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ABSTRACT

An IBM 7094 digital computer program using the steepest ascent technique
has been developed for optimizing the flight path of a. supersonic transport air-
craft from the start of climb through cruise and descent. The program is suf-
ficiently versatile so that other vehicles besides the SST may have their flight
paths optimized. These vehicles include: space boosters, ICBM's, reentry
vehicles, scramjets, and vehicles with air-augmented rocket propulsion.

The program incorporates a 3-D point mass simulation of a vehicle moving
in relation to a spherical, rotating earth. The inverse-square law for gravity
and 1962 U, S. standard atmosphere are used.

The optimization is accomplished with an automatic step-size controller
and with automatic control variable weighting matrices to allow problem solu-
tion in a single computer run. Automatic plotting capability is included. Mul-
tistaged vehicles and problems involving variable initial conditions may be
optimized.

Pitch angle, bank angle, wing sweep, and throttle setting are the control
variables for the program. Inequality constraints are available on all control
variables as well as on parameters affecting geopolitics, passenger comfort,
structural loads, and engine operation. The geopolitical constraints include
sonic boom overpressure and maximum and minimum altitude.
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FOREWORD

This report was prepared by the Missile and Information Systems Division
of The Boeing Company, Seattle, Washington. It presents the final documentation
of the analytical development and user's manual for the Supersonic Transport
Optimization Program (STOP). The program was developed by Boeing for the
Langley Research Center under contract NAS 1-5293. The contract was admin-
istered by the National Aeronautics and Space Adminstration under the direction
of Mr. J. R. Elliott, with Mr, David ¥. Thomas, Jr. acting as contract mon-
itor.

The Supersonic Transport Optimization Program was obtained from the
NASA Request for Proposal L-5347. Development of the program began in
August 1965 and was completed in September 1966. Dr. L. H. Stein was
responsible for program development. The closed loop guidance techniques and
the control formulation were developed by Mr. M, L. Matthews. Mr, Matthews
also assisted in a major part of the program development as well as in the solu-
tion of the twenty check cases. Mr. J. W. Frenk was in charge of programming
and was assisted by Mr. D. A. Watson. Mr. Watson was also responsible for
the plotting capability for the program. The work was performed under the direc-
tion of Mr. E. G. Haugseth of the Boeing Missile and Information Systems Di-
vision.

This report, together with a companion document, Supersonic Transport
Trajectory Optimization - Example Solutions (NASA Contractor Report No. 66247)
plus the FORTRAN source program listings, binary object deck, and symbolic
object deck concludes the work prescribed under contract NAS 1-5293.
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STOP— A COMPUTER PROGRAM FOR
SUPERSONIC TRANSPORT TRAJECTORY OPTIMIZATION

By Lawrence H. Stein, Malcolm L. Matthews, and Joel W. Frenk
Boeing Aerospace Group

SUMMARY

An IBM 7094 digital computer program using a steepest-ascent procedure
has been developed for optimizing the flight path of supersonic transport aircraft
from the start of climb through cruise and descent. This document describes

the analvtical development of the sunersonic transport ontimization nro

o
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(STOP) and presents a manual for program users.
Program capability is summarized below.

1. The program is capable of optimizing the entire flight of an SST from a given
low-speed, low-altitude condition at the start of the flight to a given low-speed,
low-altitude condition at the end of the flight. The program will also optimize
the climb, cruise, and descent phases of a mission separately.

2. The program incorporates a 3-D point-mass simulation for a vehicle moving
in relation to a spherical, rotating earth. The inverse-square law for gravity
is used. The 1962 U.S. standard atmosphere is included as a single subroutine.

3. The optimization is accomplished with an automatic step-size controller so
that, in general, only one pass on the computer is required for a solution.
The program will generate a nominal trajectory for starting the iterative
procedure. Automatic plotting capability is included. STOP is sufficiently
versatile so that other vehicles besides the SST may have their flight paths
optimized. These vehicles include: space boosters, ICBM's, reentry vehicles,
scramjets, and vehicles with air-augmented propulsion. Even problems com-
pletely divorced from flight path optimization may be solved with a minimum
of reprogramming.

4, Payoff functions, terminal constraints, and stopping parameters may be
selected from the list of 40 state variables (defined by equations of motion
and enroute placards) given in figure 1. The program will optimize any one
of the state variables while simultaneously satisfying 14 terminal constraints
(one of which is considered to be the stopping condition). Inequality con-
straints, imposed by the user, are considered as terminal constraints.

5. Pitch angle, bank angle, wing sweep, and throttle setting are the control vari-
ables for the program. The user may select any subset of these variables
for a given problem.
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VARIABLE | VARIABLE [NC PLOT FORTRAN |SYMBOL | DESCRIPTION ' UNITS
TYPE INDEX INDEX J INDEX | NAME
STATE 1 21 |1 X{KY W WEIGHT 18
{EQUATION }2 122 |2 X{K2) H ALTITUDE FT
OF MOTION) | 3 123 |3 X(K3) Y RELATIVE FLIGHT PATH ANGLE DEG
4 124 |4 X{(K4) v RELATIVE VELOCITY FPS
5 125 {5 X{Ks) B LATITUDE ANGLE DEG
6 126 16 X(K6) VR RELATIVE HEADING ANGLE DEG
7 127 |7 XIK7) A LONGITUDE ANGLE DEG
8 128 |8 X(K8) ™ DUMMY TIME SEC
9 129 {9 X(K9) RNG PATH RANGE ALONG EARTH'S SURFACE Nmeo,
10 130 j10 X{K10) AHI AERODYNAMIC HEATING INTEGRAL FT-LBIFT
11 Bl 1 X(K1D) AV IDEAL RELATIVE DELTA VELOGITY FPS
12 132 |12 X(K12) 6L GRAVITY LOSS FPS
13 B B X{K13) DL DRAG LOSS FPS
14 B4 | X(K14) TVL THRUST VECTORING LOSS FPS
15 135 |15 X(K15) ER RELATIVE SPECIFIC ENERGY F1
16 136 {16 X{K16)
}; gg ﬁ ;‘:ﬁg AVAILABLE FOR EXPANS JON
19 139 |19 X(K19) NOT DEFINED
v 20 140 {20 X{K20) )
STATE 21 41 |2 X{K21) g PITCH ANGLE PLACARD = Fit) DEG,SEC
{ENROUTE 22 42 |22 X(Kz2) ol BANK ANGLE PLACARD = Fit) DEG“SEC
PLACARD) |23 43 |23 X(K23) ne THROTTLE PLACARD = F(H,M) SEC,
24 44 |4 X(K24) A WING SWEEP PLACARD = F(H,M) DEG,SEC
25 45 {25 X{K25) as ANGLE OF ATTACK PLACARD = FtH,M) DEG“SEC
26 46 {26 X(K26) NOT DEFINED
27 W {21 X{K27) HD* ALTITUDE RATE PLACARD = Ft) FPS )
28 48 |28 X(K28) Q DYNAMIC PRESSURE PLACARD = Fit) 1PSF), SEC
29 149 |29 X(K29) Q DYNAMIC PRESSURE PLACARD = F(M) (PSFI“SEC
30 150 {30 X{K30) Qa* Qe PLACARD = FiM) (PSF-DEGIZSEC
31 151 |31 XIK3D) TEMT* | TOTAL TEMPERATURE PLACARD = F() (°RIZSEC
32 152 |32 X(K32) N NORMAL LOAD FACTOR PLACARD = F(H,M) SEC o,
33 153 133 X(K33) RPA® RESULTANT PHYS1OLOGICAL ACCEL. PLACARD = Fit) | (FT/SEC)SEC
34 154 |34 X{134) He ALTITUDE PLACARD = FiM) FT2SEC
35 155 |35 X(K35) Ap* SONIC BOOM OVERPRESSURE PLACARD = Fix,B) {PSF)ZSEC
36 156 136 X(K36) Mo MACH NUMBER PLACARD = F(H) SEC
37 157 |37 X{K37 NOT DEFINED .
38 158 |38 X{138) ye GAMMA PLACARD = F{H, M) DEG” SEC
39 159 |39 X(K39) NOT DEFINED
¥ 40 160 140 X(K40) NOT DEFINED

FIGURE 1: STATE VARIABLES




Aerodynamic and engine options are available for receiving the data in the
forms commonly used for most types of vehicles.

Multistaged vehicles and those where external stores are jettisoned as a
function of time may be optimized,

Inequality constraints may be imposed on parameters affecting geopolitics,
passenger comfort, control limitations, structural loads, and engine opera-
tion. The geopolitical constraints include sonic boom overpressure and
maximum and minimum altitude.

The initial conditions can be varied by the program to obtain increased per-
formance. This option eliminates the need for a preliminary search to deter-
mine the neighborhood of initial conditions for an optimal flight path.



INTRODUCTION

The need to optimize transport aircraft flight paths is becoming apparent
because (1) the next generation will include supersonic transports for which the
climb and acceleration phase consumes an appreciable part of the vehicle fuel,
and (2) a large part of the flight is constrained by enroute placards.

The steepest-ascent method has been successfully used to optimize rocket-
boost trajectories, reentry-vehicle trajectories, and orbital transfers giving
substantial performance gains. There have been numerous attempts to optimize
flight paths of airbreathing interceptor-type aircraft with a relatively high thrust-
to-weight ratio using the steepest-ascent technique (ref. 1). These methods have
been successful to a degree, but, when applied to low-thrust-to-weight-ratio air-
craft, have resulted in flight path instability problems that have made convergence
difficult.

Recognizing that, in the past, optimization techniques have produced significant
performance gains for many classes of vehicles, NASA initiated the present study
under RFP L-5347 (ref. 2). The purpose of the study was development of a digital
computer program that would optimize the flight path of a supersonic transport
with realistic operational constraints. A sufficient number of cases would be
run to substantiate the program and define the most appropriate flight paths for
selected SST configurations. A computer program general enough to optimize
the SST would have the capability to optimize trajectories for many classes of
vehicles including rockets, air-augmented rockets, airbreather vehicles, and
gliders.

The technique used for optimization is the steepest-ascent method given by
Bryson (ref. 1), which follows the direct approach of determining a maximum.
The optimum flight path for the present study is the solution to the nonlinear dif-
ferential equations of motion that satisfy the imposed constraints and maximizes
or minimizes one of the state variables.

The development of a computer program to satisfy the SST requirements and
overcome problems associated with the flight path instabilities and complex engine
characteristics required some changes in the usual methods used in optimization
programs. Significant contributions to the program were made by NASA/LRC
personnel. The use of pitch angle as a control variable was suggested by J. R.
Elliottasa technique to overcome the flight path instabilities. The formulation
of jet engine data into a form compatible with the optimization procedurée was
suggested by W. E. Foss, Jr. This form of data uses thrust input as T/P and
weight flow as W/P, where P is the ambient atmospheric pressure. Contribu-
tion to the form of the SST aerodynamic data representation was made by C. M.
Jackson, Jr.



SYMBOLS

axial force (pounds)
speed of sound (feet/second)
inertial acceleration vector (feet/ secondz)

indicial response at time t due to a unit step in f(t) at
time T (see Duhamel's integral, equation 81)

nozzle exit area (square inches)

aerodynamic heating integral (foot—pounds/feetz)

component of acceleration normal to relative velocity vector
compohent of acceleration along the. velocity vector

component of acceleration completing the right-hand set
(an, ag, ap) = a

axial force coefficient, A/q S

drag force coefficient, D/q S

minimum drag force coefficient

1ift force coefficient, L/gq S

aCy,/aec  (per degree)

lift force coefficientat o = 0

1ift force coefficient for minimum drag

normal force coefficient, N/q S

aCyn/6e  (per degree)

aCcy/3a3  (per degreed)

thrust force coefficient, T/q (square feet)

drag force (pounds)

drag constants (defined by equation 151)

velocity loss caused by drag forces (feet/second)
control variable perturbation magnitude (see equation 100)
predicted change in a function f (see fig. 8)

trial value for df

actual change in a function f (see fig. 8)

trial value for df
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combined changes in the constraints and initial state variables
change in payoff, constraint, and stopping functions

trial values for d¢p and d_;E

n x n matrix of partial derivatives, ‘af;j/x;

an n x 1 matrix of functions defining the time derivatives
of the state variables

a value determining the degree of nonlinearity of the func-
tion f

forcing function of Duhamel's integral (see equation 81)

n x m matrix of partial derivatives, afi/auj

local acceleration of gravity (feet/second)

forcing function of the convolution integral (see equation 99)
gravitational acceleration at earth's surface (feet/secondz)
velocity loss due to earth's gravitational field (feet/second)
function defined by equation 140

altitude above earth's surface (feet)

reference altitude used for skin friction drag calculations (feet)

response of a system at time t, due to a unit control varia-
ble impulse at time 7 (see convolution integral, equation 99)

specific impulse, T/W (pounds thrust/pounds fuel per second)
integrals defined by equations 108b, ¢, and d

step size coefficient (see fig. 8)

fuel flow correction factor for rockets

constant used in sonic boom calculations

total impulse correction factor for rockets

lift force (pounds); reference length for sonic boom calcu-
lations

Mach number

number of control variables

force normal to body axis (pounds)

number of state variables plus enroute placards
number of terminal and eﬁroute constraints

sonic boom overpressure (pounds/feet?)
6



SFC

ambient pressure (pounds/feetz)

VPgy, P_  (pounds/feet?)

sea-level ambient pressure (pounds/feetg)

dynamic pressure, 1/2 p V2 (pounds/feet?2)

dynamic pressure times angle of attack (pounds—degree/feetz)
position vector measured from earth's center to véhicle (feet)
desired final altitude for circular orbit (feet)

resultant physiological acceleration (feet/second?)

radius of a spherical earth (feet)

aerodynamic reference area (square feet)

integrated payoff function sensitivities (see equation 134)

instantaneous payoff function sensitivities (see equation 130)
specific fuel consumption (pounds fuel per hour/pounds thrust)

actual thrust component along body axis (pounds); static
temperature (degrees Rankine); final trajectory time (seconds)

independent trajectory variable, time (seconds)

initial trajectory time (seconds)

dummy time (seconds)

uncorrected thrust as input for airbreathers (pounds)
total corrected thrust for rockets (pounds)

total temperature (degrees Rankine)

uncorrected vacuum thrust as input for rockets (pounds)
velocity loss caused by thrust vectoring (feet/second)

an m x 1 matrix of control variables

inertial velocity vector (feet/second)

circular satellite velocity (feet/second)

relative velocity vector (feet/second)

function defined by equation 150

weight (pounds); an m x m weighting matrix
elements of the weighting matrix W (equation 137)

fuel weight (pounds)



path range (feet)

coordinates of points on the forward shock signature (see
fig. 7)

an n x 1 matrix of state variables and enroute placards

lateral extent of forward shock signature (see fig. 7)

angle of attack (degrees)
angle of attack of the previous integration step (degrees)
latitude of vehicle (degrees)

latitude at which the overpressure intersects the ground
(degrees) (see fig. 7)

latitude of a point on the forward shock signature (see fig. 7)
M2 -1

flight path angle (degrees); specific heat ratio

Kronecker delta; indicates variance

thrust cant angle (degrees)

throttling control variable

pitch angle; control variable, ¥y + a (degrees)

sweepback control variable (degrees)

longitude of vehicle (degrees)

adjoint variables

longitude at which the overpressure intersects the ground
(see fig. 1)

longitude of a point on the forward shock signature (see fig. 7)

payoff function adjoint variables, measures sensitivity of
¢ at time T, to state variable changes at time t

constraint function adjoint variables, measures sensitivity
of a constraint at time T, to state variable changes at time t

stopping function adjoint variables, measures sensitivity of
the stopping function at time T, to state variable changes
at time t

see equations 98a and b

Lagrange multiplier (see equation 112); first Lagrange
multipliexr (see equation 113)

8
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Subscripts

e}

max
req
vac

ref

Superscripts
()

()

()"

a 1 x p matrix of Lagrange multipliers (see equations 108
and 114)

ambient density (slugs/foot3)
dummy time used in Duhamel's and the convolution integral
payoff function; bank angle (degrees)

heading angle, measured in degrees north of east

a p x 1 constraint vector
stopping function

angular velocity of earth (radians/second)

sea level or earth surface; initial; variable based on the
angle of attack of the previous integration step and current
state variables

refers to relative coordinate system
refers to inertial coordinate system
maximum

required

vacuum

reference

ambient condition

transpose of a matrix ()
inverse of a matrix ()

indicates nominal value



ANALYTICAL DEVELOPMENT

Equations of Motion

Coordinate system. — The flight-path coordinate system is used to define the
vehicle position and attitude with respect to a spherical, rotating earth. This sys-~
tem is sometimes regarded as the '"natural" coordinate system because the state
variables of flight-path angle and velocity are explicit coordinates. The basic
state variable coordinates are longitude (A), latitude (B), altitude (h), relative
velocity (VR), relative flight-path angle (yg), and relative heading angle (YR)
(fig. 2).

Control variables. — The total force acting on the vehicle has three distinct
sources: (1) gravitational force as a result of mutual mass attraction between the
vehicle and earth; (2) aerodynamic force resulting from the vehicle motion through
the atmosphere; and (3) thrust force from the vehicle propulsion system. There
is no way of controlling the gravitational force since it is a function only of the
state of the system.

The aerodynamic forces are determined by the geometry of the vehicle and its
attitude with respect to the free-stream air mass. TFor fixed-geometry aircraft,
the aerodynamic force is dependent on the angle of attack (defined as the angle be-
tween the vehicle longitudinal axis and the velocity vector). The angle of attack
is used primarily to establish lift that is normally in a vertical plane. Out-of-
plane maneuvers are made by banking the vehicle to direct the lift vector out of
the vertical plane, thus permitting lateral translations. The bank angle, ¢, is
defined as the angle between the vertical plane containing the velocity vector and
the vehicle plane of symmetry as viewed along the velocity vector (fig. 3).

A problem exists with angle of attack as a control variable for the point mass
equations of motion when simulating the flight of a low thrust/weight, winged, air-
breathing vehicle. The angle-of-attack control variable has been satisfactorily
used for high thrust/weight vehicies, but the use of angle of attack for SST-type
vehicles results in an unstable, oscillatory flight path during cruise which is not
representative of the actual path. The use of a pitch angle (0) given by

b=y +a (1)

as a control variable resolves the problem and results in a stable, well behaved
flight path in all cases checked. The analysis of this problem is given in appendix
A. Note that if the vehicle is banked, 0 is not the pifch angle in the usual sense
(that is, the angle between the longitudinal axis and horizontal plane), but instead
is the algebraic sum of the flight-path angle and the angle of attack as given by
equation 1. Therefore, for nonzero bank, 6 is not a physical angle.

Since some of the more advanced aircraft permit changing vehicle geometry
by varying the wing sweep, the effect of this variable must be considered in

10
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establishing the aerodynamic force on the vehicle. The wing sweep, A, is de-
fined as the angle between the lateral bodyaxis and a reference line on the wing
(e.g., leading edge, quarter chord, and half chord).

The remaining control variable to be considered is the throttle setting, 7,
for controlling the thrust. This parameter is defined as the ratio of thrust at a
given state to the reference thrust at that same state. Thrust is considered to
act along the vehicle body axis.

Therefore, to determine the aerodynamic and thrust forces required for con-
trolling the vehicle, four control variables are required: 6, ¢, A, and 7.

Kinematic equations. — The basic state equations of motion are defined in
this section. Details of the development are not given here because the methods
are standard.

The kinematics of a point mass vehicle for a rotating, central-force field is
given by

V=VR+5X; (2)
-,ﬂ - —
a—dt+wXV (3)

is the inertial velocity vector

<

where
VR is the relative velocity vector
is the earth’'s rotation rate

is the position vector of the vehicle

vy =1 &

is the inertial acceleration vector.

Substituting equation 2 into equation 3 gives

_odvg
a = dt+2wXVR+UJX(UJXI’) (4)

Using the coordinate system of figure 2, equation 4 can be written in com-
ponents along the flight path, normal to the flight path in the plane containing the
r and the V vector, and perpendicular to the plane containing r and V,

12



ag = X.fR + w2 r cos B (sin B cos yg sin P - cos B sin ¥R)
Vg2
an = VR 7R -, COS YR - 2w VR cos B cos Yp

- w2 r cos B (cos B cos yg + sin B sin yp sin Pp)
V2 (5)

ap = VR ¢0s YR gl')R + -—f— tan B cos? YR €08 ¥R
- 2w VR (sin yg sin Yy cos B - sin B cos YR)
+ w? r sin B cos B cos Yy

where YR is the relative flight-path angle

Py is the relative heading measured north of east.

Other equations which follow from the procedures are

- Vg cos yp sin YR

B T
>.\ _ VR cos Yy cos sz _
r cos B (6)

}.1 = VR sin ')’R
. Ro
X = VR T cos YR
where X is the longitude angle
h is the altitude

x is the path range.
The change in weight of the vehicle is given by the differential equation

W= - weight flow ‘ (7)

where the weight flow is a combination of fuel flow and inerts.

The gravitational, aerodynamic, and thrust forces are required to complete
the system. Other "auxiliary" state variables that are required will be defined

in a later section.

Applied forces. — The forces acting on the vehicle which are not a result of
the vehicle kinematics are discussed in this section,

13




Gravitational forces: The gravitational forces are determined for the cen-
tral force field by representing the gravitational acceleration by the inverse
square law

2
_n_ (R
g_rz_go(r) (8)

Aerodynamic forces: The aerodynamic forces for aircraft are written for
the wind axes system with lift (L) normal to the flight path and drag (D) parallel
to the flight path. Side-slip is assumed to be zero, i.e., all turns are assumed
to be coordinated such that no side-slip results.

Lift

"5
209 P
Velocity

Drag
Figure 4. AERODYNAMIC FORCES - WIND AXES

If the bank angle is not zero, the lift vector is rotated about the velocity
vector through the angle ¢ (bank angle).
The aerodynamic forces may be expressed as

L=Cyd4qS8 €

D=Cphqs (10)
where L is the lift force
D is the drag force
Cy, is the lift coefficient

Cp is the drag coefficient

1
q is the dynamic pressure = 5 P v2 or

S is the reference area.

Aerodynamic data inpuf options are available for accepting data in the most
common forms. For vehicles with fixed wings, the data are considered as

CL=1fM M, o (12)
14
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Cp =£f (h, M, ) (12)

if not represented in polar form. If available as drag polars, the data are repre-
sented as

Cy, = Cp,. @ (13)
iLd ua v 4
aC
D
Cp = Cp, + 5 CL2 (14)
aCy,

I

where CLa lift curve slope, f (M) per degree

Cp 0" minimum drag coefficient, £ (M)

I

5 = induced drag constant, £ (M).

The aerodynamics for variable-geometry aircraft with wing sweep as a con-
trol variable are formulated as

Cp =f (A, M, @ (16)

or if the data are given as drag polars

Cy =C + C o 17
L Ly— Ly 17
8CD 9
Cp = Cpy + 5 (Cr - Cryy) (18)
8Cp
where CLa=O = lift coefficient for & = 0, £ (A, M)
CLqy = lift curve slope, f (A, M) per degree

Cpy = minimum drag coefficient, f (A, M)

D induced drag constant, f (A, M)
2
acy,
Cpyy = lift coefficient for minimum drag, f (A, M).

The effect of altitude on drag (skin friction, ACp O) is included as a linear
function of altitude,

ACp
A C-DO YN (h - h..p) (19)
where ACp/Ah is a function of the reference altitude.

15



The aerodynamic forces on a missile are quite often referenced to the body
axis with the normal force perpendicular to the body axis and the axial force
along the body axis.

N=Cya4as (20)

A

il

CAa as (21)
where N is the normal force

A is the axial force

Cy is normal force coefficient

Cp is axial force coefficient.

Normal Force

Velocify

Axial Force

FIGURE5.  AERODYNAMIC FORCES - BODY AXES

The normal and axial force coefficients are given by

_ 3
= o o
CN = CNg * * ONg3 (22)
C, =C, 0 (not dependent on o) (23)
where CNa = f (M) per degree

CNg3 = f M) per degree3

Caq = £ OM).
The forces in the body axis system are transformed to the wind axis by

CL = CN cos O - CA sin & (24)

Cp =Cnsina + Cp cos « (25)

for use in the program.
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Thrust forces: The thrust forces on a vehicle are considered to act in a
direction fixed relative to the body axis so that the resultant thrust along the body
axis is

T = Tp cos 6, (26)
where T is the thrust along body axis
T is the total thrust force

8. is the thrust cant angle.

(The angle &, is used only for symmetric nozzle configurations where the normal
thrust component from two opposing engines cancel.)

Tt

oc
8¢

2  Figure 6. THRUST REPRESENTATION

The computation of thrust for airbreathing engines follows the form

Tr = Tref M (27)
where Tref 18 the reference thrust = F (@, h, M, or V)

n is the throttling parameter.
The thrust may also be given by

Tref = CT 4 (28)
where Ct is thrust coefficient. = F (&, h, M, or V)

A thrust option that has particular use for the jet engine is

Tref (29)
=~ f(a, b, W)

which was formulated to give a smooth, consistent set of data over the entire
operating range of the engine. P is the atmospheric pressure (psf).

The reference thrust for rocket engines is based on vacuum conditions. The
total thrust is given by

Tp = KT Tyge M - Po Ag/144 (30)
17




where Tygc is the vacuum thrust (pounds), f (time)
P, is atmospheric ambient pressure (psf)
A, is the exit area (square inches), f (time)
Kt is the total impulse correction factor.
Fuel flow: The fuel flow for airbreathing engines can be specified in terms
of fuel flow directly or in terms of thrust specific fuel consumption.

. SFC
Wg = 3600 X Tref (31)

The fuel flow and specific fuel consumption can be expressed as

Wg, SFC = f (9, h, V)
=f (@, h, V)
=f(n, M, h) (32)
=f (@, M, h)
depending on the independent variables required for adequate representation.
The fuel flow for jet engines is also formulated as
v.Vf
5 = tk, M, n (33)

and is designed to give a consistent set of data from idle speeds through maximum
augmentation. Again P is the atmospheric pressure (psf).

For rocket engines, the fuel flow is obtained from the specific impulse by
the relation

We = Ky T,/ Tsp (34)

where K, is fuel flow correction factor.

ISp is specific impulse (seconds), f (time).

The options of thrust and fuel flow available will handle most types of engine
data formulations.

Basic equations of motion. — The basic equations are summarized below with
the effects of gravity, aerodynamics, and propulsion included.

‘}RzTcosma - D - g sin ¥y + w? r cos B (cos B sin yp
- sin B cos YR sin YR) (35)
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_(Tsina+ L)ycoso [ g Vr

y - = + 2
YR m Vg Ve = ] cos ¥p w cos B cos z,bR
w? r . . .

+ Ve cos B (cos B cos Yy + sin B sin YR Sin ¥g) (36)
1:1 = VR sin YR (37)
W = - Wi - Winert (38)
. : : A\

_ _(Tsina + L)sing 'R

YR ™ Vg 008 g - tan B cos yg cos Pp

- 2w (sin B - tan YR sin YR cos B)

w? r sin B cos B cos bp (39)
- VR coOs YR
) Vp cos Y sin ¥
R R R
B = - (40)
. VR COS YR cOs ¥
A = B R R (41)

r cos B

These equations are suificient to define a vehicle trajectory for a spherical,
rotating earth. The equation of motion for path range on the earth's surface is

R

. O
k= =2 Vg cos YR (42)

Auxiliary state variables. — Variables required for optimization, stopping
or constraining a flight path, but which do not fall in the category of basic state
variables, are defined as auxiliary state variables. The differential equations
for these variables are integrated when desired by the user. The additional
variables and their defining equations are given below.

Dummy time: The dummy time, introduced so that it may be used as a
state variable, is defined by

dtD

el (43)

Aerodynamic heating integral: The aerodynamic heating integral, a meas-
ure of the heat encountered by a vehicle during flight, is defined by
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3
R

d AHI
dt

1
3PV (44)

where pis the atmospheric density.

Ideal relative AV: The ideal relative AV, the velocity change a vehicle would
experience in the absence of atmospheric and gravitational effects, is defined by

dAV T 2 . . .
* " g T @ Treos B (cos B sin Yg~ Sin B cos Vg Sin %bR) (45)

where m is the vehicle mass.

Drag loss: Drag loss, the velocity decrement resulting from motion
through the atmosphere, is defined by

dDL _ D

dt m (46)

Gravity loss: Gravity loss, the velocity decrement resulting from motion
in the earth's gravitational field, is defined by

dGL

ac g sin yR 47)
Thrust vector loss: Thrust vector loss, the velocity decrement resulting

from the thrust vector not aligned with the flight path velocity vector, is defined by

dTVL T _ .
it m (1 -cosa) (48)

Inequality constraints. — During the course of a flight path, a function
may be required to be less than or equal to and/or greater than or equal to a
particular value or set of values. Inequality constraints arise from a number
of different considerations: (1) geopolitical limitations; (2) passenger comfort;
(3) control limits; (4) structural limits; and (5) engine limits.

Geopolitical: This class of inequality constraints is related to consideration
of other than aircraft limitations. The maximum and minimum altitude may be
imposed by the FAA for traffic control. Aircraft noise and sonic boom (ref. 7)
are important in vicinity of cities, airports, etc. The sonic boom is of special
consideration to SST flight paths because the boom signature and overpressure
(AP) on the ground may design the flight path. The sonic boom overpressure on
the ground, in the plane of the velocity vector, may be found from the following
expression:

3/4
Aﬂ}l/—@vz =~ £(1, h, B CLS/2L?) (49)
KR B m Pref '
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[ 2
where Bm Y I
= A/
Pref A PSL P°°
KR =1.9

and f (M, h, Bn CL, S/ ZLZ) is a tabular function. The overpressure generated

by an airplane at a latitude and longitude (8, A) will intersect the ground ahead of

the airplane in the plane of the velocity vector at a latitude and longitude of

h sin

P il |

G B R

m o

h cos z,bR

(50)

A, = A (61)

yo—_
G Bm Rocos B

The shock pattern on the ground is considered to be the intersection of a
cone (with the half apex angle equal to the complement of the Mach angle) with
the ground plane (fig. 7). This intersection, or shock signature, is a hyper-
bola with the equation

2 2 2,2
b+ y" =% B (52)

where h is the vehicle altitude
y is lateral distance from the flight path

x is distance along the flight path from the vehicle to the point on the
shock signature.
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The lateral extent of the shock wave is given as a tabular function
v, = f (b, M) (53)

The geographical location of a point along the shock signature is expressed
in terms of longitude, latitude, heading angle, and altitude

sin Y
ﬁl B+ 1—[ R Vh2+ y2+ycos szJ (54)
o)

ocal R ﬁm

cos ¥
1 [ 8 R th + y2 - y sin szJ (55)

)‘local = A R cos B
o m

where y can go from - y, to + y, to cover the entire shock signature.

The overpressure along the shock signature is related to that given in
equation 49 (APy::O) by

3/4
aPy) = dp_ | —P—— (56)

y=0 Vh2+y2

The maximum allowable overpressure over the ground is given by

Ap = Ap

max max ( Alocal’ B local) 67

where Ajgcgl and Blocal are the points along the shock signature.

The next step is to derive a function in terms of the instantaneous vehicle
state that represents the integral of the overpressure violation along the shock
signature from - y, to + yo. The overpressure violation is given by

Ap - Ar >0 (58)
s max
where the APg is given by equation 56. A true integral of the violation along
the signature is not practical, therefore an approximation is made by summing
the overpressure violations for several selected points as follows.

2
NP
d BOOM PF _
3 - 0|2 (AP - AP ) (59)
i=1 i
6 =0if AP <AP
S max
5 —

1 ifAP ZAP
S max

NP is the number of points selected for the approximation. At present 7 points
are used spaced at an interval of yc/3. Equation 59 which defines the sonic
boom penalty function, is integrated as one of the equations of motion along the
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path with a terminal constraint value of zero. The partial derivatives of equa-
tion 59 with respect to the state and control variables are determined numerically
(appendix B).

Passenger comfort: The comfort of a passenger is significant to the air-
lines who are trying to please the customer. To insure that the vehicle does not
fly into areas of discomfort, placards may be imposed on normal load factor (n),
pitch angle (8), bank angle (¢), resultant physiological acceleration (RPA), and
altitude rate (h). The altitude rate controls such items as rate of change of cabin
pressure. The magnitude of cabin pressure is determined by altitude and mechan-
ical or compressor limitations.

Control: These placards result from physical or mechanical limitations on
the system. The control variables limited are pitch angle, bank angle, throttle
setting, and wing sweep.

Structural: The structural requirement on airframe requires that the state
of the system be constrained so that dynamic pressure, dynamic pressure times
angle of attack (Q@), stagnation temperature, and cabin pressure differential do
not exceed prescribed limits., The stagnation temperature is given by the adia-
batic equation

_ y-1 .2
Ttotal =T (1 + > M) (60)
where 7y = specific heat ratio and T is the ambient temperature. Cabin pressure
differential can be formulated as a placard on altitude rate.

Engine: The engine is protected from flight conditions that would produce
undesirable results by bounding the altitude Mach number region in which the
vehicle can operate. In addition, maximum and minimum throttle setting may
be bounded by a control placard as a function of altitude and Mach number.

Several methods of handling inequality constraints have been devised, i.e.,
integral method (ref. 3), penalty function method (ref. 4), and a method by
Bryson, Denham, and Dreyfus (refs. 5 and 6). The method used during this
study is based on the square of the violation. This method is similar to the
integral method but produces a form more satisfactory for use with analytical
partial derivatives. Consider a typical problem as shown in figure 8.

Let C be the time history of the function to be constrained, which violates
the placard shown as P. The region of constraint violation is shaded. A meas-
ure of the total constraint violation is the areas shaded, or

T
A=J' (C - P) 6adt (61)
to
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where 6 = 0 when there is no violation
0 = 1 when there is a violation.
This formulation is not satisfactory for analytical partials since the partial de-

rivative of dA /dt with respect to the state or control variables does not have a
measure of the violation. A form which does have the required nature is

T
A=I (C—P)Zédt (62)
to

where the partial derivative with respect to the state variables does have the
proper form

8A _ ac _ 9P
ax ~ 2 (€ - P)<8X ) ox) (63)
which is still dependent on the violation.

Each of the inequality constraints is formulated in the same manner and permits
a minimum as well as a maximum limit. Each is treated in the same manner,
Inequality constraints can be imposed for the placards shown in figure 1.

PLACARD
VIOLATED

to T

Figure 8: INEQUALITY CONSTRAINT
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Steepest-Ascent Technique

The analysis of trajectories by the steepest-ascent method has been treated
extentensively in the literature (refs. 1, 3, and 4). The derivation given here
follows that of Bryson and Denham, reference 1. Since the steepest-ascent
method is basic to this study, the derivation is included here for completeness.

Statement of problem. — The steepest~ascent solution is formulated to deter-
mine the control variable history, u(t), so as to maximize a function (payoff
function)

0 = <p[§€(T), T] (64)

and meet the terminal constraints

3=3[zm, t]=0 (65)

I

where performance index to be optimized

state variable matrix (order n x 1)

time at the stopping condition

e 3 % 8
1

I

a matrix of terminal constraint functions (order p x 1).

The stopping time, T, is established by the condition
Q = Q[E(T), T] =0 (66)

where  is referred to as the stopping condition.

The equations of motion defining the state of the system can be written in
terms of first-order differential equations. The form of these equations is

xm = I xw, aw, t] (67)
where G.(t) is an (m x 1) matrix of control variables

f is an (n x 1) matrix of functions defining the time derivatives of
the state variables.

The initial values of the state variables, §(to), are generally known for a
given problem. If some of the initial values are not specified, they may be deter-
mined along with the control matrix to optimize ¢. If it is desired to optimize
some function other than one of the normal state variables, it is necessary to
introduce an additional state variable and another differential equation defining
the state variable and solve it simultaneously with the required equations of motion.

The steepest-ascent process is started by assuming a control variable time

history, u(t). About the only requirement on u(t) is that the trajectory generated
must reach the stopping condition.
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The nominal trajectory is generated using the assumed ﬁ(t) » vehicle and engine
characteristics, and the initial conditions. The equations of motion (equation 67)
are integrated numerically to obtain the nominal state variable program until the
stopping condition is satisfied. For convenience, the nominal conditions will be
designated by ( )*, i.e.,

II(t)nom inal = 6*(1:) (68)

X(Dpominal = X () .(69)

The steepest-ascent procedure uses the concept of local linearization about
a nominal flight path. For small perturbation in the control variables

u(ty = a'(t) + du(t) (70)
the state variables are perturbed
x(t) = x7(t) + Sx(t) (71)

Substifuting equations 70 and 71 into equation 67, the linear differential equa-
tion for 0x is obtained

it 6x(t) = F 6x + G bu (72)
where
F x h
o\
e o
F = . . (order n x n) (73)
*
oty o,
0X1 SRR J
B * x|
f1 Ofl
2u )\ ou
G = . I (order n x m) (74)
* *
o1, or,
du, "t \euy,

Again the ( )* indicates that the partial derivatives are evaluated along the nomi-
nal flight path.

Adjoint equations. — The effects of the control variable perturbations on the
payoff quantity, stopping condition, and constraint functions must now be determined.
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Equation 72 is a linear equation that describes the small perturbations about
the nominal path. To this is added a linear differential equation adjoint to equa-
tion 72

dA

i F' X (75)

where the A's are a matrix of adjoint variables. The significance of the A's

and their role as influence functions for ¢, :b-, and Q will be demonstrated.

To show this, premultiply equation 72 by X', equation 75 by 6x' (where ( )!
indicates the transpose of the matrix), and add the transpose of the second product
to the first

)\”—i-gtz+g(?7'.6§=k'F6§+A'G61—1—_>\'F6>_< (76)
which can he written as
éj‘g (A" 6x) = X' G du (77)
Integrating equation 77,
T - -
' ai)t:T = j; X' G dudt+ (M 6x)t=to (78)
o}

Examining this equation gives much information on the nature of the adjoint vari-
ables. The product G 6u gives the rate of change of the state variables due to
changes of the control variables only:

5x = G du (79)
therefore, equation 78 can be written
y - T K] ¢ -
A" 6%y = f A 6x dt + (A 6%y (80)
to °
but this is exactly the form of the Duhamel integral, which is
t
z(t) = f At -T) Jldiz dr + A (t - to) £(to) (81)
to

where A (t - 7) is the indicial response at time t due to a unit step in f(t) at
time 1. The f(t) is the arbitrary forcing function; z(t) is the response of the
system to the arbitrary forcing function. Making a comparison between the two
equations for t = T, the A's are the indicial response of the system due to a
unit step in each element of the state variable vector, §x. The variables of
interest for this work are the payoff function ¢, the stopping condition €, and
the terminal constraints . A set of A's can now be defined corresponding to
¢, Q, and the P's. The adjoint variables are identified as
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v _ 00 3 10’
)\‘Q—T, k'll):—%)—’ >\Q~__— (82)
ox Ix ax
where X' . isa (1 xn) matrix, X', isa (p xn) matrix, and X' isa (1xn)
maftrix, Sf‘he A's are influence functions and may be considered as
1)

X‘pi B OX]'_ (83)

or the change of ¢ due to a unit step change of xj. Similar interpretation can be
made for Ay and AQ. A set of boundary conditions can now be written for the
A's at t = T giving

9 .
)\@j(T) = a?‘p] T ji=1,...., n (84)
Y.
:p,(T) = —1 i=1, » P =1, ., n (85)
j OXJ T
1! o
le(T) = BXj T j=1,...., 1 (86)

If the payoff, constraint, and stopping functions are restricted to state variables,
the A(T)'s are either zeroes or ones.

Starting from the terminal values of the A's, equation 75 may be integrated
backwards along the flight path (i.e., from T to t) uqmg Dart1a1 der1vat1ves which
were stored during the forward trajectory to obtain A 0, A b and \' qas functions
of time.,

Substituting the functions from equations 84, 85, and 86 into equation 78 and
noting that

(A'p 0%)p = 6e(T) (87)
(\'yp 8% = 8P(T) (88)
(\'g 6x)p = 5U(T) (89)
the following are obtained
T - -
5¢(T) =f Xp G dudt+ (A'¢, 5 )it (90)
to °
— T 1 — -
6Y(T) = f Ay G Oudt+ (A'w CE (91)
tO
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T
6Q(T) = j X' G dudt+ (g 5;‘)t=t0 (92)

0
These equations would give the changes in the payoff function, stopping conditions,
and terminal constraints if the final time (T) at the stopping condition did not
change. In general, this is not true and, due to small perturbations, the stopping
time is at some time, T + AT. To account for this change equations 90, 91, and
92 become

do = f >\'¢, G bu dt + (x'tp 6§)t=t0 + @(T) AT (93)
t

dy = J. A v G 6u dt + (A’ v 6x)t_ + z/)(T) AT (94)
tO
T ) ) .

dQ = J A G Sudt+ \'q ‘SX)t:to + (T) AT (95)
tO

Note that these equations are now total differentials. This set of equations gives
the changes in ¢, ¥, and & for the perturbed trajectory.

The stopping condition does not change from one iteration to the next, there-
fore d2(T) = 0, giving the relation

AT = - J Mo G 63 dt - —— (' 6% 96
Q\T) o) u Q(T)( Q 9¥i-t, (96)

the equation for ¢ and zp from equations 93, 94, and 95 can now be written as

N
' - y -
de = J Mg G Oudt+ Ao 8% (97)
0
p— PT - -
dy = A'#)Q G 6u dt + (A'po 6 )yt (98)
Uto 0
where
1
=\ QL_L
A 0Q " Q(T) 2! Q (98a)
A= - BEL (98b)

»Q » Ty 8
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The )\@Q and A q are modified influence functions, which account for a change
in the time at the stopping condition.

The integral terms of equations 97 and 98 may be compared with the convolu~
tion integral used for determining the response of a system to a continuous control
variable forcing function by first obtaining the impulse response functions, i.e.,

t
z(t) = f h (t - T) g(1) dr (99)
tO

where h (t - T) is the response of a system at time t due to a unit control vari-
able impulse at time 7. The function g(7) is the continuous control variable
forcing function and z(t) is the response at some arbitrary time t to that forcing
function.

If the arbitrary time is taken to be the final time T, and the forcing functions
are the perturbed control variables 6u, the functions k'wg G and A'wg G are
shown to be the responses of the final values of the payoff function and terminal
constraints to a unit impulse of each of the elements of du at some time t.

_ Variational equations. — For steepest ascent, the cont_rol variable history,
8u, that maximizes d¢ given by equation 97 for a given dy and d§2 = 0 is de-
sired. An additional requirement is that dU defined from

T
@du)2 = f su'(t) W ou(t) dt (100)
to

be chosen to ensure that the perturbations, (Sﬁ, will be small enough for the
linearizations leading to equations 84, 85, and 86 to be within reason. W is an
(m x m) symmetric weighting matrix chosen to improve convergence during the
steepest-ascent procedure. The automation of logic for the selection of (dU)2
and the weighting matrix are discussed in later sections.

The values of dy are chosen to bring the nominal solution closer to the de-
sired terminal constraints, $ = 0. Itis desirable, in many cases, to restrict
the change of constraints, di¥, allowed for each iteration,

The procedure now follows the calculus of variations using the method of

Lagrange multipliers. A linear combination of equations 98 and 100 with equa-
tion 97 gives
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T
dp = f Xpq G Sudt+ x'wn (t) BX (to)

to
T
+v' |dp - f x'wQ G dudt - My (to) 8% (to)
tO
T
+ 4| (@2 —f 6u' W 6u dt (101
t'0

or combhined gives

T
do = f [x'@g G-v x'wQ G -p 6u w] su dt

to
¥ [)\'@Q (to) - v >\'sz (to)] 5x (to)
+ v dp + 8 (@u)2 (102)

where v is a (1 x p) matrix of constant Lagrange multipliers, and K is a con-
stant. Both v and g can be chosen for convenience, since they were assumed
arhitrary.

Taking the variation of equation 102 with respect to the control variable gives

T
5(de) = f [(X'wg G-v Xy G -H 6u' W) 620 - 4 6%u W 5G]dt (103)
to

where 6x (to)> dz,LT , and dU are considered to be constants. Since this is a
scalar equation

820" W bu = bu' W 6% | (104)

i.e., the transpose is equal to the matrix where W is a symmetric matrix.
Therefore the expression for the variance of d¢ is reduced to

T
b(dep) = f [A'q;,g G-v Aypa G- 28 6 w] 62u dt (105)
t:0

The optimal de will occur where its variance is zero. Therefore, since 82u # o,

t

1
xgmG—v)amG—zu bu'w =0 (106)
Solving for du gives
- 1 -1
ou = 2“W G' (A0~ Azbﬂv) (107)
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where the ( )_1 indicates the inverse of a matrix. Substituting the expression
back into equation 98 and solving for V gives

-1 -1,z
= -2 d 108
V= lyy Tpe M Tyy 9P (108)
where _ _
df =dy - A'¢n(to) 8 x (to) (108a)
T 1
I M AGW ~G' A, dt 108b
pY tho $ ) (10%0)
T 1
= Al oa d
Iw ‘5;0 wnGW G Acpﬂ t (108c)
T -1
I¢¢= jto x¢0Gw G A¢ndt (108d)

In the computer program, reference is made to the 'T" matrix, which is
defined as

T 1 -1 1
I = AGW G Adt (109)
t0

where A is the n x (p + 1) matrix, which may be represented as a partitioned
matrix as

A= [A(pn . )\wa] (110)
nxl nxp

The I matrix can be partitioned as follows

|
1 ;I
1= |_ %P2 _1__¢¥ (111)
I LI
bo | Ty
1
This is a symmetric matrix since Ipy =1 ¢¢°°and 1 e is symmetric, where

Tow: Ly and I Py are defined by equation 108b, c, d.

Using the expression for V (equation 108) and the equation for 6u (equation
107), substituting into equation 100 and solving for p gives

1/2
roo-1
p=z3 Yoo " Yoo oy Teo (112)
2 2 =1 -1 -
(U)" - dB T, dB
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The Lagrange multipliers referred to in STOP are of different form than
those given by equations 108 and 112. For convenience, the 'first Lagrange
multiplier" in the program, U, is

9 1 - 1/2
s = 200 " F|Ipp -1 0150 1 (113)
00~ Yo PP PO
and the array of Lagrange multipliers are denoted by
=X -_puv 114
Vs ~ 24 Hs ( )

The form of the perturbed control variable (equation 107) therefore can be
written as

v

- K
6 = W G'A [—EJ (115)
S

The complete expression for §u can now be obtained by substituting the
equations for 4 and v into equation 107, which gives

2 -t 1 = 1/2
- -1 1 A -1 (dU) - dﬁ I¢$ dﬁ
Su(t)y =+« W ~ G (X - I,,.1,) .
oQ PO DY TP 1 1l
o Do Y Yo
-1 ! S
+ W GA¢QI¢¢dﬁ (116)

This equation is the foundation for changing the control variable to improve
the performance for each iteration. The payoff function change predicted for an
iteration is obtained by substituting equation 116 for 86U (t) into equation 97 for
de, giving

do = + [((dU)z _ap’ IJ):D d/_S)(IWp - I'WI'LI)IW)]UZ

1 .._1 - . —
* 1y Lyy 9B + A qlt) 8% (tg) (117)

where the + sign is used to increase ¢ and the - sign to decrease ¢. This pro-
cedure will give the optimum trajectory as discussed under the statement of the
problem. The method for perturbing the free initial condition 6x (ty) will be

discussed in a later section. The effects of varying the initial conditions enter
the problem through its effect on d 8 as well as 6X (to). :
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Automatic Convergence

Iterative procedure. — A major problem encountered in steepest-ascent cal-
culations is the choice of the step size, (dU)2. Too small a step results in regu-
lar, but slow convergence; too large a step results in irregular progress and
probable convergence failure. Therefore, to insure convergence in a minimum
amount of computer time, it is desirable to automatically select the largest step
size possible, per iteration, consistent with the linearity requirements of the
steepest-ascent technique. The selection technique used in this program is pat-
terned after a method developed by D. S. Hague (ref. 3).

A function f; (a payoff or constraint function) rarely is — nor does it have to
be — perfectly linear to be acceptable for steepest~ascent calculations. The
degree of linearity or nonlinearity is, however, important and is defined as

*
dii - dfj ,

INLy ~ ’ af; 118)

where fNLi is the degree of nonlinearity representing the percentage error of
the linear prediction to a parabolic approximation of the actual change of a pay-
off variable or a constraint. df;* is the actual change in f; and dfj is the linear
prediction of the change in f;. Both the degree of linearity and choice of the func-
tiva used to measure linearity must be chosen with care and are discussed below.

On a perturbed trajectory the predicted payoff function change is given by

/2
a = [(IW - Tyo 13} Tyo) (@07 - a¥' 155 d%)] + Typ Igy dw(ug)

2
Essentially the step size may be defined as a choice of (dU ) and d¥. Con-
sider the one parameter set of perturbations

@? = B (dup)? 120)
dP; = k dPo; 121)
where dUo2 and d¥p; are arbitrary nominal changes. It follows on substituting

equations 120 and 121 into equation 119 that
de (9 = k de, @22)
Here d®, is the change in performance resulting from the nominal step, (dUo)2

and d¥p;, which results from the choice of k = 1. Consider figure 9 where
the nominal step is denoted by the "trial" step and f; is any of the functions ¢

or {.
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Fiqure 9. PARABOLIC APPROXIMATION

The predicted linear variation with k is the straight line through the origin
and the point (1.0, dfy). For a small enough step the actual nonlinear change
will substantially agree with this line. As the step size increases the two results
will, however, tend to diverge. Suppose a parabola is fitted through the origin
and the point (1.0, dfo"j having the same slope at the origin as the linear change.
The equation of this parabola is

dF* = (@dio* - dfgk + df k 123)

Provided a trial step is reasonably chosen, this expression will approximate
the actual nonlinear change over a considerably greater region of step sizes than
did the linear prediction. Essentially, the combination of a trial result and the
linear prediction allow a second-order approximation to the variation of a function
with step size.

Assuming for the moment that df, > d:l:‘o*, and df, (0)/k > 0, we can antici-
pate from equation 123 that the greatest change in f will occur when

dfo

K ~ -
2 (dfp™ - dfo) (124)

Further, on substituting this result into equations 123 and 118, it follows that
at this point the nonlinearity, fNL , will be about 0.5. If the actual nonlinear
variation were to be parabolic this value would be the desired nonlinearity. In
practice, it has been found that this value is too high. Using 0.5 in conjunction
with the parabolic approximation leads to steps that are '"over the hump." Experi-
ence has shown that using a nonlinearity of fy;, = 0.3 practically eliminates this
problem and leads to satisfactory steps.

35



Now that a satisfactory degree of nonlinearity has been determined, the sec-
ond question, 'which of the fNL to use ?' has still to be answered. This is equi-
valent to deciding which of the functions of interest should be used to control the
step size. One approach is to control with the worst-behaved function, i.e., the
one whose nonlinearity is greatest. If this approach is taken, difficulties immedi-
ately appear. For example, it may be that only one function is behaving badly,
the remainder being extremely linear. In this case, small steps with resulting
slow convergence, or failure to converge, may result, Failure to converge here,
however, does not mean divergence, but that (dU)” is so significantly reduced due
to the nonlinearity of the control function that the changes in constraints and pay-
off functions become lost in computer noise. This results in negligible or random
variation of the constraint and payoff variables from iteration to iteration. The
conclusion is made, therefore, that the control must be made with the best be-
haved function, that is, the one having the most linearity.

To ensure that the remaining functions do not wander too far, various tests
are designed to maintain convergence consistent with the linearity requirements
of the steepest-ascent method. These tests, though based on experience to some
extent, have proven to be a successful means of ensuring convergence.

Majority vote test: The majority vote test consists of the examination of the
changes in the constraint and the payoff functions based upon the results of the
previous trial. Only those functions that are more than a specified tolerance
from their desired value are examined, If at least the same number of functional
changes are in the proper direction as those with adverse travel, then the test is
satisfied. Otherwise, the step size, (dU)2, is reduced and a new trial is com-
puted. The majority vote test, in addition to the adverse ¢ test discussed below,
is also used to determine whether or not a valid step is acceptable, prior to
going into a reverse integration of the adjoint equations of motion. A valid step
is performed after a limited number of trials or a successful trial and consists
of the forward integration of the equations of motion together with the partial deri-
vative calculations.

Step size coefficients: The step size coefficients are based on the func-
tional nonlinearities as shown in figure 9, Using the parabolic approximation,
the step size that causes the best-behaved function to have a nonlinearity of 0.3
is computed. If the resulting step size coefficient, k, fails to satisfy the condi-
tion 0.5 < k < 2.0, then a further trial at the upper or lower limit is undertaken.
Experience has indicated that these bounds are reasonable ones to impose on inter-
polation or extrapolation using the parabolic approximation.

Adverse @ test: The adverse ¢ test follows the calculation of the step size
coefficient. The test ensures that, if adverse travel occurs in the payoff function
©, it will not exceed a specified tolerance. When the adverse travel exceeds this
tolerance, the problem is regarded as too nonlinear and (dU)2 is again reduced,
followed by a new trial computation,
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Successful completion of the above tests is necessary to perform a valid step.
Other logic, however, is incorporated to force a valid step under certain circum-
stances. Such tests are discussed in the user's manual.

process.

Variable initial conditions. — The steepest-ascent technique determines, as
a by-product of the optimization process, a set of influence coefficients that defines
the perturbation of the payoff quantity per unit-step-change in the initial state
vector. The problem is to determine the correct direction to perturb the initial
conditions in order to increase performance on the next iteration. In addi-
tion, logic must be incorporated to guarantee convergence of the initial conditions
to their optimum values. It is usually desirable to allow the initial condition

vector to be free only in a bounded region.

The performance predicted for an iteration, given by equation 117, provides
the basis for selecting the optimum initial conditions. Consider the equation

o . C 1/2
de (T) = ﬂ=[((dU>2, - 8" 13y aB) (1o - o Ty I‘z"p)]
+ Ty Tgy 4B + Nogq (to) 0% (to) (129)

For a given problem solution, the payoff function has been optimized; that is,
de (T) = 0, the constraints have been met, dii = 0, and the initial conditions
are at their optimum values so that 6X (to) = 0. Then, since (dU)2 # 0, the
relation must hold that

Too = Tpo TGy Tpo = (126)

Now restricting this to the case where the constraints are met but the initial
conditions have not yet been optimized, equation 125 can be reduced to

ae @ =[(Noa (to) - Ly 1§} Apa (t0))]6X (to) @z27)
if it is assumed (as is the case for the optimum) that equation 126 holds.

This expression allows the variation of the free initial conditions for each
iteration but is exact only for the optimum path. The correct direction to perturb
X (to) is the direction to improve performance. In obtaining optimum perform-
ance, perturbation of each free initial condition is considered independently since
equation 127 shows that the effects of the perturbations are uncoupled.

Convergence is guaranteed by bounding the perturbations. The perturbation
size is controlled using the rule that if the perturbation is in the same direction
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for two successive iterations, then the value of the perturbation is doubled, or
halved if the pexturbation changes sign. The maximum initial condition change
per iteration and the limiting values are specified for each free variable.

Weighting functions matrix. — A cursory glance at the steepest-ascent method
might lead to the conclusion that the choice of weighting matrices is not a signifi-
cant problem, but in practice this is not always so. The control variables, for
example, may have widely differing abilities to affect the final values of the pay-
off and constraint functions. It is necessary, therefore, to differentiate between
powerful and weak control variables, based on their ability to affect the optimi-
zation functions, particularly in their ability to affect the payoff function. Even
with a single control variable, this problem remains, since along some subarcs
the control may be weak and on others strong.

£
8
D
B

Two bypcb of wcl.sul,xus are uupl..u:;u, Oli€ YeSuitinlg irom the differences
sensitivity of the multiple control variables and the other resulting fro dlffer—
ences in sensitivity of a single control variable along a trajectory. There are
two basic reasons for the use of weighting matrices. One is to speed up conver-
gence and the other is to ensure convergence, It is fairly obvious that a well-
chosen weighting matrix can improve convergence even in a well-behaved problem
that involves both a weak and a strong control variable. The steepest-ascent
process can be speeded up by forcing larger perturbations in the weak control
variable in the initial iterations, rather than waiting for the stronger one to con-
verge before making significant changes in the weaker one. What is not so
obvious is the fact that, without a reasonably chosen weighting matrix, it is pos-
sible that the steepest-ascent methced may fail to converge entirely. Generally,
it is a relatively straightforward process to develop the control history of a single
control variable until it lies within the neighborhood of the optimal solution, pro-
vided the problem does not involve weak and powerful subarcs.

However, the control history can only be developed into the neighborhood
of the optimum since there is a region about the optimal history in which the con-
trol variable is ineffective by definition. If the problem involves terminal con-
straints, however, it is only ineffective for those perturbations that leave the
terminal constraints unchanged. For a perturbation that merely seeks to gain
performance, it may well, and usually does, remain powerful. If now there are
two control variables, one weak, the other strong, it may be that even though the
strong variable is in the neighborhood of the optimal solution, it still dominates
the perturbations that occur as it alternates about the ideal solution. In this case,
the method may fail to converge the weak control variable at all, since the effect
of the weaker control can be completely obscured by the noise level of the stronger
variable. Further discussion on weighting functions is given in reference 3.

Control variable power: The control variable power is used as a basis for
determining a weighting function that will ensure convergence with respect to the
payoff function.
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The change in the payoff function resulting from a perturbation in the control
variable was given by equation 97

do _f AoQ G 01U dt +(A¢Q 6X)t= b a28)

(o]

For a unit impulse perturbation in the control variables 6t, it was shown
in a previous section that the response of the payoff function was

5 (do) = Mpg G (129)

where again A Ggisal x n matrix and G is an n X m matrix resulting in
0 (doy) as 2 1 x m matrix giving the response of the payoff function to a unit
impulse of each of the m centrol variables. The elements of & (dy) are referred

to as the instantaneous payoff function sensitivites and will be designated as
1

(s:f (t)>= X, qC (130)

These quantities measure the power of a control variable with respect to the
payoff function, provided no restrictions are imposed on the terminal constraint
changes.

The control variable perturbations are closely related to the instantaneous
payoff sensitivities. For the case with no terminal constraints, the control pertur-

bations are
2

6T =+ WG 1o (131)
- 0l oo

or in terms of the instantaneous payoff sensitivities

2
ﬁﬁ=¢w'1si’\/_(;‘_U)_ (132)
oo

Thus the optimum (steepest-ascent) perturbation varies directly with the
inverse weighting matrix and the instantaneous sensitivities. If terminal con-
straints are considered in the problem, the control variable perturbations are
(from equation 116 with fixed initial conditions)

) 5 a3 1 5 1/2
. -1 0 - du)” - dy'1
0T =2 W (su—G AwQIwwIzp@) [( VR ] (133)
-1, -1 -
+W G A%bglﬁblbdlb

The results above suggest an approach to the problem of false convergence.
The problem is due to small perturbations in the weak control variable. The
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inverse weighting matrix based on the control variable sensitivities can be used
to amplify the effect of the weaker control variables. Using this type of weighting
matrix, effectively the basis of optimization is changed from that perturbation
having the greatest change in the payoff function to that perturbation having the
greatest change in ¢ with all control variables being equally important and must
therefore be perturbed by a reasonable amount.

The possibility of failing to converge to the desired constraints is more re-
mote than that of failing to converge the payoff function. The dominant control
variables for the payoff function are very often the dominant control variables for
the constraints and hence will continue to be perturbed until the constraints are
achieved. The terminal constraints may often be met without the optimum con-
trol history. The failure to meet the terminal constraints is immediately recog-
nized whereas the optimum performance is verified only by starting from a con-
siderably dififerent nominal. Weighting matrices based on constraint sensitivities
(G' Ay p) and a mixed payoff and constraint sensitivity have been discussed by
Hague in reference 3 but are not considered here.

The overall control variable power may be determined by integrating the
instantaneous payoff sensitivities where the constraints are again ignored

-/
t

o

| s(s ) | at 134

The elements of this column matrix are referred to as the integrated payoff
sensitivities. Both the integrated payoff sensitivities and the instantaneous pay-
off sensitivities may be used as the basis for the weighting functions.

The instantaneous payoff sensitivities can be used to construct a weighting
matrix to balance weak and strong subarcs for a given control variable. The
integrated payoff sensitivities are used to obtain the weighting matrix to balance
the power of the multiple control variables. The matrix is of the form

m
-1 . .2_31 S(S.
[w..] = [1 +J—‘——1] i=1, 2, veo, m (135)
ii m -+ 1 S(p
u.

1

where the wj; are the diagonal elements of a square matrix. Note that when all
the control variables are equally powerful, i.e., Sg. = g%

_1 tp
__1 mS _
[Wii] = mtl [1 + S(p ] =1 (136)

the identity matrix.
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This weighting matrix will ensure that each control variable is perfurbed to
the same order. A time-varying weighting matrix based on the instantaneous
payoff sensitivilty can have the form

0
-1 ° Y max
[w.. ] = [1 + — J 137)
ii ©
s
Yy
©
where s is the largest value of s ‘é’ along the trajectory. This weighting

max
matrix was not automated in STOP since it was felt that a satisfactory matrix

could be input based on the knowledge of the problem by the user. This also
allows the user to weight regions of the trajectory as his experience dictates.

Nominal Trajectory Generation

The steepest-ascent method begins with a nominal flight generated by an

initial choice for the control variable history. Essentially, the only requirements

on the nominal flight path are that it meet the stopping condition and be in the
neighborhood of the optimum. A reasonable flight path can sometimes be gener-
ated open loop, that is, by inputing a table for the control variable history. In
many cases, however, it is difficult and time consuming to determine a control
table that will even meet the stopping condition. Therefore, capability is in-
cluded to generate closed-loop trajectories for the nominal. The nominal guid-
ance modes are shown in table I.

Table I: NOMINAL GUIDANCE OPTIONS

Mode Guidance Type Control Variable
0 8 =1f(t) 6
1 =0 6
2 o =1f(t) 6
3 v =1(t) 6
4 v =1£(t) C)
5 h=f(V) 9
6 h =f(M) 6
7 y=0 6
8 %=0 6
9 v=0 6

10 M= 0 6
11 V=0 n
12 M=0 n

The basic method for determining the control variable in STOP is a table
lookup of all the selected variables as functions of time. The function of the
~ guidance mode is to override the tabulated input value for one of the control
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variables. Therefore a control table must always be input with values for each
control variable. The values of the control variables in the table which will be
overriden may be a dummy value since it is not used. A brief discussion of
several methods for obtaining angle of attack or throttling is given prior to dis-
cussing each guidance mode. The three schemes are: (1) determine angle of
attack to produce a given ¥; (2) determine the angle of attack to give a required
V; and (3) determine the throttling parameter to produce a given V.

Angle of attack from known ¥ . — The equation of motion for flight path angle is
given by

.zg‘sina+1)cosqo_(_g__ﬁ?_

2 m Vg VR ‘r) R

2
LW

r . . .
Vr cos B (cos B cos YR * sin B sin YR Sin "bR)

+2 wcos B cos PR (138)

or for simplicity

,>-/= (T sin@ + 1.) cos ¢ +

GF 139
R m VR

where

A" 2
GF = - (—Vg; - %) cos yp + wVRr cos B (cos B cos yR

+ sin B sin yp sin Yg) + 2 weos B cos Py (140)

If the angle of attack and bank angle are small so that & = sina and cosp =1,
equation 139 can be written as

. (T +Lg)a+ Lo
Y= m Vg

+ GF (141)

For a given ‘;/, the angle of attack required is obtained by solving equation
141 for o,

_ (‘)’req - GF) m VR - La:O
«= T + L, (142)
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Angle of attack for a known V. — The angle of attack for a required V is
based on equation 35

=Tcosoz—D

req m - g sin yR

+ w2 r cos B (cos B sin YR - sin B cos YR sin YR) (143)

or for simplicity

. _Tcosa-D
req = - + VF (144)
where
VF = - g sin yg + w2 r cos B (cos B sin yp - sin B cos YR sin ‘PR) 145)

Making the assumption that cos o ~ 1 - «2/2 and expanding the drag in
terms of angle of attack gives

D =D, + D; o + Dy a2 (146)

where

aCy ;
D = 4 — -
0 [CDO aC 12 Cre-o CLM):,q S

acC
acC
- D 2

Equation 144 can be written as

. T—DO-Dla-(z£+D2>az
Vieq = - + VF

47

For a given ‘}req’ the angle of attack can be obtained by solving the quadratic
equation

T .
(E+D2)a2+D1a+(Vreq—VF)m—(’I‘—DO)=O (148)

Equation 148 yields two values for az. The larger value is used since it
represents the usual case,

In some cases the V required may be larger than the maximum V that can
be attained. In this case the best that can be done is to fly at the angle of attack
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for maximum V. This indicates that the input h - V or h - M curves exceed
the capability of the vehicle through adjusting V. The angle of attack for maximum
V is obtained by setting

-D1 - 2(_IZ+D2)Q

=0
— 49
and solving for «,
Dy
o= - T
T (150)
2 (2 * DZ)
Throttling for a known V. — The equation for thrust is given in general as
Poo Ae
T=|Kp Tyge "~ 5 ) cos & (151)
T T L4
Solving for m gives T P, Ae
+
_ cos bc 144
KT Tyac (152)

where T is obtained by solving equation 144

(Vreqg =~ VF) m + D
- cos o (153)

T

Substituting into equation 152 gives
(Vreq—VF)m+D+Poer
cos ¢ cos ¢ 144
K1 Tyac

n = @54)

There are no approximations here since T is defined as a linear function
of n.

Guidance Modes. — Each of the nominal guidance modes, given in table I, is
detailed below. Modes 3 through 10 calculate the 6 control variable from
8=qa+vy.

Mode 0: This open-~loop guidance table is used as it was input by the user.

Mode 1: The angle of attack is zero. The control variable 6 is obtained by
6=y (155)

Mode 2: The program interprets the first control variable input in the control
table as angle of attack for the nominal trajectory only. The control variable 8
is calculated as
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Mode 3: This mode calculates 8 where the flight path angle is given as a
function of time by a guidance table input, and uses the techniques of calculating
the angle of attack required to fly a given 7y (equation 142). The required vy is
obtained by

. _. _U-vp
Yreq ~ V1 At @57
where ')'/I is the slope of the input v with respect to time

v is the state variable
Y1 is the desired flight path angle from the input table

Lt is an increment of time to correct for the y error (currently
At = 1 sec)

Mode 4: This mode calculates 8 when the y is given as a function of time
by a guidance table input. The angle of attack is calculated by equation 142 from
the ¥ in the guidance table.

Mode 5: This mode calculates 6 where the alj:itude is given as a function of
velocity by a guidance table input. The required V is obtained from

. h
v = ———— (158)
req  (dh/dV)peq
The desired h -~ V curve is flown by adjusting angle of attack to give the
proper V. Inaccuracies in the numerical procedure may cause drift from the
desired h - V. This is compensated by adding a feedback term as

b - hipou)
(@hog ™ o * 10 a59)

The + sign is used for descent phases and the - sign is used for ascent along
the h - V or h - M curves. The angle of attack is obtained from equation 148,

Mode 6: This mode calculates 6 where altitude is given as a function of
Mach number by a guidance table input. The slope dh/dM is obtained from the
input data. The technique of mode 5 is used where

) = G
= == (o 160)
(dV input a2 \dM input

where a is the speed of sound along the flight path

Mode 7: This mode calculates 6 which produces v = 0. Equation 142, for
calculating angle of attack for a given ¥, is used as in mode 4 but no input guid-

ance table is required. 46



Mode 8: This mode calculates 6 which will give v = 0. The method described
under mode 3 is used but no guidance tables are input, If the flight path angle is
not zero at the start of the phase, the feedback term causes the vehicle to pitch
until v = 0.

Mode 9: This mode calculates @ for which the flight path acceleration (\./)
is zero. Eguation 148 is used to calculate the angle of attack for which Vv = 0.

Mode 10: This mode calculates A for which the Mach number is constant.
The requirement of M = 0 is obtained through a Vyeq. Since V.= M a

° aa-
V=tMa+Mpgh @61

which, since M = 0 for this mode, reduces to

Vyeq = M 5. b (162)

The angle of attack is obtained from equation 148.

Mode 11: This mode calculates the throttling (7)) for constant velocity, The
throttling is calculated from equation 154 for Vyeq = 0.

Mode 12: This mode calculates the throttling (1) for constant Mach number.
The throttling is calculated using equation 162 for Vreq and equation 154,

Use of guidance options — A nominal trajectory generation relies on the user
to input various modes that will take the vehicle to the stopping condition. The
flight path is divided into various guidance phases, each controlled by one of the
guidance modes described above. A phase ends upon reaching an input value of
any of the 85 state, auxiliary, and control variables or time. The number of phases
is limited to 12, of which only 5 can use the input tables reserved for guidance
modes. The tables required for modes 0 and 2 are not included in the five
reserved tables. An example statement of a guidance phase buildup is:

Phase 1. Fly a prescribed h - V (mode 5) to an altitude of 30, 000 feet

Phase 2. Fly a y = -0.2 degree per second (mode 4) and decrease to a y of
0 degree

Phase 3. Fly at constant velocity using throttling as the control variable (mode
11) to a range of 1000 nautical miles

Phase 4. TFly a y = -0.2degree per second (mode 4) decreasing to a.y of
-1 degree

Phase 5. Fly a prescribed h - V (mode 5) to a velocity of 500 feet per second.
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The generation of nominal trajectories using modes 3 through 10 is limited
to vehicles with aerodynamics given by

CL =CL,-¢*CL,® (163)
Cn = C ®p (c C )2 64
= + -
D~ Do " 5c;2 VLT Vlm (164)
or
Cy = CLa o (165)
aC
_ D 2

and thrust is independent of angle of attack. This restriction is made because the
amount of computer time required to generate a nominal can be reduced by using
the simpler representations given in equations 141 and 147.

Additional Options

Several options are included in STOP which permit the user to optimize
special problems with fewer inputs than required in the usual sense. These are
referred to as the gamma tilt, maximum payload, and circular satellite options.
Each is discussed briefly below.

Gamma tilt. — The gamma tilt option is required for vertical takeoff (VTO)
boosters. The tilt angle, 14, is input as a function of time in a table. Termi-
nation of the tilt maneuver is accomplished by a stage stopping time; consequently,
the tilt maneuver must be counted as a stage. If flight path angle, v, is selected
as a free initial condition, then the perturbation on 7y occurs at the end of tilt.

Circular satellite. — This option permits the usage of relative circular
satellite veloeity, Vg, » as a stopping condition or constraint. The option
eliminates the calculations by the user as given below

1/2
- 2 . 2
VcSR = [(rD weos B - VCSI cos gbI) + (VCSI sin qu) ] @en)
M
where Vcs1 = 5
and
B o= 14,081718 x 101°
rn = desired final radius
48 )
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Maximum Payload. — If weight is the payoff variable and also a free initial
condition, then the program will add payload and adjust the last-stage propellant
weight at launch so that the burnout weight will be a maximum. A plot of payload
versus last-stage propellant illustrates the manner in which this option operates
(figure 11).
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Figure Il.  MAXIMUM PAYLOAD OPTION

Notice that when the fuel required for maximum payload is less than the
maximum last-stage propellant, the true maximum payload is attainable. Other-
wise, the payload limit is restricted by the amount of fuel the last stage may hold.

Conclusions and Recommendations

The computer program developed for the contract meets all requirements of
the statement of work (ref. 1) and in addition has the capability to select the opti-
mum initial conditions for a case with free initial conditions.

For multistage vehicles, the staging times must be input in the present
program. It would be desirable, in a future modification, to have the optimal
staging capability using the algebraic steepest-ascent method that allows staging
on variables other than time. This option would permit optimization of coast and
burn times to increase performance and give added flexibility to the program.

Multiple-vehicle capability is also desirable in a program of this type. This
would enable optimization of intercept problems involving fighter aircraft, rendez-
vous between spacecraft and satellites, space rescue, etc.
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PROGRAM USER'S MANUAL

Program Assumptions and Limitations

The assumptions and limitations that were made in the development of STOP
are detailed in this section. The manner in which the assumptions affect the
utility of the program are indicated. The effects of the limitations on the prog-
ram are apparent.

Assumptions. — Simulation: The basic assumption for STOP is that the
vehicle is represented as a point mass lifting body. This precludes any effect
of the vehicle short-period dynamics on the optimum flight path. The results
of the program in optimizing the flight path for a vehicle having high pitch rates
have not been thoroughly substantiated. For aircraft and most boosters, the
pitch rates do not affect the optimal results appreciably.

Earth model: The earth is assumed to be a rotating sphere with an inverse-
square gravity field. The effect of the differences between the actual and assumed
earth representation on the optimum flight path are small for the type of vehicles
for which the program is designed.

Aerodynamics and propulsion: The aerodynamics and propulsion data for
the vehicle can be input in several ways, depending on the availability of the
data or type of vehicle. The most used aerodynamic representation for aircraft
is the drag polar and lift as a linear function of angle of attack.

Generation of nominal flight paths: The generation of nominal flight paths
by STOP for modes 3 through 10 assumes the drag polar and the linear lift
representation and that thrust is not dependent on angle of attack. This restric-
tion is not considered serious because this is the most common aerodynamic and
thrust representation for aircraft. A method using more general aerodynamics
and engine data can be formulated but the calculations require iterative procedures
and are very time consuming.

Control variables: The control variables selected for STOP are pitch angle,
bank angle, throttling, and wing sweep. The pitch angle is definedas g = y + «.
The bank angle is used to perform out-of-plane maneuvers and assumes coordinat-
ed turns with no slideslip. Note that, for nonzero bank, 6 is not a physical angle.

Payoff, constraints, and stopping conditions: The steepest-ascent procedure
as formulated for STOP allows only state variables to be used as the payoff,
constraint, and stopping functions. Enroute placards are formulated as auxiliary
state variables for which terminal constraints are applied.
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Atmosphere: The earth atmosphere is input as a single subroutine, using

Staging: The trajectory can be staged only on time. Weight jettisons can
be performed only at staging.

Limitations. — State variables: The number of state variables is limited
to 15. These may be selected from the 20 state variables defined by equations
of motion and 20 state variables defined by enroute constraints. Altitude,
flight path angle, and velocity must always be selected.

Control variables: The maximum number of control variables is four.
Pitch angle, bank angle, throttling, and wing sweep are incorporated.

Constraints: A maximum of 13 constraints plus a stopping condition can be
imposed on a problem. Of the 13, the number of enroute constraints is limited
only by the number of data tables allowed for input of maximum and minimum
placards. Twenty tables are reserved for the placards, which allows a maxi-
mum of 10 placards.

Stages: A maximum of 14 computer stages are permitted. The number of
physical stages is not necessarily the same as the number of computer stages.

Data deck: A maximum of 1000 data cards are allowed for tables 1 through
30 plus 31 through 34 for any stage.

Equations of motion: The point mass equations of motion include the follow-
ing limitations

Y =0 if lVR‘ < 100 fps or during a tilt maneuver
$ =0 if |[Vg| < 100 fps or

|90 = yg| < 0.1 degrees or

|90 + B | < 0.1 degrees
X =0 if |90 + B I < 0.1 degrees.
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Input Data Preparation

The following section presents a brief listing of the purpose of each of the
nine (9) card sets that make up the Input Data Deck. This is followed by detailed
instructions for preparing the data deck for a problem solution. Comments and
notes are included to give the user further information to aid the setup. Prior
to sending the data through the computer, it should be checked for the most com-
mon errors made in data preparation, as discussed under "Trouble Shooting. "

Input Deck Summary — The Input Data Deck is composed of nine (9) card sets
of which card sets 1 through 5 and 9 are required. Card sets 6, 7, and 8 may or
may not be included in the Input Data Deck, depending on the problem to be solved.

Card Number Reference

Set of Cards Pages Purpose

1 1 53 Title

2 1 53 Print and Storage frequencies, type of solution,

number of iterations and computer stages.

3 1-23 54-63 These cards, by use of control (NC) numbers,
(See also define the input options, output options, the
figs, 12 state, auxiliary, and control variables as well
and 13) as the use of a number of special-purpose op-

tions. Included in this selection are the equa-
tions of motion and the enroute placards.

4 3-5 64-65 Initial condition data including various physical
constants, value of stopping condition, integra-
tion error limits, stopping condition tolerance,
DUSQ, and initial values of the various state
variables.

5 8-16 65-66 Computer stage dependent parameters such as:
initial weight, final stage time (trajectory time),
aerodynamic reference area, nozzle cant angle,
total impulse correction factor, weight flow
correction factor, inert weight flow and mini-
mum allowable integration step.

6 0-13 66-67 Constraint dependent parameters; desired values
and final tolerances for the various terminal
constraints and enroute placards.

7 0-7 67 Free initial conditions, inputs maximum and
minimum value and initial increment per iter-
ation of each free initial condition.

8 0-12 67-68 Nominal guidance data; defines the various op-
tions used in the nominal trajectory generation
for each stage.
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Card Number Reference

Set of Cards Pages Purpose
9 2-58 68-76 All the tabulated input such as control function,

weighting function, gamma tilt program, en-
route placards, aerodynamic data (lift, drag,
etc.), and engine data.

Preparation-— The following are detailed instructions for preparing the data
deck for a problem solution:

Card Set 1
Title Card Format A72 1 Card
Card 1
The contents of this card will be printed at the start of the case. It may contain

any desired information in columns 1-72 or left blank, but it must be the first
card in the data case.

Card Set 2

Controls Format 1415 1 Card

Card 1

Column Name Description

1-5 IPRNT1 Printout of forward trajectory occurs every IPRNT1
integration steps.

6-10 IPRNT2 Printout of influence coefficients occurs every IPRNT2
integration steps during backward integration if NC(7) = 1.

11-15 ISTOR1 Storage of time, partials, and plot data occurs every
ISTOR1 integration steps along forward trajectory. (Recom-
mended value = 1 for rockets, 2 for airbreathers.)

16-20 ISTOR2 Storage of impulse response functions occurs every
ISTOR2 integration steps along backward trajectory.
(Recommended value = 1 for rockets, 2 for airbreathers.)

21-25 NARBY Degree of problem solution indicator

= 0 Integrate nominal trajectory only and quit

1 Integrate nominal trajectory and backward trajectory
only and quit

2 Iterate

(NARBY = 2 required for optimization)
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Column Name Description

26-30 NITC Maximum number of iterations
31-35 MSTAGE Number of (computer) stages
(1< MSTAGEX 14)

Card Set 3
NC Controls Format 1415 1-23 Cards

Each card contains seven pairs of integers. The first integer is the index of the
NC to be set and the second integer is the desired value of the NC. Every card
must contain seven pairs of integers, except the last card. The NC's may be in-
put in any order. The reading of the NC's is terminated by a blank field in col-
umns 61-65 of the last card. Thus, if the number of NC's to be read is not a
multiple of 7, the last card will contain one to six pairs of integers. Otherwise,
the last card will be blank. The explanation of the NC's is as follows. NC's not
read in will be zero.

NC Index Name Description

1 NC(1) Plot paper option
= 0O use 11 x 17 millimeter paper
= 1 use 8-1/2 x 11 millimeter paper

2 NC(2) Not used

3 NC(3) Plot identification option
ORTHOMAT (NC(11)< 0)

= 0 Use symbols
1 Use colors

SC 4020 (NC(11)>0)

= 0 9 x 9 vellum only

= 1 microfilm only

= 2 9 x 9 vellum only

= 3 9 x 9 vellum and microfilm plots
4 NC(4) Number of constraints + 2

(Count both terminal constraints and enroute placards)

(2< NC(4) < 15)

54



NC Index Name

5

6

7

8

9

NC(5)

NC(6)

NC(7)

NC (8)

NC(9)

Description

Number of free initial conditions

A7 aVa=2

NC(9) 7

IA

0

IA

Note: If a tilt maneuver is selected (NC(14) = 1), and if
gamma is a free initial condition, then the free initial
condition will be applied at the end of tilt (start of com~
puter stage 2)

Maximum payload option

= 0 Ignore option

= 1 Last-stage propellant will be limited to the maximum
last-stage propellant (MLSP, input in CARD SET 4).
Weight must be a free initial condition for this option and
NC(19) = 1 is required.

Note: If NC(6) = 0 and NC(19) = 1, final weight is
maximized by minimizing last-stage fuel,

Influence coefficient print option

= 0 Do not print influence coefficients
= 1 Print influence coefficients

(Usual value = 0)

Punch option

= 0 Do not punch control and restart tables used for last iteration
= 1 Punch control and restart tables used for last iteration

(Usual value = 1)

Notes: 1) If a guidance mode is selected (NC(13) >0)
for a nominal trajectory (NARBY=0), then if
NC(8)=1, STOP will punch a control table
(table 0), which may be used to generate the
same trajectory open loop (NC(13)=0).
2) The control table punched by STOP is in
octal (Format 6 @ 12).

Extremal option

= 1 maximize payoff variable
-1 minimize payoff variable
0 solve boundary value problem

I

n
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NC Index Name

10

11

12

13

14

15

16

NC(10)

NC(11)

NC(12)

NC(13)

NC(14)

NC(15)

NC(16)

Description
Circular satellite option

= 0 Ignore option

-1 Stop on V,g at desired final altitude. (NC(18) = 4
is required t%r this option

N Nth constraint is V= V¢

This requires NC(N+19)=4

1l

it

Plot option

= 0 Do no plot

= N Plot first, last, and every Nth iteration on SC 4020
plotter

-N plot first, last, and every Nth iteration on ORTHO-
MAT plotter

1t

Note: Only stored points are plotted.
Numerical partial check option

= 0 Do not check partials
N Check partials every Nth stored integration step and
printout analytical and numerical values

(Usually NC(12) = 0)
Nominal trajectory guidance mode option

= 0 Open loop (control history from table 0)
= N Closed loop, N phases (see card set 8 if NC(13) > 0)

(Usually NC(13) = 0), 1S N<12

Tilt maneuver option

= 0 Do not use tilt maneuver

1 Use tilt maneuver for stage 1 (table 2)

(NC(14) = 1 for VTO systems) and the tilt maneuver
counts as a stage

I

Skin friction option

0 No CDF
1 Hyef, 8Cp/é H =1 (M). This requires that table 23
be input

Control table input option

= 0 input decimal table
= 1 input octal table

Note: NC(16) =1 is required to accept tables punched by
the program
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NC Index Name

17

18

19

20

33

34

46

NC(17)

NC(18)

NC(19)
NC (20)

NC(21)

1
H

!

NC(32)

NC(33)

NC(34)

NC (46)

Description

Restart table option

= 0 No restart table (use for nominal trajectory)
= 1 Input restart table after table 0

Note: A restart table is obtained whenever a control variable
table is generated by the program as a result of previous
iterations. See punched card output discussion.

State variable index for stopping condition (figure 12,
column 2). See input instructions check list.

State variable index for payoff quantity (figure 12, column 2)
State variable index for first constraint (figure 12, column 2)

State variable index for second constraint (figure 12, column 2)

State variable index for 13th constraints (figure 12, column 2)

Note: Enroute placards are state variables and count as
constraints. See figure 12 for list of state variables.

Engine option for stage 1

Engine option for stage 2

Engine option for stage 14

Note: The engine option for each stage is input as a two-
digit number. The left digit specifies the type of thrust
table as follows:
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86

VARIABLE | VARIABLE [N [PLor  |ForTRAN [symsoL | pESCRIPTION UNITS
TYPE INDEX INDEX | INDEX | NAME
STATE 1 r1 |1 X(K1) W WEIGHT 18
(EQUATION | 2 2 |2 X(K2) H ALTITUDE FT
OF MOTION) | 3 123 |3 X(K3) Y RELATIVE FLIGHT PATH ANGLE DEG
4 124 |4 X(Kd) v RELATIVE VELOCHTY FPS
5 25 |5 X(K5) B LATITUDE ANGLE DEG
6 126 |6 X(K6) YR RELATIVE HEADING ANGLE DEG
7 21 |7 X(KD) A LONGITUDE ANGLE DEG
8 128 |8 X(K8) ) DUMMY TIME SEC
9 129 |9 X(K9) RNG PATH RANGE ALONG FARTH'S SURFACE NM
10 B0 |10 X(KI0 | AHI AERODYNAMIC HEATING INTEGRAL FT-LBIFT
1l Bl |1 X(K1D) AV IDEAL RELATIVE DELTA VELOCITY FPS
12 ET I AY) xkiz et GRAVITY LOSS FPS
13 13 |13 X(K13)  {DL DRAG LOSS FPS
4 B4 |14 XK1 [Tvt THRUST VECTORING LOSS EPS
15 135 |15 X(K15 | ER RELATIVE SPECIFIC ENERGY FT
16 136 |16 X(K16)
g g; g i:,’gg AVAILABLE FOR EXPANS ION
19 139 19 X(K19) NOT DEFINED
1L 20 140 |20 X(K20) )
STATE 2 W |2 Xy {or PITCH ANGLE PLACARD - Fit) DEG,SEC
(ENROUTE |22 142 |2 X(k22)  [or BANK ANGLE PLACARD - Fit) DEGSEC
PLACARD) |23 s |5 X(k23) |7 THROTTLE PLACARD » F(H,M) SEC,
2 LTI P X(K24)  |A* WING SWEEP PLACARD = FIH,M) DEG,SEC
2 us |25 X5  |a ANGLE OF ATTACK PLACARD = F(H,M) DEGSSEC
26 46 |2 X(K26) NOT DEFINED
27 w |z X(kzd | Hoe ALTITUDE RATE PLACARD = Fit) FPs
28 48 |28 X(K28) Q DYNAMIC PRESSURE PLACARD - Fif) (PSFL, SEC
29 49 |29 X(K29 | Q* DYNAMIC PRESSURE PLACARD = F(M) (PSFI*SEC
30 150 |30 X(K30 | Qa® Qa PLACARD = F(M) {PSF-DEGIZSEC
3 51 |31 X(K3D | TEMT* | TOTAL TEMPERATURE PLACARD = F(t {°RIZSEC
32 52 |32 X032 | N NORMAL LOAD FACTOR PLACARD = F{H. M) SEC_,,
33 153 |33 X(K33) | RPA* | RESULTANT PHYSIOLOGICAL ACCEL. PLACARD - Fit) | (FT/SECH®SEC
34 154 |34 X34 | He ALTITUDE PLACARD = F(M) FTSSEC
35 155 |35 X(K35) | Ape SONIC BOOM OVERPRESSURE PLACARD - F(x,8) (PSF)2SEC
36 156 |36 X(K36) M MACH NUMBER PLACARD = FiH) SEC
37 157 |37 X(K37) NOT DEFINED )
38 158 |38 X(K38) | GAMMA PLACARD = FIH, M) DEG® SEC
39 159 |39 X(K39) NOT DEFINED
y 40 160 |40 X{K40) NOT DEFINED

FIGURE 12: STATE VARIABLES




Digit
—_——

© 00 =9 O o s~ W

Digit

w N O

Thrust Option

Thrust Table

Coast (no thrust table)

Vacuum thrust (1b), nozzle exit area (inz), vacuum specific
impulse (sec) = F (stage time). Table format 1 for 3 depen-
dent variables

Vacuum thrust (1b), nozzle exit area (inz), vacuum specific
impulse (sec) = F (total time). Table format 1 for 3 depen-
dent variables

T = F (a, H, V)
T = F (&, H, M)
T = F (a, M, H)
LR Bty
CT = F (a, H, V)
CT = F (a, H, M)
CT = F (a, M, H)

Note: (1) P is atmospheric pressure for option 6; (2) For
thrust options 3 through 9, the number of engines is input
in columns 11 to 20 on the first data card in table 31. If
this field is left blank, STOP will assume one engine. The
thrust from table 31 (and fuel flow from table 32 if a WDOT
option is selected) will then be multiplied by the number of
engines.

The right digit specifies the type of fuel flow table as follows:

Fuel Flow Option

Fuel Flow Table

Coast (no fuel flow table)

WDOT = F (H, M, n)
SFC = F (n, H, V)
SFC = F (o, H, V)

Table format 2 for one, two, or
three independent variables
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Digit

O 00 3 & U

NC Index Name

47  NC(47)
48  NC(48)
t

1
1 1
1

1]
60  NC(60)

NC Value

Fuel Flow Table (Continued)

WDOT = F (7, H, V)
WDOT/P = F (H, M, 1)
SFC = F (1, M, H) Table format 2 for one, two,
SFC = F (a, M, H) or three independent variables
WDOT = F (n, M, H)

WDOT = F (a, M, H)
Note: P is atmospheric pressure for option 5
Description

Aerodynamics option for stage 1

Aerodynamics option for stage 2

Aerodynamics option for stage 14

Note: The aerodynamics options available are given below
and are identified by the value assigned to NC(47)- NC(60).

Aerodynamic Option

Aerodynamic Table

Vacuum (no aerodynamic table)

CD = F (H, M, a)
CL = F@#H, M, o)

CD = F (A, M, &)
CL = F (A, M,a)

CD,, #CD/ 8CL2 oCL/8 0 = F (M)
CA, 6CN/aa, 9CN/oa3 = F (M)

CD,, 6CD/8CL% CL i, » 9CL/8@, CLg=o=F (A, M)
: drag

Note: (1) Options 1 and 2 use table format 2 for one, two, or
three independent variables; (2) Options 1 and 2 require two
tables —the first is a CD table; the second, a CL table;

(3) Options 3 and 4 are table format 1 for three dependent
variables; (4) Option 5 uses table format 3 for two independent
and five dependent variables; (5) CDg in option 5 is CDyin;

(6) All angles and slopes are in degrees.
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NC Index Name

61
62
63
64

1
1
t

73
74

75

76
7

78

79

80

81

82

NC(61)
NC(62)
NC (63)
NC (64)
NC(73)
NC (74)

NC(75)

NC(76)
NC(77)

NC(78)

NC (79)

NC (80)

NC(81)

NC (82)

Description
Index of dependent variable for 1st plot

Index of independent variable for 1st plot
Index of dependent variable for 2nd plot

Index of independent variable for 2nd plot

Index of dependent variable for 7th plot
Index of independent variable for 7th plot
Note: See figures 12 and 13 for plot index

Sonic boom placard option (Table 30 must be input)

0 Planar sonic boom
N Area sonic boom

i

N is number of points to be used along the shock to deter-
mine the placard violation. N must be odd and greater
than one. (Recommended value is 7.)

Not used

Pitch angle option

I

0 Do not use pitch angle
1 Use pitch angle

i

Bank angle option

= 0 Do not use bank angle
1 Use bank angle

il

Engine throttling option

0 Do not use throttling
1 Use throttling

i

Wing sweep option

= 0 Do not use wing sweep
= 1 Use sweep

AK (1) print option

0 Do not print AK (1)
1 Print AK (1)

I

AK (2) print option

= 0 Do not print AK (2)
1 Print AK (2)
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(4]

VARIABLE | VARIABLE | NC PLOT | FORTRAN | SYMBOL| DESCRIPTION UNITS
TYPE INDEX INDEX | INDEX | NAME
AUXILIARY |1 8l |4l AK(D T THRUST I8
PRINTOUT |2 2 |4 AK(2) L LIFT LB
3 8 |8 AKG) D DRAG B
4 4 |4 AK(4) Q DYNAMIC PRESSURE PSF
5 B |4 AKG) M MACH NUMBER —
6 8 |46 AK{6) GCR | GREAT CIRCLE RANGE N M
7 & |4 AK(D WDOT | WEIGHT FLOW LBISEC
8 88 {48 AK(B) Vi INERTIAL VELOCITY FPS
9 8 |49 AK(9) 14 INERTIAL FLIGHT PATR ANGLE DEG
10 9% |50 AKIG [ ¥1 INERTIAL HEADING ANGLE DEG
1 9 |51 AKLD e ANGLE OF ATTACK DEG.
12 2 |5 AK(12 | TEMP | TOTAL TEMPERATURE °R
13 B |3 AKI) [ VA SPEED OF SOUND FPS
u M |54 AK(4 | P AMBIENT PRESSURE PSF
15 % |5 AKS) | P AMBIENT DENSITY SLUGHFT
16 % (56 AKQ6 | TEM AMBIENT TEMPERATURE °R
Y 9 |57 AKLT | wm WEIGHT (METRIC) NEWTONS
18 ® |58 AK(® ] HM ALTITUDE (METRIC) METER
19 %[5 AK(19 | RPA | RESULTANT PHYSIOLOGICAL ACCELERATION FTISEC
20 100 (60 AKRD | N NORMAL LOAD FACTOR —
2 101 |61 AKZD | Qa DYNAMIC PRESSURE TIMES ANGLE OF ATTACK PSF-DEG
22 w (e AKRZD | 6 LOCAL GRAVITY FTISEC
3 8 (6 AKEZ3) | R RADIUS VECTOR FT
2 1M (e AR | AP SONIC BOOM OVERPRESURE PSF
% 105 |65 AKZS | cL LIFT COEFFICIENT PSF
2 106 |66 AK26 | CD DRAG COEFFICIENT
u 107 |67 Ak@n | UD LIFT/DRAG RATIO
28 108 [68 AKZ8 | SFC SPECIFIC FUEL CONSUMPTION VSEC
29 109 |69 AKR9) | VM RELATIVE VELOCITY (METRIC) MISEC
30 m {7 AKGD | ™ THRUST (METRIC) NEWTONS
31 u (i AKBD | LM LIFT (METRIC) NEWTONS
32 w | AKG2) | DM DRAG (METRIC) NEWTON
3 8 (73 AKG3 | QM DYNAMIC PRESSURE (METRIC) NWTS/M
34 14 (74 AK(34) | WDOTM | WEIGHT FLOW (METRIC) KGFISEC
35 5 (7 AKBS) | vim INERTIAL VELOCITY (METRIC) MISEC
| 3% 16 |76 AKB6l | QaM | DYNAMIC PRESSURE TIMES ANGLE OF ATTACK (METRIC) NWI-RADIMZ
i 131 w o fn AKGT)  JAPM SONIC BOOM OVER PRESSURE (METRIC) NWTS/M?
‘ ! gg 15 78 AK(;g) SFCM | SPECIFIC FUEL CONSUMPTION (METRIC) KFGINWT-SEC
' 1 79 AKG9)
v 2 120 |80 AKI40) > NOT DEFINED
| contROL {1 7|8 U 6 PITCH ANGLE DEG
|2 B R T BANK ANGLE DEG
|3 9 |8 TET ENGINE THROTTLE —
|4 80 &4 vag (A WING SWEEP ANGLE DEG
INDEPENDENT | - - 8 T @ TIME SEC

FIGURE 13 AUXILIARY,

CONTROL AND INDEPENDENT VARIABLES



NC Index Name

120

121

122

140

141

142

160

NC (120)

NC (121)

NC (122)

1
4

NC (140)

NC(141)

NC (142)

NC(160)

Description
AK (40) print option
= 0 Do not print AK (40)
= 1 Print AK (40)
X (1) state variable option

= 0 Do not integrate X (1)
= 1 Integrate X (1)

X (2) state variable option

= 0 Do not integrate X (2)
= 1 Integrate X (2)

X (20) state variable option

= 0 Do not integrate X (20)
= 1 Integrate X (20)

X (21) state variable option

= -1 Observe minimum placard

= 0 Ignore placard

= 1 Observe maximum placard

= 2 Observe both maximum and minimum placards

X (22) state variable option

= -1 Observe minimum placard

0 Ignore placard

= 1 Observe maximum placard

= 2 Observe both maximum and minimum placards

X (40) state variable option

= -1 Observe minimum placard

= 0 Ignore placard

= 1 Observe maximum placard

= 2 Observe both maximum and minimum placards

Note: (1) Figures 12 and 13 list state variables and AK's; (2)

X (2), X(3), and X (4) must always be selected; (3) Two tables are
reserved for each placard in the order selected, beginning with
table 3; (4) Two tables must be input for a placard only if table
format 2 is required and both max and min are . to be observed.
Otherwise, one table is required; (5) For table format 2, the odd
numbered table is reserved for the min placard, the even num-
bered table for the max placard; (6) For table format 1, both
limits are always input in the odd numbered table with min plac-
ard first; (7) A maximum of 15 state variables may be used.
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Initial Condition Data

Card 1

Column Name
1-10 XSTP
11-20 GR
21-30 RO
31-40 . OMEGA
41-50 GO
Card 2

1-10 DUSK
11-20 FINNER
21-30 BINNER
31-40 EPSLN

Card Set 4

Format 7F10 3-5 Cards

Description

Desired value of stopping condition (checked in last stage only)

Earth gravitational constant times 10”18 (Recommended
value = 14. 081718)

Earth radius (feet) (Recommended value = 20,902,992)

Earth rotational rate (rad/sec) times 104 (Recommended
value = 0. 72921152)

Sea level gravity (ft/secz) (Recommended value = 32.174)

T
Initial value of f 60 W 6u dt (may be left blank)
to
Forward trajectory integration error limit for variable
step integration (Recommended value = 18 for rockets,
15 for airbreathers)

Backward trajectory integration error limit for variable
step integration (Recommended value = 18 for rockets,
15 for airbreathers)

Note: FINNER and BINNER are in some respect the number
of binary bits of accuracy to be held during integration.
Eighteen yields four to five significant figures of accuracy.
Changing FINNER and BINNER by 3 amounted to changing
accuracy by about 1 significant figure. Decreasing FINNER
and BINNER is the direction of decreasing accuracy and
decreasing computer time

Maximum allowable tolerance in stopping condition.
(Usually EPSLN should be adjusted to give six to eight
significant digits for XSTP. For example, if XSTP =
25,000, EPSLN should be about 0.01. If XSTP = 0,
EPSLN should be about 0. 000001)
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column  Name

11-50 MLSP

11-60 TSTART

Column Name

i-10 XO (1)
11-20 XO (2)

31-70 X0 (7)

Description

Maximum last-stage propellant (A value required if
NC(6) = 1)

Trajectory starting time (Usual value = 0)

Reference length for sonic boom calculations

Description
Initial value of first state variable selected from figure 12

Initial value of second state variable selected from figure 12

Initial value of seventh state variable selected from figure 12

(Additional cards are required if more than seven state
variables are selected.)

Note: These values are input in ascending variable index
order (as selected from figure 12) with no blank fields.

Card Set 5

Stage-Dependent Parameters Format 7F10 8-16 Cards

Each card subset contains the stage-dependent parameter values in fields of 10;
i.e., columns 1 to 10, value for stage 1; 11 to 20, value for stage 2, etc. Two
cards are required in each subset if MSTAGE > 7.

Card Subset

Name

Parameters

1 WO (NSTAGE) Initial weight (1b) of each stage

Note: (1) A positive value will be used as an
initial weight; (2) A zero value will use the end
weight of the previous stage at the start weight

of the stage; (3) A negative value will use the end
weight of the previous stage minus the input value
for the stage.

2 TSTP (NSTAGE) Stopping trajectory time for each stage

Note: The last stage does not stop on time (except
dummy time if it is a state variable) unless the trajec-
tory exceeds the input stopping time for the last stage,
in which case the run will be aborted.
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Card Set 5

Card Subset Parameters

Name
3 SREF (NSTAGE) Aerodynamic reference area (ftz) for each stage
4 DELC (NSTAGE) Nozzle cant angle (deg) for each stage measured

from body centerline
5 XKT (NSTAGE) Total impulse correction factor (XKT) for each stage

Note: These values may be used to correct total
impulse or each stage since

Iror = fTBO (XKT) (Typc) dt
TSTART
(Usually use XKT's = 1)
6 XKM (NSTAGE) Weight flow correction factor (XKM) for each stage

Note: These values may be used to correct the final
weight of each stage since

w =W fTBO (XKM) (WDOT)
a1 = Winitio1 - [
inal initial TSTART

- WDOT., ] dt
inerts

(Usually use XKM's = 1)
7 WDOTI (NSTAGE) Inert weight flow (lb/sec) for each stage

8 DTMIN (NSTAGE) Minimum allowable integration step for each stage
(Recommended Value = 0.1 second)

Card Set 6
Constraint-Dependent Parameters Format 7F10 0-13 Cards
Card 1 Parameters
1-10 PSI Desired value for first terminal constraint
11-20 DPSI Desired final tolerance for first terminal constraint
Card 2
1-10 PSI Desired value for second terminal constraint
11-20 DPSI Desired final tolerance for second terminal constraint

Note: (1) Enroute placards are treated as terminal constraints
and require a desired terminal value of zero; (2) The desired
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Card Set 6 (Continued)

value of the constraints and the tolerances must be ordered
as selected by the NC(20) - NC(32) controls. For instance,
if NC(20) = 5, then the first terminal constraint will be lati-
tude as indicated in figure 12; (3) One card required for each
constraint.

Card Set 7

Free Initial Conditions Format 110, 3F10 0-7 Cards

One card is input for each desired variable initial condition as follows:

Column Name Description

1-10 IX Index of state variable with free initial condition (See figure
12) (Right adjusted)

11-20 XOIMAX Maximum allowable value

21-30 XOIMIN Minimum allowable value

31-40 DELX Initial increment per iteration
Note: (1) This card set will be missing if NC(5) = 0; (2) If
yTILT is a free initial condition, then the maximum allow-
able value must be 200.

Card Set 8

Nominal Guidance Data Format 215, 6F10 0-12 Cards

Column Name Description

1-5 MODE Guidance mode index

6-10 NSW Index of variable used to switch guidance modes (see figures
12 and 13, plot index). NSW is input positive if SWVAL is to
be approached from below, or negative if it is to be approached
from above

11-20 SWVAL  Value of the variable on which guidance mode is switched

21-30 AMIN Minimum allowable angle of attack

31-40 AMAX Maximum allowable angle of attack

41-50 TMIN Minimum allowable throttling

51-60 TMAX Maximum allowable throttling

Note: (1) The guidance modes available (MODE) are as
follows:
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Card Set 8 (Continued)

Tables

Guidance Mode Options

Mode Descriptions Table Format

= f(t), open loop o1
= 0, calculate 8

= {(t), calculate 6
= f(t), calculate 8
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f(M), calculate 8
, calculate 6

, calculate 6
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(2) The maximum number of phases is limited to 12, of which
only five may be phases requiring tables; (3) Modes 0 and 2

use the input control variable table (table 0) and therefore are
not included in the five reserved guidance tables (Note 2);

(4) TMIN and TMAX are input only for MODES 11 and 12;

(5) If SWVAL occurs before XSTP on the last phase, the re-
mainder of the trajectory will be flown open loop using table 0;
(6) The trajectory will always stop on XSTP; (7) The guidance
mode option is for the nominal trajectory only. If NARBY = 2,
STOP will iterate from the nominal in the usual open loop mode;
(8) This card set will be missing if NC(13) = 0; (9) Aerodynamic
option 3 or 5 must be used when modes 3 through 10 are used;
(10) For modes 5 and 6, MODE is input as a positive number
for ascent or negative for descent. In either case, the H-M or
H-V table must be monotonically increasing in the independent
variable.

Card Set 9
Format 2I5, A60/ (7F10) 2-58 Tables

Every table must begin with a title card as follows:

Column
1-5
6-10
11-70

Description
Table number

Number of data cards in the table (do not count this card)

Any desired information
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Card Set 9 (Continued)
Input Data Tables

Table
Number Description

0 Control function table (U)

Table format 1, NU dependent variables vs time where NU is the
number of control variables selected. This table must always be
present as the first table and will not be extrapolated.

Note: Restart table follows table 0 if NC(17)= 1 and is also
assigned as table 0.

1 Weighting function table (W—1 diagonal elements). Table format 1,
NU, dependent variables vs time.  This table must always be pres-
ent as the second table and allows the user to aid in assigning the
value of DUSQ along the trajectory and among the control variables.
A zero value will cause no change in a U, and a 1. will allow the
full change determined by the gradient. As an example, it is a
good idea to restrict pitch angle changes during a tilt maneuver and
during the low-speed portion of a VTO trajectory. For instance,
this table might be as follows for a VTO liquid rocket tilting at 8
seconds after launch ( 8 control):

0. 0. 15. 0. 30. 1. 10000.
1.

2 Gamma tilt table
Table format 1, 1 dependent variable vs time (Used only if NC(14)=1)

3 First table for 1st enroute placard (Format specified by card
set 3 and figure 12)

4 Second table for 1st enroute placard

21 First table for 10th enroute placard
22 Second table for 10th enroute placard
23 Skin friction drag table (required if NC(15) = 1)H _ACD_ _ F(M)
REF’ H~HREF
Table format 1, 2 dependent variables vs Mach number
24 First guidance table (Format specified by card set 8)
25 Second guidance table
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Table

Number Description
28 , Last guidance table
29 Lateral cutoff distanée (required if NC(75) >1), YCO=F (M, H) Table Format 2
30 Sunic boom table (required if NC(104) or NC(135) = 1

APJ = F (H, M, DENOM) Table Format 2

where:
3/4 1/4
APJ = (AP) (%) /KRB Pref

AP = Overpressure ~ psf

KR = Sonic boom constant = 1.9
P = P *P
ref ¥ o
B = yM2-1

DENOM ch—f’—z
31 1st engine table for stage 1

Note: Engine options 10 and 20 require only one table
32 2nd engine table for stage 1

33 1st aerodynamics table for stage 1

Note: Aero options 3, 4, and 5 require only one table

34 2nd aerodynamics table for stage 1
31 1st engine table for stage 2
32 2nd engine table for stage 2
33 1st aerodynamics table for stage 2
34 2nd aerodynamics table for stage 2

(Repeat tables 31 through 34 for each stage)

Note: (1) Some or all of tables 2 through 34 may be missing, depend-
ing on the options selected from card set 3; (2) The first-stage depend-
ent table (31-34) of each stage must be preceded by a card with the word
STG in columns 1-3 (remaining columns must be blank); (3)- The last-
stage dependent table for the last stage must be followed by a card with
the word END in columns 1-3 (remaining columns must be blank); (4)
The STG cards are required even for stages with no tables; (5) All
tables except table 0 may be extrapolated; (6) The total number

of data cards for tables 1 through 30 + 31 through 34 for any

.stage is limited to 1000.
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Card Set 9 (Continued)

Three formats are available for data table input. The table lookup routines use
linear interpolation and will extrapolate, although the extrapolation feature
should be avoided if possible.

Table Format 1 1 Independent by 1, 2, 3, 4, or 5 Dependent

X independent variable

Y.

i dependent variables

NDV = number of dependent variables,

Y, X, -

X, Y1’ Y 2’ NDV

2 7" Yypy X Ypr ¥

7 entries per card

Figure 14 shows an example for two dependent variables

Table Format 2 1, 2, or 3 Independent by 1 Dependent
Cardset 1

Column Name Description

1-10 NPL Number of planes: {may = 1)

11-20 ENG Number of engines (used only for thrust options 3-9)

Cardset 2 (All data for first plane)
Card Subset 1

Column Name Description
1-10 X1 Value of the first plane (X1 = 0, if only one plane)
11-20 NCV Number of curves on first plane (may = 1)

Card Subset 2 (All data for first curve)

Card 1

Column Name Description

1-10 X2 Value of the first curve (X2 = 0, if only one curve)
11-20 NPT Number of data points on first curve (must be > 1)
21-30 X3 Value of the 1st point

31-40 Y Value of the dependent variable

41-50 X3 Value of the 2nd point

51-60 Y Value of the dependent variable

61-70 X3 Value of the 3rd point
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Card Set 9 (Continued)
Card Subset 2

Card 2
1-10 Y Value of the dependent variable
11-20 X3 Value of the 4th point

1 1 1
! 1

7 values per card until all points for the first curve are input

Card Subsef 3 (All data for the 2nd curve)

Same format as card subset 2.
Card subsets continue until all curves on the first plane are input.
The next plane is input in the same manner, beginning with card set 2.

Note: (1) Each plane begins with a new card; (2) Each curve begins with a new
card; (3) All data in the table is input floating point (Every value must have a
decimal point); (4) The table lookup routine uses linear interpolation and will
extrapolate linearly in all directions.

Figure 15 shows an example for Table Format 2.

Table Format 3 2 Independent by 5 Dependent

This format is used only for the aerodynamics option 5 as follows:
Cardset 1

Column Name Description
1-10 NSwWP Number of constant sweep curves (may be 1)

Cardset 2 (All data for first sweep)
Card Subset 1

Column Name Description
1-10 S1 Value of first sweep curve
11-20 NM1 Number of Mach number points on first curve

Card Subset 2

Card 1
Column Name Description
1-10 M1 Value of first Mach number

11-20 CDO
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Cardset 9 (Continued)
Card Subset 2
Card 1

Column Name Description
21-30 80D/80L2

31-40 CL_.
min

41-50 8CL/o

51-60 CL0

61-70 M2 Value of second Mach number
Card 2

Column Name Description

1-10 CDhO

2
11-20 8CD/8CL

1
1
1

(7 values per card until all data for first sweep or input)
Repeat cardset 2 for each sweep angle.

Figure 16 shows an example for Table Format 3.
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PROGRAM OPERATION

Nomenclature —~ FORTRAN COMMON, — The table that follows is a list of
the FORTRAN names, mathematical symbols, units, descriptions, and sub-
routines where computed for all items in COMMON,

™



FORTRAN
Name

AHS

AK(40)

AK11
AMAG(15)

AP(40)

BINNER

CAK11
CD
Cii

Ciz

CK3
CK5

CK6

CL
C@EFK

C@F(2,5)

C(@N(28)

Symbol Units

sec

o deg

Cos O

Cos 6
Cos ©

Cos ‘)’R
Cos B

Cos le

Subroutine

Description Computed
Maximum step size that the STEP1
RKVS integration package STEP2
(STEP1 and STEP2) will take
for its next integration step.

(This may be decreased, but

never increased for the step

to be taken)

Auxiliary printout variables AKSTP
(see appendix B) STP1
Angle of attack AKSTP
Array used by RKVS for the INITAL

integration of the forward

trajectory

A packed array containing only STP1
those auxiliary variables (AK's)

to be printed at each time point

on forward trajectories.

Input backward trajectory inte- INITAL
gration error limit for Runge-
Kutta variable step integration

Cosine of the angle of attack AKSTP
Drag coefficient TLD

Cosine of the pitch angle INITAL
(Set to 1. if NC(77) = 0) CONTR
Cosine of the bank angle INITAL
(Set to 1. if NC(78) = 0) CONTR
Cosine of the flight path angle AKSTP
Cosine of the latitude (Set to INITAL
1. if NC(125) = 0) AKSTP
Cosine of the heading angle INITAL
(Set to 1. if NC(126) = 0) AKSTP
Lift coefficient TLD

Step-size coefficient KCALC
An array containing aerody- TLD

coefficients (see Appendix B) INITCQ
Array of constraint(s) and INITAL

performance name(s)
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FORTRAN

Name Symbol Units

CONST(30)
CPSI(13)
DEG

DELC(14) 6 deg

DELU(4) 6u
DELX(7) dx,

DELXI(7)
DELXS(7)

DEN@GM

DESXUK(170)

DESXUP(120)

DPHI
DPHID

DPHIP

Subroutines

Description Computed

Array of program constants (see INITAL
appendix B) BLACK
Nondimensional constrain INITAL
change(s) asked for VALID
Radians to degrees conversion BLOCK
factor

Input nozzle cant angle for each INITAL

stage measured from body center-
line. Assumes zero thrust compo-
nent normal to body centerline.

Increment added to U vector for UCALC
next trajectory

Array of incremental changes in  INITAL
free initial conditions VARIC
Input maximum allowable incre- INITAL
ment by which a free initial con~

dition can change per iteration.

Array of incremental changes in INITAL

variable initial conditions in order VARIC
of selected free initial conditions

Denominator of first Lagrange MATRIX
multiplier
An array of alphanumeric BLJCK

characters containing all of the
state, auxiliary (AK), and control
variable names that can be selected
for printout via the NC array. Each
name is defined by two sequential
words in this array.

A packed array of alphanumeric TITLES
characters containing the printout

headings for a given computer run.

Change in performance (with MATRIX
respect to last accepted iteration)

Predicted change in performance MATRIX
due to DUSQ

Total predicted change in MATRIX

performance
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FORTRAN
Name

Symbol

Units

DPHI3

DPSIM(13)

DP2BAR

DP2HI

DP2L@

DP2NM1

DP2TMY

DRHQ

DTMIN(14)

DUSQ

DXNUM

EPSLN

ERR(15)

F(15)

FEFEI
FINNER

secC

Subroutines

Description

Predicted changed in per-
formance due to variable
initial condition(s).

Input desired final tolerance(s)
for terminal constraints.
Value of DUSQ at the start of
the first trial of any iteration.

Smallest value of DUSQ attained
on any trial of an iteration that is
greater than the current DUSQ.

Largest value of DUSQ atfained
on any trial of an iteration that is
less than the current DUSQ.

Value of DUSQ used on previous
trial or valid step.

Equal to / DP2BARxDUSQ and set
only when too many trials for an
iteration have been run.

Constant used by RKVS integration
package

Computed

MATRIX

INITAL

MATRIX

MATRIX

MATRIX

MATRIX

MATRIX

BL@CK

Input minimum allowable integra- INITAL

tion step for each stage

Defined by equation 100

DUSQ required for DBETA

INITAL
VALID
MATRIX

MATRIX

Input maximum allowable tolerance INITAL

in stopping conditions

Array of predictor-corrector
errors

Array of derivatives for the
equations of motion (see appendix
B)

Value of I
alue o o

Input forward trajectory integra-
tion error limit for Runge-Kutta
variable step integration
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PLAC
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Name Symbol Units

Description

FXTRA2 DU2min
FXTRA3
FXTRA4

GO G, ft/sec?
GR M

GUIDN(10, 3)

HITIM

HMIN

IDIAG
IDONE

IERROR
IN

Values of F array from previous
integration step

Stopping condition indicator

Constraint change factor. That
part of the constraint error re-
quested for the next iteration.

Minimum allowable DU2
Not used

Saved value of time when
DVALZ2 was last called

Input mass to weight conversion
factor

Input earth gravitational constant
times 1015

Array of guidance phase names
plus words used in printout of
stopping condition and optimiza-
tion parameter

The last, or highest, time stored
in the TIMEU array

Current minimum step size
for a given stage

RKVS diagnostic print indicator
RKVS step completed indicator

RKVS error message indicator

RKVS control parameter (see
ref. 8)
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Subroutines
Computed

EXEC

EXEC
INITAL

MATRIX

LAMBDA

INITAL

INITAL
BLOCK

INITAL
EXEC
UCALC

EXEC

BLOCK

STEP1
STEP 2

BLOCK

STEP1
STEP2
GUIDE

VALID

DVAL2

EXEC
LAMBDA
PARTIAL



Subroutines

FORTRAN :
Name  Symbol Units Description _Computed
INCOR Number of meaningful data words INITAL EXEC
in the TIMEU array at a given
time UCALC
INDBNL DUSQ '"bounce test' indicator MATRIX
INDSIC(13) Number of consecutive accepted VAILID
iterations since a constraint has
been inside its temporary
tolerance band.
INDTMY Too many trials indicator INITAL
MATRIX
INDZER End point search mode indicator MATRIX
INP® Printout counter for forward and EXEC LAMBDA
backward trajectory STP1 STP2
INST Storage counter for forward and EXEC LAMBDA
backward trajectory STP1 STP2
INTOT Counter for the total of words EXEC UCALC
read into the TIMEU array
IPF(10) Packed array containing state TITLES
variable indices of the placards
IPRNT1 Input variable used to control INITAL
printout of forward trajectory
IPRNT2 Input variable used to control INITAL
printout of influence coefficients
occurs during backward inte-
gration if NC(7) = 1
ISTOR1 Input variable used to control INITAL
storage of time and partials along
forward trajectory
ISTOR2 Input variable used to conirol INITAL
storage of adjoints along back-
ward trajectory
ITC Current iteration counter INITAL
MATIX
ITRS Number of iterations that have INITAL
been plotted EXEC
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FORTRAN
Name

Symbol

ITWQ27

1X(7)

IXKU(60)

IXTRA1
IXTRA2
IXTRA3
IXTRA4
KDAT

KINP

KLAM

KOUT

KPAR

Units

Subroutines

De scri_ption Computed

Constant used by RKVS integra- BL@CK

tion nackace Comnmiater word
tion package. oomputer worq

size dependent

Input array of indices for the INITAL
free initial condition desired

Packed array of the plot indicess  TITLES
of the state variables, AK's, and
control variables selected

Thrust option indicator INITCY,
Fuel flow option indicator INITCQ,
Aerodynamic option indicator INITC®,
Not used

Logical tape number assigned to BL@CK
the data tape. KDAT contains all

input tables except table 0. KDAT

is written in INITAL and LAMBDA

and read in EXEC and CARDS

Logical tape number assigned to BL@®CK
the input tape, KINP, is read in

INITAL

Logical tape number assigned to BL®CK
the adjoint tape. KLAM is written

in STP2 and contains T, UULAM

array, and U array of each point

stored during adjoint integration.

KLAM is read in UCALC to build

new control history.

Logical tape number assigned to BL®CK
the output tape. K@UT is written

in INITAL, CARDS, STP1, STP2,

STEP1, STEP2, MATOUT, VALID,
MATRIX, KCALC, VARIC, PRTIAL,
AKSTP

Logical tape number assigned to BL@CK
the partial tape. KPAR contains
NETA records of T, PFX, PFU,
and U. KPAR is written in STP1
and read in DVAL2. Also, sub-

TLD
TLD
TLD

routine UCALC uses KPAR for scratch storage.
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FORTRAN : Subroutines
Name Symbol Units Description Computed

KPLT Logical tape number assigned to BL@CK
the plot tape. KPLT is written in
STP1 and contains the data to be
plotted. KPLT is read by PLOTZ

KPUN Logical tape number assigned to BL®CK
the punch tape. KPUN is written
in CARDS

KSCR Logical tape number assigned to BLHCK

the scratch tape. KSCR is written
in STP1 and contains the control
variable history of every accepted
valid trajectory.

KTAN Logical tape number assigned to BL@OCK
the control history overlay tape.
KTAN is written in INITAL and
UCALC and contains the part of
the control history that would not
fit in the TIMEU array. KTAN is
read by EXEC.

KTC Index of weight in the IX array onlyINITAL
if weight is a free initial condition.
L(14) Array of program control indicators
(see appendix B)
LETA Number of stored integration points STP2
generated during a backward
trajectory LAMBDA
LINES Printout line counter during the EXEC LAMBDA

forward and backward trajectory.
Subroutines STP1 and STP2 will STP1 STP2
page when LINES exceeds 57.

LINET1 Number of lines (including blank INITAL
lines) printed at each printed time
during the forward trajectory

LINET2 Number of lines (including blank INITAL
lines) printed at each printed time
during the backward trajectory

LV Total number of equations being  INITAL
integrated during backward
trajectory
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FORTRAN Subroutines

Name Symbol Units Description Computed
MAL Current closed-loop mode number INITAL
GUIDE
MITC Largest value of J in the PFX({,J) INITAL

array for a given problem

MNDIAG Desired maximum number of BLOCK
diagnostics printed from RKVS per
(computer) stage

M@®DZ RKVS parameter that determines EXEC
the method of integration LAMBDA

MSTAGE Input total number of (computer) INITAL
stages

NAM(2) Two alphanumeric words (STG and BL@CK

END) used as indicators during
reading of data. First word deter-
mines when stage-dependent data
is to be read. Second word deter-
mines when all the data for a case
has been read.

NARBY Input degree of problem solution INITAL
indicator
NC(160) See input description INITAL
ND(112) Start and end location of all input INITAL
stage dependent tables in Z array
NDS(34) Starting locations of all input INITAL
tables in Z array for a given stage EXEC
NEOM Number of equations of motion TITLES
being integrated, excluding enroute
constraints
NERR(15) Array used by RKVS for error con- INITAL
trol during integration of forward
trajectory
NERRS1 RKVS error message control BLOCK
NERRS2 RKVS error message control BLOCK
NERRS3 RKVS error message control BL@OCK
NETA Number of stored integration points EXEC
generated during a valid forward
trajectory STP1
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FORTRAN
Name Symbol Units

NETAP(6)

NETLST

NEZ

NITC

NK

N@UP

NP(40)

NPF

NPHASE
NPLTZ

NPP

NRIC

NSE

NST

NSTAGE
NTB

Subroutines

Description Computed

Number of dated points saved for EXEC
each trajectory to be plotted

Number of integration steps taken = LAMBDA
for the previous valid forward
trajectory

Location in Z array that contains INITAL
last data point of last nonstage
dependent table

Input maximum number of iterations INITAL -
desired

Number of selected auxiliary print- TITLES
out variables (AK's)

Total number of points in the con- INITAL
trol table at any time

Packed array of auxiliary printout TITLES
variable indices

Number of penalty functions to be TITLES
integrated

Current closed-loop phase number INITAL

Number of plots to be made for a TITLES
given data case

Index of the state variable to be INITAL
used for the payoff variable

Number of sets of partial deriva- LAMBDA

tives that will fit in allowable stor-

age during backward integration at

any one time,

Abort error indicator MATRIX
AKSTP
STP1

Index of state variable to be used INITAL
as stopping condition

Current (computer) stage INITAL
Closed-loop guidance table counter. INITAL
(Initialized to 23 and incremented

each time subroutine GUIDE re-

quires a new guidance table)
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FORTRAN

Name Symbol Units

NUMNC

NUP1

NV

NV4M

NWPR

NX

NXUK

N2UK

N4

N4M1
N4M2

PMEGA w
PFU(15,4)

rad/sec

Description
Macamanant Farial wmermaliman L onde ~ 1 At
VUL LCIIL Lilal HNUILIpDCL \D_Ub U L ab

the start of every iteration)

Number of control variables
selected

Total number of input nonzero
plot indicating NC's (NC(61) -
NC(74))

Number of control variables
selected plus 1

Subset of the equations being
integrated in the predictor-
corrector mode during the forward
trajectory

Location in the FB array preced-
ing the first adjoint derivative

Number of words per record
written on KPAR tape on sub-~
routine STP1

Total number of equations of motion
being integrated during the forward
trajectory

The sum of the selected number of
state variables, auxiliary printout
variables, and control variables
plus 1

Two times NXUK and indicates the
total number of words needed to
print the trajectory heading

Number of constraints plus the
performance and stopping condition

N4-1
N4-2
Earth rotational rate
/ au

Array of ax I =1, NX,

d = 1, NU 1

J
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Subroutines
Computed

INITAL .

INITAL

INITAL

INITAL

TITLES

TITLES

TITLES

TITLES

TITLES
TITLES
INITAL
ANPRTL



FORTRAN
Name Symbol Units

PFX(15,7)

PHIGRN

PHIK

PHIM 1

PHINL

PHINLD
PLTNAM(28)

PMPH
PMPV
PQPH
PQPM
PQPV
PSI(13)

PSIM1(13)

RAD

RADIC

RO R ft
S(10,5)

Description

Array of a'FI/OXJ I =1, NX,
J =1, MITC

Largest value in magnitude

that performance parameter has
attained on any previous accepted
iteration

Step-size coefficient with respect
to performance

Performance value for the last
accepted iteration

Nonlinearity of performance
variable

Desired nonlinearity of performance

Array containing hollerith data
used for plot titles Each plot
title is defined by four words
of this array

8 mach/@altitude
dmach/dvelocity

8 dynamic pressure/daltitude
ddynamic pressure/gmach
ddynamic pressure/dvelocity

Input desired value(s) for terminal
constraint(s)

Terminal constraint value(s) for
previous accepted iteration

Degrees to radians conversion
factor

Absolute value of first Lagrange
multiplier

Input earth radius

Array used to transmit placard

value and derivatives of the placard

input table (see subroutine PLAC)
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ANPRTL

MATRIX VALID

KCALC
VALID
KCALC

BLOCK
TITLES

AKSTP
AKSTP
AKSTP
AKSTP
AKSTP
INITAL

VALID
BLOCK
MATRIX

INITAL
PLAC
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FORTRAN

Name Symbol Units
SAK11 Sin &
S11 Sin 6
Si2 Sin ¢
SK3 Sin Yy
SK5 Sin B
SK6 Sin Y
SREF(14) S ft2
T t sec
T sec
TIMEU(1000)
TITL(12)
TOMAX sec
TSTP(14) sec
TTOL(13)
U4) u
Ul 6 deg
Uiz © deg
Ul3 n
Ul4 A deg

Description

Sine of the angle of attack
Sine of the pitch angle (set to zero
if NC(77) = 0)

Sine of the bank angle (set to zero
if NC(78) = 0)

Sine of the flight path angle

Sine of the latitude (set to zero
if NC(125) = 0)

Sine of the heading angle (set to
zero if NC(126) = 0)

Input aerodynamic reference area
for each stage

Trajectory time measure from
zero at launch

Total time increment to be inte-
grated for a stage

The first 1000 words of the input
control table. The remainder of
the control table (if any) is written
on KTAN in record sizes of

NUPI words

Alphanumeric case ftitle

Terminal trajectory time —up-
dated every accepted iteration
Input stopping time for each stage
measured from time zero at launch

Temporary tolerances (one for each

constraint)
Array of control variables

Pitch angle (set to zero if
NC(77) = 0)

Bank angle (set to zero if
NC(78) = 0)
Throttling parameter (set to 1 if
NC(79) = 0)
Sweep angle (set to zero if
NC(80) = 0)
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AKSTP
CONTR

CONTR

AKSTP
AKSTP

AKSTP
INITAL
EXEC

STEP1
EXEC

LAMBDA
STEP2

LAMBDA

INITAL
UCALC

EXEC

INITAL
MATRIX

INITAL

VALID

CONTR
CONTR

GUIDE

CONTR

CONTR GUIDE

CONTR



FORTRAN
Name

Symbol Units

VAR(50)
VIN(4) wig

VINP(4)

WD@T(14) Wipert Wb/sec

W@ (14)
X(15)

XKM (14)
XKT(14)
XK1 W

XNAME (19)
XNC9

XNUM
XP(15)
XOIMAX(7)
XOIMIN(7)
XRH®

XSAVES(15)
XSTP

XXLAM (15 , 14)
A

Ib

Ib

Description

Array of variables (see appendixB)

Automatic weighting matrix
elements

Input weighting matrix elements

Input inert weight flow for each
stage

Input initial weight of each stage

Array of state variables being
integrated

Input weight flow correction factor
for each stage

Input total impulse correction fac-
tor for each stage

Weight (set to initial weight if
NC(121) = 0)

Alphanumeric adjoint headings

Floating point value equivalent
to NC(9)

Numerator of first Lagrange
multiplier

Input initial values of state
variables

Input maximum allowable value of
free initial condition

Input minimum allowable value of
free initial condition

Constant used by RKVS integration
package

Terminal value of state variables
from previous valid trajectory
Input desired value of stopping
condition

Influence coefficients corrected
for stopping time variation
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AKSTP TLD
INITAL

LAMBDA

DVAL2
INITAL

INITAL

INITC®
EXEC

INITAL

STEP1

INITAL

INITAL

INITC®

BLOCK
INITAL

MATRIX

INITAL

INITAL

INITAL

BLOCK

VALID
INITAL STP1

DVAL2




Symbol Units

Description
Alnhanitmmarin adinint haadinaoa
n.l.y.u.a.u.tu.u CLiv a.u.J viliie .uc_a.u.u.xso

General data storage array for
nonstage-dependent tables (per
stage) during forward trajectory.
Used for storage of partial sets
during backward integration

(See program equivalencing)
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Qutput Description

The program produces three types of output: the printout, punched cards,
and magnetic tape.

Printed output. — The printout gives listings of the basic input data, controls
for the program, trajectory data for both forward and backward integrations, con-
vergence information, a control variable printout, and a trajectory summary. A
partial derivative check is printed out during the nominal forward trajectory if
selected.

Preliminary trajectory printout:
Page 1
Program title
Data case title
Initial condition data
Stage dependent parameters
Constraint dependent parameters
Optimization parameter
Stopping parameter
Free initial condition parameters
Guidance phase dependent parameters
Page 2
Control card (see card set 2)
NC array
Page 3
(Number of pages are dependent on number and size of tables)
The input tables are printed in the order they are input
The nonstage dependent tables are printed first, followed by

the tables for each stage.

Forward trajectory: The forward trajectory printout follows the tabular out-
put. At the top of each page, the names of each variable selected for printout
appear. These headings are printed eight per line, beginning with TIME. The
state, auxiliary, and control variable headings are printed next, beginning with
the first state variable and ending with the last control variable. Any heading
followed by an asterisk (*) indicates metric units for that variable. The print-
out of the forward trajectory data occurs every IPRNT1 integration steps, with
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two blank lines between each printed step. A line counter, assuming 57 lines per
page, ensures that each page will begin with the headings described above. For
data cases with more than one stage, the beginning of each stage starts a new page.

Partial derivative check printout: The forward trajectory printout format
is altered if the numerical partial check option is being used. The partial deriv-
ative printout will occur every NC (12) stored integration steps immediately
following the forward trajectory printout of the same time point. The format for
the partial check follows: The word TIME and the current time are printed on
the first line. The partials are printed eight per line with 1PE14.7 format.

The analytical partial derivatives of the first equation of motion with respect
to the first MITC state variables are printed first, followed by the equivalent
numerical partials. This is repeated for each of NX equations of motion in fol-
lowing rows. The printout of the partial derivatives with respect to the state
variables has the form of the array PFX (I, J) where I (the row) represents the
equation of motion and J (the column) represents the derivative state variable.

The analytical partial derivatives of the NX equations of motion with respect
to the first control variable are printed next, followed by the equivalent numerical
partials. This is repeated for NU control variables. The printout of the partial
derivatives of the equations of motion with respect to the control variables has
the form of the array PFU (I, J) where I (the column) represents the equation
of motion and J (the row) represents the derivative control variable.

Backward trajectory printout: The backward trajectory is printed only if
NC(7) is nonzero. The backward trajectory begins at the final time of the valid
step and integrates to the trajectory starting time, printing the influence coeffi-
cients and instantaneous impulse responses every IPRNT2 integration steps.

Both the influence coefficients and impulse responses are corrected for vari-
ations in the stopping condition. At the top of each page is printed a block of
headings identifying each variable. The work TIME and the current time are
printed on the first line. The second line consists of the influence coefficients
for MITC state variables on performance. Next are printed the influence coef-
ficients for MITC state variables on the first constraint, followed by the influence
coefficients for MITC state variables on the second constraint, ete., through all
the constraints. Following the influence coefficient printout, the instantaneous
impulse responses for the first control variable on performance, on the first con-
straint, the second constraint, etc., are printed. The next row of print is the
impulse response for the second control variable on performance, on the first
constraint, the second constraint, etc., through all constraints. This is repeated
for all the control variables selected. The backward trajectory printout uses the
same line count and paging control as the forward trajectory printout.

Matrix printout (convergence information): The convergence printout gives
information used by the stepsize controller in making decisions concerning trial
trajectories, valid steps, etc. The printout is given as notes and as arrays of
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values used by the program. The information aids the user in determining the
nature of convergence. The printout information and notes are given below. The
underlined statements and statements preceding a colon are for clarification in
describing regions of the printout and are not part of the printout.

Printout from convergence logic after a valid step or trial.

Iteration number
Trial number

Number of integration points stored during forward trajectory
integration (NETA)

Number of integration points stored during backward trajectory
integration (LETA)

Printout from convergence logic after a valid step only.

Majority vote counter
Messages printed under special conditions are:

"Number of tries plus rejected valid steps for current iteration
exceeds 10 — abort"

"Too many functions with adverse travel"
""Adverse phi too great"
"DUSQ modified because of too many tries:

"Reject valid step"

Printout from convergence logic after a reverse integration only.

I matrix
Minimum allowable DUSQ
Ty X T x 1
oY X tpy X po
Denominator of first Lagrange multiplier

Diagonal elements of automatic weighting matrix

*Derivatives of performance with respect to variable initial
condition (DPDX)

*Elements of DPDX (SUM, XXLAM)

Note: (1) The items with * are printed only when the variable
initial condition option is selected, NC(5) # 0.
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(2) XXLAM is the performance change resulting from a unit
step in X (first term in the bracket in equation 127) and
SUM is the performance change that would result if the
control function were modified to bring the constraint
vector back to the state prior to the application of X,
(second term in the bracket in equation 127).

Messages printed under special conditions are:
""Convergence failed"
"Converging but gradient too large for extremal"
"The last trajectory appears to be an extremal"
"Gradient of phi too negative to continue”
"Overflow occurred in matrix inversion-abort"

"Singular matrix-aboxrt"

Printout from convergence logic after a trial only.

Majority vote counter
*Maximum permissible changes in constraints
*Controlling function and the step-size coefficient

*Function or functions reducing step-size coefficient and the
new value of the step-size coefficient

*Final step-size coefficient

Note: The notes above with * are written only if the majority vote
is = zero

Messages printed under special conditions are:

"Controlling with constraint within tolerance band which reduces
the step-size coefficient — repeat-step-size-coefficient calculation"

"Too many functions with adverse travel"
""Adverse phi too great"

"End point search and step-size coefficient greater than 2 — force
valid step"

"Penalty function violation — force valid step”

"Performance improved and step-size coefficient equals 0.5,
accept current trial and force valid step”

"All constraints outside tolerance band improved but DUSQ reduced
too much, accept current trial and force valid step"
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"DUSQ was increasing and wants to decrease accept previous trial
and force valid step"

"DUSQK was decreasing and wants to increase accept current trial
and force valid step"

Printout from convergence logic after a reverse integration, trial, or a
rejected valid step.

Step-size (DUSQ) required for A 8

Numerator of first Lagrange multiplier
Lagrange multipliers

Accuracy check for step-size (DUSQ) (this value should agree with
the value of DUSQ for next trajectory)

Heading block of constraint and performance names

Current end point values of constraints and performance

Previous valid step end point values of constraints and performance
Change in constraint and performance end point values

Constraint travel indicator (0 if inside tolerance band, 1 if constraint
change is toward desired constraint value, and -1 if constraint change
is away from desired constraint value)

Constraint tolerance indicators (number of consecutive iterations a
constraint has been outside its tolerance band)

Allowable nondimensional forward constraint change (in the direc-
tion of the desired constraint value)

Allowable nondimensional backward constraint change (in the
direction away from the desired constraint value)

Nondimensional constraint change asked for (percentage of constraint
error to be eliminated by this iteration)

Constraint tolerance bands
Nonlinearities of constraints and performance

Step-size coefficients of constraints and performance
Maximum step-size coefficients of constraints (based on maximum
permissible constraint travel)

Predicted changes in constraint and performance end points (total)

Predicted changes in constraint and performance end points due to
step-size (DUSQ)

Predicted changes in constraint and performance end points due to
changes in variable initial conditions
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Changes in variable initial conditions to be made on next trial or
valid step (printed only if variable initial condition option is
selected, NC(5) # 0)

DUSQ for next trajectory

Messages printed under special conditions:

"DUSQK set equal to DUSQ required for DBETA"
"End point search"

""Scale DBETA to match DUSQ"

"DUSQ set to minimum allowable value”

"DUSQ too small for optimization —DUSQ reset'"
"G tries are too many —force valid step"

"8 tries are too many —force valid step”

"Next trajectory will be a trial"

"Next trajectory will be a valid step"

Control variable table and restart table: The control variable table and the
restart table are printed following the last iteration. The restart table is not
printed following the running of a nominal trajectory only.

Trajectory summary: The trajectory summary follows the printout of the
control variable table and restart table if one or more iterations have been run.
The heading block that appears at the beginning of the trajectory summary is
identical to the one which appears during the printout of the forward trajectory.
The format of the trajectory summary is also identical to the forward trajectory
format. The summary contains the end points for each successful iteration.

Punched card output. — The program produces punched cards in the form of
control variable and restart tables. These tables are used to restart a problem
from the point where it was stopped.

Punched output is produced when either or both of the following options are selected:
1) NC(8) >0 and NARBY =2
2) NC(8) >0andNC (13) > 0
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The control table is punched six words per card in octal format (6612) and
the restart table is punched in 2413/6E12.5. Both tables are preceded by title
cards in the format required for input to the program. A restart table is not
punched following a nominal trajectory.

The restart table consists of previous valid step convergence information,
used by the MATRIX subroutine. Included in this table are DUSQ, performance
and constraint end points, consfraint temporary tolerance bands, and the stopping
time of the previous valid step.

Note: If punched cards are not produced due to machine error or program
abort, the control variable table can be recovered from the magnetic tape (KSCR).

Restart table output description:

Card 1
Column Name Description
1-5 Restart table number (0)
6-10 Number of cards in restart table (title card not in-
cluded in this count)
12-23 Alphanumeric word RESTART
24-47 Case title as input on title card of data case
Card 2 Format 2413
Column Name Description
1-3 INDTMY Forced valid step indicator
= 0 valid step not forced
= 1 valid step forced because too many trials were run
= 2 valid step forced because control logic is using
the minimum allowable value of DUSQ
4-6 INDSIC(1)
7-9 INDSIC(2) Number of consecutive iterations a constraint has
been outside its respective temporary tolerance band.
10-12 3
, IND'SIC( ) A value is present for each constraint (None of these
! ! values appear for a no-constraint problem.)
! 1
1 !
40-42 INDSIC(13)
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Card 3
Column Name
1-12 DUSQ
13-24 FXTRA1
25-36 DP2TMY
37-48 TOMAX
49-~60 PHIM1

!

1
1
1
1
1

(The following values occur

1
1
1
1
1

61-72 PSIM1(1)
Card 4
(If needed)
Column Name
1-12 TT@L(1)
13-24 CPSI(1)
25-36 PSIM1(2)
37-48 TT@L(2)
49-60 CPSI(2)
1

Format 6E£12. 5

Description

Value of DUSQ used for last successful valid step
Amount of nondimensional constraint error asked
for on the last valid step. (This value will be zero
for a no-constraint problem.) This is the maximum

amount of constraint error that can be asked for by
any one constraint.

(DP2BAR x DUSQ)L/2  where DP2BAR is the value
of DUSQ used on the second-to-last successful valid
step and DUSQ is the current value of DUSQ.

Note: DUSQ is set equal to DP2TMY only when the
indicator INDTMY has been set equal to 1.

Trajectory time for last succéssful valid step.

Value of the performance function on the second-~to-
last successful valid step.

only if the problem has one or more constraints.)

Terminal value of the first constraint on the second-
to-last successful valid step.

Format 6E12.5

The temporary tolerance band corresponding to the
first constraint (expressed as half of the total band
width). '

The amount of nondimensional constraint error asked
for on the last valid step.

Note: This value is normally equal to FXTRA1 but
under the conditions mentioned in appendix C, the
value may be 0. 1.

Values for second constraint
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Special notes:
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1) 101E vdiue OL DuUDYY LINpuUl LIlrougn uvie use oL a
restart table will override the value of DUSQ
input in the initial condition data section of the

input;

2) The values of the temporary tolerances input
through the restart table will override those
normally computed by the control logic using
the final input constraint tolerances;

3) If it is desired to change the amount of constraint
error asked for all that is necessary is to change
the value of FXTRAL.

(FXTRA1 must never be greater than 1.)

The individual values of CPSI are set equal to
FXTRAIL or .1 (under special conditions men-
tioned above).

The values of CPSI never need to be reset.

Magnetic tape output. — The program produces a magnetic tape when plotting
(KPLT) and another magnetic tape when iterating (KSCR).

Plot tape (KPLT): The tape KPLT is produced when NC(11) # 0. This tape
contains the data for the variables selected for plotting. For each valid trajectory
that is plotted, NETA records are written on KPLT in binary format. The number
of points stored when plotting (NETA) must be less than or equal to 1000. (The
absolute value of NC(11) defines which iterations will be plotted.) The number of
words written per record is two times the number of plots to be made, or the num-
ber of nonzero elements in the NC array from NC(61) through NC(74). The plot
data is written on tape every ISTOR1 integration steps in the order selected by input,

Control table tape (KSCR): The tape KSCR contains the control variable
history for the nominal and each accepted valid trajectory of a data case in
binary format. This tape is generated when NC(8) > 0; and NARBY = 2 and/or NC
(13)> 0. For each valid trajectory there are NETA records written on tape,
where each record consists of TIME and NU control variables. This tape (KSCR)
is used to recover the control table for any iteration, in the event a data case is
interrupted and doesn't punch cards.

The procedure used to recover a control table is described below. A short
FORTRAN IV program called "THETA" is included in the source decks for the
STOP program., This program reads the binary tape (KSCR) on logical unit 2
and produces a listing and punched cards (OCTAL FORMAT 6#12) of the control
variable table selected by input. Input to this program is described below.
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CARD NUMBER 1 (315, 4A6)
COLS 1-5, ITC, Number of control tables written on KSCR up to, but
not including, the desired table. (The nominal
and every accepted valid step will have a control
table written on tape.) Equal to ITC printed immedi-
ately following desired valid step.
COLS 6-10, NU, Number of control variables used.

COLS 11-15, NTABLE, Number of copies of control table desired.

COLS 21-44, TITLE
Any information desired on the title card of the
punched control table.
CARD NUMBER 2 (1415)
COLS 1-5, NETAS(1)
Number of points stored during nominal
6-10, NETAS(2)

Number of points stored during first valid trajec-
tory.

11-15, NETAS(3)

Number of points stored during second valid
trajectory.

16-20, NETAS(4)

Number of points stored during third valid trajec-
‘tory.

°

®

NETAS(ITC)

Number of points stored during valid trajectory
preceding the one from which restart is desired.

NETA

Number of points stored during valid trajectory
from which restart is desired.
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Both the printed and punched tables produced contain one additional point at the
end of the data to prevent extrapolation off the end of the table.

Sample Problem

A sample problem is given which demonstrates the data setup and output for
a simple, single-stage, air-launched rocket. One iteration is given showing the -
nominal trajectory, the control logic output, one trial, a valid step, an output
control table and restart table, and the trajectory summary.

Statement of problem. — The flight path and control variable history are
required to maximize the final weight of the rocket with the following initial con-

ditions.

Wo = 1500 pounds
h = 500 feet

o
'yo = 60 degrees
V_ = 600 fps

(o]

The terminal constraints imposed are:

Vf = 2000 fps

hf = 1200 feet

The final velocity is selected as the stopping condition. The initial weight
and flight path angles are free to change to improve performance. The initial
conditions W, and Yo above are the starting values.

The aerodynamics and propulsion data are given in tables II and III. The
reference area is 2 square feet.

TABLE II Aerodynamic Data

aCD
C 2 C
D d L
M 0 €L a
0 .2 .5 .075
1.5 4 .5 .075
10 .4 .5 .075
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TABLE III Propulsion Data

Thrust 7000 pounds
Specific impulse 280 seconds
Nozzle exit area 144 square inches

Sample input. — The statement of problem is transformed into data input
cards through the use of the STOP input instructions given under "Input Data
Preparation.'" The data input cards are listed below.

EXAMPLE ROCKET CHECK CASE

_ 1 5 1 1 2 1 1 .
4 3 5 2 8 1 9 1 13 2 16 0 17
18 4 19 1 20 2 33 10 47 3 77 1 7
81 1 82 1 83 1 84 1 85 1 87 1 121
122 1 123 1 124 1 91 1
2000, 14081718 20902992+ O« 324174
__ 100 186 18. « 001
1500« 500 60 600
1500
400
2
O,
__la -
l,e
Oe
o1
12000, 100.
1 2000, 10004 100.
L 3 70. 50e 2e
5} 4 1000.
1 85 400.
Q 1 THETA TABLE
O 60 100 60e
1 1 WEIGHTING TABLE
Oe la 100 le
STG
31 2 ENGINE TABLE
Os 7000. 144 280 100. 7000+ 1840
280
33 2 AERO TABLE
Os o2 5 «Q75 1e5 ok 5
«075 10. ol «5 « 075
END

Sample output. — The results of the problem for one iteration are given
below. A complete description of the printed output is given in the section on
output description.
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SUPERSCNIC TRANSPQRT OPTIMIZATION PROGRAM

EXAMPLE ROCKET CHECK CASE

INITIAL CONDITIGN DATA

THETA CONTROL 7094 IASYS 13 VERSICN

XSTP = 2.0000000€E 03 GR
DUSQ_ = 1.0000000E 02 FINNER

1.40EL1718E 16

TSTART =~0.0000000£-39 L
X0( 4)= 6.00C0000E 02 XOf

~0.C0C0000E-39

2.0902992E o7
1.8CCOQUGE Nl BINNER= 1.8009C0NE 01
1.5000000€ 03

0.0000G00E~39
.1+ 000000CE=Q3 _ MLSP
5.0000000E 02

= 3.2174GCGCE Gl
=-C.C(000(0E=39

X0( 3= 6.CC002C0E N1

STAGE DEPENDENT PARAMETERS

STAGE WEIGHT TSTP SREF _
1 500.00600 4CC.00000 2.000G00

CONSTRAINT DEPENDENT PARAMETERS

T 1.006G0 T

wnot OTMIN

T0L000C 7T T el e T

VARIABLE PS1 DPSIMAX
ALTITUDE 12000.C00CC 160.CCC00
MAXIMIZE wE IGHT

STUP ON VELOCITY R

FREE INITIAL CONDITION PARAMETERS

¥oT1

VARTABLE XMAX XMIN
WETGHT 2000.0CCCO 1000.€0CCO
GAMMA R 70.00000 50.CC000

GUIDANCE PHASE DEPENDENT PARAMETERS

SWITCH VALUE

THROTTLE MIN THROTTLE Max

-0.00000 =0.0000¢

PHASE MODE SWITCH VARIABLE
1 ALPHA INCREASE TO_VELOCITY R
2 ALPHA INCREASE TO TIME

~0.60UCn =A.D90C0




SOT1

INTEGER TABLES

IPRNTL = 1 IPRNT2 = 6 [ISTORL = L [STCRZ = 1 NARSY = 2 NITC = 1 MSTAGE = 1
NC_CONTROLS e e e e e e e e e e e e — [, e et e e
NCI 1)=0 NC({ 2)=0 NCt 3)= Q0 NCI 4)= 3 NCL )= 2 NCU 6)1=0 NCU 7)=-0 NC{ 8)= 1 NCL 9)= 1 NC{ 13)= 0
NC{ L1)=0 NC( 121= 0 NC{ 12)= 2 NC({ 14l=_0_NC( 151=Q NC{ 161=Q NC{_17)==C__NC{ 18}z 4_ NCOL 19)= 1 _NC(L 20)= 92 _
NC( 210z 0 NC( 22)= 0 NCU 23)= 0 NCI 24)= 0 NC{ 25)= 9 NCL 26)= 0 NCU 27)= 0 NCU 28)= 0 NCU 293= G NC( 37)= G
NC( 31)= 0 NCI 32)= 0 NC[ 23)=10 NC{ 34)= G NC{ 35)= O NC{ 26)= G NCU 37)= O NC( 38)J= 0 NCU 35)= 0 NCI 4u)= ©
NCL 4#))= 0 NCL 42)=_ 0 NC{ 42)3 0_ NC{ 44)= O_ NC{ 45)= 0. NC{ 646)= 0 NCl 47)= 3 NC{ 48)= O ANC{ _4%)= & NCI SO)= € ____ .
NCL S1)= 0 NCU 52)= 0 NCU 52)= € NC( S4)= 0 NCl 55)= O NCl 56)= 0 NC{ 57)= N NCU S58)= O NC{ Ss5)= & NC( &M= C
NC{ 61)= O NC( 6232 0 NC( €2)2 0 NC( €4)= C NC( 65)= 0 NC( €4)= O NC( 6T)= 0 NC( KRl= O NC( £S)= 0 AC( 70)= C
. NCt 71)= 0 ANC( 72)= 0 NC(_73)=3_0 NC( 24)= Q_NCL_T75)= 0 _NC(_76)= 0__NC( _T77)=_1__NCl 78)= 0 _ANC( 79}=C NC( AU)=0__ __ __
NC( 811= 1 NC{ B821= 1 NC{ E2)= 1 NC( 84}= 1 NCI 85)= 1 NCI €61= 0 NCL 871= 1 NC{ 88)= 0 NC{ 8S)= 0 NC{ S01= €
NCL 91)= 1 NC{ 92)= 0 NC{ $3)= O ACI S4)= 0 NC{ 95)= D NCI 96)= 0 NCI 971= € NC( 98)= 0 NC{ SS)= 0 NC(10D)= O
 NCU10L)= 0 NC(102)= 0 NC(1C3)2= 0  NC(1C4)x O _NC(l05)= 0 _ NC(106)= O _NC(107)= C _NCL108)= U ACU1C9)= 0_ NCCllGd= €
NCI111)= 0 NC(112)2 0 NC(1l20= 0 NC(114)= @ NC(I15)= O NC{ll6)= O NC(LLIT)= C NC(LIBI= O NC(119)= 0 NC(120)= G
NCI121)= 1 NC[122)= 1 NC(123)= 1 AC{l24)= 1 NC(125)= O NC(126)= O NC(127)= C NC{123)= 0O NC(125)= O NC{l3U}= O
NC(131)= 0 NC{122)= 0 NC(133)= 0 NC{124)= 0 NC{135)= 0 NC(13&)=_0_ NC(137)= C NCIL13R)= C_NC{13§)= 0 NC[142)= 0
NCI14l)= 0 NC{142)= 0 NC{142)3 0 NCI144)3 0 NCUL45)= 0 NC(146F= 0 NCEL47)= € NCE148}5 0 NCI14G)= D NC{1501= @
NC(151}= O NC(152)= O NC(152)= O NC(154)= O NC(LS55)= 0 NC(156)= O NC(157)= € NC(158)= 0 NC{15G}= C NCL160)= G
NON-STAGE DEPENDENT TABLES
TABLE 0. 1 CARD(S) THETA TABLE
0.000000 60.000000 100.£00000 60.000000 -0.000000 -0.000000 ~6.0000€0
TABLE 1, 1 CARC{S)  WEIGHTING TABLE _
0.000000 1.€00000 100.C60000 1.000000 -0.000000 -0.000000 -C. 000000
STAGE_DEPENDENT TABLES
STAGE 1
TABLE 31, 2 CARD(S)  ENGINE TABLE )
0. 000000 7000.0000C0 144.£00000 280. 000900 100.000€00 7000.000000 144.000000
250. 000000 =0. 000000 ~0.CB8G000 =0.0000600 ~5.000000 ~77. 000000 =07, 660060
TABLE 33, 2 CARD(S)  AERG TABLE
0.000000 0.200000 0.560000 0.075000 1-500000 t.%00000 0.5C0000
0.075600 10.000000 0.460000 0.500000 0.075000 ~0.000000 -G+ 0000C0
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TIME WEIGHT ALTLTUDE GAMMA R VELUCLIY_R. THRUST_ LIFT DRAG
0 MACH NUMBER WEIGHT FLCW ALPHA PITCH ANGLE
-0.000 1500.000 500.C00 60.000_ __ ___ 600.000_ _____ 4921.729 0.00¢ 229,249
421,757 0.538 25.0C0 0.000 60.000
Q.5Q0 _1481.50¢ 166,121 59,301 6364569 4941,750 49.412 261,514
471,027 0.572 25.C0C 0.699 60,000
1.250 14684758 1193,1493 58,483 _ 692,075 __ 4973.434 125.145 318.301
549,801 0.622 25.CC0 1.517 50,000
2.315 1440, 625 1893.829 57,668 176,490 5024463 237,181 418,467
677.911 0.700 25.000 2.332 60,000
4,062 1398,438 3C87.819 57.098. 905.0 35 _5109.458 386.50C 591.821
888,786 0.819 25,600 2.902 60,000
5.750 1356.25€C 4461.089 57.013 1035,342 5203.335 50C.€92 762,826
1116,151 0.942 25.000 2.987 60,000
64250 1343,75¢C 4502,583 56,574 1074.978 5232.698 €.eoc 785,042
1187.299 0.979 25.000 0.000 56,574
6.583 1335,417 5204.1788 56,262 1101.560 5252.571 0,03¢ 825,168
1235.379 1.005 25.00C 0.000 56,262
7.083 1322.917 5669.862 55.803 1141.597 5282.,800 0.000 887.150
1308.197 1.043 25.00C 0.000 55,803 -
7.833 13044167 6393. 807 55,135 1201.988 5329.009 U. 000 983.961
1418.583 1. 101 75.0CC 0.000 55.135
8.958 (276,042 1538.446 54,176 1293.208 5400.005 0.00¢ 1137.028
1585.342 1.190 25,000 0.000 54,174
10,646 1233.854 9385.487 52,817 1431.095 5509,388 0,000 1361.182
1833.245 1.32% 25.000 0.000 52,817
134177 1170.573 12440.834 50.943 1639,415 5676,950 0.C0C 1747,49¢
2184,373 1.536 25.000 0.000 50,943
15.708 1107.292 15829,469 49.234 1854, 644 5844,557 0.000 2004,126
2505.158 1.760 25,000 0.000 49,234
17.345 1066.387 18158,217 48,207 2000.000 5951141 0.000 2154.912
2693.640 1.915 25,000 0.000 48,207




L01

ITERATION 0 TRIAL 0 NETA= 26 LETA= 0

I MATRIX
0.337506986-01_=-0.51741087€ C1

-0.51741087E 01 0.29956334E 04
MINIMUM ALLOWABLE DUSQ
1 PHI_PSI®I PSI PSI_INVERSE*L PSI PHI_ __ _ 0,89366292E-02

0.12824789E 03

DENOMINATOR OF FIRST LAGRANGE WULTIPLIER 0.24814069F=01
AUTOMATIC WEIGHTING MATRIX ELEMENTS 0.,10000000E A1
VARIC CHECKOUT PRINTOQUT ~ OPDX,sSUL¥, XXLAM 0.72270353E_00 -0,16818235E-01 0, 7053853CE 00

VARIC CHECKOUT PRINTOUT - DPOX,SULY, XXLAM 0.260563156 00 -0.336552446-01 0.22689791€ 00
DUSQ REQUIRED FOR DBETA

0.58396113E 03
NUMERATOR OF FIRST LAGRANGE MULTIPLIER -0.38396113E 03

DUSY TOO SMALL TO MEET DRETA
SCALE DBETA TO MATCH DUSQ
DUSQ YOO SMALL FOR OPTIMIZATIGN-CLSQ RESETY

DUSC REQUIRED FOR DBETA
NUMERATOR OF FIRST LAGRANGE MULTIPLIER
LAGRANGE MULTIPLIERS

7. 200C0GOCE 03
0.210U0000E 03
C,91994244E 02 -0.99493583€-01

ACCURACY CHECK FOR DUSQ 0.40955559E 03

ALTITUDE. WELGHT
CURRENT END PGINT VALUES 18198.317139 1066.386520
PREVIOUS VALIf STEP END PCINT VALUES 0.600000 0.000000
CHANGE [N ENC POINTS 0.006000 1066.386520
CONSTRAINT TRAVEL INCICATOR(S) 23159

CONSTRAINT CRGSS-OVER [NDICATCR(S) 1

ALLOWABLE FORWARD CCNSTRAINT CHANGE(N-D) 0.000000

ALLOWABLE BACKWARD CONSTRATNT CHANGE(N-D) 0.000000

CONSTRAINT CHANGE ASKED FOR(N~C) 0.05€C00

CONSTRAINT TOLERANCE(S) 1000.000000

NON-LiNEARTTTES 0.600000 0.000000
STEP-SIZE COEFFICIENTS C¢.00CC00 0.000000
MAXIMUM STEP-SIZE COEFFICIENT(S) 0.000000

PRECICTED END PO[NT CHANGE(S) (TOTAL) ~181.370571 %5.195420
PREGICTED END PUINT CHANGE(S} (DULSG) -774.040482 3.619660
PREOICTED END POINT CHANGE(S) (VIC) 592,669907 41,575759
CHANGE IN WEIGHT (214 58,522521

CHANGE IN GAMMA R VIC 1.170450

FINAL STEP SIZE COEFFICIENT 0.006000

DUSQ FOR NEXT TRAJECTORY 409.999996

NEXT TRAJECTORY WILL BE A TRIAL




TIME WE IGHT ALTITUDE GAMMA R~ VFLOCITY R THRUST LIFY ORAG

[+} MACH NUMBER WE IGHT FLGW ALPHA PITCH ANGLE
-0.000 1558.523 __  500.CQ0___  _6l.170_ ___ _6C0.000__ 4921.729 291.923 . 279.764 ___ _
421.757 0.538 25.000 4.614 65.785
18.161 1104.493 _18152. €01 44,945 2000.000 5949,163 1319.862 2319.637
2697.753 1.915 25.000 3,262 48,207
[TERATION 1 TRIAL 1 NETA= 0 LETA= 73
MAJORITY VOTE TEST 1
*#%x ENTERING KCALC ¥*%
MAXTMUM PERMI{SSABLE CHANGE IN  ALTITUDE -1503.091888
CONTROLLING WITH WEIGHT
STEP-SIZE COEFFICIENT 1.912763
FINAL STEP-SIZE COEFFICIENT 1.912763
#x% LEAVING KCALC *%%*
'c',‘ DUSQ REQUIRED FOR DBETA 0.99495189E 03
1=2) NUMERATOR OF FIRST LAGRANGE MULTIPLIER 0.50510020E 03
DUSQ TOG SMALL FOR QPTIMIZATICN-CUSQ RESET
DUSGC REQUIRED FOR_DBETA 0.99495189€ 03
NUMERATOR OF FIRST LAGRANGE MULTIPLIER 0.10446995E 064
LAGRANGE MULTIPLIERS 0.,20518551E 03 -0.22191217E 00
ACCURACY CHECK FOR DUSQ 0.20396513E 04
ALTITUDE WE IGHT
CURRENT_END POINT VALUES _18152.601318_ _ _ 1104.493439
PREVIOUS VALID STEP END POINT VALLUES 18198.317139 1066.386520
CHANGE IN ENC POINTS ~45,715829 38.106918
CONSTRAINT TRAVEL INDICATOR(S) 1
CONSTRATNT CROSS-OVER INDTCATOR(S) 1
ALLOWABLE FORWARD CONSTRAINT ChANGE({N-D) 4.850000
ALLOWABLE BACKWARC CONSTRAINT CHANGE(N-C) 1.0€0000
T CONSTRAINT CrANGE ASKED FGRUN-T) 0.05C000
CONSTRAINT TCLERANCE(S) 1000.000009
NON-LINEARITIES -0.747942 -0.156841
STEP-SIZE COEFFICIENTS 0.401100 “1.912763
MAXTMUM STEP-SIZE COEFFICIENT(S) 10.CC0000
PRECICTED END POINT CHANGE(S) (TCTAL) -552,795692 £7.59791
PREDICTED END POINT CHANGE(S) (DUSQ) ~1726.4329368 8.073352
PRECICTED END POINT CHANGE(S) (VIC) 1133,637283 79.524590
CHANGE IN WEIGHT vIC 111.939734
CHANGE 1IN GAMMA R VIC 2.238195
FINAL STEP SIZE COEFFICIENT 1.912763
QUSC FOR NEXT TRAJECTORY 2039,651367

NEXT TRAJECTCRY WILL RE A VALTD STEP
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TIME WEIGHT _ __  ALTITUDE GAMMA_R YELQCILTY R THRUST LLFY DRAG
Q MACH NUMBER WEIGHT FLGW ALPHA PITCH ANGLE
-0.000 . lell.94acC . .500.CCO_ ______ .62.239_ _._ 670,000 4921729 G OThe3) . _499.03C
421.757 0.538 25.000 10,664 72.903
0.500 1599,440 172,872 62,871 629,861 4942,21C 553.834 420.293
461,069 0.566 25.000 8.008 70.879
1.250 _1580.690 1269.892 63.210 677.365 __ __4974.670 328,963 34%.486 . __
526,418 0.609 25,000 4,166 67.376
2.000 1561.940 1679, 285 62.8C7 721,192 5009.077 35.74C 3444409
598,354 0.655 25.6G0 0.398 £3.205
2,750 1543.150 2179.021 __6l.634 7177.954 _5045.171 -338.138 438.584
674,735 0.702 25.€00 -3.341 5R.293
3.500 1524+ 440 2704.175 59.632 827.658 5082.532 -8174511 673,005
751.867 0,748 25.600 ~7.249 £2.384
4,625 1496.315 3520.764 __54.843_ 893.304 5139.474 -17764120 1449.194 _
854,745 0.810 25.00¢C -13.853 40.990
5.750 1468.190 4324,671 47.413 932.396 5194.183 -2830.618 2772.825
308.956 0.848 25.000 ~20.761 264652
5.572 1462.€34 44764731 46.567 946,030 5204382 825,263 T7C.S40
931.452 0.861 — 25.CC0 5.935 52,502
6,194 1457.07S 4630.588 46.877 961.063 5214.681 1277.296 1032.216
956,783 0.875 25.C0C 8.900 S5.717
b.417 1451.523 4738.485 47,177 976,188 52254147 1212.68R9 1000.150
982.488 0.889 25.00C 8.229 55.405
6.750 1443.150 503041755 47.560 999,446 52414149 1115.768 961.770
1022.336 0.911 25.00C 7.276 54,836
7.250 1430.69¢ 5407.516 47.989 1035.413 5265.801 567.247 922.927
1084.772 0.945 25.CC0 5.944 53.934
8.000 1411.940 6001.656 48.325 1091.357 5304,118 732,860 901.957
1183.553 0.998 25.000 4,128 52.453
9.125 1383,.815 59554 19¢ 48.189 1178.465 5364142 359.697 946,902
13404342 1.082 25.000 1.789 49,978
10,250 1355.69¢C 797441723 47.350 1267.674 5426.412 -34,541 1U69.472
1502.966 1.168 25.000 -0.153 47,197
11.375 1327.565 5C48,618 45,892 1357.352 5489.906 -421.016 1251.190C
1666.614 1. 255 25.000 -1.684 44,208
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TIME __WEIGHT ___ ALTITUDE, _______GAMMA R______VELJCITY R ___ _ THRUST ___ __ _LIFT __ DRAG__ o o
qQ MACH NUMBER WETGHT FLOW ALPHA PLTCH ANGLE
13,062 1285,371 1£730.672 42,836 1490. 702 5585, 130 -851.944 1563,386
1906.894 1.387 25.000 -2.978 39.857
14,750 1243.150 _ 12458.354 39.553 1624.168 _5677.865 -699.756 1771.316
2142.732 1.521 25.€00 =277 37.376
16.437 1201.002 14236.733 38,003 1762.885 5768.072 1001.489 2012.363
7383.980 1.662 25.000 7.801 %0.803
17.187 1182.252 15070. 146 38,913 1817.742 5808.590 2812.498 2775.167 i}
2466.939 1.720 25.C00 7.601 46.514
17.937 1163.502 15954.675 40.828 1860.691 5850.402 2779.515 2778.078
2511.187 1.766 25.000 7.379 %8.207
18.431 1151.002 16574, 791 41,860 1893.591 5878.998 2425,586 2616.005
25484264 1. 802 25.000 T 6.347 48.207
19.187 1132.252 17547.858 43.093 1947.788 5922.707 2002.734 2472.697
2610.7717 1.860 25.000 5.114 %8.207
19.860 1115.440 18462.139 43,944 2000.000 5962.500 1707.145 2408.875
7669,995 1.917 75.600 %.263 48.207
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[TERATION 1 TRIAL 2 NETA= 46 LETA=

73

MAJORITY VOTE TEST

REJECT VALID STEP
DUSC REQUIRED FOR OBETA

0.17390345E 03

NUMERATOR QF FIRST LAGRANGE MULTIPLIER _  0.336C60939E 03

LAGRANGE MULTIPLIERS
ACCURACY CHECK FOR DUSQ

0.11636616E 03
0.50991284E 03

~0.35952482E-01

NEXT TRAJECTCRY wItL BE A VALIC STEP

ALTITUDE WEIGHT
CURRENT END PGINT VALUES 18462.139404 1115.440140
_ PREVIOUS_VALID STEP ENO POINT VALUES __18158.317139 1066,366520
CHANGE IN END POINTS 263.822266 49,053619
CONSTRAINT TRAVEL INDICATCR(S) -1
CONSTRAINT CROSS-OVER INDICATGR(S} 1
ALLOWABLE FORWARD CCNSTRAINT CHANGE(N-D) 0.00C000
ALLOWABLE BACKWARD CONSTRAINT CHANGE(N-C) 0.000009
_CONSTRAINT CHANGE_ASKED FOR{N-C) . 0.05Cc000
CONSTRAINT TOLERANCE(S] 10€0.6C0000
NON=-LINEARITIES 0.00C000 -0.156841
STEP-SI2E COEFFICIENTS €.000Ca0 1.912763
MAXIMUM STEP-SIZE COEFFICIENT(S) 0.0600000
PRECICTED END POINT CHANGE(S) (TGTAL) -154.9579238 43.896452
PREDICTED END POINT CHANGE(S) {0(SQ) -721.776566 _ 4.134158
PRECICTED END POINT CHANGE(S) (ViC} 566.618642 39.762295
CHANGE IN WEIGHT vIC 55.969867
CHANGE IN GAMMA R VIC 1.119397
FINAL SVEP SIZE COEFFICIENT 0.500000
DUSQ FOR NEXT TRAJECTORY 509.912842




(4%}

____TIME___ _ WEIGHT _ ALTITUDE GAMMA R VELOCITY R THRYST LIFT DRAG
Q MACH NUMBER WE IGHT FLCW ALPHA PITCH ANGLE
-0.000 1555.570 560.€00 61.119 600.000 4921.729 424,471 336,050
%2l. 757 0.538 25.000 6.710 67.829
0.500 1543.470 770.210 61,290 633.312 4942.011 378.055 333.821
466,171 0.565 25.600 5.4C7 66.696
1,250 1524.720 1203.642 61.264 684,577 4974.209 280.574 340.011
537.786 0.616 25.000C 3,478 64,742
2,000 1505.97¢ 1670.355 60.882 737,246 5008.420 142.118 363.235
515.178 0.664 25.000 1.540 62,422
3.125 1477.845 2430.178 59.581 318,194 5063.112 -161.037 451,064
760,791 0.739 25.C00 ~1.449 58,132
4.250 1449.720 1254.056 57.252 899,669 5121.030 -630.281 653.142
873.922 0.815 25.000 ~4.808 52.34%
5.375 1421.595 4124 .881 53.592 577.405 5180.710 -1347.066 1091.385
1004.861 0.588 257,000 ~8.937 ¥%.659
5.708 1413.262 4387.560 52.182 958.503 5198.407 ~1631.839 1307.993
1040. 442 0.9C8 75.00C =10.456 21,726
6.042 1404.528 4651.8C5 51.555 1022.655 5216.068 $34.577 9034562
1082.712 0.931 25.€00 5.755 57.310
6.264 1399.373 4831.407 51.710 1038. 944 5227.991 £87.038 962,060
TT11.325 0.946 25,000 3.321 57.030
64597 1391.035 5106.821 51.897 1063.664 52464149 816,657 905.229
1155.270 0.970 25.¢00 3.703 56.610
7.097 1378.535% 5533.305 52.084 1101.318 5273.969 709.754 919.929
1222.518 1,004 25,000 3.870 55.954
7.847 1359,789 6202.468 52,169 1158.862 5316.895 547.583 962.273
1326.350 1.061 25.C00 2.752 54.921
8.972 1331.664 7269.720 51.896 1246.938 5383.562 299.734 1063.712
1486,182 1.146 25.000 1.345 53.241
10.660 1289.477 9001 .749 50,712 1381.293 5487.179 -72.06¢C 1280.892
1728.448 1,277 25.000 -0.7278 50.435
_ 12,347 1247.285 1C868.727 48,785 1516.506 5592.759 -392.434 1545.421
T1964.861 I.412 25.000 ~1.332 37.433 -
14,035 1205.1¢2 12843.162 464455 1652.085 5697.825 -511.065 1781.726
2169. 885 T.550 25.300 =1.55% T 44.900
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TIME WEAOCITY R THRUST W IEY  DRAG
Q MACH NUMBER WE IGHT FLCw ALPHA PITCH ANGLE
e 15.722. . 162,914 ___14510.199._ _____ 44.442 ___ _1791.874__ __ __5800.899 -113.223___ 1929.129.
2409.748 1.694 25.000 -0.313 44,129
17.410 1120.727 17899,265 444322 1933.81¢ 5902, 731 1521.893 2311.300
2612.022 1.844 25.C00 3.384 48,207
18.218 1100.523__ 13216, 141 44,994 2000.000 5951.938 1267,23¢C 2309.860 .
2691.984 1.915 25.000 3.213 48,207
ITERATION 1 TRIAL 3 NETA= 36 LETA= 73
MAJORITY VOTE TEST 0
THETA TABLE Il LINES
~0.000000 67.8289¢4 0.25CC00 67.281850 0.500000 66696447 C. 875000
65.76C860 1.250000 64.7417C3 1.625000 63.633300 2.009900 62.422361
2.5625C0 60429440 3.125000 58.131699 3.687500 55,520065 4,250000
524444212 4.812500 43.851157 5,375000 44.655149 5.541667 43,236309
5.708333 41.726336 5.875CC0 49.142176 6.041667 57.309796 €.152778
57.170612 6.263889 57.0303¢5 6.430555 56.819995 5:597222 56.609626
6.847222 56,282122 7.097222 55.954317 7.472222 55. 443158 7.847222
54.920916 8.409722 54,1C0831 8.972222 53.240920 9,815972 51.875994
10.659722 50.434552 11.503471 48.943418 12.347222 47.453438 13.190971
46.,046348 14.034721 44.89560G3 14.878471 44.153043 15.722221 44.129181
18.217864 48,206613 182, 176642 48.206633
RESTART TABLE
1
509.912842 0.05C000 -0.£000C0 17.344538 1066.386520 18198.317139 1000. 000060
0.050000
TRAJECTGRY SUMMARY
I L LI L)
TTME WETGHT ALTITUDE GAMMA R VELOCITY R THRUST LIFT OREG
0 MACH NUMBER WEIGHT FLOW ALPHA PITCH ANGLE
17.345 1066.387 18198.217 48.207 2000.000 5951, 141 0.000 2154.912
2693,640 1.915 25.000 0.000 48,207
18.218 1100.523 132164741 44,994 2000.000 5951.938 1297.23¢ 2309.866
2691. 984 1.515 25.000 3,213 %§.207




Operating Information

Program setup., — The program is divided into nine logical blocks or links,
where each link performs a particular job. These links are required to ensure
that the program will fit into a 32K core computer. Additional information is
given in the section on program and data overlay.

Link 0: Controls the flow of the program from link to link and remains in
core at all times. The link consists of the following subroutines:
LOAD LOOK1D
ATMOS UNITZ
BLOCK DATA

Link 1: All operations related to the forward trajectory are performed.
The subroutines included in the link are:

AKSTP EXEC PLAC
ANPARP FPROG STEP1
ANPRTL INITCO STP1
BOOM LOOK3D TLD
CONTR

Link 2: The numerical partial derivative check is made using the subroutine:

PRTIAL

Link 3: The control variable history for the nominal trajectory generation
is made using the subroutine:
GUIDE

Link 4: The operations related to the automatic convergence logic are per-
formed. The subroutines included in the link are:

KCALC MATRX2 VALID
MATOUT UCALC VARIC
MATRIX

Link 5: All operations and controls related to the backward trajectory are
performed. The link consists of the following subroutines:

DVAL2 STEP2
LAMBDA STP2
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Link 6: This link performs the initialization that is required once per data
case. The subroutines included are:

INITAL
TITLES
Link 7: The final output of trajectory data that is required only once per
data case is performed. The subroutine called is
CARDS
Link 8 The last link controls the plotting of data and is called once per run.
The subroutines used are
PLOTZ

SKALZ

A set of auxiliary subroutines are required for plotting similar to the Boeing
numerical plotting system (NPS).

Organization of links: The organization of the computer links and the approxi-
mate core storage required are shown in figure 17. This chart shows that all
links of origin one are called from the basic link 0. Links 2 and 3 (origin two)
are called only by the forward trajectory, link 1.

Stop Subroutines
o = g
Labeled Common
Link O
(17,000) L __ ]
System Subroutines
Origin One
Link 7
Link | in
8500 Link &6 (700)
( ) Link 5
(3000)
(4300) Link €
Origin Two T a (6500)
in
L] L1 (s200
Link 2 Link 3
(800) (1200)

Figure I7. PROGRAM ORGANIZATION
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Physically in the computer, links 1, 4, 5, 6, 7, and 8 occupy the space
beginning with the same storage location (ORIGIN ONE) but at different times as
governed by the main program (LOAD). Similarly links 2 and 3 occupy the stor-
age beginning with the same location (ORIGIN TWO).

Program deck: The recommended program deck setup is shown in figure 18.
The control cards required for machine operation precede link 0. The data deck
for a given problem is placed following link 8.

To speed up the overlaying of links, two additional tape (or disk) units are
used to store the program. The forward integration routines (links 1, 2, and 3)
are stored on SYSLB3. The convergence logic routines (link 4) are stored on
SYSCKl. All other links are stored on SYSUT2.

Data setup. — The setup of the data is performed as detailed in "Input Data
Preparation.' The physical setup of the data deck is shown in figure 19. Note
that each set of stage-dependent data must be preceded by an STG card. A STG
card must be present for a stage even if no stage-dependent tables are input.
The last card in the data deck is an END card.

General Machine Operation
Tape or disk requirements. — STOP may use a maximum of 10 I/O units during

execution, excluding the system units reserved for input, output, punch, and
normal link loading (i.e., SYNIN1, SYSOUl, SYSPP1, SYSUT?2).

Listed in figure 20 is a brief description of all 1/0 units used — their prograr
symbol, system name, function, mode, and buffer size. (Buffer sizes are set
in subroutine UNITZ.)

Figure 21 shows the I/0 units used during execution of a typical data case.
This data case is set to complete 1 iteration (NARBY =2, NITC = 1), punch the
control table used for the last iteration (NC(8) = 1), and plot the nominal and last
iteration (NC (11) = -1).

End of run indication. — The program will normally exit successiully by
reading an end of file on the input tape (SYSIN1). The monitor will print out the
comment "END OF FILE READING." The program has the capability to run
multiple data cases, and always terminates one case by trying to read the next.
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(s1BSYS

{ SEOF

Q DATA DECK

[ $ECF

2 LINK 8

(FOR PLOT LINK)

(s INCLUDE
(S ORIGIN ONE

/ LINK 7

(S ORIGIN ONE

/ LINK &6

¢ $ ORIGIN ONE

/ LINK 5

(% ORIGIN ONE
7 LINK 4
[ -
( § INCLUDE FOVERF
(SORIGIN ONE, SYSCKI, REW

/ LINK 3

(’$ ORIGIN TWO, SYSLB3, REW]

éz LINK 2

¢ $ ORIGIN TWO, SYSLB3, REW

/ LINK 1

7’5 ORIGIN ONE, SYSLB3, REW
LINK 0

Figure I8. PROGRAM SETUP
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(END

AERODYNAMICS TABLES

ENGINE TABLES

ST

¢AERODYNAMICS TABLESA

'4 ENGINE TABLES

(STG
/ GUIDANCE TABLES

/ SKIN FRICTION TABLE

/ ENROUTE CONSTRAINT TABLES

/ TILT MANEUVER TABLE

/ WEIGHTING TABLE

% RESTART TABLE

/CONTROL VARIABLE TABLE

/ NOMINAL GUIDANCE

/FREE INITIAL CONDITIONS

{CONSTRAINT DEP. PARAM..

% STAGE DEP. PARAMETERS

Z INITIAL CONDITION DATA

% NC CONTROLS

r CONTROL CARD

ot

TITLE CARD

Figure [9. DATA DECK SETUP
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Program System
Symbol Name
KINP SYSIN1
KOUT SYSOU1
KPUN SYSPP1
SYSUT2
SYSLB3
SYSCK1
KDAT SYSUT6
KLAM SYSUT3
KPAR SYSUT4
KPLT SYSUT1
*KSCR SYSUTY
KTAN SYSUTS5
SYSUT7

Printed output

Punch output
Link storage

Forward inte-
gration link

Matrix link

Input data
storage

Impulse response
storage

Partial storage
Plot data storage

Control table
storage

Control table
overlay

Scratch tape for
the NPS gener-
ated code

*SYSCK2 Plot output

Buffer Size
Mode (decimal) Remarks

BCD 14

BCD 120 )
System Units
BCD 22

Link storage
BIN

|
|

BIN 256

BIN 256
Scratch units
BIN 20 required by STOP
BIN 20
BIN 256 /
BIN 256
Used only when
plotting
BCD 22

* These units must be assigned to TAPE, as they may be saved

Figure 20.

INPUT/OUTPUT (1/0) USAGE

Special machine operating information. — The two I/0 units, KSCR and

SYSCK2, must be assigned as physical tape units and comments inserted asking
that these tapes be saved.
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Routines Link I/O Unit 1/0 Unit

Loaded From Number Read Written Purpose
CORE 0
SYSUT2 6 KINP KOUT Initialize data
KDAT
KTAN
SYSLB3 1 KDAT KOUT Forward integration of
KPAR nominal
KSCR
KPLT
SYSCK1 4 KOUT Majority vote test
SYSUT2 5 KPAR KLAM Backward integration
KOUT
KDAT
SYSCKl1 4 KLAM KTAN 1. Steepest ascent logic
KOUT 2. Build new control table
KPAR
SYSLB3 1 KDAT KOUT Forward integration of try 1
KTAN
SYSCK1 4 KLAM KTAN Analyze try 1, make another
KPAR KOUT try or run valid step
KPAR
SYSLB3 1 KDAT KOUT Forward integration of itera-
KTAN KPAR tion 1
KSCR
KPLT
SYSUT2 7 KSCR KOUT Print and punch final output
KDAT KPUN
SYSUT2 8 KPLT KOUT Prepare plot tape
SYSUT7
SYSCK2
SYSUT2 6 KINP Exits trying to read next
data case

Note: KTAN will not be used if the control table used does not exceed 1000 points.

Figure 21. EXAMPLE OF 1/0 USAGE
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The following control cards are required for each computer run, and must
precede the program deck.

$J0B 9
S» A
$# P
sx -
S R
(13

SATTACH
$AS

SATTACH
SAS

SATTACH

$ATTA§B__"_

" SAS

NOTE:

SATTACH
$AS
SATTACH
$AS
SALT
SEXECUT
$1B8J0B
$pPOOL
SETC
$GROUP
$ETC

- $pOOL”

$GROUP

(1)

(2)

9F-61C AS2413 WATSON BCC A2 5-0934
CCTTIME 5
RINT ESTIMATE (2000}

EADY A45A59B39B59C2+C39C4H

A4
SYSUT?7
A5
e GG R T T e S
B3
SYSUT9

NPS

£-— “TTIBJOB T T T T SqPRRT v - o
GO»LOGICIMAP¢FILESsFIOCS9EXTLIB
~UNITO3-»~UNITO4=3s=~UNITO9~+-UNIT10~s=UNIT11-sBLK=256
BUFCT =4
~UNITO03=9=UNITO4=»~UNITO9~s=UNIT10-s~UNIT11-sOPNCT=4
BUFCT=4

SUNITOB~s=UNITT4=9BLK=22)BUFCT=2 - —-= ~-~""— " — = —— =
~UNITO8=»-UNIT14=-sOPNCT=2BUFCT=2

When NC(8) # 0, a comment card must be included with the control
cards, asking that a save tape be mounted on B3.

When plotting (NC(11) # 0), a comment card must be included with
the control cards stating that unit C1 will contain the plot output.
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Programming Information

Basic program flow. —The following flow charts are intended to give the
user a general picture of the basic program organization and the subroutines
called by each major area of the program. The flow charts are broken down into
the logical areas of forward integration, reverse integration, and control logic.
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END OF INTEGRATION

STEP

CALL
INITCO

BASIC
FORWARD
INTEGRATION
FLOW

ENTER FORWARD
INTEGRATION

!

1

CALL
CONTR

CALL
AKSTP

CALL
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CALL
STPI

CALL
STEPI

CALL
STP1
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END OF FORWARD INTEGRATION

CALL
EXEC
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CALL
VARIC
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LEAVE CONTROL
LOGIC

CALL
¢— KCALC

CALL
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Subroutine descriptions and flow diagrams.— Each of the subroutines in
STOP is described giving the purpose and the numerical method if applicable.
Other subroutines called by the one being described are listed. The approximate
core storage used is indicated. The arguments of subroutines using a calling
sequence are defined in detail. Flow charts showing the organization and detail

of each routine are given.
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AKSTP — AK Store

Purpose

AKSTP defines and calculates basic and frequently used variables in the

program. These variables include some AK's, VAR's, partials, and trigonome-

tric functions of angle of attack, latitude, flight path angle, and heading.

Subroutines Called

ATMOS BOOM LOOK1D TLD

Storage Used

952 cells
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ANPARP — Analytical Parfial Derivatives of Placard Equations of Motion

Purpose

The analytical partial derivatives of the placard equations of motion (part
of the F array) are performed in ANPARP, These derivatives of F (placard)
are with respect to all the state and control variables. See appendix B for an
algebraic description of these partials.

Method

1) Derivatives of the placard equations with respect to the state variables are
given as PFX(I, J) where I identifies the placard equations, and J identifies
the derivative state variable; i.e., PFX(K25,K4) = 0F(K25)/9X(K4).

2) Derivatives o!f the placard equation with respect to the control variables are
given as PFU(I,J) where I identifies the placard equation of the F array, and
J the derivative control variable; i.e., PFU(K25,I1) = aF(K25)/8U(I1).

3) All partials not calculated are set to zero.

4) Words not in COMMON computed in ANPRTL and required by ANPARP are
transmitted through the calling sequence:

CALL ANPARP (PLPH, PLPV, PLPA, PLPS, PDPH,
PDPV, PDPA, PDPS, PTPH, PTPV, PTPA, PTPT)

where the elements in the call are defined in appendix B.

Subroutines Called

BOOM

Storage Used

1,371 cells
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ANPARP
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ANPRTI — Analytical Partial Derivatives of the Equations of Motion

Purpose

The analytical partial derivatives of the equations of motion (excluding pla-
card equations) are calculated in ANPRTL. These derivatives of the F array

avra with ragnant +A all +ha gfata an A anantwral varniahlaa A A Ay oitraq

alL T WLLJ..L LTOPTUL LU all uic Dbabc aliul VUILLILL UL val lauloo. nppeu.\.u.A D 5lVOD an

algebraic description of these partials. ANPRTL is called from STP1 only
during valid trajectories.

Method
1) Derivatives of the equations of motion with respect to the state variables

are given as PFX(I,J) where I identifies the equation of motion and J iden-
tifies the derivative state variable; i.e., PFX(K2,K4) = 0F(K2)/9X(K4).

2) Derivatives of the equations of motion with respect to the control variables
are given as PFU(I,J) where I identifies the equation of motion and J iden-
tifies the derivative control variable; i.e., PFU(K2,I1) = 8F(K2)/8U(11).

3) All partials not calculated are set to zero.

Subroutines Called

ANPARP

Storage Used

1,649 cells

137



Zero
PFX
PFU

]

Compute
QS
PQSPH
PQSPV

PLPH
PLPV
PLPA

1

Compute
PLPS
POPH
PDPV PTPV
PDPA PTPT

PDPS
PTPH

1

Compute
PAPT
PAPG

PGPH

4

Evaluate Partials
For Selected
State Variables

Evaluate Partials
Of Weight

Evaluate Partials

Of Altitude

Evaluate

Partials Of I
Relative Flight

Path Angle

138

ANPRTL



®
ANPRTL

Evaluate
Partials Of )

Relative
Velocity

Evaluate

—{ Partials Of >
Latitude Angle

/I(TMR
__~Latitude Within_ ygg

.1 Degree Of
ither Pol

Is Gamma

Within .1 YES

Degree Of 90.
D

.

Evaluate

Partials Of
Relative Heading
Angle

139



Evaluate Partials
Of Longitude
Angle

@ ANPRTL

Dummy Time

Evaluate Partials
Of Path Range
Along Earth's
Surface

Evaluate Partials
Of

Aerodynamic
Heating Integral

Evaluate Partials
Of Ideal
Relative Delta
Velocity

Evaluate Partials
Of Gravity
Loss

Evaluate Partials
Of Drag Loss

140




3 Of Thrust >

1 of Relative — -

—————»{ For EEEE———

@ ANPRTL

Evaluate Partials

Vectoring Loss

Evaluate Partials

Specific Energy

Available
Growth

Available

——»1 For

For ™
Growth

Available

Growth

Available

For >
Growth

Available

For S
Growth

141




ANPRTL

Are Any
Placards
Selected

Is This

The Nominal Return

Return

Call
PRTIAL

Increment
Numerical

Partial Calculation
Indicator By |

l

Return

142



ATMOS — Atmosphere Calculations

Purpose

ATMOS calculates atmospheric pressure, temperature, density, and speed
of sound. Any atmosphere may be used; however, the calling sequence must be
the same as presently used.

Method

The ATMOS subroutine normally used in the program is an analytical repre-
sentation of the 1962 ARDC standard atmosphere.

The call to ATMOS is made with input and output variables transmitted
through the calling sequence, i.e.,
CALL ATMOS (H, VA, P, D, T)
where H is the altitude, ft
VA is the speed of sound, fps
P is the pressure, psf
D is the density, slugs/ft3

T is the temperature, deg Rankine

Limitation
This ATMOS subroutine is a modified version of the complete 1962 ARDC
standard atmosphere. Because of a limiting altitude of 157, 000 feet and other
simplifications, the modified ATMOS is considerably faster than the complete

atmosphere with little or no loss of accuracy within the bounds of common
application. Other ATMOS subroutines are presented in reference 9.

Storage Used

250 cells
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ATMOS

Convert
Altitude
To Meters

) YES Altitude Altitude
Altitude Less Than Less Than
=0. Zero 11 KM.
g
Terr= 216.65 (°K Altitude
DRTE}:DH - 0'(0,2/131') YES Greater Than Or Equal
M 11 KM. And
::REF = 11000. (M) Less Than KM.
= 476.283 (PSF)
NO
A
Calculate ) Alfitude Altitude
CS (Velocity) Greater Than Or Equal Greater Than or. NO‘
P (Pressure) <20 KM. And NO Equal 32 KM and
Temperature Less Than 32 KM. Less Than 48 KM
Density
YES YES
{ TREF = 228.65(°K
TI%E =216.65 " DT/DH = .0028(°K/M)
Return D1/DH = .001 °K/M) HRer = 32000. (M)
HReF = 20000. (M) PREF = 18.12899 (PSF)
PREF = 114.3%£SF)
Togr = 288.15 CK;
DT/DH = -.0065( K/M)
HRep=0. (M) | Y
PRep = 2116.23 (PSF) Calculate Density = 0.
T™ Pressure = 0.
CS (Velocity) Temp. = 489.676
P (Pressure) CS =1084.796
Return Return
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BLOCK — Program Constants and Qutput Titles

Purpose
This subroutine is provided for input of numerical constants and alpha-

numeric printout titles, which are required by the program and are not case
dependent. These variables are set once for each computer run.

Method

All constants and titles are input by data statements.
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BOOM — Sonic Boom Overpressure and Placard Determination

BOOM calculates the sonic boom overpressure and determines the
equation of motion for the overpressure violation in the path of the aircraft.

Method

Sonic boom overpressure on the ground is determined for the conditions
along the flight path. The sonic boom penalty function is calculated by the method
discussed in the analytical development section on enroute constraints. The
terminal value of the penalty function (auxiliary state variable) must be con-
strained to zero. Location of the shock signature on the ground is determined
as a function of the longitude, latitude, and aircraft flight conditions.

Assumptions and Limitations
The overpressure violation is calculated at an odd number of points so that
both maximum lateral cutoff points and the midpoint are included. The number
of points is selected by setting NC(75) = number of points. I NC(75) is even,
the number of points calculated is NC(75) + 1. If too few points are selected,
a region where the placard should be violated may slip through the mesh without
being detected.

Subroutines Called

LOOK3D PLAC

Storage Used

298 cells
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CARDS — Card Output Routine

Purpose

CARDS is called at the end of each data case and is assigned the following
tasks:

1) Recover control table from last valid trajectory from KSCR unit and print
and punch control table and restart table;

2) Recover trajectory summary from KDAT unit and print trajectory summary
table.

Method

The control variable table is recovered by backspacing the KSCR unit to the
start of the last valid trajectory and reading the control history into core. The
restart table is built from convergence information in COMMON. The control
table is then punched in octal format (in order to maintain sufficient accuracy)
and the restart table is punched in decimal format (for ease i1n modification if
required).

The trajectory summary is obtained from the KDAT unit which was written
by LAMBDA at the end of each valid iteration.

Storage Used

681 cells
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CONTR — Open Loop Control Variable Calculation

Purpose

CONTR performs a table lookup for the control vector (u) in the TIMEU
array at each new time point as required by the integration package.

Method

The control variables obtained are specified by the setting of NC's 77 through
80 for 6, ¢, 7m, and A respectively. An NC set to 0 indicates the control vari-
able is not required, set to 1 indicates the control variable is used. Values of
the variables as functions of time are obtained by linear interpolation from the
control variable table which is either input or generated by the program. For
the nominal trajectory, if NC(@13) = 0, the control variables are calculated as
described above; but if NC(@13) # 0, the control variables 8 or m are calculated
in the GUIDE subroutine and override the value looked up by CONTR. CONTR
is called prior to GUIDE.

Assumptions and Limitations

The control variables are obtained by a linear table look-up. The table
look-up package does not extrapolate so the user must input data that will not
permit a table overrun.

Subroutines Called

GUIDE

Storage Used

197 cells
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DVAL2 — Adjoint Variable Derivative Evaluation

Purpose

The derivatives of the adjoint variables and the integrated payoff sensitivities
are evaluated for the reverse integration.

Method

The differential equations for the adjoint variables are evaluated as discussed
in the section on the steepest-ascent method. The partial derivative PFX or PFU
and the control variables u were stored as functions of time during the forward
trajectory. Because this subroutine is important for the basic understanding of
the computer evaluations of the adjoint variables, weighting matrices, and I matrix,
the computer language for important variables will be given.

The array of all derivatives evaluated du.ring the backward integration, the
FB array, is constructed with elements for A given by

A=-TF'A
where
F = PFX matrix
A = XB array

The derivatives for the elements of the I matrix are

d1

a = XXDOT array

A' G w1 G' A (from equation 109)

where
A = XXLAM matrix (given by equation 110)
G = PFU matrix
w-1 = VINP array

The derivatives of the elements for the automatic weighting are evaluated by
(6o}
dS u

dt

= |s‘3 I (from equations 98 and 134)
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where

s9 @t

c' Apqn (equation 130)
PFU (I, J)* XXLAM (1, 1)

The elements of the UULAM matrix are the weighted impulse responses of
the constraints and performance to the control variables as given by W1 G A.

The call to DVAL is made through the calling statement.

CALL DVAL (UULAM)

Note: When a single-dimension array is used to store the elements of a matrix,
the elements of the matrix are stored by rows.

Subroutines Called

LOOKLD

Storage Used

1229 cells
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EXEC — Forward Integration Flow

Purpose

EXEC is called at the start of every forward trajectory. The basic purpose is
to control the program flow in performing the forward trajectory. To accomplish
this, the following tasks are accomplished.

1)
2)
3)
4)

5)
6)

Read nonstage-dependent data from KDAT;
Initialize state variable array;
Read stage-dependent data from KDAT;

Position KDAT past last written trajectory summary at start of last stage
only;

Initialize the state variable derivative array;

Integrate to end of stage or XSTP for last stage. Control data overlay is
accomplished as required by reading blocks of data from KTAN.

Method

Integration of the forward trajectory utilizes the variable step Runge-Kutta option
of STEPL. The final step to XSTP is iterated using the fixed step option until
X (NST) is within EPSLN of XSTP.

Subroutines Called

AKSTP FPROG STEP1
CONTR INITCO STP1

Storage Used

665 cells
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FPROG — Equations of Motion (Calculation of F Array)

Purpose
FPROG calculates the entire F array, which consists of the equations defining

the derivatives of the state variables and placards with respect to time. See
appendix B for an algebraic definition of the F array.

Method
1) All state variable derivatives with respect to time are calculated directly in

FPROG. The placard derivatives, however, are calculated in the PLAC sub-
routine called by FPROG.

2) The value of the placard required in the evaluation of the placard derivatives
is obtained by a table look-up.

3) The array is initially zeroed so that only the calculations performed in a
given case may have nonzero values.

Note: The sonic boom placard, F(K35) is not determined in FPROG but by the
subroutine AKSTP (which calls BOOM which, in turn, calls PLAC).

Subroutines Called

PLAC

Storage Used

677 cells
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GUIDE — Closed Loop Guidance Control Variables

Purpose

GUIDE calculates control variables for generating a nominal flight path.

Method

The NC (13) controls the manner in which nominal trajectory is generated.
The GUIDE subroutine is called only for the nominal trajectory, if NC(@3) # 0.
If the first stage is a tilt maneuver, GUIDE is bypassed. The number of phases
used to generate the nominal is given by NC(13). Corresponding to each of the

vhages, 2 cuidance mode and vhase stonnine condition must he snecified Thae
PLAsto, a guiliailUl iHOUL Qlitt plasT BLuppilig CUMLLILLIVIH LiuSh SMCLLiTe L i<

provision is made to allow the phase stopping condition to be approached from
below or above. The guidance modes are discussed under '"Nominal Trajectory
Generation, "
Assumptions and Limitations

A maximum of 12 phases may be used to generate the nominal flight path.
Five tables have been reserved for guidance modes. The equations solved for
the control variables are linearized as described under '""Nominal Trajectory
Generation, "

Subroutines Called

AKSTP LOOKILD

Storage Used

657 cells

175



: GUIDE
Jsmo t

Set Input NUmber Of Modas
Number Of ¢ NO <TUsed Less Thon Or E%
Modes Indicator o _The Desired NumbegTo
To -1 Be Usagd And Is This The
l Nomi l’/
Return
Set Mode
Indicator To
Current Mode
Number
Increment
Mode YES _Sglected Mode Numbar
Table Counter Greater Than 2 And
By 1

Return

Transfer
To Selected

Mode

Alpha Equal
Zero Mode
Set

un =x(K3)

Y

Calculate
un) > Return
Chl

sh

176




Alpha From
Taﬁ

le 0 Mode
Set '
ALF = Ul

¥

Calculate
un

GUIDE

Gamma |Is
Function Of
Time Mode

Call
I QOK1ID

Calculate
GDOT

Gamma Dot
Is A function

Of Time Mode

Call
1OQOKID

\

Calculate

GDO1

1717



Calculate
XMV

!

Calculate

QS
Calculate

ALF

420

Less Than Or
Equal To Maximum
Allowable Value

Set

ALF To Maximum

Allowable

Value

s AL
reaterThan Or
Equal To Minimum
Allowable
Value

Set ALF

To Minimum NO
Allowable
Value

@o)

178

9

=



Altitude Is
A Function Of GUIDE

™1 Velocity Mode

Call
LOOKID
@ Calculate
DHDV

Is
DHDV Equal
To O.

Calculate
vDOT
Required

(With Feedback)

Calculate

@ XM A

. > VF B

Qs C
TERM

Calculate

ALF

()

179



Altitude s
A Function
Of Mach

> Number Mode

Calculate
DHDV

Gamma Dot Equa
Zero Mode

Set
GDOT =0

Gamma Equal

»| Zero Mode

Set GDOT =0
XK3T =0

->{ 310

VDOT Equal Zer

Mode
>y Calculate Theta)
Set VDOT
Required = 0

MDOT Equal
Zero Moje

Calculate
VDOT Required

(Calculate Thatu)

VDOT Equal

Set
vDOT =0

1

Zero Mode (Calculate Throttling)

180‘/

GUIDE

_4%3}



GUIDE

Calculate

@& ¥
VF

ui3

1sU13
Less Than Or 675 To
Equal to Maximum Maximum

Allowable Alfowable Value

Set

Ui3 To

Minimum
Allowable Value

Allowable
alue

Set
U(13) = VI3

{

Return

MDOT Equal Zero
(Calculate Throttling)

Calculate

vVDOT

(19

181



INITAL — Initial Data

Purpose

INITAL is called once at the beginning of a data case and performs the

following tasks in the order listed below.

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)

13)

14)

Read the title card;

Initialization of important program indicators and arrays;
Read the control card, NC array, and initial condition data;
Set the forward integration error limits;

Read the stage-dependent and constraint-dependent parameters;
Print the initial conditions and stage—depéndent parameters;
Construct heading block for printout from subroutine MATOUT;
Print optimization and stopping condition parameters;

Read and print free initial condition parameters if necessary;
Read and print phasing guidance parameters if necessary;
Print control parameters;

Read and print nonstage-dependent tables (including control variable and
restart tables). Store part of control variable table on KTAN unit if
necessary;

Store nonstage-dependent tables (except control variable and restart
tables) on KDAT unit;

Read and print stage-dependent tables and store on KDAT unit.

Subroutines Called

TITLES

Storage Used

2692 cells
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INITCO — Initialize State Variables

Purpose

This subroutine is called at the start of each stage and is assigned the
following tasks:
1) Initialize the X array at the start of stage 1;
2) Update the free elements in the X array at the start of stage 1;
3) [Initialize weight at the start of every stage;

4) Update weight at the start of each stage if weight is a free initial condition.

Method
The XO array is used to initialize X at the start of stage 1 and the WO array
is used to initialize the weight at the start of each stage. The input WO and XO
arrays are updated in VALID using the values of DELX computed by VARIC.

Storage Used

117 cells
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KCALC — Step Size Logic Subroutine

Purpose
This subroutine is called following every try if MATRIX determines a non-
negative majority vote. KCALC is assigned the following tasks:
1) Compute maximum allowable constraint motion;
2) Set L(6) for next trajectory;
3) Compute step size coefficient (COEFK) for next trajectory.

METHOD

KCALC computes the step size coefficient based on performance and con-
straint linearities using the parabolic curve fitting method described in appendix
C. Maximum step size coefficients are also determined based on the maximum
allowable travel of each constraint. The best step size is then determined for
the next trajectory.

Variables not in COMMON are transmitted between MATRIX and KCALC
through the calling sequence

CALL KCALC (DPSI, DPSIP, PSIBWD, PSIFWD, PSIK, PSIKTR, PSINIL,

XX)
where:

DPSI = change in constraint end points

DPSIP = predicted change in constraint end points

PSIBWD = nondimensional allowable change of a constraint in direction
of desired constraint value

PSIFWD = nondimensional allowable change of a constraint in direction
away from desired constraint value

PSIK = constraint step size coefficients

PSIKTR = maximum step size coefficients of constraints due to maximum
permissible travel

PSINL = constraint nonlinearities

XX = current end point values

Storage Used
832 cells
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LAMBDA — Reverse Integration Flow Controller

Purpose

LAMBDA controls the flow of the program during the backward integration.

Method
The adjoint variables are initialized prior to performing the backward inte-

gration. The automatic weighting matrix is calculated using the method described
under ""Automatic Weighting Matrices. "

Subroutines Called

DVAL2 STP2 STEP2

Storage Used

518 cells
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LOAD — Main Program

Purpose

LOAD controls the program flow from link to link and causes links to be

overlayed.

Method

The program is broken into nine links, each performing a specific function.

Link No.

W N = o

‘\ATMOS

\

Purpose of Link

General program flow

Performs forward integration; called once per trial
Numerical partial check link

Closed-loop guidance link

Performs the steepest-ascent calculations; called
once per trial and twice per valid trajectory

Controls program flow for reverse integration;
called once per valid trajectory

Initilization, called once per data case

Performs final output of trajectory data; called once
per data case

Controls the plotting routines; called once per
computer run

Subroutines Called

EXEC INITAL MATRIX LAMBDA PLOTZ

Storage Used

206 cells
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LOOK1D — One-Dimensional Table Lookup

Purpose

LOOK1D provides a table lookup technique for tables that have one inde-
pendent variable and NDV dependent variables.

Method

Given a value for the independent variable, the subroutine will furnish the
dependent variable values and their partial derivatives with respect to the inde-
pendent variable. Extrapolation is performed if the table limits are exceeded.

The call is made to LOOK1D through a calling sequence.

Call LOOK1D (NDV, KK, XQ, Y1, Y2, Y3, Y4, Y5, S1, S2, S3, S4, S5)
where NDV = number of dependent variables
KK = location of the first entry in the tables, NDS (table no.)
XQ
Y1, Y2, Y3, Y4, Y5 = values of the dependent variables

value of the independent variable

S1, S2, 83, S4, S5 = values of the slopes of the dependent variables
with respect to the independent variable

Assumptions and Limitations

1) The lookup method is based on linear interpolation.

2) The maximum number of dependent variables (NDV) is five.

Storage Used

229 cells
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LOOK3D —3D Table Lookup

Purnose
urpose

LOOK3D provides a method for linearly interpolating in a table to obtain a
dependent variable as a function of up to three independent variables, i.e.,

W = F(X,Y, Z).

Method

Given the three values of the independent variables, the routine calculates the
dependent variable and the slopes (derivatives) of the dependent variable with
respect to the three independent variabies. Linear extrapoiation is performed in
cases where the table limits are exceeded.

The call to LOOK3D is made through a calling sequence.

LOOK3D (NTAB, ZIND, XIND, AIND, YY, SLZ SLY, SLX)

where
NTAB = table number

ZIND = value of the independent variable out of the plane

XIND = value of the independent variable between curves on a given
plane

AIND = value of the independent variable that is the abscissa of the
curves

YY = value of the dependent variable

SLZ, SLY, SLX = slopes of the dependent variable corresponding
to ZIND, XIND, AND AIND, respectively

Assumptions and Limitations
The dependent variable is obtained from the input data by linear interpolation

and the slopes by a forward difference technique. The lookup package can be used
to obtain the dependent variable as a function of one or two independent variables

also.

Storage Used
617 cells
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MATOUT — Matrix Qutput

Purpose

MATOUT prints convergence information that appears following each trial
or valid step. The printout includes information such as current end-point values,
constramt travel 1ndlcators constramt changes, constraint tolerances, predicted

nv\d nn-.nm Aa+n

Al (- §

(@]
C
B
)
[
e
E.
o
o
Q
o
o
E
g
[¢]
n
Ul
L
O
T
Ul
i
N
(]
Q
©
[¢)
i
-
]
[}
Jde
[0}
=
w0
£

Information not in COMMON is transmitted between MATRIX and MATOUT
through the calling sequence

CALL MATOUT (DBETA, DPSI, DPSIP, IMAJ, INDTVL, PSIBWD, PSIFWD,
PSIK, PSIKTR, PSINL, XLAMDX, XX)

where:

DBETA = the change in constraints modified by the end point changes due
to the variation of initial conditions

DPSI = actual change in constraints measured from a previous valid
step

DPSIP = predicted change in the constraint end points

IMAJ = value of the majority vote

INDTVL = constraint travel indicator

PSIBWD = nondimensional allowable change of a constraint in the direction
away from the desired constraint value

PSIFWD = nondimensional allowable change of a constraint in the direction
of the desired constraint value

PSIK = constraint step size coefficients

PSIKTR = constraint step size coefficients based on maximum permissible
constraint travel

PSINL = constraint nonlinearities

XLAMDX = predicted change in the constraints due to variable initial conditions.

XX = array of constraint end points

Storage Used

1202 cells
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MATRIX — Basic Steepest Ascent Subroutine

Purpose

MATRIX is called at the end of every valid trajectory, reverse integration,

and trial trajectory. After a valid trajectory, MATRIX calls VALID to examine
the results (see VALID). After a reverse integration, MATRIX performs the

following tasks:

1) Recovers the I matrix from the XB array

2) Calls MATRX2 to invert Iiblb matrix

3) Computes minimum allowable DUSQ

4) Calls VARIC to compute new DELX array

5) Updates iteration counter (ITC)

6) Writes arrays required for trials on KPAR unit for temporary storage

7) Computes Lagrange multipliers

8) Calls UCALC to update control history

9) Calls MATOUT to print convergence information
Following each trial, MATRIX performs the following tests:

1) Reads arrays from KPAR unit written after the previous reverse integration

2) Examines the try to see if it passes the majority vote test. If the test fails,
a new trial is attempted

3) Calls KCALC to determine the step size coefficient for the next rajectory

4) Performs steps 7, 8, and 9 above.

Method

The steepest ascent method and the convergence logic used in MATRIX are

explained in detail in the analytical development section and appendix C

Subroutines Called

KCALC MATRX2 VALID
MATOUT UCALC VARIC

Storage Used
3454 cells
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MATRX2 — Matrix Inversion Subroutine

Purpose

MATRX2 computes the solution of a set of simultaneous linear equations, the
inverse of a matrix, or the value of a determinant.

Method

The solution of a simultaneous linear equations follows from
B = AX
or solving for X
Xx=A"B

Thus, the inverse is required for the solution, and the determinant of A is
required for the inverse of A. The matrix operations are all performed in
double-precision. Matrix inversion uses the Gaussian elimination method.

The call to MATRX2 is made through a calling sequence
CALL MATRX2 (N, LN, LM, A, B, E, D, MM)
where N = the order of the matrix A

LN = number of rows in the dimension statement for matrices A
and B, i.e., Ais an LN x LM matrix.

LM = number of columns in matrix B

= array designation for matrix A

A

B = array designation for matrix B

E = an array used as temporary storage of a column matrix
D

= value of the determinant of A
if D = 0 the determinant is not computed
D = 1 the determinant is computed
D = a scale factor, the determinant equals the value of the
determinant times the scale factor

MM = error indicator
1 if solution is successful
2 if overflow occurred
3 if matrix is singular

The answers or the X matrix replace the original A matrix,
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Assumption and Limitations

The size of the problem that can be solved is limited only by machine
storage space.

Storage Used

596 cells
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PLAC — Placard Equation Evaluation

Purpose

Subroutine PLAC is called from FPROG for each selected enroute constraint
and performs the following tasks.

1) Compares the constrained variable with the allowable limits from the input
placard table

2) Computes the placard equation of motion value and updates the appropriate
element of the F array

3) Stores the placard limit value and the slopes of the limit value with respect
to its independent variables (obtained from the input placard table) in the S
array.

Method

The call to PLAC is made through the following calling sequence:

CALL PLAC (II, ITAB, KTAB, Al, A2, A3, A4)

where II = F array index corresponding to the selected placard. 1II is
computed by FPROG.

ITAB = first table number containing the placard values for the selected
placard. ITAB is computed by FPROG.

KTAB = number of independent variables defining the input placard
table. KTAB may be 1, 2, or 3, depending on the placard
formulation.

Al = Value of the independent variable for a one dimensional table
or the value of the "plane'" for a three dimensional table.

A2 = Value of the '""curve' for a 3-D table. A2 = 0. for a 1-D table.

A3 = Value of the abscissa (''point') for a 3-D table. A3 = 0, for

a 1-D table,
As an example, the calling sequence for the Qp iy = F(t) placard is
CALL PLAC (II, ITAB, 1, T, 0., 0., AK(4)).
For the Nyt = F(H, M), the call is
CALL PLAC (II, ITAB, 2, 0., X(K2), AK(5), UI3).
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Note that if the 3-D option is used for a 2-D table, the value of the '"plane"
is set to zero.

PLAC will set F(II) = 0. if the limit value is not exceeded or to (LIMIT -
Aé]:)2 if the limit is exceeded.

PLAC also computes elements in the S array as follows:

S(I,2) =limit value exceeded (max. or min,).

S(I, 3) = slope of limit value with respect to Al (from the input placard

table).
S(1,4) = slope of limit value with respect to A2.
S(1, 5) = slope of limit value with respect to A3,

I is the internal index for the selected placard (I = 1, NPF) and is computed
by PLAC.

Subroutines Called

LOOK1D LOOK3D

Storage Used

216 cells
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PL.OTZ — Plotting Subroutine

Purpose

PLOTZ controls the plotting operations for the Orthomat and SC 4020

plotters. Operations for scales, headings, titles, etc., are included.

1)
2)
3)
4)
9)

Limitations

The maximum number of plots is limited to seven
Six curves maximum per plot
Multiple~data cases cannot be plotted
X- and Y-axes annotation occurs every 2 cm
Titles consist of the following:
LINE 1 ~

DEP. VAR, NAME VS, IND, VAR, NAME
LINE 2 -

The first 72 characters taken from title card on the data deck.

Subroutines Called

SKALZ

Boeing numerical plotting system (NPS) subroutines called

CAMERA NOSLIB TITLEB
ORTHPP AXLITI BORDER
SLLILI NWPAGE SCPP
PAUSE GDLILI NOSLIL
PSLILI FORM

Storage Used

1436 cells
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PRTIAL —Numerical Partial Derivative Check

Purpose

PRTIAL calculates the partial derivatives of all of the equations of motion
for state and placard variables with respect to each of the state variables and
control variables. These are used for checking the analytical partial derivatives
used in the steepest-ascent method ( see appendix B).

Method

The numerical partial derivatives are evaluated using a linear approximation
by perturbing the state or control variable about the present value. The pertur-
bations are made both positive and negative from the mean value. For example,
if z = f(y1, y95 «+-.»¥pn), Where y; is either a state or control variable, the
numerical partial derivative is given by

f(yy, v2, +-++s ¥i+h, +++-2 ¥n) - f(y1,¥y2, «+--5 Vi-h, ..., yn)

8y 2h

where h is the perturbation increment.

Subroutines Called

AKSTP FPROG

Storage Used

743 cells

236




Set State
Variable
Increments
To Be Used

Set Integration
Indicator

IA

Y

Save Current
Value Of State
Variable

i

Save Current
Derivative
Values

Y

Increment
Value Of
State Varigble

Call
AKSTP

Call
FPROG

Save Values
Of Derivative
For Incremented
State Variable

\ 4

Reset State
Variable
Value

237

J\D

PRTIAL



PRTIAL

Decrement
Value Of
State Variable

Call
FPROG

Compute The
Numerical Partials

Of Derivatives With
The Perturbed State
Variable And Reset
Values Of Derivatives

Reset The
State Variable
Value

is This
he Last State

Variable
Selected

238




Print Time,
Analytical Partials,
And Numerical
Partials For State
Variables

PRTIAL

k

Save Appropriate
Control Variable
Value

®

4

Save Values
Of Derivatives

y

Increment
Control Variable
Value

\

E\valuatq
ppropriate
Control Variable

—®

<

Control Variable

YES

Angle A Selected < NO

Calculate
uil
Cit

St

Y

239




PRTIAL

Is Bank
Angle A
Selected Control
Variable

Y

Calculate
uUi2
Ci2 »-
SI2

Is Throttle
A Selected

Control
Variabl

|

Set
U3 = U(13)

Le

Is Wing
Sweep A
Selected Control
Variable

Set
U4 = U(14)

| -

-

Call
AKSTP

Y

The Following

4 Entries Are

Made In Consecutive
Order 1 At A Time

240




PRTIAL
®

Save Derivative
For Incremented
Control Variable

Y
Reset Control N
\riabnla 12

VI RIID

Value N\

Entry 2 Decrement
————{ Value Of ———->®
Control Variable

Entry 3 Call

™\ FPROG

\

Compute
Numerical Partials
Of Derivatives
With The Perturbed
Control Variable

-

Reset Derivative

Values @
-———-——->

Reset Control

Variable Value

Entry 4

241



PRTIAL

Print Analytical
Partials And
Numerical Partials
For Control Variables

|

Reset
Integration

indicator

'

Return

242

—%



SKALZ — Plot Scales

Purpose

SKALZ determines the scales for plotting.

Method

Scales are based upon the number of divisions allowed and the variable
range covered. The call to SKALZ is made through the calling sequence.

CALL SKALZ (DIV, DMAX, DMIN, SDIV, SMAX, SMIN, STEPP, DIST)

where

DIV

DMAX

DMIN

SDIV

SMAX

SMIN

STEPP

DIST

maximum number of subdivisions that may be used
maximum value of independent or dependent variable
minimum value of independent or dependent variable
number of divisions used for x or y axis (-< DIV)

maximum value of independent or dependent variable
( 2 DMAX)

minimum value of independent or dependent variable
( < DMIN)

step size between successive annotation on an axis
(SMAX-SMIN/SDIV )

distance to alter the origin of axis given in one-
division increments, (DIV-SDIV)/2.

Storage Used

412 cells
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STEP1 — Integration Of Forward Trajectory

Purpose

STEP1 integrates the equations of motion defining the state variable.

Method

The integration package is a variable-step Runge-Kutta. The Runge-Kutta
technique is basically a fourth-order method that is mechanized to vary the in-
tegration interval based on two half-step intervals as compared with the full step.
This system evaluates the NV derivatives 11 times per integration interval.
Only the basic NV equations of motion are integrated using the 11-point method.
The other equations of motion are integrated using only four evaluations of the
derivatives to save computer time. A complete writeup of the RKVS method is
given in reference 8.

Assumptions and Limitations

The minimum step size is specified by the user.

Subroutines Called

AKSTP CONTR FPROG STP1

Storage Used

1179 cells
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STEP2 — Adjoint Equation Integration

Purpose

STEP2 integrates the adjoint equations of motion backwards along the trajec-
tory.

Method
Integration is performed using a modification of the Runge-Kutta variable-
step technique given in reference 8.

The call to STEP2 is made through the calling statement
CALL STEP2 (UULAM)

where UULAM is a matrix of the weighted impulse response.

Subroutines Called

DVAL2 STP2

Storage Used

2323 cells
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STP1 — Store and Print Forward Trajectory Data

Purpose

STPL:

L

2)
3)
4)
9)
6)

Calculates many of the AK variables, including metric conversions and
transforms relative state variables to inertial coordinate system;

Performs the circular satellite option calculations;
Stores partials and plotting data on tape;

Tests for maximum stopping time;

Controls phases for nominal-guidance modes;

Controls printout of forward trajectory.

Subroutines Called

ANPRTL

Storage Used

867 cells
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STP2 — Reverse Trajectory Store and Print

Purpose

STP2 controls the storage and printing of the influence coefficients during
the reverse integration.

Method

The option to print the adjoint variables is made by the user (NC(7) # 0).
The print interval is selected and printing is done only at the completion of an
integration interval. Storage of the influence coefficients for use in determining
the new control variable history is performed. The partial derivatives stored
during the forward trajectory are called from storage and placed in core for use

by DVALZ2.

The UULAM matrix which is computed in DVAL2 is transmitted to STP2
through the calling sequence

CALL STP2 (UULAM)

where
_1 t
UULAM =W G A
Assumptions and Limitations
The maximum number of points that may be stored is 13590/NUP1, where

NUP1 is the number of control variables plus 1.

Storage Used

478 cells
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TITLES — Output Heading Subroutine

Purpose

TITLES is called from INITIAL once per data case and performs the following

tasks:

1) Constructs the packed array of headings (DESXUP) from the DESXUK array;

2) Converts the input NC (121) through NC (160) values to internal state variable
indicies;

3) Constructs the plot headings for the PLTNAM array;

4) Calculates the number of equations of motion (NEOM), placards (NPF),

state variables (NX), control variables (NU), and auxiliary printout vari-
ables (NK) selected by the user.

Method

All information required by TITLES is available in the input NC array and

the DESX UK array compiled in subroutine BLOCK.

Storage Used

363 cells
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e

TLD — Thrust, Lift, and Drag Calculations

Purpose
TLD calculates thrust, fuel flow, and aerodynamic coefficients as required
by the options. If also calculates some VAR's and partial derivatives as required
to perform the above calculations.
Method
TLD uses the NC's input to determine the options to be used for calculating
thrust, fuel flow, and aerodynamic coefficients. Body axes data is converted to
wind axes for use in the program. Thrust, fuel flow, and aerodynamic coefficients
data are obtained by table lookups.
Assumptions and Limitations
For thrust options 3 to 9, thrust and fuel flow data are tabulated for one engine
only. If more than one engine is used, the thrust will be multiplied by the number
of engines as input.

Subroutines Called

LOOKID LOOK3D

Storage Used

1,419 cells
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UCALC — Control Variable History Update

Purpose
UCALC is assigned the task of computing the control variable history for
the next trajectory.
Method
The control variable history used to generate the last valid trajectory and
the impulse response history computed during the last backward integration is

recovered from the KLAM unit. The Lagrange multipliers are used to compute
a new control history by

UNew - YoLp © [vuLam) [—“—E]
yS

and leEW is stored on the KPAR unit. Next the first part of ENEW that will fit
in core is stored in TIMEU and the remainder is written on the KTAN unit.
STP1 reads KTAN to accomplish the control history data overlay in the TIMEU
array.

The Lagrange multipliers, computed in MATRIX, are transmitted to UCALC
by

CALL UCALC XMU)
where

XMU = the array of Lagrange multipliers

Storage Used

532 cells
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VALID — Valid Step Monitor
Purpose
VALID is called from MATRIX at the end of every valid step and is assigned

the following tasks:
1) Decides whether to accept or reject the valid step.
2) Update free initial condition state variables.
3) Tighten temporary tolerance bands.
4) Updates INDSIC array.

5) Updates CPSI array.
Method

A detailed description of the logic used by VALID is given in Appendix C.
If VALID decides to accept the valid step, switches are triggered to allow a
reverse integration. If the valid step is rejected, the KSCR and KPLT units
are backspaced to the start of the previous iteration. The new valid trajectory
then will replace the rejected one.

Elements not in COMMON are transmitted between MATRIX and VALID
through the calling sequence

CALL VALID (DBETA, DPSI, DPSIP, INDTVL, XMU, XLAMDX, XX)

where

DBETA = the change in constraints modified by the end point change
due to the variation of initial conditions

DPSI = actual change in constraints measured from a previous valid
step

DPSIP = predicted change in the constraint end points

INDTVL = constraint travel indicator

XMU = array of Lagrange multipliers, [ u s’ ;s]

XLAMDX = predicted change in the constraints due to variable initial
conditions

XX = array of constraint end points

Storage Used
735 cells
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VARIC — Variable Initial Conditions

Purpose
VARIC computes the direction and magnitude to perturb the free initial con-
ditions to improve performance andalso controls the maximum payload option.

This subroutine is called after every reverse integration and results in an update
of the DELX array.

Method

The method used in VARIC is discussed in detail in the analytical develop-
ment section,

Data not in COMMON and computed in MATRIX are transmitted to VARIC

by
CALL VARIC (SFISSD)
where
-y -1
SFISSD = d¥ '1
LR

Storage Used

284 cells
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Program Flexibility. — One of the main features of STOP is its flexibility.
The program has been modularized on both the macro and micro levels. On the
macro level, for instance, the steepest-ascent block of the program is linked to
the equations of motion by only one subroutine, ANPRTL. Thus, the entire equa-
tions of motion block may be altered or even replaced without requiring any
changes in the steepest-ascent block. Every attempt has been made to assign
one task to each subroutine, and to make each subroutine as independent as pos-
sible from the others. Finally, the flow has bheen orcanized so that there is one

SANAT 24 Uii2 vaaT VuiaTas LligiLy viiT LUV LA T Vi g e B CiIAT AT A2 VLT

subroutine that is called once per data case, INITAL; another called once per
stage, INITCO; one called once per forward trajectory, EXEC; etc.

On the micro level, the equations of motion and partial derivatives are
modularized. This feature allows the selection of any subset of the 40 available
equations for a given problem. Also, equations may be added or deleted easily.
A few examples of the program flexibility are given below.

Example 1. Additional printout variable example: Suppose it is desired to
print, Beta = N IM2 -1}, which is not currently available in the AK array. AK(39),
not in current use, is available for growth.

Step 1. In subroutine STP1 add the FORTRAN statement
AK(39) = SQRT (ABS (AK(5)**2-1.))

Step 2. In subroutine BLOCK put the words (//// BE) and (TA/V//V)
in DESXUK (159) and DESXUK(160), respectively.

Step 3. Set NC(119) = 1 in the input data deck. This selects
AK(39) to be printed in the forward trajectory output.

No other changes are required.

Example 2: Additional placard example: Suppose it is desired to constrain
the weight flow, which is not currently an available placard. X(K37) is an avail-
able state variable for placard additions.

Step 1. In subroutine FPROG, after the two FORTRAN statements:

37 CONTINUE
ITAB = ITAB + 2

add a call to subroutine PLAC. If the W limit is a function
of time, the call would be,

CALL PLAC(I, ITAB, 1, T, 0., 0., AK(?)
Step 2. In subroutine ANPARP, after the statement:

37 CONTINUE
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add the partials of F(K37) with respect to each state and control
variable. Note that the call to PLAC generates F(K37) =

(W w11m1t) for the portion of the trajectory where the

fuel flow exceeds the limit value(s). Some typical partials are:

IFK3Y) o AW
aH 20 - Wi v H

? . . v
F(K37):2(W_W AW

(A limit” ?V

IF(K37) 9 (W - W W aa

20 limit' 3o 96
WWEKSD _ e o AW
] 2 W Wlimit) M

or in FORTRAN
TERM = 2 * (AK(7) - 8, 2))

TERM * VAR(35)

PFX(K37,K2)

PFX(K37,K4) = TERM * VAR(36)

PFU(K37,I1) = TERM * VAR(37) * VAR(41)

I

PFU(K37,13) = TERM * VAR(38)

Step 3. In subroutine BLOCK the heading for Wpenalty function, which
consists of the words (//W/D@) and (T/PF//), is placed in
DESXUK(75) and DESXUK(76), respectively.

Step 4. Set NC(157) = -1, 1, or 2 in the input data deck depending upon
the type of limit desired, i.e., minimum, maximum, or corridor
respectively.

Step 5. Add a placard table to the data deck for the fuel flow limit.

Example 3: Equation replacement example: It is a relatively straightforward
procedure to replace the complete equation of motion block. This capability is
demonstrated in the example below.

Consider a cat standing on a free-wheeling disk at point A as shown in figure
22. The cat wishes to get to point B on the disk in minimum time. The cat is
constrained to the disk for the entire mission. The properties of the cat are
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CAT ON A DISC PROBLEM
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m = 0.5 slug
11b

I

F

and the properties of the disk are

r =10ft
o
r, =7ft
i
2
I =T70slugft

The pertinent equations of motion are:

r =U

6 =vV/r DEG

U =vV2/r + F/m Cos(y-6)
V = -UV/r+ F/m Sin(Y-8)
p =o

w =F/I r Sin(Y-6) DEG

§ =-V/r. DEG-w

T =1,

PF = (r_rlimit)z

Now generalizing to the STOP formulation, the state variables are:

XKl =r (ft)
X(K2) =6 (deg)
X(K3) =U (fps)
X(K4) =V (ips)
X(K5) =¢ (deg)
X(K6) = (deg/sec)
X(K?) =6 (deg)
X(K8) =1t (sec)
X(K21) = PF (it2/sec?)

The control variable is:
U@y =Y (deg)
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The initial conditions are:

X, (K1)

Xo (K2)
X, (K3)
X, (K4)
X, (K5)
X, (K6)
X, (K7)
X, (K21)

The problem statement is:

1 = X(K7) = 0 stopping quantity
¢ =1t (minimize) performance
¥=r=10

% =R PF =0

The partials required are:

ar/au = 1.
20/3r = -V/r” DEG
60 /% = 1/r DEG

10/ = -VPA

WAV =2V/r

2U/30 = F/m Sin(¥-0) RAD
aU/#6 = -F/m Sin (y-0) RAD
av/ar = +uv/r?

awW/eu =-v/r

WV =-u/r
#aV/90 = -F/m Cos (¥-8) RAD
aV/3Y = F/m Cos (Y-§) RAD
3¢. /dw = 1.

10/dr =+ TF/1 Sin (¥-6) DEG

283



10/20 - F/1 r Cos (¥-6)

?4/3Y =+ F/Ir Cos (Y-9)
ag/ar =-a0/ar
15/aV =- ag/av
Oa'/lw =-1.

PFF/ar = 2(x - Ty )

The subroutines requiring changes are FPROG, ANPRTL, and ANPARP.
In addition, a dummy subroutine AKSTP may be used and part of STP1 may be
deleted to save computer time.

As a matter of interest, the solution to the above problem is shown in figure
23. The problem solution required approximately 4 hours of engineering time
and 10 minutes of computer time.

Program and data overlay., — Due to the overall size of STOP, it is not
possible to fit all the subroutines and data into the IBM 7094 available core as
is discussed in "Operating Information. "

It was necessary to minimize core requirements while maintaining the pro-
gram's capability, flexibility, and execution speed in that order of importance.
To this end, program overlay, data overlay, and equivalence are used.

Program overlay: The STOP program can be broken into five major func-
tional groups of subroutines: data initialization, forward integration, backward
integration, convergence control, and plotting control. Each of these groups
could operate separately if a main program could control their execution and
interlinking data.

Using the IBSYS overlay feature, the program was divided into the above
mentioned groups or links and three additional links. Two of these additional
links were added to minimize the storage required for the forward integration
subroutines, and the last link controls the final output for a data case. These
nine links are described below.

LINK 0 - Controls the program flow or execution from link to link and remains
in core all the time.

LINK 1 - Forward integration link Links 1, 2, & 3

LINK 2 - Numerical partial check link comprise the

LINK 3 - Nominal guidance link forward integration

LINK 4 - Convergence control link
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Figure 23. PATH OF CAT ON DISC
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 LINK. 5 - Backward integration link

LINK 6 - Initialization link
LINK 7 - Final output link
LINK 8 - Plotting link

Under the IBSYS overlay feature, unless otherwise specified, all links will
be loaded onto the I/O unit assigned as SYSUT2. In an effort to speed up the load-
ing of links, the two most frequently used links (forward integration and conver-
gence control) are loaded on separate 1/0 units by themselves, and these 1/0
units are rewound after each loading.

See "Operating Information'' for a breakdown of links by subroutine. Figure
17 illustrates the program overlay and gives approximate core requirements for
each link.

Data overlay: Since all of the input data for large cases will not fit in core,
some of the data is written on scratch tapes and overlayed during execution.

Control table overlay: The input control variable table is normally stored
in the TIMEU array, dimensioned to hold 1000 data points. If the input table
exceeds 1000 points, that part of the table which won't fit in TIMEU is written in
binary format on the I/O unit referenced as KTAN. After each forward integra~
tion step, the EXEC subroutine tests the current time against the highest time
currently stored in the TIMEU array to see if more data should be read from
KTAN into TIMEU.

A similar procedure is used in subroutine UCALC, where the updated control
table is calculated. In this subroutine, the I/0 unit referenced as KPAR is used
for temporary storage as the updated control table is built. Again, a maximum
of 1000 words of the control table are stored in TIMEU, and the remainder
written on KTAN.

If the total number of data points in the updated control table exceeds 13, 590,
the data case is aborted and a comment printed.

Nonstage and stage-dependent data overlay: Except for the control and re-
start tables, all other tables, both nonstage and stage dependent, are initially
read into the Z array, dimensioned 7000.

The nonstage dependent data is read first and written in binary format on the
1/0 unit referenced as KDAT. The stage-dependent data is then read, one stage
at a time and written on KDAT. If the sum of the nonstage-dependent and stage~
dependent data for any stage exeeds 7000 points, a message is printed and the
data case aborted.
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During the forward integration, the Z array contains the nonstage-dependent
and stage-dependent data for the current stage. At the beginning of each new stage,
the data for that stage is read from KDAT into Z, replacing or overlaying the
data for the preceding stage. After the last stage has been integrated, for each
valid forward trajectory, the end points of that trajectory are written on KDAT.
These end points at the end of a data case are read from KDAT and printed as the
trajectory summary.

At the start of each forward trajectory, trial or valid, KDAT is rewound.
The nonstage-dependent tables are read and the stage-dependent tables for the
current stage are read back into the Z array. Reading the nonstage-dependent
tables into the Z array at the start of each iteration is necessary to allow other
links to use the Z array for storage while they are executing.

Equivalence. — The equivalence feature is used liberally throughout the pro-
gram to make maximum use of available core in each link. Another purpose of
the equivalence is to allow use of parts of the NC array (or its equivalent) for
subscripting. The two major arrays to which other variables are equivalenced

are NC and Z.

Z array equivalencing: Figure 24a illustrates the manner in which the Z
array is used. The first column, represented by the shaded area, presents the
usage of the Z array during forward integration. Following the weighting table,
which is always in the Z array and never equivalenced, the nonstage-dependent
data is stored starting at Z@201). Then the stage-dependent data for any one
stage is stored. Both the nonstage-dependent data and the stage-dependent
data are destroyed by equivalence during the backward integration and then
reloaded into the Z array from KDAT in subroutine EXEC.

The Z array, from Z(201) through Z(2872), is used during the backward
integration (link 5) for temporary storage of the state variable values, deriva-
tives, integration errors, and other values needed by RKVS (Runge-Kuita var-
iable step) integration package.

The Z array from Z (2900) through Z(7000) and the TIMEU array, (1-1000),
are used during the backward integration for storage of the partial derivatives
read from KPAR.

NC array equivalencing: The NC array is equivalenced in subroutines
throughout the program to make use of subscripted subscripts; i.e. use the NC
as a subscript. Figure 24b shows the manner of NC equivalencing. From the
figure it can be seen that the control variable indicators, NC(77) to NC(80), are
equivalenced with the control variable indices I1, 12, 13, and I14. The state var-
iable and placard indicators, NC(121) through NC(160), are equivalenced with
state and placard variable indices Kl through K40.

Trouble Shooting.— The purpose of this section is to provide a quick refer-
ence to aid in correcting typical problems encountered during the operation of
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STOP. The most common problems, as with any large, flexible computer pro-
gram, are input errors. Another common problem is slow convergence and/or
excessive run time. Also, STOP may abort during a run, either because of a
problem it has detected or an error detected by the computing system.

It is always possible to restart STOP from the last valid iteration, whether
termination was a successful exit, a STOP abort, a system_abort, or a system
failure. Problems that execute more than one hour have a reasonable probability

of exneriancine 2 gvatem failura. which makes ragtart canahilitv 2 nacagscary
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requirement.

An input checklist and a trouble~shooting guide are provided below to assist
the user in obtaining satisfactory results from STOP.

Input checklist: The following checklist will aid in data deck preparation.
It includes the most common input errors encountered by users not familiar with
STOP. The checklist assumes that all keypunch errors have been removed and
that all data are placed correctly in their fields. In particular, check all integer
data to make sure it is right adjusted. The checklist is in the same order as the
input instruction guide.

Card set 1 (title card)

No problem

Card set 2 (controls)

Check MSTAGE. Remember that if a tilt maneuver is used, it counts as a stage.

Card set 3 ( NC controls)

1. Check last card for blank field in columns 61-65. If last card is full, add a
blank card.

2. Check NC (4). It should equal the number of enroute and terminal constraints
plus payoff and stopping variables.

3. Check NC (16) and NC (17). NC (16) must be 1 if the input control table was
punched by STOP. NC (17) must be 1 if the restart table is included.

4. Check NC (18) through NC (32). Only state variables selected for integra-
tion may be used as the stopping condition. Three basic requirements must
be examined to be sure that the stopping condition is attainable. First,
XSTP must be reached before the stopping time (TSTP) of the final stage.
Second, the stopping condition must be compatible with the constraints
selected (e.g. do not select altitude if the constraint on flight path angle is
zero degrees). Finally, select a stopping condition that will always be
monotonic in the last stage of flight and has a large terminal time derivative.
Note that the stopping condition is only examined during the final stage. -
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5.

Performance and constraint functions must be state variables selected for
integration. Be sure that the sign of the performance variable index is plus
for maximizing and minus for minimizing. :

Constraint-dependent parameters and constraint tables must be input in the
same order as they are in NC (20) to NC (32).

Check NC (121) — NC (160). Do not select state variables that are not needed,
such as path range or the losses. Do not use latitude and heading for non-
rotating-earth problems. Instead, formulate the problem in terms of equa~
torial flight. Also, do not select placards unless they are — or are in danger
of — being violated. Note that run time is almost directly proportional to

the number of selected state variables.

Card set 4 (initial condition data)

1.

Check DUSQ if a restart table is not included. Values on the order of 100
are reasonable for airplane-type problems. For other vehicles, use an
initial value of about one tenth of the controllable trajectory time.

Check FINNER and BINNER. Values of 18 are typical. The run time may
be decreased by using 15's, but convergence may be slower. For rocket
problems, values of 18 seem to work well, while for SST problems 15's are
better. In general, difficult problems require settings that will result in at
least 500 integration steps.

Check XO ( )'s to verify they are in the same order as the state variables
selected. Also, if more than seven state variables are selected, there must
be two or three cards of XO ( )'s. The XO's are a packed array of initial
state variable values. Note, for example, that XO (7) does not necessarily
equal X (K7) at the starting time.

Card set 5 (stage dependent parameters)

1'

2'

<o
.

Check to be sure eight cards are present if MSTAGE is less than eight,
otherwise 16 cards.

Check TSTP. The last stage requires a stopping time that will not be
reached under usual conditions. It should be set to allow an abort if the
stopping condition is not met. For VTO systems the first stage contains the
tilt maneuver; TSTP for this stage represents the termination of the tilt
maneuver,

Check DTMIN. Too large a value will slow convergence. SST problems
bhehave badly if DTMIN is much larger than 0.1 second.

Check Kp and Kyp;. The first run should be a nominal only so that weight,
thrust, and other data may be checked. KM and Ky may be used to adjust
errors in total propellant consumption and total impulse.
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Cardset 6 (constraint dependent parameters)

1.

Check to be sure that one card is present for each enroute and terminal con-
straint and that they are in the same order as the constraints selected by
the NC's.

Check the DPSI values. Very small values may result in slow convergence.
Values of about 0.1 on angles and 100 on altitude are reasonable.

Card set 7 (free initial conditions)

1.
2.

3.

Check to be sure there are NC (5) cards.

If a tilt maneuver is selected, Ay, will be applied at end of tilt (start of
stage 2). A large maximum value is required.

To restart with variable initial conditions:

a. If weight is a variable initial condition, all positive-stage weights must
be updated to be compatible with the weights from the valid step from
which restart is desired. (card set 5, card subset 1). Zero and
negative values are not updated.

b. If a variable initial condition is selected on gamma and a tilt maneuver
is selected, table 2 must be updated with the value of gamma at the
beginning of stage 2 from the valid step from which restart is desired.

c. All other state variables chosen as variable initial conditions are up-
dated in card set 4, card 3. These values are also updated from the
valid step from which restart is desired.

Card set 8 (nominal guidance data)

1.
2.

Check to be sure NC (13) cards are present.

Check the sign of NSW (see instructions).

Card set 9 (tables)

1.

Check table 0 if constructed by the user. This table will not be extrapolated
and, therefore, a sufficiently large time must be included as the last point.
Multiple time points may be used at staging time. This table must always be
present regardless of whether or not a nominal guidance is used.

Check the numbers of the placard tables (see notes at the end of the input
instructions).

All tables after table 0 may be extrapolated (linearly) in any direction.,
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SYMPTOM

System abort during a)

data input

Trajectory fails
to meet stopping
condition or
prints note,
MAXIMUM
STOPPING TIME
EXCEEDED

_STOP abort with

note, MAXIMUM
ALLOWABLE
TABLE STORAGE
EXCEEDED

b)
c)

d)

e)

b)

DIAGNOSIS

Table card count in error a)
Deck or data setup error b)
Error in count of state c)
variables, terminal con-
straints, free initial con-
ditions, or guidance modes

STG or END card missing d)
or misplaced

NC input error e)
Restart error f)
Stopping conditions not a)
attainable on last stage

TSTP of last stage too b)
small

Input data tables exceed
allowable storage for a
stage (tables 1 through 30
plus tables 31 through 34
for a stage)

REMEDY

Check card count in each table

See appropriate sections of input instructions
Make sure card set 4 contains at least four
cards if more than seven state variables were
selected (NC(121) - NC(160)). Make sure card
set 5 contains 16 cards if MSTAGE is greater
than seven, Make sure card set 6 contains
one card for each selected constraint (termi-
nal and enroute) (NC(4) - 2 cards required).
Card set 7 must contain NC(5) cards and

card set 8 must have NC(13) cards.

Check data deck

Check card set 3. Make sure last card has
a blank field in columns 61-65.

Restart table required if NC(17) =1,

See output description.

Correct table 0 or use closed-loop options.
See suggestions for NC(18) in checklist,
Increase TSTP of last stage. Trajectory
will always abort if this time is reached.

Reduce the amount of data or divide the
stage-dependent tables into more stages
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4,

SYMPTOM

STOP abort with
note, NUMBER

OF POINTS
STORED IN BACK-
WARD INTEGRA-
TION EXCEEDS
MAXIMUM
ALLCWABLE

Excessive run
time (Note: Run
time is very prob-
lem dependent,
Simple problems
may run several
iterations per
minute, while
very difficult
problems may
require 1 hour
per iteration)

a)

b)

a)

b)

DIAGNOSIS
Backward integration too

tight
Storage too frequent

A adnas
vuliotii alll

5
Solution nominal dependent

Partial derivatives in
Input weighting matrix
problem

Dlananrd fnn nan Timaan
I“lacvalu Wo 1iulliilicals

Placard corners or dis-
continuities

Unnecessary state vari-
ables being integrated

Unnecessary constraints
selected,

b)

2)
b)
c)

M
~——

a)

b)

=
REMEDY

Lower BINNER by 3

Increase ISTOR2 by 1 (Recommended
solution)

Start from different nominal
Check partial derivatives (NC(12) option)

Increase weighting of applicable control
variable

Nonlinearities are often caused by spikes
in the placard table., Try redesigning
placard so that the placard has a more
severe violation in the spike region,
Avoid corners or discontinuities in
placard tables.

During the iterative procedure, integrate
only the minimum number of equations

(e. g. if the problem can be phrased in
terms of flight around the equator, and
bank control is not required, latitude and
heading equations are not required). Run
time is nearly proportional to the number
of state variables.

Constrain only the state variables required.



SYMPTOM

7. Excessive end-
point oscillations

8. Slow convergence

¥6c

9. STOP abort with
note, CONVER-
GENCE FAILED

a)

b)

c)
d)

)

DIAGNOSIS
Variable initial conditions
allow too large a variation

per iteration

Weighting matrix problems

Integration too loose

Error in partials
Poor stopping condition

Constraint tolerances
too tight
EPSLN too large

All constraints have moved
less than their respective

a)

b)

d)

e)

f)

final tolerance bands and the

change in performance is
less than or equal to 1076
times the value of perform-
ance on the previous valid
step.

REMEDY

Decrease initial increment per iteration
(card set 7) for the free initial conditions.

Try decreasing the input weighting matrix
elements on all control variables during
the initial part of the trajectory. Also,
decrease weighting on control variables
that tend to be nonlinear (such as sweep)
Decrease DTMIN and increase BINNER
and FINNER. The integration should
never reach minimum step size.

Check partials (NC(12) option)

Select a stopping variable that is mono-
tonic and has a large time derivative

at XSTP. Problems that stop on time
usually behave better.

Increase DPSI's (card set 6)

EPSLN (card set 4) must be small enough
so that end-point motion within the EPSLN
band is small compared with the end-point

motion predicted by the steepest ascent
logic.

See remedy for symptom 8.
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10,

11,

12,

13.

SYMPTOM

STOP termination
with note, THE
LAST TRAJEC-~
TORY APPEARS
TO BE AN
EXTREMAL

STOP abort with
note, GRADIENT
OF PHI TOO
NEGATIVE TO
CONTINUE

STQP abort with
note, OVERFLOW
OCCURRED IN
MATRIX INVER-
SION - ABORT

. STOP abort with

note, SINGULAR
MATRIX - ABCRT

DIAGNOQSIS

All constraints are inside their
respective final tolerance bands,
the change in performance is less
than or equal to 10~ times the

value of performance on the
previous valid step, and the
denominator of the first
Lagrange multiplier is less
than or equal to one ten
thousandth of 1 b

The denominator of the first

Lagrange multiplier plus 10
percent of I¢¢ is negative.

Overflow in inversion of I¢ "
matrix,

Singular Iw b matrix,

REMEDY

Congratulations

See remedy for symptom 8,

Check problem statement and table 1.

Check problem statement and table 1.



SYMPTOM

14. STOP abort with
note, NUMBER OF
TRIES PLUS RE-
JECTED VALID
STEPS FOR CUR~
RENT ITERATION
EXCEEDS 10 —
ABORT

962

DIAGNOSIS

An excessive number of rejected
valid steps in combination with an
excessive number of trials have
been run in an attempt to run an
accepted valid step.

REMEDY

See remedy for symptom 8.



]

Plotting Information

The program will plot any state, auxiliary printout, or control variable
versus time or any other state, auxiliary printout, or control variable. Each
curve represents a particular iteration. Plotting is performed on either the
Orthomat drafting machine or the Stromberg-Carlson (SC) 4020 microfilm record-
er, Orthomat plots can be made on one of two pregridded forms: 11- by 17-inch
mm vellum, or 8-1/2- by 11-inch mm vellum. SC 4020 plots may be made on
9~ by 9-inch vellum (hard copy) or 16-mm microfilm.

Limitations. — The following are plotting limitations:
1) 7 plots maximum;
2) 6 curves per plot maximum
3) Multiple-data cases cannot be plotted;
4) X and Y axes annotation occurs every 2 cm. ;
5) Plot titling consists of the following

LINE 1 —centered, 0.2 inch below the X axis
DEP. VAR, NAME VS INDEP. VAR. NAME

LINE 2 —centered, 0.2 inch below LINE 1
The first 72 characters taken from the title card on the data deck.

Input controls required for plotting. — The following values should be exam -
ined in the input when plotting is desired:

NC(1) ORTHOMAT

0, output will be on 11- by 17-inch pregridded mm vellum
= 1, output will be on 8-1/2- by 11-inch pregridded mm vellum
SC 4020

0, output will be 9- by 9-inch vellum (hard copy)

1, output will be 16 mm microfilm

2, output will be 9- by 9-inch vellum (hard copy)
= 3, output will be both hard copy and microfilm
NC(3) ORTHOMAT

0, multiple curves will be defined with plot symbols (see multiple
curve identification)

1, multiple curves will be drawn with new colors (see multiple
curve identification).
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NC(11)

SC 4020
Not Used
ORTHOMAT & SC 4020

- N
- uv

, No plo
= +N, SC 4020 plots wanted
= -N, Orthomat plots wanted

Note: The nominal, or first trajectory, the last trajectory, and every
IN| valid trajectories will be plotted, until NITC is reached or
six trajectories plotted. Example: NITC = 10, NC(11) = -2,
The Orthomat will plot the nominal and iterations 2, 4, 6, 8,
and 10.

Each plot to be made is defined by a pair of integers that are input in the NC
array, starting with NC(61).

Figure 11 gives the plot index for all variables.

NC(61)
NC(62)
NC(63)
NC (64)

NCE73)
NC(74)

Dependent variable for plot 1
Independent variable for plot 1
Dependent variable for plot 2

Independent variable for plot 2

Dependent variable for plot 7

Independent variable for plot 7

Note: A comment card must be included with the control cards stating that unit
C1 will contain plot output.

Multiple -curve identification. — When plotting on the Orthomat, multiple

curves can be identified by either plot symbols or colored ink. (Note: Colors
other than black or red do not reproduce very well).

SC 4020 multiple curves are always identified with plot symbols:

Curve No, Plot Symbol Ink Color
1 None Black
2 @ Blue
3 < Green
4 <> Purple
5 PN Red
6 Q] Black
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APPENDIX A

CONTROL VARIABLE CHOICE FOR POINT MASS
EQUATIONS OF MOTION

The point mass equations of motion used for optimization of trajectories using
angle of attack as a control variable are unstable for some types of vehicles
with low thrust/weight, high lift/weight airbreathing engines. For rocket-

type vehicles or high thrust/weight airbreathing vehicles, stability problems
are generally not encountered. Problems arise when flying open loop with an
angle-of-attack history defined. Analysis of the linearized point mass equations
of motion with angle of attack as the control variable is given herein showing
that a lightly damped oscillatory motion results. The use of pitch angle as the
control variable is anlyzed; it'is shown that the equations of motion are stable

and that no oscillation occurs.

The linearized point mass equations of motion, assuming constant weight and
flat earth, are:

. T_—D_)V T~ - D_) & D
- \¥ v _ h h . & Y= L
m Vg, m V, V0 m Vg,
L— L W)v L
( vV - 0+ )V h (To + La) (Al)
y - - =222/
mV mV m vy
(o] (o] [o)
L
h - o 9% =0
o
where
v = perturbed flight path angle
v = perturbed velocity .
h = perturbed altitude
v =v/V,
h =h/h,y
Ty= Vo 8T/8v
D= V _dD/ov
T‘H = ho aT/Oh
D = hy8D/8h
Dy = 8D/d«
Ly = hydL/8h
Ly =V _8L/aV
L, = ol./o
All of the state variables listed are perturbation values and ( ), are

evaluated at the initial condition., At the initial time the conditions are assumed

to be
300




- o- o
Vo = m -g87,
T ¢ + L
- o0 o W
Yo © mYV -_mV—O (A2)
0 " Yo
3 v,
h =2
o h ‘}’0
o

Taking the Laplace transform of equations Al and placing in matrix form gives:

FS_TV_DV g _TE—DET‘_, o
mYV v m YV mYV
o o o
IL_+W - L L - T + L
v 0 h -y _ = o
- m V 8 _mV Y =« mYV (A3)
o) o 0
V0 _
- — h 0
0 n S
O
L —

The characteristic equation of the system of equations is obtained by equating the
determinant of the three by three matrix to zero giving:

T- - D- VL= T-+W - L
B _glv _Y)_ gl B 8 (x °
m V h mV_ V m V
(o] o (o] (o] o
V_ [Ty -Dr\{L-+ W - L V. L- (T- - D-
e (b by o) + =2 Y T1=0 (Ad)
h m V m V h mYV m V
(o] (o] (¢] (o] (o) (o]

The characteristic equation evaluated for a typical SST in a cruise condition,

assuming y = 0, V =0, h = 50,000feet, and V_= 3322 fps
o} o o o)

T =D = 96,3001b
o o)
W = 346,000 1b
LO = 344,000 1b
ozo = 0.0144 radians
Loz = 2,39 x 107 Ib/rad
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8h = T -aT = - 18.98 ].b/ft
oL Lo
= -9 29 _ 9 -
3y v, 07 1b - sec/ft
8D _ Do ap _
-5—1—1 = T ;].’—1- = - 5,32 ].b/ft
D
8D _ 5 22 _ 57.9 1b - sec/ft
av Vo
aT _
L " 3.18 lb/ft
8T _ 5.3 1b - sec/ft
u
gives
S3 + 4.89 x10 252 +1.96 x103 8+ 4.79x108 =0
which has the roots
S =-~2.44 x 10-3
S =-1.22 x 1073 + j 4.43 x 102

These indicate that all roots are stable, but the damping ratio of the oscillatory
pair, 0.028, indicates that they represent near neutral stability. The period is
141.6 seconds. Figure Al shows the results of a digital computer run for similar
conditions using the complete nonlinear point mass equation angle-of-attack
constant and perturbing the initial value of the flight path angle. The motion is
slightly divergent with a period of about 148 seconds. The nonlinearity of the
point mass simulation could account for the slight differences as compared to

the linear approximation.

The dominant term in the natural frequency for the oscillating mode is 8L/8h,
or more specifically, the 80/8h (atmospheric density gradient). This term is
large for winged vehicles. The important terms in damping are: (1) 8T/dv,
strictly an airbreather term which is destabilizing; and (2) 8D/8V, a stabilizing
term — but the desire is to have vehicles with low drag, which makes this term
relatively small. For accelerating vehicles, a high thrust/weight helps keep
damping large, as can be seen by writing

QZZD_O:zT_O 1 - Vo/g

A low thrust/weight reduces the damping of the system.
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Introducing 6 as the control variable, equations A3 become (upon letting
a=86-7)

-

5% g+ Pa TR =\ (P
m YV v mV m V m Vg,
o o o o
—L;+W—Lo T0+L0 Lh _ T0+La Y
— S+ —v "oV V)= A0 & (A5)
o o o
V0 . _
0 “n S h 0
o

which has the characteristic equation

Ty - Dy Ty + L TS - DYy + L,
S3+Sz _[V v ., .0 a] +S|:— v v o a)
mVo mVO mV0 mV0

Vo Ly Ly +W-Ls /o D\-l

" hy mV, = mV, Vo m VO/J
[TV'D_ Yo Lyt W-lLo (.V_O ___TE'DH)}O (A6)
m Vg hy mV, m Vg, h, m V,
When evaluated for the same flight condition as for the & controller, it is
S3 +0.45 82 + 4.0 x 103 S +4.79 x 106 =0 (A7)

where the roots are approximately

S =1.2 x 10”3
S =-0.45
S =-17.65x 1073

Thus each root is real and negative. Figure Al shows the effect of the 6 type
control (i.e., @ held constant and the flight path angle perturbed). The motion
is overdamped and no oscillation occurs. The damping due to the flight path
angle (Ty + Lo /m V,) dominates the dynamics and eliminates the unrealistic
oscillation from the cruise flight path.

The use of the 8 controller essentially introduces a fourth degree of freedom

with the assumptions of neutral stability, no short-period dynamics, and a
position feedback autopilot.
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APPENDIX B

PROGRAM EQUATIONS, VARIABLES, AND CON-

STANTS DEFINED

The purpose of this appendix is to define the names placed in COMMON which
describe basic and frequently used equations, variables, and constants.

Equations of Motion

The equations of motion defining the state variables, auxiliary state variables,
and placards are defined as ¥F( ). The argument of the functions identify the
state variables as given in figure 1.

F(K1)
F(K2) =
F(K3) =

F(K4)

F(K5)
F(K6)

F(KT7) =
F(K8) =
F(K9) =
F(K10)=
F(K11)=
F(K12)=
F(K13)=
F(K14)=

= dW/dt = -WDOT

dH/dt = sin Yy
d‘)’R/dt —{i(T sina + L) cos ¢ G /W - G cos YR

R cos B (cos B cos YR + sinfB sin YR sin GbR)]/VR
VR cos ‘)’R/R + 2 w cos B cos sz}DEG

= d Vg/dt = (T cos @ - D) G,/W - G sin ¥y

(,cz R cos B (cos B sin ')’R ~ sin B cos "R sin ¢)R)

= dB/dt = V cos yg sin yp DEG/R

d pg/dt = —[(T sin @ + L) sin @ Go/(W Vg cos ¥g)
VR cos YR sin B cos z,bR/(R cos B) + 2 w (sin B

sin ¥ cos B sin le/cos YR) * w? R sin B cos B cos qu/
(Vg cos yR)] DEG

d)/dt = Vp cos ¥R cos "bR DEG/(R cos B)

dTD/dt =

dRNG/dt = Vi cos YR R,/(6076.103R)

d AHI/dt = Q Vg

dAV/dt = TG,/W + w? R cos B (cos 8 sin Yg - sin B cos ¥y sin ¥p)

d GL/dt = G sin ')’R
dDL/dt = DGO/W
dT VL/dt = T(1 - cos &) GO/W
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F(K15) = dER/dt = dH/dt + Vg/dt/Go

F(K16)
F(K17) Not defined; available for growth
F(K18)
F(K19)
F(K20)
2
F(K21) = d@*/dt = (6 - 6 (t)>
FK22) = de*/dt = (o - hm(t))
F(K23) = dn*/dt —((n Mim - M))
F(K24) =dA*/dt = (A- A, (H, M))z

F(K25) = da*/dt = (a - o, (H, M))
F(K26) = Not defined, avallable for growth
F(K27) = dHD*/dt = (dH/dt - dH/dt;, (H))2
F(K28) = dQt*/dt = (Q - QUi (1;))2
FR29) = dQur/dt = (@ - @, ow)’
F(K30) = dQo*/dt = (Qa - Quy, (M))
F(K31) = dTEMP */dt = (TEMP - TEMP,, (t))2
F(K32) = dN*/dt = (N - Ny @, M))
F(K33) = dRPA*/dt = (RPA RPA (t))
F(K34) = dH*/dt =(H - H), (M))21
F(K35) = dAP*/dt = (AP AP m B))
F(K36) = dM*/dt = (M M, (H))
F(X37) Not defined; avallable for growth
F(K38) =dy*/dt =( ¥ - ¥ p(H, M)2
FK39) Not defined; available for growth
F (K 40)
Partial Derivatives
The equations defining the partiall derivatives of the equations of motion with
respect to the state variables are given as PFX(A,B) where the first argument,

A, identifies the equation of motion and the second, B, identifies the derivative
state variables. The partial derivative with respect to the control variables are
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given as PFU(A,B), where again the first argument identifies the equation of
motion and the second identifies the derivative control variable.

PFX(K1,
PFX(K1,
PFX(K1,
PFU(KL,
PFU(KL,
PFX(K2,
PFX(K2,
PFX(K3,
PFX(K3,

PFX(K3,

PFX(K3,

PFX(K3,

PFX(K3,

PFU(K3,

PFU(K3,
PFU(K3,

K2)
K3)
K4)
I1)

13)

K3)
K4)
K1)
K2)

K3)

K4)

K5)

K6)

15))

12)
13)

PFU(K3, 14)

-aW/a H
-dW/oa . /o LAY
- X a
aw/ VR
-8W/aa . 90./06
- oW/on
Vp €08 Y. RAD
sm‘)’R
- (T sin & + L) cos® Gy DEG/(W2Vp)
{ [(BT/aH sin & + 9L /8H) cos © GO/W

2
8G/pH cos YRt @ cos B(cos B cos YR

sin B siny sin ¥ )]/V - VR cos Y /RZ} DEG
[(T cosa + (8T/8a . sinw + 8L/ a) DEG). aoz/a‘yR
cos @ G /W+Gs1n‘yR+w R cos B(—cosﬁsm'yR
sin Bcos ¥, sin sz)]/V Vg sin 'yR/R
{ [(Tsma+L)cosqu/W Gcos‘y

2 . 2
+ « R cos B (cos B cos gt sin B sin )’R sin apR)]/VR

+ (aT/aV sin & + 8L/8V_) cos ¢ GO/ W Vv

R R)

+ cos 'yR/R} DEG
w R[cos B (-sin B cos Yg T €08 B sin "R sin I,DR)
sin B (cos B cos YR * sin B sin "R sin sz) /VR
-2 w sin cos
& R cos ﬁﬁ sin ;bRsin v cos P_/V
R R R
-2 wcos B sin a,bR
(T cosa + (8T/8c sin o + 8 L/ 8 ) DEG) cos ¢ . 2 /.
Go/(W Vg)
- (T sing + L) sin @ G_/(W V)
8T/@M sin o cos ©® G, - DEG/(W V)

8L/8 A. cos ¢ G, DEG/ (W Vg
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PFX(K4, K1)
PFX(K4, K2)

PFX(K4, K3)

PFX (K4, K4)
PFX(K4, K5)

PFX(K4, K6)
PFU(K4, 11)
PFU(K4, 13)
PFU(K4, 14)
PFX(K5, K2)
PFX(K5, K3)
PFX(K5, K4)
PFX(K5, K6)
PFX(K6, K1)
PFX(K6, K2)

PFX(K6, K3)

PFX(K6, K4)

PFX(K6, K5)

- (T cos @ - D) G,/ W2
(0T/8H cos o - dD/dH) GO/W - 8G/dH . sin "R

2 ) ] . .
+ W cosB (cos B sin )’R - sin 8 cos ‘}’R sin ;pR)

(-T sin ¢ RAD + 8T/80 cos & - 8D/80) aoz/ayR . GO/W
+ [—G cos Yp + wz R cos B (cos B cos ‘yR
+ sin B sin yR sin d)R)]. RAD
8T/8V_ cos o - &8D/oV_) G
;2 I:[éofé B (-sin B sin/'y R)— 08:“,; cos Y. sin ¥ )
R R R
- szm B (cos B sin ‘yR - sin B cos Yg sin R) RAD
-w R cospB sin B cos )’R cos ¢R . RAD
(aT/aa_ cos @ - 8D/® o - T sin ¢ RAD) o« /d 6 . GO/W
8T/81M cos « GO/W
-dD/oA. G /W
-V, cos Y. sin zl)R . DEG/R2

R R

-Vg sin p sin z,bR/R

 sin
cos ¥ i.bR/ R

VR cos ‘Y_R cos II)R/R

. . 2
(T sin o + L) sin ¢ GO DEG/(W VR cos )’R)
[- (8T/oH sin o+ L/oH) sin ¢ G/ (W Vp cos 7p)
) 2
+ ZR cos ¥, cos a,bR sin B/(R cos B)
- sin 8 cos B cos sz/ (VR cos ‘yR)]. DEG
{[— (dT/00. . sin o + 8L/80) DEG- T cos a] .

0 0/8 Yy
(W Vg cos yp) + (2 sin a,bR - wR sin B cos Ye sin 7R/VR) .
wcos B/ cos Y t VR sin B sin Yp €08 sz/(R cos B)

{{ [ T sin &+ Vg (—aT/aVR . sin o - aL/aVR)].

sin @ G_/W + w2 R sin B8 cos B cos qu}/(Vlz:_{ cos ¥p)

- cos yp cos a,bR sinf / (R czos ﬁ)} DEG

- VR cos ¥p cos z,bR/(R cos B) - 2 w(cos B + sin YR sinf3 .
sin ¢R/cos ‘)‘R) - wz R (coszﬁ - sin® B) cos z,bR/(VR cos )’R)

_ in o . .
(T sin @ + L) sin 'yR/cos YR} sin ¢ GO/
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TSR

PFX(K6, K6)

PFU(K6, I1)

PFU(K6, 12)

PFU(K6, 13)

PFU(K6, I4)

PFX(K7, K2)
PFX(K7, K3)
PFX(K7, K4)
PFX(K7, K5)
PFX(K7, K6)
PFX(K9, K2)
PFX(K9, K3)
PFX(K9, K4)
PFX(K10, K2)
PFX(K10, K4)
PFX(K11, K1)
PFX(K11, K2)

PFX(K11, K3)

PFX(K11, K4)
PFX(K11, K5)

PFX(K11, K6)
PFU(K11, I1)
PFU(K11, 13)
PFX(K12, K2)
PFX(K12, K3)

Vg cos ¥y sin i/)R sin ﬁ/;R cos p) + 2 w sin Yo *
cos B cos i,bR/cos Y + @” R sin B cos B sin l,bR/
[- (T cos @ RAD + 8T/ sin & + 3L/8.t) ocx/86 «
sin © GO/W Vg cos ')k)] DEG
~ (T sin @ + L) cos ® G /(W VR cos )
8T/8n sin & sin Y G, DEG/(W Vg cos 7p)
8L/8 A sin ¢ Gy DEG/(W Vg cos Yg)
- VR cos Y cos YR DEG/(R2 cos B)
- Vg sin ¥ g cos Pp DEG/(R cos B)
cos Y COS ll)R DEG/(R cos B)
Vg cos YR cos Yp sin B/(R cos? B)
- VR cos ¥p sin YRr/(R cos B)
- VR cos ¥g R,/(6076.103 R2)
- VR sin R Ro/(6076.103 R)
cos Yp R_/(6076.103 R)
VR #Q/0H
3Q
2
- T GO/W
8T/8H G /W + w? cos B (cos B sin Yr

sin B cos Yy sin {OR)

dT/dx* 8 /Yy G,/W + « 2R cos B (cos B cos Y
sin B sin ¥y sin Yr) RAD

OT/GVR GO/W

«?2 R|cos B8 (- sin B sin YR - ©08 B cos yR sin ¥p)
sin B (cos B sin ¥R - sin Bcos YR sin\;bR)] RAD
-wz R cos 8 sin B cos )’R cos I/JR RAD

8T/o0- 80:/86-G,/W

dT/dm G, /W

8G/8 H sin ¥y

G cos Yy RAD
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PFX(K13,
PFX(K13,
PFX(K13,
PFX(K13,
PFU(K13,
PFU(K13,
PFX(K14,
PFX(K14,
PFX(K14,
PFX(K14,
PFU(K14,
PFU(K14,
PFX(K15,
PFX(K15,
PFX(K15,
PFX(K15,
PFX(K15,
PFX(K15,
PFU(K15,
PFU(K15,
PFU(K15,
PFU(K15,
PFU(K21,
PFU(K22,
PFX(K23,
PFX(K23,
PFU(K23,
PFX(K24,
PFX(K24,
PFU(K24,
PFX(K25,
PFX(K25,

K1)
K2)
K3)
K4)
I1)
14)
K1)
K2)
K3)
K4)
I1)
13)
K1)
K2)
K3)
K4)
K5)
K6)
I1)
12)
I3)
14)
11)
12)
K2)
K4)
13)
K2)
K4)
14)
K2)
K3)

- D G /W?

oD/dH G /W

aD/ac 80 /d Yr GO/W

8D/8Vy G, /W

8D/oa 8a /88 G, /W

8D/dA G /W

- T (1 - cos &) GO/WZ

8T/8H (1 - cos @) G,/W

(8T/d (1 - cos @) + T sin @ RAD) 8a/6% G, /W
aT/BVR (1 - cos @) GO/W

8T/da (1 - cos @) + T sin @ RAD) 80/860 G,/W
aT/amn (1 - cos @) G, /W

VRG PFX(K4, K1)
VRG,PFX(K4, K2)

PFX(K2, K3) + (VRG_PFX(K4, K3)

PFX(K2, K4) + VRG,PFX(K4, K4) + dVR/dt/Go
VRGoPFX(K4, K5)

VRGoPFX(K4, K6)

VRG,PFU(K4,
VRGoPFU(K4, 12)
13)

11)

VRGoPFU(K4,
VRG,PFU(K4, 14)
2(6 -9 lim‘

lim')
- 20 = Myjpy) @M1y A H + OM/OH -8n ), /0 M)

-2 =Ny ) (M, /@M - M/ 8V)

2(0 -0

2m - ﬂlim)

-2 (A - A ) (8Ay;,, /H + 8A; /8M 8M/SH)
-2 (A - Ay )eAy, /M -8M/8V

2(A - Alim)

- 2(0 - @q5y) (B g5, /8H + 8M/9H -8t y;  /8M)

2(0 - ay, ) da/eYy
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PFX(K25,
PFU(K25,
PFX(K27,
PFX(K27,
PFX(K27,
PFX(K28,
PFX(K28,

PFX(K29,
PFX(K29,

PFX(K30,
PFX(K30,
PFX(K30,
PFU(K30,
PFX(K31,

PFX(K3L,

PFX(K32,
PFX(K32,

PFX(K32,

PFX(K32,

PFU(K32,

PFU(K32,
PFX(K33,
PFX(K33,

K4)
11)

K2)
K3)
K4)
K2)
K4)
K2)
K4)
K2)
K3)
K4)
11)

K2)

K4)

K1)
K2)

K3)

K4)

I1)

14)
K1)
K2)

-2(0 -ay0) 8@, /@M - aM/8V

2(% - Cy4y) 80./06

-[z F(K2) - HDlim] oHD;  /oH

2[F(K2) - HDyjy, | PFX(K2, K3)

2[FK2) - HDlim} PFX(K2, K4)

2@Q - Qlim) 9Q/8H

2(@Q - Qlim) 2Q/8Vy

2(Q - Q1lim) (0Q/8H - 8M/dH - 8Q i/ M)

2(Q - Q) (9Q/8Vy - oM/8Vy - 6Qq; /6M)
2(@Qe -Qa; V(@9 Q/8H - 6M/8H - 8Qoy; / 8M)
2Qa - Qa; )@ - da/8Yg

2(Qe - Qo V(0@ Q/OVR - aM/OVR . 0Qa,; /oM)
2(Qe - Qu |; ) Qoo/8f

2 (TEMP - TEMP lim)[(l + 0.2 M2) 8TEM/&H

0.4M - TEM . aM/aH]

2 (TEMP - TEMP,; ) (0.4M . TEM - 8M/8Vp)

-2 (N - Njjp) N/W

2(N - N [(6L/8H cos ¢ + 8D/8H - sin o)/W
(8N }iy/8H + oM/8H - ON lim/OM)]

2 (N -~ Nlim)L(' L sina + D cos &) RAD

oL/8co cos ¢ + 8D/da sin aJ(aa/O)’R)/W

2 (N - Njjm) L(aL/aVR cos ¢ + aD/OVR sin ¢)/W
aM/aVR . ath/aM]

2(N - Njjm) (- L sin o + D cos &) RAD

8L/d0 cos o + 8D/o0 sin & | (50:/88)/W

2 (N - Njjm) (L/@A cos ¢ + 8D/8A sina)/W

- 2 (RPA) - RPA, ) RPA/W

2(RPA - RPA |, ) (;(;2/(w2 RPA) [(L + T sin o) -
(8L/8H + 8T/8H - sin &) + (D - T cos @) (8D/8H
dT/8H - cos « )]
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PFX(K33,

PFX(K33,

PFU(K33,

PFU(K33,

PFU(K33,

PFX(K34,
PFX(K34,
PFX(K35,
PFX(K35,
PFX(K35,

PFX(K35,

PFX(K35,

PFX(K35,
PFU(K35,
PFU(K35,

PFX(K36,
PFX(K36,
PFX(K38,
PFX(K38,
PFX(K38,

K3)

K4)

I1)

13)

14)

K2)
K4)
K2)
K3)
K4)

K5)
K6)

K7)
I1)
14)

K2)
K4)
K2)
K3)
K4)

2 (RPA = RPA, ) G 2/(W?2 RPA)[(L + T sin o) (8L/8¢

lim
8T/3a singo + T cose - RAD) + (D - Tcosa) (gD/a
aT/éa cos o + T sin ¢ - RAD)]a(y/a'}’R

2, 2 s
2 (RPA - RPA. )G /(W RPA) [(L + T sin &) (9L/8Vg
aT/OVR . sing) + (O - T cos o) (8D/dVy - 8T/ VR -
cos oz)] -
2 (RPA - RPA ;) GOZ/(Wz RPA)[(L + T sin &) (8L/0
8T/dc sina + T cos v - RAD) + (D - T cos o) (8D/9C
8T/80 cos @+ T sin o - RAD) |da /28

2 (RPA - RPA ;) G 2/(W? RPA)[(L + T sin @)
8T/om . sine - (D - T cos &) 8T/dm - cos a]
2 (RPA |, ) Go2/(W2 RPA) [(L + T sin o) - dL/OA
(D - T cos o) aD/aA]

2 (H - Hh;n) (1 - 8M/8H - OH;; /8M)

2 (H - Hyj, ) (OM/0Vy - OH; /6M)

[F(K35)H + 100 " F(K35)H]/100

[F(K35)a vo1 " F(Kss)a](aa/a yg)/0-1

F(K35)VR +10 " F(K35)VR]/10
[F(KBS)B , 0.1 - FK39) B]/O'l
[F(K35)¢ o1 F(K35)w]/0.1
[F(K35)A 01" F(K35)A]/O.1

[F(K35)a vo1-" F(K35)a] (60/8 6)/0.1

[F(K35)A vl F(K35)A] /0.1

2(M ~ Myj,y,) (0M/6H - 6M ;. /8H)

2 (M ~ Myj,) OM/aVy

-2 (YR = YRy (@ YRy 00 *+ 8VRyy,/OM 0 M/0H)
2 (YR - "Ryip

-2 (YR -7 Ryjp) athm/ oM oM/aVg
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Auxiliary Printout Variables

The auxiliary printout variables, AK( ), are functions that are desired for
printout in addition to the state and control variables. The argument identifies
the variable as given in figure 13. State variables and printout variables in
metric units are also defined as AK's.

AK(Q) = T = (M Tref XKT - PAe/144) Cos §,

AK@) = L =C @Syes

AKQ) =D = C QSrer

AK(4) =Q=0.5p VR2

AK(5) =M = VR/V A

AK(6) = GCR = cos_l[sin B, sin B+ cos B, cos B cos ()\—)\o] 60 DEG

AR(7) =WDOT =T __, XKM/ISre ¢+ WDOT,
2 2
A = = w 3
K(8) VI [(R cos /3+VR cos ‘yR cos sz) + gin ‘yR
211/2

+ (VR cos ‘yR cos z,bR) ]

R | .
AK(9) =7 =sin [VR sin ‘}’R/VI] DEG

RS . .
AK(10) =4, = sin [VR cos ¥y sin $p/(V] sin 71)] DEG

AK(11l) =a=6-%

R
AK(12) = TEMP =TEM (1 + O.ZMZ)
AK(13) = VA
AK(14) =P .
From ATMOS Routine

AK(15) = P
AK(16) = TEM
AK(17) = WM =4,448221615 XK1

M

AK(18) =H =~ =0.3048 X (K2)

AK(19) =RPA = [(L + T sin@)? + (D - T cos oz)z] 1/2 G, /W
AK(20) =N = (L cos & + D sin &) /W

AK(21) =Qo=Qa

AK(22) =G =#u /R®
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AK(23) =R=H+R

AK(24) =Ap=APJ (POP)1/2 K, (M2 - 1)1/8/H3/4

AK(25) = CL From tables 33 and 34

AK(26) = CD From tables 23,33, and 34
AK(27) =L/D=L/D

AK(28) =SFC = 3600/131ref

AK(29) = Vi\f = 0.3048 X (K4)

AK(30) =T = 4.448221615 AK(1)
AK(31) = LM = 4.448221615 AK(2)
AK(32) =DM = 4,448221615 AK(3)
AK(33) = QM = 47. 8802589 AK(4)
AK(34) = WDOT M= 0.45387006 AK(7)
AK(35) = V}VI = 0.3048 AK(8)

AK(36) =qa™ = 0.8356681645 AK(21)

AK(37) =A PM = 47.8802589 AK(24)
M

AK(38) =SFC =367.322574 AK(28)
AK(39)
AK(40) Not defined; available for growth

VAR Array

Many variables, functions, and terms are placed in a COMMON array called
VAR( ) because of convenience or frequent usage. This array allows for the
addition of variables to the program without changing the COMMON block.

VAR(1) =T .,
VAR(2) = Ae From Tables 31 and 32
VAR(3 =7

(3) Spof
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VAR(4) = 8V, /o H

VAR(5) = 8P/8H From numerical differentiation
VAR(6) =0P/8H of ATMOS Routine
VAR(7) = 8TEM/dH

VAR(8) =Initial trajectory time (TSTART)

VAR(9) = APJ From Table 30

VAR(10)

VAR(11) Not defined; available for growth

VAR(12)

VAR(13) = ch= (H-H_.) och/aH Where H__,
from Table 23

and OCDf/OH are

VAR(14) = acD/aH

VAR(15) = .3CD/avR

VAR(16) = acD/aa

VAR(17) = aCD/aA

VAR(18) = acL/aH

VAR(19) = acL/aVR

VAR(20) = acL/aoz

VAR(21) = aCL/aA

VAR(22) = (cos Bcos Yg +sin B sin Yg Sin z,bR)

VAR(23) = (cos Bsin Vg ~sin B cos vg Sin z,bR)

- 2 . 211/2
VAR(24) = VcsR = [(Row cos B VcsI cos z,bI) + (VcsI sin z,bI) ]

VAR(25) Not defined; available for growth

VAR(26) = Wf Last-stage final weight

VAR(27) = WI Last-stage initial weight

VAR(28) =AY ..
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VAR(29) =%,

VAR(30) = MLSP (Maximum last-stage propellant, input)
VAR(3l) = 8T_ /8H
ref
VAR(32) = oTref/avR
VAR(33) = aTref/aa
VAR(34) = @ Tref/a n (= 0 for current thrust options)
VAR(35) = aWDOT/8 H
VAR(36) = §WDOT/@ Vg
VAR(37) = 8 WDOT/o0.
VAR(38) = 8WDOT/8 1M

VAR(39) =B, =B+ (xsiny, +ycosip) /R
VAR(40) = )\G =X+ (X cos sz -y sin sz)/(R0 cos B)

VAR(41) =PAPT = 90/86=1
VAR(42) = PAPG = aoz/a-yR =-1

VAR(43) = PAPF = 00/ 8¢ =0

Note: VAR(44) through VAR(50) not defined at present

CONST Array

A number of constants or functions of input constants are in the COMMON
array identified as CONST( ). Again the array allows adding constants to
COMMON without modifying the common block.

CONST(l) =sin BO
CONST(2) =cos /30
CONST(3) =cos 601
CONST(4) =cos 6c

2

CONST(5) =cos 6c3
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u:;?-‘r.g\:%

CONST(6) =cos 604

CONST(7) =cos 8

CONST(8) =cos 606

CONST(9) =cos b _,

CONST(10) =cos 8

= )
CONST(11) cos O o

CONST(12) =cos 6c10

CONST(13) =cos 6011

CONST(14) =cos b _,,

CONST(15) =cos 6,13

CONST(16) =cos 6c14

CONST(17) =6076.103
CONST(18) =K, =1.9

CONST(19) = Po (Sea level pressure)

CONST(20) =Rp~ (Desired final radius)
1/2
CONST(21) =V __. [ /RD
CONST(22) =V, = (Sea level speed of sound)
CONST(23) =L = (Boom PF reference length)
Note: CONST(24) through CONST(30) not defined at present

Miscellaneous COMMON

Words in COMMON or in calling sequences that are not defined by an array
are listed below. These are primarily defined for convenience for the programmer.

PWPH
PWPV

8W/8 H = VAR(35)
aW/o Vv = VAR(36)
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PWPA = aW/8a = VAR(37)
PWPT = aW/@n = VAR(38)

PTPH = 8T/8H=(n. XKT - aTret/aH - AeaP/OH/l44) cos ﬁc
PTPV = 8T/0 VR=17 . XKT - DTref/avR . cos 50

PTPA = 8T/8¢ =7 . XKT - oTre{aa . cos a_c

PTPT = 8T/81 =XKT - T . -COS 6

PQSPH = aQ/sH * S et PQPH - 8 of

PQSPV = aQ/aVR © S " PQPV - S_ .

PLPH =8L/8H = acL/aH + QS+ Cyr PQSPH

PLPV = aL/aVR = acL/avR + QS+ cL- PQSPV

PLPA =gL/oba= acL/aot + QS

PLPS = oL/9A = 9C /oA QS
PDPH =40D/aH= acD/aH + QS+ CD-PQSPH
P = = - -
DPV aD/BVR acD/aVR QS + C PQSPH
PDPA = aD/oa = ocD/aoz - QS
PDPS =aD/8A= acD/aAo QS

PMPH = (6M/aH) Vg = VR/VA2

PMPV = (aM/aVR)H = l/VA
PQPH = (8Q/8H) vg = 0.5 VR2 -8p/6H
PQPV = (aQ/aV)H =PV

R
RO = Ro = garth Radius = 20, 902, 992 ft
DEG = Degrees/Radian
RAD  =1/DEG
Cci1 =cos @
S11 =gin 0
CI2 = Ccos
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CK6 = cos sz

SI2 =gin @
K3 =

C cos 'yR
SK3 =gin

1 '}’R
CKb5 =cos B
SK5 =gin 8

6 = si

SK sin gbR

CAKll =cos
SAKIl1 = sin &

XKl =W
j)ul =6

UI2 =

Ui =7

U4 =A

AKIl =

GO = G0= Mass-To-Weight Conversion, 32.174
GR = u = Gravitional Constant, 14.081718 x 101°
OMEGA = w= Earth Rotation Rate, 0,72921152 x 10”4
PGPH = 8G/8H =-2G/R

Internal Program Indicators

The following indicators (L array) are used for controlling internal operations
in the program,

L(l) Number of integration points stored during integration of last valid tra-
jectory (Set in subroutine LAMBDA). Used in the recovery of the control
variable history.

L(2) Subroutine CONTR lookup memory index during forward integration and
subroutine DVAL2 lookup memory index during backward integration.

L(3) Maximum travel indicator
=0 No constraints traveled more than maximum allowable.

=1 One or more of the constraints traveled more than maximum allowable.
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L(4)

L(5)

L(6)

L(7)
L(8)

L(9)

L(10)

L(11)

L(12)

L(13)

Minimum DUSQ indicator

=0 DUSQ > minimum

=1 DUSQ = minimum

Subroutine DVAL2 lookup control

=0 lookup if T (time) not equal to previous time,
=1 lookup

Current iteration phase

= =1 valid step, nominal only (set when NARBY = 0)
=0 trial

=1 wvalid step

=2 reverse integration

=10 end of run

Not used

Forward trajectory last integration step indicator
=0 Intermediate integration step

=1 Last integration step

Plot indicator

=0 Don't plot current iteration

=1 Plot current iteration

Gamma tilt variable initial condition indicator

=0 Gamma tilt not selected as variable initial condition
=1 Gamma tilt selected as variable initial condition

Current number of records of partial derivatives remaining on KPAR
(partial) unit during reverse integration.

Half-step indicator

=0 Not a half step

=1 Half step - do not print

TIteration phase indicator

=0 Next forward trajectory will be a valid step
=1 Next forward trajectory will be a trial

Secondary use
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Valid step rejected indicator
=0 Valid step not rejected
=1 Valid step rejected

L(14) Numerical partial check indicator

(Incremented by 1 every stored integration step and reset to 0 whenever
numerical partials are computed)

=NC(12) Compute numerical partials

# NC(12) Don't compute numerical partials
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APPENDIX C

PROGRAM CONTROL LOGIC

The following tests made after different phases of an iteration are in no way
connected with the steepest-ascent logic. They are present only to ensure the
convergence to a solution in a reasonable length of time. All of the tests are
strictly empirical and all have at some time or another played an important part
in the convergence of particular cases. Experience is the only answer that can
be given to the question as to the need of some of the tests. The control logic
as presented in its current form is by no means able to solve all problems with
which it is confronted. The control logic has, however, successfully caused the
convergence of a great number of cases ranging from high-speed reentry vehicles
to supersonic transports, thus showing its flexibility and capability.

Accept or reject valid step tests. — Majority vote test: The constraints out-
side their respective tolerance bands on the previous valid step are examined
with respect to their travel on this valid step. The constraints with adverse
travel are assigned a value of -1; the constraints with favorable travel are assign-
ed a value of +1. The algebraic sum of these assigned values is then taken. If
the value of DUSQ is large enough to allow optimization, the performance function
is treated in a similar way and added to the sum. The direction of change in per-
formance is not meaningful when the program is not optimizing and therefore is
not included in the majority vote. The change in performance is just the result
of the constraint motion in this case. If the majority vote (algebraic sum) is
negative, the valid step just calculated will be rejected and another valid step
will later be attempted. If the majority vote is either zero or positive, the valid
step will normally be accepted and another iteration will be run if desired. It
should be noted that the majority vote is neither computed nor tested after the
first valid step (nominal or first trajectory of a restart) of a run.

Excessive adverse performance test: An allowable adverse change in per-
formance is computed as the larger of ten percent of the value of performance on
the previous valid step, and five percent of the greatest value of performance
attained on any previous trial or valid step (including the current valid step).

If the change in performance is in the wrong direction and it is greater than the

allowable adverse change, a step-size coefficient based on adverse performance
is computed and the valid step is rejected. The nominal or first trajectory of a
restart cannot be rejected because of an adverse performance change.

It should be noted that, in the above two tests, the valid step will not be

rejected if the decision to attempt the valid step was made because too many
trials were made or DUSQ is at its minimum value. A valid step is run after a

specified maximum number of trials or when DUSQ is set to the minimum allowable
value to obtain a new set of influence coefficients, and is run under the assump-
tion that many of the constraints and possibly performance will travel in an unfavor-

able direction.
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Abort test after a valid step., — Exit on too many valid step rejections: Under
certain conditions the program control logic cannot make a successful valid step
and will continue to reject consecutive valid steps. If the number of trials taken
before the attempted valid step plus the number of rejected valid steps ever exceeds
10, the case being run is aborted with an appropriate message.

Abort tests following reverse integration. — Matrix inversion: If the inverse

of I¢,¢, matrix cannot be accomplished because of overflow during matrix inver-

cinn or tha ma
DLl vl b.l..lC 1ria

aborted.

r an annranriata moagcgaca ig nrinfaed and tha rim 10
1, adll appiupLialT LITOoapnt 1o pililittu auu L8 run 1s

Check for optimum: If all of the constraints are within their respective input
tolerance bands, the change in performance is less than or equal to 10-6 times
the value of performance on the previous valid step, and the denominator of the
first Lagrange multiplier is less than or equal to one ten thousandth of I¢p, the
case is terminated and a message stating that the last valid step is an optimum
is printed.

Detect convergence failure: If all of the constraint changes are less than
their respective input tolerances and the change in performance is less than or
equal to 10-6 times the value of performance on the previous valid step, the case
is terminated and a message stating convergence failure is printed. This indi-
cates that the constraints are not within the prescribed band and that improve-
ment in performance and constraints cannot be made satisfactorily,

Gradient of ¢ is too negative test: If the denominator of the first Lagrange
multiplier plus ten percent of I is less than zero, the case is terminated and
a message stating that the gradient of ®is too negative to continue is printed.

test: This test is s1m11ar to the majority vote test prev1ous1y mentioned, except
in two areas. The constraints being examined are the ones outside of their res-
pective temporary tolerance bands on the current valid step and if all of the
constraints being counted improved, an indicator is set. If the majority vote is
negative, another trial will almost always be made (only other test examined after
a negative majority vote is the bounce test, which is described later). A zero

or positive majority vote will cause the step-size coefficients to be calculated.

Excessive adverse performance test: This test is identical to the adverse
performance test previously described. If there is excessive adverse perform-
ance on the current trial, another trial is almost always run. (Only other test
examined after excessive adverse performance is detected is the bounce test.)

Tests after a trial that will cause a valid step to be run. — End point search:
If the step size coefficient equals two and the control logic is in an end point
search mode (i.e., du2< dB' Ilblb -1 dﬁ ), the current trial will be accepted and
a valid step will be run. An appropriate message will also be printed.
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Penalty function test: The penalty functions are examined (if any). If one or
more have been violated after having no value for at least one iteration, a valid
step is run — provided that the step-size coefficient is greater than or equal to
one. An appropriate message is printed.

Performance test (no constraints): If at least one trial has already been run
and the case has no constraints, the performance change is examined. If the
performance change is favorable and the step-size coefficient is equal to one half,
the current trial is accepted and a valid step is run. An appropriate message is
printed.

All constraints favorable test: If all of the constraints counted in the majority
vote test improved, the step-size coefficient was not reduced due to a constraint
change that was larger than its maximum permissible travel, and the step size
(DUSQ) is reduced over the previous step size on the last valid step, then the
current trial is accepted and a valid step is run. An appropriate message is
printed.

Bounce test: If the trend after a set of trials following a reverse integration
is either a monotonically increasing or decreasing step size, and on the current
trial, the trend is reversed, the last consistent trial is accepted and a valid step

R P N T R Gy P e

isrun. An appropriate message is printed.

Too many trials: A valid step will be run if the following conditions are met:
six or more trials have been run since the last accepted valid step, the changes
in constraints being asked for are not too great (d {b <dd max)» and the control
logic is not in an end point search (dU >dg! Ilb‘/’ dB). An appropriate mes-
sage is printed.

Too many trials: This test has no other conditions on it except that if eight
trials have been run, the current trial is accepted and a valid step is run,

The above two tests (too many trials) are not satisfied under normal running
conditions, The program normally runs one or two trials before making a valid
step.

Factors affecting the selection of step size coefficient. — The step-size
coefficient calculation will greatly affect the decision of the control logic in decid-
ing to run another trial or valid step. This calculation is the dominant factor in
deciding between a trial and a valid step.

A step-size coefficientbased onlinearity is computed for each constraint and per-
formance. The maximum step-size coefficients are then calculated for each constraint
using its respective maximum permissible constraint change in the parabolic approxi-
mation. The largest step-size coefficient based on constraint and performance
linearities is then selected. The control logic is then said to be controlling with
the function corresponding to the largest step-size coefficient. The largest
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step-size coefficient is compared with the maximum step-size coefficients of the
constraints outside their respective temporary tolerance bands. If the smallest
value of the maximum step-size coefficients being examined is less than the

gize ocnaffiniant thaon it ie rhncaen ag thea now ctan_aciza noefficiant
1°“gaut DDUH—D}.LJG gcgeriicient, tnen it 1s £nosen as ine new SICpP=5812¢ ¢coeiilcient.

If at this point an indicator shows that the step-size coefficient calculation has not
been repeated (explained later) and the step-size coefficient is less than 0.5, the
control logic will return from this calculation with the step-size coefficient set
equal to 0.5. This will cause the running of another trial. If the above conditions
are not met, tests are made to determine if the step-size calculation should be
repeated. Conditions under which the calculations can be repeated are: the

logic is controlling with a constraint that is within its temporary tolerance band,
and the maximum step-size coefficient corresponding to this constraint is less

than the current step-size coefficient.

t is
ensure that it is not greater than its error. If the travel is less than the error,
the logic returns from the calculation without recalculating the step-size coef-
ficient. If the travel, however, is greater than the error, the step-size calcula-~
tion is repeated. Repeating the calculation means that the next largest step-size
coefficient is chosen (based on linearities) and the logic is then said to be con-
trolling with this funcfion (another constraint or performance). The logic then
follows the same path as described above.

The maximum permissible travel of the controlline constr checked to
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It is possible to repeat the calculation many times before choosing a final
step-size coefficient.

The final step-size coefficient is then compared with the limits 0.5 and 2. If
the step-size coefficient lies outside the limits, it is set to the closest limit.
A final step-size coefficient of 0.5 or 2 will probably cause the running of another
trial, whereas a step-size coefficient within the limits will cause a valid step to
be attempted.

Minimum allowable value of DUSQ. —-The value of DUSQ required for d Il)
is calculated after a valid step as d¥' x I¢¢ x dd. 0.25 percent of this value
is the minimum allowable value of DUSQ. Aftera trial, reverse integration, or
rejected valid step, the value of DUSQ is compared with the minimum allowable.
If the current value of DUSQ is less than the minimum allowable, DUSQ is reset
to the minimum allowable, recalculations are made with the new value of DUSQ,
and a valid step is run. The valid step under this mode of operation cannot be
rejected. It should be noted that no trials are run while the program is in the
minimum DUSQ mode.

A need for a minimum allowable DUSQ resulted from a number of difficult
cases, which reduced the value of DUSQ to such a point that any changes in con-
straint or performance values were due strictly to computer round-off error and
noise. Control logic predictions under these conditions were not reliable and
therefore caused an even further reduction in the value of DUSQ. It is obvious
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that once this mode of operation is entered it is exiremely difficult for the program
to break out of it. The minimum DUSQ concept successfully bypasses this prob-
lem, yet causes another. It is possible for the program to cause the divergence

of a case when it is in the minimum DUSQ mode because the control logic is being
forced to use a value of DUSQ greater than it would otherwise choose. Experience
has shown that difficult cases will run in the minimum DUSQ mode for a number

of iterations and break out of it and run in the normal program mode. Examining
these cases in detail has shown that a very slight amount of divergence has occur-
red during the iterations run in the minimum DUSQ mode. This occurred at a
peint when the program found it extremely difficult to shape the flight path properly.
Once this was overcome the program stepped out of this mode and successfully
optimized.

Minimum DUSQ for optimization. — The value of the minimum DUSQ for opti-
mization is computed as (2.1-FXTRA1)*T1 where FXTRA1 is the nondimensional
amount of the constraint error to be eliminated in this iteration (increased by five
percent every iteration) and T1 is the amount of DUSQ required to meet the cur-

rent AB.

After a trial, reverse integration, or rejected valid step, the current value
of DUSQ is compared with the minimum DUSQ for optimization. If the current
value is less than the minimum value, the value of DUSQ is reset to this minimum
value and recalculations are made with the new value of DUSQ. The control logic
continues with no other change. At the start of a case the minimum DUSQ required
for optimization is more than twice as much as that needed to meet the amount of
constraint error being eliminated. This essentially forces the program to opti-
mize from the beginning of a run. Without this logic, too many cases used the
entire DUSQ to meet the constraints and thus never optimized. Once the con-
straints were met, the program would then turn to the problem of optimization,
which resulted in the convergence to a local optimum. The current logic will
cause the program to optimize first and then meet the constraints.

Scaling of dB. —If the denominator of the first Lagrange multiplier minus
10-8 x Ippis less than or equal to zero (1st test) and the numerator of the first
Lagrange multiplier is less than zero (2nd test), DBETA (d8), T1l, DELX,
XLAMDX, and DPSIP are scaled by the factor (DUSQ/Tl)1 2. If the first test
above is satisfied, the program is said to be in the end point search mode. If the
second test above is not satisfied, scaling does not occur and DUSQ is set equal
to T1. If the first test above is not satisfied and the numerator of the first La-
grange multiplier is negative, scaling does occur and the program is said to be
asking for the constraints too quickly. The program will also operate in the end
point search mode when the user selects the boundary value mode.

Nondimensional ¢ change. — The nondimensional amount of constraint error
to be eliminated for the new iteration is computed after every valid step. The
amount of constraint error asked for is normally increased by five percent each
iteration. If, however, the program is not in its optimization mode and a
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constraint is inside its tolerance band, its respective value of nondimensional

Y change is not increased every iteration and is set to 10 percent. This causes
the program to pay more attention to constraints outside their respective toler-
ance bands when in an end point search mode, minimum DUSQ mode, etc. The
nondimensional ¢ change for a constraint is reset once it is outside its tolerance
band. It should be noted that, only after a minimum of 20 iterations, will a full
100 percent of the constraint error be asked for.

Temporary tolerance bands. —— Initial values of the temporary bands are
equal to 10 times the final tolerance bands (input by the user). The constraints
are examined after a valid step to check if they are inside their respective tem-
porary tolerance bands. If all of the constraints are inside their respective
temporary tolerance bands, all of the tolerances are reduced to one half their
value. The only exception to this is that a temporary tolerance band cannot be
less than its final input tolerance band.

Nondimensional permissible constraint change. — Two nondimensional per-
missible constraint changes are computed after a valid step for each constraint.
One is for motion toward the desired constraint value and one is away from the
desired constraint value. The values are a function of the nondimensional con-
straint error asked for (CPSI). As successive iterations are run, the non-
dimensional permissible constraint changes are decreased. The two formulas
are:

PSIFWD (forward motion) = 5.0 - 3.0 x CPSI
PSIBWD (backward motion) = 1.05 - CPSI

Tolerance band indicators. — The number of consecutive iterations that a
constraint has been outside its respective tolerance band is accumulated and
stored in the computer word INDSIC. This value is reset to zero whenever a
constraint is inside its tolerance band.
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