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NOTATION

The body system of axes, radian measure, and foot-pound-second unit- are used

throughout the paper unless specifically stated or indicated otherwise. Basic sign

conventions are shown in Figure 1. In Section 1, in which a number of axis systems

are considered, the subscripts are used to denote quantities referred to the various

systems except for the quantities referred to the body system of axes. The subscripts

for U ese quantities are omitted for convenience except to identify coordinates, x,

y b , and z b .

a perpendicular distance from spring to knife edge (Fig.13),
s

ft

a,A polynomial coefficients (Section 3)

A t cross-sectional area of air-intake duct of jet engine at

entrance,	 ft2

A
j

cross-sectional area of ,het-exhaust duct of het engine at

exit,	 ft2

a x , a t , an longitudinal,	 lateral, and norm ll! accelerations of the air-

craft at the center of gravity relative 1.o the body system

of axes;	 positive forward, to the right, and up,	 respec-

tively,	 g	 units

ax i , at i , an 	 recorded values of a x , a t , and an , respectively;

corrected for phase lag and misalinement brk; not for loca-

tion relative to the center of gravity, g units

b	 wing span, ft

b,B	 polynomial coefficients (Section 3)

F	 mean aerodynamic chord, ft

c,C	 polynomial coefficients (Section 3)

C	 spring couple (Section 4), ft lb

Cc	coefficient of axial force along the body x-axis; positive

to the rear, –X/US

Cc	 phugoid damping coefficient, V ac 
c 
+ — zc c

U	 au	 cos a cos '8

(CCu)p	 contribution of power to phugoid damping coefficient,

V aCT +	 2C T - )
au	 cos a cos Q

x



^CcCCU
?a

C ca =-	 - C

ac
;a —

2V

^C
cc =	 c

q
qc

2V

^CCr^e _	 c

e

C drag coefficient;	 coefficient of axial force along the

stability x-axis,	 positive to the rear,	 -XS/qS

CL lift coefficient;	 coefficient of lift force along the

stability z-hxis,	 positive up,	 -ZSrS

W
CLt = —

qS

CLa lift-ci,rv- slope,	 aCL/aa

aCL
CL& _

a ac
2V

acL
CL =

v
q
ac—

2V

aCLCL 8e =
c'8

e

C l , ( C l ) S , (C l ) w , ( C l ) o coefficient of rolling-moment about the body, 	 stability,
wind,	 and principal x-axis, respectively,

(rolling moment) TSb

aCl
C1 

damping -in.-roll derivative,

a pb
2V

ai l =

C l r = .
a 

rb i

.2V

J

xi



CIQ	effective dihedral derivative,
aCl

aC
CIS	 _	 I

2V

Clsa aCl
ab

a

aCIC l s r	= 	
^b

r

Cm0 (CM ) s o (Cm ) w' (Cm ) o 	 =	 Pitching-moment coefficient about the body, stability, wind,
and principal y-axis, respectively, (pitching moment)/aSc

Cm0	 pitching -moment coefficient abcut the aerodynamic center

(Cm ) p	contribution of power to pitching-moment coefficient

Cma	longitudinal-stability derivative, aCm
as

(Cm a)p	 contribution of power to longitudinal stability (Equations
(35) and (44))

c	 = aCM
ma

a (Xc

2V

Cmq 	= aCM

a qc
2V

_ aC	 2Cm_	 m
Cmu	

V 
au + cos a cos Q

(Cmu )p	 refer to Equations ( 47), (48), and (49)

_ a Cm
Cmse	

as
e

CN	normal-force coefficient, coeffl—A ent of force parallel to

body z-axis; positive up, –Z/ZTS

(CN ) p	contribution of power to normal-force coefficient

xi i



CN a
	

- aCN

a

(CN a)p	 variation of contribution of (C N ) P with angle of attack

( CNa)h.t.

	

	 variation of normal-force coefficient of horizontal tail

with local angle of attack at the tail; coefficient based

on horizontal-tail area and local dynamic pressure,

-zh. t.

gh.t.Sh.t.

? 'h. t.

(CNa)v.t.	 variation of coefficient of force normal to vertical tail

with vertical angle of attack of vertical tail; coefficient

based on vertical-tail area and local dynamic pressure,

Y v. t.	 1
q v. t. Sv. t.)

^I-V.t.

aCN
CN a.

.^ ac

2V

CN Q	 = aCN

qc

2V

CNu	 longitudinal phugoid static-stability derivative,

C)CN	
2C 

V -- +
all	 cos OC cos

_ aCN
CN s e 	 a 

e

Cn I (Cn ) s # (Cn ) w F (Cd o	 Yawing-moment coefficient about body, stability, wind, and
principal z-axis, respectively, (yawing moment)/iSb

CnR	 aCn
static directional-stability derivative, 	

a,8

acn
Cn^
	 7-b

2V

aCn
Cn r	=

rb

2V

6.c	 xiii



aCn
Cnp =

pb

2V

aCn
Cns r

__

a8
r

^Cn
Cnb a

_
ab

a

C T thrust coefficient, 	 (thrJ,st) /Q-S

CTU T

u

Xw
(C x ) w coefficient of axial force along the wind x-axis,

qS

Cy , (Cy ) s , (Cy ) w , (Cy ) o side-force coefficient parallel to body,	 stability,	 wind,
and principal y-axis,	 respectively, Cy = (Cy)S

(Side force) AS

acy
Cy ^ _

a'8

(CyQ )p contribution of power to	 Cy,8

a Cy
CyQ --fib

a /—^

2V

acy
Cy 

r rb
a-

2V

acy
Cy 

p
_

a rb
2V

Zw
(CZ ) w coefficient of force along the wind z-axis,

qS

d,D polynomial coefficients (Section 3)

e =	 2.173

e,E polynomial coefficients (Section 3)

xiv



g	 acceleration of gravity, :t/sect

9 1	 -	
- 

sin ^,	
1

V	 sec

V
92 

	
cos F" sin ,/. , ?

V	 sec

h altitude,	 ft

H angular-momentum vector of a rotating mass,	 I rm Q ,	 lb ft sec

If X . fl y , fi z angular momentum of	 H	 about	 x , y z	 body axes,
respectively,	 lb ft sec

Irm moment of inertia of rotating mass of engine about its

rotating axis,	 slug ft2

I 
X, 

T y , I r moments of inertia of aircraft about x	 y	 z	 body axes,
respectively,	 slug ft2

I Xa , Iyo, Izo moments of inertia of aircraft about x	 y	 z	 principal
axes,	 respectively,	 slug ft2

Ix S ,Iy s ,Iz s moments of inertia of aircraft about x	 y	 z	 stability

axes,	 respectively,	 slug ft2

Ix r , Iyr, Izr moments of inertia of aircraft about x y	 z	 reference
axes,	 respectively,	 slug ft2

Ixc moment of inertia of cradle supporting aircraft	 (Section 4),

slug ft 2

IxzI _
X I x

Ixzi t
z

_
I z

I Xz product of inertia of aircraft referred to body x- and

z-axes,	 slug ft2

k stability-augmentation-system gain,	 sec

K s linear spring constant,	 lb/ft

K correlation constant (Section 5)

K t torsional spring constant, 	 AsaS ,	 ft lb/rad

,.	 xv



R-
WF

r

J)

J

1 distance as defined locally at time of discussion, 	 ft

L,M,N rolling,	 pitching,	 and yawing moments about body 	 x ,	 y

z	 axes,	 respectively,	 ft	 lb

L i ,M i ,N i inertial rolling,	 pitching,	 and yawing moments about the

respective body axes,	 ft lb

L rm' M rm' Nrm rolling,	 pitching,	 and yawing moments due to gyroscopic
action of rotating mass of engine,	 ft lb

(L)S,(M)S,(N)S rolling,	 pitching,	 and yawing moments about the stability

x ,	 y	 ,	 z	 axes,	 ft	 lb

L rolling acceleration about body x-axis,	 (rolling moment)/Ix,

Use c 2

^L	 gSh2
L 

=	 Tp = Cl 
P	 2V
--	 ft lb sec

2	 1
Lp

=	 C 1 P 2VI x	 sec

L	 + Ixz N
p	 P

Ix	 1L^
P

=
IXz2	 sec

1 —

IxIz

^L	 gSb2
L r =	 ar = (:lr	

2V	
,	 ft lb sec

gSb 2	1

L —	 Cir 2VI x 0	 sec

IxzL	 +	 Nr	 rIx	 1_	 ,
r

Ixz2	 sec
1 —

IxIz

aL

L^ =	 = C IQ qSb ,	 ft lb
,8

qSb	 1
L^ =	 C lQ	 Ix	 sect

Lsa =	 = Cls a qSb ,	 ft lb
bLa

xvi



n

qSh	 1  
Lga C 1 a	 I X	 sec 2

Lg r C 1	 qSh,	 ft lb
r

qSh	 1
Lg r =	 C 1 

r	 I X 	 sec 
2

m mass of airplane,	 W/g ,	 slugs

M
a

mass rate of air intake of jat engine,	 slugs/sec

m i mass rate of jet exhaust, 	 slug:,/sec

M Mach number

M i indicated Mach number

M pitching acceleration about body y-axis,

(pitching moment)/I y 	Use C2

^M	 gSc2
M
q

=	
-	

= Cm 	ft lb = e 
q	 q	 2V

gSc 2 	1
Mq

-	 Cmq 2VIy 	sec

^M	 qSc
M u =	 au = Cmu	 V	 ,	 lb sec

_	 qSc	 1

Mu -	Cmu	
I 
	 sect

°,a	
as Cm

a gSc , ft lb

qSc	 1
M a -	 Cma

I 	 sect

aM gSc2
Ma =	

as =
Cma2V
	

ft lb sec

gSc 2	1
Ma

Cma 2VIy 	sec

aM

Mge =	
a8 = Cmg e qSc ,	 ft lb

e

xvii



Mae
qSc	 1

c=	
ms e	

I 	
t

Y	
sec

N yawing acceleration about body z-axis, 	 (yawing moment)/Iz
1/sec

Np

aN	 2

=	 )N Cn	
qSb

-	 ft	 lb sec;
a P 	 P	 2V

N
qSb 2	

1 C 
n P 2VI z 	sec

N	
+ Ix z L

P	 P
N^

Iz	 1

P Ixz2	 sec
1 —

Ixlz

Nr
aN	 &Sb2

=	 — Cnr	
ft lb sec

ca r	 2V

Nr
_	 gSb2	 1

C nr	
'2VI z 	sec

Nr + ^—Xz 
Lr

Nr _	 z	 1

r Ixz21	
sec

 —
IxIz

Na
aN

=	 aN = CnagSb	 ft 1b

NQ
qSb	 1

—	 Cn,8 I 	 sect

Na r
aN

=	
a b	

= Cn 8r4Sb ,	 ft lb
r

NSr
qSb	 1

=	 Cnsr
I z 	sect

aN
Ns a =	

aN	
= Cns a&Sb ,	 ft lb

a

	

qSb	 1

	

Cnsa 
I z	sect

Nsa

I'	 xviii



p, q, r	 rolling, pitching, and yawing velocities, respectively,
about body axes, rad/sec

Pop q o O r 	 rolling, pitching, and yawing velocities, respectively,
about principal axes, rad/sec

p g , q S , r s 	rolling, pitching, and yawing velocities, respectively,
about stability axes, rad/sec

p, q,r	 rolling, pitching, and yawing angular accelerations,
respectively, about body axes, rad/sec'

p oi g o y ro	 rolling, pitching, and yawing accell erations, respectively,
about principal axes, rad/sect

p	 static pressure, lb/ ft2

p i 	 indicated static pressure, uncorrected recorded pressure,

lb/ft 2

p i ,pj	static pressures acting across inlet of air intake and

exhaust, respectively, of jet engine, lb/ft2

PT	stagnation pressure, q c + A	 lb/ft2

P	 period of short-period oscillation, sec

q	 dynarnic pressure, z^V2	 lb/ft2

qc	impact pressure; dynamic pressure of compressible flow

(Equations (98) and (99)), lb/ft2

qci	 indicated impact pressure, lb/ft2

gh.t.,gv.t.	
dynamic pressures at the horizontal and vertical tail,

respectively, lb/ft2

R	 instantaneous radius of turn (Fig. 27), ft

R	 reaction force (Section 4), lb

1
s	 Laplacian operator, o- + iw ,

sec

s 	 sensitivity

S	 wing area, ft2

Sh.t.,Sv.t.	
horizontal- aad vertical-tail areas, respectively, ft2

t
	

time, sec

xix



T	 thrust due to power, lb

T1 /2 	time required for absolute value of transient short-period
oscillation to damp to one-half amplitude, sec

1	 1
roll-subsidence and spiral-divergence roots, respectively,

TR 
Ts

	

	 1
of the lateral-directional characteristic equation,

sec

14

Tg,Ts roll-subsidence and spiral-divergence time constants, 	 sec

q(s)
To pitch-attitude time constant in numerator of

5e(s)

transfer function,	 sec

u, v, w linear velocities relative to body	 x	 y	 z	 axes,
respectively,	 ft/sec

linear accelerations relative to body	 x	 y ,	 z	 axes,
respectively,	 ft/sect

4u
4u

= —
V

Du
Au

=	 --
V

V airspeed,	 ft/sec

V i velocity of intake air at air intake of jet engine ft/sec

V^ velocity of ,het exhaust, 	 ft/sec

W weight of aircraft,	 lb

W of cradle (Section 4), 	 lb

x, y, z distances from the center of gravity along body	 x , y ,	 z
axes,	 respectively,	 ft

X,Y,Z forces along the body	 x ,	 y , z	 axes,	 respectively;

positive forward,	 to the right,	 and down,	 respectively,	 lb

X g , Y g , Z g components of gravitational force acting along the body 	 x
y	 z	 axes,	 respectively

X	 qS
X 

=	 = – Cc u	,	 lb sec/ft
au	

V

I	 xx



gS	 1
_	 - CC 	,

U mV sec

ax
Xa	 = ^a = - CC(x S 1b

_	 gS	 1
X a	 - 

Cc a mV ' sec

ax
Xg = 	 _ - Cc S gS ,	 lb

gS	 1
Xs - CC S	

^mV	 sec

yv. t. _	 —	 (CN(x) v, t. g v. t. S v. t.	 lb

ay
Y Q -	 ^^ = Cy QgS , lb

FIS	 1

YR CyQ
mV	 sec

(Y) p lateral force in plane of propeller disk due to propeller, 	 lb

ay

Y 8 	 .^̂ =	 CY OS	 lb

gS	 1
Ys CY6 mV	 sec

az	 gS
z =	

aU 
= - CNu 

V	
lb sec/ft

gS	 1
z
u

=	 - CN — ,
" mV	 sec

a z	 &SF
Zq =	

aU 
= - CNq	

2V	
lb sec

WE
z -	 - CN 

q 2m V2

az
za =	 70C  = - CN aqS , 1 b

x 

xx i



i

	

q'S	 1
Z(X	 _	

CNa mV	 sec

;)Z	 WE
Z	 _	 -- - CN	 , lb secZ&	

^a	 a 2V

qSc
Za	

CNa 2m V2

(Z) p contribution r.f propulsion .,;ystem	 to	 Z	 force,	 lb

Zh. t. (^Na)h. t.^ih. t. S h. t.	 lb

a angle of attack of aircraft

n aC change in	 a	 due to influence of flight-path curvature

a 0 angle of attack of aircraft for zero	 Z	 force

((X) p angle of attack of thrust line relative to airstream

velocity at propeller or air intake of jet engine; 	 thrust

line considered parallel to	 x	 axis

ap maximum positive or negative angle of attack obtained in a

roll maneuver ( ig.66)

18 sideslip angle

rate of change of	 /3	 with time,	 rad/sec

y flight-path angle relative t.o horizontal

y adiabatic constant

8 a aileron deflection;	 positive when left aileron is deflected

down

d8a
8 aA

d,Q

8 e elevator deflection; positive when trailing edge is

deflected down

8 r rudder deflection; positive when trailing edge is deflected

to the left

d8r8
rQ

dQ

xxi i



b sp	 angle included between reference x-axis and plane of spring

couple (Fig.15)

n	 increment

E	 angle between body x-axis and principal x-axis; positive

when reference is above principal axis at the nose

E 
	 upwash angle at the propeller due to such factors as

fuselage and wing

r	 short-period ratio of actual damping to critical damping

Cph	 phugoid ratio of actual to critical damping

Cin	 instrument damping ratio

angle of inclination of principal x-axis relative to

stability x-axis; positive when principa l. x-axis is abuve

stability x-axis at the nose

Arm	 pitch attitude of angular-velocity vector,	 of rotating

mass of zngine relative to body x-a.xis

m
µb	 relative aircraft density,

pSb

m
relative aircraft density,

^	 pSc

µ o	 absolute viscosity, lb sec/in-2

P	 mass density of air, slugs/ft3

cr	 real part of Laplacian operator, s = o- + iw

m
rr 	 time parameter,	 , sec

p VS

time constant for simplified stability augmentation system,

sec

yaw, pitch, and roll, Euler orientation angles, respectively.
(In general aircraft motions, they are normally the orienta-

tion angles of the aircraft body axis syf em to a spatial

(earth) reference system. In instrument alinement, they

refer to the misalinement of the instrument reference axis

system to the aircraft body axis system.)
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rate of rotation of the Euler orientation ana • l.es, rad/sec

ngif,AP,Ar<	 yaw, pitch, and rcll Ruler orientation angles of aircraft

body axis system durio g small perturbations relative to

body axis system preceding the perturbations regardless of

aircraft attitude preceding perturbations (Fig.4(b)),

AV)'	 fArdt , AP I -- f Agdt	 A&' fApdt

fid	
.,.amping angle

4) ij	phase angle of vector quantity i relative a vector

quantity j

Wn'(`)nd	
undamped and damped natural frequencies, respectively, of

the aircraft in short-period modes of oscillation, rad/sec

ph1(41dph	 undamped and damped natural frequencies, respectively, of

the aircraft in phugoid modes of oscillation, rad/sec

141in	 undamped natural frequency of instrument, rad/sec

R	 ang,!lar rate of rotation of rotating mass of engine, rad/sec

W	 absolute magnitude of a vector quantity j ; always positive
[L]	 transformation matrix

[L] -1	inverse transformation matrix

[L] s ,[L] b	transform matrices to transform vector quantities from

reference axis system to aircraft stability and body axis

systems, respectively

[a] s	transformation matrix representing transformation from body

to stability axis system

( ) b' ( ) s' ( ) w' ( )o	 relative to body, stability, wind, and principal axes

systems, respectively

( ) p	contribution due to power

A

xxi v



CONSIDERATIONS IN THE DETERMINATION OF STABILITY AND CONTROL

DERIVATIVES AND DYNAMIC CHARACTERISTICS FROM FLIGHT DATA

Chester H.Wolowicz

1. INTRODUCTION

The determination of stability and control characteristics from flight data in the

form of derivatives and other behavior parameters has become an important part of

flight testing. As new concepts in airplanes are developed or the airplane flies in

new Mach and altitude regimes, there is the need to verify theory and wind-tunnel data
n .^

	

	
and the various influences on stability characteristics, to provide information not

obtained in wind-tunnti studies, and to uncover the sources of discrepancies between

prediction and actual flight behavior. Where wind-tunnel data are unavailable or where

safety of flight into ut:tested regions is of concern, flight-determined derivatives

have been extrapolated to predict airplane behavior prior to flight into these regions,.

Because of the exploratory nature of many of the investigations, the practical

aspects of determining derivatives and other behavior parameters, such as oscillatory

characteristics, from flight data are very important. Experience has shown that a

maximum appreciation and understanding of the practical aspects is attained when back-

ground knowledge includes an understanding of axis systems, transformations, the
equations of motions and the limitations of the equations, techniques used to determine

the mass characteristics of the airplane, the installation and behavior of flight test

instrumentation, flight test techniques, and the theory and limitations of techniques

used to determine the stability and control characteristics from flight data.

Although some of the factors mentioned above, such as axis systems and transformations

as well as aspects of the equations of motion, may be found in textbooks, the treatment

is generally not oriented toward flight testing. Some of the techniques used in deter-

mining stability and control characteristics may be found in technical reports; however,

limitations of the techniques occasionally may not be shown. This paper attempts to

bring all the factors together to provide a rEady reference of pertinent information.

It is, in fact, a greatly expanded version of AGARD Report 224*.

It is the purpose of this paper to discuss the various factors that influence the

determination of stability and control derivatives and other behavior characteristics

from flight data. Included are illustrations of the application of flight derivatives

to verification of predictions and to determination of aeroelastic effects, stability

criteria, and flight guidance. This paper is intended not only for the practical

engineer who is working with flight data but also for the scientist who is attempting

to develop new, sophisticated analytical techniques.

• Stability-Derivative Determination From Flight Data by Chester H.Wolowicz and Euclid C.Holleman,

October 1958.
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2. AXIS SYSTEMS AND COORDINATE TRANSFORMATIONS

2.1 Axis Systems

In the study of the dynamics of the

may be used simultaneously. An unders

their relation to the aircraft and its

to the proper analysis of flight data.

systems may be found in Reference 1, a

in this section.

airplane, as many as six orthogonal axis systems

Landing of these systems or reference frames and

motions at various flight conditions is essential

Although a comprehensive treatment of axis

brief treatment of the axis systems is presented

2.1.1 Body Systems

The body axis system (x b , y b , zb) is body-fixed with its origin at the center of
gravity of the airplane. The x b axis is always parallel to the fuselage reference

line and when the center of gravity is in the plane of symmetry, as it normally is,

both the x b and zb axes are in the airplane's plane of symmetry, as shown in
Figure 1. The yb axis is normal to the plane of symmetry; thus, the body system of

axes is angularly invariant with respect to the aircraft structure.

Because of its angular invariance with respect to the aircraft, the body axis system

is an excellent frame of reference for mounting flight test instruments. The orientation

of the flight test instruments and their consequent output relative to the body axes —

especially the linear accelerometer and angular rate and acceleration sensors — make it

convenient to determine, from flight data, stability and control parameters with respect

to this reference frame. Aside from convenience, this reference frame is the logical

frame about which to orient rates, accelerations, and the stability and control para-

meters in the study of handling-quality criteria, inasmuch as the orientation of the

pilot is invariant relative to this frame.

2.1.2 Stability System

The stability axis system (x S , y S , zs ) is a special case of the body axis system.

Like the body system, the x s and zs Pies are in the plane of symmetry when the

center of gravity is in this plane, and parallel to the plane of symmetry when the

center of gravity is not in the plane. Unlike the body system, however, the x s and

zs axes are angularly variant relative to the fuselage reference line. The z s axis

is perpendicular to the resultant velocity vector and the x. axis is parallel to the

component of the resultant velocity vector projected onto the plane of symmetry, as

shown in Figure 1.

The important parametric relationship between the body and stability axes systems

is the angle of attack, a , which is the angle between the x s and xb axes (Fig.1).

The stability axis system is commonly used in theoretical subsonic aerodynamics and

subsonic, wind-tunnel force and moment investigations. It is also employed, on occasion,

in place of body axes in flight test investigations of longitudinal stability and

control characteristics.
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2.1.3 Principal System

The principal axis system ( x o , y o , z o ) defines the natural axes of rotation of the
aircraft. They are the axes which result in maximum and minimum moments of inertia.

The orientation of this axis system in the aircraft is a function of the mass distri-

bution of the aircraft and will remain fixed as long as the mass and mass distribution

remain fixed. When the lateral distribution of mass is symmetrical relative to the

plane of symmetry, which is generally the case, the y o axis will coincide with the
yb axis, and the x o and z o axes will lie in the plane of symmetry, as shown in
Figure 1.

The inclination of the x o axis (Fig. l) to the x axis of the reference axis

system (generally body axes in flight test investigations) has a direct bearing on the

inertial moments experienced about the reference axes as reflected in the product of

inertia term IxZ in the equations of motion and, hence, on the lateral stability of
the airplane.

When the principal axes are used as reference a pes, as they occasionally are in

theoretical and simulator investigations, they are used to simplify the equations of

motion by the elimination of the I xZ term.

2.1.4 Wind System

The wind axis system is related to the resultant velocity vector and the plane of

symmetry of the airplane. As shown in Figure 1, she x w axis is parallel to the

resultant velocity vector and lies in the transverse plane of the stability axes

(x sys plane). Consequently, the zw axis is coincident with the zs axis. The xw
and yw axe; coincide with their respective counterparts xs and y$ when the
aircraft has zero sideslip.

The important parameters associated with the wind system are the sideslip angle,

and the angle of climb, y . By basic definition the angle of sideslip, [3 , is

the angle between the xw axis and the plane of symmetry and thus lies in the trans-

verse stability axes plane, as shown in Figure 1. It should be noted that not all

^_sensors necessarily measure this 8 ; this will be discussed in Section 5 on

"Instrumentation". The angle of climb always lies in the vertical plane and is the

angle included between the xw axis and the horizontal plane.

2.1.5 Spatial Reference System

The preceding axis systems are tied in with the plane of symmetry of the airplane

with their origins at the center of gravity; as shown in Figure 1. To complete the

systems of axes used, at least one inertial, space-fixed, axis system is required.

In dealing with general motions of aircraft, this spatial system is generally earth-

referenced to describe the motion of the air p lane with respect to _ me for short time

intervals. Such a situation is indicated in Figure 2, which shows the relationships

of the various axis systems previously described and the relationship of the body axis

system with respect to the spatial reference (x r , y r , zr ). Shown in the figure are

flight path y , angle of sideslip 8 , angle of attack a , as well as the Euler
orientation angles, qi , B , and 0 of the airplane's body axes relative to the spatial
axis system. This is shown in a much simpler format in Figure 3. The sequence of

rotations of the Euler angles, is important. Generally, the sequence of rotation is
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^) , A , and	 this means that the airplane is initially yawed, then pitched, and

finally rolled.

It should be noted that y = P, — a only when the aircraft is unbanked 	 0).

2.1.6 Perturbation Reference Frames

In using perturbation theory in stability analysis, Euler angle perturbations may

be considered to be superimposed on the unperturbed angles, as shown in Figure 4(a),

with the result that the perturbed angles are qJ + Aq , P + AP , and 0 + AO , or
they may be based on a secondary spatial reference frame which is the unperturbed

airplane axis system (xb o , y bo , zb o ), In Figure 4(b) the unperturbed body axes con-
stitute the secondary spatial reference frame and are oriented to the basic spatial

reference frame through the angles q , P , and (t . However, the perturbed planes
are oriented to the secondary spatial reference plane by Ay)' , AP' , and A' , which
generally are not the same as Aq , AA , and A(^ .

2.2 Coordinate Transformations

Coordinate transformations are used so frequently in dynamic studies of aircraft

that some consideration should be given to this subject. Literature on transformations

is extensive and ranges from the classical mathematical treatments (Reference 2, for

example) to engineering applications (References 3 and 4, for example). At this time,

the most pertinent transformations are considered to serve as guidelines for other

transformations that may be desired,

2. 2.1 Transformation from Earth Reference
Axes to Airplane Axes

Consider Xr , Yr , and Zr as generalized vector quantities acting along the co-
ordinates xr , Yr , Zr , respectively. The transformed vector quantities X , Y , Z
acting along x b , y b , and z b axes, respectively, are obtwined by performing three
successive rotations, q , 6 , and (^ , to define the airplane's orientation with
respect to the reference axes x r , Yr , and z r,, through a transformation matrix [L]
as follows

X	 Xr	 Xr

Y	 = ELI Yr	 = 101 161 [qJ Y r.	 ( 1 a)

Z	 Zr	 [Zr

1	 0	 0	 cos 6	 0 -sin B	 cos	 sin	 0 Xr

0	 cos	 sin	 0	 1	 0	 -sin kk cos V 0 Y r	 (1b)

0	 -sin 4 cos	 sin B 0 cos 6	 0	 0	 1 1Zr

cos B cos tk	 cos 6 sin tk	 -sin q	 Xr

sin sin B cos q'	 sin V sin 6 sin	 sin (tcos B	 Yr

	

-sin gcos 0	 +cos Vcos 0	 (10

cos gcos 0sin 6	 sin gcos 0sin 6	 cos 0cos B Zr

	

+sin q sin 0	 -cos q sin
i
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2.2.2 Transformation from Airplane Axes to Earth Axes

Since pro j ection from airplane axes to earth axes is an inverse process of the

preceding transformation, premuitiplication of Equation ( la) by the inverse trans-
formation matrix [L) -1 results in

X r 	X

Y r 	= LLJ -1 Y	 (2a)

Zr	 Z

However, since the orthogonal projections on the airplane axes are being transformed

to orthogonal projections on the earth axes, the inverse of the transformation matrix

[L] in Equation ( lc) is the same as its transpose; thus

X r 	cos cos q	 sin sin 6 cos q	 cos cos (h sin A	 X
-sin q cos 0	 +sin q sin 0

Y r = cos 6 sin q	 sin gsin 6 sin 0	 sin 0cos 0sin A	 Y	 (2b)
+cos 0 cos 0	 -cos q sin 0

Z ri
	 L sin A	 sin O cos 6	 cos 0 cos	 J L Z

2.2.3 Relationship Between Airplane Rates p	 q
and r and Euler Rates 0 , E , and

It should be recognized from Figure 5 that, although the airplane rate-vector

quantities, p , q , and r are orthogonal, the Euler rate-vector quantities are not.

Thus, to obtain the relationships of p , q , and r as functions of ^ , B , and
it is necessary to transform ^ , B , and ^ to components along x r , Yr , and zr
axes and then epply Equation (lc). The first transformation is accomplished rapidly

by applying Equation (2b) and considering each Euler quantity as a special case of

transformation of a body axis .quantity. To wit: in Equation (2b) both 0 and 6 are

considered zero for ^ and B , and 0 is considered zero for	 Hence, the re-

sulting transformation to the reference axes will be

Xr cos B cos qi	 -sin 4	 0

Y r = cos 6 sin tP	 cos 0	 0 6 (3a)

Zr -sin ^	 0	 1 ^

Substituting Equation ( 3a) into Equation (1c) results in the following:

X	 p	 1	 0	 -sin 6

Y = q = 0	 cos	 sin Ocos 6 6	 (3b)

Z	 r	 0	 -sin	 cos 6 cos 0 ^

To obtain the inverse of Equation , (3b), it is necessary to solve for the inverse of

the transformation matrix since 0 , 6 , and ^ are not orthogonal and hence do not
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permit the use of the transpose for the inverse. This is accomplished by solving for

the inverse matrix [L) - ' in the relationship

1	 0	 0

[L) [L) -1 =	 0	 1	 0	 (4)

	

L0 0	 1

After solving for [L]-' , the inverse of Equation (3b) is determined to be

1	 sin Stan	 cos Otan 6	 p

B	 =	 0	 cos (t	 -sin 0	 q	 (5)

0	 sin Osec P	 cos Osec 6	 r

2.2.4 Transformation of Euler Angles from the Body
to the Stability Axis System

If two different rotation series give the saire starting and ending orientation, the

matrices representing the rotation series are equal, element for element, in the two

transformation matrices. Thus, the Euler angles, 
r S , 

68 , and 0. , of the stability
axes can be derived from the Euler angles, Ob , Bb , and ¢b , of the body axes by the
following transformation matrix relationship

[L] S = [a) s [L] b	 (6)

where [LJ S is the transformation matrix of Equation (lc; using stability axis orienta-

tion angles qS , BS , and 0. in place of q , 6 , and 0 , and [L) b is the same
transformation matrix using body axis orientation angles qb t9b , and (^b in place

of qj , B	 and 0 , if the same successive rotation series is employed. The trans-
formation Lxl s is the matrix representing the transformation from the body to the
stability axis system, cr

cos (X	 0	 sin a

1 01 8 =	 0	 1	 0	 (7)

L-sin a	 0 cos a

Upon performing the matrix multiplicati.)n shown by Eq^^tion (6), and checking

corresponding elements in the equated results to obtain the most feasible elements for

the desired result, the following relationships are arrived at

sin BS = cos a sin Bb — sin a. cos Bb cos Ob

sin ^^ = sin ¢b cos 6b

cos 6S	 (8)

sin `PS
cos a cos B b sin 'Pb + sin a ( sin qb cos Ob sin Bb — cos iPb sin 0b)

=
cos BS



2.2.5 Transformation of Aerodynamic Coefficients to
Various Axis Systems

The following transformations are accomplished readily by employing Equation (2b)

and replacing tP , F , and (^ in the equation by -p , a , and 0 , respectively.
Thus, to transform from body to stability axes, set 8 = 0 	 thereby obtaining

C D = CC Cos a + C N sin a

(Cy ) s = Cy

CL = —CC sin a + CN cos a

(CI)s = C l cos a + Cn sin a

(Cm ) s = Cm

(Cn) s = —C l sin a + Cn cos (x

Similarly, to transform from body to wind axes

(C x ) w = —CC cos a cos,8 + Cy sin,8 — C N sin a cos ,8

( Cy ) w = CC cos a sin,8 + Cy cos'3 + CN sin a sin,8

( C Z ) w = — CL = CC sin a — CN cos a

( C l ) w = C l cos acos ,3 + Cm sin,8 + Cn sin acos,8

( Cm ) w = Cm cos /3 — C l cos a sin,8 — Cn sin a sin Q

( Cn ) w = Cn cos a — C l sin a .

Also, for stability to wind axes, set a = 0 , obtaining

( Cx ) w = — C D cr>s,3 + (C Y),sin,8

( ^'y ) w = CD sin,3 + ( Cy ) s cos,8

(CZ ) w = —CL

(C l ) w = (C l ), cos,8 + (C.) s sin,8

(Cm ) w = (Cm ) s cos,8 — (C I ), sin,8

( Cn ) w = (Cds

7

(9)

(10)

(11)

To transform from wind to Stability or body axes, or stability to body axes, use is

made of Equation (lc).
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2.2.6 Transformation of Derivatives

The transformation of derivatives from one axis system to another goes beyond pure

kinematic transformations. Longitudinal derivatives are relatively simple in their

transformations; lateral directional derivatives are more complex in transformations.

The several examples will illustrate the procedure to obtain derivative transformation.

Influence of factors such as power is not considered at this time.

Transformation of longitudinal derivatives is accomplished by direct differentiation

of the coefficient equations. This is possible because a and q are not modified by

the axis system used. For example, to obtain the derivative of C L with respect to
a in a transformation from body to stability a: , es, differentiate the equation for

CL in Equation (9) obtaining, on a per radian basis,

CLa = —C^ a sin a + CNac COS a — C  .	 (12)

The transformation of the lateral-directional derivatives is more complicated, inas-

much as the angular rate variables r and p are affected by the transformation. At

this time, sideslip angle, P , is not considered to be affected by the transformations

because of its definition; however, the type of O-sensor used in flight tests — whether

it be a vane, floating cone, or ball nose — does have a bearing on the interpretation

of the 0 readout and the meaning of the derivatives with respect to the sensed ^3 .
This is discussed in Section 5.

Consi&r the transformation of lateral-directional derivatives from the stability

to the body axis system. Transformation of the yawing and rolling moment equations is

accomplished by

N = (N) s cos a + (L) s sin a

L = (L) s cos a — (N) s sin a

where L and N represent rolling and yawing moments, respectively.

However,

(N ) s =	 ( Cnf3)s18 + (Cnr)s rsb + (Cn4)s ^b + (Cnp)s psb + ( Cng)sb 'ES
2V	 2V	 2V

(L) s = 
[( C l B)s'8 + (Clr)s rsb + (Cn^)s ^

j
b + (Clp)s 

p sb + 
(C1 8)s8 gSb .

2V	 2V	 2V

It will be necessary to express Or s and Aps in Equation (14) as functions of
Ar and Ap using the tr9iisform

rs = r cos a— p sin a l
(15)

p  = p cos a + r sin a .

MF

(13)

(14)
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Upon substituting Equation (15) into (14) and Equation (14) into (13), and regrouping

terms,

N

gSb
	 lCn,3)s COG a+ (C1 ,3 )s sin a	 +

1

F	 2	 2	
rb

+ I (Cn r )s cou a + (Cl p )s sin a + (Cn p + C 1r)s sin acos a 2V +

r	 rj b+
 L

(Cnp)  s cosa + (C 14) s sin a+
 2V

+ [( Cnp)s cos t a - ( C 1r)s sin e a-(Cn r - C: 1p)s sin acos a1pb+
aV

+ [(Cn 8 ) ,9 cos a + (C1 5 )s sin a b

L
(C1^

gSb	
);; cos a - (CnQ)s sink +

	

+ (C1 p )s cos t a + (Cn r ) fi sin 2 a -	
pb

(Cn p + C1 r )s sin a cosa ZV r

+PC 1R) s cos a- (Cnp) s sin a 
^b

 +
> LV

and

(l6a)

(l6b)

rb

+ [(Clr)s cos t a - (Cn p )s sin  a - (Cnr - C lp)s sin acos a rb +

+ [M- 3)s Cosa - (Cns)s sin a 8 .

Summaries of transformations of aerodynamic derivatives from stability to body axis

system, and vice versa, are given in Tables I and H.

2.2.7 Transformation of Moments of Inertia from

One Axis System to Another

Although this topic is covered in applied mechanics literature, an illustrative

example is given as a refresher. Also included are tables of transformations for

ready reference.

To obtain Ix s in terms of body axes quantities, use is made of the fundamental

relation

I xs = f (y s + zg) dm .	 (17)
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Substituting the following transform into Equation (17),

x s = x ccs a + r, sin a

(18)
Z 8 = z cos a — x sin a

and expanding,

Ixs = 11(Yh + zb) dm] cos t a + P 1i + xh) dm] sin e a — 
2Ifx

bz bdn sin acos a

= I x cos t a + I Z sine (X — 2I xZ sin acos a

(IZ + I x ) — i ( I Z — I x ) cos a — IXZ sin 2 a

3. EQUATIONS OF {NOTION

..

	

	 The equations of motion of an airplane as found in texts on aircraft dynamics (such

as Reference 5) and as normally presented in the technical literature, i1though prosaic,

in appearance, do contain complexities in the significance of the individual terms.

The following discussion is intended to acquaint the reader with the scope of the

complexities which may be encountered and which should be recognized and managed in

dealing with the equations of mo+i.on. An understanding of this matter is important

in applying the equations to derivative determination from flight data.

3.1 Inertial Quantities

In all considerations of the inertial portions of the equations of motion, the axis

system used has a direct bearing on the expressions for inertial forces; the degree

of asymmetry of the mass distribution of the aircraft and the magnitude and violence

of the aircraft motions affect the format of the expressions for inertial moments.

It is assumed, for the purposes of this paper, that the aircraft behaves as a rigid

body. Where aeroelasticity is a factor, it sS assumed that proper precautions will

have been taken to provide assurance that the rigid-body concept will provide a good

degree of approximation.

Inertial quantities arise from the inherent action of the aircraft whose various

components act as a rigid-body assembly and from the rotating masses attached to the

aircraft.

3.1.1 Inherent Aircraft General Inertial Force Expressions

Inasmuch as our interest lies in the analysis of flight test data oriented to the

body axis system, the inertial force expressions applicable to this axis system and

for all attitudes of flight are

X i = m(u + qw — rv)	 (19a)

Y i = m (v + ru — pw)
	

(19b)

Z i = m(w — qu + pv) .	 (19c)
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If the stability axis system were employed as the reference instead of the bodf axis

system, qw - pw - w -- 0 , inasmuch as there is no linear velocity component al r,ng the
z-stability axis.

3. 1. 2 General .Inert cal-Moment Expressions

For the general case where the principal axes are asymmetric to the various planes

of the reference axes, the inertial-moment expressions are

L i _ I,^p + I xy (rp - q) - I XZ (r + pq ) + I yz ( r 2 - q 2 ) + ( I z - ' y )qr	 (20a)

Mi _ ty q + I yz (rq - r) - I Xy(r + q r) + I xz (P 2 - r 2 ) + (IX - Id rp	 (20b)

N i = I z r + I Xz (gr - p) - ? yz (q + rp) + I xy ( g 2 - p 2 ) + ( Iy - I X ) pq	 (200

Fortunately, situations involving general asymmetry of the aircraft are rare. Normally,

the vehicle will have a mass distribution symmetrical relative to the xz-body plane ofI	 symmetry, with the result that the principal y-axis coincides with the y-body axis.
Under such circumstances, I xy = I y „ - 0 and the general inertial-moment expressions
reduce to the following normally employed form:

L i = I x  - I Xz (r + pq ) + ( I z - Iy )qr	 ,21a)

Mi = 1Y  + I XZ ( p 2 - r 2 ) +(I X - I z )rp( ,:,,

Ni = I zr - I Xz (P - qr ) + ( Iy - I X ) Pq	 '210

The inertial expressiuns in Equations (21a, b, c) are nonlinear and thus not suitable

for use in the derivation of closed-form stability equations. However, they are re-

quired in analog or digital computer study of the motion of the aircraft in general

or violent maneuvers and in the analog matching of flight data from such maneuver

in attempts to determine the effective values of the stability and control deriva',ives

for the maneuver.

In violent maneuver., the terms involving pq and rp are particularly important.

These term3, as Krell as qr , are gyroscopic terms. Modern high-performance aircraft
tend to have low values of I x compared to I	 sand I z , with the result that gyro-
scopic action represented by ( Ix - I z )rp and (I Y  °• T,,)pq , in particu!.ar, has been
responsible for the uncontrollable, catastrophic rc,ll-coupling behavior of at least

one jet aircraft after a deliberate high roll rate ir,nut.

When the motions of the aircraft are small or gradual. the inertial-moment expressions

may be simplified to

Li = I xp - I xzr
	

(22a)

Mi = Iycj	 (22b)

N i = I zr - I xzp	 (22c)



AX  = m[46 + wAq + qOw — rAv — vArl (23a)
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3.1.3 Small-Perturbation Inertial Expressions

The classical approach to the study of aircraft dynamic stability and control involves

the use of small disturbances (perturbations). Restricting the motions to small de-

viations from steady-state conditions allows the elimination of non-linear terms from

the inertial expressions. Such motions are useful in defining the stability, control,

and handling qualities of the aircraft, and the pilot effort or autopilot character-

istics required to control the motion. 1U' has bee'. found that the use of small-

perturbation theory gives good results and permits the development of analytical

expressions.

To arrive at the small-perturbation inertial expressions, replace the individual

acceleration and velocity terms in Equations (19a, b, c) and (22a, b, c) by accelera-
tions and velocities made up of disturbances superimposed on equilibrium conditions

so that u , etc., is replaced by u + A^ , etc., respectively; expand the product

terms; neglect the second-order quantities (Arms, for example); and subtract the initial

conditions from the final resulting conditions. The resulting small-perturbation

inertial expressions are

AY = m [U + unr + rAu — wAp — pAw, (23b)

'n^Z i -	 m[Aw — unq — qAu + 1;^v + vAp] (23c)

and

ALi = I x^^ — IxZAi	 (24a)

AM i = IyOq	 (24b)

AN i = IzOi — I xZA	 ( 24c)

Equations (23a, b, c) show that lateral-directional-mode perturbations Uv , Ar

and np appear in the longitudina .-triode equations AX i and AZ, , and that the
longitudinal-mode perturbations Au and Lw appear in the lateral-directional-mode
equation A Zi . This coupling of the two; modes can normally be minimized to permit

practical use of the uncoupled practical approxiwation of Equations (23a, b, c) shown

in Equations (25a, b, c). This minimization is achieved in flight test maneuvers such

as elevator pulses for perturbation of the longitudina l. mode and rudder or aileron

pulses for perturbation of the lateral-directional mode ip.itiated during steady wings-

level or steady turn flight.

AX  = m[Ati + wOq]	 (25a)

DY i - m[dv + uQr — wAPI	 (25b)

AZ  = m [A w — uAq — qAu)	 ( 25c)
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3.2 Gyroscopic Couples of Rotating Masses

Spinning masses mounted on the aircraft - such as propellers and rotating elements

of engines - possess angular momentum relative to the reference (body) axes and pro-

duce gyroscopic couples on the aircraft which could be significant, as was the case on

the X-5 airplane 6 . Normally, the gyroscopic couples are negligible; however, the advent

of vertical-rising aircraft with tilting engines and the increase in size of propulsion

units on high-performance aircraft make it inadvisable to arbitrarily ignore this

coupling.

For a rotating mass having a rotating axis in or parallel to the xz-plane of symmetry

but at an angle 
`Arm 

to the x-body axis (Fig.6), it can be shown from the moment of

momentum relation,	 y H and H = I rm ^2	 that the gyroscopic couple about each of the

body axes is

Lrm = qH Z - rh o, _ -I rmQq sin Prm	 (26a)

Mrm = rHx - pH Z - IrmQ (r cos Prm + p sin arm)	 (26b)

Nrm = pH  -- qH x = - I rmQq cos Prm .	 (260

These rotating mass contributions are added to the inertial moments expressed by

Equations (20a, b, c), (21a, b, c), and (22a, b, c).

For small perturbations of the aircraft, the perturbations of the gyroscopic couples

resulting from the rotating mass are expressed by

ALrm = -I rmQAq sin 6rm	 (27a)

AM rm = IrmQ Or cos 6rm + AP sin 6rm )	 (27b)

ANrm = - I rmMvq cos 0 r .	 (27 c)

These perturbations are added to Equations (24a, b, c) when significant, in which

case, Equations (24a, b, c) will become inter-dependent because of "tie coupling of the

longitudinal-mode and lateral-directional-mode moment equations. It should be noted

that, if 6rm were variable, the above relations in Equations (27a, b, c) would have

required further expansion and introduced an additional degree of freedom in the form

of A6rm .

3.3 Gravitational Force

The gravity force will not contribute to the moment equations as long as the origin

of the axis system is at the centre of gravity.
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3.3.1 Components of Gravity Force

With the gravity force W acting along the z r axis, the expressions for the

components of gravity force acting along the body axes are readily deduced from Figure

4(a) to be

X 	 = —W sin 6	 ( 28a)

Y 	 = W cos P sin (^	 (28b)

Z  = W cos p cos (	 ( 28c)

These components are subtracted from the inertial-force equations (19a, b, c).

3.3.2 Small Perturbations

Small perturbations of the components of the gravity force may be based on Euler

angle perturbations superimposed on the unperturbed angles using the same basic

reference frame, or on Euler angle perturbations relative to a secondary spatial

reference frame made up of the unperturbed aircraft axis system as discussed in

Section 2.1.6. and as shown in Figure 4(b). In this second approach, unperturbed

body axes are used as the secondary spatial reference when ii ,:terest is primarily in
perturbations of body-oriented flight test data.

Using the first approach, replace P and ^ in Equations ( 28a, b, c) by 6 4 O6
and 0 + O (^ , respectively; expand the resulting trigonometric functions, consider
cosO_^_- 1 , sinO _-- A _ , and A_0_^_^ 0 ; and subtract the initial conditions from
the result. The resulting small-perturbation expressions are

AX  = —WOO cos 6
	

(29a)

AY  = WOO cos 6 cos 0 — OP sin 6 sin (^)
	

(29b)

AZ  = —W(OO cos P sin 0 + O6 sin 6 cos 0) .	 (29c)

In the second approach, using the unperturbed body a:es as the reference and

Oqi' , O6' , and OO' (Fig. 4(b) ) as the Euler ..files of the perturbations, the per-
turbations of the components of gravity are obtained by using Equations (1c) and

(28a, b, c). In Equation (lc) the generalized quantities Xr , Y r , and Zr are
replaced by the expressions for X g , Y  , and Zg , respectively, as given in
Equations ( 28a, b, c) ; and the Euler angles qi , 6 , and 0 are replaced by Oq' ,
O6' , and Off' , respectively. The generalized quantities Xb , Yb at:d Zb in
Equation (lc) are now equal to ( X g + AX 

9 ), ( Y g + OY 9), and ( Zg + OZg ) : respectively.
By subtracting the initial conditions (equations (28a, b, c)) front U.i resulting

perturbed equation after considering r.os 	 1 . sin 	 O _ , and O_O	 0
the perturbation expressions for this second approach will have the f(.1lowing form:

AX = W (cos 6 sin 0 Ovi' — cos 6 cos (^ O6')
	

(30a)

AY  = W (sin Oq' + cos 6 cos 0 -AO')	 (30b)

AZ  = —W (sin 6 O6' + cos 6 sin (^ -AO') . 	 (30c)

i



15

The advantage in using Equations (30a, b, c) instead of Equations (29a, b, c) is

that, for small perturbations during highly banked as well as wings-level flight,

ntp l 	[Ar dt	 (31a)

AP, 	fnq dt	 (31b)

A(k ti Jnp dt .	 (310

To apply such simple integrations to ^qi , nA , and n^6 in Equations (29a, b, c)
requires that (^ and 0 be small.

Both Equations (29a, b, c) and (30a, b, c) show coupling of the longitudinal and

lateral modes. In both sets of equations, the longitudinal modes (AX 9 and 
A Zg)

are uncoupled from the lateral-mode perturbations by performing a longitudinal pulse

when initial conditions are steady-state. In performing a lateral-directional pulse

from steady-state conditions, the lateral-mode expression (30b) is inherently un-

coupled from longitudinal perturbations, whereas expression (29b) shows interaction

of the longitudinal perturbation LAB which is excited by the lateral-directional

pulse.

When banked and climbing flight are being considered, it may be surmised from the

preceding that Equations (30a, b, c) are more amenable than Equations (29a, b, c) to

theoretical stability analysis and for analysis of flight data when longitudinal or

lateral pulses are applied from initial steady-state conditions.

3.4 Aerodynamic Derivatives

In stability and control investigations based on flight data, the previously dis-

cussed inertial, gyroscopic, and gravitational quantities are normally equated to

aerodynamic parameters only. This is done primarily to facilitate the analysis of

flight data. However, in doing this, the parameters are no longer pure aerodynamic

parameters, inasmuch as they will have been modified by influences arising from power

and aeroelasticity as well as possible other sources. Generally, these influences

can be accounted for and the pure aer( jnamic parameter arrived at.

Inasmuch as the equations are set up under the principle of super-position of

influences, situations may be encountered in which the accuracy of the results obtained

from the equations will deteriorate. This is of particular concern where very rapid

control inputs are encountered. Also, inasmuch as the aerodynamic parameters are in

the form of derivatives, care must be exercised not to exceed the validity of the

derivative.

Finally, there are some limitations in combining several of the derivatives,

Cn r — CnQ , for example.

Consideration is given at this time to the above-mentioned factors which have

significance in the utilization of aerodynamic derivatives in the equations of motion

and in the determination of the derivatives from flight data. For convenience, the

conventional derivatives are tabulated overleaf.
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3.41 .1 Significance of the Derivatives

The aerodynamic derivative provides the slope of the curve of the aerodynamic force

or moment coefficient, as the case may be, with respect to an independent variable -

other independent variables being considered constant - at a particular value of the

variable. In analog simulation studies, nonlinear curves are reduced to straight-line

segments, each segment being valid only for an incremental range of the independent

variable.

In the inverse problem of obtaining derivatives from flight data, the derivative is

valid only for the incremental range of disturbance of the independent variable, at the

steady-state condition, used in determining the derivative. An example involving a

non l inear variation of Cn with 8 is shown in Figure 7. In this example, the
origin, 0, represents steady state and (A,8), and (A,8 ) 2 represent two disturbance
ranges of the variable. It will be noticed that the derivative obtained may differ

appreciably in magnitude because of the nonlinearity of the curve in the disturbance

ranges (A,8) 1 and (A P) 2 .
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i.:' Vnsteacl;v Flow l;ffect,;

In dealing with the derivative concept in x counting for the influence of independent

variables on an aerodynamic force or moment coefficient, for example

rh	 ' h	 I)bCn	 Cr' "	
4 Cnr ^V + Cn : -^^, + Cnp ^V + Cn8r,^1r

it is assumed that each derivative contributes to the total as though it acted alone

and that the aerodynamic force and moment coefficients are functions of the instan-

taneous, values of the disturbance displacements and velocities, control angles, and

their dorivat.ives. Further, the derivatives are based on the variation of the co-

efficients under near-steady-state conditions of the variable. Although the deriva-

tive concept of treating aerodynamic force and moment perturbations has generally

worked wall, the application to situations ol- r,Ltiid'.y changing independent variables
(unsteady flow conditions), as in the case of a very rapid control displacement or a

sharp-edged gust, does not necessarily give correct answers. This is due to apparent

mass effects of the air, whose inertia will not produce instantaneous changes in

circulation and consequently causes aerodynamic lag. This is illustrated in Figure 8,

which shoves the variation of C N as a function of nondimensional time, F,/2V , as a
result of a step gust. The derivative concept would show a constant slope curve,

whereas the actual variation of C,(t) would show a lag at the initial instance of

the step gust input.

When an aircraft is oscillating sinusoidally, the lift will follow the sinusoidal

variation in angle of attack but will be of smaller magnitude and there will be a

phase difference between the lift and angle of attack. This unsteady flow effect is

a function of reduced oscillating frequency, ^ ,!^/2V , as well as Mach number. Although

the magnitude of CNa is not normally affected appreciably for normal airplane
oscillating frequency conditions, the phase lag may bring about a large change in CNa

This may be of considerable importance in pitch damping of tailless aircraft (Ref.7).

In general, all the aerodynamic derivatives behave in a similar manner. Thus, it

is seen that attempts to use the derivative concept in analog simulators involving

very rapid changes of the independent variables can lead to errors; conversely, deter-

mination of derivatives from flight data requires awareness of the maneuvering or

unsteady flow factors mentioned which can influence the magnitude of the derivative.

3A.' Derivatives ik! ith Respect to u

Aerodynamic derivatives with respect to u are of concern when phugoid modes are

being investigated. Because this mode is often overlooked, these derivatives are

generally unfamiliar. Thus, some consideration is given to them at this time for

future reference as needed, Consider —Z = C NgS	 Differentiation with respect to
u shows

az	 ac	 aV
- au = a u qs+r^p"Sau

(32)

(v aC	 2C	 1 _

a u cos a cos ^) V
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where ^V/ r'u = 1/( cos aCOO) from u = Y cos ^3 cos a . The 4Z due to change in u
is now expressed as

qS
- Zu = CNu V .

Since

V ' CN +	
2CN

d u 	 cos acos Q1

is more than simply the variation of the normal coefficient with res pect to velocity,
u , it can fittingly be called the effective aerodynamic derivative of C 	 with respect

to u , or C N . . Similarly, the effective aerodynamic derivatives of C m and Cc
with respect to u are

dC
m
	2C

m 	 dC	
- 

2t;
V	 +	 and	 ^'	 +	 c --- ,

^) UCOs altos /1	 ^ au	 Cos a oolig

or Cm 	 and Cc u , respectively.

3./i.4 Derivatives with Respect to q and a ,
and r and

It is customary in reporting flight-determined derivatives, wherein transient

oscillations are useL in the analysis, to pair the derivatives varying with respect
to q and & and those varying with respect to r and ^ . For example

Aqc 0 ac	 Aqc
Cmq 

2V + Cma -'-

an d
	

(34)

Inasmuch as the phenomenon involving a is different from that involving q , and

the phenomenon involving r is different from that of Q , the pairing is valid only

when small -perturbation transient oscillations of a maneuver are involved and satisfy

the linearized equations of motion. In addition, although the pairing works well for

the longitudinal equations whether or not stability or body axes are: employed, the

validity of the paring for the lateral - directional equations is dependent on the use

of the stability system of axes; if body axes are used, the pairing of r and
derivatives is permissible at low angles of attack.

In performing a small-perturbation longitudinal transient oscilation, the center

of gravity of the aircraft tends to move along the flight path as though it were not

disturbed; consequently, the amplitude ratio Iogi /IA&I is similar to 1.0 and the
vector quantities A q and A& are approximately in phase. Thus Aq can be sub-
stituted for A& . In the case of a lateral-directional (Dutch roll) transient

oscillation relative to the stability axis syst.3m, the aircraft, in tending to

(33)

2V
ti (Cmq + CM&) 2V
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maintain its center of gravity along the flight path as though it were not disturbed,

will experience Ar	 , inasmuch as r and ' are now referred to the same axis

system. Thus, the amplitude ratio lAr1; LV'I is similar to 1.0, but the phase relation
is approximately 180 0 ; consequently, the sign of the A i^ derivative is changed to mines

in pairing r and	 derivatives. In dealing with the body axis system, 	 I•'1rl!I^ti^^
and fir; can differ appreciably from 1.0 and 180 0 , respectively, at high angles of

attack.

It is reiterated that pairing the derivatives is valid only for the specikl con-

ditions mentioned. On the other hand, it has not been possible to solve for the a

derivatives independent of the q derivatives, and r derivatives independent of r

derivatives, from flight data with any degree of consistency and confidence,

14.5 Power Effects

The propulsive system may have a significa ►.t influence on the stability as well as
the trim of the airplane. Its force and moment contributions to the equations of

motion may be presented as derivatives in the equations. If the power contributions

w are not accounted for by their own derivatives, they will be reflected in the magnitudes

of the aerodynamic stability and control derivatives which will then become, in essence,

effective derivatives. A comprehensive treatment of power effects is complex and beyond

the scope of this paper. Only i..,jor effects are considered, to show how propulsion

system derivatives contribute to the effective values of the aerodynamic derivatives.

It is essential at this time to emphasize an important point regarding consideration

of the effect of power on stability. True inherent stability of the aircraft with

power on can only be evaluated by keeping the settings of the engine and propeller

controls fixed during the maneuver. Any maneuver that entails alteration of the pro-

pi,,lsi,1 , • vstem controls during the maneuver will not provide a true index of the

stability i" gym an analysis of the time history of the maneuver.

Influence of propellers: Influences of propellers consist of direct propeller effects

and also indirect effects due to the propeller slipstream on the wing-fuselage and the

tail surfaces.

Direct propeller effects: Direct propeller effects, as shown in Figure 8, consist

of a direct thrust T acting along the thrust axis, and a transverse forve (Y)p

as well as a normal force (—Z) p , perpendicular to the thrust axis in the plane of

the propeller disk. The thrust T is a primary function of a and 1, . Quantitative

determination of the normal and transverse forces (—Z) p and (Y) p may be accomplished

by solving for (CN a)p and (Cy ,,)p , as discussed in References 8 and 9, Actually,

the derivatives aie of more concern for the purposes of this paper than the actual

magnitudes of the forces.

The contributions of the direct propeller effect (Fig.9) on lor,gitudinal and lateral

stability are reflected in

(Cma) p = CTa Zp + (CNa) p 
xp

c	 c
an d

(Cn,8)p = — (CyQ	 XP .

(35)

(36)
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It is opportune to note the influences of the direct propeller effects on CL,

when performing a transformation from the body to the stability axis system. The net
effective C L and C D of the aircraft, in the absence of angular rates and for fixed

controls, can be expressed as

Aero

rCL	 cos a	 —sin x

C D	 sin a	 cos a

Power	 C
N

sin up	 cos ap	 Cc

- cos ap	 sin u
p
	 CT

(Cn)P

(37)

(38)

where the direct thrust is assumed ^o be vectored parallel to the body x-axis and

a p = a + 6  . Differentiating Equation (37) with respect to a for CLa
CL a 	(CNa cos a - Cc a sin a) - CD + CT, sin up + (CN a) p Cos a ,

where C 	 is the effective value as shown in Equation (37).

Study of Equation ( 38) shows that power increases the effective CL, of the aircraft.

On low-performance aircraft, the power effect is generally negligible.

Propeller slipst°eam: The propeller slipstream influences the distribution of the

aerodynamic forces on the aircraft structure as a result of (i) the increase in local

velocity over the structure due to and in the propeller slipstream, and (ii) upwash ana

downwash effects of the rotating slipstream of the propeller. The slipstream can be

stabilizing or destabilizing, depending 110on the direction of rotation of the propeller

and the position of the tail relative to the rotating slipstream. Analytical techniques

to quantitatively account for the propeller slipstream effects on the stability of the

aircraft have not been satisfactory. Generally, powered models are used to provide

engineering data on new designs.

Influence of jet engines: The jet engine has the counterpart of the effects that

were shown for the propeller. It provides a direct thrust, shows no rnia.l and transverse

force effects at the entrance of the intake duct, and — depending on geometry — is

ca,,)able of influencing the equilibrium and stability of the aircraft by inflow of air

ir.to the jet exhaust. Unlike the propeller, the influence of the jet engine on the
tail surfaces, and hence the stability of the airplane, is amenable to analytical

techniques to quantitatively account for these effects.

The thrust produced on the aircraft equipped with a jet engine is equal, as shown

in Figure 10, to the vectorial change in mcmentum of the air and fuel passing through

the engine plus the resultant of the pressure forces acting across the inlet and outlet

areas. Where the intake and exhaust are in line with the thrust axis and the x-body

axis

T = CrgS

= m j V j — maV cos up + ( pi Ai -- p j A
J 

) .
	 (39)
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A change in direction of the momentum vectors at intake or exhaust relative to the

x-body axis brings into being forces normal to the body x-axis. Where the jet exhaust

Is parallel to the x-body axis, the component of the normal force in the xz-plane of

symmetry is expressed by

maV sin o^
(40)

/maV sin xE
S

	qS 	

q

Similarly, a normal force in the transverse plane is in evidence during a sideslip, or

(Y) p = (Cy ) p QS

	

—maV sin	
(41)

MV sin
_ —	 qS .

qS

A jet-induced inflow toward the jet axis at the tail may affect the stability of

the aircraft if design precautions have not been taken. As a result of the jet exhaust

spreading out behind the engine, a turbulent mixing of the air outside of the jet

stream with the jet exhaust takes place along the boundary of the jet stream (see

Figure 11). The drawing in of the air from outside the stream is jet-induced inflow.

A horizontal tail located in this jet-induced inflow field will be subjected to jet-

induced downwash angles. Thus, the angl.^ of attack of the tail would be modified and

pitching moments would be created that would affe c t the stability as well as the
equilibrium of the aircraft.

The quantitative effects of the jet-induced downwash at the tail can be calculated

by using the theory developed by Ribner lc . This theory allows for curvature of the
jet due to angle of attack of the aircraft. It is also applicable to determination of

jet-induced sidewash of the vertical-tail surfaces at asymmetric power conditions or

during sideslip.

In the absence of suitable design precautions, such as boattail.ing of the exhaust

to shield the tail surfaces from the inflow effect, the change in pitching and yawing

moments resulting from the jet-induced downwash (A cc,. t )p and sidewash (Aav t )p
respectively, can be expressed by

(AM h. t. ) p — ( CNa)h. t. (A %. t. ) pg tStxh. t.	 (42)

(AN v. t. ) p — —(CN a,)v. t.(A N.t. ) 0tSt x v. t.	 (43)

where xh t	 and xv t	 are negative values with tails aft of the center of gravity.



I

1

22

The variations of forces and moments due to the yet (ngine are primarily functions

of x ,	 , and V , assuming that control settings are constant. From the preceding

it may be readily deduced that

	

m a V cos x) '1;) 	 g tsh. t. '1(aht.)

qS	 ,ir-Y.	 qS	 Ax

(C m ^) P 	 Ct 7P 
+ m aV cos -J.

1) X I) "(J. 1) + 
(C^ x) ► ,. r.. g t Sh. t. xh. t. 	 c^h. t. )P	 (44b)

c	 qS	 c 	 qSc	 A a

(	 )	 _ m a V cos	
CN

	

— – (	 )	 gtsv. t. -(,J. V. t. ) p	 45a)CY,< P	
qS	

D, v. t.	
qSb	 ,ri. 

m aV cos"' x" -	 g tsv. t. x v. t. " (,,I V. t. )P
1Cn.3)P	 qS	 b	 ( CNa)v. t.	

qSb	
-	 ^ a	 (45b)

where x 	 is positive when the air intake is forward of the center of gravity and

x V t	 is negative with vertical tail aft of the center of gravity, and

"C.	 2C

	

( C Cl d P	 - ^V	 +	 T	 (46)
i u 	 cos acos i t P

'-i c	 2C

	

(Cm u )p	 -	 V	 ^' +	 m	 (47)
u	 cos acos

P

where

	

zP	 m a V sin a  x 	 ,	 qA. t. xh. t,
(Cm ) P = CT c +	

QS	 c + 
( CNa) V. t.( . ^ UV. t. ) P	 qSc	

(48)

and

^Cm	 _ ACT 
Z  

+ m a sin ap XP
	

(49)
^u 

P	
^)u c	 qS	 c

3.4.6 Aeroelastic Effects

The preceding discussions assumed that the aircraft was rigid. This assumption was

permissible in the past; However, modern aircraft flying at high speed under dynamic-

pressure conditions are subject to degrees of flexibility of component parts which

cannot, at times, be ignored and which affect the stability of the a^rcraft li-16	The

contribution of aeroelastic deformation to derivatives is dependent primarily on

aircraft geometry and dynamic pressure as well as structural rigidity and Mach number.

Aeroelastic phenomena may be considered in t^vo separate parts: static and dynamic

aeroelastic effects.
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When aerodynamic loading takes place at a sufficiently slow rate in coftlp: 4 rison to

tho natural frequency of vibration of the pertinent part of th y, 5trnrt­ rc t^	 ^,;it-	 pe-
the assumption of static deformation of the structure, the influence of aeroelasti0 ty

can be accounted for by modifying the derivatives. Illustrations of steady-state

distortions which have been serious in the past are aileron reversal and wing divergence.

Today, such factors as thinner wings and more t'lexible fuselages have magnified the

effects of structural flexibility on stability and control cf aircraft.

If the aerodynamic loading frequency were to approach the structural frequency of
the pertinent component, the structural deformation would produce perturbations in the

aerodynamic forces and moments which have to be accounted for by the introduct.io ►, of
additional appropriate derivatives in the equations of motion and the introduction of

additional equations, which would be ela9 t.icity equations.

3A.7 Other Effects

The preceding discussion has included major fat'-irs which influence analysis and

account for discrepancies between wind-tunrel and flight data; however, it do-3s not

account for all factors. Other factors corld include jet pluming, flow separations

associated with movements of shock waves, and fuel sloshing. Since one never knows

what phenomena will occur., it is imperative to have an open mind in trying to ,account

for discrepancies in comparisons of data.

3.5 Summary of the Equations of Motion

The various dynamic relations which have been discussed are pertinent to an under-

standing of the equations of motion and the conditioning of data to the e4dotions. The

influence of power and structural flexibility on the various aerodynamic parameters

(coefficient and stability derivatives) was stressed, and it was pointed out that the

net result of these influences, or modifiers, was the emergence of an effective aero-

dynamic parameter.

It is easily recognized that the introduction into the equations of motion of each

individual modifier to the aerodynamic parameters would result in a cumbersome set of

equations. It is more practical to let the normally accepted stability symbol (Cn,8,

for example) represent the effe '.ive value than to list all modifiers. In so doing,

one should be aware of the various sources which contribute to the magnitude of the

effec t ive parameter in order to properly account for these contributions during an

analog investigation, or oti:_r study, in which wind-tunnel and calculated data are

used. On the other hand, In the inverse problem of de.ermining coeifi , ients and

derivatives from flight data, a discrepancv in trends as well as magnitude between

wind-tunnel and flight data will suggest possible influences from sources not accounted

for by tunnel data.

3. 1 General Equat ions

The following a' mptions are made with regard to the equations of motion su ►.amarized
in Table IV:

(i) The airplane behaves as a rigid body in that the moments of inertia, inclina-

tion of principal arms, etc., are not affected significantly.

P.
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(ii) The airplane is symmetrical about the xz-plane with regard to geometry and

mass distribution,

(iii) The axes of rotating elements on the aircraft are fixed in a direction relative

to the body reference axes.

(iv) The ea,*t.h is flat. Aircraft speeds are assumed to be insufficient to include

earth curvature in the equations.

(v) The forcing frequency of a disturbance is sufficiently far removed from the

natural frequency of the pertinent part of the structural components to permit

the disturbance to be considered as a static load and the effect of deformation

to be accounted for by modification of the aerodynamic parameters.

(vi) Each aerodynamic parameter is an effective parameter, in that it includes all

sources contributing to its net value.

Although listed. in Table IV for completeness, experience has shown Cy p , Cyr

Cy4 and 
Cc 	

and Cccc to be normally negligible.

f^ 3.5. 2 .Small-Perturbation. Equatrc:,s

The general equations of motion in 'fable IV are suitable for analcr, and d gital

programing which involves large disturbances and nonlinear terms, they are not suitable

for analytical purposes. For such purposes, it is necessary to linearize the equations

at le p >t to an engineering degree of accuracy. This is accom;. Lshed by rest:;r:'-ing

their applications to small perturbations, as has been discussed previously. In

addition, the Prturbations are referred to a secondary spatial reference frame,

discuss,--' in Secti(,r 2.1.6, which is the unperturbed airplane axis system shown in
Figure 4(b). Using the secondary reference system for small perturbations permits

the use of Equations 01a, b, c), which simplifies analysis and extends the validity

of the linearized perturb?ti:cr, equations to maneuvers involving high pitch attitude

anO large bank angles.

The uncoupled, linear ized perturbation equations are sr _, ­, in Table V in a format
which generally constitutes the basis for application to -.!vative determination.

The assumptions listed for the general equations of motion are also valid for the

equations in this table. In addition, it is assumed that the maneuvers are such as

to minimize the errors in the g terms ari:ir,g from the approximation of the gravity

terms s"iown in Equation's (40a, b, c). Also, it is assumed that the gyroscopic couples

of rotating elements are not significant, which may not always be the case. The

equations are complete within the limits of the assumptions, and analysis would reveal

all modes of longitudinal and lateral motions.

Omission of the 1,-%glT.udinul force equation and the 16 terms in the longitudinal

equations (50a, b, ---) would remove the phugoid mode from the analysis of the longitudinal

motions, leaving only the short-period mode. This short-period format of the long-

itudinal equations is the ono usual.ly employed. Although the small-perturbation

equations shown in Tabie V are frequently used in the format shown to develop relations

for derivative determination, it is also desirable to list the equations in an opera-

tional format as Laplacian transforms with Laplace operator s .
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Using; Laplace transforms enables the dynamic properties of the airplane to be defined

by a series of transfer functions relating the various responsive motions of the airplane

to disturbing inputs. The transfer functions are extensively used in stability and

control, handling qualities, and automatic flight: control investigations to aQ5 ess the
effects of configrur^tion changes, the effects of particular stability derivatives, and
the effects of chaa ges in automatic control systems. They are also helpful in obtaining

stability derivatives from flight data.

With zero initial conditions and inputs clue only to control deflections, the Laplace

transforms of the small-perturbation equations of motion take on the operatioaal _forms

shown in Table VI as Equations (62a, b, c) and (63a, b, c). The notations Xu , Ma
etc., shown in the equations, are a convenient means of listing the parameters.

3.6 Determination of the Roots of the Determinant of the

Lateral-Directional Small-Perturbation Equations

The following discussion regarding the determination of the roots of the determinant

of the lateral-directional small-perturbation equations is based on Reference 17.

Although the main points are brought out at this time, recourse should be made to the

reference for more detailed considerations.

3.6.1 The Determinant

Using the Laplace transform format of the lateral-directional equations (Equations

(63a, b, c) in Table VI), the determinant of these equations may be expressed in either

of two formats, as follows:

(i) When expressed as

As u + Bs 3 + Cs' + Ds + E = 0 , 	 (65)

then

A - I x'I' - 1

B = (L
P +INp ) +(Nr+IzL,,,)-(I- IX"IIZI

C = (N pLr - N rL p) - ( Lp + I x'N p)Yp - ( Nr + IZLdYQ -

- [(1 - I' sin a)Np - (sin a - I I )F, I
	

(66)

D = (NRLp - N pLQ ) +(NrL - ,^4L „) Ya + g i (N^ + I Q ) -

- g (t,,; r i 'Y 3 } a. (N#!,r	 NrL,3 ) sin a

E = g l (L/31? p - LpN B ) - g 2 (N^3Lr - NrLQ)
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(ii) When expressed as

s  + bs 3 + cs 2 + ds + e = 0 ,	 (67)

then

by -Yp

c= - (IYpLr - NrLp) + LpYQ + NrY 13 + NQ - GQ sin a

	

d = - (Na8 P - NpLQ) - (NrL p'- Np'L i')YQ - 9 1NQ +	 (68)

g 2LQ - (N,8Lr - N rV) sin a

e	 - g 1 (LQNp - LpNQ + 9 2(NQLr - NrLQ)

wh —e the primed values are equal to

N + I I L	 L + I19Nr =	 i	 z i	 and	 Lr -	 i	 x 1	 (69)
	IxIZ	 i	 1 - Ixz

The determination of the roots of the determinant is dependent upon the modes of

motion of the aircraft. The modes may be:

(a) Lateral phugoid ( coupling of spiral and roll modes) and Dutch roll.

(b) Spiral divergence, roll subsidence, and oscillatory (Dutch roll).

3.6.2 Determ;;,ation of the Roots when Lateral

Phugoid and Dutch Roll Modes Exist

The determinant (Egn.(67)) can be approximated by the following biquadratic

d1	 a bd	 d	 e
s 2 + (b - - ' s + c - -	 s2 + - s + - = 0	 (70)

^	 c/	 (	 c	 c	 c	 c

in which the first and second quadratics represent the Dutch roll and lateral phugoid
modes, respectively.

Two sets of conditions must be satisfied if Equation ( 70) is to be applicable 17 :

(a) The approximate nature of Equation (70) requires that e/c 2 « 1 and bd/c 2 << 1

to assure Q11idity of the equation.

(b) It is necessary that d 2 - 4ed < 1 in order that tho lateral phugoid exist.

Reference 17 points out, on the basis of limited experience, that, for values of a/c2

of approximately 0.05 or less, bd/c 2 can be as large as 0.25 and d 2/4ec as low as

0.005 without compromising the engineering accuracy of Equation ( 70). Thus, the
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equation applies if

2
e << 

1 r	 bd < 0.25	 0.005 < d
	

< 1	 (71)
C	 c	 4ec

The second quadratic in Equation (70) expresses the lateral phugoid very simply;

thus,

	

d	 e
from	 s2 +- s +-

	

c	 c

e
and	 %ph = -

c
(72)

d

	

2 ^ph(hph	 C

The first quadratic in Equation (70) is unwieldy. It is simpler to determine the

characteristics of the Dutch roll modh by the following factored form of determinant

	

(s 2 + 2rcvns + !L) 2) (s 2 + 2Cphcvn phs + (J) 2 	= 0	 (73)

Expansion of this determinant and comparison with Equation (67) shows that

b - 2rcwn + 2rphcvnph

c	 n + 4ph + (2^ wd (2^pjfl)nph)
(74)

d = (2^phwnph)(4)n + (2^wn)4ph

E = Gin J%h^n

Since cvnph and (2^phcvn ph ) are nt, ,ained from Equation (72), wn and (*od can
now be determined from Equations (74) or

2^con = b • - 2 ^ph nph
(75)

cvn = c - wn 
ph - (2 ^&Jn) (2 ^phcvn ph ) .

3.6.3 Determination of the Roots when Spiral Divergence,

Roll Subsidence, and Dutch Roll Modes Exist

When the spiral divergence, roll subsidence, and Dutch roll modes constitute the

lateral-directional. characteristics of the airplane, which is normally the case, the
determinant as represented by Equation (67) may be factored in the following terms

characterizing these modes:

1	 1

	

s+— s+— s 2 +2^Wn +can = 0	 (76)
Ts 	 TR	 /
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The coefficients b , c , d and a (Equation (68)) in terms of the factors of

Equation (76) are

1	 1
b = 2 ^wn + — + —

TR Ts

1	 1	 1
c = can + 2 awn 1 + — +

(FR T s TRTs

1	 l
d = CO2 — + — + 2cvn	

1

TR Tu	 n TRTs

e = W2 
1

n TRTs

When the spiral-mode root, 1/Ts , is much less than the

1/TR , as it usually is, the coefficients b , c , d , and
to a good degree of accuracy by

(77)

roll subsidence root,

e may be approximated

(78)

1
b	 2 ^wn + —

TR

1
c	 w + 2 ^c`'n —

T 

d acv 2 1
r. T

R

Eliminating 1/T R in Equation (78)

c = (2 ^cvn ) d + ^n
7n

(79)

d	 (2^w+ d

n

Eliminating 2^wn in Equations (79) provides an accurate solution of ^n within the
limitation that

1	 1

Ts	TR

or

(ten) 3 –
 c(u)2) 

2	 2+ bd(a) 	– d2 = 0
	

(80)
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Eliminating 'ten in Equations (79) to solve for 2^ron within the limitation that
1/T s << 1/T R results in

(2sycvn) 3 - 2b(2^^^^ 2n )	 + (c + b2)(2r.^)n) + (d - cb) = Q	 (81)

The roll-subsidence root, 1/T R , may now be obtained from coefficient b or d
in Equation (78) or

1	 d

TR	 ^^^n
(82)

1
b - 2 ^a)n

T 

The spiral-divergence root, 1/T s , may now be approximated from a,iiy one of the
coefficient expressions in Equations (77), such as

	

1	 A
— 2	 (83)

	

T s	 cvn(1/TR)

4. MASS CHARACTERISTICS

The airplane mass characteristics - weight, location of the center of gravity,

moments of inertia, and inclination of principal axis - significantly affect airplane

motions. Errors in the knowledge of-these quantities are reflected directly in the

flight-determined derivatives and may govern the validity of the derivatives in com-

parisons with wind-tunnel data. Although possil;l-- inaccuracies in the knowledge of

the inertia characteristics must be given serious consideration in comparisons of

flight-determined derivatives with wind-tunnel data, these derivatives have been used

effectively in flight-guidance Nimulator studies.

The weight and horizontal location of the center of gravity are always determined

experimentally. Inp smuch as the vertical location of the center of gravity, moments

of inertia, and loca-ion of the principal axis are difficult to determine experilrnntally,

manufacturer's estimates are usually relied upon. These estimates are considered to

be of sufficient accuracy for most work involving flight tests. If more precise data

are required, they sh3uld be determined by using experimental, techniques.

It would be highly desirable to determine all of the mass characteristics

experimentally. This is not always feasible because of the lack of proper facilities.

Large, flexible aircraft, such as the Boeing B-52, of;i`er practical problems, in that
experimentally determined rolling moments of inertia with wings drooped would not be

representative of flight conditions. The following discussion of the experimental

eletermina,tion of mass characteristics of aircraft is intended to serve as a guideline

in setting up suitable facilities for use witli most categories of aircraft.
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4.1 Weight and Center-of-Gravity Location

The weight and longitudinal position of the center of gravity relative to the

horizontal reference line of the airplane for the L...,;^;,y and gross weight conditions

can be obtained easily by leveling the airplane on suitable scales or electronic

weighing cells. With weighing cells, two of the cells (R 1 and R 2 ) are usually located

at the wing ,jackpoints and the third cell (R 3 ) is located at some convenient distance,

I , forward or aft of the wing jackpoints. The horizontal position of the center of

gravity relative to the jackpoints is then determined from

n l =

	

	 (84)
R3,

Y R 

For aircraft operating on conventional fuels, the variation of the center of gravity

with fuel consumption can usually be defined adequately by weighing the airplane at

several fuel levels, providing there is a predetermined sequence or mode of operation

in obtaining the fuel from the various fuel cells. When the aircraft is equipped with

fuel cells from which the fuel can be drawn selectively, the center of g,'avity position

becomes a function of the sequence in drawing off the fuel from the various cells as

well as the weight of the fuel. In some instances, it has been found necessary to

account for fuel-tank shape and airplane attitude. Where hazardous fuels are used,

the center of gravity is determined experimentally for the no-fuel condition only; the

effect of fuel on the center of gravity position is calculated. The horizontal locat1c;i

of the center of gravity is experimentally obtained at least to within 0.01 mean aero-

dynamic chord, which is considered adequate for derivative determination.

During flight tests, the center of gravity is obtained by observing the total amount

of fuel consumed and subtracting it from the takeoff weight. Reference to a chart

showing the variation of weight with center of gravity provides the desired answer.

An accurate knowledge of the verticel location of the center of gravity is pertinent

to the experimental derivative studies, insofar as experimental determination of moments

of inertia and comparison with wind-tunnel data are concerned. The vertical center of

gravity can be obtained by static or oscillatory techniques. For the static test

techniques, the airplane is placed in various pitch or roll attitudes. For the roll

approach (Fig.12), the airplane is mounted in a horizontal, wings-level attitude on

knife edges alined with respect to each other in the plane of symmetry of the aircraft.

By rolling thE. airplane to various attitude angles and measuring the reaction R 1 ,

moment arm y l , and the roil angle 0 , using a clinometer, the vertical position of

the center of gravity is obtained from the equation

z	
_ R ly I — W ?c sink	

r85)
°^	 W sin 0

For rigid aircraft of the order of 1:5,000 lb, and under carefully controlled conditions.

the vertical position is considered to be determinable to within 1 inch.

To determine the vertical position of the center of gravity from free-oscillation

tests, any one of several techniques may be used. The simplest technique consists of

changing the equivalent torsional spring constant for pitching or rolling moment of

inertia tests. For rolling-oscillation tests with the setup shown in Figure A and
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with small damping effects - a necessary condition for succe-sful tests - the equations

of motion for the two spring conditions are

(Ix + IXC + mz 2 + mc z2 )d' 1 	+ (Kt, - Wz - Wczc)O 1 	=	 0	 (86a)

(I X + I XC + mz 2 + m C zc )	 2	 Jr (K t2 - Wx - W C z C )(^2 	=	 0	 (86b)

moons; de ring 4) 1 = A cos 1 t and fie = B cos (,) 2 t , it is found upon solving Equations
(86a, b) for z	 the vertical distance from the knife edge to the center of gravity,
that

z _ K t2 - K tl( p l /p 2 ) 2 -
 

W C 
Z 

C

W[1 - (p1/p2) 2]	 W

The equivalent torsional spring constant, K t , may be changed from Kt 1 to Kt 2 by
changing the linear springs or the distance a which is perpendicular to the spring

(see Figure 13). The change in linear springs is probably the more desirable approach.

Inasmuch as the rolling-oscillation test setup discussed constitutes an inverted

pendulum, it is imperative that the equivalent torsional spring constant, K t , be
greater than Wz + W Czc for stability of setup. Also, the accuracy of the results
depends upon avoiding secondary spring actions of tiebacks and structural flexibility,

which could inadvertently result in a lower effective spring constant than expected

because of an equivalent series action of the secondary unwanted spring action with

thr• intended spring.

4.2 Moments of Inertia

The moments of inertia of an airplane are usually calculated during the design

phase and are based on estimated weights and cen'troid locations for various parts of

the aircraft. These calculated moments of inertia are considered to be adequate for

most analyses when the results are to be used in simulator studies. However, should

experimental determina:p ion of the inertia be required, methods are available (see

References 18 to 21). The methods are generally restricted to rigid aircraft and to

aircraft whose weight, as well as the safety precautions of the experiment, will permit

pivoting the aircraft on knife edges and, suspending it from overhead cables.

Schematic representation of typical methods for determining the rolling and pitching

moments of inertia are illustrated in Figures 13 and 14, respectively. Equation (86)

is applicable to the determination of rolling moments of inertia in accord with Figure

13, with consideration given to the proper interpretation of the lengths z and zc

to the mountings shown. In Figure 14, cradle weight is zero. The yawing moment of

inertia may be safely determined from a cable-suspension method used to determine the

inclination of the principal a.xVs (Figures 15 and 16), which is discussed subsequently.

Unless precautions are taken in every dt.11 of an experimental setup, difficulties

may be encountered because of flexibility of experimental components, which will alter

the ;ffective spring constant, i. t , or modify the free-oscillation pivotal point
relative to the center of gravity of the aircraft. In one instance cf determining the

pitching moment of inertia when the aircraft was supported at the wing jackpoints and

(87)
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oscillated with the spring at the nose, the wing section which had been considered rigid

was observed to flex as the aircraft oscillated. This flexing caused the axis of

rotation to shift forward and downward from the line through the jackpoints.

A common fault is the use of flexible cables as tiebacks for the springs and con-

nection from the spring to the aircraft. Under no condition should flexible connections

be used, inasmuch as they constitute springs in series with the actual intended springs

employed; thus, the system from tieback to aircraft represents a much softer spring

than intended. It should also be noted that, on some aircraft, attaching the spring to

the aft portion of the fuselage would be an error, since the aft portion of the fuselage

would constitute a relatively flexible structure and alter the effective spring constant.

Serious errors can also result when knowledge of the center-of-gravity location is

inaccurate and when the line of action of the spring from the attach point to the air-

craft is not perpendicular to the plane formed by the axis of rotation and the roint of

spring att%chment on the aircraft (Fig.13).

Gcnerally, the inertia characteristics are determined for no-fuel conditions because
.,

	

	
fue.i sloshing tends to bring in a beat action in the oscillatory motions. When dot^

mination is attempted with fuel onboard, the difference in oscillatory modes between

the slashing fuel and the aircraft should be as large as is practical, with due regard

to safety of the setup, to minimize the beat action and permit determination of the

natural frequency of oscillation of the aircraft.

Measuring the inertias of very large aircraft is difficult and is compounded with

flexible aircraft. Such measurements are not in the .calm of the methods discussed.

A unique facility designed to enhance the feasibility for determining the moments of

inertia of large aircraft about all three axes is located at the US Air Force Flight

Test Center, Edwards, California,, USA. Its capabilities cover a weight range from

30,000 to 300,000 lb and moments of inertia from 250,000 to 10 x 10 6 slug ft2.

The facility enables the determination of aircraft moments of inertia from measure-

ments of changes in pendulum characteristics resulting from the addition of an aircraft

to a freely oscillating platform. The ba,:;ic elements of the facility consist of the

platform, a control console for activating various systems which ready the platform

for oscillation, and an instrumentation console for regulating the amplitude and

measuring the period of the oscillations. The platform is an integral cruciform

structure 110 ft long and 80 ft wide, with its loading surface flash with the surround-

ing floor space. The apparatus employs special hydrostatic bearings (identical to

those used in the 200 in. Palomar telescope) to support the platform, which is lockable

in two axes with oscillation about the axis of interest.

To contend with the problem of aircraft flexibility, stiffening jacks are used to

support the aircraft structure. As a result of the stiffening operation, flexibility

effects are considered to be less than 4% in ;poll and 2% in pitch.

The experimental error in the methods discussed is of the order of ±5% or less.

4.3 Inclination of Principal Axis

The inclination of the principal axis of the a.;.rplare is one of the more difficult

quantities to determine experimentally. An error of 1/4 0 in the value of the inclina-

tion of the principal axis can significantly affect some of the derivatives. The

method of Reference 22 is considered accurate to 1/60.
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This method consists of finding the direction of the restoring-moment vector which

produces no rolling moment relative to the body x-axis during the yawing oscillations

of the airplane as a spring mass system while suspended by means of a cable attached

to a hoisting sling. Figure 15 shows schematically, and Figure 16 shows photogra-

phically, a general arrangement of the setup. The airplane is suspended at a horizontal

pitch attitude, and yaw restraint is provided by two sets of springs whose lines of

action lie in a common plane. The springs should provide a pure couple action. The

restoring-moment vector acts normal to the plane of the springs. The springs may be

attached to short, rigid mounting brackets located below the wings equidistant from the

plane of symmetry or to brackets mounted below the fuselage ahead of and behind the

center of gravity. In this respect, the wing mounting arrangement is most convenient

and less time-consuming. It is essential that the springs provide a pure couple action.

As the airplane oscillates in yaw with various inclinations of the plane of the

spring couple (angle Ssp in Figure 15), some coupling is present between yaw N an'

roll L , which results in a certain amount of rolling oscillation. This is shown in

the following equations where the subscript r denotes the reference attitude of the

airplane:

Ixrzr -° Ixrzrrr = L	 (88)

Izrrr — Ixrzrrr = N	 (89)

At some one value of Ssp , however, the rolling motion accompanying the yawing motion

is zero (!pl/lrl = 0) . In this situation the preceding equations reduce to

— I xrzr rr - L
(90)

I zr r r	 = N .

However, as shown in Figure 15,

—L
tan S.P =

	

	 (91)
N

Hence

tan Fsp = Ixrzr	 (92)
IZr

Inasmuch as the inclination of the principal axis is given by the wellknown expression

tan 2E -	 Ixrzr	 (93)
Izr — Ixr

substitution of Equation (92) fori XZr in Equation (93) gives

2T z tan bs P
tan 2t = -	 r	 (94)

Iz r — Ixr

9 a
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The value of Iz r is determined as a byproduct of the test by using

C cos sp
I Zr =	 r, 
	 (95)

However, Ix r must be determined from other tests.

Figure 17 shows a typical

for determining the value of

points shown in the figure,

airplane were used to obtain

transient osc ? lations.

experimental plot of the variation of Jpj/irj with 8sp

a sp at which 1pl /lrl is zero. In obtaining the tests

the flight test roll- and yaw-rate gyros mounted in the

oscillograph records for determining jpj/jrj from the

The measured values of moments of inert-'a relative to the reference axes and the

determined inclination of the principal axes may be used to determine the principal

moments of inertias, Ix o and I ZO , by using the following equations

Ix o = Ixr – Ix r z r tan E
	

(96)

? ZO = Iz r + Ixrzr tan E .	 (97)

Although no mention was made of the effects of air mass on the experimental values

of moments of inertia, the effects should be considered and corrections applied if

necessary. Reference 23 provides formulas to correct for air-mass effects.

Formulas for transferring moments of inertia from one set of axes to another were

presented in Section 3.1.

5. INSTRUMENTATION

Basic to an analysis of flight data is the instrumentation. Considerable instrumen-

tation research has been in progress and many flight test instruments have been deve-

loped to improve the linearity of response, resolution, dynamic response characteristics,

readability, ruv.—,'.mess, and reliability of calibrations over varying operating con-

ditions and oxt,-nded periods of time. In addition, the application of the instruments
require, R,Ijwledge of mounting accuracy, sources of error in the flight records, and

methods of correcting the errors. Inadequate appreciation of the instrument character-

istJ-?Lcf,, mounting accuracy, and possible influence of sources of error serves as a

detriment to the successful application of new techniques of analysis as well as a

detriment to the analysis by approximate methods.

In the following discussion, sufficient guidelines are presented to show the care

required in the selection, installation, and calibration of instruments to minimize

errors in the analysis of flight data. Individual instruments may differ from one

organization to another and the degree of sophistication in instruments and recorders

will vary with the individual investigation; however, the principals of operation of

the sensors are generally the same.

s..
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5. 1 (Hach Number, Altitude,  and Dyns m i c Pressure

Accurate determination of Mach number is of fundamental importance in flight testing

high-speed aircraft. The principal methods, discussed in detail in References 24 and

25, are haled upon the following relationship for subsonic conditions (M < 1.0)

//(
 v-

Q -	 1- Y 

_ 
1 M 2
	

- 1	 - (1 + 0. 2M) 1/ 2 - 1	 (98)

p	 ^	 2

For supersonic conditions (M > 1.0), the equation is modified to include the loss in

total pressure behind the shock wave

y + 1	 1/('Y -1)

— M2
2	 5/ 2QC _ y + 1 

M2
	 2	 --	

- 1 = 1.2M2 ^
5.76M 	 1	 (99)

M2
A	 2	 2-/	 -1	 5.6M 2- 0.8

y +1	 y+1

The impact pressure q  and the static pressure p are measured by using a pitot-
static head and pressure; recorders. The maximum Mach number as well as dynamic

pressure which can be determined by using pitot-static heads is of the order of 3.5.

Higher speeds are primarily dependent upon inertial platforms and radar. Dynamic

pressures at Mach numbers is the approximate range of 2.5 to 8.0 can be determined

through the use of a spherical flow-direction sensor and a total- (stagnation) pressure

technique.

5.1.1 Pi tot-Static Head (M < 3.5)

Much research has been done on various types and configurations of total-pressure

heads to reduce angularity effects 26,27. The type shown in Figure 18 is used widely.

This head has an external cylindrical shape, a cylindrical chamber, and a lo o slant
profile. It is insensitive (zero error) to angle-of-attack from -5 0 to 200 and up to

100 of sideslip. The error is less than 1% in the angle-of-attack range from -10 0 to

250 and ±100 sideslip.

The arrangement of the static-pressur, orifices on the head has been found to be

pertinent in increasing the range of insensitivity of the orifices to flow angularities.

The arrangement used has been determined from tests of orifice configurations2e,29.

The two identical sets or arrangements shown in Figure 18 are each circumferential,

with four orifices on the top, six on the bottom, and one on the bottom centerline

behind the others, The two sets of static-pressure orifices are used to provide for

separate pressure systems. One set of static orifices is used for the pilot's

instruments, the other set for flight test recording instruments to minimize the time

lag of response that would be encountered with a common system. The arrangement of

the orifices in each set provides an increased range of insensitivity to angle-of-

attack; however, it is not as insensitive to sideslip. Large static-pressure errors

are encountered at sideslip angles greater than 3 0 . Since constant sideslip angles

are seldom encountered, the static-pressure data can be readily faired.
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Installation of the pitot-static head: Installation of the pitot-static head requires
consideration of the complicated flow field of the airplane, which is a function of the

airplane configuration as well as Mach number and attitude. Errors in pitot-static-

head readings resulting from this flow field are referred to as position errors. The

static-pressure orifices are particularly affected by position errors at subsonic

speeds; thus, precautions are taken to mount the pitot-static head as far ahead of the

airplane as is practical.

Of the various types of installations of the pitot-static head — such as nose boom,

wing boom, and fuselage — the nose-boom installation is the most suitable for minimizing

position errors. In this installation, shown in Figure 19, the head is mounted on a

boom extending as far ahead of the nose of the airplane as is practical. As reported

in Reference 29, the amount of error in Mach number due to position error in the static-

pressury measurements can be related to certain physical measurements on the airplane.

This is shown in Figures 20 and 21, which are reproduced from Reference 30. In Figure
20, the error in Mach number due to static-pressure error is plotted as a ratio of

boom length to the maximum effective fuselage diameter for subsonic, transonic, and

supersonic speeds. In Figure 21, the variation in Mach number error with Mach number

is plotted for two airplanes having boom-length-to-fuselage-diameter ratios of 0.60

and 0.95. Above a Mach number of 1.05, the position error drops to zero. The Mach

number at which the position error drops to zero is dependent upon the nose-boom

geometry and is the Mach number at which the shock wave ahead o f the airplane crosses

over the static-pressure orifices.

Wing-boom installations of the pitot-static head are subject to several disadvantages,

including possible susceptibility to the shock wave caused by the wing as well as the

shock wave caused by the fuselage. This complicates the calibration and makes it more

difficult for the pilot to fly at the desired Mach number in the regions where the

shock waves are in the vicinity of the orifices. Wing buoms are usually more sensitive

to sideslip and subject to more lag in response because of the longer tubing required.

Fuselage installations of the head are subject to position errors, which are diffi-

cult to estimate.

Calibration: Calibration of the pitot-static head, fortunately, involves only the

determination of the position error for the static pressure — the total pressure is

not affected by position error. Various methods that have been used include the pacer

method, the fly-by (tower-pass) method, and modifications of the basic radar-photo-

theodolite method 24 . The pacer method requires the use of a pacer airplane with a

calibrated system and special flights for calibration purposes. The fly-by method

requires lg flight at extremely low altitudes past an instrumented course. This

latter method not only requires special flights, but is hazardous and limited to

Mach numbers of about 0.8.

The radar-phototheodolite method has the advantage of providing calibration data

during routine research flights. The method makes use of a radiosonde unit to measure

static-pressure and temperature variations of the atmosphere with altitude. It also

requires ground equipment consisting of a radar unit, a phototheodolite, a chronograph,

and three cameras. One of the cameras photographs the radar scope and gives the slalt

range; the target camera gives the correction to the elevation scales; and the third

camera gives the elevation scale. The airplane itself is equipped with a radar beacon

i
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to assist in tracking. The three cameras and the airplane's internal records are

synchronized by means of the chronograph. The radar-phototheodolite unit determines

the range any elevation angle of the airplane from which the true geometric altitude

of the airplane is determined (within ±100 ft) as a function of time.

A cross plot of the radar-phototheodolite data (airplane altitude vs. time) with the

radiosonde results (free-stream static pressure vs, altitude) provides a plot of true

free-stream static pressure as a functioi, of time. Since the time base of the air-

plane's indicated static-pressure records is synchronized with the radar-phototheodolite,

a comparison of the airplane's indicated static-pressure records with the cross plot

provides the position error, '^p , of the static head. The corrected static pressure

	

may now be obtained from the relation p = p i + AF	 The true impact pressure is now

determined from q c - p T - p = q ci - Lip

True Mach number: True Mach number is determined from tables of qc /p as functions

of Mach number based on Equations (98) and (99). The indicated Mach number, M i , as

determined from p i , qci , and the tables, is plotted against the corrected Mach number,

M , to provide a calibration curve, such as shown in Figure 22, for the pitot-static-

head installation on the airplane. Generally, calibration data points for four or

five flights are used before the calibration curve is finalized. The scatter, AM
in calibration points is usually within ±0.01 at subsonic and supersonic speeds and

within ±0.02 at transonic speeds.

Pressure altitude: Altitude is generally expressed in terms of "pressure altitude",

which is the altitude in the standard atmosphere tables corresponding to the corrected

static pressure. The corrections for a given pitot-static pressure system are obtained

in the form pig vs. M . The curve for this relationship is derived from the Mach

number calibration of the system and the position error for the static pressure deter-

mined as a ratio of the true static pressure by the following equations from Reference

25:

When M < 1.0 ,

	

^P	 - 1.4M2 ^M
-	 (100)

	

P	 ]. + 0. 2M 2 M

When M > 1.0 ,

4.0 	
2(101)

p ,j5.. 	2 - 0.8	 M

In routine tests, the pressure ratio p i /`p is divided by T i to obtain p , which

is used to determine the pressure altitude.

Dynamic pressure: The dynamic pressure, q , is determined from the simple relation

q = 0.7pM 2
	

(102)
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5.1.2 Use of Spherical Flow-Direction Sensor to
Obtain Dynamic Pressure

In the absence of true Mach number, such as when flight is beyond the practical

limit of the pitot-static tube (M _- 3.5), a technique has been evolved to obtain the

dynamic pressure, in the higher supersonic and hypersonic regions, directly from the

total-pressure port of a spherical flow-direction sensor 31 . The flow-direction sensor,
described in more detail in Section 5.3, is a movable sphere mounted at the nose of

the airplane to form a "ball nose". The total-pressure port vectors into the resultant

velocity at the sensor.

Inasmuch as q = 0,7 pM 2 and, from the Rayleigh pitot formula,

p
f(M)

Pr

where

f(M) _	
(y + 1)M 2	y	 1	

(103)

the dynamic pressure can be expressed as

q = 0.7p[f(M)]pT	(104)

q
or	 = F(M)	 (105)

PT

A plot of q/p T versus M (Fig.23(a)) shows that this ratio varies only about 5% in the
Mach range above 2.5. As a result of this small variation in q/p T at the higher Mach
numbers, it was suggested that an "indicated" dynamic pressure, q i , could be expressed
as

qi = KpT	(106)

Figure 23(b) shows the ratio of indicated to true dynamic pressure, 4 i/—q , for two

values of K . Using K = 0.526 , q is 5% high at M = 2.1 and 2.5% low at M = 7

5.1.3 Pressure-Recording Instruments

Selection of the pressure-recording instruments and their ranges for a given instal-

lation depends on the altitude and Mach number range over which a specified attainable

Mach number accuracy is desired. When tests are to be conducted at one altitude, it

is no problem to select a pressure-recording instrument to provide the requisite

accuracy. For tests conducted over a large range of altitudes, the requisite accuracy

may be attained by using a combination of limited-range instruments. Considerations of

the pressure time lag require that the instrument volume remain as small as possible,

thus necessitating an evaluation of instrument accuracy with consideration for the

errors caused by the added time lag of multiple-instrument installation.
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The lag in response at the recorder servo or pilot display, as the case may be, can

be calculated from the following formula (from Reference 32), which takes into account

the sense line, instrument; volume, and pressure

128/j,01(V01)	
(107)

TrpDU

where

X = lag in response, sec

kt o = viscosity of the fluid, lb sec/in -2

l = length of sense line, in

Vol = instrument volume, in -3

F = mean pressure in sense line, lb/in2

D = diameter of sense line, in .

Several ranges of instruments are available for both the static-pressure and total-

pressure recorders. For the static-pressure recorders, the lower-range instruments

require temperature calibration. Hysteresis and friction errors, and temperature

errors, should be within t1/2% of range or :wetter.

5.2 Control Position Transmitters

Control position transmitters, commonly referred to as CPT

surface deflections anu must be accurate and sensitive enough

deflections. Transmitters of the sliding contactor type chant

in two arms of a Wheatstone bridge circuit. Any variation in

arms unbalances the circuit and causes current to flow to the

(see Figure 24).

units, sense the coiitrol-

to measure small

;e the ratio of resistance

the resistance of the

recording galvanometer

In a properly installed system, the phase lag between the transmitter and the re-

corder should be negligible. The errors due to hysteresis, zero shift, temperature,

accelerations, or vibrations should also be negligible.

The transmitters are firmly mounted at the control surfaces to eliminate the effect

of control-system deformations. The spanwise location of the transmitter gives an

approximate spanwise surface deflection.

Zero checks are made before and after each flight to detect any zero shift in the

galvanometer recording system.

5.3 Angle-of-Attack and Sideslip

5.3.1 Vane-Type P l ow-Direct ion Sensors

Of the various types of flow-direction devices for sensing angle of attack and

sideslip up to a Mach number of approximately 3.0, good accuracy and reliability is
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obtained with a counterbalanced, freely turning vane mounted on a nose boom, which

also serves as a mount for the pitot-static head (Fig.19). Each vane is directly

connected to a synchro transmitter within the boom, which is electrically connected

to a synchro receiver mounted in a recorder located within the airplane. It should

be noted that, although the a-vane measures the aerodynamic a , the P -vane measures

a P referenced to the body axis system of the airplane.

Inherent accuracy: Hysteresis in the system is practically nil. Friction introduces

an error of less than t0. l o . In an optical recorder system, the unbalance of a balanced

optical recorder element may cause a trace deflection equivalent to 0.05 0 per g of

acceleration. Temperature has no direct effect on sensitivity. Natural frequency and

damping of the system should be of the order to 10 c/s and 0.65, respectively, to pro-

vide flat response to within tl% for sinusoidal inputs up to 6 c/s,

Mounting: The angle-of-attack and angle -of -sideslip vanes are mounted on a nose boom

extending forward as far as possible to minimize the effects of upwash and shock wave.

In this respect, vanes are mounted 1'/z maximum fuselage diameters ahead of the airplane

when feasible. Figure 25, reproduced from Reference 30, shows the theoretical effects

of upwash from the nose boom and fuselage at low speeds. Wing upwash was not considered.

The boom and its mount should be sufficiently stiff to minimize deflections due to

inertia and air loads. Particular care must be taken to aline the longitudinal axis

of the boom with the longitudinal body axis of the airplane and the vane struts to the

boom so that the angle-of-attack and angle-of-sideslip vane struts are parallel to the

body y and z axes, respectively. The rear vane is for sideslip and projects verti-

cally downward. The recorder is mounted in any convenient location.

Field checks: The final calibration of a transmitter-recorder combination is made in

place on the airplane with the aid of a calibration fixture that provides an eccurate

alinement of the vane with the boom and the zero of the calibration quadrant. Calibrations

should be made in increments of about 2 0 to detect nonlinearities. Calibration should

be performed both before and after flight.

The vanes should be given periodic checks for alinement with their pivotal shafts

and for friction. An extension of the chordlne of the vane should be within 0.005 in.

of alinement with the center of the shaft.

Correction of recorded data: The angle-of-attack and angle-of-sideslip vanes measure

local flow direction. The effects of boom bending due to inertia and air loads, flow

components resulting from angular velocities, flight-path curvature, and upwash due to

the boom, fuselage, and wings introduce errors in the measured flow angles with respect

to the true airplane angle-of-attack or sideslip. In addition, phase lag and dynamic

amplification of the sensing-recording system introduce additional errors in the re-

cording of the vane indications. The magnitude of each effect must be investigated

and corrections made to the recorded data wherever pertinent to the analysis for deter-

mination of derivatives.

Sending of Lae boom results in errors in vane indications, inasmuch as the vane is

referenced to the axis of the boom. As pointed out in Reference 30, deflections due to

aerodynamic loading have been negligible; however, where very long booms are used or

extremely long, flexible fuselages are being dealt with, bending corrections may be
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dete.^,iined from calculated aerodynamic loadir,, 31	Boom-bending error resulting from

inertia loads is acc, ted for through static deflection calibration of the boom.

Upwash error resulting from the boom, fuselage, and wing is generally considered

negligible and within the accuracy of the methods of analysis employed. This may not

necessarily be true. In a boom-vane installation on a large bomber where the vane was

one fuselage diameter ehead of the nose, the upwash error in angle-of-attack at sub-

sonic speeds was of the order of 4%. On other large aircraft having fuselages of

larger cross section, the influence was much larger. Upwash error due to the boom

itself may be measured by wind-tunnel calibration of the system 2e,34 . The effect of

upwash at subsonic speeds at the vane due to the fuselage can be calculated by the

method of Reference 35. The effect of upwash at subsonic speeds due to the wing can

be calculated by the equations in Reference 36 for unswept wings and the methods of

Reference 37 for swept wings. At supersonic speeds, the wing and fuselage do not

contribute any upwash effects to the vane.

The angle-of-attack sensor is also subject to pitch-rate effects of flight-path

curvature. Corrections for flight-path curvature (Fig.26) may be significant at sub-

sonic speeds; whereas, pitch-rate corrections may be significant from the subsonic

through the low supersonic speed range. Corrections for flight-path curvature affect

magnitude primarily; whereas, corrections for pitch rate affect phase angle primarily.

This is illustrated in Figure 27, which shows the graphical time-vector determination

of the absolute amplitude of the corrected angle of attack as a ratio of the indicated

amplitude for an aircraft performing small-perturbation, free-oscillation maneuvers at

a Mach number of 0.8 at 40,000 ft. The presentation considers only corrections for

flight-path curvature and pitch-rate affects and is based on the equation

x g /	 x
a	 ai	 V2 ^an — cos P cos	 + V q	 (108)

The solution shows the influence of the flight-path curvature to be of the order of 3 %.

Flight-path curvature in yaw has a negligible effect on the sideslip vane. Correction

for yaw-rate and roll-rate effects should be considered. The approximate expression for

correcting the indicated sideslip for angular-rate effects is

81 — 
x 
V r + V p	 (109)

5.3.2 Spherical llypersonic Flow-Direction Sensor

The spherical flow-direction sensor shown in Figure 28 was designed to replace the

a and 8 vane-type sensors at the higher supersonic Mach numbers and dynamic pressure

where the combined temperature and aerodynamic loads exceed the limitations of the vane-

type sensor 38 . The spherical sensor is a null-seeking, hydraulically operated, electro-

nically controlled servo-mechanism. It has pressure measurements as its sole sensing

inputs. It operates on the principle that when two static ports are located on the

great circle of a sphere, a null reading will result when the bisector of the included

angle of the two static ports is parallel to the fluid stream immediately In front of

the sensor. The rotation of the bisecting line relative to a reference gives the

inclination of the fluid stream relative to the reference.
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When the spherical sensor is in the zero position (axis alined with the airplane),

the a-ports are 42 0 above and below the reference line in the vertical plane of symmetry

of the aircraft and the .`-ports are 42 0 on either side of the reference line in the

transverse plane.

The sphere constitutes the outer gimbal of a two-gimbal pi'vot system in which the

outer gimbal is pivoted to the inner gimbal whose pivotal axis is fixed ^ , nd is normal

to the plane of symmetry of the airplane. As the sensing sphere seeks null readings

in each of its two sets of static-pressure ports, the gimbals rotate about their res-,

pective axes. The inner gimbal, rotating about its fixed axis, which is normal to the

plane of symmetry, sweeps an angle a in the plane of symmetry. The outer gimbal,

whose pivotal axis is mounted on the inner gimbal and remains in the plane of symmetry

at all times, sweeps an angle /1 in a plane which is perpendicular to the plane of

symmetry; this plane is the transverse plane of the stability axis system of the

aircraft. The a and '^ angles picked off by synchros are the aerodynamic a and

P angles of the airplane.

The inherent accuracy of the spherical sensor is of the order of t0.5 0 or better
..

	

	
for dynamic pressures in excess of 20 lb/ ft 2 . At high angles of attack in excess of

approximately 26 0 at low dynamic pressures of about 40 lb/ft 2 and less, the a indica-

tions are subject to large errors, possibly due to flow interference of the lip on the

collar of the housing.

5.4 Angular Velocities and Accelerations

The angular velocity and angular - , cceleration relative to any one, axis can be sensed

by individual sensors or sensed and recorded in a convenient packaged unit. Figures

39(a) and 39(b) show the details of the angular-velocity aspect of a NACA designed,

packaged unit which includes the recorder. The angular acceleration sensing and re-

cording involves a relatively small extension of this unit. The operation of the unit

depends upon the precessional force of a restrained gyro motor when the unit is sub-

jected to an angular rate about an axis which is ; perpendicular to both the axis of

rotation of the gyro motor and the axis of rotation of the gimbal rings. The gyro-

scopic element is the rotor of a synchronous motor. The sensitii-, element is res-

trained by a precision helical spring. The moving system is damped by rotating an

aluminium disk in the field of a strong permanent magnet. The angular-velocity measure-

ment is made by optically recording on the film the angular displacement of the gimbal.

Sensitivity of the angular-velocity recorder can be adjusted by rotating the actuator

arm along the mirror staff tail.

Angular acceleration is obtained by differentiating the gimbal motion. The differ-

entiation is accomplished by mounting a coil in a magnetic field and driving it from

the damping shaft so that it rotates with speed proportional to the angular velocity

of the gimbal. The output voltage, which is proportional to the angular acceleration,

is recorded on the film by a self-contained reflecting galvanometer.

5.4.1 Inherent Accuracy

In weal-designed angular-velocity systems, the reading accuracy is of the order of

0.5% of full scale or better; the errors due to friction and hysteresis are less than

1% of full scale, and the change in sensitivity from large changes in temperature should
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be as small as possible. Errors due to linear accelerations of 5g should be less

than loo. The sensor should provide flat response characteristics within t1% for all

anticipated impressed frequencies. The pha!ia lag (time lag) is a function of damping

ratio and undamped natural frequency of the sensor.

Recorded angular accelerations are subject to the errors found in the angular-

velocity record. In the NACA acceleration-velocity packaged unit, additional errors

are introduced by the acceleration recording galvanometer; inasmuch as the angular-

acceleration pickup is a differentiation device, the response and phase lag of the

accelerometer and velocity portions of the unit are similar.

5. 11. 2 ,Mounting and Correct ions

It is important that the instrument mounting be rigid. Although small-amplitude,

high-frequency vibrations may not be apparent on the velo c ity trace, the vibrations

can introduce considerable noise in the acceleration trace.

Angular-velocity gyros are sub,+,ect to coupling errors caused by an interference

(airplane) angular velocity about the spin axis of the gyro rotor. Care should be

exercised in orienting the instrument during mounting so as to subject its spin axis

to the minimum interference angular velocity. A mathematical study of the coupling

error is presented in Reference 39. The interference angular velocity (also known

as the q rate) affects the sensitivity of the instrument, the undamped natural fre-

quency, and the damping ratio. The extent of the errors is a function of the gimbal

tilt, which, itself, is a function of the gyro sensitivity in spri,,g-restrained in-

struments and the magnitude of the interference angular velocit y . This is illustrated

in Figure 40 for an angular-velocity unit having a static sensitivity of 0.256 radian

per radian per second. A decrease in sensitivity would reduca the coupling error;

however, a decrease is not always desirable. To minimize the coupling error for any

one instrument, the axes should be oriente^ as follows:

Desired Input Spin Output

Velocity Axis Axis Axis

yRoll rate,	 p x z

Pitch rate,	 q y z x

Yaw rate,	 r z y x

Alinement of the sensing-recording units should be within t0.2 0 of correct orientation

with relation to the body axes. Undetected misalinement has been known to result in

erroneous values of highly pertinent derivatives, which resulted in misleading results

in analog-simulated rolling characteristics. In any correction for misalinement, it

is pertinent that the recorded values be correc 47?d for phase lag of the instrument prior

to insertion in the correction equations. Simuitaneously, the response of the instru-

ment should be checked, if there is any appreciable deviation from the damping ratio

of 0.65, to ascertain the percentage error in magnitude of the indicated quantity due

to the dynamics of the instrument. Misalinements in the mounting of -the unit may be

accounted for by using the equations shown in Figure 31.
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5.5 Linear Accelerations

In general, flight testing is done with the beam-type linear accelvromet-rs which

are available as single-component or three-component units. Draj- determination is

frequently made with single-component units 30 . The beam-motion restraining force is

generally supplied by a pair of opposed helical springs. The sensitivity and undamped

natural frequency are dependent upon the springs used„

5.5. 1 Inherent  Accuracy

In properly designed beam-type linear accelerometers, sensitivity and zero changes

from random causes are less than 0.5% of full scale. The sensor should have a damping

ratio of 0.65 and a sufficiently high undamped natural frequency to provide flat res-

ponse characteristics within tl% for impressed frequencies up to 60% of the undamped

natural frequency of the sensor. Each linear accelerometer is affected by an inter-

acting acceleration acting along the beam. The effect is generally small but should

not be arbitrarily ignored.

5.5.2 Mounting and Corrections

The instrument should be mounted as close to the center of gravity of the airplane

as possible. It should be rigidly fastened on a rigid mounting attached to the primary

structure of the airplane to avoid or at least minimize extraneous vibratory accelera-

tions. It should be alined to within t0.2" of correct orientation with relation to

all three reference axes. When the instrument is not mounted at the center of gravity

of the airplane, corrections of the indicated readings to the center of gravity must

be made by using the expressions shown in Figure 32. The equations for normal accelera-

tion, an , and transverse acceleration, a t , can be linearized and corrections thus

simplified by mounting the acceleroniL.,ers in the plane of symmetry along the x-axis.

5.6 Phase Lag and Response

Since several individually recorded quantities are utilized in the determination of

various derivatives, it is important that the phase-lag (time-lag) charact?ristics of

each recording instrument be taken into conFi,deration. For systems where all the

quantities can be recorded on electrical galvanometers, it is generally possible to

equalize the individual phase lags by proper choice of the frequency response of the

recording system. Where this is not possible, as in the use of certain of the self-

recording NASA inz^­ truments, phase-lag corrections must be considered and applied to
bring all pertinent quantities into correct time relationship.

Phase-lag corrections must be applied before making any corrections for misalinement.

Corrections for misalinement must be made before correcting the vane and linear-accelero-

meter records to the center of gravity of the airplane.

Besause of the nature of the control inputs, phase-lag corrections can be applied

simply by shifting the data time scale 40 , as in the determination of control derivatives,

or by correcting phase-angle relationships, as in the time-vector method of analysis.

This is accomplished by determining the undamped natural frequency of the airplane

from free-oscillation maneuvers and Figure 33. Amplitude corrections are not require;41,

since the instruments have flat response characteristics.
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When the instruments are not sufficiently damped to provide, flat response character-

istics, corrections to the magnitudes of the recorded quantities may be determined

from Figure 34.

5.7 Ranges and Sensitivity

Instruments used for studies of general handling qualities have relatively low

sensitivities in order to accommodate the normal flight range and are used for approxi-

mate evaluation of derivatives in conjunction with these studies. For accurate evalua-

tion of the derivatives, using small disturbance maneuvers, sensitive gyros and accelero-

meters are installed to supplement or replace those used for the handling-qualities

studies. The ranges and sensitivities of the instruments are usually selected after

studying flight test records of small-perturbation maneuvers performed over a Mach

number range during pilot familiarization flights when the airplane is equipped with

general-purpose flight test instruments. The increase in sensitivity of any one in-

strument must be accomplished with discretion, inasmuch q.s ar,. optimum sensitivity is
attained beyond which any increase may result simply in a false sense of accuracy.

Table VII shows the characteristics of instruments which are desirable for derivative

investigations for one high-performance airplane when the pulsed free-oscillation

maneuver is employed. The listed instrument natural frequencies are more than adequate

to maintain flat response characteristics during forced portions of the maneuver up to

the anticipated maximum frequencies for all recorded quantities.

5.8 Pulse Code Modulation (PCM) Data-Acquisition Systems

In the preceding considerations of instrumentation, emphasis was placed on factors

that affect the accuracy of individual sensors. Self-contained sensor-recorded units

are compact, reliable, and accurate. The use of sensors wired to remote recorders

can introduce degradation in the accuracy of the ovirall sensor-recorder system; how-

ever, such systems are used to keep the instrumentation volume to a minimum where

space is a prime factor and a large number of parameters are involved. As the number

of sensed and recorded parameters increases, the time lag in the recovery of the data

for the user increases. In flight test investigations where the bulk of the instru-

ment7tion is a serious problem or where the number of parameters recorded may constitute

a serious time lag in the recovery of the data for the user, a sophisticates' data-

acquisition system is available to alleviate these problems. This system. riginated

to fulfill the needs of the space industry, in whieb transducers of superior quality

are used, is capable of handling the data to reasonable accuracy (0.2% to 1%). The

system, referred to as the PCM system, converts the analog signal from the sensor to

digital format and records the digitized data on tape on a time-sharing basis.

Figure 35(a) show- a schematic drawing of an airborne PCM system. The analog signals

from the sensors go to a PCM encoder to convert the signal to an identification coded,

digitized format. The coded, digitized signals are then recorded in parallel on n

onboard tape recorder on a time-sharing basis. To recover the data, the taped signals

are processed through a PCM decommutation, which ide7ntifies (unscrambles) the individual

sensor signals, to a format computer to provide rca3-tr.,ne data outputs in the form of

strip charts or oscillograph readouts for an immediate look at the data. The real-time

data are also transmitted to a general-purpose computer which tabulates, plots, or

performs complex manipulation of the data in engineering units.
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Where weight is a serious factor, Figure 35(b) shows a schematic drawing of the

PCM system using telemetry. The main differences between the telemetered and airborne

PCM systems involves the transmission of the coded, digitized signals in series to the

decommutator (instead of parallel to the recorder), which provides time synchronization

of the signals before the signals are taped. In processing the data, the format com-

puter properly identifies the individual data channels for real-time data output.

As stated earlier, the PCM system is a sophisticated operation. One installation at

the NASA Flight Research Center, Edwards, California, is designed to handle 15,400 data

samples per second from 77 to a maximum of 800 data sources.

6. FLIGHT TEST TECHNIQUES

Determination of the flight test techniques to be used in obtaining stability and

control derivatives from flight data is governed by a number of factors, includi.ig the

methods of analysis to be employed. Successful mathematical methods of analysis have

'-peen limited to the linearized form of the equations of motion and thus restrict the

maneuvers to small perturbations. Inasmuch as stability derivatives are functions of

angle of attack and Mach number and, to some extent, aeroelasticity of the airframe,

the controlled variables are Mach number, load factor, and pressure altitude. For

safety of flight, the investigation of the stability and control characteristics is

usually initiated with a gradual buildup of maneuvers at high altitude where the

natural frequency and damping of the airplane are lower than at low altitudes and

thus permit better control. It is desirable, whon feasible, to have the maneuvers

performed with the airplane weight within such limits over the derivative-determination

phase of the flight test program that the effects of changes in center-of-gravity

position and moments of inertia will be negligible.

The important factors to be considered in flight testing for stability and control

derivatives are discussed in the following sections.

6.1 Mach Number and Altitude

Flight test maneuvers are generally performed at lg initial conditions at constant

Mach number and altitude. Normally, some variations in these quantities are accepted

if the resultant change in dynamic pressure is not more than 5% over that portion of

the maneuver encompassed in the analysis. In regions where large Mach number effects

exist (Fig.36), tests should be conducted at close Mach number intervals with more

rigid requirements at constant Mach number and altitude. Failure to trim the aircraft

to the desired Mach number and to maintain that Mach number during the maneuver in

regions of rapidly varying characteristics may produce a scatter of data and an

erroneous analysis.

The very nature of flight testing requires, for expediency, plotting the results

of analysis as a function of Mach number, with each curve representing a constant-

altitude condition. Figure 37, taken from Reference 41, shows the influence of

altitude on flight test data on one supersonic aircraft.
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6.2 Angle of Attack and Load Factor

The variation in airplane characteristics with angle of attack is determined by

performing maneuvers at different altitudes with lg trim conditions prevailing prior

to the perturbation, or at constant altitude with the maneuver performed during a

stabilized constant-g pushover or turn. It should be noted that it is difficult to

obtain good maneuvers during stabilized turns; exceptional piloting skill is required.

Figures 37 and 38 show the influence of load factor on stability characteristics. In

instances where the aeroelasticity of the structure is nil (dynamic pressure effects

are nil), a combination, of the two techniques will result in the determination of the

variation of the derivatives over an extended range of angle of attack. Should aero-

elasticity of the structure be a. factor to contend with, the results from the two

techniques will differ for the same angle of attack, Mach number, and center of gravity..

6.3 Aeroelasticity

Aeroelastic deformation of the structure assumes increasing significance as the

aircraft increases in size and slenderness and operates at increasing dynamic pressures.

It

	

	 Supersonic transport designs are flexible in order to keep the structural weight down,

the paylo«d high, and the range capability a maximum. To apply theoretical flexibility

corrections to rigid wind-tunnel data for comparisons with flight data provides an

intuitive basis in ascertaining flexibility effects. When such comparisons are em-

Ployed and a definite disagreement is evident in the comparison in regard to level and

trends of the stability and control parameters as a function of Mach number, it may

become difficult to locate the source of the discrepancy — wind-tunnel data or predicted

flexibility correcr,ions. Thus, a more positive approach is required to assess flexibi-

lity effects.

The stability and control derivatives should be essentially invariant for a rigid

airplane as long as Mach number, angle-of-attack, and the center of gravity are constant

(assuming Reynolds number effects to be a minor factor). Thus, any direct approach to

investigating flexibility effects based on flight data should show the variation of

the stability parameters — obtained at the same Mach number, angle-of-attack, and center

of gravity — as a function of dynamic pressure. Although Mach number and center-of-

gravity control is straightforward, the angle-of-attack is a problem.

k	 The location of the angle-of-attack sensor exposes the sensor to errors resulting

j

	

	 from structural deformations, in addition to the other sources discussed in Section 5.3.

Hence, it is more judicious to use the life coefficient CL in lieu of angle-of-attack

a .	 Thus, from a practical point of view, a direct investigation of aeroelastic

id	
effects should be based on a comparison of flight data for different dynamic-pressure

► 	 conditions obtained at the same Mach number, lift coefficient, and center of gravity.

An effective, flexible, and simple flight-planning procedure to determine the flight

test conditions as a function of weight and altitude to provide constant M , C L , and

center of gravity can be achieved by using a nomograph such as that in Figure 39. In

this nomograph W , M , CL , and q are variables, and center of gravity is constant.
The nomograph is based on the following two basic relations for lg flight:

W = CLgS
	

(110)

and	 q = 0.7pM 2 .
	 (111)
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It assumes the weight distribution, which could influence structural deformation, to

be essentially constant. Inasmuch as CL is a constant for any one Mach number con-

dition being investigated, the following expression is readily derived from the above

equations and constitutes the basis for the nomograph:

W 25
_	 .	 ( 112)

W 1 	 p1

The subscripts 1 and 2 denote the initial and compatible second condition. It will

be noticed that, for any one initial weight W 1 at altitude h l (as typified by

pressure F l ), the vehicle will have to be at a weight W 2 at altitude h 2 to maintain

the same CL at the selected constant Mach number.

To illustrate the use of the nomograph, consider an aircraft to have a weight of

411 x 10 3 lb at the time a stability maneuver was performed at Mach 2.34 at 55 x 10 3 ft.

These initial conditions, which have been spotted on Figure 39, show the dynamic pressure

to be 730 lb/ft 2 . If it is desired to perform the,next stability maneuver at

42 = 450 lb/ft 2 , the intersection of q 2 (450) and the constant Mach line (2.34)

determines the new altitude, h 2 , to be 65 x 10 3 ft. ThQ intersection of the constant-

altitude line with the constant M , S , center-of-gravit;r line extended from condition
1 determines the weight (W 2 = 252 x 10 lb) required to provide the same M and CL
at condition 2 as was present at the time of the stability maneuver at condition 1

(center-of-gravity being constant).

The nomograph is invaluable in systematic flight planning for determination of aero-

elastic effects. It permits on-the-spot changes in planned flight conditions. It also

accentuates the large changes in weight required to obtain significant changes in

dynamic pressure to assure aeroelastic flight data which will be outside the area of

experimental error of uncertainty.

6.4 Control Inputs

The method of analysis selected governs the control input. The magnitude and duration

of the input influence the magnitude of the perturbation. In the case of an aerodynamic

coefficient that is highly nonlinear with respect to an independent variable, different

magnitudes of the perturbation may result in different magnitudes of the derivative of

the coefficient in analyzing flight data. Thus, in comparing flight results with wind-

tunnel data, it is essential that the wind-tunnel value of the derivative be based not

only on the same trim condition but also on the same magnitude of perturbation as the

flight data.

Where nonlinearity of the coefficients is not a factor and, in lieu of increase of

instrument scale factor, larger perturbations of the Jn dependent variables are desired

to provide more accurate readability of the records, larger control inputs or complex

control inputs may be used. Figure 40 shows the increase in amplitudes of recorded

quantities resulting from a change in control input.

6.5 Maneuvers

Maneuvers performed for determination of stability and control derivatives from

flight data should be compatible with the requirements of the method of analysis to be
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employed. Current practical methods of analysis, whether they involve approximate

equations solving for individual derivatives or comprehensive techniques solving a

number of derivatives, have limitations in their utility; as a result, different types

of maneuvers are employed within the range of their .individual limitations to obtain

the derivatives. As a generality, it might be said that typical handling-quality

maneuvers are employed in the determination of derivatives wherein analytical techniques

are used. Included are longitudinal elevator-pulse maneuvers, pullups and push-overs,

pullups and releases, rudder-pulse and aileron-pulse maneuvers, constant-heading side-

slips, recovery from sideslip, and rudder-fixed rolls.

When flight maneuvers applicable to analytical technique for derivative determination

are not available or usable, the airplane response to random inputs is analyzed to give

limited stability data. This is accomplished effectively with the aid of an analog

computer, using a technique involving the matching of analog and flight time histories.

6.5.1 Puise Maneuvers

The simple pulse maneuver, shown in Figure 41 for a longitudinal perturbation, is

the current mainstay for derivative determination. Normally, for this maneuver the

airplane is trimmed at the desired angle-of-attack, altitude, and Mach number, and a

free oscillation is initiated by an abrupt pulse — an elevator pulse for longitudinal

oscillation, a rudder or aileron pulse for lateral-directional oscillations. The

resulting free-oscillation of the aircraft is allowed to damp out with the controls

held fixed at the initial trim setting. With an irreversible control system, this is

easily accomplished by releasing the controls. On tailless aircraft, even small in-

advertent control inputs during the free oscillation can significantly affect the

damping and, hence, the damping derivatives. Moderate inadvertent control inputs can

affect the period of oscillation, as well as the damping, and then influence the static

derivative results as well.

Free oscillations are also initiated by release of controls at the end of a side-

slip maneuver and at the end of pullup and push-over maneuvers.

In investigating the effects of angle of attack and load factor when utilizing the

pulse maneuver in an elevated g turn, the application of the pulse technique is

limited by the difficulty of performing a good maneuver. Difficulty has been exper-

ienced during the maneuver in holding the proper bank angle to maintain constant load

factor and Mach number. With a conventional control system, exceptional piloting

skill is required to maintain fixed control during the airplane oscillations at

elevated g . The use of the airplane damper as a device for applying a known deflec-

tion signal to excite 'he desired unaugmented oscillations (Fig.42) offers a means of

improving the quality of the data for elevated g conditions as well as lg conditions.

In well-performed pulse maneuvers and lightly damped oscillations, it is possible

to determire a 2-second period to within 0.02 second. Good accuracy in damping can be

measured for damping ratios less than 0.2. The accuracy of period and damping measure-

ments becomes rather poor for damping ratios greater than about 0.3.

. .1
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6.5.2 Constant -Heading Sideslip Maneuvers

In the absence of pertinent and applicable pulse-maneuver data or in an effort to

complement such data, the constant-heading sideslip maneuver can be used to determine

the weathercock and effective dihedral derivatives Cn 8 and ClQ , provided control-

effectiveness derivatives are available from other maneuvers.

Because of frequent loose usage of terminology, the expression "steady sideslip" is

us , :d when "constant-heading sideslip" is meant. Actually, a sideslip can be accom-

plished, as sho m in Figure 43, as a wings-level sideslip in which .yaw rate and, hence,

a changing heading is involved, as a constant-heading sideslip in which a constant

linear flight path is maintained (r =r = 0), or as a combination of these two varia-

tions of sideslipping maneuvers. The distinctions in the variation of the sideslip

maneuver affect the parameters involved in the analysis of the flight data and the

format of the equations employed.

It is difficult to perform the sideslip maneuver as a steadily increasing sideslip

at a constant heading without experiencing angular rate and acceleration transients.

A more successful approach to the maneuver is to increase the sideslip in increments

in order to damp out the angular rates at each increment before proceeding to the

next increment. Although this manner of accomplishing the maneuver involves more time,

it is justified by the refinement and resulting usable data.

6.5.3 Pullup and Push-Over Maneuver

This maneuver, or any one of its variations, is intended primarily for handling-

qualities investigations. However, the control-effectiveness parameter, Cms e , can

be mathematically determined from the initial phases of the maneuver. The maneuver

is useful also in determining the other longitudinal derivatives by analog-matching

techniques.

6.5.4 Recovery-From-Sideslip Maneuver

This maneuver has been valuable for determining lateral-directional derivatives by

the analog-matching technique. Good conditioning is achieved by first reducing rudder

input ^o half the value present at the end of a constant-heading sideslip and then

releasing it. This maneuver is considered in more detail in Section 7.8.4.

6.5.5 Elevated-g Turn Maneuver

The use of this maneuver in derivative determination was discussed in Section 6.5.1.

6.5.6 Roll Maneuver (Rudder-Fixed)

This maneuver lends itself to the determination of C1and Cls a	ever. though it

is primarily a handling-qualities maneuver. In its execution, the roll is initiated

by an abrupt aileron step input. The initial phase of the maneuver, up to maximum roll

rate, is the useful portion for derivative analysis. The initial phase involves neg-

ligible sideslip, an essential factor in its utility for derivative analysis.
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6.6 General Comments

The maneuvers discussed constitute those commonly used in mathematical analysis of

flight data for derivative determination wherein approximate expressions for deter-

mining individual derivatives or a more comprehensive technique, such as the graphical

time-vector method, is employed. Many of the approximate expressions and the time-

vector method are dependent upon control-fixed free-oscillation data which are not

usable when damping is high, thus leaving a vacuum for mathematical analysis of suitable

data. Least squaring of the equations of motion has not been too successful, inasmuch

as proper conditioning of the motions is difficult to establish and the requisite

accuracy of the recorded data appears to be lacking. In the absence of suitable mathe-

matical techniques, recourse is made to analog matching of higher clamped oscillations

and response to random inputs.

At times, it is desirable to perform maneuvers for power-off as well as power-on

conditions to investigate the influence of inflow effects of jet exhausts and possibly

other jet-exhaust effects. This may not be operationally feasible for jet engines.

Jet-exhaust effects of rocket-engine aircraft have been studied by performing free-

oscillation maneuvers just prior to and immediately following power cutoff. Only
n 1	

limited ranges of the records were usable for the power-off oscillations because of

the decelerations and changes in altitude.

The analysis of data of a complete flight program for the determination of stability

derivatives can be tedious and exacting. The number of computations necessary for an

effective analysis of the data makes it apparent that systematic procedures are helpful.

Tabulation forms, such as shown in Table VIII, that include many pertinent flight

quantities have proved to be helpful.

7. ANALYSIS OF FLIGHT DATA

Of the many methods proposed for determination of stability and control derivatives,

only a few are practical for a relatively rapid determination of the derivatives using

approximate equations. The limitations of these equations must be known in order to

avoid improper applications. Of the more comprehensive techniques of analysis proposed,

the graphical time-vector method appears to be the most practical and provides reliable

results within the limits of its applications. When analytical techniques are not

applicable, analog matching of flight data has proven to be a practical technique for

determining derivatives from flight data. In the following sections, the preceding

techniques are discussed at some length. Comments on other detailed methods are also

included.

Inasmuch as flight-test instrument: are referenced to the body-fixed axes, the

derivatives are considered with respect to these axes. Conversion of the derivatives

from the body to the stability system of axes, if required, is accomplished by the

equations listed in Section 2.2.

7.1 Fundamentals of the Time -Vector Approach

Inasmuch as some of the approximate equations are based on time-vector considerations,

it is opportune to briefly discuss time-vector properties. Time-vector methods of

analysis make use of the time-invariance of the amplitude and phase relations between
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the degrees of freedom of an exponentially damped sinusoidal oscillating system (second-

order linear system) and the differential and integrals of the degrees of freedom to

determine the values of these amplitude and phase relations, or to determine the con-

stants of the system of equations.

Consider the damped, transient, sinusoidal, small -perturbation oscillation of the

rolling degree of freedom. This simple system is described by

Al + 2 ^(,)n n p .+ (,,) 2 AO' = 0 .	 (113)

The solution to this equation is

n^6' _ SAO' l e - ^ w" t coscvndt
	

(114)

where	 bind = can3(1 - ^ 2 ) .	 (115)

Differentiating with respect to time t ,

-^^	 Tr
np =	 I<<^ n 	 " 

t
r cos (candt + 7r) + 3(1 — ^ Z ) cos c^ndt + 2

-^^ t	 7T
IW n e 	 '' cos bond t + —

2 
+ (Pd

(116)

where (Pd is the damping angle

(^d = tan-1 
3(1 - C2)
	 (117)

Similarly

^p = ^0(f'1bv 2 e-tw"t cos (bvn d t + 7r + 2(^d) -
	

(118)

Equations ( 114), (116), and (118) show that the amplitudes of these equations shri;jk

at the same rate and the phase relationship between the amplitudes is time invariant.

The amplitudes of the first and second derivatives of A0' are equal to the amplitude

of CEO' multiplied by the undamped natural frequency, w n , and by wn , respectively.

The phase of the derivatives is a function of the damping angle, (Dd , which iq a
function of the damping rat4o,	 As shown in Figure 44, velocity vector ^p leads
the displacement vector no' by (90 + (Pd ), and the acceleration vector p leads the

displacement vector (180 + 2(^d).

Where more than one degree of freedom is involved in the damped, sinusoidal, tran-

sient oscillation system, and the frequency is common to all the freedoms involved,

the instantaneous absolute values of the rotating vectors may be considered as ratios

(referred to as amplitude ratios) and the phase relations of the ratios established.

These ratios of the rotating vectors and their corresponding phase angles are time

invariant. As a result, the instantaneous value of any one degree of freedom may be

readily determined if the characteristics of any one of the motions are known and
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the amplitude ratio and phase angle relative to the characteristic motion are known.

For example, if the known characteristic motion is

!1r = .fir e
-
 ^Wnt cos ( r,^n d t)	 (119)

and, i f	 In,{1 / Inr I , IAp I / lAr I 	 ` 'ar , and (Dtir are known, then

I.^ I	
Inrl a - " t COS (w nd t + 'f rd	 (120)

(TA r l

p =	
Ipl	

Inrle- ^wnt cos ((.)ndt + (Ppr )	 (121)
I 
n  )

The time invariance of the amplitude ratios and their phase angles permits the re-

presentation of any one of the linearized equations of motion by vectors. For example,

by substituting Equations (119), (120), and (121) and the differentials of Equations

(119) and (121) into the linearized, small-perturbation, rolling-moment equation, the

following format is obtained, using the A r vector as the reference for the amplitude

ratios and phase angles

I x ' ^pl L (D, - Ixz IArl 
L^ -Cl 

I^p I 
b L^ - (Cl -Cl .) 

I^rl 
b L^	 = 0
	 (122)

qSb IArI	 pr qSb Inrl	 rr	 p Inrl 2V	 pr	 r	 Q I^rI 2V	 rr

where

I A P I	 Iop I	 Inr I	 Io r

lAr l - 
"n 

Io r I 	 IArl	
wn	

IArl	
1	 and	 (Prr = 0	 (123)

The vector properties described, plus the requirement that the vector polygon re-

presenting any one equation must close, make possible the determination of two unknown

derivatives in any one equation. The accuracy with which the unknown derivatives are

determined is dependent not only on the accuracy of the amplitude ratios used but also

on the accuracy of the phase angle and the sensitivity of the unknown derivative to

small errors in the phase angles.

It should be noted that the introduction of cross-coupling terms into the equation&

of motion would result in nonlinear equations and, hence, time-variant relations of

the cross-coupling terms relative to the other terms.

7.2 Basic Flight Data

Application of many of the simpler equations for determining derivatives requires

an evaluation of the period and damping; whereas, application of the time-vector method

requires, in addition, the determination of amplitude and phase relationships. These

quantities are obtained from the free-oscillation portion of the pulse maneuver, as

illustrated in Figure 45. The spacing of the peaks of the oscillatory motions deter-

mines the damped natural. period, and a comparison of these peaks for the different

oscillatory quantities determines their phase relationship. Determination of the
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phase relationships by an averaging process, typified by the table in Figure 45, has

provided more consistent data than obtained by single readings. The first line of the

example table lists the time of occurrence of consecutive plur, and minus peaks of the

roll rate Ap	 Similarly, the second line lists the plus and minus peaks of the yaw

rate '1r . The third line lists the time difference of the first two lines in ea.h

column. Since the yaw rate 1r is the reference in this instance, the signs in the

third line indicate that the roll rate .gy p lags the yaw rate .fir	 The values in the
third line are averaged and converted to degrees.

It will be noticed in Figure 45 that a yawing divergence is evident in the yaw-rate

record. To isolate the oscillatory motions and determine the time to damp the oscilla-

tions, exponential curves are drawn as shown. A semilog plot of the double amplitudes

included between the exponential outlines of each motion versus time establishes the

time to damp of the oscillations (Fig.46). A comparison of the plotted double

tudes of the variables determines the amplitude ratios.

As stated earlier, accuracy of measuring period and damping becomes rather poor for

damping ratios greater than about u.3. Generally, configurations tested at moderate

and high altitudes and without damper augmentation have been rather lightly damped so

that free-oscillation methods of analysis can be applied with good accuracy.

The damping ratio ^ , damping angle 1 hd , and the undamped natural frequency «sn ,
are obtained, for both short-period and phugoid free-oscillations, from the following

relations:

0.693P\
= sin Itan -1 	1	 (124)

27T1/21

^0.693P
d = tan 1 ^	 —	 (175)

\277 T1/2

^7r 2	 0.693 2
a 1n = ^^n d + cvn ^ 2 = -- +	 (126)

P	 T1/2

7.3 Petermination of a and 8 From Free Oscillations

in the Absence of or Questionable a and 8 Data

7.3.1 Longitudinal Free Oscillations

Should the a records be unavailable or questionable in free-oscillation longi-

tudinal data and the pitch-rate records available, lA al/lA qi and '
^aQ may be obtained

by using time-vector techniques. Once these quantities are determined, it is a simple

matter to plot a as a furction of time or, of more immediate concern, to determine

IDan I /IAod for use in determining CNa .

The complete procedure for determining IL`.a) / IDq 1 , 
(Iaq , 

and IAan I / IAai is shown
in Figure 47. The procedure involves the application of the following linearized

auxiliary equation to correct the sensed nonnal acceleration, a ni , to the center of

I
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gravity of the aircraft, as shown, in Figure 47(a),

	

A
an	 (
l	 q	

n i I /^ 
i	 x IAg 1

'/(P

	

g	
an	 =	

I q1	
an q - 

g Ingl	
(127)

and the vector application of Equation (56b) (Table V) in Figure 47(b) in the format

	

Ivan I /	 _ V In g I l_q	 + V IA &I L%.
	 = o (128)

	

In ql	
anq	

g Ingl	 qq	 g I n q I	
aq

to solve for taq and

V I n «i

I A ai	 g IAgI
IA q l -	 V	

(129)

n -
g

which now permits the determination

IAan1

Joan) 	IQgI
IA

	 :-- —I A ^ .
	 (130)

Iog l

When the vector quantities 0 an i and A an are approximately in phase and A4 is
approximately 900 out of phase with Aan , which is usually the case, the vector
Equation ( 127) may be solved by t,.- simple algebraic format

I LI an i	 Io an i l	 _x

Iogl	 Iog1 + g w
n
	 (131)

7.3.2 Lateral-Directional Free Oscillations

Should the 13 records be unavailable or questionable in free-oscillation lateral-

directional data, and yaw-rate records available, W/8I/IO rl and IAr may be obtained

by using a vector solution of the following linearized auxiliary equation to correct

the transverse accelerometer record to the center of gravity of the aircraft,

I Dat I	 IDat i I	 x IAr i	 z IQP

Iorl 
L^atr	

I^rl L^atir	 g' I^rl L^' r + g lor^ L^p
r 	 (132)

and the application of equation ( 59) in the format

-2 ,r I2 L(A r = 2 r 
I D r I 

Z(D - 2-ra 
IAp 

I Z(b - CL sin 6 Ind / 1 001 r -
IAr I	 IAr I	 IAr 1	 (Dr

I— CL cos 6 cos 0 (^^ I zl ^ r - C^ Q t I L^a t r 	 (133)

	

rl	 I	 rl

i



in,r

and

	

I'^;,^	 1	 i n r i	 1

	

;fir	 ,,n ;'1r I	 n
3 , r _ 

fPrr - (90 + 'P
d ) -_ 	 (90 + 4d)

I  0g
Curse—

qSc 0 8e
(134)
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where

—	 I 
'n #	 4)rr	 0

Figure 48 shows the application of Equations ( 132) and ( 133) to the determination
of I n" -̂ I A v'r I , t"Ir , and 1Aa t l/!:'1;''1 ,	 upon solving for I VI ,/inr j	 and 

4)i3r 
from

the graphical solution of Equation ( 133), it is a simple matter to obtain parameters

with ^^ as a base, for example

AP	 I'1 p i lA r l
J 'As	 ^^I	

and	 SPA - Apr - 'A r

7.4 Equations for longitudinal Control and

Stability Derivatives

The nature of the input and the ensuing free oscillations of the longitudinal-pulse

maneuver permit the use of relatively simple methods of analysis in determining longi-

tudinal control and stability derivatives, These methods give results comparable to

those from the more complicated methods investigated. Only the simple nethods are

discussed at this time and only data from these methods are presented. U11less other-

wise stated, it is to be assumed that stability augmentation systems are not operational

during the maneuver and that the aircraft behaves similarly to a rigid structure, in

that its behavior can be represented by the linearized small-perturbation equations.

7.4.1 Control-Effectiveness Derivative, Curse

The control - effectiveness derivatives are determined from the initial portion,

approximately 0.2 second, of a rapid pulse maneuver ( Fig.49). During this part of

the maneuver, the airplane response is almost entirely pitch acceleration, with the

re^ult that the pitch control-effectiveness derivative can be determined from

1 A.

In similar fashion, the change in normal - force coefficient due to elevator deflection

can be dete:-:iined from

W Aan

CNse — qS ,Se .
(135)

With the preceding restriction in mind, it is desirable, for accuracy, to read the

peak control input and acceleration response with a disregard of the phase lag between

the two, as shown in Figure 49. It has been found that the time difference in peak

values of contrul input and acceleration response is primarily the result of instrument
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phase lag and, to a lesser extent, air-mass inertia effects. Analysis by this method

requires instruments with flat response characteristics extending to relatively high

frequencies (8 c/s).

Pulses applied at slower rates, and thus extending over a longer time interval,

may require inclusion of damping and angle-of-attack terms in the equation, especially

a . This may necessitate the inclusion of instrument phase-lag correction.; for q

and a .

7.4.2 .Slope of the Normal-Force-Coefficient Curve

From the short-period free-oscillation data of the airplane with the controls fixed,

the variation of the normal-force coefficient with angle of attack may be evaluated

from

-W I A an I _	 InanI
CNa	 ^S lAcxl	 CL IA CXI

(136)

I 
'ibis expression neglects the pitching-velocity and angle-of-attack-rate terms of the

short-period form of the normal-force equation (Equation (58), Table V). These terms

have been found to be negligible, as will be noticed in the typical vector diagram

(Fig.50) of the vector form of this equation wherein the pitch rate was used as the

base of the amplitude ratios.

In instances where "free-oscillatior. c ltja" have inadvertent inputs of the elevator

and the angle-of-attack data have been ascertained as reliable, CNa may be deter-

mined by selecting those portions of the time history in which the elevator is at its

steady-state position and plotting a n versus a for a number of data points which

encompass the range of a n on the records. The slope of the plotted points is

ID an I /IA aI . This fundamental technique, which involves some labor, may still be the

simplest technique where a -,ontrol-fixed free oscillation is heavily damped and thus

precludes the determination of Io an I/IA aI by other means.

The derivative CNa may be converted to the effective lift-curve slope, CLa ,
which includes the contribution of power, by using Equation (38). The inclusion or

exclusion of the power term depends upon the influence of power. For conventional

low-performance aircraft, CLa = CNa at small angles-of-attack.

7.4.3. The Derivative (CNq + CNa)

As explained in Section 3.4, the phe:iomenon involving a is different from that

involving q . The pairing of the derivatives as (CN q + CNa) is valid only for longi-
tudinal small-perturbation, free-oscillation maneuvers. In this maneuver., A q and

A& vectors are approximately in phase and I46L j /jA q) a 1 , thus permitting the pairing.
Determination of the individual derivatives CNq and CNoc has thus far defied solution.

The determination of (CNq + CN&) itself is difficult. It may be readily deduced

from the vector diagram (Fig.50) of the following vector form of the short-period mode

of Equation (58),



Ina I	 to al	 Iogl c L^	
=' 0C^	 ° Lea q + CNa --- L^aq + (CN q + CNa)	

qq! Oq I	 n	 Ioq I	 Ioq ! 2V
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(137)

that

Da

CNa ^q ^an q

( CNq	 ^Na) 
-̂I -	 I Cq I ^

Ioq I 2V

2V CNa
r.,	

Inc ^' anq (138)

The individual quantities in Equation (138) show that the degree of success in deter-

mining (CNq + CN a) is dependent upon the accuracy with which (Pan (x is determined.

This phase angle is small, of the order of a few degrees, and, even with the best

records and instrumentation, the error in readability of (Pa nq from the records could
be of the order of the angle itself. Thus, it is very difficult to determine this

derivative to a reasonable degree of accuracy.

7.4.4 Pitching-Moment Static Stability and Damping

Derivatives, Cma and (Cmq + Cma)

The equations for the pitching-moment stability derivatives are based on the normal-

force equation

muAq — mAw	 CNagSO a	 (139)

obtained from the short-period form of Equations (56b) and (58b) and on the short-

period form of the pitching -moment equation ( Equation (58c))

Iy^q = CM"A a + CmgAq c + CM6t
2V	 IL)

c

Differentiating Equation (139) with respect to time and substituting for A4 and A q

in Equation (58c) provides the following

z
Da + 1 CN	

m 
e C + C	 ^ a— C + 

Cm gCN a &Sc A 
a= 0
	

(140)
2'r	 a 2Iy ^ mq	 ma	 ma	 I

Since ( 140) is a second -order linear differential equation of the form

	

Aa + 2^cvnAa +a) 2nAOL  = 0	 (141)

then

_	 Iy z	 1	 Ir	 z
Cma	 qSc 

^n 
4µc 

CmgCNa	
qSc ^

n	 (142)
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 [
(Cm q + Cma	

me
) _ 	CNcx - 47-^wn

221

	

( T̂112
2 CNCX -4,r

me 

(143)

Iit

The approximate form of the Cm a equation ( Equation ( 142)), in which the term

Cm q (CNa/4,ud is omitted, results in a small error of the order of 3% or less.

Attempts to determine Cm  and Cm & as individual quantities required a precision
of flight data and analysis of these data that is difficult to achieve. The difficulty

arises primarily from the acuteness of the phase angle, 
^Paq , which is generally of

the order of a few degrees; an error of 1 0 in this phase angle can result in large

errors in the solution.

7.4.5 The Phugoid Static Stability and Damping

Derivatives Cc u and CN u

Unlike the short-period mode of oscillation in which the velocity is essentially

non-variant and the angle of attack is variant, the long -period (phugoid) mode of

oscillation involves velocity perturbations and essentially constant angle -of-attack.

This implies that any variations in aerodynlmnic forces during the phugoid are primarily

the result of per'Curbations of the normal and axial forces due to the velocity per-

turbations, that is to say that Cc u and CN u in Equations ( 58a) and (58b) are the

only derivatives of concern.

Upon dividing Equations ( 56a) and ( 56b) by V and substituting these equations for

Aax and Dan in Equations ( 58a) and ( 53b), respectively, and neglecting second-order

effects, the following approximate expressions are obtained for a phugoid initiated

from steady - state horizontal flight:

	

+ C qS	 + g A9 o f = 0	 (144)

	

^II	
'U u°

 mV	 V

and	 - Nu 216 + Oq = 0	 (145) 
mV

The characteristic equation of the phugoid described by these two equations is a second-

order linear differential equation which takes the Laplace form

	

S	 S
s 2 + C	 s+ g (6N	 = 0	 (146)

	

cu mV
	 V	 u mV

It is readily recognized that

Ccu
 m

S

	

V = 2^phcvn ph	(147)
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S
and	 CNu mV2 = "'nph	 (148)

Transposing these two cluations results in the following approximate equations for

deterrAning CNu and Cc u from flight, data

2m(`,^ ph
CN u — pgS

2mV,"phc,bph
Ccu —S

(149)

2m^p hl^)nph	
(150)

P VS

and

..

The flight values of 
^ph and (1)nph are determined from the phugoid oscillations in

accordance with Equations (124) and (126).

An interesting byproduct of this brief consideration of the phugoid parameters

suggests itself. If N U can be considered to be similar to 2C N , then Equation (148)
takes on the approximate form

cvn 	g V(LCNgS = g V 	 (151)
ph	 V	 W	 V

Thus, the phugoid frequency, c`'nph , is approximately a function of velocity, V , only.

7.4.6 Corrections for Effects of Stability Augmentation

System in Determining Derivatives from Short-Period Oscillations

In performing a pulse maneuver with the stability augmentation system engaged, the

ensuing transient short-period oscillation of the aircraft will be characterized by a

period of oscillation and a damping ratio which will be different from those obtained

with the pitch stability augmentation system off (Fig.51). With the system on, the

period will decrease with increasing damping provided by the system; whereas, normally,

the period increases with increase in inherent unaugmented damping. This is due to the

system gain and the time constant. Thus, the gain and time constant are factors to be

considered in equations for determining the stability derivatives, as is brought out

in Reference 42. The subsequent discussion is based on this reference.

The following procedure for determining Cma and (CmQ + Cma) from flight data which
includes stability augmentation effects has been useful but is of limited utility.

The principal value of the ensuing discussion is the insight gained into the complica-

tions which may be encountered in data which include stability augmentation effects.

For rigid-aircraft perturbations about a mean flight path, the Laplace transformed

short-period mode two-degree-of-freedom longitudinal equations of motion may be re-

presented in approximate, but practical, form as

(s — Mq )Aq + (—M—&s - Ma)Aa = MB eAbe 	(152)

- .Aq + (s — Za)Da = ZB eMe	(153)
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In the absence of pilot input, the transfer function for a damper with a first-order

time lag may be represente.l by

(s)

	

e	 k - ; k (1 - Ir i s)	 (154)

	

Aq(s)	 1 + ,-'s

Substituting Equation (154) into Equations (152) and (153) results in the following

determinant

C(1 + M8 ekT' ) s + (-M q - Mg ek]	 (- Mas - Ma)
_	 = 0	 (155)

1(Z8 ekr') s + (-1 - Z8 e_ k)]	 ( s - Z
_

a)

whose characteristic equation is

(1 + M8e k-r' + MaG8 ekr l )s 2 +

+ [21  - Mq - W61 Mg ek ZaMg ek-r' - (Ma - RU)28 ek]s +

	

+ (-M (x + ZaM Q + 26.m8 ek - MaZg ek) = 0	 (156)

Considering only those terms in Equation (156) which thus far have been shown to be

significant, the short-period longitudinal frequency and damping of the aircraft with

a first-order time-lag pitch damper are

(c<^') 2 ^,	
-M a	 (157)

n	 1 + Mgek'rr

2 ^fW f ti -(Z (x + Mq + Ma + Mg ek) ,

	

n	
1 + MS ek r'	

(158)

k'blving these equations for Cma and (Cmq + Cma)

Cm a
 = qSc 

+ Cmg ek 'r (cvn) 2	 (159)

	

2I	 (^1̂0. 693 	 m^
( Cmq + Cmaj = --^ CNa - 4 ,r	 1 + MgkT^ -	 kCmg	 (160)

	

me	 T112	 Iy	 e

From the above, it is seen that Cm a is readily determined for a first -order linear

pitch -damper system. The determination of (Cm q + Cma), on the other hand, may offer

a problem, inasmuch as Cm. in Mq is not readily determined by itself.

If the pitch - damper system is not a first -order linear system, which is the case

for many systems, analytical solutions for Cma and (Cmq + Cma) are impractical. In

such instances, analog techniques are applied in attempts to extract these derivatives.
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7.4.7 Representative Results

Typical time histories, the flight-determined period and damping ratios, and the

flight-determined longitudinal stability derivatives of the D-558-II research airplane

have been reproduced in Figures 52, 53, and 54 from Reference 43. Most of the data

were obtained from the all-rocket-powered version of the airplane; the remainder of

the data is based on the jet- and rocket-powered version.

These data have been used to illustrate representative results because they show

the need for a concentration of flight test data in the transonic zone to establish

the extent of any abrupt changes of the derivatives and to show the influence of

altitude on this particular aircraft. Because the results did not include control

effectiveness, Figure 55 shows representative data from Reference 42 for Cms . All

data shown were obtained from wings-level pulse maneuvers and are typical of those

that can be obtained from good flight techniques — which include control of flight

variables, pilot skill, and instrumentation — and careful application of the methods

of analysis discussed.

The maximum deviation from the faired value in the stability derivatives shown in

Figure 54 is of the order of 5% for CNa , 10% for Cmoc , and 20% for (Cm q + Cm&);
deviation of this order of magnitude occ,-. , r in only a minor portion of the data analyzed.

	

The maximum deviation	 of Cms	 in Figure 55 is difficult to assess because the data

shown were obtained over a larg e range of altitudes and elevation trim settings;

however, the maximum deviation from faired values would be of the order of 10%, which

would be representative.

7.5 Equations for Lateral-Directional Stability and

Control Derivatives

The lateral-directional control and stability derivatives are not as readily and

reliably determined by the use of approximate equations as are the longitudinal de-

rivatives, because of the more complex behavior of the airplane and the larger number

of derivatives involved. In the following discussion, unless otherwise stated, it is

again assumed that stability augmentation systems are not operational during the

maneuver and that the aircraft's perturbed behavior can be represented by the linearized

perturbation equations.

7.5.1 Control-Effectiveness Derivatives

The basic procedures for determining lateral and directional control effectiveness

are similar to those previously discussed for longitudinal control effectiveness. How-

ever, the expressions for lateral-directional control effectiveness are complicated by

the need to account for the possible influence of the inclination of the principal axis

as well as the aerodynamic terms. Tests with a conventional high-performance airplane

utilizing a rapid control pulse or step input showed that the directional control de-

rivative, Cns , could be determined to good accuracy by considering only the inertia

term. For example,

	

Cn s r =	 O r — Ixz
	
Ap — (Cn r — Cn4) V O r — Cn p 2 AP — Cn, A,8

[qS_b	 q	 Sr	 (161)

	

100 =	 98	 — 0	 +	 2	 —	 0	 —	 0
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where the magnitudes of the individual terms are given as percentages of the answer.

This simplification in determining Cnsr may not be applicable to other aircraft.

For the roll-control derivative, C lS , consideration must be given to the aero-

dynamic derivative terms. For example, using the same high-performance airplane and

a rapid aileron control input,

	

CIS	 =	 Ix	 IxzOr—
 

Cl b Ap —CIr b 0r—C l ^^ 1
a	 [TSb	 qSb	 p 2V	 ^V	 Q	 8a	 (162)

100 =	 73	 —	 4	 +	 31	 —	 0	 —	 C

	The cross-control derivatives, CnS	 and C1 8 	can be evQlua,ted by using Equations
(161) and (162), respectively. The cross-control yderivatives are usually of smaller
magnitude and are therefore more difficult to determine. It appears that all aero-

dynamic terms may require consideration, as shown in the following example of the

analysis for Cnsa . The flight quantities were obtained from the records as shown

in Figure 56. The time difference in the Peaks of the control input and the accelera-

tions is due to the phase lag of the instruments. The acceleration and angular-rate

records have essentially the correct phase relationship with respect to each other in

this instance. The magnitudes of the individual terms as percentages of the answer

are

CnS = [^_Sb
 Ar — qSb Ap — (Cnr—Cn4) 2 Dr — Cn p	Op — CnQA^ b

a2V 	 (163)

	

100 =	 206	 — 141 +	 10	 +	 9	 +	 16

It will be noticed that the produce-of-inertia term is particularly significant in

this example. An error in principal -axis inclination would significantly affect the

answer. For instance, in this example an error of 1/4 0 in the inclination of the
principal axis ( 3 0) would result in an error of 12% in Cn Sa .

7.5. 2 The Sifle-Force Derivative, Cyp

This derivative, which contributes to the Dutch roll mode of oscillation and is an

index of the pilot's ability to sense transverse accelerations, can be determined from

the equation

ti w Ioatl
^yQ	 qS 1A,8I

(164)

The ratio to a t l /IA,81 is obtained from the control-fixed transient oscillations
resulting from a pulse maneuver. If the 8 record is suspect or missing, the ratio

may be determined from the a t and r records as explained in Section 7.3.2 and
Figure 48. This indirect technique for obtaining lAat l/IA /3) is analogous to that

for obtaining lAan l /io«i and considers Cy p , Cy r , and CyQ as negligible.
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7.5.3 The Directional-Stability Derivative, Cnp

The static directional-stability derivative is one of primary importance, and good

accuracy is required in its measurement. Although a number of closed-form equations

have been used, each possesses limitations which, if not recognized, can lead to

erroneous answers. Several of the equations are based on various degrees of degradation

of the following expression, the derivation of which was based on the solution of the

determinant of the linearized lateral -directional small-perturbation equations (Equations

(61a), (61b), and (610). The expression includes all but the most negligible quantities.

1 — Ixz sin a C.1Q = Iz can — (2^cvn ) 2 - 2^cvn 
qS 

Cy 	 — Ixz — sin a Iz Clp —
I x 	qSb	 ^Mv	 I)

b	 I	 qSb b

— ZV 
2^cvn I (Cl p — C1 ,3 sin a) + (Cn r — Cnp) + C lp( Cnr — Cnp)

	

xZ 	 I x 2V

b

	

lV Cyp mV Cnr + CIp 
Iz	 g 

cVs ClpCnr I ^2	 (165)
	x 	 x n

This equation shows that when Cnp is small, that is, of the order of 0.08 per radian
(0.0014 per deg) or less, the ordinarily insignificant damping terms become important.

In such instances, C1  is particularly significant.

When Cnp is of an order higher than 0.0014, Equation (165) can be reduced to the
following workable equation

C	 Iz 
cv 2 + a Iz C	 Ixz C	 (166)np	 qSb n	 Ix 

1p	 Ix	
1p .

This expression can also be obtained by differentiating an approximate form of

Equation (61a) to provide

0^3 = —0 r + a	 + 
4S 

Cy'a
mV

and also using Equations (61a) and (61c) with the assumption that C lp , C lr , C1 
and Cn p are all equal to zero. Substitutions result in the following linear differ-
ential equation,

2qS Cyp — qSb (Cn
r — Cnp) A,8+

mV	 2VIz

	

+ qIFZ

b Cnp — a 
ISb
C 	 1,8 + I I C 1pgSb 0'8 _ 0	 (167)

	

 x	 x Z

in which the frequency term is identical to Equation (166).



Cnp = — ( Cns r 8 rp + Cns a 8ap) . (169)
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The fact; that 
Cnp is a function of C1p in Equation (166) may result in question-

able values of Cnp if CIp is estimated from wind-tunnel data rather than flight

data, especially when flexibility effects as well as other phenomena may appreciably

alter the wind-tunnel values of C j p .

An approximation of Equation (166) provHes the following simple expression, which

is of limited utility:

C	 =	 I Z (A)2np	
qSb n

(168)

The expression has been used successfully on occasions when angle-of-attack and dihedral

effects were small. At low indicated airspeeds, where these effects are not small, the

discrepancy can be 50% or more.

Values of Cnp have also been obtained from constant-heading sideslip maneuvers

using the expression

This simple expression is obtained from Equations (61b) and (61c) with the stipulation

that angular rates and accelerations are zero during the sideslip maneuver. The

successful use of this equation is dependent upon the accurate determination of the

apparent stability parameters 8r,3 and Sap as well as the control-effectiveness

derivatives. The results obtained from Equation (169) have shown a relatively poor

consistency in the supersonic speed range, primarily because of the difficulty of

obtaining sufficient sideslip angle at supersonic conditions to make accurate deter-

mination of the apparent stability parameters.

In instances where the influence of I xZ and 
CnP 

is negligible, an accurate

equation for Cnp , without the necessity of relying on C1p , has been derived from

the yawing-moment equation

-Lz- (Cn r — Cnp) b A  — Cnp A ,8 = 0
qSb	 2V

(170)

and the following expressions for a transient oscillatory sinusoidal motion:

0r = 
WI 

IArle - ^^
nt 

cos (cvndt +'rr = wn
-^^,nt COS 

W ndt + 2 + ^d
I^r I	

)	 lArIe
2	 )

Ar = IArle
-cc,nt 

cos (cvnd t + err) = IArIe- Cwnt coscvndt

w tA,810 31

Ior 
I Io r I e - 

C n COS (cvn dt + 1pr)

(171)
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Substituting expressions (171) into Equation (170), expanding by trigonometric identi-

ties, and regrouping results in

n eos't'd + Cq ; -A	 sin `' r sin ^^ nd t —L qsb	 r

I? 
, ,n sin'1'd 	 (Cn r — Cn ?) b + Cn

qSh	 2V

I

.r 
cos ( " 1	 cos "n d t	 0 .	 (172)

The first bracketed quantity is a summation of components perpendicular to the .1r

vector; the second is a summation of components parallel to the A r vector. Hence

I	 I ^ <I

qSh „'n cos I")d + Cn,i -,1 I sin `h,3r -70

and

N

IZ b 	 I''1^
qSh W n sin q)d + (Cn r - Cn,i) 2V + Cn j ^.^r cos `) Ir - 0

( 173)

( 174)

Considering only Equation (173) at this time, if the phase angle 1/3r is of the order
of 9G° and the damping angle is small - which are the conditions normally encountered -

then sin 4)a r and cos 'Pd will each be similar to 1 and Equation (173) can be trans-
posed to

IZ In rl
n	 ^^Q	

qSb 	 n (185)

This equation provides accurate values of CnQ , provided it is used within the limita-
tions imposed in its derivation.

Table IX lists the results of the application of Equations (165), (166), and (168)

to flight data of the F-104 and YF-102. The values of Cn Q , as determined by Equation
(165), are used as reference values. For the F-104, Equation (156) shows good corre-

lation with the reference value because of the high value of Cn Q , whereas the simple
frequency equation (Equation (168)) shows poor agreement. For the YF-102, which has a
low value of CnQ for the flight condition shown, Equation (166) shows a significant
discrepancy with reference CnQ and points up the influence of the damping terms when

CnQ is small. For this same case, it will be observed that the simple frequency
equation is unworkable.

A relative comparison of the results obtained for the F-100 airplane using Equations

(166), (168), and (169) and the results obtained using the more comprehensive graphical

time-vector method (to be discussed later) are shown in Figure 57. Considering the

graphical time-vector results as most representative for the airplane, it will be

observed that the simple frequency equation (Equation (168)) would show poorest corre-

lation at low subsonic speeds due to angle-of-attack and dihedral effects not accounted

for in the equation, whereas Equation (169) shows poorest results in the supersonic

region because of the difficulty in obtaining accurate values of Sr,8 and S$,8

. n
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Table X compares the values of Cnp determined from analog matching of oscillatory

maneuvers of the X-15 airplane with values of CnQ determined from Equations (166)
and (175). The values of Ixr and Cn p are essentially equal to zero on this vehicle.

The agreement between analog values of Cn Q and the equation] is good. In Equation

(166), the agreement is due to the high value of Cn Q . Equation (175) would be the

more desirable to use on this airplane because it does not depend on the use of Clp

for a solution.

7.5.4 The Effective Dihedral Derivative, C1Q

Several simple equations for C1 Q are available with limitations on their utility,

as in the case with most simplified equations.

Values of C1 Q can be obtained from the constant-heading sideslip maneuver using

the expression

C1Q 
= —(Clg rSrp + C i8a 8 ap) .	 (176)

:'he derivation of this expression and circumstances limiting its accuracy are identical

to that brought out for its counterpart Equation (168)).

A comparison of C1 Q determined by Equation (176) and the more comprehensive

graphical time-vector method is shown in Figure 58 for the F-100 airplane. At low

Mach numbers, the results from the sideslip equation (Equation (176)) compare favorably

with the time-vector results; at high Mach numbers, P, large discrepancy exists between

the two methods. Even though C 1Q is not one of the derivatives determined most

accurately by the time-vector method, the vector method is the most practical analytical

means available for evaluating this derivative.

In instances where the influence of Ixz is negligible,, it is pos.:ble to combine

Equations (166) and (175) to obtain

l I cv 2	 I11 I	 1
C 1
	

ti 
(xgSb Iopl Wn — 

1
	

(177)

The use of this equation is subject to the additional restriction that it should not

be used when Cnp is small, as was noted in the discussion of Equation (166). Also,

the equation must be used with caution when the angle-of-attack is less than about

3 0 or 4 0 . When the angle-of-attack is less, (JAr I /1A,81) ( 1 /cvn) may approach 1.0 and
the error in reading IArl /IAO from the flight records may result in an error in

(IAr1/10,81)(1/c)n) that may exceed the net magnitude of the parenthesized quantity.

If the 8 record is the major contributor to inaccuracy in the amplitude ratio, the

technique discussed in Section 7.3.2 may be employed to determine the ratio without

recourse to the actual ^8 record.

A final precaution regarding the use of Equation (177) is in order. At very low

w.,gles-of-attack, the error in the flight-Determined values of a can produce large

errors in the equation; also, as a approaches zero, the equation approaches an in-

determinate form, inasmuch as the bracketed quantity itself approaches zero.
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7.5.5 Me Damr,Lng-in-Roll nerivative, CIp

Simple expressions for the determination of CI p are dependent upon a roll maneuver
initiated from wings-level flight by a step input of the ailerons. The derivations of

the expressions impose the restrictions that yaw due to aileron, CnS , sideslip due to

the effective dihedral, C 1 ,3 , rsud product-of-inertia effect are negligible. If these
highly restrictive conditions are satisfied, the following relation can be employed

n8

CI p = - Cjoa _
_ a

b

\pl 2V

( 178 )

In using this equation, CI S 	can be determined from the initial part of the control
input as discussed in Sections 7.5.1 and A p l is determined at some time point, tl
on the roll-rate time history where np is zero - the region of steady-state roll.

If desired, the separate determination of CIS a can be avoided by solving for

CI S- - Ap l b
(179)

C1 
	 G8al 2V

and substituting this ratio into the equation

	

Cl	 = Ix nA
1

P	 qSb	
2	

b	 Cl S 	 ,
Ap2 2V + C â ASa Jp 

resulting in the format

	

C 1
	 2 I x V Q, 2	 1

	

I	 pp	
gSb 2 	

np - Op 
08a2

2	 i A8 a l

(180)

(181)

In these last two equations, the subscript 2 indicates that 0 p and Ap were obtained

at a time point 2 on the roll - rate time history, preferably at the point of maximum

rolling acceleration.

Although the restrictions imposed at the beginning of this section seriously limit

the application of these equations, the last equation (Equation (181)) is interesting

in that it shows that CI p can be obtained without requiring the solution of CISa

7.5.6 The Effective Damping -t;. -Yaw Derivative, (Cn r - CnQ)

It was pointed out in Section 3.4.4 that Cn r and Cnp may be combined as an
equivalent derivative, (Cn r - Cn4), only for oscillatory maneuvers, providing the
stability r,xis system is being considered or that the angle-of-attack is small if the

body axis system is used. When the body axis system is employed, this is tantamount

to saying that when the amplitude ratio IDw'1 /1o,81 ti 1 , at a <. 30 or so, Cnr and
Cn4 may be combined as an equivalent derivative for yaw rates.
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The combined derivatives are frequently shown in the results of analysis of oscilla-

tory motions relative to body axc-3. even though this amplitude-ratio condition is
exceeded. 'Shen this is done, it means that an effective value of Cn r has been obtained

which includes the influence of Cnp and the results of the analysis based on the use

of the actual IAO'1/IAPI have produced an answer which is equivalent to the net con-

tribution of Ar and A^ to nC n in terms of !fir .

An approximate equation for (Cn r - Cnp) is obtained directly from the damping term

of the second-order differential equation (Equation (167)). Inasmuch as

(Cn r - Cnp)

gSb2

- 2VI Z (Car - C
np)	 (182)

- 21 z
	 V C

bz ^ 	 + mp	
(183)

Q

2
qS

^^^n =	 -
m VCy 13

a transposition results in

Considering the assumptions made Li deriving Equation (167), from which Equation (183)

was obtained, and the stipulations regar(' ng the combining of Cn r and Cnp , it may
be stated that Equation (183) will prov'.de better accuracy when Ioq'1 11nj31	 1 and
as lopl/lA,81 decreases to satisfy the c,;n dition that C1  and Cn p have a negligible
influence on the equation.

An approximate equation for (Cn r - Cnp) which bas been used successfully in the

X-15 airplane flight test program was derived from Equation (174)

I Z	 b	 JD,Q1	 -

qSb ^
n sin ^d + ( Cnr - Cnlj' ZV + Cnp ^[^r I cos `DQ r - 0 .

This equation is a summation of yawing-moment components parallel to the Ar vector

during a free-oscillation maneuver and is subject to the restrictions 'Lhat I xZ and

Cn p have a negligiblc influence on the yawing moment.

Since 
far generally varies only a few degrees from 90 0 for angles-of-attack less

than about 15 0 , and since the damping angle is small, the preceding equation can be

reduced and transposed to

I ,.
(Cnr  - Cn4)	

- ^ 
Wn	 ` b

qSb —
2V	

(184)

1.386VIZ
gSb2T1/2

Analog records of free-oscillation maneuvers of the X-15 airplane, on which Cnp

and IxZ are essentially zero, were analyzed for (Cn r - Cnp) by using Equations (183)

and (184). The results, presented in Table XI, show that the latter equation was better

suited for determination of the effective damping-in-yaw derivative, for angles-of.-

attack up to approximately 12 0, than Equation (183) for this vehicle.
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7.5.7 Correlation for Effects of Stability Augmentation
System in Determining Lateral-Directional Derivatives

from Dutch Roll Oscillations

When lateral and directional stability augmentation systems having first-order time

lags are operational during a Dutch roll (free-oscillation) maneuver, the effects of

the augmentation system on the frequency and damping of the oscillations and on

1,7rl/I0,81 may be accounted fo y in the same manner as was done for the longitudinal
mode of oscillation in Section 7.4.6.

7.6 The Graphical Time-Vector Technique

The graphical time-vector method of analysis 41-17 , the principles of which were dis-

cussed and applied in the initial part of this section, is the most common manual

technique used for determining the lateral and directional derivatives. Successful

application is dependent upon availability, of control-fixed, Dutch roll oscillation
data wherein the damping ratio is less than approximately 0.3 to permit definition of

the period of oscillations, the log decrement of the damping of oscillations, amplitude

ratios, and phase angles.

7.6.1 Advantages

One advantage of the method is that the procedure is manual, and the analyst is

afforded a graphical presentation of various factors affecting the ,solution.

Another advantage is that it is possible to obtain solutions when the 8-vane records

are available, suspect, or when it is desired to ovoid applying corrections to these

records. Bypassing the /3 records was discussed i.i Section 7.3.2. It was shown that

the vector polygon of the transverse-acceleration equation is essential in the solution

of the amplitude ratio, Io ,8I /IDr) , and the phase angle, 11Qr . Both of these quanti-
ties are used in the vector polygons of the rolling- and yawing-moment equations to

determine CnQ and ClQ when the vector is used as the base for the amplitude ratios
in the equations, as in Figures 59(a) and 59(b).	 The phase angle is used in the

orientation of th—, A,Q vector in relation to the A r vector and provides a more

,-3curate value of ^Athan can usually be obtained directly from flight records.

The amplitude ratio, I48I/IDr) , is used to extract Cn Q and ClQ from the deter-
min , d values of CnQ I48I/IDrl and Cl Q A81/IArl in Figures 59(a) and 59(b).

7.6.2 Disadvantages

One disadvantage is that the development of a definite technique is required on the

part of the analyst to minimize what would otherwise constitute a rather time-consuming

and tedious effort to obtain a consistent and reliable set of results.

Another disadvantage is that only two of the three derivatives in each of the rolling

and directional moment equations may be determined by means of the vector diagram, thus

necessitating an estimate or a wind-tunnel value of one of the derivatives in each of

the equations. Since Cn p and C1. terms in the vector diagrams (Figures 59(a) and

59(b)) are the smallest vectors, it is customary to estimate these quantities. The

errors in the estimated values of Cn p will affect (Cn r – CnQ) primarily; the errors

in C lr will generally affect Cl p primarily, but to a much smaller extent. For low

angles-of-attack, (Cn r – Cnp) may be estimated by using Equations (183) or (184) within
the limits of their applicability.
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7.6.3 Application of the Graphical Time-Vector Technique to

the Determination of Cnp , (Cn r - Cnp), Clp , and C1 

Figures 59(a) and 59(b) show the application of the graphical time-vector technique

to the determination of Cnp , ( Cnr - Cnp), Clp , and Clp
	 The amplitude ratio,

IApI /lArl , and the phase angle, d)pr , were determined from a semilog plot such as
that in Figure 46. The ratio IL^BI /lArl and phase angle Apr were obtained from a
transverse-acceleration diagram as discussed in Section 7.3.2. The remaining required

amplitude ratios and phase angles were determined as follows

IAp I	 Inp I

Ivr I	
'Jjn Inr 

I '	
Apr	 Apr = (90 + ^d)

Ar I

Arl - (te n	 1Prr = 90 + (Dd	 (185)

Ivr 1

(Or I 
= 1 ;	 4)rr = 0

The derivatives Cn p and Cl r , which have relatively small influences in this instance,

were obtained from wind-tunnel data. Assuming there is no question of the accuracy of

the datr., the tunnel data should be based on oscillatory tests, inasmuch as the flight

data are based on an oscillatory maneuver.

With the various known vector quantities properly oriented in the respective diagrams,

the diagrams were closed and the unknown vectors determined by drawing the unknown

vectors in their proper phase-angle directions, 
(Ppr and Apr . The newly determined

vectors, such as -Cn ,80/3I/IArb and (Cn r - Cnp) (b/2V) , were then reduced to obtain
Cnp , (Cn r - Cnp), Clp , and Clp .

Figures 60(a) and 60(b), from Reference 43, show the results of the application of

the graphical time-vector technique to the rocket-powered D-558-II research airplane.

An interesting aspect of the results is the influence of power on the stability

characteristics of this airplane.

At times there may appear to be an incompatibility within wind-tunnel data when the

data are compared to flight-determined derivatives. It then becomes imperative to

resolve the discrepancy within the gunnel data and between the tunnel data and the
flight data. This is illustrated in the following example wherein Cnp was relatively

low.

Dynamic model tests of a relatively rigid high-performance aircraft at a set Mach

number and a = 6.6 0 showed that C IIp = 0.01 and (Cn r - Cnp) = -0. 14 . Tunnel data
also showed Cnp to be equal to 0.055 on the basis of static tests and equal to 0.0757

on the basis of oscillatory tests. Flight data obtained from time histories of con-

vergent transient oscillations of the quality shown in Figure 45 indicated that, when

the wind-tunnel value of Cn p = 0.01 was used in the time-vector solution, Cnp was

equal to 0.071 and (Cn r - Cnp) was equal to 0.313. It was obvious that

(Cnr - Cnp) = 0.313 was not representative of the true characteristics of the aircraft

in the Dutch roll mode, since its positive value indicated an oscillatory divergence,

whereas flight data showed oscillatory convergence.
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A check of the phase angle (Dpr (- 1040 ) by several analysts showed agreement within

a few degrees. It was decided that a reasonable spread of uncertainty for the quality

of data - corrected for instrument phase lag - would permit 4)pr to be 105 0 t50 ; at
worst, the uncertainty would be t10 0 . Accordingly, solutions for 

CnA and (Cn r - Cnp)
were obtained by using various values of C np and (Dpr (within the spread of un-
certainty). The results shown in Figure 61 in the form of a grid plot indicate the

sensitivity of the determined values of Cn,3 and (Cn r - Cnp) to Cn p and IDpr and
the incompatibility of the wind-tunnel data. The tunnel data were incompatible even

when allowances were made for unvertainties in inertia characteristics and readability

of flight data.

Use was made of approximate Equation (183) with due consideration to the limitations

of the equation for higher angle-of-attack conditions to aid in establishing the magni-

tude of (Cn r - Cnp). For the test condition of an angle-of-attack of 6.6 0 , the -0.458
value of (Cn r - Cnp) obtained by Equation (183) could be in error to the extent of
10017, or so. Hence, it was estimated that the correct value of (Cn r - Cnp) was closer
to --0.20 than -0.458. Also, considering that the state of the art in obtaining

(Cn r - Cnp) from wind-tunnel tests was more reliable than in obtaining Cn p , the tunnel
value (-0.14) of (Cn r - Cnp) was surmised to be representative of the true value of
this derivative. Uncertainties in the inertia characteristics required that some

deviation be allowed in this value in obtaining (Cn r - Cnp) from flight data. It was,

therefore, concluded that the results of the analysis should lie within the shaded

area shown in Figure 61. Within this area, the value of Cn,8 (0.054) compatible with
4)pr = -1040 and (Ctir - Cnp) = -0.14 was considered to be a mean value and was used
as an analytical result. The corresponding value of Cn p should Lave been approximately

-0.04.

The best accuracy in determining Cnp and (Cn r - Cnp) is obtained when IOp I/In rI
is small, at which time the influence of Cn p is relatively small. When the roll-to-
yaw ratio is large, it may be advantageous to estimate (Cn r - Cn4) and attempt to solve
for Cn p . For low angles-of-attack, (Cn r - Cnp) may be estimated by using Equations
(183) or (184) within the limitations of their applicability.

The best accuracy in determining C1 ,8 	 Cl p is obtained when the roll-to-yaw

ratio is large. At this time, the influence of Cl r is relatively small. In either

case, the static derivatives, 
Cn,8 and C1,8 are determined more accurately than the

rotary derivatives, (Cn r - Cnp) and Cl p .

It was previously pointed out that the a.- ,;uracy of analysis becomes rather poor for

damping ratios greater than 0.3. Although a good approximation of the damping ratio

for heavily damped aircraft way be obtained by comparing flight records with records

of heavily damped motions - the damping ratio of which is known - it becomes difficult

to draw accurately the exponential envelopes of the oscillatory motions to obtain

reliable values of amplitude ratios.

7.7 Other Analytical Techniques

The preceding discussions regarding determination of derivatives from flight data

have shown various limitations. The graphical time-vector technique, although the

most successful, is not usable for damping ratios in excess of about 0.3, requires

control-fixed transient oscillation data, and requires the assumption of some deriva-
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tives, which may, at times, cause difficulties in solutions. To overcome the limita-

tions of the preceding techniques, a number of methods have been proposed for the

comprehensive determination of derivatives (References 48-54, for example). Some have

been successful in practice; others have not. In most instances, the degree of sophisti-

cation involved in the proposals requires automatic data-reduction equipment and the

time and effort does not warrant their use when analog equipment is available for

application of analog-matching techniques. Several of the methods are considered in

the following sections.

7. 7. 1 Least Squaring of the Equations of Motion

A logical and straightforward method, on the sophisticated side, for determining

derivatives from flight data is the application of the least-squaring technique to the

linearized equations of motion. Flight quantities at discrete time points are sub-

stituted into the equations of motion. Many more data points are selected than the

number of unknowns, and a least-squares process is applied to evaluate the unknown

derivat-.ves. As logical and simple as the approach may be, it has not been employed

too successfully for several reasons, including: difficulty in properly conditioning

the maneuver, instrumentation accuracy, phase lags between instruments, insufficient

amplification of recorded data to provide precise readability, noise in data readout,

and instrument alinement.

One of the more successful attempts to apply this technique was reported in Reference

48. To excite all the lateral-directional modes and give measurable control inputs

without exceeding the limits of the linearized equations of motion, the following

control input program was used:

"From trimmed level flight, step the rudder causing the airplane to yaw and

then roll due to dihedral effect. When the bank angle reaches approximately 20

degrees, apply a step aileron deflection such that the airplane will roll toward

a level flight attitude. In order to obtain a sufficiently long record of the

response to aileron, the airplane is allowed to roll to an opposite bank angle of

20 degrees before stopping the recording and initiating recovery".

A typical time history of this maneuver is shown in Figure 62. All instruments had

similar response characteristics and high recording sensitivity which was compatible

with calibration-sensitivity spread and calibration spread. Alinement of instruments

was within t0.3 0 . Recorded data were clean. It was found that noise in the readout

data significantly affected the results. Twenty discrete time points used for the

least-squaring process were considered sufficient.

The results, reproduced in Figures 63(a) and 63(b), show the degree of consistency

obtained after the greater-than-usual precautions were taken to provide conditions

that would be compatible with the needs of the technique. The re_.iirements for this

technique are undoubtedly similar to those necessary to make other promising techniques

workable, such are the method of Reference 49. This method is also an equation-of-

motion technique utilizing the Fourier transform, a method function to remove de-

pendence on initial and end conditions, and a least-squaring procedure.
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7.7. 2 Frequency-Response• Me ehod

Methods have been proposed (References 50-52 for example) to determine stability and

control derivatives by using frequency-respurse data obtained from flight tests. The

method of Reference 52 encompasses the solution of all derivatives through a complex

procedure. Other methods, such as that of Reference 51, provide only limited results

based on various degrees of approximation.

The method of Reference 52 replaces the time plane with the frequency plane. Amplitude

ratios and phase relationships of airplane response to control input from frequency-

response anal;;sis of a pulse maneuver 51,55 provide real and imaginary quantities. The

complex quantities at discrete frequencies are substituted into least-squared equations

solving for the derivatives desired. The method is simple in theory; however, con-

siderable care, work, and time are involved in the application, and some experience

is necessary in the selection of discrete frequencie,.;. These factors minimize interest

in further studies of the method, especially where time is of the essence in obtaining

a relatively quick look at the flight values. Automatic data-reduction equipment would

greatly expedite the frequency-response analysis find would be useful for the other
. e,	 computations required.

7.8 Analog-Matching Techniques

When flight data are of such a nature as to preclude the successful use of the

graphical time-vector technique or the approximate equations, and when time and expense

will not permit the use of an experimentation with more sophisticated techniques,

recourse is usually made to the analog to determine the derivatives that will provide

the best match of the analog time history with the flight time history of a maneuver.

The use of the analog should be considered as a last resort, to be used only when

other techniques cannot be applied. It is not a "cure-all", for it can produce

erroneous answers under certain conditions and still provide a good match with the

flight time history of a maneuver.

7.8.1 Conventional and High-Speed Repetitive Operation (REPOP)

Analog Matching

The mathematical model of the aircraft for the analog computer is provided by the

airplane equations of motion; when attitude records (such as q and 0) are available
and used in the matching process, transformation equations are included to transform

aircraft angular rates about the body axes to angular rates about Euler axes.

Generally, the simplest mathematical model compatible with the needs of an investi-

gation is used to reduce the number of analog components required and to expediate

solutions. A five-degree-of-freedom mathematical model, involving the general equations

of motion, is employed when longitudinal and lateral-directional cross-coupling effects

are factors in the responses of the airplane during the maneuver. When such cross-

coupling effects are not factors to be contended with, the longitudinal and lateral-

directional motions can be treated independently and as two s parate analog progreuns

using the linearized equations. Under such circumstances, the longitudinal program

is treated as a two-degree-of-freedom case (with velocity a constant) unless phugoid

is being considered, which is not often; and the lateral-directional program is

t'r'eated as a three-degree-of-freedom case. Small-perturbation equations may be used



75

to advantage in such Instances, particularly when datums of angular rates and Euler

attitudes may be suspect and angular accelerations have excessive noise or are not
available.

Initial estimates of stability and control derivatives to be used in the mathematical

model are obtained from available theoretical and/or wind-tunnel values. If possible,

flight-determined derivatives obtained through the use of the approximate equations

are employed. In the absence of the preceding, the best estimates possible are made.

Initial estimates are required to establish reasonable scaling factors for the manually

adjusted derivative potentiometers to save operational time.

Inasmuch as errors in initial conditions shift the amplitude or rotate the response

time history, provisions are made on the analog to program initial conditions through

manually controlled potentiometers.

Flight test inputs in the form of aileron and rudder deflections are reproduced on

function generator components of the analog in as faithful a reproduction as possible

within the limits of the function ^nnerators, which have a finite number of breakpoints.
F%
	

When these inputs are introduced into the mathematical model, the analog computes a

response.

In conventional analog-matching, the response is recorded by a strip recorder. The

recorded response is then compared with the actual flight time history, which is re-

produced on clear plastic to overlay on the analog time history. A mismatch Lidicates

the need to modify the values of the derivatives, possibly change signs of several of

them, and possibly modify the initial conditions. These changes are made by using a

,judicious trial-and-error process until a match is obtained.

The conventional matching technique is laborious because of the need to manually

match a strip record with the overlay every time a programed condition is modified in

order to study the effect of the modification and assess the next condition to be

modified. The conventional technique may require from several days to a week to

obtain a match.

High-speed repetitive operation (REPOP) matching differs from the conventional in

several basic aspects 56 . The strip recorder is replaced by an oscilloscope and the

response to inputs is projected onto the scope, which has an overlay fastened to it.

The projected response appears as a stationary time history as a result of an automatic

high-speed recycling of the response computation. The maximum recycling speed for

fidelity is governed by the time bpan of the time history to be matched and the frequency-

response characteristics of the function generator. Where a cycling rate of 250 cycles

per second may provide fidelity for a 3- or 4-second time history, it may cause serious

distortions in projections onto the scope if a 10-second time history is projected.

High-speed repetitive operation matching relieves the operator of manual matching

of the time history, permits him to make rapid modifications of derivatives and initial

conditions, and allows him to observe effectively the influence of a modification on

the response. When an optimum match is achieved on the scope, a strip record is made

and matched with an overlay to check the fidelity of the scope match and to retain a

record of the resulting match. A REPOP match can normally be achieved in 4 to H hours.

I
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7.8.2 Advantages of the Analog-Matching Technique

The analog-matching technique for derivative determination, in effect, accomplishes

what sophisticated analytical techniques (see the preceding section) have attempted.

It enables the determination of derivatives under circumstances where approximate

equations and the graphical time-vector technique fail. It does not rely upon detlnite

restrictive maneuvers, although there are some maneuvers that cannot be solved for.

Test data showing inadvertent inputs and subsequent disturbances may be used.

7.8.3 Limitations of the Analog-Matching Technique

The success of every technique discussed for determining derivatives was contingent

upon the proper conditioning of the maneuvers involved. 'This is no less true of the

analog-matching technique. A Dutch roll maneuver, induced by a control pulse, in which

no spiral- or roll-subsidence modes are significantly evident, is generally impossible

to match with a unique set of derivatives. It pill be found that any number of com-

binations of derivatives will provide a match. A maneuver involving continuous oscilla-

tion of the control surfaces, as would be the case of lateral-directional oscillatory

motions with the lateral-directional stability augmentation system on, will also be

very difficult to match with a unique set of derivatives.

A properly conditioned lateral-directional maneuver for use on the analog to permit

determination of a unique set of derivatives for a match should excite the roll and

spiral modes as well as Dutch roll oscillations. The likelihood of obtaining a unique

set of derivatives is increased when the maneuver is conditioned to include a rudder

disturbance of a step-like nature, a transient oscillation, and an aileron disturbance —

not necessarily in this order — as was mentioned in Section 7.7.1 and also illustrated

in a recovery-from-sideslip maneuver which is considered in the next section.

Also, as was mentioned in Section 7.6.3, better accuracy will be achieved in the

major directional derivatives when the !Opl/lorl ratio of the dynamic characteristics

is low (minimizing influence of Cnp), and in the major lateral derivatives when the
1ApI/lA rl rati-) is high (minimizing the influence of Cl r ). It may be concluded, then,
that Cnp and Cl r are normally difficult to determine to any respectable degree of

accuracy. The possibility of determining Clr appears to improve with increasing
tendency of the aircraft to roll off during a maneuver.

7.8.4 Application of the Analog-Matching Technique

Figure 64 shows the results of an analog match of a "recovery-from-sideslip" maneuver

at a Mach number of 1.84 and an altitude of 49,400 ft. The match is typical for this

aircraft, which had negative effective dihedral and adverse aileron yaw for the match

shown. Rigid wind-tunnel data corrected for flexibility effects on the actual vehicle

predicted practically zero effective dihedral and proverse yaw due to aileron. It was

impossible to substantiate the predicted values on the analog, and only one combination

of derivatives would provide the match.

The following procedure is typical of that employed in arriving at the analog match

of the flight data which did not include rolling and yawing accelerations:
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(i) The mathematical model was represented by three lateral -directional small-

perturbation equations

s
0^ = V sin 	 ( (to + A(t) - ar + aol^p + mV (- A 8 + Cys r Sr + CysQ	 Sa) - V sin0o

I	 gfib	 b
DP = I Z Ai + I CIP + b ( C I^P + CirAr) + cis 	 + Cis

I
xR	 R

nr = IRZ 4p + qsb Cn	 + b ( CnrOr + CnpL1P) + Cns AS r + Cns AS a
I Z 	IZ	 2V 

(ii) In addition, the following transformation was employed to determine the change

in Culer roll angle, which attained magnitudes of the order of 200 on occasions
in the maneuvers under consideration

A^ = Ap - ( r o + Ar)6 0 cos (00 + AO) - r o6 o cosOo

(111) Finally, the outputs of the mathematical model were applied to the following

two equations to modify analog values of A/3 and Dat to correspond to the
indicated values of the flight data:

^Qi = A,i + V Ar - V AP

v
Aat i = - sin (00 + AO) + sin 00 + - (n 3 + Or - adn^p) -

g

ti-r' ^_
 
g	 g

. 0+ ^P 	
Ar	 Ap

— y instr	 + X instr	 — Zinstrt 	g
(iv) Starting with the arbitrarily selected time Zero (as in Figure 64) for the

time history to be matched:

(a) Cnp was adjusted for approximate frequency match.

(b) The control derivatives were adjusted to provide an initial rough match

in the magnitudes of r and 0 .
(c) Potentiometers forr o and Qo were adjusted to roughly aline r and

Q traces of the analog with flight data; similarly, potentiometers for

^o and po were adjusted to roughly aline 0 and p traces. These
actions involved the following analog integration

Ar = f(i• o + ni•)dt ,

Ap = f(Po + Ap)dt ,

A,8 = f (NO + D,C dt ,

AO = f (^o + off) dt .
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(d) Since adjustment of ^ O and P O modifies alinement of analog and flight
traces of r and ^3 , step (c) was reiterated as many times as necessary

to obtain a rough alinement of analog and flight traces of r

and p .

(e) Attention was then focused on the r trace to obtain a more refined match

of this trace by more cautiously adjusting Ca r 	Cad 	Cns a 	and Cnsr
This operation necessitated adjustment of C1,8C18a 	

Clp	
and Cl r to

keep the p trace in line.

It should be noted that the preceding five stern (iv) (a)-(e), which constitute an

initial phase of operation to obtain an approximate .:patch, involve about 1 hour. The

explanation of the procedure is, by necessity, brief. It will be readily appreciated

that the steps are iterative to keep the frequency of disturbance, the magnitude of

disturbances of the various traces, and alinement of analog and flight time histories

compatible.

The second phase of the analog-matching process involved the following operations:

(f) With the r trace roughly matched, attention was focused on the (^ and

p traces by manipulating the C1,6 	
ClP , 

and Clr derivatives and the
lateral-control derivatives as .necessary. During this operation, fine

adjustments were required and made on the r and 8 traces (as per
step (iv) (e)).

(g) With ,^ , p , r , and 8 traces matched as closely as possible, attention
was focused on the at trace. This involved Cyp , Cys a

 , ano Cys r .

The last phase of the analog-matching operation involved making fine adjustments to

initial conditions (to compensate for probable errors) and fine adjustments to the

derivatives, in essence, performing an iterative procedure of the preceding operations.

The second and last phase of the analog-matching process generally involved 3 to 4

hours and, at times, more.

7.8.5 Accuracy of Results in Analog-Matching of Flight Data

As mentioned previously, the accuracy of the results in analog-matching of flight

data is largely dependent upon the conditioning of the maneuver. For the longitudinal

derivatives, results from a pullup-and-release maneuver of an advanced high-performance

aircraft showed the following accuracies based on the amount the derivatives could be

changed before a trend toward mismatch became evident:

(1) For a strong maneuver:

IN

CN a
	 10%
	

Cm a
	

57o

CNse	 20% to 30%
	

Cmse	 10%

(CNQ + Cry«)
	

200% or more
	

(Cmq + Cma)
	

20% to 30%



(2) For a weak maneuver:

79

CN a

CNS e

( CNQ + CNa)

20%

100%

200% or more

Cma	 10%

CMS	 20%
e

(Cm Q + Cma)	 4017v

The accuracies of the lateral-directional derivatives obtained from analog-matching

of well-conditioned, release-from-sideslip maneuvers of the same aircraft are shown

in the following tabulation, along with the f pttors which influence the accuracy:

Cn,3 — 5%

C i e — 5010 to 15%

CyA — 57o to 20%

Cnr — 5% to 30%

Cn p — 57o to 30%

C 1  — 5% to 30%

C I r — 5% to 50%

Cns r —	 5%

CIS a —	 5% to 15%

Cns a	— 517o to 30%

CI Sr	— 10% to 30%

Cy Sr —	 Mo to 50% or more

Cys	 — 407o to 100% or more
a

True for any rudder release involving

more than one cycle of oscillation.

Depended upon oscillatory characteristics

of q5 and magnitude of 8 , after
rudder release.

Depended on the magnitude ^ f : , • at

oscillations and the average. s,ope of

,Q from release to steady value.

Depended upon the amount of transients
the aircraft was allowed to go through

before controls were applied again..

Depended upon the magnitude of the roll

rate during oscillation. Hi3her roll

rate showed better accuracy.

Depended upon the magnitude of the roll
rate during oscillation. Higher roll

rate showed better accuracy.

Depended upon magnitude arj oscillatory

characteristics of rolloff. Larger

rolloff showed better accuracy.

True for any rapid rudder input.

Depended upon the magnitude of the control

input.

..

These results m:;, be considered typical of ghat may be expected in analog-matching

of flight data obtained from properly conditioned maneuvers. The accuracies may well

be typical of those that may be expected when comprehensive analytical techniques are

used.
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8. APPLICATION OF BLIGHT aJERIVATIVES

If wind-tunnel data and theory were infallible, it stands to reason that there would

be no need for flight determination of derivatives. However, such is not the case.

As new concepts in aircraft were developed, either with regard to physical geometry

or propulsion systems, and as aircraft fly in new Mach and altitude regimes, there is

the need to verify aerodynamic theory and wind-tunnel data and various influences of

aercelastic deformations of prototype structures on stability characteristics; to

provide supplementary information not obtained in limited wind-tunnel studies; and

to uncover the source of discrepancies between predictions and actual flight behavior.

The following discussions provide some insight into several of these areas.

8.1 Verification of Wind-Tunnel Data and Theory

As the Mach capability of the airplane increases, the technology in wind-tunnel

testing becomes more critical with regard to model constru^tion, support of the model,

and interpretation of the tunnel data. Whereas theory depends upon wind-tunnel data

for verification, or to fill in gaps where theory fails, the wind-tunnel may depend

upon flight data, as new regimes of flight unfold, to verify testing techniques.

Flight data pointed out the need for a greater concentration of test points in the

transonic region to accurately define the stability characteristics in this region

(Fig.54). Flight data showed also that it was not sufficient to use a cold jet stream

to simulate the exhaust of rocket en,ines. Figure 60 shows the effect of the jet

exhaust of the D-558-II research airplane on the lateral-directional stability character-

istics of the vehicle in the supersonic region. The destabilizing influence of power

was the result of a pluming of the hot jet exhaust and consequent formation of a

lambda shock wave at the juncture of the vertical tail and the fuselage. During D;Itch

roll oscillations, the sho--k wave on the leeward side of the vertical tail moved

forward, while on the windward side it remained attached to the jet exit. This pheno-

menon it not common; it was the result of overexpansion of the jet exhaust and the

proKimity of the trailing edge of the vertical stabilizer to the jet exhausts.

Another illustration of discrepancy between i>aht and predicted data involved
elevator setting for lg flight. A comparison of the variation of predicted and flight-

determined elevator settings with Mach number .showed increasing discrepancy with in-

creasing Mach number for a constant center-of-gravity position. In this instance,

involving aeroelastic effects, predictions showed reasonably close correlation of

CNa with flight data; whereas, Cm a and CmS	 showed a difference in trend as well

as level. Preliminary study of the problem showed a need to consider Cmo as well

as Cm a and Cmg e . Thus, the following pitching-moment equation for trimmed un-

accelerated level flight, based on Equation (53b) (Table IV), was used and constituted

the major consideration in arriving at the most likely causes for the discrepancy

between predicted and flight trim settings of the elevator

Cm a + Cma(a + acN =o) + Cms eSe = 0 .	 (186)

The angle-of-attack (a + acN =o) was replaced by its equivalent

pc + aCN = 0 = CN	 (187)
CNa
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to determine both predicted and flight values of Cmo by the followi.ng new format
of Equation (186), which is the slope-intercept expression for solving C.n o , or

Cmo = 
Cma

CN - Cm 8e 8 e	(188)r
Na

Also, Equation (186) was transposed to solve for

	

8e 	
- Cm o - Cm a(a + aCN = o )

	

e	 (189)
Curs e	Curse

A comparison of predicted and flight values of the ratios in Equation (189) showed
the values of the ratio Cma/Cms e to be essentially the same; however, Cmo/Cmse
differed in line with the discrepancy in 8e . Calculation of the static margin using

Cma/CNa , which was employed in determining Cm o , also showed a discrepancy between
prediction and flight. In the final analysis, it appeared that the major source of

discrepan ^y between predicted and flight longitudinal trim elevator settings was due

primarily to the aifferences in Cm o and Cmse

An illustration of a discrepancy between wind-tunnel and flight data involving

power effects and aeroelasticity is shown in Figure 65. This instance concerned the

F-100 airplane (Fig.16, which is considered to be a relatively rigid aircraft and

has its air-intake nozzle at the nose. As shown in Figure 65, the variation of the

wind-tunnel value of Cn,8 with Mach number has roughly the same trend as the flight-

determined value. However, there is an appreciable difference in level that is well

beyond the difference to be expected due to the values of moments of inertias; values

are known to within 5% at best. The results of an investigation to trace the sources

of the discrepancy showed appreciable moment of momentum effects of air-intake flow

and aeroelasticity effects of the vertical tail. When the basic rigid tunnel data

were corrected for these two factors, fairly good correlation was achieved with the

flight data (Fig. 65) .

A technique in tracking down inconsistencies in wind-tunnel data involving Cn,8

Cnp , and (Cn r - Cn4) was illustrated in Section 7.6.3.

8.2 Effects of Aeroelasticity

The effects of aeroelastic deformation of the structural components on the stability

and control characteristics of the aircraft are of prime concern, particularly i.n

large transport designs, as pointed out in Section 6.3. 'The illustration of aero-

elastic effects shown in Figure 65 represents an intuitive approach in accounting for

a discrepancy between wind-tunnel and flight data. This approach presumes the basic

rigid tunnel data to be correct. It also presumes that aeroelasticity effects are

simple enough to permit reasonably reliable calculation of corrections to the data.

As aircraft increases in size and slenderness, and operate at increasing dynamic

pressures, aeroelastic deformations of the structure assume increasing significance.

The influence of aeroelastic deformations on the stability and control characteristics

is difficult to predict on the basis of theory. The deformations of the various

cot;onents of the structure affect the shock patterns of the airflow which, in turn,
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affect the stability and control characteristics in a much more complex manner than

the aeroelastic deformation of one or two surfaces on a relatively rigid aircraft.

Rigid-model data may be questionable because of the uncertainties in the true rigidity

of the model and model supports and interference effects. Thus, a more positive

approach is required to assess flexibility effects to verify and improve theory and

develop tunnel techniques.

A flight test technique for determining aeroelasticity effects on stability and

control characteristics is outlined in Section 6.3. The technique, as presented, is

somewhat simplified in that the lifting components of thrust is considered to be

negligible. This approximation simplifies flight planning, monitoring, and making

on-the-spot changes in flight conditions of W and h for maneuvers at constant M

approximately constant C u due to aerodynamic lift alone, and constant center-of-

gravity. An average of the postflight-determined values of

W - Tsin B
CL =

qS	
(190)

for the test points on the "constant M , CL , and center-of-gravity line" in Figure
39 - such as points 1 and 2 - will constitute the representative value of CL for
these test points. The maximum deviation from actual CL is within the experimental
error of the investigation. The stability and control derivatives of these points,

when plotted against dynamic pressure, define a curve which shows the effect of aero-

ele;sticity on the derivatives. The curve represents only one M	 CL due to aero-
dynamic lift alone, and center-of-gravity condition.

8.3 Stability Criteria

Considerations of the stability of an airplane include not only its inherent

stability, which is its behavior without pilot inputs following an initial disturbance,

but also its behavior in response to pilot inputs. In general, the stud y of the

stability of an airplane involves the effect of derivatives on the increase or decrease

of the stability. It is an objective study. When the stability of the airplane is

considered in the light of the degree; of pilot's acceptance of the airplane, and pilot

ratings are introduced, the study becomes subjective and is referred to as a handling-

qualities study. As may be readily surmised, one study complements the other.

Any extensive discussion of handling qualities, which integrates the pilot as a

human servosystem constituting a feedback loop in the control system, is beyond the

scope of this paper. It would involve the study of human factors and is affected by

the pilot's technical background as well as the depth of piloting background, the

types of aircraft flown, orientation and types of displays in the cockpit, and general

cockpit enrronment. The art and science of handling-qualities investigations is

covered extensively in the literature (References 57-65, for example).

8.3.1 Longitudinal Short-Period Oscillation, cvn

The response of the airplane to an elevator input or gust disturbance will normally

include a longitudinal short-period oscillation. An oscillatory condition by itself

indicates a static oscillatory stability, Positive, neutral, or negative dynamic

oscillatory stability is dependent upon the presence of positive, zero, or negative

damping characteristics, respectively. A study of the longitudinal characteristics

involves both static oscillatory stability and damping.
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The undamped natural frequency ( static oscillatory stability) is a measure of the

longitudinal stiffness of the airplane - analogous to a spring -mass system. This
longitudinal stiffness is represented by

wn = - (Ma + MgLa)

(191)
q Sc

Cmaq + CmgCNa 7tµc 
I 

It will be noted that for any one mass distribution and configuration of the airplane,

the longitudinal stiffness is a direct function of Cm OA primarily. Thus, the oscilla-

tory frequency of the airplane will decrease with decreasing Cma and decreasing q .

It should be noted that when Cm a is zero, a degree of longitudinal stiffness

(static oscillatory stability) will be present as evidenced by the Cm gCNa term in
the equation, providing Cm 	 is negative - a normal situation. The contribution of

this term to longitudinal stiffness will increase with increase in CN a , decrease in

mass -density parameter, µc , and increase in dynamic pressure, q .

In maneuvering flight, the pilot feels the effect of longitudinal oscillatory

stiffness in the stick force per unit normal acceleration.

8.3.2 Longitudinal Short-Period Damping

The longitudinal short-period damping is expressed either as the actual damping

coefficient or as a damping ratio. The damping coefficient ( ft lb sec/rad) is dependent

upon the aerodynamic derivatives CN a and ( Cmq + Cma), as shown in the equation

2 ^wn	 rZ(X + (Mq + M&

CN aqS	 qSc 2-	 mV - (Cmq + Cma) 2VI

	

Y	 (192)

_	 S	 Sc 2
CNapV 2m 

(Cmq + Cma) 
P V
 41

Y

A decrease in CN a or the negative value of ( Cmq + Cma) will decrease the damping co-
efficient. 22cvn . It :sill be noticed that the magnitude of the coefficient is also
dependent upon the mass density of the air ^ and airspeed V , as well as upon the

airplane ' s mass characteristics and configuration.

The damping ratio ^ as may readily be surmised from the preceding, is obtained from

	

- 2 ^cvn 	Za, + (Mq + Ma)

	

2cvn 	2v/--AIa

(193)

CN ^p	
SIY - (Cm + Cm,)

3P	
Sc 

c	
i

a	 [jM_

	

 2c	 q	 °^'

	

[:32Iyj
^(-Cma),
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Thus, for any one mass characteristic and configuration of the airplane, the damping

ratio Z is a function of 3p , CN, , (Cm q + Cma), and 3(- Cm(x)

8.3.3 Longitudinal Short-Period lead Term, -ZrA

The parameter - Za , which is a function of CNa , is a longitudinal short-period
lead term which affects the lead of the pitch rate q with respect to the control

input 8e and angle-of -attack as shown by the transfer functions

1	 Cms qSc CNagS /	 1

	

s + -.--	 ---^—	 I s + —
q(s)	 -	 `^	 TB	 Iy	 mV	 ^	 TB

(194a)
^e(s)	 s2 + 2^cvns + Wn	 s2 + 2Cwns + cvn

and

0((s)	
_	 'Se	 (194b)

^ e (s)	 S2 
+ 2 ^wns + 

Wn
As shown in Reference 64, the time for peak amplitude of q due to a step input de-

creases with decreasing -Z a . If -Za becomes sufficiently small in comparison to
W  , the response to a step input can be disconcerting. It may be characterized in a

tracking task by an initial increase in pitch attitude of the airplane followed by

dwell, possibly with the airplane aimed at the target; but, then, with no further

control input, there will be a subsequent increase in the attitude. This type of

behavior may give the pilot the feeling that the airplane is unstable.

A low value of AX may cause the pilot to experience a looseness in pitch, pitch-
rate overshoot, lack of control precision, and higher control forces. On the other

hand, a high value of -Za may cause a tendency to overcontrol, exceed normal g
and, in general, give the impression that the control is too sensitive.

8.3.4 The Dutch Roll Oscillation, wn

The Dutch roll mode of oscillation, represent ' by the following equation, based

on an approximation of the second equation in Equations (78), is a measure of direct-

ional stiffness

^n = Np - L^' sin a+ (Nr + L1)Y'3

(

Lpn.^
- 

OL CI
Q + IXz Cl^ qSb .

I Z	 I x	 IX z
(195)

Insofar as derivatives are concerned, Cn,8 and Cl Q are normally the ( ,aly derivatives
of any consequence in defining the frequency of this mode of oscillation,, Of these

two derivatives, Cna is dominant. It should be noticed that when the static direct-
ional stability is zero (Cn,8 = 0), there is still some degree of oscillatory stability,
providing the effective dihedral is positive (Cl R =	 ) and the pror'ict of inertia is

negative, or vice versa. Some aspects of the controllability of tb ,:,i airplane when

Cn,8 is near zero and slightly negative are reported in Reference 60.
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8.3.5 Dutch Roll Damping Coefficient, 2^wn

The Dutch roll damping coefficient represented b, ► the following equation, based on

an approximation of the first equation in Equa tions (78), gives the meavure of the
dynamic stability of the Dutch roll mode

2^wn = - N I - YA - Lp

2	 2

2VI (Cnr - Cn4) + CM + 2VI Clp ^
	 (196)

z	 x

This equation shows the interaction of the more dominant derivatives affecting the

damping ratio. The equation is more accurate than that shown as Equation (182) in

that it includes Clp .

8.3.6 Dutch roll damping Ratio, ^

On the basis of Equations ( 195) and (196), the damping ratio can be approximated to

at least the first degree of approximation by

^Nr -YQ - Lp

2v/N_ 1'

bC	 b	 i

2VI (
C-, - Cnp) + mVb + 2VI C lp (&Sb)2z	 x	 ('197)

2 CnA + Ixz Cl 2
I z	 1 x 1z Q^

The Dutch roll damping ratio is strongly affected by Nr and NA	 An increase

	

in the negative value of NT not only increases the damping ratio, 	 but also

improves the stability of the spiral mode. Increasing ^A not only increases direct-

ional stiffness but also the Dutch roll .amping ratio, which may be desirable. Decreasing

N  increases the bank angle that is induced by a given amount of sideslip in the Dutch

roll motion, a characteristic which could be detrimental to maneuvering control of the

airplane. In addition, decreasing NR increases the amount of Dutch roll disturbance

in the roll mode response to a step aileron input - as reflected in the parameter

(wO/wn)2 to be discussed - and can disturb and mislead the pilot.

8.3.7 Stability Criteria for Aileron-Only Roll Control, w^/cvn

The roll parameter, wo/wn , is the roll numerator to Dutch roll frequency ratio of

0/Se response function. It is represented by

rv^ = 1 - 1- ^^a i
wn	 Na ga

CnS	 Ixz	 C1Q 	 I xz	 2—^ +	 + -
C1 S 	 Iz	 Cn	 Iz=	 1 -	 a	 p	 (198)

1 + I xz C1,8

I x Cap
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The parameter is a measure of the amount by which the Dutch roll motion is excited when

aileron inputs (rudder fixed) are made by the pilot. It is particularly important in

the roll tracking task in which the pilot-airplane combination can exhibit considerably

different lateral-directional oscillatory tendencies than would be exhibited by the

airplane alone. It provides a good index regarding the increase or decrease in stability

of the airplane during the aileron-alone roll tracking task.

When wo/wn = 1 , there is no yaw due to aileron inputs and there is little or no
Dutch roll motion iii response to aileron input. When wWwn < 1 , the pilot-airplane

combination in an aileron-only tracking task will exhibit an effective damping ratio

in roll tracking tasks greater than the Dutch roll damping ratio. When wWwn > 1 ,

the effective damping ratio will be less than the Dutch roll damping ratio and the roll

that results from aileron input is augmented by the roll due to sideslip; this can

cause stability problems in the roll tracking task, especially when the Dutch roll

damping ratio is small and 101/1,8I is large.

Equation (198) shows significant interaction of stability, control, and inertia

parameters affecting wo /wn . The interplay of Cn s a , C1 ,8 	 and IXz is important,
inasmuch as these parameters may have either plus or minus values. Normally, Cnsa

and Cie are the controlling parameters; thus, if the effective dihedral is positive

(Cie < 0), Cns	 will have to be adver-:e (Cns < 0) to assure 
60
0/wn < 1 and a

stabilizing action during the roll tracking task.

8.3.8 Dutch Roll Stability Criteria, 	 10111,8

The amplitude ratio 10111!81 is a characteristic of the Dutch roll oscillations

and is thus independent of any excitations of control inputs. Its mathematical relation-

ship to derivatives is given by

NrDr2 2
e 
r z

Lr 
i + E rg

1,81	 NR	 El
e 1 + P

Nr
e J

(199)

The complex interaction of the derivative parameters makes it difficult to determine

pilot sensitivity to 10111,81 . However, if the airplane has high directional stiff-

ness (con > 1) , iow 1 01 11 ,81 , reasonable ^ > 0.1 , and adverse yaw ' ie to aileron,
the pilot generally does not bother to coordinate turns by using rueler, inasmuch as

the lateral-directional stiffness keeps sideslip small and the low value of 10111,81

keeps roll due to sideslip small (Ref.64).

If 10111,81 is large (of the order of 4 or more), rudder coordination becomes

necessary in maneuvering to keep sideslip small in order to minimize the roll due to

sideslip. If the airplane is characterized by favorable yaw due to aileron (Cns a > 0)

as well as high values of 10111,8I , the pilot uses a cross-coordination of rudder

and aileron controls (right aileron and left rudder) to prevent excessive rolls in

maneuvers (Ref.64). It is not difficult to achieve coordination of controls, pro-

viding the airplane is not excited by external disturbances. However, because this

cross-coordination is unnatural, the pilot is more critical of favorable yaw due to

aileron (Cns a > 0) than adverse yaw due to aileron (Cns a < 0).
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8.3.9 Poll -Subs idence Root, 1/TR

The roll-subsidence root, 1/T. , is influenced most significantly by the parameters

shown in the following equation, which is based on the third equation of Equations (78)

1	 L^	 g
ti

R	
P Np P V)	

P

(200)

gSb2

_ — Clp 2VI X .

As shown, the roll subsidence is dominated by the damping - in-roll derivative, C lp .

The roll-subsidence root has a direct influe! ,c:, on :ne steady -state roll rate in

response to a specific aileron deflection. When the root is large, the damping in roll

is high rind the pilot controls the bank angle by commanding and adjusting roll rate.

When it is small, the pilot controls bank angle by commanding and adjusting rolling

acceleration.

8.3.10 Spiral-Divergence Root, 1/Ts

The spiral -divergence root, 1/T s , is affected primarily by the parameters shown

in the following equation, which is based on Equation (83),

	

1	 g (LpNr — LrNA

	

T	 TR V	 N 	
(201)

Ts	 Q

The spiral mode can be convergent, neutrally stable, or divergent. Thus, for the

purpose of defining the spiral stability boundary, the equation can be shown as a

spiral stability criterion

LpNr — NpLr	0	 spirally convergent

or, as an approximation,	 = 0	 neutral spiral stability	 (202)

	

ClpCn r — CnpCl r	< 0	 spirally divergent .

It will be noticed that spiral stability is dependent upon the interaction of four

derivatives. Since CnQ is normally positive and Cn r and C1 ,8 	 normally negative,

it is well to have Clr negative: Under any circumstance, ClsCn r should be greater

than CnQCl r for spiral stability.

A divergent spiral mode will result in the airplane performing an increasing nose-

down and tip^►tening turn accompanied by an increase in speed and loss in altitude.

8.4 Flight. Guidance

Research vehicles that incorporate new concepts of aerodynamic configuration, or

research vehicles designed for flight in previously unexplored regions of flight (Mach

and altitude), usually have a considerable amount of wind- tunnel investigations per-

formed on models to check their stability and control characteristics. Despite the

k-
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comprehensiveness of the tunnel tests, there wall be gaps in the data. In addition,

there is normally a certain amount of reserve in placing complete confidence in the

data. As a result, the flight envelope is built up gradually, using stability and

control maneuvers to obtain flight-determined stability and control derivatives to

verify wind-tunnel data.

Agreement in the comparisons results in a more rapid buildup of the flight envelope;

disagreement involves a slowdown until the flight data can be reduced and cautiously

extrapolated. The most representative values of the stability and control. character-

istics are used in stability criteria and are programed into a flight simulator, in

which the pilot simulates the intended mission and emergency conditions to reduce the

amount of risk that would otherwise be involved in actual flight. The simulator

normally uses the general equations of motion for a mathematical model,

When roll-coupling instability became a physical reality with the loss of several

F-100 airplanes, considerable effort was expended at the NASA Flight Research Center

in flight and simulator studies of the problem 66,67 . Because ^i the complex nature

of the motions, guidance of the flight program using analog computations was desirable.
Ie

	

	
In a roll investigation of this type, a small increase in aileron deflection can pro-

duce large effects on airplane motions. It has bee,- graphically demonstrated on several

occasions that flight guidance based on linear e y ^rapolatioi J flight data at small

aileron deflections can be highly misleading and dangerous	 Figure 66 shows a repre-

sentative comparison of the measured excursions in angle , af-attack and angle-of-sideslip

obtained in 360 0 rolls with those predicted by using flight-determined derivatives.

The good agreement has been demonstrated in most instances in which flight-determined

derivatives have formed the basis of calculations. Consequently, the use of such

guidance in flight planning has proved invaluable. The use of wind-tunnel and theoreti-

cal derivatives in analog studies has not been as successful.

9. CONCLUDING REMARKS

This paper has attempted to bring together the various factors that should be known

by the engineer who is concerned with the determination of stability ar:d control charac-

teristics from flight data o. the use of these flight-determined characteristics in

handling-qualities research.

The discussions have been tempered with practical considerations. The various

I	 factors discussed and the observations made are the result of experience in working

with flight data, developing techniques, comparing the data with predictions, and

'	 investigating the causes of discrepancies,

The theoretical background, approximations, and limitations of the mathematical

relations employed have been given careful consideration. The problems encountered

with several of the more sophisticated techniques have been presented with the hope

that any new comprehensive technique that may be proposed will take into consideration

some of the practical problems with instrumentation and development of maneuvers to

properly condition the flight data for the technique.

The pulse maneuver, properly executed, his been Found to be generally adequate in

exciting motions required for stability-derivative analysis as well as for determining
the characteristics of the oscillatory modes if adequate instrumentation and alinement
are provided.
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For longitudinal-derivative analysis, simple equations utilizing period and damping
of the oscillatory mode of the airplane were shown to be as satisfactory as more com-
prehensive methods.

For lateral-directional derivative analysis, the graphical time-vector method was

shown to be the most satisfactory manual method of analysis. Simple approximate methods

are useful if applied with caution.

Control effectiveness can usually be obtained by relating the peak acceleration to

rapid control inputs. Consideration must be given to aerodynamic contributions if

reasonable accuracy is to be realized.

The analog-matching technique for determining derivatives from flight data was

shown to be a valuable method of analysis for use in the absence of data suitable for

analytical techniques. However, the analog-matchl.ag technique has limitations in that

data must be properly conditioned in order to obtain unique answers. The accuracy of

the results obtained from this technique and the effect of the type of maneuver on the

accuracy may well provide the clue to what may be expected from sophisticated techniques
I•	 that may be proposed.

The use of flight data to verify wind-tunnel results and theory was discussed and

illustrated. The possible inadequacy of comparisons of flight data with predictions

for determining aeroelastic effects was pointed out and a flight-planning technique

explained to permit determination of aeroelastic effects from flight data alone.

Pr`sent instrumentation and methods of analysis are adequate for extracting deriva-

tives from flight data for use in most flight-guidance simulator studies and detection

of claNracteristics which have not been predicted in the wind-tunnel.
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TABLE I

Transformation of Derivatives from Stability to Body Axis

CNa = CL a COs a + CDa sin a + Cc

CCa = CD a cos a - CL a sin a - CN

Cma = ( Cma) s

CnA = (Cnp) s cos a + (C l Q) s sin a

Cnr = ( Cnr)s cos t a + (Cl p )s sin e a + ( Cn p + C I d 8 sin acos a

Cn4 = ( Cnp)s cos a + (Clp)s Sin x

Cn p = (Cn p )s cos t a - ( C I ds sin e a - (Cn r - Cl p)s sin acos a

Cn s = (Cns)s cos a + ( C IS)s sin a

C Ip = (C lp)s cos a - ( Cnp)s sin a

Clr = (CIds cos t a - ( Cn p)s sin e a - ( Cnr - C lp)s sin acos a

C IA = ( C IQ)s cos a - ( Cnp)s sin a

CI p = (CI p)s cos t a + ( Cn,,)s sin e a - ( Cnp + Clr)s sin a cos a

C is = (CIS)s cos a - ( Cns)s sin a
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TABLE II

Transformation of Derivatives from Body to Stability Axis

CLa = CNa Cos a - C C, sin a - CD

CDa = C% Cos a + CNa sin a + CL

(Cma)s = Cma

(CnQ ) s = CnQ Cos a - C lQ sin a

( Cnr)s = Cn r Cos t a + Cl p sin e a - (C lr - Cn p ) sin aCOS a

( CnQ) s = CnQ Cos a - C lQ sin a

(Cn p)s = Cn p Cos t a — Clr sin e a + (Cn r — Cl p ) sin aCOS a

(Cns)s = Cns COs a — Cis sin a

(C i Q) s = Cl Q Cos a + Cn Q sin a

( C lr)s = Ci r COS 2 a — Cn Q sin e a + (Cnr — Ci p ) sin aCOS a

(C1Q)s = Clp Cos a + CnQ sin a

(Cl p)s = Ci p Cos t a + Cn r sin e a + (Cl r + Cn p ) sin aCOS a

( C ls)s = C 1 Cos a + Cns sin a
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TABLE III

Transformation of Moments of Inertia from One Axis System to Another

body to Stab i l i ty

Ixs = '(Ix + I z) — 2(Iz — Ix) cos 2a — Ix sin 2u

IYs = iy

Ins = '(Ix + Iz) + 2(Iz — Ix) cos 2a + Ixz sin 2a

Ixszs = 2 (I x — Iz) sin 2a + Ixz cos 2a

Stability to Body

I x = 2(Ix e + Izs ) — 2(Izs — Ix 8 ) cos 2a + Ix szs sin 2a

Iy = IYs

Iz = 2( Izs + Ix s ) + 2(Iz s — Ixs ) cos 2a — Ixszs sin 2a

Ixz = Ixszs cos 2a — 2( lxs —I zs ) sin 2a

Principal to Stability

I xs = 2(Ix0 + Izo), — 2( I z0 — Ix o ) cos 277

IYs = IY o

Izs = 2(Ixo ; Iz o) + 2(Iz o — Ix o ) cos 277

Ixszs = 2(Ixo — tz o ) sin 277

Stability to Principal

Ixo = 2(Ixs + I zg ) — 2(Iz s — Ix s ) cos 277 + Ixszs sin 277

IY o = IYs

Izo = z (Ix s + Iz s) + 2(Iz s — Ix s ) cos 277 — Ixsz s sin 27)

Ix o z o = 0 = Ixs zs cos 277 — 2(Ixs — I zs ) sin 277

(Continued)
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Principal to Body

I x = 2(Ixo +Iz o ) — 2(I zo — I xo ) cos 2E

Iy = Iy o

Iz = Z(Ixa + Iz o ) + 2cIzo — Ix o ) cos 2F

Ixz = — 2(Ix 0 — I zo ) sin 2E

Booty to Principal

Ixo = 2U x + Iz) — 2(Iz — Ix) cos 2E — Ixz sin 2E

Iy o = Iy

Iz o = 2(Ix + I z ) + 2(I z — I x ) cos 2E + I xz sin 2E

Ixozo = 0 = Ixz cos 2E + 2( I x — Iz) sin 2E
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TABLE VII

Desirable Characteristics of Instruments for Free-Oscillation Maneuver

Function Range

Sensitivity

(per inch

deflection)

Undamped

natural

frequency (c/s)

-

Dram ing

ratt io

" 1

a , deg t10 5.0 8 or more 0.65

deg t10 4.0 8 or more 0.65

q radian/sec t0.2 0.2 8 or more 0.65

q radian/sec 2 ±0.5 0.5 8 or more 0.65

r radian/sec f0.1 0.1 8 or more 0.65

r radian/sec t t0.4 0.4 8 or more 0.65

t0.2 0.2, rudder pulses 8 or more 0.65
p radian/sec

t0.6 0.6, all pron pulses 8 or more ,	 0.65

t0.6 0.6, rudder pulses 8 or more 0.65
p radian/sect

t6.0 6.0, aileron pulses 8 or more 0.65

as	, g units ti 1.0 8 or more 0.65

t0.3 0.3, rudder pulses 8 or more 0.65
a t g units

t0.6 0.6, aileron pulses 8 or more 0.65
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Format used by NASA Flight Research Center to Record

Actual Conditions at Time of Maneuver
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TABLE IX

Altitude, a, Reference Cnp CnA , 
per radian

Airplane M
ft deg (Eq.(6-53))

_

Equation (6-54)	 Equation (6-56)

F-104 0.94 41 000 4.9 0.46 0.46 0.57

YF-102 0.7 0, 40,000 6.6 0.054 0.043 0.106

TABLE X

oVM/h 15/0.8/60 3.5/0.8/40 6.6/1.2/60 14/1.6/80 10/2.0/q0 5/2.0/80

Analog value -0 . 084 -0.021 -0 . 032 -0.074 -0.0164 -0.0034
of	 ClQ

Analog value 0.259 0 . 641 0.640 0.367 0 . 445 0.508
of	

CnA
Equation ( 166) 0 . 266 0 . 661 0 . 663 0 . 360 0 . 434 0.498

Equation (175) 0 . 278 0 . 679 0.674 0 . 383 0 . 451 0.504

TABLE XI

alM/h* 15/0.8/60 3.5/1.0/40 18/1.2/80 6.6/1.2/80 14/2.0/80 1o,^2.0/80 5/2.0/80

Analog value -1.58 -1 . 734 -1 . 71 -1.92 -2 . 09 -2.55 -2.58
Of ('Cn r - Cnp)I

Equation -2.50 -1.43 -2.96 -1.81 -4.77 -2.76 -2.68
(184)

Equation -4.22 -1 . 647 -4 . 69 -2.36 -8.46 -4 . 41 -4.39
(183)

I

• h = altitude/1000
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(a) Euler angle perturbation referred to the x ry rz r basic reference frame

Center of gravity - xba
—Txr

II	 If

i— - — I

(b) Euler angle p^rturbation referred to xboybozbo axes serving

as a secondary spatial reference

F'ig.4 Several methods of considering Euler angle perturbations
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Fig.5 Relation of p , q , and r about body axes and Euler angle rates	 B ,
and ^
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Fig.6	 Pertinent relationships of rotating mass for gyroscopic couple consideration.

Rotating axis parallel to xz-plane of symmetry

Fig.7 An example of the influence of ranges cf disturbances such as (0,3) 1 and

(0,) 2 on the value of a derivative
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F'ig.10	 Direct propulsive effects of ,het engine

F'ig.ii Jet-exhaust inflow effect on horizontal tail
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'O a	 à)to, .c .,-1
	
+'

.	 o V
a ,.i
w

UII

C14
d^

00

0D O '"	 O	 `; N	 p	 N Go	 d O N	 O
O

N

v w
a m

of N

\
01

N V
.Q	

c
^,	 co c

0 0

139



M = 1.245

20 n__	 I
ayd , deg 0

M = 0 948
-20

Flight
-- — Analog simulation

0 -
M 1.614

04

r,	 ^

n %
	 radian/sec 0

-.04

.8 

A f\ a a
0 T-vP,

radian/sect

140

	

.2	 -

r '	 2 0
radian/sec

,21^---
vvv vt	 Y vI	 I	 1	 1. viv

- A A AA in ji A A
v VI V IV	j viv

A A Ar
v I v i

v	
[ kil I: v IV

P,

radian/sec

.4	 -	

1-
o	 ^^
 vv

-.4 1 ,--_1	 1	 1	 — Y I	 L

.10

at,g	 0

-.10

2

/, deg U

-2
0	 2	 4	 6	 8

t, sec

eJ

A	 A A

 ̂ /	

_j	 V, v IV I

0	 2	 4	 6	 8	 0	 2	 4	 6	 8
t, sec	 t, sec

Fig.42 Typical time histories of the lateral and directional response characteristics

of the test airplane resulting from abrupt yaw-damper deflection



141

I ".

`%ft

so dop
dop

1= -=k----^ I----C-A

I	 II

ICI

I	 ^

I	 +^--- Y

lil

I	 IY

(a) Wings-level sideslip
	

(b) Constant-heading sideslip (r = 0)

F'ig.43	 Comparison of wings-level and constant-heading sideslips

-4



i

AA

142

Fig.44	 Relation of small-perturbation rolling velocity and acceleration vectors to

small-perturbation roll-displacement vector in a transient oscillation



143

,o

V

a

Cd

0

u
0

u

w
E
O

O	 ^"w
VI
a^

00

O^	 G
v Cd

a,	
uN

Cd

co

Cd

N	 c
^-1

a
w
c

fz
0.2

+-1
-n	 Cd

a^

a	 n)n

LO
,^	 rr

00

aa	 a



144

50
	

Film scale factors

40
	

!gip	 0.511 radians/sec/in.

AP	 Ar — 0.126 radians/sec/in.
30
	

Da t — 0.490 g /in.
ON 	 24.3 units	 4P — 10.3 degrees/in.

20	
X18.0 units ^.n

Aat

10
8.8 units

0o

5 units

do	 1 '/z = 4.4 7 

jAp)	 24. 3 	 0.511
X	 = 5.48

J Ar (	 18.0	 0.126	 JA I	 5.5	 10.3	 1
^	 x	 x ---- = 0.436
i	 -	 x 0490 - 1.91	 1 Ar)	 18.0	 0.126	 57.3

Ar (	 18.0	 0.126
I

5	 6	 7	 8	 9	 10	 11	 12
t, sec

F'ig.46	 Determination of I-ime-to-damp to one-half amplitude and amplitude ratios

from free-oscillation data

5

4

3

2

1



III	 no.

^°^ ac

N `	 • ^ O^1
I

\	
^I Q

II

I ^ \

II_ \

Q Q	 \

O

a,

^^ Q

,Irzt,

a

^a
^a d

..	

ItH

^ 01

Q 4

o+

' Q'1

Q Q

^IQ7

I^
s'

^^ Oy
d a

a^

^a

tl
r	 X 1111

^	 111^1`11^t•

.a

145

MII
Mk1 ^l	 O
N	 ^

a v 3	 ..,
^^o, '^^'	 rn III	 ^

Qr

II	
v v

'a q d Q	 Q

anI 1	 .^

g a	 a
0

^bD
a ^

v
O

O

^9 I

11	 O
_	 W

i,
O

\,	
?ter	 U

Cd

N	
O

II	 ^)

Qc ^	 ' a 4as	 --
I



I
o,N
II

_Q a

VJ

N
01

Q

I I
. a Ia

O
1

II

vJ

146

1 1.

.t.

1M̂II
11

^C Of
O1 

Q'o
M
_II

Ia a I

e --1 d

N N
I I

d Q

L
t4

+i

v

ala
xlo^

I.0,1

v

I lk
I10trw

v
^L
as

Q)

Ili

Qa

i

v

cla

VJ

^Ia

CV
1
i

41C

N
l

v
cl4

^N0̂
DI
I.

Q Q

N
I

of

I I

N
4.

cr

X1 'CM

I

N
1	 N

c	 1
^	 ^•	 II

_II
i

^^^	 ^L	 ad
4 4	 9 4	 N^fi

m
O.,.q
4J
0
c.

a^b

a
ti

w
a^ .tea

od

c^

`y b
cn o

•^ a^i

c1 En

4 .d

— rn
c4-)

4

w
O

O
•,-4

a
O

^4
O4)

	

e	 e

	

p6+	 ,^Q	 I

I 1

04

cu
.rj
w



i

147

I

AS e
I

I
I

I

Iq-

Aq	 f

I
I
I

Aa	
I

0	 1	 2	 3

t, sec

F'ig.49	 Typical determination of flight quantities for the evaluation of longitudinal

control derivatives



1

I
I

x a^
^	 I

A3-7

C 1°==is76
`T 1"

.2 
1

1 48

	

C- aI	 _ C .^ac G ' _	 t	 c q I 	_
LT O	 ^An	 hoc ® 	 ^^ CN•^_"o L^ _Q

	

! ^I	 4	 141	 Q	 a^2vi ^ gs

A 

-89,20

aOC

C _ 113-7 = 1,57
^o .. 3 4, 3S'.^.
I'd 50

(C/V 
+ CN.	 ^•n6s3 _ ®.00

 ^) _ `- 	-	 X8.66
ZV

,

F'ig.50 A gr aphical time-vector solution for CNa and ( CN, + CNa)



lQ

5

Aq, deg /sec 0

-5

-1 fr

3

2

4a, deg	 1

0

-I

^I

1

1	 ^

-- , SAS off

---SAS on

149

-6

-4

as h deg -2

0

2

10a

50

A4, dog /sac'	 0

-50

-100

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

N, sec

F'ig.51	 Time histories of longitudinal pulses performed on the X-15 analog with the

stability augmentation system engaged and disengaged ( from Reference 42)



n

00000
+ 	 O O 000

0 0 000
OO in- V O
N M Iq L/1	 •O

OO O a.d

40

•- 4JV

.^C

w0

W

e
Fr M

QO0

.,4 r-bw
N Q	 F^

wA,
co

tr

0 0
U

4^-r

Fr

i2 .a

O y S

•r-1	 .rn
4-i	 U
4-r	 Cd
U ze

a 0

w
•,.q

rn ^
V-r

4-40
00

d

d ^'/

d /
I

1	 1

e

1

^	 e
I
,

O

O

d'
,I

/

/
i

/
/

^a
1	 ^	

P

1

1

O

d

150

'^ a N O ^O

Zu

N	 O	 N	

LN

01	 '

►-	 a
tl V



3

't, f, a,	 I	 ai	 -r	 ke • 	 a,rpIEu,,,

Kt'

Ats

, 

Nb^ tYlJ ^^

Cy	 f 1 rt (I

71 and anJ 4

IP
1,2,	 and 4

\
2,3. J

I
and 4.	 I and 4[	 _

IA

4.6

3.

-A0,2

2.8
P

2.

2.0

1.6

3

2

TI/2

2 ".Q

b

-6 P	 13 14 15 1-6

.40

13

.2

,I

,C

151

M

Fig.53	 Longitudinal period and damping characteristics of the D-558-II airplane as
functions of Mach number and altitude



-.0

-.0

-.0
CM

-.0

2

4

6	 •

m^	 ♦

5	 —

.5 !	 .6	 ID	 1.1	 1.2	 1.3	 1.4	 1.5	 1.6	 17

-.3

-.2

-.I
Cmq` C

-. 0

152

.12

.10

.08
CN&C

.06

04

.02

0

s r	 .3,

3, iwd	 JrJ...t

i ' ^ and ^ 	 1 	 '  3 	 ani 

3-1	 Z : ano 2

Power off	 Power on	 hp, ft

—___- -.-^,- -
(:)	 2,j, 000

^J	 n 	 30,000
Q	 ♦ 	 4b,000

Q	 55,000
60,000

Urtflagge1 symbols, all-rocket airplane
Flapgei symbols,rocket and het airplane

M

Fig-54 Variation of static and dynamic longitudinal stability derivatives of the

D-558-II airplane with Mach number (from Reference 43)



NOi

Of
^S	 01

E
V 40a

MO Oi

153

i.

M

O

i

c
c

c

3 q

0
^O

II

d

O

0
0	 O
N

OO
4-	 }

O O

11	 II

C	 -C
00

O O O Oi

1 W
GO ^

E
V a,

CL

c
O

4A on
Q
N

O

00
N

1
v

M	 O
o	 E

-c
	 Ol

N	 O
a O
_E ^.

N Q

0

%O	
0

O

11	 0 N

d	 N
O

O
+- 0

0 O
O
II	 II

a .c
00

N

NO

M

N	 U
M

b
A
3

co

N

3

a^

a^
N	 '^

w
UUWW
UO
ri

cd
w

"d
cd
w

^O	 ON w.--4
O
^ U

N
N	 ^

U
W
N
b

i

W
00 U

.H

w
w
O

o

c,
cdae
0
U

O ►h

C:.

d
c
C

V
c

3

f^



.1%

Asa I
I
i

i

AP	
I
I

1 I

I I

I

AP^I
I

iI
I

e^	 I
i
i

I

1!
As a f^

^I

II
II

	

A •	 I ^

	

r	 I

I^
II
I

I

I

I

Ar

I

154

Fig.56	 Typical determination of flight quantities for the evaluation of lateral

control derivatives



-.04i

04

0

C1(3 -

per radian

155

.10

.14

.12

	

r^	 \

.10

C 	 per radian	
.08 \
.06

	

	 \
Method

Time vector
.04

Steady sideslip, equation (169)

02	
Equation ( 166 )

--^ Simple frequency, equation (1 68 )

0
.8	 1.0	 M	 1.2	 1.4

Fig.57	 Comparison of Cnl8 as determined by several different approximate methods
A	 with the time-vector method

WF

	

-.08 1	' 	 '	 '

	

.8	 1.0	 1.2	 1.4
M

Fig.58	 Comparison of results of determining ClQ by time-vector method and steady-

sideslip equations



ff s

156

3Irlz_1	 1 L4_0 	 C. n 01 z ^	 b l°I°I L	 _
gSb l°rl rr ^Sb I°rI	 pr — n^Iorl ^r _ C	

b Iarl
np2VI ^^ ^Pr — CCnr Cn^^ 2V1laki L^ir'^

17P lap l - 	J	 °r	 - I Iorl -0,_C	 D.o043	 ^5b I -	 0370

r

I

1

r3 earl _
^- ^ Sb (a r I = 0.1 183v t9I-Cn^ art

	
0,143

t'

1	 ..

qlpr = 262.4
0

 1

71
— (Cnr-0079) 2 = U,O/38

Co _ 0,4 7-7

9 0t ^d

ar
i

Pr -136,6'

op	
goo+^d
	 ,o p

(a) Determination of Cn,e and ( Cnr — Cn4)

Fig.59 A typical graphical time-vector solution of yawing and rolling stability

derivatives (continued)



0 i^
°P IIX: I^,rl

Sbie^l
-0. 0063 _CIr A=-o.002s"

157

Ix lopl 	
-

gSbler^	 Pr I--
^`'rl L 	-

Sb^A	 r^
C'L ^ _

1^^A V*	 gr
C'	 'd Idnl  ^ 0,	 —

tp 2V1 ark	 PP
C•	 b	 Iarl
lr 2V

L 
^i-rlord

^f, = -262.40

1 `. ^,Vr -136.6'*

IoP	
90+^^	 ^

I

(b) Determination of Cl,,

Ix In,ci 1 _
$Sh (n^ 0. 0425"

C1 =-o

alp = ° o, X93

op

b I opl-Cz 
2V Id yl - x•0283

and 
C1 

/

F'ig.59 I. typical graphical time-vector solution of yawing and rolling stability
derivatives (concluded)



5

4

3
P

2

1
.4

.3

.2

I
TI/2

0

-.I

.I 0

J
5

L

0	 ^

Cy.tnder	 ftrrA	
3.2	 1"

4	
++

•-	 ^.7

1

	i3

3• 
2,4	 1

3	 3	 ^- i^3	 3.03,2,4

F wer uri	 Power on	 h , ft
P

4khr
	

co 62,000

PV

p	 Cl

d	 ^	 ^4'd

deg
	 2 F---

158

J^

►'

a

M

(a) Influence of power on the variation of lateral period and damping

Fig.60 Results of graphical time-vector analysis of the effects of power on the

lateral-directional period, damping,, and stability derivatives of the

D-558 -II research airplane (fro.n Reference 43) (continued)



,

Y v,•r	 ft'	 P v, r	 r.	 tip	 f•

	

W	 g

159

C ya

-I

6 ^

n b

_ ^• _
d

e --

.4

3

C nQ 2

.1

Q

—	 -.per ..^

3
3•^ 1 3 4

3.f	 1,2

3 . fi

Cylinder, fi red

Pe/PC	
1.214 ^^

'( 3,4 L 1,2 4 

C1
n
N

—.0

-.I

V

t

r8 A _

^ O

2

Clp -.
d

7	 .8	 .9	 11:0	 1.1	 1.2	 1.3	 1.4	 1.5	 1.6	 17

M

(b) Influence of power on the variation of static and dynamic lateral

stability derivatives

F'ig.60	 Results of graphical time-vector analysis of the effects of power on the

lateral-directional period, damping, and stability derivatives of the

0-558-II research airplane ( from Reference 43) (concluded)



.6

.5

.4

.3

.2

.1

Cn r , per

radian/sec
0

J

j

160

1

l ^1

/	 .01

/ 0 ^
Apr, deg	

.00

-114

I -.01

-109

-.02	 Cnp

-.2
-104

'	 -.03

-.3
	

I

-.04
-99

-.4

-94 05

.5 	 IL

.048	 .052	 .056	 .060	 .064	 .068	 .072	 .076

Crop, per radian

Fig.61 Grid plot used to trace source of incompatibility between flight and

wind-tunnel data



f

4

161

S r , deg 2

0

& Q, deg 0

-2

2

Q, deg	 1

0

2

r '	 0
deg /sec

-2

4

0
r,

deg /sect _4

-8

20

10
P.

deg /sec' 0

-10

12 30

8 20

4 r-	 10

P,	
0	

(R	
0

deg /sec	 deg

-4	 -10

-8 f—	 -20

-12	 -30
2	 4	 6	 8	 10	 12	 14

Time, t, sec

Fig.62 Typical time history of maneuver to determine defivatives by least squaring

the equations of motion (Reference 48)



__-„

162

.2

Ch
ld

0

-. I

Cnr

0

Cn
lb

QA,0 -^

n

-.I

Cndr
PAD"^

1%
Q

J

; ........ . .........................i........
	 ........	 ........f..................;. .......

..... ..., ..	
s,gA.YW '14^j-... ^^ '.ii ^..q... ^...^.,....-^" ....... .. ...........0...

p	 I	 A i	 &	 i

,.........^........ ........ 	 .......:.........^ ........ ,	 .......,........;......... ......... ........,........
FROM MFR'S DATA	 TEST DATA

••....	 W/S • 67.1 LB/FT2 , CG AT 321 MAC	 APPROX. hp w FT , ,.........

	

----hp • 15000 FT, FLEX I BLE	 015000
r....+_ --^-- gyp • 3 5 000 FT, FLEX  I BL E_ 035,000

j	 -------RIGID 043,000
^.........^........f........a...... . ........ 	 .......F........ ^....... ;.........}.................i........

^	 ^	 ^	 '	 I	 II 	 i	 I	 I

....,.^.........}........f. D 	 ;	 .......i.........} ........^.... Q .......... ......... ^........	 ........ I.........
i 0

	

...f..+?. ^........^...^..j......... d...f 	 .................. . .f........t..............

	

o.I

	 i	 t

0	 ......	 ......

-.02	 ......	 ....... .................

M

	

...-	 -----.

I H
.6	 .7	 .8 .9
	

1.0	 I.I	 1.2

MACH NUMBER

(a) Yawing-moment derivatives versus Mach number, stability-axes system

♦ 	 i	 ^	 i	 ^	 r

F'ig.63	 Lateral-directional derivatives determined by least squaring the equations

of motion. as per Reference 43 (continued)



0

C
lis	 •.I

RA 

.2

C, .I
RAD^^

0

-. 1

-.2

-.2

C^

PAD

C
^r

Cz
Cr,

RAD—'

n 4

-. 3

-.4

.01

0

0

....;.......	 .--- •r------- - . 	 15,000 FT .;.......+.. -	 -- 35,400 FT.;.._.

_...... j.	 .' ... _.j........  .......... u^ v^	 _ - 

TES T DATA43,000 FT
APPROX. h	 FT

	

i	 A 15,000

............................................ 	 ...... ................^	 1	 O	 35,000

	

1	 q 43,000
...............	 ,also• 	 ,..L..,.... r..,.1tj6;14

I 	
a	 ........	 ....

.....	 .........................^..a........^...............;........ .......0  . ........ ;.........
O	 FROM MFR'S DATA

........ .......... ......... ......... ............. W/ S - 57 # LB/ FT2 , CG AT 32% MAC	 ...
'°—__— hp ° 16,000 FT, FLEXIBLE

....... ...................^............+..	 ,ow  35, 000 FT, FLEXIBLE ...

--- ----RIGID (ALTITUDE NOTED)

......... ...... ...	 ........  !"'tar	 f^ANQ..^...	 © t	 ^.......

o	 1	 l	 36,000 FT

35 9 000 FT

......	 --•-..	 .......^......I .	 ....t......... ......... ......... E....... .a.........

.......:....................................4....f...^................^... ^.......^t^..... ^.
S

..... 1 _ . - . -....^^ .^^ ^^ .rlw . ^T	 •	 ^	 ^J	 ^• !F• • .^ yr. .: ♦ . . _ .

i

......	 .....	 ......	 .......1..............	 .......

163

........ 4 ...........	 T .......1........ n

.6	 .7	 .8	 .9	 1.0	 1.1	 1.2

MACH NUMBER

(b) Rolling-moment derivatives versus Mach number, stability-axes system

!74g.63 Lateral-directional derivatives determined by least squaring the equations

of motion, an per Reference 48 (concluded)

krt



S Q , deg

Sr, deg

10
flight

- — A ncalog

0

2

0

-2

-4

164

10

	

14	 deg	 0

-10

10
p, deg /sec

0

1

r, deg /sec	 0

1

0
deg	 /'

	k	 -1
I

2

	

i
	 1

c 9	 0

-1
0	 2	 4	 6	 8	 10	 12	 14

t, sec

Fig. 64

	

	 Typical analog-match of a "recovery-from-sideslip" maneuver of an experimental

aircraft. M = 1.84 ; altitude = 49,400 ft



i

165

C nP ,
	 Flight data	 \

per radian

Wind-tunnel data

—^	 Basic

----- — Corrected for flexibility

Corrected for flexibility

and air-intake flow

OL
.8
	

1.0	 1.2
	

1.4
M

Fig. 65	 Influence of flexibility and air intake to engine on the directional :stability

derivative, Cne

r



Rmaxt

deg

0

-20

0

166

sat

ao`

Flight 
Calculated

Full

20

i

ap,	
0

deg
—/ I

-20 ''
0	 -.8	 -1.6	 -2.4	 -3.2

p, radians/set

Fig.66	 Comparison with flight data of results of analog simulation studies of 3600
rolls using flight-determined derivatives


	GeneralDisclaimer.pdf
	1967020806.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf
	0002F04.pdf
	0002F05.pdf
	0002F06.pdf
	0002F07.pdf
	0002F08.pdf
	0002F09.pdf
	0002F10.pdf
	0002F11.pdf
	0002F12.pdf
	0003A03.pdf
	0003A04.pdf
	0003A05.pdf
	0003A06.pdf
	0003A07.pdf
	0003A08.pdf
	0003A09.pdf
	0003A10.pdf
	0003A11.pdf
	0003A12.pdf
	0003B01.pdf
	0003B02.pdf
	0003B03.pdf
	0003B04.pdf
	0003B05.pdf
	0003B06.pdf
	0003B07.pdf
	0003B08.pdf
	0003B09.pdf
	0003B10.pdf
	0003B11.pdf
	0003B12.pdf
	0003C01.pdf
	0003C02.pdf
	0003C03.pdf
	0003C04.pdf
	0003C05.pdf
	0003C06.pdf
	0003C07.pdf
	0003C08.pdf
	0003C09.pdf
	0003C10.pdf
	0003C11.pdf
	0003C12.pdf
	0003D01.pdf
	0003D02.pdf
	0003D03.pdf
	0003D04.pdf
	0003D05.pdf
	0003D06.pdf
	0003D07.pdf
	0003D08.pdf
	0003D09.pdf
	0003D10.pdf
	0003D11.pdf
	0003D12.pdf
	0003E01.pdf
	0003E02.pdf
	0003E03.pdf
	0003E04.pdf
	0003E05.pdf
	0003E06.pdf
	0003E07.pdf
	0003E08.pdf
	0003E09.pdf
	0003E10.pdf
	0003E11.pdf
	0003E12.pdf
	0003F01.pdf
	0003F02.pdf
	0003F03.pdf
	0003F04.pdf


