control table used does not exceed 1000 points.

Figure 21. EXAMPLE OF I10 USAGE

120

The following control cards are required for each computer run, and must
precede the program deck.

SJOB 99F-61C AS2413 WATSON BCC A2 5-0934
s* ACCTTIME 5
SB PRINT ESTIMATE (2000)
s+

_ _.--.-- . . --_

S+ READY A4.A5rB3rB5rCZrC3rC4
s*
SATTACH A4
SAS SYSUT7
SATTACH

‘- SAS
.-. _-_ --._--. gsrrs2.- ..__.. .- ..- ..__ _

SATTACH 83
SAS SYSUT9
SATTACH 85
SAS SYSLB3
SATTACH c2 sAs . . .-.. .-spsuT5-.- .-.._. _-_. -...- ..-.. -._. . ..^
SATTACH
SAS
SATTACH
SAS
SALT
S-EXECUTE .- -.-
SIBJOB
SPOOL
SETC
SSROUP

c3
SYSCKl
C4
SYSUT6
NPS .-IBmB. .-.-.. -.-- - -.. -f- .._ .- - .-

GO,LOCIC~MAP~FILES~FIOCS,EXTLIB
-UNIT03-r-UNIT04-r-UNITO9-~-UN~TlO-~-UNITll-~BLK=256
BUFCT=4
-UNIT03-r-UNIT04-,-UNITO9-~-UNITlO-~-UNITll-~OPNCT=4

SETC BUFCT=4
-- SPOOL- ..--- ~;UNITOB-i’UNlTT4-,6LK=~~BU~=2 ---.- - -.-’ - - - ---- - -.

IGROUP -UNITO8-r-UNIT14-rOPNCT=2rBUFCT=2

NOTE: (1) When NC(8) # 0, a comment card must be included with the control
cards, asking that a save tape be mounted on B3.

(2) When plotting (NC(11) # 0) , a comment card must be included with
the control cards stating that unit Cl will contain the plot output.

121

Programming Information

Basic program flow. - -The following flow charts are intended to give the
user a general picture of the basic program organization and the subroutines
called by each major area of the program. The flow charts are broken down into
the logical areas of forward integration, reverse integration, and control logic.

122

-. -

TERMINATE If
NOM NAL ONLY
IS DESIRED
PUNCH CARDS
IF REQUIRED
(CARDS)

RUN A NOMINAL
(FIRST VALID STEP)

BASIC
OVLKALL

(EXEC) FLOW

EXAMINE ABORT RlJN
NOMINAL b IF ERKOR
(MATRIX) IN NOMINAL

PUNCH CARDS IF
REQUIRED
(CARDS)

RUN A TRIAL
(FORWARD
INTEGRATION)

(EXEC)

RlJN A VALID
STEP
(FORWARD
INTEGRATION)

(tXEC)

EXAMINE VALID

(CARDS)

VALID
STEP

123

I CALL
FPROG

I

BASIC
FORWARD
INTEGRATION
FLOW

ENTER FORWARD
INTEGRATION

I STPl 1.

LEAVE FORWARD
INTEGRATION

1 J

124

BASIC REVERSE
INTEGRATION
FLOW

,

CALL
STP2

A

I

I CALL
STEP2

1

b
INTEGRATE
A STAGE SF WV)

w I

CALL 4
STP2

I

ENTER REVERSE
INTEGRATION

CALL
l

DVAL2 l I

I F
I

CALL
LAMBDA

2 LEAVE REVERSE
2 INTEGRATION
tr -

z

z oi

5
n
Z UJ

-

125

ENTER CONTROL
BASIC CONTROL
LOGIC FLOW

LOGIC

r

REVERSE INTEGRATION
CALL

1 TRIAL
, MATRIX

CALL
VARIC

4

4

v
I

CALL
- KCALC

CALL
UCALC

.

CALL
MATOUT

I I
VALID STEP bi ;;::, 1

LEAVE CONTROL
LOGIC

126

Subroutine descriptions and flow diagrams.-Each of the subroutines in
STOP is described giving the purpose and the numerical method if applicable.
Other subroutines called by the one being described are listed. The approximate
core storage used is indicated. The arguments of subroutines using a calling
sequence are defined in detail. Flow charts showing the organization and detail
of each routine are given.

127

AKSTP- AK Store

Purpose

AKSTP defines and calculates basic and frequently used variables in the
program. These variables include some AK’s, VAR’s, partials, and trigonome-
tric functions of angle of attack, latitude, flight path angle, and heading.

Subroutines Called

ATMOS BOOM LOOK 1D TLD

Storage Used

952 cells

128

NO NO

Colculote Colculote
XKR XKR
CK5 CK5

Calculate
XKR
CK3
SK3

NO

Calculate
XKR
CK6
SK6

129

AKSTP

AKSTP

Calculate
AK (5)

t
Calculate

VAR (4) PQPH
VAR (5) PQPV ’

NO

r-
!r

Calculate
AK (I\) AK (21)
AK11
SAKll

,CAKl’l

130

Colculato

AKSTP

ANPARP -Analytical Partial Derivatives of Placard Equations of Motion

Purpose

The analytical partial derivatives of the placard equations of motion (part
of the F array) are performed in ANPARP. These derivatives of F (placard)
are with respect to all the state and control variables. See appendix B for an
algebraic description of these partials.

1)

2)

3)
4)

Method

Derivatives of the placard equations with respect to the state variables are
given as PFX(1, J) where I identifies the placard equations, and J identifies
the derivative state variable; i. e. , PFX(K25, K4) = aF(K25)/dX(K4).

Derivatives of the placard equation with respect to the control variables are
given as PFU(I, J) where I identifies the placard equation of the F array, and
J the derivative control variable; i. e. , PFU(K25,Il) = aF(K25)/aU(Il).

All partials not calculated are set to zero.

Words not in COMMON computed in ANPRTL and required by ANPARP are
transmitted through the calling sequence:

CALL ANPARP (PLPH, PLPV, PLPA, PLPS, PDPH,
PDPV, PDPA, PDPS, PTPH, PTPV, PTPA, PTPT)

where the elements in the call are defined in appendix B.

Subroutines Called

BOOM

Storage Used

1,371 cells

132

Evaluate Pdialr

133

n A

‘r I Evaluate Partials I

I Of Dynamic
Pressure Placard
F(t) t--

d

Evaluate Partials
Of Qa
Placard
F(M) t-

c

Evaluate Partialr
Of Resultant
Physiological
Acceleration I-

1 Placard F(i) I

Evaluate Partialr

ANPARP

134

Evalwte Partials
Of Sonic Boom

* Overpressure PlaFard
prnerical Perturbation
I 1

I

ANPARP

Evaluate Sonic f-l Boom Partials
With Respect
To Velocity

1 YES

135

E

i
Evoluoto Partialr

- CIfcI;h Numkr

W-0

I

Avai lablo
w For +

Growth

Evaluate Partials
w of Gamma Placard

W, W

+

Avai lablo
t For *

Growth

Avoilablo
* For w

Growth

136

-

ANPRTL -Analytical Partial Derivatives of the Equations of Motion

Purpose

The analytical partial derivatives of the equations of motion (excluding pla-
card equations) are calculated in ANPRTL. These derivatives of the F array
are with respect to all the state and control variables. Appendix B gives an
algebraic description of these partials. ANPRTL is called from STPl only
during valid trajectories.

Method

1)

2)

3)

Derivatives of the equations of motion with respect to the state variables
are given as PFX(I, J) where I identifies the equation of motion and J iden-
tifies the derivative state variable; i. e. , PFX(K2,K4) = aF(K2)/aX(K4).

Derivatives of the equations of motion with respect to the control variables
are given as PFU(I, J) where I identifies the equation of motion and J iden-
tifies the derivative control variable; i. e. , PFU(K2,Il) = aF(K2)/aU(Il).

All partials not calculated are set to zero.

Subroutines Called

ANPARP

Storage Used

1,649 cells

137

t
Compute
QS PLPH
PQSPH PLPV
PQ SPV PLPA

t
. 1

7

_ Evaluate Partials
r Of Weight

- Evaluate Partials
Of Altitude

Evaluate
_ Partials Of
Relative Flight

Path Angle

ANPRTL

138

YES b

I NO

/NO

/NO

ANPRTL

ANPRTL

/

*

I I
Evaluate Partials

-1 Of Gravity I-L
Loss

I

0 E

140

ANPRTL

Evaluate Partials
: Of Thrust

Vectoring Loss

141

ANPRTL

Placards >

> Return

~1 Return

NO

T
Increment
Numerical
Partial Calculation
Indicator By I

F(

Return

142

ATMOS -Atmosphere Calculations

Purpose

ATMOS calculates atmospheric pressure, temperature, density, and speed
of sound. Any atmosphere may be used; however, the calling sequence must be
the same as presently used.

Method

The ATMOS subroutine normally used in the program is an analytical repre-
sentation of the 1962 ARDC standard atmosphere.

The call to ATMOS is made with input and output variables transmitted
through the calling sequence, i. e. ,

CALL ATMOS (H, VA, P, D, T)

where H is the altitude, ft

VA is the speed of sound, fps

P is the pressure, psf

D is the density, slugs/ft3

T is the temperature, deg Rankine

Limitation

This ATMOS subroutine is a modified version of the complete 1962 ARDC
standard atmosphere, Because of a limiting altitude of 157,000 feet and other
simplifications, the modified ATMOS is considerably faster than the complete
atmosphere with little or no loss of accuracy within the bounds of common
application. Other ATMOS subroutines are presented in reference 9.

Storage Used

250 cells

143

ATMOS

Convert
Altitude
To Meters

L

-I””
I’TREF= 216.65 (OK))

.eater Than Or Equal
y’A And >

n 7n KM

Al2 tae Alti tide,
Greater Than Or E ual

<20 KM. And ~~::I%-% ::d No
Less Than 32 KM. Less Than 48 KM

Y YES 1
I I PREF = 114.346 (PSF) ’ “L’

, _
I

Return
T RE
DT/un= ,001 (-K/M)
HREF = 2OCW. (M) IP RFF = lS.l285+(PSF)

Calculate
TM

/

CS (Velocity)
P (Pressure)

I Return

Density = 0 o
Pressure = 0.
Temp. = 489.676
CS = 1084.796 t-

144

BLOCK - Program Constants and Output Titles

Purpose

This subroutine is provided for input of numerical constants and alpha-
numeric printout titles, which are required by the program and are not case
dependent. These variables are set once for each computer run.

Method

All constants and titles are input by data statements.

145

BLOCK

I- 1111-1-11----- -I

t
I
I Mode Indicators
I I

I Accomplished

t
I
I
I a---

1
Set Tape
Unit

Assignments

Set Program
Constants

Initialize
Arrays (DESXUK,
XNAME,YNAME
IGUIDN ,NAM) I

------II-

I At Loah
I Time Only

I

!

I

!

!
I

146

BOOM -Sonic Boom Overpressure and Placard Determination

Purpose

BOOM calculates the sonic boom overpressure and determines the
equation of motion for the overpressure violation in the path of the aircraft.

Method

Sonic boom overpressure on the ground is determined for the conditions
along the flight path. The sonic boom penalty function is calculated by the method
discussed in the analytical development section on enroute constraints. The
terminal value of the penalty function (auxiliary state variable) must be con-
strained to zero. Location of the shock signature on the ground is determined
as a function of the longitude, latitude, and aircraft flight conditions.

Assumptions and Limitations

The overpressure violation is calculated at an odd number of points so that
both maximum lateral cutoff points and the midpoint are included. The number
of points is selected by setting NC(75) = number of points. If NC(75) is even,
the number of points calculated is NC(75) + 1. If too few points are selected,
a region where the placard should be violated may slip through the mesh without
being detected.

Subroutines Called

LOOK3 D PLAC

Storage Used

298 cells

147

BOOM

NO + Return

148 ..: ,”
P I

BOOM

/

Compute Sonic
Boom Placard
* “olation v i’ I

1 1
I

I Return

149

CARDS- Card Output Routine

Purpose

CARDS is called at the end of each data case and is assigned the following
tasks :

1) Recover control table from last valid trajectory from KSCR unit and print
and punch control table and restart table;

2) Recover trajectory summary from KDAT unit and print trajectory summary
table.

Method

The control variable table is recovered by backspacing the KSCR unit to the
start of the last valid trajectory and reading the control history into core. The
restart table is built from convergence information in COMMON. The control
table is then punched in octal format (in order to maintain sufficient accuracy)
and the restart table is punched in decimal format (for ease m modification if
required).

The trajectory summary is obtained from the KDAT unit which was written
by LAMBDA at the end of each valid iteration.

Storage Used

681 cells

150

CARDS

Backspace
KSCR Unit

Read Control
Variable Table
From KSCR Unit

+

Calculate
1

Last Point Of
Control Variable
Table

c

Print
Control
Variable Table

151

CARDS

I 1
Read Trajectory
Summaries From
KDAT unit

0 Bo

Set Indicator
L(6) = 10

I

f-l Return

152

CONTR - Open Loop Control Variable Calculation

Purpose

CONTR performs P table lookup for the control vector (u) in the TlMEU
array at each new time point as required by the integration package.

Method

The control variables obtained are specified by the setting of NC’s 7’7 through
80 for 8, cp, 7, and A respectively. An NC set to 0 indicates the control vari-
able is not required, set to 1 indicates the control variable is used. Values of
the variables as functions of time are obtained by linear interpolation from the
control variable table which is either input nr generated by the program. For
the nominal trajectory, if NC(l3) = 0, the control variables are calculated as
described above; but if NC(l3) # 0, the control variables 8 or r) are calculated
in the GUIDE subroutine and override the value looked up by CONTR. CONTR
is called prior to GUIDE.

Assumptions and Limitations

The control variables are obtained by a linear table look-up. The table
look-up package does not extrapolate so the user must input data that will not
permit a table overrun.

Subroutines Called

GUIDE

Storage Used

197 cells

153

CONTR
Set TIMEU
Arra Index
For lurrent
Lookup

*
Set Control
Variables
Direct1 From
TlMEUkray

Lookup Times
InTlMEU Array
On Either Side
Of Current Time

Interpolate
For Values Of
Con tro I
Variables

save TIMEU
Array Index
For Next
Lookup

Calculate
UI I
Cl 1
s I1

I

, A Selected,
Control Variable

Is Bank Angle Calculate

< A Selected
YES UI2

Control Variable
Cl 2
SI2

NO
I

CONTR

,

z; = U(U) *
YES

I
NO

c

Return

+ Roturn

YES&

r-l Return

155

DVAL2 - Adjoint Variable Derivative Evaluation

Purpose

The derivatives of the adjoint variables and the integrated payoff sensitivities
are evaluated for the reverse integration.

Method

The differential equations for the adjoint variables are evaluated as discussed
in the section on the steepest-ascent method. The. partial derivative PFX or PFU
and the control variables u were stored as functions of time during the forward
trajectory. Because this subroutine is important for the basic understanding of
the computer evaluations of the adjoint variables, weighting matrices, and I matrix,
the computer language for important variables will be given.

The array of all derivatives evaluated during the backward integration, the
FB array, is constructed with elements for A given by

where
F C PFX matrix

A E XB array

The derivatives for the elements of the I matrix are

dI = XXDOT array
dt

= h’ G W-l G’ A (from equation 109)

where
A E XXLAM matrix (given by equation 110)

G 9 PFU matrix

W-1 E VINP array

The derivatives of the elements for the automatic weighting are evaluated by

a:
- = s f

dt I I (from equations 98 and 134)

156

where

s: (t) - G’ XQa (equation 130)

= PFU (I, J)* XXLAM (I, 1)

The elements of the UULAM matrix are the weighted impulse responses of
the constraints and performance to the control variables as given by W-1 G’ A.

The call to DVAL is made through the calling statement.

CALL DVAL (UULAM)

Note: When a single-dimension array is used to store the elements of a matrix,
the elements of the matrix are stored by rows.

Subroutines Called

LOOKlD

Storage Used

1229 cells

157

DVALZ

NO

1
Call

P
LOOK10

Y NO

Calculate
PFX, PFU, U

i

By Inter olation
In TPU I; rray

Load Values
Into
PFX
PFU
U

----l-

158

Compute
Elements
of FB

Compute
UUIAM’S

I

Compute
XXDOT’S
And Store
In FB

Compute
Weighting
Matrix
Elements Of FB

A Return

EXEC - Forward Integration Flow

Purpose

EXEC is called at the start of every forward trajectory. The basic purpose is
to control the program flow in performing the forward trajectory. To accomplish
this, the following tasks are accomplished.

1)

2)

3)

4)

5)

6)

Read nonstage-dependent data from KDAT;

Initialize state variable array;

Read stage-dependent data from KDAT;

Position KDAT past last written trajectory summary at start of last stage
only;

Initialize the state variable derivative array;

Integrate to end of stage or XSTP for last stage. Control data overlay is
accomplished as required by reading blocks of data from KTAN.

Method

Integration of the forward trajectory utilizes the variable step Runge-Kutta option
of STEPl. The final step to XSTP is iterated using the fixed step option until
X(NST) is within EPSLN of XSTP.

Subroutines Called

AKSTP

CONTR

FPROG

INITCO

Storage Used

665 cells

STEP1

STPl

159

EXEC

(Plot Indicator)

The Last Iteration
NO

x

160

EXEC

Read Non-Stage
Dependent Table
Data From
KDAT Unit

+
Set
NETA =0 L(2) = I
NSTAGE =l LINES = 100
L(8) = 0

T = VAR (8)

I

YES set
Liner = 100

I

Set
INST=5000
INPO = 5000

+
Read Stage
Dependent Tables (If Any)
For Appropriate
Stage From KDAT Unit

+

161

EXEC

I f 1

Summaries On

162

Return

r-l Set
Integration
Mode TO 4

L I
I

YES AC
ation lntegr

Of First Stage

Integration
Of A Stage

1

Value: Of Time

And Derivatives Of

EXEC

163

EXEC

Return

Load Into Available
YES _ . Core Storage (TIMEU Array)

Control Table Dota On
Data Needed KTAN Unit

L

I

‘r

I

Set
INST = 5ooO
INPO = 5000

T=TSTP(NSTAGE:

LJ Return

164

EXEC

10 Std p6a dn Greats;“
%la I n Or Equal Tar

Sto&ing Co/rcKiion

I

+

1

Lo8t Stage
To Stopping
Condition

YE

set

+=-l

INST = 5000
INPO = !%OO
L(8) = 0

Set Integration
Indicator For
lnitialirati~n

<
be Plot c

telmct,

I I Return

165

EXEC

F Q
‘c

Backspace
KPAR Unit

Decrement
The Number Of
Stored Integration
Points By 1

Reset Values
Of State Variables
And Derivatives
Of State Variables

I

166

FPROG - Equations of Motion (Calculation of F Array)

Purpose

FPROG calculates the entire F array, which consists of the equations defining
the derivatives of the state variables and placards with respect to time. See
appendix B for an algebraic definition of the F array.

Method

1) All state variable derivatives with respect to time are calculated directly in
FPROG. The placard derivatives, however, are calculated in the PLAC sub-
routine called by FPROG.

2) The value of the placard required in the evaluation of the placard derivatives
is obtained by a table look-up.

3) The array is initially zeroed so that only the calculations performed in a
given case may have nonzero values.

Note: The sonic boom placard, F(K35) is not determined in FPROG but by the
subroutine AKSTP (which calls BOOM which, in turn, calls PLAC).

Subroutines Called

PLAC

Storage Used

677 cells

167

-

Set Index To
Evaluate Al I L- Desired State
Variables

FPROG

Be Evalu

4

ted

YES

‘I
I I

Is Th-

FPROG

I 1

, Is \ YES Lati tde

169

Evaluate
Longitude Angle
Equation

set
Dummy
Time

Evoluote
_ Path Range Along.

Earth’s Surfuce
Equation

Evaluate
L Ideal Relative
w Delta Velocity

Equotion

FPROG

170

c,
G FPROG

/
F

?
Evaluate 1

1 Evaluate 1

i Evoluote I
Wing Sweep
Plocord

W, M)

I Evaluate 1
_ Dynamic Pressure

Plocord
F(M)

I Avoiloble I
-7 :;ow th /---B

I Evaluate I

172

FPROG

J

0 Eva bate
Total Temperature

- Placard
F(t)

Evaluate
Normal Load

_- Factor Placard -
W-f, M

Evaluate
Altitude
Placard

F(M)

I I

I 1
Evaluate
Mach Number
Placard

W-Q

FPROG

I Evaluate I
Gamma / Placard b

I= 0-W)
,

1 Available 1

-_I FcSowrh *

Available
For
Growth

NO NO

I I Return Return

174

GUIDE - Closed Loop Guidance Control Variables

Purpose

GUIDE calculates control variables for generating a nominal flight path.

Method

The NC(l3) controls the manner in which nominal trajectory is generated.
The GUIDE subroutine is called only for the nominal trajectory, if NC(l3) # 0.
If the first stage is a tilt maneuver, GUIDE is bypassed. The number of phases
used to generate the nominal is given by NC(l3). Corresponding to each of the
phases, a guidance mode and phase stopping condition must be specified. The
provision is made to allow the phase stopping condition to be approached from
below or above. The guidance modes are discussed under “Nominal Trajectory
Generation. ”

Ass umpt ions and Limitations

A maximum of 12 phases may be used to generate the nominal flight path.
Five tables have been reserved for guidance modes. The equations solved for
the control variables are linearized as described under “Nominal Trajectory
Generation. ”

Subroutines Called

AKSTP LOOKlD

Storage Used

657 cells

175

kder Indicator

1 Return

GUIDE

NO

a&h YES I^_I
rrmrurn

I

Transfer
To Selected
Mode

Calculote
4. Return

1

b

GUldE

Set
ALF = Ull

I

+ Calculate
UI1

Gamma Is
Function Of
Time Mode

I I

Calculate
GDOT It--+@ ’

@j--

I I
Gamma Dot

5 Is A function
Of Time Mode

GUIDE

Calculate
XMV

GF

1

Calculate
QS

i

Calculate
ALF

IV Maximum
r\l ,owoble
Value

ix 210

178 p
-- R

GUIDE

< DHDV Equal >E

1 NO

179

Altitude Is
A Function
Of Mach
Number Mode

Calculate
DHDV I-+

VDOT Equal Zerc
Mode

fi:~Ca~c$a~T Theta)

Required = 0 4

VOOT Required

VDOT Equal 1
Zero Mode (Calculate Throttling)

GUIDE

1801

F 9 GUIDE

0-r Crdc:~~lote
111 XM

VF

Al lowablo Value

I Return

181

INITAL - Initial Data

Purpose

INITAL is called once at the beginning of a data case and performs the
following tasks in the order listed below.

1) Read the title card;

2) Initialization of important program indicators and arrays;

3) Read the control card, NC array, and initial condition data;

4) Set the forward integration error limits;

5) Read the stage-dependent and constraint-dependent parameters ;

6) Print the initial conditions and stage-dependent parameters;

7) Construct heading block for printout from subroutine MATOUT;

8) Print optimization and stopping condition parameters;

9) Read and print free initial condition parameters if necessary;

10) Read and print phasing guidance parameters if necessary;

11) Print control parameters;

12) Read and print nonstage-dependent tables (including control variable and
restart tables), Store part of control variable table on KTAN unit if
necessary;

13) Store non&age-dependent tables (except control variable and restart
tables) on KDAT unit;

14) Read and print stage-dependent tables and store on KDAT unit.

Subroutines Called

TITLES

Storage Used

2692 cells

182

INITAL

Print Data

Variables And Arrays

Card And NC

LINET 2 NPP

Read Initial
Candi tion Data

+

Set Forward
Integration
Error Limits

I

State Variables

Parameters

-0 IO

183

I -_

Read Constraint
Dependent
Parameters
(If There Are
Constraints)

Calculate
GR
OMEGA

t
Initialize
VAR(28) 511
VAR(29) SI2
Cl1
Cl2

+

Initialize
CONST Array

Calculate
CONST 20)

I CONS? 21)

b
Print Note If

ntinn In Error\

Parametera And
Constraint Dependent
Parameters (If Any)

INITAL

184

IN ITAL

onstruct
coding Block

Alloy For
Printout From

PI irlt
Optimirotion
Parameter And
Stopping Parameter

Print Error Note
And Reset
Partial Check
Indicator

Read And
Print Phasing
Guidance
Porometers

Print Control
Parameters

6,

,

Read An rint
Control Variable
Table (Store
In Core And

nit If ,Necessary)

185

0 C INITAL

t
Read And Print
Restort Table
If Core Is Being
Restated

I

I
I

J NO

I NO

L
1

Rewind KPAR Uni
And KSCR Unit

T Return

186

INITCO - Initialize State Variables

Purpose

This subroutine is called at.the start of each stage and is assigned the
following tasks:

1) Initialize the X array at the start of stage 1;

2) Update the free elements in the X array at the start of stage 1;

31 Initialize weight at the start of every stage;

4) Update weight at the start of each stage if weight is a free initial condition.

Method

The X0 array is used to initialize X at the start of stage 1 and the WO array
is used to initialize the weight at the start of each stage. The input WO and X0
arrays are updated in VALID using the values of DELX computed by VARIC.

Storage Used

117 cells

187

Values Of X’S

Y YES

Reset Appropriate

IN ITCO

INITCO

XKI = XKI +
WO (NSTAGE)

Zero The
COF Array

Calculate Calculate
IXTRA 1, IXTRA 1,
IXTRA 2 IXTRA 2
and IXTRA 3 and IXTRA 3

I

r- Return

189

KCALC -Step Size Logic Subroutine

Purpose

This subroutine is called following every try if MATRIX determines a non-
negative majority vote. KCALC is assigned the following tasks:

1) Compute maximum allowable constraint motion;

2) Set L(6) for next trajectory;

3) Compute step size coefficient (COEFK) for next trajectory.

METHOD

KCALC computes the step size coefficient based on performance and con-
straint linearities using the parabolic curve fitting method described in appendix
C. Maximum step size coefficients are also determined based on the maximum
allowable travel of each constraint. The best step size is then determined for
the next trajectory.

Variables not in COMMON are transmitted between MATRIX and KCALC
through the calling sequence

CALL KCALC (DPSI, DPSIP, PSIBWD, PSIFWD, PSIK, PSIKTR, PSINL,

=)
where:

DPSI

DPSIP

PSIBWD

PSIFWD

PSIK

PSIKTR

PSINL

ZZ change in constraint end points

= predicted change in constraint end points

= nondimensional allowable change of a constraint in direction
of desired constraint value

= nondimensional allowable change of a constraint in direction
away from desired constraint value

= constraint step size coefficients

= maximum step size coefficients of constraints due to maximum
permissible travel

= constraint nonlinearities

= current end point values

Storage Used

832 cells

190

I 1
Determine
Step Size Bored
On Performonce
Linearity

I 1 1
t

I
Determine
Step Size Bored
On Constraint
Linearities

+

Determine
Permirrible
Constraint
ChClllp

Store Step
Sizes Based On
Lineaitios In
COKLIN

Detormino
Maximum Permirriblo
Constraint
Changes

I

Determine Maximum
Stop Size Using
Permissible
Constraint
CtKlnges A

Determine Whether
Or Not Each Constraint
Is In Its Temporary
Tolerance Bond

1
I

6 A

191

KCALC

Store Greatest
Step Size Based On

5 linearity In TRIALK
Then Zero Out That

Repeat KCALC If
Control I ing With
Constraint Within
Tolerance Band Which
Reduces Step Size

Repeat
Path

Check To Ensure
Permissible Travel Of
Constraint In Tolerance
Band Is Not I> Error

Coefficient Is Greatest
TRIALK Obtained

If Final Step Size
Foils To Lie Between
.5And 2. Use
Appropriate Limit

Do Not
Re eat
K?AL‘
Path

KCALC

i-I Return

192

LAMBDA - Reverse Integration Flow Controller

Purpose

LAMBDA controls the flow of the program during the backward integration.

Method

The adjoint variables are initialized prior to performing the backward inte-
gration. The automatic weighting matrix is calculated using the method described
under “Automatic Weighting Matrices. ”

DVAL2

Subroutines Called

STP2 STEP2

Storage Used

518 cells

193

On KDAT Unit

Zero SENS
In XB Array

Zero XXLAM
In XB Array

Set Appropriato
XB Elements
To 1.0

Perform Initial
Loading Of Portials
lnto Allowable
Core Storage

194

LAMBDA

,.-. ’
6

Sst YES
ll- VAR(B)-T -‘,

c

-TSTP (NSTAGE)

YES
jaGEd)

I -T
I

Set
IN= I
L (5) = 1

LAMBbA

0 B

195

Q B
LAMBDA

Declemellt
NSTAGE

Decrement

G9 ‘a 50

NO
EII,,I ln,licotol

Coil
0 STP2

convet t X B

Fi Retw n

196

LOAD -Main Program

Purpose

LOAD controls the program flow from link to link and causes links to be
overlayed.

Method

The program is broken into nine links, each performing a specific function.

Link No. Purpose of Link

5

6

7

8

j ATMOS

General program flow

Performs forward integration; called once per trial

Numerical partial check link

Closed-loop guidance link

Performs the steepest-ascent calculations; called
once per trial and twice per valid trajectory

Controls program flow for reverse integration;
called once per valid trajectory

Initilization, called once per data case

Performs final output of trajectory data; called once
per data case

Controls the plotting routines; called once per
computer run

Subroutines Called

CARDS EXEC INITAL MATRIX LAMBDA PLOTZ

Storage Used

206 cells

I -

197

- ~ --

I

NO

LOAD

fe Trajectory /

0 A

198

A 9
LOAD

1

Reset The
Error Indicator
To Zero

Call
PLOTZ

x
I Return I
I I

200

LOOKlD - One-Dimensional Table Look3

Purpose

LOOKlD provides a table lookup technique for tables that have one inde-
pendent variable and NDV dependent variables.

Method

Given a value for the independent variable, the subroutine will furnish the
dependent variable values and their partial derivatives with respect to the inde-
pendent variable. Extrapolation is performed if the table limits are exceeded.

The call is made to LOOKlD through a calling sequence.

Call LOOKlD (NDV, KK, XQ, Yl, Y2, Y3, Y4, Y5, Sl, S2, S3, S4, S5)

where NDV = number of dependent variables

KK = location of the first entry in the tables, NDS (table no.)

XQ = value of the independent variable

Yl, Y2, Y3, Y4, Y5 = values of the dependent variables

Sl, S2, S3, S4, S5 = values of the slopes of the dependent variables
with respect to the independent variable

Assumptions and Limitations

1) The lookup method is based on linear interpolation.

2) The maximum number of dependent variables (NDV) is five.

Storage Used

229 cells

201

LOOK I D

f-

Perform Lookup
In Z Array

Interpolate Or
Extrapolate If
Necessary

?l Return

202

LOOK3D -3D Table Lookup

Purpose

LOOK3D provides a method for linearly interpolating in a table to obtain a
dependent variable as a function of up to three independent variables, i. e. ,
W = F(X,Y, Z).

Method

Given the three values of the independent variables, the routine calculates the
dependent variable and the slopes (derivatives) of the dependent variable with
respect to the three independent variables. Linear extrapolation is performed in
cases where the table limits are exceeded.

The call to LOOK3D is made through a calling sequence.

LOOK3D (NTAB, ZIND, XIND, AIND, YY, SLZ SLY, SLX)

where
NTAB = table number

ZIND = value of the independent variable out of the plane

XIND = value of the independent variable between curves on a given
plane

AIND = value of the independent variable that is the abscissa of the
curves

YY = value of the dependent variable

SLZ, SLY, SLX = slopes of the dependent variable corresponding
to ZIND, XIND, AND AIND, respectively

Assumptions and Limitations

The dependent variable is obtained from the input data by linear interpolation
and the slopes by a forward difference technique. The lookup package can be used
to obtain the dependent variable as a function of one or two independent variables
also.

Storage Used

617 cells

203

LOOK3D

ind Curves On
Either Side F f Curve Desire
*

t
Find Points On
Either Side Of

J NO

Find Points On

Desired Point On

204

A 9
CompJto
Slopes And
Value

Compute
Slopes And -

NO

Value
L

Compute
510

P
es And

Vo U8

Find Curves On
Either Side Of L- Curve Desired
l

Find Points On
Either Side r-l Of Desired Point Of Desired Point
On Upper Curve

LOOK3D

205

E’i her Side
Of Desired

Compute
Slopes And <
Value

NO

Compute
Slopes And
Value

+

Return

LOOK3D

206

MATOUT -Matrix Output

Purpose

MATOUT prints convergence information that appears following each trial
or valid step. The printout includes information such as current end-point values,
constraint travel indicators, constraint changes, constraint tolerances, predicted
constraint changes, step size coefficients, and other data.

Information not in COMMON is transmitted between MATRIX and MATOUT
through the calling sequence

CALL MATOUT (DBETA, DPSI, DPSIP, IMAJ, INDTVL, PSIBWD, PSIFWD,
PSIK, PSIKTR, PSINL, XLAMDX, Xx)

where:

DBETA

DPSI

DPSIP

IMAJ

INDTVL

PSIBWD

PSIFWD

PSIK

PSIKTR

PSINL

XLAMDX

xx

= the change in constraints modified by the end point changes due
to the variation of initial conditions

= actual change in constraints measured from a previous valid
step

= predicted change in the constraint end points

= value of the majority vote

= constraint travel indicator

= nondimensional allowable change of a constraint in the direction
away from the desired constraint value

ZZ nondimensional allowable change of a constraint in the direction
of the desired constraint value

= constraint step size coefficients

= constraint step size coefficients based on maximum permissible
constraint travel

= constraint nonlinearities

= predicted change in the constraints due to variable initial conditions.

= array of constraint end points

storage Used

1202 cells

207

MATOUT

Print
DPHI
PHIN
PHIK

rc tnt I
Ice Value
ious Volid

J

ormance

i

Print Heading
Block For
Control Logic
Information

NO

DPHIP
. DPHID

DPH13

.
Print Current End
Point Values And
Previous Valid
Step End Point
Values Constraints
And \ Per nrmance)

1
Print

DPH I And/Or
DPSI

I

Print
INDTVL CPSI
INDSIC TTOL
PSIFWD
PSIBWD

1 PHINL

Print
PSIKTR And Or
DPHIP d D SIP ---J DPHID DBETA
DPH13 XLAMDX

208

MATOUT

Print
Variable Initial
Condition Name
And tncremental
Change To Be
Mode To It

I
I IN0

Print r-l Step-Size
Coefficient

Print
~e,~tB~~ectory

i
Trial
Set Indicator

Print
Next Trajectory
Will Be A Valid

Set Indicator I

I Return I

209

MATRIX - Basic Steepest Ascent Subroutine

Purpose

MATRIX is called at the end of every valid trajectory, reverse integration,
and trial trajectory. After a valid trajectory, MATRIX calls VALID to examine
the results (see VALID). After a reverse integration, MATRIX performs the
following tasks :

1) Recovers the I matrix from the XB array

2) Calls MATRXB to invert 1~~ matrix

3) Computes minimum allowable DUSQ

4) Calls VARIC to compute new DELX array

5) Updates iteration counter (ITC)

6) Writes arrays required for trials on KPAR unit for temporary storage

7) Computes Lagrange multipliers

8) Calls UCALC to update control history

9) Calls MATOUT to print convergence information

1)

2)

3)

4)

Following each trial, MATRIX performs the following tests:

Reads arrays from KPAR unit written after the previous reverse integration

Examines the try to see if it passes the majority vote test. If the test fails,
a new trial is attempted

Calls KCALC to determine the step size coefficient for the next rajectory

Performs steps 7, 8, and 9 above.

Method

The steepest ascent method and the convergence logic used in MATRIX are
explained in detail in the analytical development section and appendix C

Subroutines Called

KCALC MATRXB VALID

MATOUT UCALC VARIC

Storage Used

3454 cells

210

IP rint Iteration I

I And Trial N
NETA Ard I

Compute Change
In Optimization
Function

.
Store Terminal
Valuer Of
Constraints In
XX Array

0 A

NO

t
Compute Change
In Constraint
Terminal Values

1
Compute And
Print
XI

+

Compute
BVEC

I

Compute
B

nl D

IX

Return

MATRIX

Compute
Ma jori ty
Vote

Print
Too Many NO
Functions With 4

1 Adverse Travel

YES

Call
KCALC

Adverse
I rrint

A * -erse PHI
Great

Acceptable x Change In
PHI

v
B

212

,,i;:
f

i

i

MATRIX

1

I

Check
Performance
With No
Constraints

t, t,
-Force Vahd -Force Vahd
Step If All Step If All I I

+ + Constraints Counted Constraints Counted
Improved But DUSQ Improved But DUSQ

d d I I

213

MATRIX

Test For
Bounce - If
Bounce Force
Valid Step

Update Trial
Number

.

YES

r-l Compute and
Scale
DELX I XLAMDX

214

Compute
BINV

Invert Matrix 0 B

Reset Appropriate I

Calculotc And
PI int Minimum

I PHI PSI Transpose

4
Store BVEC,
SFISSD, B,
Xl, DPSIP on
KPAR Unit

215

MATRIX

YES)

MATRIX

YES

NO
I

Toleran+,Bands

1 YES

YES

n

Return

1 NO

tl Return

216

MATR.IX

Ini tiolize
Perturbation

Size

Set and
Update

Indicators

Print
Gradient of PHI

too Negative

NO
Vf

Decrement
Iteration Counter

Set
NETA = 0

Compute
DPSIP
XIAMDX
DBETA

Compute
DPHIP Due
To DBETA

d G

217

G Q MATRIX

OBETA Transpose

DUSQ = Tl -=

XNUM = 0

DUSQ too Small
To Meet DBETA

Scale DBETA
To Match
DUSQ

-T-

f

0 H

218

NO

Set Indicator

MATRIX

* compute
XMU(1)

YES

Value

I
YES

Compute
DPHIP

Bounce
Limits

Set DUSQ
For

Optimization

219

-

I
6 Compute

XMU’S

MAT.R IX

Compute
BBVEC

,

Compute
DUSQ
Check

On KPAP Unit

220

MATRIX

Return G YES

L

YES

Compute
DPHIP Due
To DUSQ 1

El Return

221

MATRX2 - Matrix Inversion Subroutine

Purpose

MATRX2 computes the solution of a set of simultaneous linear equations, the
inverse of a matrix, or the value of a determinant.

Method

The solution of a simultaneous linear equations follows from

B = AX

or solving for X

X = A-l B

Thus, the inverse is required for the solution, and the determinant of A is
required for the inverse of A. The matrix operations are all performed in
double-precision. Matrix inversion uses the Gaussian elimination method.

The call to MATRX2 is made through a calling sequence

CALL MATRX2 (N, LN, LM, A, B, E, D, MM)

where N = the order of the matrix A

LN = number of rows in the dimension statement for matrices A
and B, i.e., A is an LN x LM matrix.

LM = number of columns in matrix B

A = array designation for matrix A

B = array designation for matrix B

E = an array used as temporary storage of a column matrix

D = value of the determinant of A
if D = 0 the determinant is not computed

D = 1 the determinant is computed
D = a scale factor, the determinant equals the value of the

determinant times the scale factor

MM = error indicator
1 if solution is successful
2 if overflow occurred
3 if matrix is singular

The answers or the X matrix replace the original A matrix.

222

Assumption and Limitations

The size of the problem that can be solved is limited only by machine
storage space.

Storage Used

596 cells

223

Double Precision
Motrix
Inversion

Initialize
Overflow
lndi cotor

Index l-r
Selectton of
Element A of
Maximum Absolute
Value in Each

,Reduced Matrix A

Interchange
Rows Ploci ng
Row With Maximum

MATRX 2

Reduce Matrix

Bock Substitution
To Find Solution

,&

/

Return

224

PLAC - Placard Equation Evaluation

Purpose

Subroutine PLAC is called from FPROG for each selected earoute constraint
and performs the following tasks.

I) Compares the constrained variable with the allowable limits from the input
placard table

2) Computes the placard equation of motion value and updates the appropriate
element of the F array

3) Stores the placard limit value and the slopes of the limit value with respect
to its independent variables (obtained from the input placard table) in the S
array.

Method

The call to PLAC is made through the following calling sequence:

where

CALL PLAC (II, ITAB, KTAB, Al, A2, A3, A4)

II = F array index corresponding to the selected placard. II is
computed by FPROG.

ITAB = first table number containing the placard values for the selected
placard. ITAB is computed by FPROG.

KTAB = number of independent variables defining the input placard
table. KTAB may be 1, 2, or 3, depending on the placard
formulation.

Al

A2

A3

= Value of the independent variable for a one dimensional table
or the value of the “plane If for a three dimensional table.

= Value of the “curve” for a 3-D table. A2 = 0. for a 1-D table.

= Value of the abscissa (“point”) for a 3-D table. A3 = 0. for
a 1-D table.

As an example, the calling sequence for the QLIMIT = F(t) placard is

CALL PLAC (II, ITAB, 1, T, 0.) 0.3 AK(4)).

For the NLIMIT = F(H, M), the call is

CALL PLAC (II, ITAB, 2, 0. , X(K2), AK(5), U13).

225

Note that if the 3-D option is used for a 2-D table, the value of the ‘plane”
is set to zero.

A4)2
PLAC will set F(II) = 0. if the limit value is not exceeded or to (LIMIT -

if the limit is exceeded.

PLAC also computes elements in the S array as follows:

S (I, 2) = limit value exceeded (max. or min.).

S(I,3) = slope of limit value with respect to Al (from the input placard
table).

S(I,4) = slope of limit value with respect to A2.

S(I,5) = slope of limit value with respect to A3.

I is the internal index for the selected placard (I = 1, NPF) and is computed
by PLAC.

Subroutines Called

LOOKlD LOOK3D

Storage Used

216 cells

226

x I

Return --.
!-,(LOOKBD)

Set
C’S

YES

Compute
Derivative Of
Placard

I

ii
Return

1

SET
S’S

227

PLOTZ -Plotting Subroutine

Purpose

PLOTZ controls the plotting operations for the Orthomat and SC 4020
plotters. Operations for scales, headings, titles, etc., are included.

Limitations

1) The maximum number of plots is limited to seven

2) Six curves maximum per plot

3) Multiple-data cases cannot be plotted

4) X- and Y-axes annotation occurs every 2 cm

5) Titles consist of the following:

LINE 1 -

DEP. VAR. NAME VS. IND. VAR. NAME

LINE2 -

The first 72 characters taken from title card on the data deck.

Subroutines Called

SKALZ

Boeing numerical plotting system (NPS) subroutines called

CAMERA NOS LIB
ORTHPP AXLILI
SLLILI NWPAGE
PAUSE GDIJLI
PSLILI FORM

TIT LEB
BORDER
SCPP
NOSLIL

Storage Used

1436 cells

228

4
Print
The Name
Of Plotter
Used.

I

PLOTZ

r

Draw Alignment
Axes On Orthomat
Bed

Draw Grid
On SC4020

NO. Of Curves
NO. Of Points

No. Of Points

PLOTZ

I Per Curve

NO

+
Read Data From Read Data From
KPLT For .Plot KPLT For .Plot
Number 1 Number 1

. . 4 4

NO NO Read Data Read Dota
From KPLT For From KPLT For
The Last Plot The Last Plot

Y Y
’ Read Data From ’ Read Data From

KPLT For Plots KPLT For Plots
Between First Between First
And Last. And Last.

-0 -0
80 80

+
Rewind
KPLT

Print The
Plot No.,
No. Curves/
Plot And Plot
Variable Names

I

6 90

230

0 90 PLOT2

Determine r-l Max and.Min
of Data for
this Variable

YES lndep.
Variable

1 De-!jl: No ’
Appropriate
Scale For
Indep. Variable

Determine
Appropriate
Scale For
Dep. Variable

231

I

Initialize
Specifications
For SC4020
Annotation

I

175 0 w

Call AXLILI
Draw ORTHO
Axes

Initialize
Specs. For
Orthomat
Annotation

I

Initialize
General Specs.
For Annotation

+

Call NOSLIL
Y Axis
Annotation

*

Set Up Specs.
For Plotting
Straight Lines
Between Data Pts.

232

PLOTZ

Q 184
PLOTZ

Initialize
No. Of Data Pts I-- For This Curve.
X ad Y Data
Skips.

(3 Call
SLLI LI

YES

233

PLOTZ

NO

234

PLOTZ

Return Return

235

PRTIAL -Numerical Partial Derivative Check

Purpose

PRTIAL calculates the partial derivatives of all of the equations of motion
for state and placard variables with respect to each of the state variables and
control variables. These are used for checking the analytical partial derivatives
used in the steepest-ascent method (see appendix B).

Method

The numerical partial derivatives are evaluated using a linear approximation
by perturbing the state or control variable about the present value. The pertur-
bations are made both positive and negative from the mean value. For example,
if z = f(y1, y2, yn) , where yi is either a state or control variable, the
numerical partial derivative is given by

aZ f(Y1, y2, yi+h, yn) - f(y1, Y2, *---9 Yimh3 -‘*** Yn)

2h

where h is the perturbation increment.

Subroutines Called

AKSTP FPROG

Storage Used

743 cells

236

Set Stat0
Variable
Increments
To Bo UIod
W.~;t~rration

I

Save Current
Value Of State
Variable

t

Increment
Value Of
State Variable

,

Of Derivative
For Incremented

PRTIAL

237

Decrement
Value Of
State Vorioble

Compute The
Numerical Portiols
Of Derivatives With
The Perturbed State
Vorioble And Reset
Values Of Derivotivw

+
1

Reset The
Stote Variable
Volue

PRTIAL

238

8 Q
PRTIAL

.
Print Time,
Analytical Portiols,
And Numerical
Partials For State
Voriobles

Save Appropriate
Control Vorioble 1

Of Derivotivcs

Increment I-- Control Variable
Value

239

PRTIAL

NO
t

Colculote
Ul2
Cl2
512 I-

NO NO
+ +

Set
u14 = U(l4)

I
I-

I

+-

Call P AKSTP

I I I
The Following
4 Entries Are
Made In Consecutive Made In Consecutive
Order I At A Time Order I At A Time

I

240

Sow Derivotive
For Incremented
Control Vorioble

PRTIAL

Reset Control
Vorioble
Value

t--@

r

Entry 3

I

Computo
Numerical Partiolr
Of Derivatives
With The Perturbed
Control Voriable

Entry 4
4i2t&F+@

241

PRT IAL

Print Analytical
Partials And

L-J Numerical Partials
For Control Variables

t

Reset
Integration
Indicator

Return

242

SKALZ - Plot Scales

Purpose

SKALZ determines the scales for plotting.

Method

Scales are based upon the number of divisions allowed and the variable
range covered. The call to SKALZ is made through the calling sequence.

CALLSKALZ (DIV, DMAX, DMIN, SDIV, SMAX, SMIN, STEPP, DIST)

where DIV = maximum number of subdivisions that may be used

DMAX = maximum value of independent or dependent variable

DMIN = minimum value of independent or dependent variable

SDIV = number of divisions used for x or y axis (< DIV)

SMAX = maximum value of independent or dependent variable
(1 DMAX)

SMIN = minimum value of independent or dependent variable
(5 DMIN)

STEPP = step size between successive annotation on an axis
(SMAX-SMIN/SDIV)

DIST = distance to alter the origin of axis given in one-
division increments, (DIV -SDIV)/2.

Storage Used

412 cells

243

SKALZ

Calculate
Range Of
Data-

Calculate
Range Per
Division
(DE LT)

Find Power
Of 10 (ISF)
So DELvlO **ISF
Lies Between 1
And 9

244

245

SKALZ

Calculate NDIV,
Number Of Divisions
Required To Fit Data
With Calculated Step
Size

I DIV = DIV-1. I

T 1

Adjust Origin
If Necessary

Return

STEP1 -Integration Of Forward Trajectory

Purpose

STEP1 integrates the equations of motion defining the state variable.

Method

The integration package is a variable-step Runge-Kutta. The Runge-Kutta
technique is basically a fourth-order method that is mechanized to vary the in-
tegration interval based on two half-step intervals as compared with the full step.
This system evaluates the NV derivatives 11 times per integration interval.
only the basic NV equations of motion are integrated using the 11-point method.
The other equations of motion are integrated using only four evaluations of the
derivatives to save computer time. A complete writeup of the RKVS method is
given in reference 8.

Assumptions and Limitations

The minimum step size is specified by the user.

Subroutines Called

AKSTP CONTR FPROG STPl

Storage Used

1179 cells

246

STEP2 - Adjoint Equation Integration

Purpose

STEP2 integrates the adjoint equations of motion backwards along the trajec-
tory.

Method

Integration is performed using a modification of the Runge-Kutta variable-
step technique given in reference 8.

The call to STEP2 is made through the calling statement

CALL STEP2 (UULAM)

where UULAM is a matrix of the weighted impulse response.

Subroutines Called

DVALB STP2

Storage Used

2323 cells

247

STPl -Store and Print Forward Trajectorv Data

Purpose

STPl:

1) Calculates many of the AK variables, including metric conversions and
transforms relative state variables to inertial coordinate system;

2) Performs the circular satellite option calculations;

3) Stores partials and plotting data on tape;

4) Tests for maximum stopping time;

5) Controls phases for nominal-guidance modes;

6) Controls printout of forward trajectory.

Subroutines Called

ANPRTL

Storage Used

867 cells

248

b NO I

Colculato u Printout
Variablor

I I) YES

NO

Check For A
Guidance Mode
Switching
Condition

f

Increment Phase
Counter For A
Chonge Of
Modes

A YES 1
PI int PI int
Variables Variables
For Current For Current
Time Time

NO

t NO

STPI

250

STPI

NO
Numerical

\ Partiol ChecL
Option

Selected

ii:*-.

YES

(%RTL)

Increment
Storage
Counter

YES

A Nominal >

(fib,,,)

< Loop Option > ‘--

- --.. --
NO I

NO L Return

Plots On KPLT

251

STP2 -Reverse Trajectory Store and Print

Purpose

STP2 controls the storage and printing of the influence coefficients during
the reverse integration.

Method

The option to print the adjoint variables is made by the user (NC (7) # 0).
The print interval is selected and printing is done only at the completion of an
integration interval. Storage of the influence coefficients for use in determining
the new control variable history is performed. The partial derivatives stored
during the forward trajectory are called from storage and placed in core for use
by DVALB.

The UULAM matrix which is computed in DVAL2 is transmitted to STP2
through the calling sequence

CALL STP2 (UULAM)

where

UULAM = W-lG’ h

Assumptions and Limitations

The maximum number of points that may be stored is 1359O/Nu~l, where
NUPl is the number of control variables plus 1.

Storage Used

478 cells

252

t YES

4 NO

cl Print Adjoints

Store
Influence
Coeffieients
On KLAM Unit

STP2

Print Error
Message

i-i

cl Return

253
.

STP2

YES W Return

NO,/d;ttt$~~$ c

To Be Loaded Into Core l- Return

1 YES 1
Load New Set Of
Partials Into
Al lowable Core
From KPAR Unit

Return

254

TITLES - Output Heading Subroutine

Purpose

TITLES is called from INITIAL once per data case and performs the following
tasks:

1) Constructs the packed array of headings (DESXUP) from the DESXTJK array;

2) Converts the input NC(l21) through NC(l60) values to internal state variable
indicies ;

3) Constructs the plot headings for the PLTNAM array;

4) Calculates the number of equations of motion (NEON), placards (NPF),
state variables (NX), control variables (NU), and auxiliary printout vari-
ables (NK) selected by the user.

Method

All information required by TITLES is available in the input NC array and
the DESXTJK array compiled in subroutine BLOCK.

Storage Used

363 cells

255

TITLES

t I I
Convert NC
Array to Internal
Equation
Sequence

L ,
I

+
I

Cons true t Headings
For Auxiliary
Printout Variables

J YES

, .

Store Titles For
Each Plot in
PLTN AM Array

I I
I
f

I Return

256

TL-ET ~. Thrust, Lift, and Drag Calculations

Purpose

TLD calculates thrust, fuel flow, and aerodynamic coefficients as required
by the options. It also calculates some VAR’s and partial derivatives as required
to perform the above calculations.

Method

TLD uses the NC’s input to determine the options to be used for calculating
thrust, fuel flow, and aerodynamic coefficients. Body axes data is converted to
wind axes for use in the program. Thrust, fuel flow, and aerodynamic coefficients
data are obtained by table lookups.

Assumptions and Limitations

For thrust options 3 to 9, thrust and fuel flow data are tabulated for one engine
only. If more than one engine is used, the thrust will be multiplied by the number
of engines as input.

Subroutines Called

LOOKlD LOOK3D

Storage Used

1,419 cells

257

TLD

Zero
VAR Array

Transfer To
- Thrust Option

Selected By
Input

NO _ Calculate
TSTAGE

•+
T = F (Alpha,

H, VI

258
p
,i

i

TLD

YES Calculate
H VAR (32)

VAR(31)
1

Calculate
VAR(I)

a

I-

TLD

IN0

4 :T ;) F (Alpha,
I

+

Calculate
VAR (1)

Calculate
YES - VAR (33)

VAR (32)
VAR (31)

I

6 1

--I :T i) F (Alpha,
I

Calculate
VAR (1)

266

Calculate
VAR (33)
VAR (32)
VAR (30

.
Transfer to
Fuel Option
Selected by
Input

,
Calculate
VAR (3)

Colculote
VAR 36)

I VAR 35)

TLD

1

261

F (ETA I
I

TLD

YES Calculate
VAR (38)
VAR (37)

J

YES - Calculate
VAR 36)

I VAR 35)

SFC =
-+ V)

F (Alpha

YES Colculote
4 VAR (38)

VAR (37)

262

TLD

6 2ooo

Calculate

6 I

263

I ’

TLD

YES _ Calculate

I

Calculate
VAR (3)

e
4

--SFFHj; F (Alpha
M

+ b
Calculate

VAR (31

Calculate

264 y
i

c
1’

I
I

I

Calculate
VAR (3) I

TLD

A Call

265

2000 0
TLD

Scale Data r-l Due to Number
of Engines

I I

I

I Vacuum I

I c I

t CD, CL = F
W, M, A)

YES Calculate

266

L

8

Call
LOOK3D

. talculate

Calculate

267

TLD

CAO, CNA,

+ CNA3= F (M)

I
7

t

Calculate
CN
CL
CD

I t
YES f%i” -i?6f PCLPM

,4 VAR (20) PCDPM

268

for CDO, PCD,
CLI, CLA, CL0

TLD

Colculate

EC0

Calculate
VAR 20) VAR (17)

YES 4 I VAR 21)
- PCLPM

M&5’

VAR (18) VAR 14)
VAR (19) VAR 15)

I

I

YES Calculate

269

UCALC - Control Variable History Update

Purpose

UCALC is assigned the task of computing the control variable history for
the next trajectory.

Method

The control variable history used to generate the last valid trajectory and
the impulse response history computed during the last backward integration is
recovered from the KLAM unit. The Lagrange multipliers are used to compute
a new control history by

UNEW = UOLD
+ [UULAM] [ks]

YS

and UNEW is stored on the KPAR unit. Next the first part of uNEW that will fit
in core is stored in TIMEU and the remainder is written on the KTAN unit.
STPl reads KTAN to accomplish the control history data overlay in the TIMEU
array.

The Lagrange multipliers , computed in MATRIX, are transmitted to UCALC

by

CALL UCALC (XMU)

where

XMU = the array of Lagrange multipliers

Storage Used

532 cells

270

UCALC

YES YES

Print Error
Nate And
Set Error
Indicator

I Return

+ NO
Read Time,
Influence Cosffieientr,
And Control Variables
From KLAM Unit

r-l Compute Change
(fa~\.l)~ Con tro I

f t
Store Time
And New Value,
Of Control Variables
In TIMEU Array

If New Control
Table Too Large
For Available
Core Storage,
Store Excess
On KTAN Unit

Return

271

VALID - Valid Step Monitor

Purpose

VALID is called from MATRIX at the end of every valid step and is assigned
the following tasks:

1) Decides whether to accept or reject the valid step.

2) Update free initial condition state variables.

3) Tighten temporary tolerance bands.

4) Updates INDSIC array.

5) Updates CPSI array.

Method

A detailed description of the logic used by VALID is given in Appendix C.
If VALID decides to accept the valid step, switches are triggered to allow a
reverse integration. If the valid step is rejected, the KSCR and KPLT units
are backspaced to the start of the previous iteration. The new valid trajectory
then will replace the rejected one.

Elements not in COMMON are transmitted between MATRIX and VALID
through the calling sequence

CALL VALID (DBETA, DPSI, DPSIP, INDTVL, XMU, XLAMDX, Xx)

where

DBETA

DPSI

DPSIP

INDTVL

XMU

XLAMDX

= the change in constraints modified by the end point change
due to the variation of initial conditions

= actual change in constraints measured from a previous valid
step

= predicted change in the constraint end points

= constraint travel indicator

= array of Lagrange multipliers +&]

= predicted change in the constraints due to variable initial
conditions

= array of constraint end points

Storage Used

735 cells

272

VALID

S0ve Values
For Previous
And Current
Valid Iterations

I
Print

Return < ’ Toa Many
Trials - Abort

Ah

Initialize
DBETA, DPSIP,
INDTVL

Initialize DPSI
Establish lnitiol

I NO

273

VALID

Print
Too Many
Functions With
Adverm Travel

0 5010

Save Previous

YES

Reset Initial
Condi ti ens

NO

274

VALID

lighten
Temporary
Tolerances

.

I
Compute Number Of
Iterations Since Constraint
Has Been Inside Temporary
Tolerance Band.

Compute 1
Non-Dimensianol
Constraint Change
(Asked For)

I

Print
DUSQ Mod1 fi l d YES

Set DUSQ =
4

DP2TMY

I b NO

r
,

Set Reverse
lndi cator
Set TOMAX
L(13) = 0

I

+

Return

275

VARIC -Variable Initial Conditions

Purpose

VARIC computes the direction and magnitude to perturb the free initial con-
ditions to improve performance and also controls the maximum payload option.
This subroutine is called after every reverse integration and results in an update
of the DELX array.

Method

The method used in VARIC is discussed in detail in the analytical develop-
ment section.

Data not in COMMON and computed in MATRIX are transmitted to VARIC

by

CALL VARIC (SFISSD)

where

SFISSD = cl 3 ’ I$

Storage Used

284 cells

276

NO l

NO c

DELX =
i/2/Payload \/

NO

277

VARK

Check Far Violation
Of Free Initial
Condition Limits

Set To
Approprf ate l-l Limit When
Violation Occurs

I
Save Current
Value Of DELX
In DELXS

<~@=llP
a

NO

2l

Return

278

Program Flexibility. -One of the main features of STOP is its flexibility.
The program has been modularized on both the macro and micro levels. On the
macro level, for instance, the steepest-ascent block of the program is linked to
the equations of motion by only one subroutine, ANPRTL. Thus, the entire equa-
tions of motion block may be altered or even replaced without requiring any
changes in the steepest-ascent block. Every attempt has been made to assign
one task to each subroutine, and to make each subroutine as independent as pos-
sible from the others. Finally, the flow has been organized so that there is one
subroutine that is called once per data case, INITAL; another called once per
stage, INITCO; one called once per forward trajectory, EXEC ; etc.

On the micro level, the equations of motion and partial derivatives are
modularized. This feature allows the selection of any subset of the 40 available
equations for a given problem. Also, equations may be added or deleted easily.
A few examples of the program flexibility are given below.

Example 1: Additional printout variable example: Suppose it is desired to
print, Beta = -1 h’ h 1 , w ic is not currently available in the AK array. AK(39),
not in current use, is available for growth.

Step 1. In subroutine STPl add the FORTRAN statement
AK(39) = SQRT (ABS (AK(5)**2-1 a))

Step 2. In subroutine BLOCK put the words (J/J/BE) and (TAJJJJ)
in DESXUK (159) and DESXUK(lGO), respectively.

Step 3. Set NC(119) = 1 in the input data deck. This selects
AK(39) to be printed in the forward trajectory output.

No other changes are required.

Example 2 : Additional placard example : Suppose it is desired to constrain
the weight flow, which is not currently an available placard. X(K37) is an avail-
able state variable for placard additions.

Step 1. In subroutine FPROG, after the two FORTRAN statements:

37 CONTINUE

ITAB = ITAB + 2

.
add a call to subroutine PLAC. If the W limit is a function
of time, the call would be,

CALL PLAC(I1, ITAB, 1, T, O., O., AK(7))

Step 2. In subroutine ANPARP, after the statement:

37 CONTINUE

279

add the partials of F(K37) with respect to each state and control
v,ariabJe. Nc$e that the call to PLAC generates F(K37) =

(W - Wlimit) for the portion of the trajectory where the
fuel flow exceeds the limit value(s). Some typical partials are:

fi aF(K37)=2(+ -W
)H limit) 3 H

J& aF(K37) = 2 6 _ W
1V limit) 3 V

aw aa 2EE?k2& - --
09 - Wlimit) iJ 01 30

.
aF(K37)

arl
= 2 & - Wlimit) z

or in FORTRAN

TERM = 2 * (AK(7) - S(I,2))

PFX(K37,K2) = TERM * VAR(35)

PFX(K37,K4) = TERM * VAR(36)

PFU(K37,Il) = TERM * VAR(37) * VAR(41)

PFU(K37,13) = TERM * VAR(38)

Step 3. In subroutine BLOCK the heading for Wpenalty function, which
consists of the words (JJW/D@) and (TJPFJJ), is placed in
DESXUK(75) and DESXUK(76)) respectively.

Step 4. Set NC(157) = -1, 1, or 2 in the input data deck depending upon
the type of limit desired, i. e., minimum, maximum, or corridor
respectively.

Step 5. Add a placard table to the data deck for the fuel flow limit.

Example 3 : Equation replacement example : It is a relatively straightforward
procedure to replace the complete equation of motion block. This capability is
demonstrated in the example below.

Consider a cat standing on a free-wheeling disk at point A as shown in figure
22. The cat wishes to get to point B on the disk in minimum time. The cat is
constrained to the disk for the entire mission. The properties of the cat are

280

Cat At

Figure 22. CAT ON A DISC PROBLEM

281

m = 0.5 slug

F =lIb

and the properties of the disk are

r = loft
0

r. =7ft
1

I = 70 slug ft2

The pertinent equations of motion are:

E =U

8 = V/r DEG

fJ = V2/r + F/m Cos(Y-0)

3 = -W/r + F/m Sin(Y- 8)

+ =o

z = F/I r Sin(Y -0) DEG

& =-V/r. DEG-ti

i =l.

P’F = (r-r limit)
2

Now generalizing to the STOP formulation, the state variables are:

X(K.l) =r (fi)

X(K2) = e Pa

X(K3) = u (fps)

X(K4) = V (fps)

X W) = 4 (de@

X(K6) = 0 (deg/s ec)

X(K7) = 6 (de@

X(K8) = t (SW

X(K21) = PF (ft2/sec2)

The control variable is:

UP) =Y (de@

282

The initial conditions are:

X,(Kl) = 10

X,(K2) =0

X, (K3) = 0

X. (K4) = 0

X, (K5) = 0

x, (K6) = 0

X, (K7) = 0

X, (K21) = 0

The problem statement is:

R = X(K7) = 0 stopping quantity

4 = t (minimize) performance

+I= r = 10

+2= RPF=O

The partials required are:

oE/au =l.

0 tJ/ar = -V/r2 DEG

30 /3V = l/r DEG

3 IIJ/ar = -V2/r2

C/a V = 2V/r

a he = F/m Sin (Y- 8) RAD

aThe = - F/m Sin (Y- 8) RAD

at/Or = +W/r2

0+/a U = -V/r

;,+T/aV = -U/r

a+/30 = - F/m Cos (Y-8) RAD

,ti/,Y = F/m Cos (Y-0) RAD

a& /a 0 = 1.

ad;/ar = + F/I Sin (Y-8) DEG

283

ad/a0 = - F/I r Cos (Y-8)

ad/u = + F/I r Cos (Y-0)

ai/ar = - ai)/ar

ai/aV = - ai/aV
ag/oo = -1.
aGF/ar = 2 (r - rlimit)

The subroutines requiring changes are FPROG, ANPRTL, and ANPARP. --....
In addition, a dummy subroutine AKSTP may be used and part of STPl may be
deleted to save computer time.

As a matter of interest, the solution to the above problem is shown in figure
23. The problem solution required approximately 4 hours of engineering time
and 10 minutes of computer time.

Program and data overlay. -Due to the overall size of STOP, it is not
possible to fit all the subroutines and data into the IBM 7094 available core as
is discussed in “Operating Information. ”

It was necessary to minimize core requirements while maintaining the pro-
gram’s capability, flexibility, and execution speed in that order of importance.
To this end, program overlay, data overlay, andequivalenceare used.

Program overlay: The STOP program can be broken into five major func-
tional groups of subroutines: data initialization, forward integration, backward
integration, convergence control, and plotting control. Each of these groups
could operate separately if a main program could control their execution and
inte rlinking data.

Using the IBSYS overlay feature, the program was divided into the above
mentioned groups or links and three additional links. Two of these additional
links were added to minimize the storage required for the forward integration
subroutines, and the last link controls the final output for a data case. These
nine links are described below.

LINK 0 - Controls the program flow or execution from link to link and remains
in core all the time.

LINK 1 - Forward integration link

LINK 2 - Numerical partial check link

LINK 3 - Nominal guidance link

LINK 4 - Convergence control link

Links 1, 2, & 3

comprise the

forward integration

284

B(o)

Figure 23. PATH OF CAT ON DISC

285

: LINK. 5 - Backward integration link

LINK 6 - Initialization link

LINK 7 - Final output link

LINK 8 - Plotting link

Under the IBSYS overlay feature, unless otherwise specified, all links will
be loaded onto the I/O unit assigned as SYSUTB. In an effort to speed up the load-
ing of links, the two most frequently used links (forward integration and conver-
gence control) are loaded on separate I/O units by themselves, and these I/O
units are rewound after each loading.

See “Operating Information” for a breakdown of links by subroutine. Figure
17 illustrates the program overlay and gives approximate core requirements for
each link.

Data overlay: Since all of the input data for large cases will not fit in core,
some of the data is written on scratch tapes and overlayed during execution.

Control table overlay: The input control variable table is normally stored
in the TIMEU array, dimensioned to hold 1000 data points. If the input table
exceeds 1000 points, that part of the table which won’t fit in TIMEU is written in
binary format on the I/O unit referenced as KTAN. After each forward integra-
tion step, the EXEC subroutine tests the current time against the highest time
currently stored in the TIMEU array to see if more data should be read from
KI’AN into TIMEU.

A similar procedure is used in subroutine UCALC, where the updated control
table is calculated. In this subroutine, the I/O unit referenced as KPAR is used
for temporary storage as the updated control table is built. Again, a maximum
of 1000 .words of the control table are stored in TIMEU, and the remainder
written on KTAN.

If the total number of data points in the updated control table exceeds 13,590,
the data case is aborted and a comment printed.

Nonstage and stage-dependent data overlay: Except for the control and re-
start tables, all other tables, both nonstage and stage dependent, are initially
read into the Z array, dimensioned 7000.

The nonstage dependent data is read first and written in binary format on the
I/O unit referenced as KDAT. The stage-dependent data is then read, one stage
at a time and written on KDAT. If the sum of the non&age-dependent and stage-
dependent data for any stage exeeds 7000 points, a message is printed and the
data case aborted.

286

During the forward integration, the Z array contains the non&age-dependent
and stage-dependent data for the current stage. At the beginning of each new stage,
the data for that stage is read from KDAT into Z, replacing or overlaying the
data for the preceding stage. After the last stage has been integrated, for each
valid forward trajectory, the end points of that trajectory are written on KDAT.
These end points at the end of a data case are read from KDAT and printed as the
trajectory summary.

At the start of each forward trajectory, trial or valid, KDAT is rewound.
The nonstage-dependent tables are read and the stage-dependent tables for the
current stage are read back into the Z array. Reading the non&age-dependent
tables into the Z array at the start of each iteration is necessary to allow other
links to use the Z array for storage while they are executing.

-Equivalence. - The equivalence feature is used liberally throughout the pro-
gram to make maximum use of available core in each link. Another purpose of
the equivalence is to allow use of parts of the NC array (or its equivalent) for
subscripting. The two major arrays to which other variables are equivalenced
are NC and Z .

Z array equivalencing: Figure 24a illustrates the manner in which the Z
array is used. The first column, represented by the shaded area, presents the
usage of the Z array during forward integration. Following the weighting table,
which is always in the Z array and never equivalenced, the nonstagedependent
data is stored starting at Z (201). Then the stage-dependent data for any one
stage is stored. Both the non&age-dependent data and the stage-dependent
data are destroyed by equivalence during the backward integration and then
reloaded into the Z array from KDAT in subroutine EXEC.

The Z array, from Z(201) through Z(2872), is used during the backward
integration (link 5) for temporary storage of the state variable values, deriva-
tives, integration errors, and other values needed by RKVS (Runge-Kutta var-
iable step) integration package.

The Z array from Z (2900) through Z(7000) and the TJWMEU array, (l-1000),
are used during the backward integration for storage of the partial derivatives
read from KPAR.

NC array equivalencing: The NC array is equivalenced in subroutines
throughout the program to make use of subscripted subscripts; i.e. use the NC
as a subscript. Figure 24b shows the manner of NC equivalencing. From the
figure it can be seen that the control variable indicators, NC (77) to NC (80)) are
equivalenced with the control variable indices 11, 12, 13, and 14. The state var-
iable and placard indicators, NC (121) through NC (160)) are equivalenced with
state and placard variable indices Kl through K40.

Trouble Shooting.- The purpose of this section is to provide a quick refer-
ence to aid in correcting typical problems encountered during the operation of

__-

287

r WEIGHTING TABLE

FB
ARRAY

XS
ARRAY

ERI
ARRAY

NERI
ARRAY

AMAl
ARRAY

OH151
ARRAY

XHIST
ARRAY

TPU
ARRAY

Figure 24a.

WC9

(534)

1870)

2204)

2538)

ZARRAY EQUIVALENCING

NC (1) .
.

NC ;7*,

NC (al)
. I I .
.

NC (1201

NC(l21)

NC(I2P)
.
.

.

.
.

NC; 60)

Figure 24b.
NC ARRAY EQUIVALENCING

KI

K2
.
.
.

.

.
l

K40

288

STOP. The most common problems, as with any large, flexible computer pro-
gram, are input errors. Another common problem is slow convergence and/or
excessive run time. Also, STOP may abort during a run, either because of a
problem it has detected or an error detected by the computing system.

It is always possible to restart STOP from the last valid iteration, whether
termination was a successful exit, a STOP abort, a system-abort, or a system
failure. Problems that execute more than one hour have a reasonable probability
of experiencing a system failure, which makes restart capability a necessary
requirement.

An input checklist and a trouble-shooting guide are provided below to assist
the user in obtaining satisfactory results from STOP.

Input checklist: The following checklist will aid in data deck preparation.
It includes the most common input errors encountered by users not familiar with
STOP. The checklist assumes that all keypunch errors have been removed and
that all data are placed correctly in their fields. In particular, check all integer
data to make sure it is right adjusted. The checklist is in the same order as the
input instruction guide.

Card set 1 (title card)

No problem

Card set 2 (controls)

Check MSTAGE. Remember that if a tilt maneuver is used, it counts as a stage.

Card set 3 (NC controls)

1. Check last card for blank field in columns 61-65. If last card is full, add a
blank card.

2. Check NC (4) . It should equal the number of enroute and terminal constraints
plus payoff and stopping variables.

3. Check NC (16) and NC (17). NC (16) must be 1 if the input control table was
punched by STOP. NC (17) must be 1 if the restart table is included.

4. Check NC (18) through NC (32). Only state variables selected for integra-
tion may be used as the stopping condition. Three basic requirements must
be examined to be sure that the stopping condition is attainable. First,
XSTP must be reached before the stopping time (TSTP) of the final stage.
Second, the stopping condition must be compatible with the constraints
selected (e.g. do not select altitude if the constraint on flight path angle is
zero degrees). Finally, select a stopping condition that will always be
monotonic in the last stage of flight and has a large terminal time derivative.
Note that the stopping condition is only examined during the final stage.

289

Performance and constraint functions must be state variables selected for
integration. Be sure that the sign of the performance variable index is plus
for maximizing and minus for minimizing.

Constraint-dependent parameters and constraint tables must be input in the
same order as they are in NC (20) to NC (32).

5. Check NC (121) -NC (160). Do not select state variables that are not needed,
such as path range or the losses. Do not use latitude and heading for non-
rotating-earth problems. Instead, formulate the problem in terms of equa-
torial flight. Also, do not select placards unless they are -or are in danger
of -being violated. Note that run time is almost directly proportional to
the number of selected state variables.

Card set 4 (initial condition data)

1. Check DUSQ if a restart table is not included. Values on the order of 100
are reasonable for airplane-type problems. For other vehicles, use an
initial value of about one tenth of the controllable trajectory time.

2. Check FINNER and BINNER. Values of 18 are typical. The run time may
be decreased by using 15’s, but convergence may be slower. For rocket
problems, values of 18 seem to work well, while for SST problems 15’s are
better. In general, difficult problems require settings that will result in at
least 500 integration steps.

3. Check X0 ()‘s to verify they are in the same order as the state variables
selected. Also, if more than seven state variables are selected, there must
be two or three cards of X0 ()‘s 0 The X0’s are a packed array of initial
state variable values. Note, for example, that X0 (7) does not necessarily
equal X (K 7) at the starting time.

Card set 5 (stage dependent parameters)

1.

2.

3 ‘

4.

Check to be sure eight cards are present if MSTAGE is less than eight,
otherwise 16 cards.

Check TSTP. The last stage requires a stopping time that will not be
reached under usual conditions. It should be set to allow an abort if the
stopping condition is not met. For VT0 systems the first stage contains the
tilt maneuver; TSTP for this stage represents the termination of the tilt
maneuver.

Check DTMIN. Too large a value will slow convergence. SST problems
behave badly if DTMIN is much larger than 0.1 second.

Check KT and KM. The first run should be a nominal only so that weight,
thrust, and other data may be checked. KM and KT may be used to adjust
errors in total propellant consumption and total impulse.

290

Card set 6 (constraint dependent parameters)

1. Check to be sure that one card is present for each enroute and terminal con-
straint and that they are in the same order as the constraints selected by
the NC’s.

2. Check the DPSI values. Very small values may result in slow convergence.
Values of about 0.1 on angles and 100 on altitude are reasonable.

Card set 7 (free initial conditions)

1. Check to be sure there are NC (5) cards.

2. If a tilt maneuver is selected, by, will be applied at end of tilt (start of
stage 2). A large maximum value is required.

3. To restart with variable initial conditions:

a. If weight is a variable initial condition, all positive-stage weights must
be updated to be compatible with the weights from the valid step from
which restart is desired. (card set 5, card subset 1). Zero and
negative values are not updated.

b. If a variable initial condition is selected on gamma and a tilt maneuver
is selected, table 2 must be updated with the value of gamma at the
beginning of stage 2 from the valid step from which restart is desired.

C. All other state variables chosen as variable initial conditions are up-
dated in card set 4, card 3. These values are also updated from the
valid step from which restart is desired.

Card set 8 {nominal guidance data)

1. Check to be sure NC (13) cards are present.

2. Check the sign of NSW (see instructions).

Card set 9 (tables)

1. Check table 0 if constructed by the user. This table will not be extrapolated
and, therefore, a sufficiently large time must be included as the last point.
Multiple time points may be used at staging time. This table must always be
present regardless of whether or not a nominal guidance is used.

2. Check the numbers of the placard tables (see notes at the end of the input
instructions).

3. All tables after table 0 may be extrapolated (linearly) in any direction.

291

SYMPTOM DIAGNOSIS REMEDY

1. System abort during a) Table card count in error a)
data input b) Deck or data setup error b)

c) Error in count of state c)
variables, terminal con-
straints, free initial con-
ditions, or guidance modes

d) STG or END card missing d)
or misplaced

e) NC input error e)

f) Restart error f)

Check card count in each table
See appropriate sections of input instructions
Make sure card set 4 contains at least four
cards if more than seven state variables were
selected (NC(121) - NC(160)). Make sure card
set 5 contains 16 cards if MSTAGE is greater
than seven. Make sure card set 6 contains
one card for each selected constraint (termi-
nal and enroute) (NC(4) - 2 cards required).
Card set 7 must contain NC(5) cards and
card set 8 must have NC(13) cards.
Check data deck

Check card set 3. Make sure last card has
a blank field in columns 61-65.
Restart table required if NC(17) = 1.
See output description.

2. Trajectory fails a) Stopping conditions not a) Correct table 0 or use closed-loop options.
to meet stopping attainable on last stage See suggestions for NC(18) in checklist.
condition or b) TSTP of last stage too b) Increase TSTP of last stage. Trajectory
prints note, small will always abort if this time is reached.
MAXIMUM
STOPPING TIME
EXCEEDED

3. I STOP abort with Input data tables exceed Reduce the amount of data or divide the
note, MAXIMUM allowable storage for a stage-dependent tables into more stages
ALLOWABLE stage (tables 1 through 30
TABLE STORAGE plus tables 31 through 34
EXCEEDED for a stage)

SYMPTOM

4. STOP abort with
note, NUMBER
OF POINTS
STORED IN BACK-
WARD INTEGRA-
TION EXCEEDS
MAXIMUM
ALLOWABLE

5. One or more
constraints not
met after 20

_ iterations

6. Excessive run
time (Note: Run
time is very prob-
lem dependent.
Simple problems
may run several
iterations per
minute, while
very difficult
problems may
require 1 hour
per iteration)

4

b)

a)
b)
Cl

d)

e)

f)

a)

b)

DIAGNOSIS

Backward integration too
tight
Storage too frequent

Constraints not attainable

a)

b)

a)
Solution nominal dependent b)
Partial derivatives in
error
Input weighting matrix
problem
Placard too nonlinear

Placard corners or dis-
continuities

Unnecessary state vari-
ables being integrated

Unnecessary constraints
selected,

4

4

e)

Change problem statement
Start from different nominal
Check partial derivatives (NC(12) option)

Increase weighting of applicable control
variable

f)

Nonlinearities are often caused by spikes
in the placard table. Try redesigning
placard so that the placard has a more
severe violation in the spike region.
Avoid corners or discontinuities in
placard tables.

a) During the iterative procedure, integrate
only the minimum number of equations
(e. g. if the problem can be phrased in
terms of flight around the equator, and
bank control is not required, latitude and
heading equations are not required). Run
time is nearly proportional to the number
of state variables.

W Constrain only the state variables required.

REMEDY

Lower BINNER by 3

Increase ISTOR2 by 1 (Recommended
solution)

7.

SYMPTOM

Excessive end-
point oscillations

8. Slow convergence

DIAGNOSIS

Variable initial conditions
allow too large a variation
per iteration

a) Weighting matrix problems a)

9. STOP abort with
note, CONVER-
GENCE FAILED

b) Integration too loose

c) Error in partials
d) Poor stopping condition

e) Constraint tolerances
too tight

f) EPSLN too large

W

c)
d)

e)

f)

All constraints have moved
less than their respective
final tolerance bands and the
change in performance is
less than or equal to lo6
times the value of perform-
ance on the previous valid
step.

IUC ME DY

Decrease initial increment per iteration
(card set 7) for the free initial conditions.

Try decreasing the input weighting matrix
elements on all control variables during
the initial part of the trajectory. Also,
decrease weighting cn control variables
that tend to be nonlinear (such as sweep)
Decrease DTMIN and increase BINNER
and FINNER. The integration should
never reach minimum step size.
Check partials (NC(12) option)
Select a stopping variable that is mono-
tonic and has a large time derivative
at XSTP. Problems that stop on time
usually behave better.
Increase DPSI’s (card set 6)

EPSLN (card set 4) must be small enough
so that end-point motion within the EPSLN
band is small compared with the end-point
motion predicted by the steepest ascent
logic.

See remedy for symptom 8.

SYMPTOM

10. STOP termination
with note, THE
LAST TRAJE C-
TORY APPEARS
TO BE AN
EXTREMAL

11. STOP abort with
note, GRADIENT
OF PHI TOO
NEGATIVE TO
CONTINUE

12. STOP abort with
note, OVERFLOW
OCCURRED IN
MATRIX INVER-
SION - ABORT

13. STOP abort with
note, SINGULAR
MATRIX - ABORT

DIAGNOSIS REMEDY

All constraints are inside their Congratulations
respective final tolerance bands,
the change in performance is less
than or equal to 10m6 times the
value of performance on the
previous valid step, and the
denominator of the first
Lagrange multiplier is less
than or equal to one ten
thousandth of Ic + .

The denominator of the first
Lagrange multiplier plus 10
percent of 144 is negative.

za;;p in inversion of I ti ti
.

Singular I# + matrix.

See remedy for symptom 8.

Check problem statement and table 1.

Check problem statement and table 1.

SYMPTOM DIAGNOSIS REMEDY

14. STOP abort with An excessive number of rejected See remedy for symptom 8.
note, NUMBER OF valid steps in combination with an
TRIES PLUS RE- excessive number of trials have
JECTED VAUD been run in an attempt to run an
STEPS FOR CUR- accepted valid step.
RENT ITERATION
EXCEEDS 10 -
ABORT

Plotting Information

The program will plot any state, auxiliary printout, or control variable
versus time or any other state, auxiliary printout, or control variable. Each
curve represents a particular iteration. Plotting is performed on either the
Orthomat drafting machine or the Stromberg-Carlson (SC) 4020 microfilm record-
er. Orthomat plots can be made on one of two pregridded forms: ll- by l7-inch
mm vellum, or 8-l/2- by ll-inch mm vellum. SC 4020 plots may be made on
9- by g-inch vellum (hard copy) or 16-mm microfilm.

Limitations. - The following are plotting limitations:

1) 7 plots maximum;

2) 6 curves per plot maximum

3) Multiple-data cases cannot be plotted;

4) X and Y axes annotation occurs every 2 cm. ;

5) Plot titling consists of the following

LINE 1 - centered, 0.2 inch below the X axis
DEP. VAR. NAME VS INDEP. VAR. NAME

IJNE 2 -centered, 0.2 inch below LINE 1
The first 72 characters taken from the title card on the data deck.

Input controls required for plotting. -The following values should be exam-
ined in the input when plotting is desired:

NC(l) ORTHOMAT

= 0, output will be on ll- by 17-inch pregridded mm vellum

= 1, output will be on S-1/2- by ll-inch pregridded mm vellum

SC 4020

= 0, output will be 9- by g-inch vellum (hard copy)

= 1, output will be 16 mm microfilm

= 2, output will be 9- by g-inch vellum (hard copy)

= 3, output will be both hard copy and microfilm

NC (3) ORTHOMAT ---__

= 0, multiple curves will be defined with plot symbols (see multiple
curve identification)

= 1, multiple curves will be drawn with new colors (see multiple
curve identification).

297

SC 4020

Not Used

NC(ll) ORTHOMAT & SC 4020

= 0, No plots wanted

= +N, SC 4020 plots wanted

= -N, Orthomat plots wanted

Note: The nominal, or first trajectory, the last trajectory, and every
INI valid trajectories will be plotted, until NITC is reached or

. six trajectories plotted. Example: NITC = 10, NC(ll) = -2.
The Orthomat will plot the nominal and iterations 2, 4, 6, 8,
and 10.

Each plot to be made is defined by a pair of integers that are input in the NC
array, starting with NC (6 1).

Figure 11 gives the plot index for all variables.

NC(61) Dependent variable for plot 1

NC(62) Independent variable for plot 1

NC(63) Dependent variable for plot 2

NC(64) Independent variable for plot 2
.

NCi73) Dependent variable for plot 7

NC(74) Independent variable for plot 7

Note: A comment card must be included with the control cards stating that unit
Cl will contain plot output.

Multiple -curve identification. -When plotting on the Orthomat, multiple
curves can be identified by either plot symbols or colored ink. (Note: Colors
other than black or red do not reproduce very well).

SC 4020 multiple curves are always identified with plot symbols:

Curve No. Plot Symbol Ink Color

1 None Black
2 0 Blue
3 Green
4 0” Purple
5 h Red
6 El Black

298

REFERENCES

1. NASA Request for Proposal L-5347 -A Research Study for Supersonic
Transport Trajectory Optimization. NASA, Langley Research Center.

2. Bryson, A. E . ; and Denham, W. F. : A Steepest-Ascent Method for Solving
Optimum Programming Problems. J. Appl. Mech., June 1962.

3. Hague, D. S. : Three-Degree-of-Freedom Problem, Optimization Formula-
tion. Wright Field FDL-TDR-64-1 Part I, Volume 3, October 1964.

4. Leitmann, G. : Optimization Techniques. Academic Press, New York,
N.Y., 1962.

5. Bryson, A. E. ; Denham, W. F. ; and Dreyfus, S. E. : Optimal Programming,
Problem with Inequality Constraints I: Necessary Conditions for Extremal
Solutions. AIAA Journal, November 1963.

6. Denham, W. F.; and Bryson, A. E. : Optimal Programming Problems
with Inequality Constraints II: Solution by Steepest-Ascent. AIAA Journal,
January 1964.

7. Phase II-A Comprehensive Report - Sonic Boom and Noise. Boeing Report
D6-8686-7, November 1964.

8. Anderson, S. L.: Runge-Kutta Methods of Numerical Integration for Flight
Simulation Programs. Boeing Report D2-139527-1, September 1966.

9. Finke, G. F.: Standard Atmospheric Properties (1962). Boeing Applied
Mathematics Report AS 1772.

299

APPENDIX A

CONTROL VARIABLE CHOICE FOR POINT MASS
EQUATIONS OF MOTION

The point mass equations of motion used for optimization of trajectories using
angle of attack as a control variable are unstable for some types of vehicles
with low thrust/weight, high lift/weight airbreathing engines. For rocket-
type vehicles or high thrust/weight airbreathing vehicles, stability problems
are generally not encountered. Problems arise when flying open loop with an
.angle -of -attack history defined. Analysis of the linearized point mass equations
of motion with angle of attack as the control variable is given herein showing
that a lightly damped oscillatory motion results. The use of pitch angle as the
control variable is anlyzed; it is shown that the equations of motion are stable
and that no oscillation occurs.

The linearized point mass equations of motion, assuming constant weight and
flat earth, are:

.

v-
niV, -

(L,- Lo+WV Lh
Y- -

> - mv 5 = c T;+VLQ Q >
mV

0 0 0

v -*I
‘;-$y =o

0

where

y = perturbed flight path angle
V = perturbed velocity l

h = perturbed altitude
v = v/v0
h = h/h,
Ty= V, aT/8v
Dv= VoaD/av

T’h = h,aT/bh
Dh = h,bD/dh
Da = eD/aol
Lg = h,aL/ah
L,=V aL/aV
Lor = &/ao!

All of the state variables listed are perturbation values and (10 are
evaluated at the initial condition. At the initial time the conditions are assumed
to be

300

. T Do To= O-
m - gY,

Toao+Lo w fo= mV --=
m v.

0
0

. V
x0 = $ y.

0

(A21

Taking the Laplace transform of equations Al and placing in matrix form gives:

s -
Tv - Dv

A - Ti-i - Di

m v. vO
mV

0

Lv + w - Lo
S

Li; --
mV mV

0 0

0
vO --
hO

S

I

W)

The characteristic equation of the system of equations is obtained by equating the
determinant of the three by three matrix to zero giving:

The characteristic equation evaluated for a typical SST in a cruise condition,
.

assuming y
0

= 0, v. = 0, ho = 50,000 feet, and V. = 3322 fps

To = Do = 96,300 lb

W = 346,000 lb

Lo = 344,000 lb

CY = 0.0 144 radians
0

L
a

= 2.39 x lo7 lb/rad

301

al-J Lo aP -= --
ah P a-h

= - 18.98 lb/ft

aIJ-2 Lo - = 207 lb - sec/ft
av- v,

BD -= Do 6P --=-
ah P ah

5.32 lb/ft

6D 2Do -=
av

- = 57.9 lb - sec/ft
VO

aT -=-
Bh

3.18 lb/ft

E = 5 3 lb - sec/ft
au -

gives

S3 + 4.89 x 1O-3 S2 + 1.96 x 1O-3 s + 4.79 x 1o-6 = 0

which has the roots

s = - 2.44 x 10-3

s= - 1.22 x 10’3 f j 4.43 x 10B2

These indicate that all roots are stable, but the damping ratio of the oscillatory
pair, 0.028, indicates that they represent near neutral stability. The period is
141.6 seconds. Figure Al shows the results of a digital computer run for similar
conditions using the complete nonlinear point mass equation angle-of-attack
constant and perturbing the initial value of the flight path angle. The motion is
slightly divergent with a period of about 148 seconds. The nonlinearity of the
point mass simulation could account for the slight differences as compared to
the linear approximation.

The dominant term in the natural frequency for the oscillating mode is sL/6h,
or more specifically, the 6p/6 h (atmospheric density gradient). This term is
large for winged vehicles. The important terms in damping are: (1) BT/av,
strictly an airbreather term which is destabilizing; and (2) 6D/av, a stabilizing
term - but the desire is to have vehicles with low drag, which makes this term
relatively small. For accelerating vehicles, a high thrust/weight helps keep
damping large, as can be seen by writing

/ 1.1

A low thrust/weight reduces the damping of the system.

302

- I II

LENVELOPE FOR a = CONSTANT

I
3000 4mo 5000 6GGo 7ooo 9000

ENVELOPE FOR a = CONSTANT
-1 .o - * .

-1.5-

72

66

8 = CONSTANT
----- a = CONSTANT

‘I = THROTTLING = CONSTANT
yo= 10

ENVELOPE FOR Q = CONSTANT

I I I I I I I I I

1000 2000 3000 4000 5000 6000 7000 8000 9ooo
TIME-SECONDS

Figure Al SUPERSONIC CRUISEWITH 8 AND a CONTROL

Introducing 8 as the control variable, equations A3 become (upon letting
a,=& y)

T; - D;

‘- mV
g + D@

_ Th - DE

0
To m V. m v.

-L;+W-L
O s-t

To + Lo LI; --
mV mV mV

0 0 0

0
vO --

ho

S

Dor In vo
To + L

o! :
m Vo

8 (A5)

0

which has the characteristic equation
r -I l-

To + Lo! T; - D;
+ mV

0 m Vo

Vo Li; ---+
LY+W-Lo g

ho m Vo m Vo (

D -+-
vo m vo

v, I-i; L; + W - Lo
+ +--- ho m v, In vo)I =o (W

When evaluated for the same flight condition as for the cy controller, it is

s3 + 0.45 s2 + 4.0 x 10-3 s + 4.79 x 10-6 = 0 (A7)

where the roots are approximately

s = 1.2 x 10-3

s= - 0.45

s=- 7.65 x 1O-3

Thus each root is real and negative. Figure Al shows the effect of the 13 type
control (i.e. , 8 held constant and the flight path angle perturbed). The motion
is overdamped and no oscillation occurs. The damping due to the flight path
angle (To + La /m Vo) dominates the dynamics and eliminates the unrealistic
oscillation from the cruise flight path.

The use of the 8 controller essentially introduces a fourth degree of freedom
with the assumptions of neutral stability, no short-period dynamics, and a
position feedback autopilot.

304

APPENDIX B

PROGRAM EQUATIONS, VARIABLES, AND CON-
STANTS DEFINED

The purpose of this appendix is to define the names placed in COMMON which
describe basic and frequently used equations, variables, and constants.

Equations of Motion

The equations of motion defining the state variables, auxiliary state variables,
and placards are defined as F(). The argument of the functions identify the
state variables as given in figure 1.

F(K1) = dW/dt = -WDOT

F(K2) = dH/dt = V sin YR

F(K3) = dYR/dt = [(T
1”

Sin Cv + L) COS Cp Go/W - G co6 YR

+ O2 R cos fi (cos @ cos YR + sinp sin YR sin (I,)] /VR

+ ‘R cos YR/R + 2 w cos /k? cos eR
)

DEG

F(K4) = d VR/dt = (T cos Cy - D) Go/W - G sin YR

+ f&3 R cos @ (cos &? sin YR - sin /3 cos YR sin @R)

F(K5) = d fi/dt = VR cos YR sin J/JR DEG/R

F(K6) = d $y+/dt = - [(T sin Q + L) sin Cp G,/(W VR cos YR)

+ vR cos y R sin ,8 cos tiR/(R cos 6) + 2 W (sin p

- sin YR cos B sin +R/cos YR) + (I! 2 R sin B cos ti cos $R/

lvR COS YR) DEG 1
F(K7) = dX/dt = VR cos YR cos J/JR DEG/(R cos 8)

F(K8) = dTD/dt = 1

F(K9) = d RNG/dt = VR cos YR Ro/(6076.103R)

F(KlO)= d AHI/dt = Q VR
.

F(Kll)= dA V/dt = TG,/W + ti2 R cos @ (cos @ sin YR - sin @ cos Y, sin J/JR)

F(K12)= d GL/dt = G sin YR

F(K13)= d DL/dt = DG,/W

F(K14)= d T VL/dt = T(l - cos 01) Go/W

305 I

F(K15)

F(K16)

F(K17)

F(K18)

WW

F(K20)

= dER/dt = dH/dt + VR/dt/Go

F(K21) =

F(K22) =

F(K23) =

F(K24) =

F(K25) =

F(K26) =

F(K27) =

F(K28) =

F(K29) =

F(K30) =

F(K31) =

F(K32) =

F(K33) =

F(K34) =

F(K35) =

F(K36) =

F(K37)

1
Not defined; available for growth

c) 2
d 8 */dt = 8 - elim(t)

dcp*/dt = cq - ‘Plim(t)j2

drl*/dt ‘((7.1 - 711imtH, M,)2

dh*/dt = (A - hlim(H, M))’

da*/dt = (a! - olim(H, M))’

Not defined, available for growth

dHD*/dt = (dH/dt - dH/dtlim (H))’

dQt*/dt = (Q - Qlim (t))2

dQM*/dt = (Q - Qlim (NI))2

dQar*/dt = (Qa, - Q”lim(M))2

dTEMP */dt = (TEMP - TEMPlim(t))2

dN*/dt = (N - Nlim (H, M))2

dRPA*/dt = (RPA - RPAprn W) 2

dH*/dt = (H - ‘Hlim (M))

dAP */dt = (AP

c

- Aplirn (h,@)2

dM*/dt = M - M
lim(H$2

Not defined; available for growth

F(K38) = dY */dt =(Y - Y lim(H, M)j2

F(K39)

1

Not defined; available for growth

F(K40)

Partial Derivatives

The equations defining the partial derivatives of the equations of motion with
respect to the state variables are given as PFX(A ,B) where the first argument,
A, identifies the equation of motion and the second, B, identifies the derivative
state variables. The partial derivative with respect to the control variables are

306

given as PFU(A, B), where again the first argument identifies the equation of
motion and the second identifies the derivative control variable.

PFX(K1, K2) = -avir/a.H

PWK1, K3) = - SW/~ CY . a&a yR

PFX(K1, K4) = - a’W/BVR

PFU(K1, 11) = -aw/m . mhe

PFU(K1, 13) = - aW/ZMj

PFX(K2, K3) = VR cos y R. R&D

PFX(K2, K4) = sinYR

PFX(K3, Kl) = - (T sin CY + L) COSQ Go DEG/(W2VR)

PFX(K3, K2) =
{[

(BT/aH sin CL! + aL/6H) cos Q Go/W

- ~G/BH cos yR + w2 cos /3(cos p CO6 yR

+ sin @ sin yR sin 6,) 1 /VR - VR cos yR/R
2 > DEG

PFX(K3, K3) = [(T cos Q + (aT/d~! . sine! + BL/~cY) DEG). Bo!/ByR.

cos Q Go /W + G sin yR + u2 R cos p (-cos p sin yR

+ sin @ cos yR sin GR) /V, - VR sin yR/R

PFX(K3, K4) =
i [

3
- (T sin 01 + L) cos cp Go/W - G cos yR

+ cc? R cos fi (cos /3 cos yR + sin p sin yR sin OR)] /Vi

+ (8T/a VR sin CY + a L/a VR) cos cp Go/ (W VR)

+ cos yR/R
1

DEG

PFX(K3, K5) = k? R [cos B (-sin @ cos yR -t cos /3 sin yR sin +,)

- sin /3 (cos 4 cos yR i- sin @ sin yR sin GR) /V,

-2 w sin j9 cos GR

PFX(K3, K6) = CL? R cos fl sin @ sin y R ‘OS $R&

-2 W cos /3 sin #R

PFU(K3, 11) = (T cosof + (~T/~cY sin (Y + a L/ a o!) DEG) cos cp . 0 cx/, cp.

Go/W vR)

PFU(K3, 12) = - (T sin OL + L) sin 56 Go/(W VR)

PFU(K3,13) = aT/8 r) sin cx cos Q Go . DEG/(W VR)

PFU(K3, 14) = i3L/a A. cos Q Go DEG/(W VR)

307

PFX(K4, Kl) = - (T cos a - D) Go/ W2

PFX(K4, K2) = (aT/bH cos Q - lbD/aH) Go/W - aG/b H . sin y
R

+ O2 cos #3 (cos fi sin YR - sin fl cos YR sin Q,)

PFX(K4, K3) = (-T sin Q! RAD + 8T/60! cos cy - 6D/8q 8(w/ay R. Go/W

+
[

-G cos yR + L? R cos /5 (cos B cos yR

+ sin j5 sin y
R sin $,$I l RAD

PFX(K4, K4) = (d!T/6VR cos Q - aD/aVR) Go/W

PFX(K4, K5) = 2 R [
dos @ (-sin fl sin yR - cos j3 cos yR sin 0,)

- sin fl (cos /3 sin Y
R

- sin fl cos y R sin $R) RAD

PFX(K4, K6) = -u2 R cos 6 sin fl cos YR cos t/~, . RAD

PFU(K4, 11) = (aTha! cos Cy - BD/8 o! - T sinCxRAD)B(w/a 8.Go/W

PFU(K4, 13) = eT/t9Q cos CY Go/W

PFU(K4, 14) = -aD/aA. Go/W

PFX(K5, K2) = -VR cos YR sin QR . DEG/R2

PFX(K5, K3) = -VR sin YR sin tiR/R

PFX(K5, K4) = cos YR sin GR/R

PFX(K5, K6) = VR cos YR cos GR/R

PFX(K6, Kl) = (T sin 01 + L) sin 56 Go DEG/(W2 VR cos YR)

PFX(K6, K2) =
C

- (8Th H sin cf + a L/BH) sin rp Go/ (W VR cos yR)

+v
2R

cos yR cos GR sin p/(R2cos 8,

-w sin 4 cos fl cos GR/ (VR cos yR)]. DEG

PFX(K6, K3) = [- (aT/6a . sin 01 + 8 L/act) DEG-
1

T cos o! .

8 de YR - (T sin 01 + L) sin yR/cos yR
)

1
sin tp Go/

(wVR
COS y

3
) + (2 sin eR - w R sin B cos p R sin yR/VR) m

W cos @ / cos yR + VR sin /3 sin y R ~0s $R/(R cm 8)

PFX(K6, K4) =
((1

T sin a! + VR (-BT/aVR . sin cy - BL/BV~)] .

sin q Go/W + o 2 R sin /3 cos /3 cos $R
>

/(Vi cos yR)

- cos y R cos GR sin6 / (R cos 8)

EFX(K6, K5) = - VR cos yR cos eR/(R cos2fj) -
>

DEG

2 W (COS j3 + sin yR sin j3 .

sin +!J~/COS YR) - a2 R (cos2B - sin2 8) cos eR/(vR cos yR)

308

P FX(K6, K6)

PFU(K6, 11)

PFU(K6, 12)

PFU(K6, 13)

PFU(K6, 14)

PFX(K7, K2)

PFX(K7, K3)

PFX(K7, K4)

PFX(K7, KS)

PFX(K7, K6)

PFX(K9, K2)

PFX(K9, K3)

PFX(K9, K4)

PFX(K1O, K2)

PFX(K1O, K4)

PFX(K1l, Kl)

PFX(K1l, K2)

PFX(K11, K3)

PFX(Kl1, K4)

PFX(K11, K5)

PFX(K11, K6)

PFU(K1l, 11)

PFU(K1l, 13)

PFX(K12, K2)

PFX(K12, K3)

= VR cos yR sin h sin p/(R cos p) + 2 w sin y, l

cos. /? cos #JR/cos Y’ + u2 R sin pcos Bsin GR/

tvR CO6 YR)

=
[

- (T cos a RAD + 6T/aa sin or + aL/m) aa/a 8 .

sin CP Go/W VR COB %)] DEG

= - (T sin Q + L) co8 Cp G,/(W VR cos %)

=- bT/Bq sin a sin 4. R Go DEG/(W VR COS YR)

=- 6L/Bh sin Cp Go DEG/(W VR cos YR)

= - VR co6 YR CoS #R DEG/(R2 cos 8)

=- vR sin y R co6 GR DEG/(R co6 p)

= cos Y R cos #R DEG/(R cos 8)

= VR cos YR cos GR sin J3 /(R cos 2 8)

=- VR cos YR sin tjR/(R cos 6)

= - vR cos y, R,/(6076.103 R2)

= - VR Sin yR R,/(6076.103 R)

= cos YR Ro/(6076. 103 R)

= VR t9QhH

= 3Q

= - T Go/W2

= 6T/6H Go/W + u2 cos fi (cos fi sin YR

- Sin p cos YR sin $-$

= 8T/6a* s&r, Go/W + CL’ 2R co6 B (CO6 B COS YR

+ sin fl sin yR sin $,) RAD

= 8T/8VR Go/W

= k-2 R
C
cos @ (- sin 6 sin yR - cos f3 co8 yR sin h)

- sin B (cos fi sin & - sin ficos yR sin-+&] RAD

= - a2 R cos fl sin/3 cos YR cos (IrR RAD

= aT/aa* Ba/B&G,/W

= 8T/t9?? Go/W

= 8G/8 H sin YR

= G cos YR RAD a

309

PFX(K13, Kl) = - D Go/W2

PFX(K13, K2) = aD/aH Go/W

PFX(K13, K3) = bD/Ba @a/byR Go/W

PFX(K13, K4) = aD/6VR Go/W

PFU(K13, 11) = sD/iYQI iYa!/B8 Go/W

PFU(K13, 14) = 8D/8h Go/W

PFX(K14, Kl) = - T (1 - cos a) Go/W2

PFX(K14, K2) = BT/6H (1 - cos a) Go/W

PFX(K14, K3) = (BT/Bcr (1 - cos a) + T sin a. RAD) 8~ /s % Go/W

PFX(K14, K4) = BT/BVR (1 - cos a) Go/W

PFU(K14, 11) = @T/act (1 - cos a) + T sin Cy RAD) a cy/a 8 Go/W

PFU(K14, 13) = aT/ a t) (1 - cos a) Go/W

PFX(K15, Kl) = VRGoPFX(K4, Kl)

PFX(K15, K2) = VRG,PFX(K4, K2)

PFX(K15, K3) = PFX(K2, K3) + (VRGoPFX(K4, K3)

PFX(K15, K4) = PFX(K2, K4) + VRG,PFX(K4, K4) + dVR/dt/Go

PFX(K15, K5) = VRGoPFX(K4, K5)

PFX(K15, K6) = VRG,PFX(K4, KG)

PFU(K15, 11) = VRG,PFU(K4, 11)

PFU(K15, 12) = VRGoPFU(K4, 12)

PFU(Kl5, 13) = vRGoPFu(K4, 13)

PFU(K15, 14) = VRG,PFU(K4, 14)

PFU(K21, 11) = 2(e -8 limb

PFU(K22, 12) = 2(~ -16 lim)

PFX(K23, K2) = - 2(77 - qlim)(ar)lim. /s H + sM/‘H .arlIim/‘M)

PFX(K23, K4) = - 2(71 - 7jlim.) (aqlim /aM .aM/aV)

PFU(K23, 13) = 2(rl - Vlim)

PFX(K24, K2) = - 2 (h - h & (aAlim /dH + 8h lim/BM 6M/BH)

PFX(K24, K4) = - 2 (A - ‘Iim)” Iim./aM .6M/aV

PFU(K24, 14) = VA - Ali,!
PFX(K25, K2) = - 2 (o! - ~ Iim.) (acw Iim/aH + eM/aH. 6cYIim /‘M)

PFX(K25, K3) = 2(a! - (Ylim) 8ddYR

310

PFX(K25, K4) = - 2 (” - align) a8!Iim/dM . aM/6V

PFU(K25, 11) = 2(a - slim) 80he
PFX(K27, K2) = - 2 F(K2) - HDIim aHDIim/6H [1
PFX(K27, K3) = 2 [FW - HDlim PFX(K2, K3)

PFX(K27, K4) = 2
[

F(K2) - HDIim
3

PFX(K2, K4)

PFX(K28, K2) = 2 (Q - Q lim) eQ/aH
PFX(K28, K4) = 2 (Q - Qlim.) aQ/aVR
P FX(K29, K2) = 2 (Q - Qlim) (aQ/aH - 8WaH * BQlim/@@
PFX(K29, K4) = 2 (Q - Q lim) (eQ/eVR - aMfaVR * 8QIim/6M)

P FX(K30, K2) = 2 (Q(u - Q~ lirn) (a 6 &/6H - 8M/8H . SQa!Iim/BM)

PFX(K30, K3) = 2 (&a! - Qclr lim) (Q . ‘~/‘YR

PFX(K30, K4) = 2 (Qcu - &a liml (a 6 Q/eVR - BM/BVR . aQa!Iim/BM)

PFU(K30, 11) = 2 t&a - QQ) Q8d8@ lim

PFX(K31, K2) = 2 (TEMP - TEMP Iim)[U + 0.2 M2) 8TEM/BH

+ 0.4M . TEM . t9M/BH]

PFX(K31, K4) = 2 (TEMP - TEMP Iim) (0.4 M . TEM . 6M/8VR)

PFX(K32, Kl) = - 2 (N - Nlim) N/W

PFX(K32, K2) = 2 (N - N Iim)[(BL/BH cos 01 + 6D/6H . sin Q)/W

- (BNlim/BH + tZ’M/BH * 8N lim/aW]

PFX(K32, K3) = 2 (N - Nlim)[t- L sin o! + D cos a) RAD

+ aL/BcY cos 0 + @D/&Y sin (y.(act/6yR)/W 1
PFX(K32, K4) = 2 (N - Nlim) [(8L/av~ co6 8! + aD/aVR sin a)/W

- aM/BVR l aNlim/aM]

PFU(K32, 11) = 2 (N -NIim) (-L sin@ +Dcosg)RAD

+ 8L/60! cos ‘a + ~D/BQ! sin ct 1 @a/W/w
PFU(K32, 14) = 2 (N - Nlim) (0L/aA cos 8! + tYD/BA sin a)/W

PFX(K33, Kl) = - 2 (RPA) - RPA lim) RPA/W

PFX(K33, K2) = B(RPA - RPA lim) G2/(W2 RPA) [(L + T sin CV) a

(8L/8H + 8T/aH l sin a) + (D - T cos a) (a~/aH

- aT/aH . cos Q) 1
311

PFX(K33, K3)

PFX(K33, K4)

PFU(K33, 11)

PFU(K33, 13)

PFU(K33, 14)

PFX(K34, K2)

PFX(K34, K4)

PFX(K35, K2)

PFX(K35, K3)

PFX(K35, K4)

PFX(K35, K5)

PFX(K35, K6)

PFX(K35, K7)

PFU(K35, 11)

PFU(K35, 14)

PFX(K36, K2)

PFX(K36, K4)

PFX(K38, K2)

PFX(K38, K3)

PFX(K38, K4)

=

+

=

+

=

+

=

=

+

ZZ

=

=

ZZ

=

=

=

z

=

=

=

=

=

=

=

2 (RPA T RPA lim) Go2/(W2 RPA)[(L + T sin a) (aL/t?a’

aT/‘a sin ct + T co6 CY . RAD) + (D - T cos a) (aD/a Cl!

aT/dcu cos (Y + T sin CY . RAD)] ~cY/~YR

2 (RPA - RPqim) Go2/(W2 RPA) [(L +-T sin 0) (aL/aVR

8 T/6VR * sin a) + (D - T CO6 a) (aD/aVR - aT/ VR .
7

, cos Q) J
2 (RPA - RPA lim) Go2/(W2 RPA)[(L + T sin CY) (aL/aa!

aT/aol sin Q + T cos CY . RAD) + (D - T cos a) (aD/aa

~T/~cY cos o! + T sin CY * RAD)]do/ae

2 (RPA - RPA Iim) Go2/(W2 RPA) [(L + T sin Cu)

gI’/ar) . sin CY - (D - T cos CY) aT/ar) . COS 8! 1
2 (RPA lim) Go2/(W2 RPA) [(L + T sin cw) . aL/aA

0’ - T cos CY) aD/aa]

2 (H - Hlim) (1 - aM/8H . ‘Hlim/6M)

2 (H - H Iim) (BM/‘VR . ‘H lim/‘M)

[F(K35)
H + 100 -

F(K35)H] /lo0

I F(K35)
cu’O.1 -

F(K35) (ecu/a yR)/O. 1

C

3

WWVR + 1o - F(K3;VR] /lo

C
WWB + o. 1 - F(K35)B] /O. 1

E F(K35) + + o. 1 - F(K35$ /O. 1 1
[
[

FtKWA + o, 1 - F(K35)X] /O . 1

WWa + o 1 - (a ah 8)/O. 1
.

F(K35&]

[
WWA + o, 1 - F(K35)*] /O . 1

2 (M - M lim) (8M/a H - aM Iim/8H)

2 (M - MIim) BM/aVR

-2 (YR - YRIim) (a %Iim’aH + aYRlim/ah aM/BH)

2 (‘R - YRlim)

-2 (YR -7 Rlim) 3 Y~li~/ aM aM/b VR

312

f
/

Auxiliary Printout Variables

The auxiliary printout variables, AK(), are functions that are desired for
printout in addition to the state and control variables. The argument identifies
the variable as given in figure 13. State variables and printout variables in
metric units are also defined as AK’s.

AW) = T = (T) Tref XKT - PAe/144) Cos 6c

AK@) = L = CLQSref

A K(3) = D = CDQSref

A J-W) =Q = 0.5PVR2

AW4 =M=V /V
R A

AK(G) = GCR = cos -’ sin p0 sin B + cos B,, cos B cos (x-a] 60 DEG [:

AK(T) = WDOT = Tref XKM/IS,,f + WDOTinert

AK(g) = VI=
[.

(R 0 cos /3 t- VR cos yR cos QR)2 + sin2 y
R

+ (VR cm YR cos QR)
2 l/2 1

AK(g) = yI = sin -’ [VR sin YR/VI] DEG

AK(lO) = 4 = sin -’ [VR cos YR sin tiR/(VI sin Y$] DEG

AK(ll) =“=e-YR

AK(12) = TEMP = TEM (1 + 0.2M2)

AK(13) =VA ’

AK(14) = P
From ATMOS Routine

AK(15) = p

AK(16) = TEM

AK(17) = W
M

= 4.448221615 XKl

AK(18) = HM = 0.3048 x (K2)

AK(19) = RPA =
[

(L + T sin S)2 + (D - T cos a)2 3
l/2

Go/W

AK(20) = N = (L cos Q + D sin Or)/W

AK(21) =QCt=Qa

AK(22) = G =c, /R2

313

AK(23) =R=H+Ro

AK(24) =AP =A PJ (pop)
l/2 ~ (M2 _ I)1/8,H3/4

AK(25) = CL From tables 33 and 34

AK(26) = CD From tables 23,33, and 34

AK(27) = L/D = L/D

AK(28) = SFC = 3600/ISref

AK(29) = VR M = 0.3048 X (K4)

AK(30) = T M = 4.448221615 AK(1)

AK(31) = L M = 4.448221615 AK(2)

AK(32) = DM = 4.448221615 AK(3)

AJw3) = QM = 47. 8802589 AK(4)

Aww = WDCT”= 0.45387006 AK(7)

AK(35) =VI M = 0.3048 AK(8)

AK(36) =&a M = 0.8356681645 AK(21)

AK(37) =A P M = 47.8802589 AK(24)

AK(38) = SFC
M = 367.322574 AK(28)

AK(40) I
Not defined; available for growth

VAR Array

Many variables, functions, and terms are placed in a COMMON array called
VAR() because of convenience or frequent usage. This array allows for the
addition of variables to the program without changing the COMMON block.

VAR(1) = Tref
i

VAR(2) =A
e) From Tables 31 and 32

VAR(3) =‘JSref 1

314

VAR(4) = 6Va/BH

VAR(5) = 6P/8H From numerical differentiation

VAR(6) = BP/6H of ATMOS Routine

VAR(7) = 6 TEM/6 H

VAR(8) = Initial trajectory time (TSTART)

VAR(9) = APJ From Table 30

VAR(lO)

VAR(ll) Not defined; available for growth

VAR(12) 1

VAR(13) = CD f = (H - Href) 6 CHf/B H Where Href and BCDf/bH are

from Table 23

VAR(14) = ac,hH

VAR(15) = ND/t3VR

VAR(16) = KDhat

VAR(17) = ec,hh

VAR(18) = 6CL/6H

VAR(19) = 6CL/dVR

VAR(20) = 8CL/aQ

VAR(21) = aC,/sh

VAR(22) = (cos fi cos yR + sin 6 sin yR sin I,!),)

VAR(23) = (COS B sin yR - sin 6 cos yR sin I,!J~)

VAR(24) = VcsR = C (ROW cos fi - VcsL cos $I)2 + (VcsL sin 4)
2 l/2 1

VAR(25) Not defined; available for growth

VAR(26) = Wf Last-stage final weight

VAR(27) = WI Last-stage initial weight

VAR(28) =A?’ tilt

315

VAR(29) = y0

VAR(30) = MLSP (Maximum last-stage propellant, input)

VAR(31) = BTref/6 H

VAR(32) = c?Tref/UR

VAR(33) = aTref/aO1

VAR(34) = a Tref /a r) (= 0 for current thrust options)

VAR(35) = aWDOT/a H

VAR(36) = a WDOT/d VR

VAR(37) = a WDOT/dQ

VAR(38) = aWDOT/ar)

VAR(39) =pG=8+(xsin$R+ycos$R)/R 0

VAR(40) = AG = x + (x cos QR - y sin IjR)/(Ro cosfi)

VAR(41) = PAPT = a&J 8 = 1

VAR(42) = PAPG = ea/ByR = -1

VAR(43) = PAPF = ea/egb = 0

Note: VAR(44) through VAR(50) not defined at present

CONST Array

A number of constants or functions of input constants are in the COMMON
array identified as CONST () . Again the array allows adding constants to
COMMON without modifying the common block.

CONST(1) = sin PO

CONST(2) = cos PO

CONST(3) = cos 6
Cl

CONST(4) = cos 6
c2

CONST (5) = cos 6
c3

316

CONST(6) = cos 6
c4

CONST(7) =cos bc5

CONST(8) = cos 6
c6

CONST(9) = cos 6
c7

CONST(lO) = cos bc8

CONST(11) = cos 6cg

CONST(12) = cos bclo

CONST(13) = cos 6c11

CONST(14) = cos bc12

CONST(15) = cos bc13

CONST(16) =cos bc14

CONST(17) = 6076.103

CONST(18) = ~ = 1.9

CONST(19) = PO = (Sea level pressure)

CONST(20) = RD= (Desired final radius)

CONST(21) = VcsI = [I’ /RD]1’2

CONST(22) = VA0 = (Sea level speed of sound)

CONST(23) = L = (Boom PF reference length)

Note: CONST(24) through CONST(30) not defined at present

Miscellaneous COMMON

Words in COMMON or in calling sequences that are not defined by an array
are listed below. These are primarily defined for convenience for the programmer.

PWPH = Sti/8 H = VAR(35)

PWPV = i&8 VR = VAR(36)

317

PWPA = 8ti/8a! = VAR(37)

PWPT = ati/ q = VAEt(38)

PTPH = 8T/8H = (q . XKT l BTre{8H - Ae8P/8H/144) COs hc

PTPV = 8T/8 VR = ?j l XKT . 8Tref/8VR l COs 6c

PTPA = 8~/8a! = 7 l XKT . 8Tre48” * COs 6-C

PTPT = 8T/8 ?j = XKT l Tref l ~0s 6,

PQSPH = 8Q/8H l Sref = PQPH l Sref

PQSPV = 8Q/8VR l Sref = PQPV l Sref

PLPH = 8 L/8H = 8CL/8 H l QS + Cz’ PQSPH

PLPV = 8L/dVR = 8CL/8VR l QS + CL’PQSPV

PLPA = 8L/aa = 8CL/8a l QS

PLPS = SL/aA = 8CL/aAy QS

PDPH = 8D/8H = 8CD/8H l QS + CD*PQSPH

PDPV = aD/8VR = 8CD/8VR l QS + CtiPQSPH

PDPA = 8D/8a = 6CD/862 l QS

PDPS = 8D/8h= aC,/81* QS

PMPH = (8 M/8 H) vR = - VR/VA2

PMPV = (8M/8VR)H = l/VA

PQPH = (8Q/8H) VR = 0.5 VR2 l 8P/8H

PQPV = (8&/8V), = P VR

RO = R. = Earth Radius = 20,902,992 ft

DEG = Degrees/Radian

RAD = l/DEG

CIl = cos 8

SIl = sin 8

CI2 = cos cg

318

CK6

SI2

CK3

SK3

CK5

SK5

SK6

CAKll

SAKll

XKl

III1

U12

UI3

UI4

AKll

GO

GR

= cos l/JR

=sin(b

= cos y
R

= siny
R

= cos j3

=&l/3

= sin Ic,
R

= cos Q

=sinQ

=w

ZZ 8

=cp

=r)

=A

=Q

= Go= Mass-To-Weight Conversion, 32.174

= 1 = Gravitional Constant, 14.081718 x 1015

OMEGA = o= Earth Rotation Rate, 0.72921152 x 10m4

PGPH = 8G/8H = -2 G/R

Internal Program Indicators

The following indicators (L array) are used for controlling internal operations
in the program.

L(1) Number of integration points stored during integration of last valid tra-
jectory (Set in subroutine LAMBDA). Used in the recovery of the control
variable history.

L(2) Subroutine C&iTR lookup memory index during forward integration and
subroutine DVAL2 lookup memory index during backward integration.

L(3) Maximum travel indicator

= 0 No constraints traveled more than maximum allowable.

= 1 One or more of the constraints traveled more than maximum allowable.

319

L(4)

L(5)

L(6)

L(7)

L(8)

J-J(9)

U10)

J411)

J-412)

U13)

Minimum DUSQ indicator

= 0 DUSQ > minimum

= 1 DUSQ = minimum

Subroutine DVAL2 lookup control

= 0 lookup if T (time) not equal to previous time.

= 1 lookup

Current iteration phase

= -1 valid step, nominal only (set when NARBY = 0)

= 0 trial

= 1 valid step

= 2 reverse integration

=lO endof run

Not used

Forward trajectory last integration step indicator

= 0 Intermediate integration step

= 1 Last integration step

Plot indicator

= 0 Don’t plot current iteration

= 1 Plot current iteration

Gamma tilt variable initial condition indicator

= 0 Gamma tilt not selected as variable initial condition

= 1 Gamma tilt selected as variable initial condition

Current number of records of partial derivatives remaining on KPAR
(partial) unit during reverse integration.

Half-step indicator

= 0 Not a half step

= 1 Half step - do not print

Iteration phase indicator

= 0 Next forward trajectory will be a valid step

= 1 Next forward trajectory will be a trial

Secondary use

320

Valid step rejected indicator

= 0 Valid step not rejected

= 1 Valid step rejected

Numerical partial check indicator

(incremented by 1 every stored integration step and reset to 0 whenever
numerical partials are computed)

= NC (12) Compute numerical partials

NC (12) Don’t compute numerical partials

321

- --

APPENDIX C

PROGRAM CONTROL LOGIC

The following tests made after different phases of an iteration are in no way
connected with the steepest-ascent logic. They are present only to ensure the
convergence to a solution in a reasonable length of time. All of the tests are
strictly empirical and all have at some time or another played an important part
in the convergence of particular cases. Experience is the only answer that can
be given to the question as to the need of some of the tests. The control logic
as presented in its current form is by no means able to solve all problems with
which it is confronted. The control logic has, however, successfully caused the
convergence of a great number of cases ranging from high-speed reentry vehicles
to supersonic transports, thus showing its flexibility and capability.

Accept or reject valid step tests. -Majority vote test: The constraints out-
side their respective tolerance bands on the previous valid step are examined
with respect to their travel on this valid step. The constraints with adverse
travel are assigned a value of -1; the constraints with favorable travel are assign-
ed a value of +l. The algebraic sum of these assigned values is then taken. If
the value of DUSQ is large enough to allow optimization, the performance function
is treated in a similar way and added to the sum. The direction of change in per-
formance is not meaningful when the program is not optimizing and therefore is
not included in the majority vote. The change in performance is just the result
of the constraint motion in this case. If the majority vote (algebraic sum) is
negative, the valid step just calculated will be rejected and another valid step
will later be attempted. If the majority vote is either zero or positive, the valid
step will normally be accepted and another iteration will be run if desired. It
should be noted that the majority vote is neither computed nor tested after the
first valid step (nominal or first trajectory of a restart) of a run.

Excessive adverse performance test: An allowable adverse change in per-
formance is computed as the larger of ten percent of the value of performance on
the previous valid step, and five percent of the greatest value of performance
attained on any previous trial or valid step (including the current valid step).
If the change in performance is in the wrong direction and it is greater than the
allowable adverse change, a step-size coefficient based on adverse performance
is computed and the valid step is rejected. The nominal or first trajectory of a
restart cannot be rejected because of an adverse performance change.

It should be noted that, in the above two tests, the valid step will not be
rejected if the decision to attempt the valid step was made because too many
trials were made or DUSQ is at its minimum value. A valid step is run after a
specified maximum number of trials or when DUSQ is set to the minimum allowable
value to obtain a new set of influence coefficients, and is run under the assump-
tion that many of the constraints and possibly performance will travel in an unfavor-
able direction.

322

Abort test after a valid step. -Exit on too many valid step rejections: Under
certain conditions the program control logic cannot make a successful valid step
and will continue to reject consecutive valid steps. If the number of trials taken
before the attempted valid step plus the number of rejected valid steps ever exceeds
10, the case being run is aborted with an appropriate message.

Abort tests following reverse integration. -Matrix inversion: If the inverse ._~~
of I## matrix cannot be accomplished because of overflow during matrix inver-
sion or the matrix is singular, an appropriate message is printed and the run is
aborted.

Check for optimum: If all of the constraints are within their respective input
tolerance bands, the change in performance is less than or equal to lo-6 times
the value of performance on the previous valid step, and the denominator of the
first Lagrange multiplier is less than or equal to one ten thousandth of IO@, the
case is terminated and a message stating that the last valid step is an optimum
is printed.

Detect convergence failure: If all of the constraint changes are less than
their respective input tolerances and the change in performance is less than or
equal to 10m6 times the value of performance on the previous valid step, the case
is terminated and a message stating convergence failure is printed. This indi-
cates that the constraints are not within the prescribed band and that improve-
ment in performance and constraints cannot be made satisfactorily.

Gradient of Q is too negative ‘test: If the denominator of the first Lagrange
multiplier plus ten percent of IQ<p is less than zero, the case is terminated and
a message stating that the gradient of Cpis too negative to continue is printed.

Tests following a trial causing another trial to be made. -Majority vote
test: This test is similar to the majority vote test previously mentioned, except
in two areas. The constraints being examined are the ones outside of their res-
pective temporary tolerance bands on the current valid step and if all of the
constraints being counted improved, an indicator is set. If the majority vote is
negative, another trial will almost always be made (only other test examined after
a negative majority vote is the bounce test, which is described later). A zero
or positive majority vote will cause the step-size coefficients to be calculated.

Excessive adverse performance test: This test is identical to the adverse
performance test previously described. If there is excessive adverse perform-
ance on the current trial, another trial is almost always run. (Only other test
examined after excessive adverse performance is detected is the bounce test.)

Tests after a trial that will cause a valid step to be run. -End point search:
If the step-size coefficient equals two and the control logic is in an end point
search mode (i.e., dU2< d - ’ I P&b P -I d -), the current trial will be accepted and
a valid step will be run. An appropriate message will also be printed.

323

Penalty function test: The penalty functions are examined (if any). If one or
more have been violated after having no value for at least one iteration, a valid
step is run - provided that the step-size coefficient is greater than or equal to
one. An appropriate message is printed.

Performance test (no constraints): If at least one trial has already been run
and the case has no constraints, the performance change is examined. If the
performance change is favorable and the step-size coefficient is equal to one half,
the current trial is accepted and a valid step is run. An appropriate message is
printed.

All constraints favorable test: If all of the constraints counted in the majority
vote test improved, the step-size coefficient was not reduced due to a constraint
change that was larger than its maximum permissible travel, and the step size
(DUSQ) is reduced over the previous step size on the last valid step. then the
current trial is accepted and a valid step is run. An appropriate message is
printed.

Bounce test: If the trend after a set of trials following a reverse integration
is either a monotonically increasing or decreasing step size, and on the current
trial, the trend is reversed, the last consistent trial is accepted and a valid step
is run. An appropriate message is printed.

Too many trials: A valid step will be run if the following conditions are met:
six or more trials have been run since the last accepted-valid step, the changes
in constraints being asked for are not too great (d $4 d (1, max), and the control
logic is not in an end point search (d U2 > dD’ I$#-’ dg). An appropriate mes-
sage is printed.

Too many trials: This test has no other conditions on it except that if eight
trials have been run, the current trial is accepted and a valid step is run.

The above two tests (too many trials) are not satisfied under normal running
conditions. The program normally runs one or two trials before making a valid
step.

Factors affecting the selection of step size coefficient, - The step-size
coefficient calculation will greatly affect the decision of the control logic in decid-
ing to run another trial or valid step. This calculation is thedominant factor in
deciding between a trial and a valid step.

A step-size coefficientbased on linearity is computed for each constraint and per-
formance. The maximum step-size coefficients are then calculated for each constraint
using its respective maximum permissible constraint change in the parabolic approxi-
mation. The largest step-size coefficient based on constraint and performance
linearities is then selected. The control logic is then said to be controlling with
the function corresponding to the largest step-size coefficient. The largest

324

step-size coefficient is compared with the maximum step-size coefficients of the
constraints outside their respective temporary tolerance bands. If the smallest
value of the maximum step-size coefficients being examined is less than the
largest step-size coefficient, then it is chosen as the new step-size coefficient.
If at this point an indicator shows that the step-size coefficient calculation has not
been repeated (explained later) and the step-size coefficient is less than 0.5, the
control logic will return from this calculation with the step-size coefficient set
equal to 0.5. This will cause the running of another trial. If the above conditions
are not met, tests are made to determine if the step-size calculation should be
repeated. Conditions under which the calculations can be repeated are: the
logic is controlling with a constraint that is within its temporary tolerance band,
and the maximum step-size coefficient corresponding to this constraint is less
than the current step-size coefficient.

The maximum permissible travel of the controlling constraint is checked to
ensure that it is not greater than its error. If the travel is less than the error,
the logic returns from the calculation without recalculating the step-size coef-
ficient. If the travel, however, is greater than the error, the step-size calcula-
tion is repeated. Repeating the calculation means that the next largest step-size
coefficient is chosen (based on linearities) and the logic is then said to be con-
trolling with this function (another constraint or performance). The logic then
follows the same path as described above.

It is possible to repeat the calculation many times before choosing a final
step-size coefficient.

The final step-size coefficient is then compared with the limits 0.5 and 2. If
the step-size coefficient lies outside the limits, it is set to the closest limit.
A final step-size coefficient of 0.5 or 2 will probably cause the running of another
trial, whereas a step-size coefficient within the limits will cause a valid step to
be attempted.

Minimum allowable value of DUSQ. -The value of DUSQ required for d F
is calculated after a valid step as d$” x I## -’ x d 5. 0.25 percent of this value
is the minimum allowable value of DUSQ. After a trial, reverse integration, or
rejected valid step, the value of DUSQ is compared with the minimum allowable.
If the current value of DUSQ is less than the minimum allowable, DUSQ is reset
to the minimum allowable, recalculations are made with the new value of DUSQ,
and a valid step is run. The valid step under this mode of operation cannot be
rejected. It should be noted that no trials are run while the program is in the
minimum DUSQ mode.

A need for a minimum allowable DUSQ resulted from a number of difficult
cases, which reduced the value of DUSQ to such a point that any changes in con-
straint or performance values were due strictly to computer round-off error and
noise. Control logic predictions under these conditions were not reliable and
therefore caused an even further reduction in the value of DUSQ. It is obvious

325

that once this mode of operation is entered it is extremely difficult for the program
to break out of it. The minimum DUSQ concept successfully bypasses this prob-
lem, yet causes another. It is possible for the program to cause the divergence
of a case when it is in the minimum DUSQ mode because the control logic is being
forced to use a value of DUSQ greater than it would otherwise choose. Experience
has shown that difficult cases will run in the minimum DUSQ mode for a number
of iterations and break out of it and run in the normal program mode. Examining
these cases in detail has shown that a very slight amount of divergence has occur-
red during the iterations run in the minimum DUSQ mode. This occurred at a
point when the program found it extremely difficult to shape the flight path properly.
Once this was overcome the program stepped out of this mode and successfully
optimized.

Minimum DUSQ for optimization. -The value of the minimum DUSQ for opti-
mization is computed as (2.1-FXTRAl)*Tl where FXTRAl is the nondimensional
amount of the constraint error to be eliminated in this iteration (increased by five
percent every iteration) and Tl is the amount of DUSQ required to meet the cur-
rent A B .

After a trial, reverse integration, or rejected valid step, the current value
of DUSQ is compared with the minimum DUSQ for optimization. If the current
value is less than the minimum value, the value of DUSQ is reset to this minimum
value and recalculations are made with the new value of DUSQ. The control logic
continues with no other change. At the start of a case the minimum DUSQ required
for optimization is more than twice as much as that needed to meet the amount of
constraint error being eliminated. This essentially forces the program to opti-
mize from the beginning of a run. Without this logic, too many cases used the
entire DUSQ to meet the constraints and thus never optimized. Once the con-
straints were met, the program would then turn to the problem of optimization,
which resulted in the convergence to a local optimum. The current logic will
cause the program to optimize first and then meet the constraints.

Scaling of dB. -If the denominator of the first Lagrange multiplier minus
10s8 x IQVis less than or equal to zero (1st test) and the numerator of the first
Lagrange multiplier is less than zero (2nd test), DBETA (d-), Tl, DELX,

B XLAMDX, and DPSIP are scaled by the factor (DUSQ/T1)l 2. If the first test
above is satisfied, the program is said to be in the end point search mode. If the
second test above is not satisfied, scaling does not occur and DUSQ is set equal
to Tl. If the first test above is not satisfied and the numerator of the first La-
grange multiplier is negative, scaling does occur and the program is said to be
asking for the constraints too quickly. The program will also operate in the end
point search mode when the user selects the boundary value mode.

Nondimensional (1, change. -The nondimensional amount of constraint error
to be eliminated for the new iteration is computed after every valid step. The
amount of constraint error asked for is normally increased by five percent each
iteration. If, however, the program is not in its optimization mode and a

326

constraint is inside its tolerance band, its respective value of nondimensional
(II change is not increased every iteration and is set to 10 percent. This causes
the program to pay more attention to constraints outside their respective toler-
ance bands when in an end point search mode, minimum DTJSQ mode, etc. The
nondimensional ti change for a constraint is reset once it is outside its tolerance
band. It should be noted that, only after a minimum of 20 iterations, will a full
100 percent of the constraint error be asked for.

Temporary tolerance bands. -Initial values of the temporary bands are
equal to 10 times the final tolerance bands (input by the user). The constraints
are examined after a valid step to check if they are inside their respective tem-
porary tolerance bands. If all of the constraints are inside their respective
temporary tolerance bands, all of the tolerances are reduced to one half their
value. The only exception to this is that a temporary tolerance band cannot be
less than its final input tolerance band.

Nondimensional permissible constraint change. - Two nondimensional per-
missible constraint changes are computed after a valid step for each constraint.
One is for motion toward the desired constraint value and one is away from the
desired constraint value. The values are a function of the nondimensional con-

- straint error asked for (CPSI). As successive iterations are run, the non-
dimensional permissible constraint changes are decreased. The two formulas
are:

-,
i

PSIFWD (forward motion) = 5.0 - 3.0 x CPSI

PSIBWD (backward motion) = 1. 05 - CPSI

Tolerance band indicators. -The number of consecutive iterations that a
constraint has been outside its respective tolerance band is accumulated and
stored in the computer word INDSIC. This value is reset to zero whenever a
constraint is inside its tolerance band.

CR-793 - 21 327

