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ABSTRACT

This report describes the application and user aspects of

the Structural Analysis and Matrix Interpretive System (SAMIS)

Computer Program. It includes a detailed description of element

data preparation, matrix manipulations by use of "pseudo instruc-

tions," and solution printout in solving the problem of a shallow

spherical shell under thermal and pressure loadings and the cal-

culation of the natural modes and frequencies of the shell. It

includes detailed "pseudo instructions" for matrix partitioning

and describes structural partitioning and matrix reduction

techniques.

The details of the associated computer program and the

theoretical basis for the program are contained in two companion

reports entitled, "Structural Analysis and Matrix Interpretive

System (SAMIS) Program Report," JPL Technical Memorandum

No. 33-307, and "Structural Analysis and Matrix Interpretive

System (SAMIS Program: Technical Report," JPL Technical

Memorandum No. 33-31].

- vii -
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I. 0 INTRODUCTION

This document shows the generation and the interpretation of the input and

output data of several problems that were used to check out the Structural Analysis

and Matrix Interpretative System (SAMIS} computer program. The intent in describ-

ing these test problems is to demonstrate the applicability and versatility of the

SAMIS program and to provide sample problems that the user can refer to during

setup of his problems.

The SAMIS program is based upon the direct stiffness method. The program

may be used to compute the deflections, stress resultants, reaction forces and/or

dynamic characteristics of rod, beam, shell or composite beam-shell structures.

The structures may be loaded by applied external forces, gravity loads, pressure

loads or temperature-induced loads.

Consistent with the techniques of the direct stiffness method, the continuous

surfaces of shell structures are approximated by an array of flat triangular elements

called "facets." Adjoining rod or beam structures or shell-stiffening members are

represented by the line element or shear beam element. The triangular plate element

has three apexes which are designated "gridpoints" or nodes. Correspondingly, the

line element has two nodes. This procedure of structural approximation is used

extensively in analysis of complex structures, with versatility in idealization limited

only by the availability of suitable elements.

The intent in development of the SAMIS program was to provide structurally

oriented analysis capability with extreme versatility in application and relative ease

in modification and improvemen t O f the program. For this reason the SAMIS program

was developed as a "chain" system in FORTRAN II, with each major function of matrix

generation and manipulation an individual link of the program. Detailed definition of

the system for the program is contained in the SAMIS Program Document (Ref. i).

The SAMIS Technical Document (Ref. 2) contains detailed data and equations that

define the theoretical basis of the program.

The technical material in this report is presented in four sections. Sections

2.0 and 3.0 present the formulation of the input data and the interpretation of the

output data for the static and dynamic analysis of a shallow spherical shell. In Sec-

tion 4. 0, sample input data for the line element is presented and defined. Finally, in

Section 5.0., two special topics are discussed: (1) the concept of matrix partitioning
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which is required to apply SAMIS to structural analysis of large order systems and

(Z) the treatment of gridpoint discontinuities (in displacement or slope) at joints.

The user of the SAMIS program is advised that in many problems system

capability can be extended and/or structural idealizations can be improved by

ingenuity and deduction. This has already been demonstrated by users of the program
at JPL and several NASA centers. By learning the functions and options of the

manipulative routines, the engineer can apply the program to a wide spectrum of

problem types and sizes. For example, through understanding of the subprogram

for matrix multiplication (MULT) the user can recode a matrix. Or by selective use

of certain subprograms of the SAMIS, a nonsymmetric matrix can be inverted by

Choleski Decomposition (CHOL), which in SAMIS is intended to operate only with

symmetric matrices. Adaptability of the program to handle these and other unusual

problem circumstances is considered one of the principal advantages of the program,

which can only be appreciated and applied after acquiring some knowledge of its

inner workings.

To aid the user in this endeavor this document presents discussion of some of

the test problems used to check out the SAMIS program. Note, however, that the
totality of problems presented here by no means tests every feature of the program,

which required the generation of many small problems to accomplish.
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2.0 SHALLOW SPHERICAL SHELL, STATIC RESPONSE PREDICTION

The problem considered in this section was formulated to test the static

solution capability of the SAMIS. The structure is a thin shallow spherical shell,

assumed material isotropic, that is restrained at its outer edge. Considered in

detail are the boundary conditions of the problem, definition of the input and output

data, and comparison of computed results with results from classical shell theory.

2. i Description of This Problem

The shell configuration selected for this test problem is a thin, shallow,

spherical segment having a principal radius of 28.5 in., a thickness of 0.075 in.,

and a chord diameter of 21.2 in. (Fig. 2. i). The material is AL 2014-T6 with
6

Poisson's ratio I/3, Young's modulus i0.5 x i0 psi, and coefficient of thermal
-6 3

expansion 12.5 x 10 in./in./°F. The weight density ofthe material is 0. 101 ib/in

The shell is clamped along its outer edge and is subjected to two separate

loading states. One state is a uniform pressure of 50 psi applied to the concave

side of the shell. The other state is a uniform temperature rise of IZ5°F over the

zero stress temperature of the shell (70°F), plus a uniform linear gradient of 50°F

through the shell thickness. Due to the clamped edge constraint, the IZ5°F rise in

temperature as well as the temperature gradient induce stresses in the shell. The

two loading states are shown in Fig. Z.Z.

For ease of computation the shell is assumed to be of uniform thickness and

material isotropic. Hence, because both loading states are symmetric with respect

to the principal axis of the shell, the deformation along any circumferential arc is

constant. For this reason only a sector of the total shell is needed for the idealiza-

tion. However, if only a sector is used, boundary conditions must be imposed not

only at the outer edge for the clamped constraint, but also along the radial edges of

the sector to account for the circumferential symmetry.

The shell sector selected is a Z0 deg slice oriented with respect to an overall

Cartesian coordinate system as shown in Fig. Z. 3. Fig. Z. 3 also defines the force

and deflection variables required to represent the load and deformation state of a

triangle. The Cartesian coordinates X, Y, Z are the system coordinates to which

each gridpoint location is referenced.

Four requirements influenced the selection of the test problem outlined above.

First, it was necessary to verify that the computer-generated pressure and
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I
temperature loading vectors were correct. Second, it was necessary to determine

dU_

that the computed stresses and deflections compared favorably with corresponding I

values obtained from shell theory. Third, the shell geometry was selected so that

mode shapes and frequencies could also be computed and compared with shell theory I

values (Section 3.0). Fourth, the static test case was selected to test those sub-
I

routines that are meant to operate with matrices larger than core. I
i

To assure the generation of a stiffness matrix which is larger than the

computer's core storage, the shell sector was idealized bythe triangular array shown I

in Fig. 2.4. In the vicinity of the clamped edge, the breakdown of triangular ele-
I

ments is greater than near the shell apex. The reason for this refinement is to more J

accurately predict the stress resultants that vary rapidly near the boundary due to 'I

the clamped edge condition.
m

Inese stresses reuuce illvalue x aHLu_y w_il u_stance _x _ _ eu se. _._ a
1

distance defined by (Rh)_, where R is the shell radius and h is the shell thickness,

the stresses due to edge effects are essentially zero. Beyond this distance the I
1

stresses are predominantly membrane. In the present case, (Rh) -_ = i. 5 in. , and it

was decided to obtain six values of stress within this distance; so the arrangement of l

triangles shown in Fig. 2.4 was selected. In computing stresses for a triangular

element, the values obtained are referenced to the centroid of the triangle. Thus,

mthe stress computed for, say, triangles 88 and 89 will be different because the dis-

tance from the shell apex to the respective triangle centroids is different, i

With respect to the coordinate system X, Y, Z, the coordinate distances to

each of the 70 gridpoints is given in Table Z-I. This information is needed in the

Iwriteup of input data for the problem.

Z. Z Boundary Conditions I
B

For the shell all matrices are referenced to the system coordinates X, Y, Z;

hence the boundary conditions must be referenced to the same set. This poses no I

complication except along the meridianal line defined by @ = Z0 deg. Along this edge
i

the boundary conditions referenced to polar coordinates _, 8, _ (Fig. Z.4) are

Ias follows.

I
l
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ARC LENGTH

$_ in.

1.36

2.86

4.37

5.85

6.87

8.87

10,37

10.86

CORD RADIUS

r, in.

1.36

2.86

4.34

5.82

6.80

7.76

8.24

8.72

9.19

9.66

I0.1

10.6

Fig. 2.4.
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ARC ANGLE

¢

8 ° 46' 7,

14

II ° 47' IO,

15° 48' 19

16 ° 49' 26

17 ° 49' 34

18 ° 49' 41

19 ° 49' 49

67

8=10.0 °

Facet geometry and gridpoint numbering

68

8=13.33 °

69

8=16.67 °

e = 20 °
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1

Z

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Z0

Z1

22

23

24

25

26

27

28

29

3O

31
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Table Z-l, Gridpoint coordinate distances (in inches)

X

0

1. 3592

1. 2772

1.9254

Z. 8554

Z. 6832

4. 3437

4. 2777

4. 0817

5. 8200

5. 7978

5. 7316

5. 6217

5.4690

6. 7981

6. 752 i

6.6148

6. 3881

7. 7600

7. 7469

7. 7075

7. 6421

7. 5508

7. 4340

7. 2920

8. 2453

8.2418

8.2139

8. 1582

8. 0750

7. 9644

Y

0

0

0. 46487

0. 33950

0

0. 97660

0

0. 75428

1.4856

0

0. 50727

1. 0106

1. 5063

1. 9906

0

0.78919

1. 5678

Z. 3251

0

0.45117

0. 90086

1. 3475

1. 7896

2.2256

Z. 6541

0

0. 23977

0. 71866

1. 1950

1. 6674

2. 1340

Z

28.5

28. 468

28.468

28.433

28. 357

28. 357

28. 167

28. 167

28. 167

27. 9O0

27. 900

27. 900

27. 900

27. 900

27. 677

27. 677

27. 677

27. 677

27.423

27.423

27.423

27.423

27.423

27.423

27.423

27. 281

27.281

27.281

27.281

27.281

27,281

Node

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

60

61

62

X

7. 8268

7. 7480

8. 7201

8. 7054

8.6612

8. 5876

8.4850

8. 3538

8. 1942

9. 19Z4

9. 1901

9. 1590

9. O969

9. OO41

8. 8808

8. 7273

8. 6380

9.6618

9. 6455

9. 5965

9. 5150

9.4013

9.2559

9. 0791

10. 136

10. 13Z

10. 097

I0. 029

9. 9266

9. 7907

9. 6215

Y

Z. 5935

2. 8201

0

0. 50699

1. 0123

1. 5142

2.0110

Z. 5009

2. 9824

0. 26736

0.80135

1. 3325

i. 8592

Z. 3796

2.8919

3. 1440

0

0. 56174

1. 1Z16

1. 6778

Z. 2282

2. 7710

3. 3045

0

O. 29475

0. 88345

1. 469O

Z. O497

Z. 6234

3. 1882

27.28 1

27. 281

27. 133

27. 133

27. 133

27. 133

27. 133

27. 133

27. 133

26. 977

26. 977

26. 977

26. 977

26. 977

26. 977

26. 977

26. 977

26. 812

26.812

26. 812

26.812

26. 812

26.812

26. 812

26. 637

26. 637

26. 637

26. 637

26. 637

26. 637

26. 637

8
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Table 2-1 (Cont'd)

Node x y z Node x y z

63 9.5247

64 10.600

65 10.582

66 10.528

3.4667

0

0.61628

i. Z306

26.637

26.456

36.456

26.456

67

68

69

70

10.439

I0.314

i0.155

9.96O7

i. 8407

2. 4446

3. 0401

3.6254

26.456

26.456

26.456

26.456

u = 0

@i

@_i = 0 (not defined in classical shell theory)

N[ i
= -P. (not defined in classical shell theory)

i

(2. 1)

N = 0

M = 0

@i

where Pi is the fraction of the total pressure load lumped at gridpoint i. This pres-

sure load is lumped at the gridpoints automaticaiiy in the BILD link of SAMIS and

need not be considered as input, but is included here in order to specify completely

9
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the boundary conditions. The conditions of Eq. (Z. i) transformed to the X, Y, Z

system of coordinates using the equations derived in Appendix A result in

uv._,sin 20 ° Uy. cos ZO ° = 0
1 1

@X. cos ZO ° + @y. sin ZO ° = 0
1 1

@ = 0
Z.

1

FX. cos 20 ° + Fy. sin ZO °
1 1

Pi sin _i 1
P. cos _i

I

Right-hand side

component pressure

loads are generated
internal to SAMIS

MX. sin Z0 ° - My. cos Z0 ° = 0 (2. 2)
1 1

where the stress resultants referenced to the X, Y, Z coordinate system are defined

in Ref. i, Table 5-3. These boundary conditions apply to gridpoints 3, 6, 9, 14, 18,

Z5, 33, 40, 48, 55, 63 and 70. To impose these boundary conditions a coordinate

transformation is required, which is derived in this section.

Along the meridianal edge defined by O = 0 deg, the boundary conditions

referenced to the system Cartesian coordinates are:

Uy. = 0
i

@X. = 0
I

O = 0
Z. (Z. 3)

1

10
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FX. : P'I sin _i
1

FZ. = Pi cos @i
1

MX. : 0 (2. 3) (Cont'd)
1

These conditions apply at gridpoints Z, 5, 7, 10, 15, 19, Z6, 34, 41, 49, 56 and 64.

Remaining boundary and symmetry conditions must be imposed at the clamped

outer edge and the apex of the sector. At the clamped edge

Uy. = 0
i

Uz. = 0
i

0X. = 0
1

0y. = 0
1

ez. = o (z. 4)
1

which are imposed at gridpoints 64, 65, 66, 67, 68, 69 and 70.

Ii
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Finally, based upon symmetry conditions, the boundary conditions at gridpoint i

(apex) are:

u = 0
X 1

uYl = 0

OX1 = 0

@YI = 0

ezl --0 (t.5)

The zero-valued boundary and symn_etry conditions at the apex, side @ : 0 deg,

and clamped outer edge are sumn_arized in Table Z-Z.

The boundary conditions for gridpoints along the side of the sector at @ : Z0 deg

are defined by Eq. (Z. Z). To apply these it is necessary first to transforn_ the

displacement variables fron_

Ux.
i

Uy.
1

Uz.
1

9 X"
1

@y.
1

OZ.
1

to

Ux. cos ZO ° + Uy. sin ZO °
1 1

-Ux. sin ZO ° + Uy. cos ZO °
1 1

Uz.
1

0X. cos ZO ° + @y. sin ZO °
1 1

-gX. sin ZO ° + 9y. cos ZO °
1 1

OZ.
1

IZ

I

I

I

I

l

I

I

I

I

I

I

l

I

I
I

I

I

I

I
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Table 2-2. Zero-valued gridpoint boundary conditions

Node No.

i

i0

15

19

26

34

41

49

56

64

65

66

67

68

69

70

Ux.
I

0

Ux 2

'_,x5

u.x
7

lO

_x
15

_x
19

ux26

34

U-X41

Ux49

_x
56

0

Uy.
1

Uz.
1

u Z
1

u Z
2

u Z
5

u Z
7

uZ
i0

uZ
15

uZ
19

uZ
26

uZ
34

Uz41

Uz49

Uz56

@X.
i

0

0

0

0

0

0

@y.
1

Y2

Y5

Y7

Y
i0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

@
Y
15

@y
19

@Y26

@Y34

OY41

@Y49

@Y56

@Z.
i

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13
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and similarly the force variables from

Fig.
1

Fy.
1

F Z "
1

MX.
1

M
Y.

1

M
Z i

>- to -.

FX. cos Z0 ° + Fy. sin ZO °
1 1

-Fig. sin ZO ° + Fy. cos Z0 °
1 1

FZ.
1

MX. cos Z0 ° + My. sin Z0 °
1 1

-Mx. sin ZO ° + My. cos ZO °
1 1

MZ.
1

A single transformation matrix will accomplish this task. Stated another way, what

is wanted is a matrix that does the following:

Ux.
1

Uy.
1

Uz.
1

0
X.

1

0
Y.

1

0
Z.

< i

a
iI

aZl

a31

a41

a51

a61

alZ a13 a14 a15 a16

-<

u.x. cos 20 ° + Uy. sin ZO_°
1 i

-uig. sin Z0 ° + Uy. cos Z0 °
i i

U

Z.
1

0X. cos ZO ° + 0y. sin Z0 °
1 1

-OX. sin ZO ° + Oy. cos 20 °
1 1

O Z '
1

_- (2.6)

The a.. can be found by writing the individual equations of the above matrix equation
U

and solving the coefficient equations of the variables.

The result is:

: cos 20 °
all

alZ : -sin 20 °

a21 : sin 20 °

azz : cos ZO °

a
33

a66

= 1.0

= 1.0

a44 : cos Z0 °

a45 : -sin ZO °

a54 : sin 20 °

: cos ZO °
a55

14
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Therefore, the transformation matrix is

a ij]

0.940 -0.342 0 0 0 0

0. 342 0. 940 0 0 0 0

0 0 1.0 0 0 0

0 0 0 0. 940 -0. 342 0

0 0 0 0. 342 0. 940 0

0 0 0 0 0 1.0

which must be applied to the variables of gridpoints 3, 6, 9, 14, 18, 25, 33, 40,

55 and 63.

This redefines the variables, so that the boundary conditions at the above

gridpoints become those shown in Table 2-3.

2.3 Procedure for the Calculation of Deflections, Stresses, and Reaction Forces

I

I

I

I
I

I

I

I
I

1
I

The physical and geometrical data that pertains to idealization of the structure

having been defined, this data is assembled in a format required by the SAMIS

program.

Additional input is required to direct the computer in performing operations of

the structural analysis. This direction is provided by a set of "pseudo instructions,"

or command instructions, that call for the subprograms of the SAMIS program needed

to manipulate the data in the required sequence to solve the problem. The set needed

for the statics problem is listed in Table 2-4. The manipulation that each instruc-

tion performs is explained below, each instruction being considered in the order that

it appears in Table 2-4.

Instructions l through 3 represent the generation phase of this set of pseudo

instructions. Explicit interpretation of these instructions is:

i. 0 BILD: Generate the element stiffness matrices (ICAR001

through ICARI08), element stress matrices (SSR001

through SSRI08), and element temperature and pres-

sure loading vectors (TLC001 through TLCI08) for

the i08 elements for which input data has been provided.

Each stiffness matrix is stored on tape 9 (locations

09001 through 09108), each stress matrix on tape i0

(locations 10001 through i0108), and each loading

vector on tape Ii (locations ll001 through iii08).

15
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2. 0 ADDS:

3. 0 ADDS:

Note that the symbols used in defining the alphanumeric

title of each matrix are arbitrary. In the listing in

Table 2-4, the last letter indicates the listing of the

matrix, where R : row listed and C : column listed.

This convention is for user convenience and in no way

controls the actual listing of the matrix.

Add the i08 element stiffness matrices. Title the

summed matrix KKR001 and store it on tape 13,

location i.

Add the 108 loading matrices.

TSC001 and store it on tape 13,

Title the summed matrix

location 2.

Instructions 4 through 12 effect transformation of the generalized displacements and

impose force and displacement boundary conditions.

4.0 READ: Transfer the variable transformation matrix VTC001

5. 0 FLIP :

MULT

MULT

COLS

MULT

ROWS

COLS

from the data input tape to tape 09, location 001.

Transpose the matrix VTC001. Matrix VTC001 is

column-listed so the transpose will be row-listed. The

transposed matrix VFR001 is stored on tape Ii,

location 00 i.

Transform the loading vector and stiffness matrix in a

manner consistent with the following mathematical

interpretation:

The outputs of the generation phase [I<] and {Pi} are

related by:

6 0

7 0

8 0

9 0

10.0

ii 0

[_<]{8i}= {Pi}

where

[_ ] = [_<_:ROOl]

{Pit --- [Tscool]
(Instructions Z and 3)
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The function of the VTC001 matrix is to impose the

constraint conditions along the outer edge of the shell

and along the edges of the shell sector defined by

8 = 0 deg and @ = 20 deg. The transformation is shown

to be of the form (see Eq. Z.6):

I6il: [T]I_i}

where 6. are the displacements of the unconstrained
i

system, _. are those of the constrained system, and
1

IT] is the transformation matrix. Substituting, we

obtain

[_]IT]{_i}: {Pi}

then

[T]T [_][T]t_it = [T]T tpi}

or

[_]{[i}= {_i}

where this equation represents the transposed force-

displacement equation. In the pseudo instruction

program:

[_] -= [K_RooI]

{_i}= [TSCOOl]
From Instructions 10 and 11

The matrix triple product [T] T [K][T] : [K] assures

that if [K] is symmetric [K] will also be symmetric.

19
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I

I
12.0 READ: Transfer the matrix WAR001 to core from the data

input tape. I

13.0 WASH: Pre- and post-multiply the stiffness matrix KKR001 by

the matrix WAR001, which is a diagonal matrix. I
e

Mathematically, this equation is identical to the trans-

formation already described in that a matrix triple

|product is formed. The only difference is that the

WASH matrix (WAR001) must be diagonal, hence rows
i

and columns of KKR001 can only bc scaled or deleted, i

This operation imposes the boundary conditions defined

in Table Z-3, and results in reduction of order of the i

stiffness matrix. The output matrix KWR001 is the

compacted stiffness matrix. It is ro\v-listed and is I

stored on tape ii, location 001.

instructions 6. 0 through 9. 0 partly resulted IThe transformation performed by

in imposition of certain zero-valued displacement conditions on the structure. It

should be noted that this same operation can be performed by inserting appropriate i

gridpoint continuity nun_bers in the element input data. In many problems, if this is

done, no other transformation is required. However, this is not the case \vith this

statics problem because of the skewed direction of the one meridianal edge with i

respect to the coordinate axes X, Y, Z.

Instructions 14 through 17 direct the computation of the structural displacements

due to loading conditions defined by matrix TSC001.

14. 0 CHOL: Solve through matrix decomposition for the displace-

ments. Mathematically,

performed:

Starting with [K;::]

is post-washed and

the following operation is

{6_'_} = {Pi}' where [K <'_]

{61"} are the remaining

nonzero displacements, this instruction yields

{<} = -1 t%t

The quantity {]_i} is represented above as a column vector. Actually, it con-

sists of two columns, one column of equivalent gridpoint forces due to pressure

loading (designated column 04), and one column of fixed-node thermal forces

Z0

I

I
I
I
I

I

I
I
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designated column 05). The quantity 161,1isalso a two-column array. The user of

the program should be alert to the fact that, when CHOL is used, the loading vector

or B field entry can actually be up to 500 columns of different loading conditions.

15. 0 ROWS:

16. 0 MULT:

Row-list VTC001 and leave the output VTR001 in core.

Multiply matrices VTR001 and DIC001 together to

obtain D-AC001, which is stored on tape 09, location004.

The displacements D_AC001 are transformed values

defined by

{6i}= [T]Is_l

However, here the { 6i_ do not include those

displacements that were removed by instruction 13. 0

17.0 COLS: Column-list DAC001. Title the resulting matrix DIC001

and store it on tape iZ, location 001. Note that DAC001

is already column-listed. (The purpose of this instruc-

tion is to retitle the displacement vector and relocate it

on tape.) This is an extra instruction inserted to include

the problem type in which a variable transformation is

not required. For that case, instructions 4 through 10

and 15 through 17 would be omitted. However, as this

option stands, it is assumed that zero boundary condi-

tions are imposed by a WASH operation rather than by

an insertion in the element data.

18.0 INKS: Transfer the displacement vectors DIC001 to the data

printout tape from tape 12, location 001. The matrix is

also identified by a single title card as specified in the

E field. This data will be part of the final printout

from the computer.

Instructions 19 and Z0 direct the computation of the reaction forces at the

restrained g ridpoints.

19.0 MULT: Multiply the structure stiffness matrix KKIR001 by the

nodal displacements DIC001 to obtain the nodal reaction

forces RFC001. The reaction forces along the

Zl
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Note"

20. 0 INKS:

n_eridianal edge of the shell defined by 0 : Z0 deg are

referenced to this edge rather than the X, Y, Z coor-

dinate system. Specific interpretation of these forces

is contained in the definition of the transformation

matrix (see Ecl. g.6).

Transfer the reaction force matrix RFC001 to the data

printout tape from tape 11, location 001. This matrix

will be headed by one title card as specified in the E

field.

If reaction forces are not needed, instructions 19 and Z0 should be omitted.

21. 0 READ: Transfer the matrix ATC001 to core from the data

input tape. This matrix is used in the calculation of

the thermal stresses, as outlined in Appendix B.

Z2. 0 ADDS: Add the ATC001 matrix to the displacement vectors

DIC001. Designate the sum DTC001 and leave it in

core.

23.0 MULT: Serial multiply each stress matrix starting with SSR001

with the displacement vectors to obtain values for the

stresses for the two loading conditions. Each stress

matrix is stored on tape ll in consecutive order, the

last matrix being SACI08.

24.0 INKS: Transfer the 108 stress matrices to the data printout

tape in consecutive order. One title card is supplied to

label each of these matrices.

25. 0 HALT: Halt operation on this program.

2.4 Description of Input Data

The input data for any problem must be listed sequentially as it is used in the

pseudo instruction program. If the pseudo instruction program begins with a BILD

instruction, then the input data following the list of pseudo instructions must start

with a material table followed by element data. If the first pseudo instruction is a

READ instruction, then the input data following the pseudo instructions must begin

with the matrices being read into the program in sequential order. The only other

method of starting the program is with an operation pseudo instruction in which data

on specific tapes must be supplied. This option is generally used in program recov-

ery from a noncorrective error stop of a previous run.
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In the present case the pseudo instruction program is headed by a generation

phase (BILD); thus, the order of listing of the pseudo instructions and other input

data is the following:

List of pseudo instructions

Material table s

Zero card

List of element data

Matrix data and title cards

a.

b.

C.

d.

e.

The complete listing of the element and matrix data is given in AppendixD.

regarding each of these as applied to the present problem are given below:

a.

b.

c.

do

Comments

Pseudo instructions: The listing of the pseudo instructions is given

in Table 2-4. The format for the pseudo instructions is defined in

the description of the MAKER subprogram in Ref. 1.

Material table: The format of the material table is given in Ref. l,

Table 7-1. For the shell the material is 2014-T6 aluminum alloy,

which is assumed isotropic. This material is not particularly

sensitive to temperature changes in the range considered in this

problem. Therefore, the material is defined for room temperature

(70°F or 530°R) and is assumed to remain constant with temperature

change. Alternately, amaterial table for each of several tempera-

tures could be provided, in which case linearly interpolated or

extrapolated material coefficients wouldbe computed by the program

to match any specified temperature. In this problem, one material

table is used.

Zero card: This card flags the end of the material data and the

start of the element data.

Element data: The element data format and identification is

described in detail in Ref. 1, Tables 7-5 and 7-6. Therefore,

only the information for a typical element of this problem will be

identified. The three cards of input data for the element in Fig. 2.4

having gridpoints 1, 2, 3 are shown in Fig. 2. 5. The numbers in

each data field are identified as parameters of the shell statics

problem.

23
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ELEMENT FIRST THIRD
GRIDPOINT GRIDPOINT

_o.___o.__;_o._;

CARD IDENTITY GRIDPOI NT

No. (FACET) No.

I......I..,,,,l,.....

MATE R IAL

IDENTITY --_

FACET /

THICKNESS

ELEMENT

No.q

MATERIAL TEMPERATURE CHANGE

TEMPERATURE'_ -Z SURFACE %

.... I ...._oZ__J. .... ,_,o ,,o_, .... I l

I
I

I
I

I
I
I

I
I

_'-'-CARD PRESSURE /

No.

_TEMPERATURE CHANGE

+Z SURFACE

ELEMENT FIRST SECOND SECOND THIRD OVERALL

GRIDPOINT .'-_

GRIDPOINTGRIDPOINT

No."-'-_ COORD'7 GRIDPOINT COORD_OO_D.7 xcoo.o7 z _coo.o7
. . . . , I . . . ] , , 0_ _ ...................... _ .....191,llil ol ....ol2815001,_9_ ..... 0 28,4_1,, 27_0 46,_-_2,8_81_1

LFIRST _--- FIRST LSEOOND ILTHIRD ZqTH'RD
LCARD GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT

No. X COORD. Z COORD. Y COORD. X COORD. Z COORD.

Figure Z.5. Element data for Element i of shell statics problem
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Matrix data and identification cards: The first matrix that is

required by the pseudo instruction program is the variable trans-

formation matrix VTC001. The transformationisgivenbyEq. (Z.7),

and must be imposed at all gridpoints along the Z0 deg meridianal

edge of the shell. All other gridpoint variables must be retained,

so diagonal unit values must be supplied to preserve these rows and

columns during the multiplication sequence. Furthermore, since

the matrix is listed in coded format, only nonzero element values

need be listed.

The identification card for each matrix has a format defined in

Ref. 1 in the READ subprogram description. For the matrix

VTC001 the identification card is shown in Fig. 2.6.

The second card of the VTC001 listing is the first data card, the

format of which is also detailed in the READ description in Ref. i.

The matrix is in coded format and is column-listed. Information

on the first data card applies to gridpoint 1 (see Fig. 2.7). The

component numbers depend upon the type of element used, so are

defined in each element write-up. Since the "facet" element is

used here, the component definition is given in Table 5-i of Ref. i.

The second matrix that is required is the row-column elimination

matrix WAR001. The variables that need to be eliminated are

defined in Tables 2-2 and 2-3. This matrix is row-listed and

requires 38 cards to list. In the pseudo instruction the E field is

blank, so the first option of WASH is used which retains rows and

columns not listed in WAR001.

The next input is the title card called for by the 18th pseudo

instruction. The matrix printed out by this INKS instruction is

given the title "GRIDPOINT DISPLACEMENTS. "

The third matrix that is input is ATC001 by pseudo instruction ZI.

This matrix is used in computing the stresses due to thermal

effects. The function of this matrix is described in Appendix B.

The last input is the title card "ELEMENT STRESSES," which is

used in pseudo instruction 24 (INKS).

25
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No. OF CARDS COLUMN

OF MATRIX LIST 7LISTING 7

IVT.CO.0t,l,,_L.....IL,..J,....I.
KMATRIX K No. OF ROWS AND

TITLE

,O

COLUMNS (USED WITH
PRECODED MATRICES)

ALL OTHER
COLUMNS BLANK

. : I , .... , _! ,

CODE D

Figure 2. 6. Matrix identification card

COLUMN CODE ROW CODE COLUMN CODE
GRIDPOINT I GRIDPOINT I GRIDPOINT I

COMPONENT '7 COMPONENT 2 7 VALUE 7 COMPONENT 3 7

. I q. ,0 __j

I

I

I

I

I

I

I

I

I

I

I

I

L_

GRIDPOINT. I GRIDPOINT I
COMPONENT I COMPONENT 2

_-- VALUE

GRIDPOINT I
COMPONENT 3

Figure Z.7. Matrix data card
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I

I
Z.5 Program Printout of Input Data and Program Status Statements

Upon command by insertion of a negative sign in the E field of BILD, the U

program prints out the material tables and element data as interpreted from the

input data. The material table printout for 2014-T6 aluminum alloy and the Iprogram
g

first and second sets of element input data for the shell statics problem are shown in

Table 2-5. Comparison of these data with the prepared input data listed in AppendixD B

shows exact numerical agreement and similar formats.

It should be noted that the material identification is 2014-T6 in the material U

g
table (Table 2-5), but in the element data (Fig. 2. 5) the identity is Z0. That is,

material identification is by the first and second characters of the six-character word

appearing in the material table. Thus, if several entries of the same material are U

listed in the material table (say, for specification of different properties at different

temperatures), the identification must be distinct for each entry. Numeric or alpha- I

betic characters may be used to vary the identification.

The structural element data is printed out by the program by user option. I

However, a second set of statements that define core status before and after execu-

tion of each pseudo instruction is automatically recorded and printed out by the pro- R

gram. A sample of this printout from the JPL computer is presented in Table 2-6
w

for pseudo instructions l and 2 in Table 2-4. Observing the printout in Table 2-6, it B

should be noted that a time reference is given at the start and finish of each pseudo

instruction. Also, the core status of the matrix data regions corresponding to the •

|A, B, and C fields of each pseudo instruction is provided. For example, chain link

16 (BILD) was transferred from the program library tape to core at 6 hr, 00 rain,

40 sec. The status of the final stiffness (KARl08), stress (SSRI08), and loading U

(TLCI08) matrices is given after the statement "CORE STATUS AT COMPLETION."

Considering the stiffness matrix KARl08, it is 5 blocks long (iZ0 words per block), I

is row-listed (-i), is coded (0), and, besides being in core in ID location l, is

stored on tape 9 entry 108. I

The listing of program status was originally generated to aid in checkout of the

It has proven to be very useful in locating user as well as program errors, Iprogram.
g

and for this reason is retained as part of the standard output of the SAMIS. The user

is cautioned that in some cases one or more of the matrices are stored on scratch •

U
tape as the calculation is performed. In the event this happens, the printout of core

status may not include all matrices involved in the calculation. I
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!

!
Z. 6 Interpretation of Output Data

Transfer of data to the printout tape of the program as the pseudo instructions I

are executed can be accomplished by the following options:

a. If the number appearing in the E field of BILD is negative, then the I

material tables and element input data are written on the output

tape. I

b. If the number appearing in the E field of READ is negative, then all

card data read will also be transferred to the program data-output I

tape.

c. If the number in the E field of ROOT is negative, then that number

of eigenvalues will be transferred to the program output tape. S

Corresponding eigenvectors must be handled by a separate instruc-

tion ( TlX,TK__ I

d. If a number is placed in the E field of the HALT instruction, the

version of the pseudo instruction program is written on Iprogram

the printout tape.

e. Options a through d above apply to transfer of particular data. To i

i
transfer general computed data the INKS instruction is used. Most

output data such as displacements, stresses, forces, etc. , are •

|written on the printout tape by INKS instructions.

Analogous to the ordering of input data as it is required in the pseudo instruc-

|tion program, the printout data will be in the order that it is written on the printout

tape. Labelling of the output is user-controlled by the number and content of title i

cards supplied to the program (see INKS subprogram description in Ref. i).

In the present problem the output consists of the gridpoint displacements •

|(DIC001), reaction forces (RFC001), and member stresses (SAC001). Complete

listing of these data will not be included in this report, but samples of each will be

identified. I

a. Gridpoint displacements: Two sets of deflections were computed in

this problem. First, the deflections due to the pressure loading I

identified by a column number 04-':-_, second, the deflections due to

the thermal environment identified by a column number 05*. Part I

!

|

':-'See Table 5-Z of Ref. 1.
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of the displacement listing obtained from the computer is shown in

Fig. 2. 8 with pertinent identification information.

Reaction forces: The reaction forces consist of two sets and have the

same type of listing as the displacements. Interpretation of compo-

nent numbers is analogous to that for displacements. Correspon-

dence is indicated in paragraph 2.2 and may be summarized as

follows:

I

I

I
I
I

I
I

I
I

I
I

I

Fig.

u _F 0 _M
X X X X

Uy====> F @ _MY Y Y

u _F O _M
Z Z Z Z

C° Element stresses: The interpretation of the stress resultants is

more complicated than of displacements. The stress components

are given in Table 5-3 of Ref. 1 in terms of numerical subscripts.

The relation between these subscripts and the local x and y directions

depends upon the definition of the local coordinate system assigned to

each element. Since all input for this problem was in the overall

coordinate system, the local coordinate system was generated

internally by the program for each element. In this case the local

x-y directions are defined by the first and second gridpoint numbers

listed in the input data. Observing element 75 in Fig. Z.4 and check-

ing its element data in Appendix D, it is known that the local x-y

plane is that shown in Fig. 2.9:

Therefore,

2. 3, we can make the following equivalences:

N1 1 - NO M1 1

N22 _-- -N_ M22

M
12

Note: The local x coordinate lies along the line joining the first

two gridpoints introduced in the element data, unless the

local coordinates axes are defined explicitly by the

analyst.

consistent with the definition of the force variables as shown in

I NI2 - -N@_

I 31
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MATRIX

OlC 1

ROW COL ELEMEN[

13 04 0.2543E-01

31 04 0.773gE-03

IDENTIFICATION

35 04 0.5658E-02

44 04 -0.1531E-03

55 04 0.1945E-01

MATRIX TITLE

/
G R l D P O I N ] D [ _ P L A C E M E N T S

ROW COL ELEMtNT ROw COL ELEMENT

2I 04 0.8230E-03 23 04 0.2131E-01

32 04 0.28165-0] 33 04 0.21316-01

41 04 0.1056£-02 4Z 04 0.1926E-03

45 04 0.1443E-02 46 04 0.4358E-03

55 04 -0.2163E-02 61 04 0.1563E-02

_ VALUENOFoDNSDPILIACEoEN(TRESSURE)

DISPLACEMENT AT GRIDPOINT 61

DISPLACEMENT COMPONENT 4 (Sx)

LOADING CONDITION 05 (THERMAL)

VALUE OF DISPLACEMENT

614 05 -0.6272E-02 615 05 0.2359E-0[ 616

622 05 0.4181E-03 o23 05 3.6049E-02 624

626 05 -0.3210E-02 631 05 u.1268E-02 632

634 05 -0.8321E-02 655 05 0.228/E-01

THIS COMPLETES PRINTOUT OF MATRIX 12001 DIC 1,

05 0.I024£-03

05 -0.8797E-02

05 0.4612E-03

Fig. Z. 8. Listing of gridpoint displacements

3Z

P_GE 1

RDW COL ELEMENT

25 04 0.6026E-02

34 04 -0.2051E-02

43 04 0.1913E-01

51 04 0.1662E-02

62 04 0.5687E-03

021

1525

633

05 0.1260E-02

05 0.2284E-01

05 0.6051E-02

I

I

I
I

l

I

I

I

I

l

I

I

I

I

I

I

I

I
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This information is sufficient to define the component numbers in Fig. 2. 10

and interpret the element stress resultants. It should be noted that all elements

oriented as element 75 (circumferential edge farthest from shell origin) have been

defined in the element data to have the same relative local coordinates as element 75.

Three other local coordinate types occur in this problem: those for elements _)

and _) and a type typical of element (_.

2.7 Summary and Discussion of Computed Results

The displacements and stress resultants due to the pressure loading and

temperature-induced loads were computed by three methods. Solution of the govern-

ing differential equations in closed form based upon shallow shell theory provided one

set of data (see Appendix C). Solution of the differential equations by a finite differ-

ence technique provided a second set of data (for details of the method see Ref. 4)_:'.

Third, solutions are obtained by use of the SAMIS, which is a finite element

solution.

Since the structure geometry and boundary conditions are axisymmetric, data

need only be compared along a meridian of the shell. Furthermore, since variables

change rapidly only near the clamped edge of the shell, plotted results are expanded

to show this region in greater detail.

Results for the two loading cases are shown in Figs. 2. iI through 2. 16. For

the pressurized shell, the maximum values of displacements, slopes, and stress

resultants are comparable within good engineering accuracy (< ±5%). Similar

results for the temperature-induced loading case exhibit greater scatter in the mem-

brane stresses (Fig. 2. 15) because they are obtained from the differences of large

numbers (Appendix B). In addition, the computed bending moments are systemat-

ically shifted from the finite difference values for reasons that have not been

determined (Fig. 2.16).

As indicated in Fig. 2. 10, the stress resultants are referenced only to the

triangle, not to any particular location within the triangle. However, it has been

shown that the optimum placement of the stress reference point is at the centroid of

each triangle (Ref. 5). This procedure was used in locating the finite element values

in Figs. 2. 12, 2. 13, 2. 15, and 2. 16.

_:_Incomputing results by the finite difference approach, constant increments in arc

length of 0.01 in. were used.

33
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X

--y

y X, Y, Z-OVERALL COORDINATES

(_ x,y, z-LOCAL COORDINATES

%/_RSDEpCoOINN:. GLRIIsDTPEO_NT LISTED

Fig. 2. 9 Element 75 orientation and coordinates

/--MATRIX IDENTIFICATION

NUMBER (ELEMENT 75)

SAC 75

ROW COL ELEMENT ROW

751 04 O. 3963E 03 752

755 04 Do 1627E 01 756

753 05 -0.6624E O0 754

MATRIX

TITLE

__'_._VALUE OFSTRESSRESOWANT
___LOADING CONDITION 05 (THERMAL)

STRESS COMPONENT 3 (NI2)
STRESS RESULTANT FOR ELEMENT 75

ELEMENT STRESSES

COL ELEMENT ROW COL ELEMEN[ ROW

04 0.7054E 05 753 04 -0.2813E-00 754

04 --0.6199E-02 751 05 0.2921E 04 752

05 -0.2093E Ol 755 05 -0.1549E-00 156

11075 SAC 75.

Fig. 2. I0. Listing of typical element stress resultants
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i I---HORIZONTAL

i_/ DISPLACEMENTux xlO3(in.)
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Fig. 2. ll. Deformations, pressure

loading
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Fig. 2. 12. Membrane stress resultants

pressure loading

35



-2

-4

-6

-8

-I0

-12

-14

-16

JPL Technical Memorandum 33-305

o_-_

CIRCUMFERENTIAL
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Fig. Z. 13. Bending moments,

pressure loading
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Fig. Z. 14. Deformalions, lemperature

induced loading

36

I

I

I

I

13

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



I

I

I
0 0 FINITE E'LEMENT'

-- -- -- FINITE DIFFERENCE

-- CLOSED FORM
I

JPL Technical Ivlemorandum 33-305

I

I

I

I

I

I

I
I

-2

-4

-6

-9 CIRCUMFERENTIAL IN-PLANE /

NORMAL STRESS RESULTANT I

-I0 NoXlO -2 (Ib/in)_... _'

-12

-14
0

:_ I

MERIDIANAL IN-PLANE

NORMAL STRESS RESULTANT

_, N, XlO-j 2 (Ib/in)

I

I

7 8 9 I0 II 12

RADIUS r, in. (POLAR-CYLINDRICAL COORD.)

13

i Fig. 2. 15. Membrane stress resultants,temperature induced loading
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Two conditio1_s contribute to the variation in stress values observed in

Figs. 2.13 and 2. 16. First; a general characteristic in deflection analysis of plates

and shells is that stresses are computed with less accuracy than are displacements.

The reaso1_ is that derivatives (or differences) of the displacements must be computed

in determining stresses, and this process inherently results in decreased accuracy.

Second, with specific reference to the finite element method, only average stresses

are computed for each element. These stresses are referenced to the centroid of

each triangle. They may be either less or greater than the exact values at these

locations. Thus, it is to be expected that in a deflection analysis the deflections are

computed with greatest accuracy and the transverse shear resultants with least

accuracy. Values for the slopes and moment resultants fall within these extremes.

With regard to the calculation of transverse shears, in attempting to extract

one higher derivative than that for moments, inadequate accuracy was observed. The

approach has been to determine shear stresses only from information within each

triangle, in the same manner as that in which moments are computed. This modu-

larizing approach, although successful for the calculation of the moment resultant,

has not proven accurate in the calculation of transverse shears. For this reason the

routine for calculating shear stresses has been omitted from the program.

Normally, transverse shear effects are small for thin shells, and calculation

of values is not required. However, in sandwich construction this may not be true.

Presently, accurate values of the shear stresses can be computed by a least squares

technique. However, this requires the use of data from a number of adjacent

elements. Should it be necessary to establish values for the shears, the least

squares scheme is recommended (IRef. 5). It is planned that the calculation of trans-

verse shears by the least squares technique will be programmed for the SAMIS.

Z. 8 Improved Stress Prediction

Degradation in the accuracy of stresses compared to displacements may lead

to results in which deflections are sufficiently accurate but stresses are not.

Several options are available to the analyst if this situation arises. The most

straightforward approach is to refine the element grid array and rerun the problem.

If a total of three grid arrays is used, then it is possible to extrapolate values of

stresses by plotting or fitting an analytic curve to the data points. However, this

approach is not entirely attractive in most problems because of the amount of work

38
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involved in defining and preparing input for three grid arrays. Also, in order for

this method to apply, the grid refinement should involve further subdivision of the

element pattern of the coarser grid, rather than a redefinition of a new pattern with

just a few additional elements. Thus, unless the coarse grid is planned carefully,

one grid refinement can involve a large increase in the number of elements in order

to maintain a more or less uniform triangular grid size. In some problems there is

no alternative to this approach.

In regions where the stresses are not sufficiently accurate, if the gridpoint

displacements are plotted and curvature changes are observed between gridpoints,

then refinement of the stress prediction is possible without complete reidealization

of the entire structure. In this approach, the local region of the structure where

stresses vary significantly is reidealized with a finer grid. For example, in the

present problem assume that the stresses near the outer clamped edge of the shell

are not sufficiently accurate. To improve the stress prediction, a region such as

that defined by gridpoints 19, Z0, 64, and 65 can be treated separately. This

region is further subdivided as depicted by the dashed lines defined by Fig. Z. 17.

From the results obtained using the coarser grid array, deflections are known

at the circled gridpoints. These results are plotted, and interpolated deflections are

assigned to all other gridpoints. Element data is then prepared for the new array of

triangles for use in the program to generate the element stress matrices [Si] . The

original and interpolated deflections are column-listed 16 }, and the matrix product

[S i] 161is programmed to compute new values for the stresses. It should be noted

that if the deflections vary linearily, no improvement in stresses will be obtained by

use of this method.

This method is very simple to apply to improve the prediction of stresses.

Note, however, that improvement of the stresses for the shell statics problem should

not be expected to be large because the displacements appear to be sufficiently

accurate.

A second approach to improving the stress prediction is to subdivide a local

region as shown in Fig. Z. 17. Then only the displacements at the new gridpoints on

the boundary are interpolated from previous results by linear or higher-order

interpolation procedures. This data defines a set of displacement boundary conditions

for the modified local structures. The problem is then rerun with appropriate

external loads applied at the interior gridpoints to obtain a new displacement vector

for the local region. From this data, element stresses are recomputed to complete

39
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the procedure. This method requires more setup and computer running time than

the previous method, but should yield greater improvement in the stress prediction.

The use of either method is recommended as a first step in improving the stress

prediction because of the ease of setting up the problem, compared to alternate

method s.

2.9 Representation of Sandwich Structure

The most general stress-strain law that can be used with the triangular shell

element in the SAMIS program is one having 1 3 independent elastic constants. The

_Dll DI2 DI3 Dl4 0 0 _xx

DZ2 D23 D24 0 0 _ YY

D33 D34 0 0 _ zz

= -< -

D44 0 0 _xy

SYM D55 D5( _xz

[_yzl D66 _yz

For some configurations of sandwich structure these elastic constants can be

modified to account for the different cross-sectional geometry. The particular

idealization is from a sandwich structure in which the two outer skins are equal in

thickness to an equivalent homogenous plate of thickness h. The two structures are

general expression is:

xxl

c YYl

zzl

r

xy1

r

xzl

shown in Fig. Z. 1 8.

The procedure is to determine the properties of the equivalent plate such that

the axial, bending and shear rigidities of the two systems are equal.

the axial and bending rigidities of the two structures.

{z s)

Consider first

Zt D!. S) = h D!. P) {Axial)
lj lj

Z D!S) : hZ D!p ) {Bending)
lJ 12 lj

41
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Solving for D._._' and h, we obtainIj

h = _r3-r

D!.P)_ Zt D!.S) = aD!.S)

lJ \_ r ij lj

The modified thickness h is the value that should appear in the element input

data. The elastic constants that relate to axial and bending stresses in Eq. (8)

should be scaled by the factor c_.

The final assumption made in idealization of the sandwich structure is that the

core carries all of the transverse shear stresses. This assumption is generally

valid if the thickness of the outer skins is small compared to the thickness of the core

and/or the core is very flexible in bending. With this assumption, equating the shear

rigidities, we obtain

r D!. S) : h D!. P)
lj 1j

but h = _,_r, so

D(P) _ 1 D!S) ,_D(S)
ij _ 19 : p ij

? n(S)

__t_lI I lllll_

?

a SANDWICH STRUCTURE

Fig. 2. 18.

D(.P)

_---i.o---_ ;F

b. EQUIVALENT PLATE

Plate geometry
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The refore,

satisfies the assumption that has been made,

>-

the equivalent stress-strain law that can be used, if the sandwich structure

is:

_DI3

_D23

_D33

SYM

where a - 2t/qY-3r and _ = ll_r-3.

a'Dl4 0 0

_D24 0 0

oD34 0 0

aD44 0 0

PDs5

With this modeling,

_D56

_D66

-<

l{xx_
I

Cyy

EZZ I

_- (Z. 9)

{xy

£XZ ]

a different material table

must be generated for each thickness of sandwich structure. If the structure happens

to be uniform there is no problem; however, for nonuniform sandwich structure a

number of material tables must be generated. This job is eased if shear deformation

is negligibly small, in which case the values of the coefficient preceded by 6 in

Eq. (2. 9) are not important. Hence, a may be extracted from Eq. (2. 9) and used as a

scaling factor for the remaining basic material tables. This scaling may be accom-

plished by interpolation and extrapolation simulating a as temperature. For this

case the form of the constitutive equations becomes

x)YY

ZZ

xyl

yz

D
II DI2

D22

SYM

This equation is a good approximation if
xy

£zz' or ¢xy

Dl3 Dl4 0 0

D23 D24 0 0

D33 D34 0 0

D44 0 0

D55 D56

D66

£ XX 1

EEYY I

exy (

£XZ t

I
eyz

and _ are negligibly small compared
yz
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2. i0 Solution Variation with Triangle Geometry

As discussed in Ref. 2 the equilateral triangle will provide the most accurate

representation of plate-type structure. To appraise this concept, the shallow

spherical shell was subdivided into a uniform grid of triangles as shown in Fig. Z. 19.

Successive solutions were obtained for different values of @, notably @ = 20, 60, 70

and 90 deg. For the case @ = 60 deg, all triangles were approximately equilateral.

The shell curvature perturbing the triangle shapes slightly from equilateral.

Transverse displacements at selected gridpoints on the shell, notably gridpoints Q,

G , and G are plotted vs the sector angle @ in Fig. 2. Z0. These results

indicate that the most accurate prediction of displacements is for a sector angle of

approximately 60 deg. These results are by no means conclusive, because the

effects of curvature, shear deflection, and gridpoint load lumping may influence the

results. However, we can conclude from these results that use of triangles that

have a height-to-base ratio of order unityappearstobebetter suited for structure

idealization than triangles with very large or very small aspect ratios. This con-

dition is used in Section III of this report in idealization of the shallow shell for

determination of mode shapes and frequencies.
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Fig. Z. 19. Uniform grid representation
of the shallow shell
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&
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I00

Fig. ?-,. Z0. Variation in displacement

prediction with triangle geometry
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!

!
3.0 SHALLOW SPHERICAL SHELL, DYNAMIC RESONANCE PREDICTION

D The problem considered in this section is computation of the low-frequency

flexural mode shapes of a free shallow spherical shell. Described are the shell

I geometry and constraint conditions, the input and output data formats, the compari-

son of computed results with other solutions, and other related dynamics problem

I topics pertinent to the use of SAMIS.

3. 1 Description of Shell

I' The shell configuration used in the static analyses will be used also to demon-

strate the method of computing the low-frequency mode shapes and frequencies using

g the SAMIS computer program. One change is that the outer edge of the shell will be

assumed free rather than clamped as in the static analysis. Overallgeometry,

i material properties, and weight distribution are the same as defined in Section 2.0.

3.2 Boundary Conditions for the Flexural Modes

t low-frequency shapes similar to those of a
A shallow spherical shell has mode

plate. The modal patterns for the lower symmetric flexural modes are shown in

I Fig. 3. I. The plus and minus signs indicate relative direction of the transverse

displacement. The nodal patterns of the lower asymmetric flexura] modes are shown

I in Fig. 3.2. The symmetry of the nodes about the centerline of the shell determines
whether the mode shapes are classified symmetric or asymmetric.

!

!

!
I

II
li

I

Observing the characteristics of the mode shapes in Figs. 3. l and 3.2, it is

noted that a sector of 90-deg arc can be selected for the symmetric modes to have

nodal lines at each of its radial boundaries. For the asymmetric modes, the same

sector would have a nodal line at one boundary and an antinodal line at the other

boundary. This arrangement of nodal lines will be identical for all modes, although

there will be additional nodal lines within the 90-deg sector for higher-frequency

modes.

The reason for analyzing a sector rather than the entire shell is that fewer

triangular elements are needed, thereby reducing the order of the various matrices

of the problem. However, the boundary conditions are more difficult to formulate

than if the entire shell were analyzed. Modeling only a quadrant of the shell is valid

only if the shell is uniform in the circumferential direction. If it has nonuniform

properties, then it is necessary to analyze the complete shell.
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NODE
/ I / _ LINES

I I I NODE I/"
/ I / LINES V

Fig. 3. 1. Nodal patterns of the symmetric

flexural modes

NOLDEES

N°'_sY/J'Y_--_-_--1

Fig. 3. Z. Nodal patterns of the asym-

metric flexural modes
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The coordinate system and the forces and displacements corresponding to the

variables required by the program are shown in Fig. 3. 3. A'ssume that the shell

boundary at X, 0, Z is a radial nodal line. For this case, a particle on this boundary

will not translate radially or meridianally, and will not rotate about a circumferential

axis. To represent these conditions, the required displacement constraints refer-

enced to the overall coordinate system are:

Uxilu Z = (nodal line at X, 0, Z)

Oy = (3. 1)

This set of symmetry conditions is adequate to describe the characteristics of

the nodal line even though further definition is possible. For example, an additional

restraint can be formulated based upon the only allowable rotation at the boundary,

which is about the meridianal axis (01 in Fig. Z. 3). One can write

Eliminating 0_, find

@X = 0 Z ctn

which can be imposed as an additional constraint. However, if this constraint is not

imposed, then certain modes computed using Eq. (i) should yield this constraint

naturally and provide a check on the analysis. It is recommended that boundary

conditions should be formulated on as simple a basis as possible consistent with the

problem being solved.

Consider the meridianal line X, 0, Z as an antinode. For this case, a particle

on the boundary will not translate circurnferentially, and will not rotate about a

meridianal axis; therefore

u = 0
Y

(antinodal line at X, 0, Z)

e x = 0 (3.2)
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At the gridpoint at the apex of the sector, the variables @@ and @¢ lose their

directional significance (Fig. 2. 3). However, arguing that at this point several nodal

lines meet, each requiring certain directional rotations to be zero, the only way of

satisfying all of the conditions is to disallow any rotation at this point. Thus, the

boundary conditions at the apex gridpoint of the sector will be taken as

UX= 0

Uy = 0

UZ = 0

OX= 0

ey=0

e z = 0 (5 3)

This completes the definition of types of boundary conditions for the flexural

modes. It should be noted that along the outer edge of the shell none of the displace-

ments or rotations are zero, the forces and moments being zero. However, for the

dynamics part of the analysis the force and moment conditions are not used because

they are inertial; hence, they are proportional to displacements and rotations which

have already been specified.

3. 3 Element Geometry

The facet geometry should be selected consistent with the data that is to be

determined. In the present case, only the lower flexural modes are to be determined.

Assume that the fifth flexural mode is the highest mode of interest. The arc of a half

wavelength of the fifth mode is I/i0 (360 deg) = 36 deg. Assuming that only a rough

outline of the mode shape is required, two or three displacement values within this

angular span should be sufficient, implying a separation of radial gridpoint lines of

12 to 15 deg.

The number of gridpoint circles is dependent upon the number of radial dis-

placements required. For the low-frequency flexural modes, only two or three
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radial displacements values are generally needed; however, if torsional modes are
of interest, more gridpoint circles should be used. In the present case six gridpoint
circles are used; hence, the shell sector is subdivided as indicated in Fig. 3.4.

Good practice in locating gridpoints is that the resultant triangles have sides
that are approximately equal in length (equilateral). I-Ience, not all intersecting

points in Fig. 3.4 will be used; however, one possible array,

internal symmetry, is shown in Fig. 3.5. Also shown in Fig.

numbering. With respect to the overall coordinates X, Y, Z,
is listed in Table 3-1.

which reflects some

3. 5 is the gridpoint

each gridpoint location

3.4 Gridpoint Referenced Boundary Conditions

The boundary conditions defined by _]qs. (3) and (4) are general expressions

not referenced to any particular gridpoints. With reference to the gridpoint number-

ing arrangement of Fig. 3.5, the boundary conditions for the two types of vibration

modes are listed in Tables 3-2 and 3-3.

Table 3-i. Gridpoint coordinates

Gridpoint x y z

I

I

i

I

I

1
t
I
i
I

1

2

3

4

5

6

7

8

9

i0

II

iZ

13

14

0.0

I. 800

i. 273

0.0

3. 500

3. 233

Z. 475

I. 339

0.0

5. Z00

5. I00

4. 326

2. 889

I. 014

0.0

0.0

I. Z73

I. 800

0.0

i. 339

2. 475

3. 233

3. 500

0.0

i. 014

2. 889

4. 326

5. I00

28.50

28.44

28.44

28.44

28.28

28.28

28.28

28.28

28.28

28.02

28.02

28.02

28.02

28.02

I
I
I

t
i
l
|

52

I
I



I
I
I
i

I

I
I
i
I
i

!
I

I
!
|

Gridpoint

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
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Table 3-1 (Cont'd)

x y

0.0

6.9OO

6. 375

4. 879

2. 640

0.0

8. 700

8. 533

8. 038

7. 234

6. 152

4. 833

3. 329

1. 697

0.0

10.6O

10.40

9. 793

8. 814

7. 495

5. 889

4. 056

2. O68

0.0

5. 200

0.0

2. 640

4. 879

6. 375

6.9OO

0.0

I. 697

3. 329

4. 833

6. 152

7. 234

8. 033

8. 533

8.7OO

0.0

2. 068

4. O56

5. 889

7. 495

8. 814

9. 793

I0.40

I0.6O

28.02

27.65

27.65

27.65

27.65

27.65

27.14

27. 14

27. 14

27.14

27.14

27.14

27.14

27. 14

27.14

26.46

26.46

26.46

26.46

26.46

26.46

26.46

26.46

26.46

I
!
i
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7.05 _ \ X \/ _ / / _ /

10.5 _67.5

r7.75 _'o'c°

I _22_
21.8 0,,_ 11.25

X

Fig. 3.4. Subdivision of shell sector
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I 4 9 15 20 29 38

DY

I0

Fig. 3.5. Arrangement of facets
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Table 3-2. Boundary conditions for symmetric modes

!

!

Gridpoint i

2

5

i0

16

21

30

1

4

9

15

20

29

38

Ux
1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

Uy
1

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

Uz
1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

X.

1

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

8y
1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

.0

.0

.0

.0

.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

!.0

1.0

1.0

1.0

(Z
1

1.0

1.0

1.0

1.0

1.0

1.0

0.0

1.0

1.0

o0

1.0

1.0

1.0

Table 3-3. Boundary conditions for asymmetric modes

Gridpoint i

2

5

I0

16

21

3O

1

4

9

15

20

Z9

38

Ux
1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Uy.
1

1.0

1.0

1.0

1.0

1.0

1.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

Uz
1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

8
X

1

1.0

1.0

1.0

1.0

1.0

1.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

8y
1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

OZ
1

1.0

io0

1.0

1.0

1.0

1.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0
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3.5 Estimation of Matrix Size

In the SAMIS program, two subprograms, which have limited capacity, generally

control the size of problems that can be solved without partitioning':". The ROOT

subprogram (which calculates eigenvalues) is limited to 130 deg of freedom

(either local or generalized). The CHOL subprogram (which solves simultaneous

equations) is limited to core storage of 20,000 words. However, for CHOL only the

diagonal and upper off-diagonal elements and two column vectors of the dimension of

the matrix equation being solved must be stored. Thus the largest solid matrix of

order b that can be handled in CHOL is defined by the equation:

from which b = 197. Since stiffness matrices are generally very sparse, the limit

on b is greatly relaxed in most structural problems.

A rapid estimate of the size of the stiffness matrix that will be generated can be

made after the triangular array and gridpoint numbering have been defined. Consider,

as an example, the triangular grid and gridpoint numbering of the idealized quarter

shell (Fig. 3.5). A chart is prepared by designating a row and column for each grid-

point as shown in Fig. 3. 6. Coupling between gridpoints is then indicated by filling

in the appropriate squares. This is done only for the diagonal and upper off-diagonal,

since this is the data used in CHOL. The CHOL subprogram in SAMIS is band-

limited, which means that of all the matrix elements in the upper off-diagonal only

the zero and nonzero elements below the heavy solid line in Fig. 3. 6 are stored.

Each square below this line represents a 6 x 6 matrix; thus, if the squares are

counted and multiplied by 36, an estimate of the total number of elements that must

be stored is obtained. In the present example, the number of squares is 270, which

corresponds to 9720 storage locations. Note that in this problem elimination of rows

and columns by imposition of the symmetry conditions will reduce slightly the

storage needed for this matrix. In some problems this reduction will be significant

and should be accounted for in the calculation. A tabular method of estimating the

amount of storage space required is defined in Ref. 2.

"Current development of the program is aimed at elimination of these limitations.
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Fig. 3. 6. Definition of matrix array
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Should it be found that the matrix does not fit in core, then the problem must be

solved by partitioning the matrix equation one or more times. This procedure is

outlined in Section 5.0.

The procedure outlined above for estimating the storage size of the matrix

shows that the bandwidth of storable data is controlled by the sequence of gridpoint

numbering. Optimum gridpoint numbering results in a minimum-bandwidth matrix.

3. 6 Influence of Rigid Body Modes

The constraints imposed on the 90-deg shell sector for the symmetric and

asymmetric modes are not sufficient to eliminate all rigid body modes. For the

symmetric mode case, a rigid rotation of the shell about the Z-axis can occur. For

the asymmetric mode case, a rotation about the meridian defined as a nodal line can

occur (shallow shell). The presence of these rigid body modes causes the stiffness

matrix to be nonpositive-definite. This offers no problem if the mass matrix is

inverted in solving the dynamics problem, because the ROOT subprogram will deter-

mine the eigenvalues and eigenvectors of zero-frequency modes. However, if the

mass matrix is singular, which is often the case (e. g., rotary inertias neglected),

inversion of the nonsingular partition of the mass matrix will lead to less accurate

low-frequency eigenvalues than if the stiffness matrix is inverted. This occurs

because round-off errors have a greater influence on the lower-valued roots, and in

inverting the mass matrix the actual eigenvalues are determined; whereas if the

stiffness matrix is inverted, the reciprocals of the eigenvalues are determined.

Thus, in most problems the stiffness matrix should be inverted. To do this the

influence of the rigid body modes must be eliminated. The process of eliminating

these modes is outlined below for the two cases of interest in this problem.

3. 7 Elimination of the Rigid Body Mode for the Symmetric Mode Case

For a rigid body rotation of magnitude _ about the Z-axis, the displacements of

a gridpoint j, as shown in Fig. 3. 7, are defined by the equations

u_xJ = -x. (I - cosY) - y_j sinYJ

Ujy = -yj (l - cosT) + x sinY3 (3.4)

where x.j and yj are the original coordinates of gridpoint j.
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_x

I
x

_Y

Fig. 3. 7. Rigid body rolation, symmetric modes
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The general orthogonality condition between two modes r and s is

N

y_ L(r)mj _(s) u (r) mj u (s)] 0
[ jX Ujx + jy jyj =

j=l

(3.5)

which is valid whether the modes are rigid body or elastic. Substituting ]Eq. (4) into

(5) and making the small angle approximation, yields

N

j_l [-yj m. u(S) u (s)]
j jX + xjm. J jY

"_

= 0

We now want to expand this equation and solve for one of the gridpoint displacements

in terms of the others. For convenience we will select the lowest nonzero term which

is u _s' which gives:2Y'

N

u(S)2y=

j=3

(s) u(S)
x.m.u - yjm.j j jx j jx

x 2 m 2

Further expansion of this equation yields

(s) x3m3 (s) Y3m3 (s) Y4m4 u(S)

U2y - x2m 2 U3y XZm g U3x xzm Z 4X

x5 m5 u(s)

+ xgm Z 5Y

38

x6m6 (s) Y6m6 (s) ,_ x.m.

+__x2m2 u6 Y x2m2 u6 X + ..._ 3 J

j=7

u!s)
JY

(s)
- yjm. 3 uJ X

x2m 2

The displacement (s) is dependent upon the remaining variables which are still inde-U2y

pendent. For these can write

u(S) (s)
3X = U3x

(s) (s)
U3y = U3y

u(3S)y = u (3S)y
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Imposing the notation that a displacement in the X direction have subscript 1 and a
displacement in the Y direction have subscript Z, we can write the above results in
matrix format as follows (notation consistent with SAMIS):

u22

u31

u3zl

u41

u52

u382

(s) Y3m3 x3m 3 Y4m4 x5m 5 x6m 6
+--

xzm Z xzm 2 xzm 2 x2m 2 xzm 2

1.0 0 0 0 0

0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 1.0 0

1.0

u31

u32

u41

u52

-<

u38;

(s)

O N

.. (3.6)

This equation may be interpreted as a variable transformation, which in compact

notation may be written as

t8}o: [T] t_}N

where { 610 is the original displacement vector and {6 IN

placement vector.

is the transformed dis-

3. 8 Elimination of the Rigid Body Mode for the Asymmetric Mode Case

For the asymmetric modes a rigid body rotation can occur about a diametrical

nodal line as shown in Fig. 3. 8. Assuming a rotation of magnitude _/ the displace-

ments of gridpoint j are given by:

Ujy -Y'J (i - cos'f) z.j sin "f

u. = -_. (i - cos "f) + y: sin "f
jz J J

(3.7)
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z

u_

3. 8. Rigid body rotation, asymmetric modes
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where yj and zj are the original coordinates of gridpoint j in terms of coordinates YZ"
and defined in Fig. 3. 8. Making the small-angle approximation we obtain from

p q. (3.7)

= -z.Y
Ujy J

Now, using Eq.

we obtain

(s)
U3z

(3. 5),

uj Z = Yj "?

substituting for the displacements and solving for u (s)
3Z'

ZZrnZ u(S) z3m3 (s) + z4m4 (s)

Y3m3 2Y + --- U3y U4yY3m3 Y3m3

z5m5 (s) + ......... _NmN (s)

Y3m-----_U5y Y3m3 uNy

Y4m4 (s)

Y3m3 U4z

Imposing the notation that a displacement in the Y direction have subscript 2 and a

displacement in the Z direction have subscript 3, we can write the variable trans-

formation equation as follows:

uzz

u32

u33

u42

u43

u382

Is)

0

1.0 0 0 0 0 ...

0 1.0 0 0

z2m 2 z3m 3 z4m 4 Y4m4
°

Y3m3 Y3m3 Y3m3 Y3m3

0 0 1.0 0

0 0 0 1.0

° ° °

1.0

,(s)

u22 I

u32 I

u42

u43

].

u385 N

(3.8)
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It should be noted that if additional rigid body modes were present in the system,

a more complicated transformation would have to be defined and applied. The worst

case would occur if all six rigid body modes had to be swept from the system. This

was unnecessary in the present problem because, through the application of the

symmetry boundary conditions, the remaining two rotational modes and the three

translational modes were eliminated.

3.9 Method of Dynamic Analysis

Just as in the stress problem, the manipulations required in the SAMIS to solve

for the mode shapes and frequencies of the free shallow shell are controlled by a set

of pseudo instructions. For the dynamic analysis, the pseudo program will be used

twice, once to obtain the symmetric modes, and a second time for the asymmetric

modes. The set of pseudo instructions used in this problem is listed in Table 3-4.

These instructions demonstrate the use of comment cards, which appear in the listing

for user purposes, but are not interpreted during problem solution. The comment

cards are identified by the letter C in the first column. The mathematical manipula-

tions the numbered instructions describe are explained in the individual synopses of

the instructions that follow.

Instructions 1.0 through 3.0 direct the formation of the structure mass and

stiffnes s matrices.

i. 0 BILD:

I. 5 CONT:

2.0 ADDS

3.0 ADDS

Generate the element stiffness matrices (KER001 through

KER054) and the element mass matrices (MER001 through

MER054) for the 54 elements of the shell idealization. The

stiffness matrices are stored in sequence on tape 9, loca-

tions 001 through 054. Similarly the mass matrices are

stored on tape I0. The units digit of the number in the E

field specifies the type of mass matrix that is to be

generated (see BILD description in Ref. 1 for details of

this option). The continue instruction (CONT) must be

used when element mass matrices are generated.

Add the element mass and stiffness matrices to form the

complete structure matrices. These are:

a. MAR001: the structure mass matrix which is stored

on tape ii, location i.
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Table 3-4. Listing of the pseudo instructions for the calculation of the
mode shapes and frequencies of the unsupported shell

!
I
I

Field A Field B Field D Field C
Pseudo

Pseudo Tape Matrix
instruction Tape Matrix Tape Matrix instruction No name

No. No. name I"4o. name name "

C

C Shallow shell problem, low frequency flexural modes of free shell.

C

C Formation of the structure mass and stiffness matrices.

C 1.0 09001 ICER001 BILD

i. 5 i0001 MER001 CONT

2. 0 i0001 MER001 ADDS ll001 MAR001

3.0 9001 ICER001 ADDS 11002 KAR001
C

C Imposition of sy_i-nnnetry and boundary conditions.

C
4.0 9001 VTR001 READ

5.0 9001 VTR001 COLS 9002 VTC001

6. 0 900Z VTC001 ' FLIP 9003 VFR001

7.0 11002 KAR001 9002 VTC001 MULT i0001 KVC001

8.0 09003 VFR001 10001 KVC001 MULT 1000g KTC001

9.0 1000Z KTC001 ROWS 11003 KTR001

i0. 0 ll001 MAR001 9002 VTC001 MULT 10001 MVC001

ii.0 9003 VFR001 i0001 MVC001 i MULT i0002 MTC001
C

C Decomposition of the mass matrix.

C 12.0 i0002 MTC001 i ! ROWS ii004 MTR001

13.0 i1004 MTR001 9002 MRR001 CHIN 11005 MIR001

14. 0 9002 MRR001 FLIP i0001 MFC001

C

C Formation of the dynamic matrix.

C 15.0 ii003 KTR001 i0001 MFC001 CHOL 10002 KBC001

16.0 9002 MRR001 i0002 KBC001 MULT ii006 DYC001

C 17.0 ii006 DYC001 i DECO i0001 DYD00I

C Determination of eigenvalues and eigenvectors.

18.0 i0001 !DYD001 10002 EVD001 ROOT 10003 EID00119. 0 10002 EVD001 r CODE 9002 EVC001

C Inverse Transformation of the eigenvectors.

C 20.0 11005 MIR001 9002 EVC001 MULT Ii007 ETC001

21.0 ii007 ETC001 COLS I0004 ETC00I
22 0 9001 VTR001 100041ETC001 MULT 11007 ETC001

li

Field E

Control

No.

5402

5400

5400

-i00

66

I

I

I
I
I

I

I
I

I

I
I
I

i

I
I

I



I,I
I

I

JPL Technical Memorandum 33-305

Table 3-4 (cont'd)

I

I

1

'1
I

C

C

C

Field A Field B Field D Field C Field EPseudo

ins truc tion Pseudo
No. Tape Matrix Tape Matrix instruction Tape Matrix Control

No. name No. name No. name No.
name

Printout of results.

23.0

24.0

25.0

4.0

5.0

ii.0

10003

11007

10001

i0001

i0001

EID001

ETC001

WAR001

WAR001

WAR001
11002

ii001

KAR001

MAR001

INKS

INKS

HALT

READ

WASH

WASH

ll003

i0002

KTR001

MTC001

I

I

I

!
I

,I

I

i
I
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b. KAR001: the structure stiffness matrix which is

stored on tape ii, location 2.

Instructions 4.0 through l l.0 direct imposition of symmetry and boundary

conditions.

4.0 READ:

5.0 COLS:

6.0 FLIP:

7.0 MULT

8. 0 MULT

9. 0 ROWS

10.0 MULT

11.0 MULT

Transfer the variable transformation matrix VTR001 from

the data input tape to tape 9, location 001.

Column-list the variable transformation matrix and store

the resultant matrix VTC001 on tape 9, location 002.

Transpose VTC001; title the resultant matrix VFR001 and

store it on tape 9, location 003.

Transform the stiffness matrix KAR001 and the mass

matrix MAR001 by a pre- and post-multiplication consistent

with the following mathematical treatment of the problem:

After combining the stiffness and mass matrices the

dynamic equation is of the form

_2[_]161-[K]I_I

where, as yet, the system is unconstrained. The

variable transforr_ation naatrix contains the transfor-

mation to eliminate the rigid body modes, Eq. (3. 6)

or (3. 8), depending upon the problem being run, and

the zero diagonal elements to impose zero displace-

ment conditions, Table 3-2 or 3-3. The transformation

is defined by:

16[: Evil6::1

where 16 _;_'}is the vector of nonzero displacement

variables. Imposing this transformation on the

dynamic equation leads to

_2[M][v]I8';'I: [K][% 16';"I
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Premultiplying by [V] T :

xz Iv]T [M] Iv] {s':"t: [v]T [K] [v] t6':"l

or

xz[M*]16;:"}=[K;:"]16;:'l

whe re

[_;:"]-[KTR001]

[M*]- [MTRO01]

Instructions 12.0 through 14.0 involve decomposition of the mass matrix,

is required to maintain matrix symmetry.

12. 0 ROWS:

13.0 CHIN:

14. 0 FLIP:

which

Row-list the mass matrix and store the output matrix

MTR001 on tape Ii, location 004.

Triangular decompose the mass matrix MTR001 using the

Choleski Decomposition technique. The upper triangular

decomposition matrix is MRR001 and is stored on tape 9,

location 002. The inverse of MRR001 is designated

MIR001 and is stored on tape II, location 005.

Transpose the matrix MRR001, and designate the resultant

matrix MFC001 and store it on tape i0, location 001.

Instructions 15.0 through 17.0 direct formulation of the dynamic matrix.

instructions 18. 0 and 19.0 the eigenvalues and eigenvectors are determined.

15.0 CHOL

16.0 MULT

By

Perform a matrix inversion and triple product consistent

with the following mathematical requirements.

Starting with

2 T
k D] D] {6"} = [K::"] 15':"}
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17. 0 DECO:

1 8.0 ROOT:
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where

[U] T [U] = [M:"] (From CHIN)

Define

{_}:[u]{#_I

then

{8;:"}= [u]-1{_I

Substitute into the matrix equation to obtain

_2[u]T{_}= [K*][u]-1 T

Premultiply by [U] [K::"]-1:

>z [u] [K_:_]-_ [u] r t_-}: D] t-_t

Instruction 15. 0 determines [K_:_]-I [U] T, and instruc-

tion 16. 0 determines [U] [K_"] -I [U] T. The necessity

for decomposing the mass matrix (or stiffness matrix)

is to obtain a symmetric dynamic matrix. If the stiff-

ness matrix were simply inverted to obtain [K'_:_]-1 [M],

the resultant matrix would not be symmetric as

required by ROOT.

Decode the matrix DYC001. Title the decoded matrix

DYD001 and store it on tape 10, location 001.

Calculate the eigenvectors EVD001 (stored on tape 10,

location 00Z) and the eigenvalues EID001 (stored on tape 10,

location 003). The -i00 in the E field instructs the printout

of all eigenvahes directly from ROOT. This provides the
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interpretation of the eigenvahes as frequency (see the

ROOT description in Ref. 2 for details of this option).

19.0 CODE: Recode the eigenvectors as EVC001 and store them on

tape 9, location 002.

Instructions 20.0 through 22.0 perform the inverse transformation of the

eigenvectors. Instructions 23.0 and 24.0 direct printout of the results.

20. 0 MULT: Transform the eigenvectors to obtain 16_:'_}as per the

relation already cited:

21. 0 COLS:

22.0 MULT:

23. 0 INKS

24.0 INKS

25. 0 HALT:

t_""_: [u]-11_I
m

where the 16} correspond to the set EVC001.

Transfer matrix ETC001 from tape ii, location 007 to

tape i0, location 004. In this pseudo instruction program

the data on tape iI are saved for possible program

recovery.

Perform the transformation from {6;:_}to {6} as per the

relation

t6} : Iv]t6"t

The I b } are the eigenvectors of the shell referenced to the

overall coordinate system X, Y, Z.

The eigenvalues LID001 (stored on tape 10, location 003)

and the eigenvectors ETC001 (stored on tape Ii, loca-

tion 007) are transferred to the data printout tape with

appropriate single-line titles.

HALT operation on this problem.

It should be noted that, in this set of pseudo instructions,

if tape iI is saved the program has built-in recovery at

various instructions such as 4, 13, and 17.

In many problems it is not required to eliminate rigid body

modes because the structure is adequately supported. For

these problems only a WASH operation is needed. The
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pseudo instruction modifications required by this option
are listed at the bottom of Table 3-4. These instructions

replace instructions 4 through ii when only a WASH opera-
tion is used. If desired, a further reduction is to omit the

WASH instructions and define boundary conditions by the

continuity numbers in the element data. However, with

this option the structural matrices must be regenerated if

the boundary conditions are changed.

3. i0 Description of Input Data

In the present example, the pseudo instruction program is headed by a genera-

tion phase (BILD); thus the order of listing of input data is the same as in the stress

problem (Section 2.0).

Regarding each type of input, the following comments apply:

a. Pseudo instructions: The listing is given in Table 3-4.

b. Material table: Same as that used in the statics problem.

c. Zero card: Required after material table in all programs.

d. Element data: The format of the element data for the dynamics

problem is defined in Ref. l, Tables 7-4 and 7-6. In general,

less data must be supplied for the dynamics problem than for

the stress problem. The two cards of element input data for

element 1 (l_ig. 3. 5) having gridpoints 1, Z, 3 are given in

Fig. 3. 9.

The matrix data and title cards have the same format as outlined in Section 2. 0. A

complete listing of the input data for the dynamics problem is given in Appendix E.

3. Ii Interpretation of Output Data

In the present example, output from the program is obtained from three

instructions of the pseudo instruction program. In instruction 18. 0, the -100 flags

printout of all eigenvalues. By instructions 23. 0 and Z4. 0 the eigenvalues EID001 are

again printed out as well as the eigenvectors ]ETC001 (with appropriate title

cards).

In this problem the initial dimension of the program-generated mass matrix

MAR001 is ll4 (three times number of gridpoints). However, by the coordinate

72
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ELEMENT FIRST THIRD

No.-_ GRIDPOINTNo,--_ GRIDP__INTNo.

FACET

THICKNESS --_

i, I, ,,.. I, .... ; I1.. 96,E-51 ,o,.075 120
I

I
I

I

K _L--ELEMENT _---- SECOND

CARD IDENTITY GRIDPOINT
No. (FACET) No.

MASS PER j

UNIT AREA
MATERIAL

IDENTITY

ELEMENT FIRST SECOND

No. --_ GRIDPOINTyCOORD7_ GRIDPOINR_xCO0

191,I I [ I..,..ol, .... ,ol 28,.5ol.,,...8.o.ol...

I

I
I
I

I
I

I

I

/RST ZFIRST_0 O_,O_,NTO_,OPONT_ XC_O ZCOO_O

SECOND THIRD OVERALL
GRIDPOINT GRIDPOINT COORD

zcoo; YC°° 77
, lOl 12,8 . 44i, i..'L2.7,31, iI .,2731 12.8.'.4,4_

_SECOND _--TH,RD _HIRD

GRIDPOINT GRIDPOINT GRIDPOINT

Y COORD. X COORD. Z COORD.

Fig. 3. 9. Element data for Element 1 of shell dynamics problem
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transformation of the mass matrix the order is reduced to 86 for the symmetric

modes and to 92 for the asymmetric modes.

The output from instruction 18.0 is shown in Table 3-5 for the symmetric

mode case. Only 50 of the 86 eigenvalues are shown, although the entire 86 were

listed by the instruction. In most problems the natural frequencies will appear in

one or the other of the two columns on the right. If the stiffness matrix is inverted,

the frequencies appear in the last column, starting with the lowest value. If the

mass matrix is inverted, the frequencies appear in the next to last column starting

with the largest value. The remaining three columns are provided in the event a

problem is solved in which the eigenvalues have a different interpretation from that

given above.

The printout by instruction 23.0, which is shown in Table 3-6, is the complete

set of eigenvalues, which are identical to those in the column of eigenvalues in

Table 3-5. For ordinary structural problems this printout is not as useful as the

direct printout from ROOT because the actual natural frequencies must still be

computed. However, it should be noted from this printout that the eigenvalue

matrix is a diagonal square matrix suitable for scaling purposes in specialized

problems.

A sample listing of the eigenvectors is given in Table 3-7. In this listing,

column I0 corresponds to eigenvalue 01, column 20 to eigenvalue 0Z, etc. The row

numbers define the gridpoint number and direction at which the deflection occurs.

For example, the row code 35Z defines the displacement as that at gridpoint 35 in

the overall Y direction (component 2). For the first flexural mode this displace-

ment has a relative value of 9.219.

It should be noted that the eigenvectors generated by ROOT are normalized to

unit length. However, in the process of transformation by the inverse of the

decomposed mass matrix to express displacements in their original form, the vector

length is changed. This change in length, however, assures that the generalized

mass matrix is a unit diagonal matrix.

3. IZ Summary and Discussion of Results

Several of the flexural natural modes and frequencies of the shallow spherical

shell were obtained by three different methods. Theoretical values were computed

74

I

I

I
I
I

I
I
I

I
I

I

I
I
I
I

I
I

I
I



i,I
I

!
!

!

!

|

!

!

!

!

!

!
!

!

!

!

!

!

ROOT
I
2
3

4
5
6
7

8
9

I0
II

12
13

14
15
16
17
18
19

20
21
22
23
24
25
26
27

28
29
30
31
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40
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42
63
44
65
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Table 3.5 Printout of eigenvalues for the symmetric modes

by the printout option of ROOT

EIGENVALUES OF MAIRIX DYD I

NO. EIGENVALUE
0.2176E-04

0.8187E-06
0.1719E-06
0.7999E-07

0.I946E-07

0.1627E-07

O.1611E-07

0.1370E-07

3.I014E-07

].6350E-08

0.5185E-08

_.4455E-08

0.2149E-08

0.1594E-08

0.1352E-08

0.1338E-09

0.1305E-08

0.II44E-08

0.655IE-09

0.5315E-09

0.424IE-09

0.336IE-09

0.3086E-09

0.2990E-09

0.2416E-09

0.I648E-09

0.163IE-09

0.1559E-09

0.I658E-09

0.1365E-09

0.I265E-09

0.I068E-09

0.I042E-09

0.999IE-I0

0.8768E-I0

0.8403E-I0

0.7833E-I0

0.7292E-I0

O.709IE-IO

0.6899E-I0

0.6134E-I0

0.5813E-I0

0.5680E-I0

0.5382E-I0

0.5236E-I0

0.5142E-I0

0.6866E-I0

0.6847E-I0

0.4528E-I0

0.4276E-I0

SQUARE ROOT RECIPROCAL

0.4665E-02 0.2144E 03

0.9068E-03 O.II05E 04

0.4146E-03 0.2612E 04

0.2828E-03 0.3536E 06

0.I395E-03 0.7168E 04

0.1276E-03 0.7839E 06

0.1269E-03 0.7879E 06

O.II70E-03 0.8546E 06

0.I007E-03 0.993IE 04

0.7969E-04 0.1255E 05

0.720tE-06 0.1389E 05
0.6675E-04 0.1498E 05
0.4635E-04 0.2157E 05

0.3993E-04 0.2504E 05
0.3678E-04 0.2719E 05

0.3658E-04 0.2736E 05

0.3613E-04 0.2768E 05

0.3382E-04 0.2957E 05

0.2560E-04 0.3907E 05

0.2305E-04 0.4338E 05

0.2059E-04 0.4856E C5

0.I828E-04 0.547IE 05

0.1757E-04 0.5693E 05

0.I729E-04 0.5784E 05

0.1554E-04 0.6433E 05

0.I286E-04 0.7790E 05

0.1277E-04 0.7830E 05

0.1249E-06 0.8008E 05

0.1207E-04 0.8282E 05

0.I168E-04 0.8559E 05

0.II25E-04 0.889IE 05

0.1033E-04 0.9677E 05
0.1021E-04 0.9798E 05
0.9996E-05 O.IO00E 06

0.9366E-05 0.1068E 06
O.g167E-05 O.1091E 06
0.8851E-05 O.II30E 06
0.8539E-05 O.II71E 06
0.8421E-05 0.I188E 06

0.8306E-05 0.1206E 06
0.7832E-05 0.1277E 06
0.7626E-05 0.1312E 06
0.7536E-05 0.1327E 06

0.7336E-05 0.1363E 06
0.7235E-05 0.1382E 06
0.717IE-05 0.I395E 06
0.6976E-05 0.1436E 06
0.6962E-05 0.1636E 06
0.6729E-05 0.1486E 06
0.6539E-05 0.1529E 06

SQ.RT./2PI

0.7624E-03

0.1460E-03

0.6599E-06

0.6501E-06

0.2220E-04

0.2030E-06

0.2020E-06

0.1863E-04
0.1603E-06
0.1268E-06

0. I166E-04
0. I062E-06
0.7377E-05
0.6355E-05
0.5853E-05

0.5822E-05
0.5750E-05
0.5383E-05
0.4076E-05

0.3669E-05

0.3277E-05

0.2909E-05

0.2796E-05

0.2752E-05

0.2674E-05

0.2043E-05

0.2033E-05

0. I987E-05

0.1922E-05

0. I860E-05

0. I790E-05

0. I665E-05

0.I626E-05

0.I59IE-05

0. I690E-05

0. I659E-05

0.1607E-05

0.1359E-05

0. I360E-05

0. I322E-05

0. I266E-05

0. I213E-05

0. I199E-05

0. II68E-05

O. II5IE-05

O.II6IE-05

O. IIIOE-05

O. IIOBE-05

O. I071E-05

O. I06IE-05

75

RECIP/2P[

0.3412E 02

0.1759E 03

0.3839E 03

0.5627E 03

0.1141E 04

0.1268E 06

0.1256E 06

0.1360E 06

0.I581E 06

0.1997E 04

0.22IOE 04

0.2385E 04

0.3433E 04
0.3986E 06
0.4328E 06
0.4351E 04

0.4405E 04
0.6706E 04

0.6218E 06
0.6904E 06

0.7729E 04

0.8708E 06

0.9060E 06

0.9205E 06

0.I026E 05

0.1240E 05

0.1246E 05

0.1275E 05

O.I318E O5

0.I362E 05

O.ISI5E O5

0.I560E 05

0.I559E 05

0.I592E 05

O.I700E 05

0.I736E 05

0.1798E 05

0.1866E 05

0.1890E 05

O.1916E 05

0.2032E 05

0.2088E O5

0.2112E 05

0.2169E 05

0.2200E 05

0.2219E 05

0.2282E 05

0.2286E 05

0.2365E 05

0.2636E 05
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from equations derived by Johnson and Reissner as set forth in Ref. 6. Experimental

values were determined from impulse response acceleration-recordings of the

shallow spherical shell suspended from a single wire. Finally, values predicted by

application of the finite element method were obtained by use of SAMIS as described.

The natural frequencies obtained by the three methods are presented in Table 3-8.

Table 3-8. Natural frequencies of the shallow spherical shell

I

I
I
I

I

Mode description

Two nodal

diameters

First asymmetric
Three nodal

diameters

Second symmetric
Four nodal

diameters

Second asymmetric
Five nodal

diameters

Third symmetric

Six nodal

diameters

Third asymmetric
Seven nodal

diameters

Theoretical

frequency,

cps

36.0

154

236

332

Expe rimental

frequency,

cps

37.2

90.0

150

86.6

240

SAMIS

computed

frequency,

conf. No. l,

cps

34. !

91.5

178

278

387

491

SAMIS

computed

frequency,,.
conf. No. Z '',

cps

34. 8

167

370

"These results are discussed subsequently in this paragraph.
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!
The in-plane and out-of-plane mode displacements for the first symmetric and

I asymmetric are Figs. 3. IZ. The out-of-plane displacementsmodes shown in 3. i0 and

for the second and third modes are shown in Figs. 3. ii and 3. 13. Corresponding

i theoretical and experimental mode shapes were not determined due to the complexity

of the measurements and calculations required to obtain these data.

t The computed results for the shallow shell show general agreement with theory.

The first symmetric and asymmetric mode frequencies agree with theoretical and

I experimental results well within normal engineering accuracy. However, the com-
puted frequencies for the higher modes show greater divergence from experimental

values than was expected. For these modes, the shapes possess the required

i symmetry, except near the apex of the shell (Fig. 3. ii). For the second mode, the

displacements at gridpoints 6 and 8 are opposite in polarity to displacements of the

l structure. Similar behavior is observed in the third mode atremainder of the

gridpoint 7 (Fig. 3. II). These displacement anomalies significantly distort the mode

i shapes, and were suspected to be the conditions causing the large error in frequency.
Study of the triangular array (Fig. 3. 5) revealed that, for the second mode, element

I number 11 (typical) was required to represent a large change in slope (including
polarity) between gridpoints !I and 12. For the third mode, similar conditions

existed for elements 13 and 22. To alleviate this condition, the structure was further

l subdivided, increasing the number of elements from 54 to 68 (Fig. 3. 14). Solution for

the symmetric modes and frequencies only was repeated. The results obtained show

I significant improvement frequency prediction (comparison of the fifth and sixthin the

columns in Table 3-8) and correction of the modal displacements to more physically

i rational shapes (Fig. 3. 15). For the symmetric modes, comparison of theoretical
and SAMIS computed frequencies indicates -3 percent error in the first mode,

I +8.4 percent error in the second mode, and +11.4 percent error in the third mode. It
is suspected that part of this error may be due to the particular mass lumping

technique that was used. This technique was to place one-third the mass of each

I element at each of its nodes. This method of mass lumping as well as several others

is currently under study.

i The mode shapes obtained from use of both the original and the refined tri-

angular arrays exhibit, in general, smooth variations that phase correctly over the

I (with exception already noted) are distinctly susceptible
shell surface the Nodal lines

of interpolation for _]] _'nodes and have approximately the corre_;t ang,1!ar spacing

\
\
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0.02 0.22 ,0.75 1.81 ,3.74 6.93
_y
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20.8
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3. 10. Computed shape of the first symmetric mode
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Fig. 3.11.
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0 -47.0

4 9 15 20 29 58

0 0 0 0 0

1.78

;_3.4

fcomputld " 378 cps

38.0 NODAL LINE

,0 70.5

x

Out-of-plane displacements of the second and third symmetric modes
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Refined triangular element idealization of shell sector
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Refined out-of-plane symmetric modes
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Fig. 3. 15 (Cont'd)
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The single-step refinement procedure of the shell dynamics problem described

above typifies one approach the user may adopt in gaining confidence in problem

solutions. Generally, if errors have been made in element data, or if a poor

structural idealization has been made, these conditions will be reflected in peculiari-

ties in the solutions. It has been the experience of the JPL users that input errors

of this type cause variations in a solution that tend to be localized in the same region

as the original error, and recognition of this has speeded correction of several

problems.

In conclusion, it should be noted that in the idealization of Fig. 3. 14 the

gridpoint numbering is not consecutive. In general, this procedure should be

or for utilization of the node discontinuity capability.

3. 13 Alternate Concepts of Dynamic Analysis

Mathematically, the form of the dynamic equation usually encountered in

analyses with the SAMIS program is:

klll-m',+-_-II_.I [-qTT_Z-J-87

That is, the stiffness representation of the structure is more refined than the

inertial representation. One condition that leads to this inconsistency of rank is

neglect of rotary inertia effects in generation of the structure mass matrix. For

structures with 6 degrees of freedom per gridpoint, this condition results in a mass

matrix one-half the order of the stiffness matrix.

A second condition that causes inconsistency is the capacity limitation of the

eigenvector and eigenvalue computation subprogram ROOT. Since in most problems

the lowest frequencies are of interest, the stiffness matrix is inverted and the final

form of the dynamic matrix is (see paragraph 3. 9):

[_] : [@[K]-i [cs]m

where

[u]T [@ = [m]
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Thus, the size of [D] is defined by the order of [m] , which must be less than 131 to

satisfy the requirements of ROOT. Therefore, in discretizing a structure, a maxi-

mum of 130 mass coefficients may be specified on the diagonal. For planar truss

and frame structures this limitation is not normally severe because of the directional

motion characteristics of this type of structure. However, for three-dimensional

frame and shell structures, a gridpoint may move significant amounts in several

directions, each direction requiring a diagonal mass coefficient. Thus, if symmetry

conditions cannot be applied and user intuition regarding the shapes of the modes is

not firm, an assumed inertial representation within the 130 coefficient limitation

may not be satisfactory.

Two methods are outlined below that aid in alleviating the limitation on rnatri×

order for dynamic problems. Both methods involve transfer from local to a set of

generalized coordinates.

Assume for a given problem that the stiffness matrix has been generated and

constraints have been imposed consistent with specified boundary conditions. Then,

assuming that more than 130 discrete mass coefficients would be required to dis-

cretize the structure adequately, an alternate approach of defining 130 or less vector

locations of major inertial significance is selected. Next, a unit force is applied

sequentially at each preselected vector location. For this loading the static problem

is solved by inverting the stiffness matrix. That is, starting with

[K]{61=l_}

where

{r}

l< _n

1 0 0

0 0 1

0 0 0

l

(n -< 130)

the solution is:

{6}=[K]-I{_}
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whereI6 _ is a set of static deflection shapes of the constrained structure for unit

applied forces. This set of shapes is interpreted as a generalized set and applied to

the dynamics equation as follows:

{6}=[D]lq}

and

Hence

_2[m]{6}: [K]{_}

_2 [D]T [m] [D] {q} : [D] T [K] [D] {q} (3.9)

This equation may be written

2

The solution for the k.1 and {qi} is effected by methods outlined in Section 3. 9. The

mass matrix [m] in Eq. (9) is the set of coefficients assigned to the originally

selected 130 or less stations on the structure. The coefficients of the matrix aligned

with each orthogonal coordinate should represent the total mass of the structure.

Use of the static deflection shapes as pseudo modal functions essentially distributes

each point mass proportionately to each shape, which in turn relates directly to the

stiffness properties of the structure. This technique often provides a more accurate

representation of the structure per number of variables than if a set of discrete

displacement variables is used.

The second method of solving problems with more than 130 mass points is by

component mode synthesis techniques, as reported in Refs. 9 and 10. With this

approach, subsystems of the total structure are isolated, analyzed, and finally con_-

bined with other subsystems, after each has been transformed to separate generalized

coordinates. To demonstrate the procedure, consider a structure made up of two

parts, subsystems A and B. For each subsystem, referenced to its o\vn natural
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coordinates, the mass and stiffness equations are generated.
we have:

In the present example

For each subsystem, appropriate eigenvectors[<_ij]are computed, which provide
the transformation to generalized coordinates, namely

The eigenvectors [6ij ]may be a superposition of several types, namely the normal
modes of the subsystem, rigid body modes, constraint modes :;"and/or attachment

modes::'-_:-'. The process of forming the modal functions is repeated for all subsystems.

To combine the subsystems, a constraint condition must be imposed so that

displacements of subsystem _A match displacements of subsystem 13 at common

points. However, in general, each subsystem is referenced to its own local

coordinate system, so in order to match displacements a coordinate transformation

is required. The transformation is simply the three-dimensional vector trans-

formation involving direction cosines, which will be designated __A and ¢{B for the

two subsystems. At present, each transformation matrix must be generated by hand.

_:_See Ref. 7.

;:_-_:'-S e e R ef. 8.
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For subsystem A assume gridpoints i and j are to be matched with gridpoints of sub-

system B. The matrix of direction cosines for subsystem A is, therefore,

il iZ i3 i4 i5 i6 jl jZ j3 j4 j5 j6
il

iZ

i3

i4

i5

i6

jl

jz

j4

j5

j6

_A 0 0

_/A o

0

0

0

0

9A 0

0 A

_A similar matrix can be written for subsystem ]3, assuming gridpoints k and _are

involved.

kI kZ k3 k4 k5 k6 _I _Z _3 _4 _5 _6

kl -

kZ

k3

k4

k5

k6

lz
_3

24
_5

_6

_B

B

0

0

B

0

0

0

0

_B
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Next by operations within SAMIS, the total _{ matrix is defined, of the form:

which is to be premultiplied by the matrix of modal functions, namely

[_]= %

to obtain

L

This equation is actually an expression of the condition

I_l I_l;I°l

or in terms of the generalized variables is:

[_ _ ' _ lql = I°l (3. lo>A_ B

However, in equating the displacements of the two subsystems, the number of

independent variables is reduced in Eq. (3. i0). Hence, the equation can be written

in the form:

ID II i-
(3.11)

'_qD}are the dependent variables, the number of which is equal to the numberwhere
_ J

of displacements that have been equilibrated. At present, selection of the dependent

set is arbitrary, and is subject to the same consideration as selection of redundant
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members in the force method of analysis with respect to maximizing accuracy

(Ref. 9). Solving Eq. (3.11) for the dependent set yields:

t.ot=I_] -_[o_]f_,t
and the final transformation matrix is formed, namely:

I:II[_Do],
or

This transformation will be used in subsequent calculations. The calculations

leading up to definition of [T] involve only real arithmetic and can be performed with

the current version of SAMIS once the _ matrix has been generated.

With the modal functions defined, the matrix equations for each subsystem

can be expressed in terms of generalized coordinates. For subsystem A:

[_] I_AI+[_] I_A}=_oI
where

[_A] = I_A.} T [mA] I_A}

After generalizing the subsystem equations, the subsystem matrices are

superimposed to form the dynamic equation of the composite system, each
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I

subsystem still being referenced to local coordinates.

equation is

The form of the matrix

I

I

Next, the transformation defined by Eq. (3. 12) is applied to obtain

I

I

I

which may be written as !

Solution for the eigenvalues and eigenvectors is effected by methods defined in

Section 3.9. After the eigenvectors have been determined, the mode shapes for the

two subsystems in local coordinates are determined by transforming as follows:

(3. 13) I

!

|

UA I [T] ql
GT.-- = o I_ B

where __lql;are the eigenvectors from Eq. (13).

It should be noted that the procedure outlined above for determining dynamic

characteristics is also the preparatory process for solving the forced motion

problem, as discussed in Refs. ? and 8.

I

I
I

i
3. 14 Use of Multiple Coordinate Systems R

Most problems, particularly those with single component structures, are set

up referenced to a single overall X, Y, Z coordinate system. With this arrangement, i

the gridpoint coordinates, loading vectors and gridpoint displacements are referenced

to the overall system, and the member stress resultants are referenced to either the

analyst's specified or computer-generated local coordinates. However, for some i

problems it is convenient to use more than one set of overall coordinates. In these

!
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cases, use of several sets either reduces the amount of input data to be prepared or

simplifies the interpretation of computed results.

An interesting example which demonstrates the applicability of multiple

coordinate systems is the analysis of a pivotable antenna and mount (Fig. 3.16).

Assume that it is necessary to determine the static response or dynamic characteris-

tics of this configuration for several positions of the dish relative to the pedestal. If

a single coordinate system X, Y, Z is used to define the geometry of the dish and

pedestal, then the data must be regenerated for each position of the dish.

The alternate procedure is to first define the geometry of the pedestal with

respect to the X, Y, Z coordinate system and to define the geometry of the dish with

respect to the x, y, z coordinate system. Individual element and the system stiff-

ness, stress, and loading matrices are next generated by use of the SAMIS for each

structural component--in this case the pedestal and dish. Mathematically, the

dynamic equations for the two component systems are:

At this point the two systems are referenced to different coordinate systems; hence,

the next step is to join them by matching displacements at common gridpoints--

gridpoints 1 and 2 in Fig. 3. 16. Assume displacement components of the pedestal

at gridpoints 1 and 2 are aligned with the dish displacements as follows:

or, accounting for all displacements, we can write:

6P1_2t

6P3_N}
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z

/

DISH

I x

y///////////,////////,,_x

Fig. 3. 16. Antenna and mount
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or

(3. 16)

The transformation matrix iT] is made up of a direction cosine matrix [_{], which

may be repeated several times depending upon the number of common gridpoints

between the two systems, and a diagonal unit matrix needed to retain all remaining

displacement components of the pedestal. Imposing this transformation on

Eq. (3. 14) leads to

I I6P3_ N 6P3_ N

By this transformation the codes of the displacement vector_ mass matrix, and

stiffness matrix have been made compatible with those of the dish at the attachment

points. Hence, the mass and stiffness matrices of the two systems can be super-

imposed to define composite matrices for the entire structure.

It is apparent that all matrix operations required in the above manipulations

can be commanded by pseudo instructions if the matrix of direction cosines ['{] is

first computed and utilized to define the transformation matrix iT].

The advantage of this scheme is that location of the dish relative to the pedestal

is controlled by the matrix of direction cosines. Hence, to change the orientation of

the dish requires only that [_{] be changed. This is a rather simple procedure com-

pared to the alternative of regenerating element input data for each geometric

configuration. Furthermore, the mode shapes of the dish will be defined with respect

to the dish-oriented coordinates x, y, z, and the pedestal dynamic characteristics

will be defined with respect to its natural coordinate system X, Y, Z (except for

gridpoints common with dish), which eases interpretation of the results.
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TI-IE LINE ELEMENT, STATIC AND DYNAMIC PROBLEMS

Three-Dimensional Frame Structure

A three-dimensional frame structure, for which independent load and deflection

data are available from Ref. 8, was set up and analyzed with the SAMIS program to

check the program formulation of the line element. The structure is composed of

circular cross-section beam members. A set of hypothetical values for the cross-

sectional area (0. 001 in. Z), shear areas (0. 003 in. Z), and moments of inertia

(0. 001 in. 4) is assumed for each member. The structure is composed of 35 mem-

bers, which are arranged to form a nonsymmetric array. For the static problem, a

loading of i000 ib at gridpoint 13 in the -Z direction is applied as shown in Fig. 4. i.

For this problem, gridpoint displacements, reaction forces, and member forces

were determined.

To check the calculation of modal properties of the structure, the fi_t option

of the mass generation routine was used, which concentrates half the mass of each

elecnent at the element gridpoints.

The static and dynamic results obtained from the SAMIS program were found

to be in complete agreement with results reported in Ref. i0.

Of interest here is the format of the element input data for a typical element

of the structure. Consider element 8, which extends from gridpoint 3 to gridpoint 5.

The three cards of element input data are shown in Fig. 4. Z. It is assumed that this

data is for a dynamics problem, since card No. Z is included, which provides only

the value of the mass per unit length of the element.

The output format for the beam problem is similar to the facet output. For

this problem the displacements of the gridpoints are referenced to the overall

coordinate system X, Y, Z. The stresses are referenced to each element's local

coordinates. The stress component identification is defined in Ref. i, Table 5-4.

4. Z Planar Frame Structure, Prismatic Members

A three-member frame structure, in which each member has a rectangular

cross-section, was set up to check the program for correct generation of the

structural stiffness matrix. The structure is shown in Fig. 4. 3 with the overall

coordinates X, Y, Z and member local coordinates xiYiZ i defined consistent with the

ordering of gridpoints in the element data. The total structure stiffness matrix was

98

I

|

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



JPL Technical Memorandum 33-305

z

_3

/29X __

Dry

X

Fig. 4. i. Three-dimensional frame structure
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ELEMENT FIRST THIRD POLAR MOMENT OF MOMENT OF
GRIDPOINT MOMENT INERTIA INERTIA

No. No. OF INERTIA ABOUT Z A ABOUT Y AXI_._'

"--"= -1 '-"' _' 15i 251 0.O ,[ 0 0,O, O, .0.031 0 00,, I 0 .,003 L ,0-. O0 ,120]I!I ._I Kill ...... °I, ....... , . . . , ....... • .... • i, .. .............

CARD IDENTITY GRIDPOINT CROSS-SECTIONAL AREA AREA L
No. (BEAM) No. AREA (FORCE IN (FORCE IN IDENTITY

Y DIRECTION) Z DIRECTION)

,,---ELEMENT

/
2 . .8

_--- CARD

No.

No. (OPTIONAL)

. . n . , , I , .... , I... J.. 2.',5,9.E.-.61 .... ,. I., _... n .... L I . . .

L MASS PER

UNIT LENGTH

,, ,I,, .... I,i

ELEMENT FIRST SECOND
NO. GRIDPOINT GRIDPOINT

(OPTI_ Y COORD.'----_ X COORD.'_,,_

I_l,,_lFi!ii,,oo I, ,oo, I o,o ,oo

SECOND T HIRD OVERALL

GRIDPOINT__. '_ .--_
GRIDPOINT COORDc---_ COORDZ COORD.__ Y

U,o,,o [ ,,oo I, oo,i o,o I ,oo I *1
t FIRST LFIRST

GRIDPOINT GRIDPOINT
X COORD. Z COORD.

Fig. 4.2.

t SECOND t THIRD LTHIRD

GRIDPOINT GRIDPOINT GRIDPOINT
Y COORD. X COORD. Z COORD.

Sample element data for beam problem
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_-AEMBER®

I MEMBE O EMBERO 
Y

Fig. 4.3. Coordinates and geometry of planar three-member
frame structure
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generated by the program and compared with a hand-derived stiffness matrix. The

comparison between the twowas exact.

Of interest is the format of the element input data for this problem. In the

previous example of the three-dimensional frame structure, because the element

cross-sections are circular, the location of the gridpoint that defines the local x-y

plane of each element is arbitrary and may even be ignored. However, in the present

case, the location of the third gridpoint must be considered carefully; otherwise the

interpretation of the member stresses will be incorrect. For the three elements,

the element input data is that shown in tCig. 4.4. For member Q , the elastic

gridpoint nmnbers are & and & , which define the direction of the local

x axis. The third gridpoint, which is A , is used to define the local x-y plane

for this member, which is the xlY 1 plane. The clamped end condition at gridpoint

& is specified by the sequence 999999 on card Z. For member Q the third

gridpoint is & which leads to definition of the Xzy Z plane as the local plane. For

member Q , a local coordinate system, skewed with respect to the XYZ system,

is selected to align with the principal axes of the member cross-section. For this

member, the third gridpoint is //_ as shown in _'ig. 4. Z. The clamped condition

at gridpoint & is indicated by the sequence 999999 on card Z. Based upon these

definitions of the local axes, the moment of inertia I is larger than I for each
zz yy

element, and is so referenced in the element data.

10Z

!

II

|

I

!

I
S
!
¢
!
|
!
!
!
i
!
I
I
I



JPL Technical Memorandum 33-305

!

!

t

g

c
w

ew

E

,_o

o
w.

o

!
o

e_

c_

!

- e_

e_

_D

_D

!

o

©

!
@

©

!

m

E

•#uo D _o _ c,4 tN eV _

_4 _4

103



JPL Technical Memorandum 33-305

MISCELLANEOUS TOPICS

Automatic Matrix Partitioning and Applications

In most statics problems involving solution of the equation:

[K]{6}= IP}

the applied loads are zero at many gridpoints. Partitioning on this basis, the above

equation can be put into the form:

(5. 1)

Normal procedure in solving this equation is to determine the relationship between

161_ and 16Z} from the lower set of equations, then substitute this result into the

upper set to obtain:

or

I i - KI Z KZZ i

[2]{61}: {P}

At this point [K] is inverted to solve for the displacements {61l

loading {P } , that is:

[_ ]-i_ -i_l {PI{61}: [_]llPt -- 11-KI2K22

due to a specific

(5. z)

It is noteworthy that if the stiffness matrix of Eq. (1) is inverted, the resultant

flexibility matrix has the matrix coefficient of Eq. (5. Z) in the partition location

corresponding to KII. To demonstrate this, designate the flexibility matrix by [f] ;

then by definition

][I (5.3)

104

¢
J
!

I
I
I
!
I
g
¢
|
¢

I
I
I
!
i
I



I

I

i

I

I

I

JPL Technical Memorandum 33-305

or

[fll][KIll+ [f21][KZl]: D] (5.4)

[fll][KI2]+ FZl][K22]= [o] (5.5)

[f12] [KII] + [fzz] [Kz,] : [0] (5.6)

[fi2][Kl2]÷ [f22][_22]: [i] (5.7)

Solving Eq.

Similarly,

(5.s) for [fI2]

it is found that:.

and substituting into Eq. (5.4) leads to

K -i K21] -I[fll] = ll - K12 K2Z

[ -, ]-,[f22] = I<22 - K21 KllK12

e_] :- e'_] [_ _il]

Thus, the fll partition of the flexibility matrix is exactly the coefficient matrix that

is required to be multiplied by the loading matrix.

Symbolically, if the stiffness matrix of Eq. (5. I) is input as the [A] matrix,

and the loading matrix as the [B] matrix, then the following result is automatically

determined by use of the CHOL subprogram:
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which is the desired result as defined by Eq. (5. Z). Thus, by input of

I

K11! KI_]

and I-P-I into CHOL, the desired output defined by Eq. (Z) is obtained. It is to be
Ioi

noted that if a unit diagonal matrix is input as the [B] matrix into CHOL along with any

matrix [A] of larger order than [B], the output is automatically

A11-AIzAzz" Z1 ' ii

This capability can be used in numerous problems. Consider the dynamic

matrix equation in which the mass matrix is of lower order than the stiffness

matrix:

The mass matrix is decomposed into:

[U] T [U] = [m]

or

uo _i FKI,',.]_I

We define

Then

L o,o = LKZlK2zj[u]
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The stiffness matrix is input to CHOL as the [A] matrix, and the

as the [B'] matrix. The output of CHOL is:

K11
K21

Kl?..

KZ2 L o I cj

which is equivalent to:

Thus,

-lt<%l]-1D] TKI I-KIzKzI

the dynamic equation automatically reduces to:

K -1 ]-1kZ[u] 11 - K12K22K21 [u]T{6":"} = [I]{6":"}

which is the desired form of the equation from which the eigenvalues and eigenvectors

are determined using ROOT.

In the event the stiffness matrix of Eq. (5. I) has a diagonal and upper off-

diagonal that exceed core, the matrix must be partitioned "manually" through the

use of additional pseudo instructions. A set of pseudo instructions that performs

this partitioning is given in Table 5-I. These 13 instructions operate on stiffness

matrix KTR001, which presumably has already been generated and constrained.

Description of each pseudo instruction follows:

14. 00 READ: Transfer from the data input tape to tape IZ, locations

001 and 00Z, the two matrices WAR001 and WAR00Z,

respectively.
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14,00

14,05
14.10
14,15
14,20

Ia,25
14,30
14,35
14.40
14.45
14,50
14o55

I_.60

Table 5 - 1.

JPL Technical Memorandum 33-305

12001
12001
12001
11O02
13001
I0001
11002
11003
12002
13001
11OO4
tOO01
I300Z

WARO01

WARO01

WARO01
WFCO01

WFRO01

KWRO01
KLRO01

KLCO01

WARO02

KBRO01

KURO01
KICO01

KARO01

Pseudo instructions for Fnatrix partitioning

12002 wARO02 READ

Ii001 KTRO01 WASH 10001
FLIP 11002

ROWS 13001

I0001 KWRO01 WASH 13003

13002 KARO01 SUBS 11002
COLS 11003
FLIP 11004

11001 KTRO01 WASH 13001
11003 KLCO01 CHOL 12001

12001 KDCO01 MULT 10001
ROWS 10002

10002 KIRO01 SUBS 11002

KwRo01

WFCO01
WFRO01

KARO01

KLRO01

KLCO01

KURO01

KBRO01

KDCO01

KICO01

KIRO01

KPCO01
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14. 05 WASH:

14. I0 FLIP I

14. 15 IROWS I

14. ZO WASH:
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Extract certain rows and columns from the stiffness

matrix KTR001 by special pre- and postmultiplication.

Store the partition of KTIR001 on tape i0, location 001.

The explicit operation is:

Starting with the complete stiffness matrix

the left column partition is isolated by use
2

of WASH, option 2 (as indicated in E field). The

matrix WAR001 has column codes that match

those of K and row codes that are different from
ll

any codes used in K. Elements equal unity in

WAR001. Note that since rows and columns of

[K] are prescribed by element codes, the

selection of the row or column codes of _[K 1 i]

and [K_.z] is dependent only upon the element

codes used in the WASH matrix. To minimize

computer time, general practice should be to

select strongly coupled elements for [K 1 l] and

lightly coupled elements for [Kz_.]. With this

arrangement [Kzz] is efficiently inverted in
-1 -

[Kz1 ] will be afull matrix, the fact that __[Kll]

is also full, is of little consequence.

Row-list the transpose of the WASH matrix.

Extract the [Kll] matrix fr°m the [NNllzI1 partition by

special pre- and postmultiplication with the matrix

WFR001. Title the __[Kll] matrix KAR001 and store it

on tape i3, location 00g.

i09



JPh Technical Memorandum 33-305

14. 25 SUBS:

14. 30 COLS I

14. 35 FLIP j

14. 40 WASH:

14. 45 CHOL:

14. 50 MUET:

14. 55 ROWS:

14. 60 SUBS:

[KI:]to obtain [Kz1]. This
Subtract [K 11] from I< Z

matrix is titled KLR001 and is stored on tape 11,

location 00Z.

Convert [KzI ] to [KIz ]. Designate [KIz ] KUR001

and store on tape 11, location 004.

Extract the __[Kzz] partition from the total [K] matrix

by special pre- and postmultiplication. Matrix WAR00Z

has row and column codes that match those of [Kzz ]

and elcment values of unity. Option Z of WASH

is used. Matrix [Kzz ] is designated KBR001 and is

stored on tape 13, location 001.
-i

!_orm the matrix produce [Kzz ] [KzI ] from input

of [Kzz ] (KBR001)and [Kz1 ] (KLC001). Designate

the resultant matrix KDC001 and store on tape 1Z,

location 001.
-1

Multiply together [KlZ ] (KUR001)and [Kzz ] [KzI ]

(KDC001) to form [KIz ] [Kzz ] -I [KzI ] (KIC001).

Row-list the matrix KIC001 and title the new matrix

KIR001. It is stored on tape 10, location 00Z.

By subtraction form Kll K12 K22 K21 .

matrix is titled KPC001 and is stored on tape 11,

location 00g. Except for degenerate cases this matrix

is a full matrix.

These pseudo instructions are an example set suitable for insertion into a

pseudo instruction program. They would necessarily have to be modified,

particularily in tape assignments, upon insertion into a program set.

Another use of the partitioning capability can be demonstrated by considering

the problem of a stiffened cylinder subjected to a transverse normal load as shown in

Fig. 5. i. Because of symmetry, only one-half of the cylinder cross-section needs

to be idealized and analyzed. However, even with this reduction, if one-half of the

cylinder is idealized by a network of triangular elements as shown in Section C, it is

apparent that the total structural stiffness matrix would greatly exceed the

computational capacity of the SAMIS. However, partitioning this structure and

solving a lower-order matrix equation, can be used to retain the effect of a fine grid

array.

110

|

!
!



|

!
!
|

I

!
I

I

!

!

e

!

!
I

!

i

1I

I

JPL Technical Memorandum 33-305

Fig. 5. I. Stiffened cylinder
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The procedure centers on first analyzing each section of the total cylinder.

Consider Section A as having been idealized by an array of triangular plate elements

and a number of beam elements that represent the ring stiffener. The stiffness

matrix for Section A is generated using SAMIS, which takes the form:

[KA] t6At z /pAt

At this stage, gridpoints in Section A which border on Section B or the clamped edge,

and gridpoints at which deflections are to be computed or forces are to be applied,

are separated and designated as 6(AI). .All remaining displacement components are

(Z) Thus the matrix equation partitions into
designated 6A .

KA

K A

(5-8)

In actual manipulations, the n_atrix KA. ,.,and a unit diagonal matrix of the same

dimension and coding as the rows of I 6_Al)l are input to CHOL as the [A] and

matrices, respectively. The output of CHOL is:

[B]

ru_--b _ _A__'_-'___d_']-'

This matrix is next inverted and designated [KA]" Thus, we have

_-A] 6(I) This processwhere [ is, in general, a solid matrix of the same order as A"

is repeated for all remaining sections of the cylinder, until finally four stiffness

matrices have been determined that have the following interpretation:
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These matrix equations are superimposed to obtain a representation of the entire

structure, i. e. :

m

t_Cl/t = tPt

or

If precautions have been taken to control the dimension of {6 (I)I , then the final

stiffness matirx [K'S] will still fit in core or the matrix size will have been reduced

such that a single partitioning of the equation is all that is required to solve for the

{6 (i)1 in terms of specified applied loads {P}. The only restriction on this

procedure is that in the initial solution of the problem only the displacements 16(i)}

are determined. If the remaining structural displacements are needed, then

supplemental manipulations with the individual section equations, e.g. , Equation (8),

are necessary.

5. Z The Node Discontinuity Concept

Computational ability to account for displacement discontinuity at the joints of

adjoining finite elements is very easily effected in the SAMIS. Consider the beam

element, which has a stiffness matrix of order IZ when the beam is arbitrarily
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oriented in three-dimensional space. Six of the variables are referenced to each of

its gridpoints. For gridpoints designated i and j the stiffness matrix for element k is

of the form

il

1
i6

jl

j6

1-----_i6 j 1
I

K!.h/ I K!h/
11 I lj

I

K[.h) I K[.h)
jl I JJ

=j6

Combining the stiffness matrices for the structure shown in Fig. 5. Z, which is made

.... F _..... l.... _ leado _a= _i ....;-g _=_-_ _q,,_tion"_i_ ,_,- _v_ ,_±,_,-_S, _ _ to _,_ .......... - .............

K(1)
IZ

k(l) + K(ZZ;ZZ

i_(z)
4Z

K(Z)
Z4

hCZ)
44

I
I
I
I

I
I

.J

Ull

u
IZ

u13

014

@15

@16

uZl

uZZ

uz3

@Z4

@Z5

@Z6

u41

U4z

u43

@44

O45

046

Pill
P1Z I

i

P13 1

m14 1

m151

m16

PZI

PZZ

PZ3

mz4

mz5

mz6

P41

P4Z

P43

m44

m45

m46
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(a) CONTINUOUS BEAM ELEMENT 2

I 2 4

Y ELEMEN

z

(b) DISCONTINUOUS BEAM

z

ELEMENTI

0
2

ELEMENT 2

\

Fig. 5. 2. Two-member beam
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Note that at gridpoint g the two-element stiffness matrices combine, resulting in

only six independent variables at this gridpoint. Hence, in going fron_ element 1 to
element Z, across joint i, continuity of displacements is maintained.

Consider now the case when joint g is a hinge connection with a single axis of

rotation along the y axis. The twelve displacement variables at gridpoints I and 4

and five of the displacement variables at gridpoint Z are unaffected by this structural

modification. However, the slope at gridpoint Z is now discontinuous, having a value
(i)
Y2 on the element i side of the joint and a value @(Z)YZ on the element 2 side of the

joint. Hence, instead of eighteen displacement variables, we now have nineteen, and

superpositioning of the stiffness matrices must yield a matrix equation of the forn_

- 4;I__

0

K (I) + K (2)
Z2 22

t_(z)
ZZ

K(

_:(1) K(z) K(2)
22 2Z Z4

-0

K(Z)_
24

K (2)
44

Ul i
u Ig

Ul 3

014

915

016

ug I

u2 g

u23

024

926

u41

U4z !

u43

044

O45

O46

PII

PIg

PI3

m14

m 15

m16

P21

Pgz

PZ3

m 24

m g6

(i)
mg5

P41

P4g

P43

m44

m45

m46
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It should be noted that not only has a new displacement variable been generated, but

also the corresponding force variable has been split into two independent variables

at the joint. Thus, if a moment M is applied at joint Z, the user must determine
Y

the fraction of this moment that is applied to each member.

In the SAMIS, the mechanism for identifying additional variables when discon-

tinuities are present is by incrementing the gridpoint number of one of the elements

during the generation of the stiffness matrices. Thus. in the present example, if

the discontinuity condition is flagged in the element data of element l, the coding of

the variable Oy would change, but the coding of ey would not. Since the grid-

(l) ---35 and
point12 number 3 has not been assigned, the coding could be: ey 2

e_'-)2 ,z5; thus, the element stiffness matrices become:

ii

iZ

13

14

15

16

2Y
gg

Z3

Z4

z6
35

Ii IZ 13 14 15 16 Zl ZZ Z3 Z4 26 35

K(I) K(I) 1Ii 12

K(l)
2Z

Zl

2g

Z3

Z4

Z5

and Z6

41

4Z

43

44

45

46

Z1 ZZ Z3 Z4 Z5 Z6 41 4Z 43 44 45 46

CZ)
K2Z

KCZ)
4Z

K( z)
Z4

K (3)
44

Superposition of these matrices then yields the necessary nineteen degrees of

freedom.

The node discontinuity capability in SAMIS has been used in the analysis of

a solar panel structure. The actual panel was constructed of corrugated sheet,

with a second facing sheet to which solar cells were mounted. Two large beams

support the panel and attach to adjacent structure (see Fig. 5. 3). This design

was idealized by three planes of beam elements. In the idealization, the corru-

gations were lumped into equivalent beams lying transverse to the support beams.

The facing sheet was idealized by criss-cross beams that modeled the in-plane

stiffness of the sheet. The discontinuity conditions arose because of the extreme

shear flexibility of the corrugation resulting in displacen:ent discontinuity

between gridpoints in the support beams and gridpoints in the facing sheet.

This discontinuity was accounted for in the following manner. Gridpoints
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q bQ ,,,.
)RRUGATION

)in.

_,I

SUPPORT BEAMSY
CELL SURFACE

Fig. 5. 3. Sketch of solar panel

SUFP_OMR.__ , ._ _ //-_ CORRUGATION

6_i__6"_" -- I-- _ "_44_ RIGID ARM

GRIDPOINT

-- FACING
SHEET
ELASTIC
GRIDPOINT

IDEALIZATION OF

SUBSTITUTE NODE

Fig. 5. 4. Definition of substitute node
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on the facing sheet were transferred to corresponding elastic gridpoint locations on

the support beam. Physically this is equivalent to assuming a rigid massless arm

attached to the facing sheet and gridpoint forces acting at the substitute gridpoint.

The elastic gridpoints (4 and 6) and a substitute gridpoint (6') are shown in Fig. 5.4.

All displacement components at gridpoints 6 and 6' are coded identically, except

the axial displacement (along x axis). For this component the discontinuity condition

was used in which the support beam retained the 61 designation; however, the substi-

tute node 6' was designated 51. To complete the idealization, a stiffness matrix

representing a linear spring was input which had the form:

51 61

61 -k

The stiffness coefficient k was sized to represent the stiffness of the tributary

corrugations in shear.
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APPENDIX A. Transformation of Orthogonal Vectors

Equations are derived for transforming a set of vectors in spherical coordinates

to a set in rectangular coordinates. The notation and sign convention are shown in

Fig. A-l.

In Fig. A-I, the vectors e_, e_@,e-_6,

coordinate lines. The unit vectors e_x,ey,
system.

The unit vector

are unit vectors tangent to the respective

eX, are, as shown, in the rectangular

can be found in terms of the rectangular system as follows:

e_

×_ + y_ + z_
x y z

_x y2 22+ +z

where, from Fig. A-I,

x : a sin % cos @

y : a sin _ sin 0

Z : a COS

substituting these quantities into the expression for e_ yields

e_ = sin 6 cos @ e
5 X

+ sin _ sin @ e + cos _e (A-l)
y z

The unit vector e_p can be found by differentiation
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Fig. A-1. Sign convention and nomenclature
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or,

e_ = cos 6 cos @e + cos qbsin{) e* - sin 6 'e
' X y Z

(A -z)

Similarly, e is given by
@

eo -

ae_
a0

sin(b sin O e-_x+ sin6 cos {_ e_y

or,

e@ = - sinOe + cos 0 e (A-3)
x y

Now, the set of vectors

-- e 06 9 e = _ e

can be transformed into the xyz system by use of the unit vector relations, namely

_: Q_( sin dp cos {3 e-_ + sin6 sin0 _ + cos _ _ ) (A-4)x ' y z

-_ _ (A-5)
9_= Q6 ( cos dp cos @ _x + cos qb sin0 ey - sin _p _z )

_-= ' ( - sin O _ + cos O _ ) (A-6)
'8 _8 x y

Let the vectors in the xyz system be denoted by

_ e _ =_ e _ :_ e
x x x y y y z z z

124

I

I

I

I

I

I

!

I

I

I

I

I

I

I

I

I

I

i

I



1

I

I

I

I

I

l

I
I

I

I

I

I
I
I

I
I
I

JPL Technical Memorandum 33-305

These vectors can now be written in terms of the vectors _i by summing the

appropriate components in Eq. (A-4) - (A-6). Thus,

sin _5 cos {} + %D_5cos 4}cos 8 - _e sin e) ex

-_y = (_ sin _ sin @ + _. sin e _8 eCOS + 8)COS
Y

_Z = (_._ cos _ - _{_ sin _) e z

from which the inverse relations are obtained

_= (_x sin _ cos e + _y sin _ sine + _z cos _) e_

= cos _5 cos 0 + _y cos _ sin e - _z sin _) e#

_e = (-_x sin e + _y cos e) ee

125
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APPENDIX B. Solution of Thermal Loading Problems

Calculation of temperature-induced displacements and stresses involves

superposition of two linear loading states. One state consists of fixing all other-

wise moveable gridpoints of the structure, then imposing the temperature

conditions that induce loading. Formulation of this stat_ yields gridpoint reaction
forces that maintain the zero displacement constraint. These gridpoint forces are

commonly referred to as "fixed-node forces. "

The second loading state is the application of the fixed-node forces with
reversed sense at the structural gridpoints. For this loading only the actual displace-

ment constraints are imposed (boundary conditions),

gridpoints is computed.

Superposition of the displacements, stresses,

and deformation of all other

and gridpoint forces from the two

states is the solution of the thermal loading problem. Obviously, superposition of
the two states results in zero net external forces acting at all unconstrained grid-

points, as should be the case. Actual deformation of the structure is defined by the

displacements computed from the loading in the second state. For stresses, numer-
ical results from both loading states must be considered. Actual member stresses
are the difference between the values computed based upon the displacements of the

second loading state, and the values corresponding to the fixed-node loading.

In using the SAMIS program to solve thermal loading prol:_.ems, most of the
essential data is determined internal to the program. For example, the vector of

fixed-node forces is simply the vector resulting from overlay (ADDS) of the individ-

ual loading vectors generated by BILD. By subjecting the analytic structural model

to this loading (solution by CHOL) the temperature-induced displacements are
obtained.

The element stresses that result from the fixed-node loading state are also

computed internal to SAMIS. These values are stored as column 05 in each element

stress matrix whenever these matrices are generated in a thermal loads problem.

Thus, for a thermal problem, the element stress matrix has the following format:
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o

oo_o

_9

u_

Codes corresponding to element
stiffness matrix codes I O5

_)

4_

!

= [_]

For other than a thermal loading problem, column 05 does not appear in the matrix

([s]-[_]/.

The usual procedure with SAMIS in computing element stresses is to form the

product

{_}=[_]{61

where {5} is the vector of displacements for the entire structure, but because multi-

plication in SAMIS is by code matching, only those elements of {8} are selected that

correspond with those of each[S]. In a thermal stress problem the product[S]{5}

yields the stresses corresponding to the second loading state--from which the fixed-

node stresses must still be subtracted to obtain the actual stresses.

Because of the code matching technique employed in SAMIS, computation of the

actual thermal stresses is very easily effected. The displacement vector {8} result-

ing from a thermal loading problem has the column code 05 and row codes corres-

ponding to the gridpoint displacement components. The format is:

_0

..4
_u

O
D_

G)

O O

_ o

0 0.,._ 0

O5

8 >-

IZ7
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To this vector an element is added that has the row code 05, column code 05 and

element value -i. 0. This changes the format of { 6 } to:

in

•_ O

O

o__

O O.,_

O5
/

o5 _-1-:_

If this vector is used to form the product [ S] { 6 }, the fixed-node stresses will auto-

matically be subtracted from the stresses of state 2 to obtain the actual stresses in

each member.

Addition of the element with codes 05, 05 and value -i. 0 to the displacement

vector due to thermal loading is a standard procedure with SAMIS and must be exe-

cuted by use of pseudo instructions in all thermal stress problems if accurate stres-

ses are to be computed.
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APPENDIX C. Closed Form Solutions for the Static Loaded Shallow Spherical Shell

Constant Pressure Loading of a Restrained

Shallow Spherical Shell

Following the notation and results of Ref. 11 the solution to the problem of the

uniformly loaded, restrained spherical shell (Fig. C. 1) follows directly once the

constants of integration C1, C 2 have been determined. Requiring that the meridianal

rotation (V) and the horizontal edge displacement (6) vanish at the edge leads to

E 1 =2p C1/pa2 = a(_il'w. (ber'_ + v._ P--2 be_)

_2 = 2 p C2/pa2 = l-___y (bei'_ v__. _)a(_) I_ p2

where

bei'__ (I v) • +ber'_ berM. -- + +a(_t) = bei _. _t -

and

I

+ v-K-. /bei_ • --
p2 \ bei'_+_ ber _ • be_'_)

EahV/p 2 = C • (-bei'x + -KW • ber'x) + C (ber'x + __w . bei'x)
I p2 2 p2

and

_v)pa 2 (l+v . ber'x + beix)Eh6/sin¢ = -(1 /2 + pC 1 • •

pC 2 --" bei'x - ber x)
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I

I

/

, I

W

I

I

I

Fig. C.i. Shell geometry and displacements I

150°F "_ h

'
'I

Fig. C. 2. Shell temperature state I
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The remaining quantities of interest follow as

-2N_/pa = 1 + C 1
ber'x _ bei'x
--+ C 2x x

-( _)-(-2N@/pa = 1 C 1 • bei x + be_'x + C 2 • bet x

2pQ#/pa = _I

2p2M_/pa2 = _l

ber'x+ C 2 • bei'x

ber x+_-_ • beix - (l-v) • (bei'XVx --p2 ber'X)]x

+ C 2

2p2Mo/pa2 = _I

[ (  e xlJbei x - p2 " bet x + (l-v) • --+-- •x p2

v • ber x + -_-_ • bei x + (l-v) ...... ^3
t V-. / IJ_ "_" /]

-[/ v ) (ber,xvbei,x)l+ C 2 • v • bei x --- • ber x - (l-v) --+-- •
p2 x p2 x

Eh" (5 + Vo) sin_ Q_a v = (N o - vN_) • cos_ - l+---Z-v

The constant v can be chosen so that the vertical displacement 6 vanishes at the
o V

edge x =_ The sign convention for the displacements is shown on Fig. C. 1.

Thermal Stresses/Displacements in a Fully Re strained Shallow Spherical Shell

I

I

i

I

I

I

The stresses/displacements in a shallow spherical shell that is heated are

taken to be those given by a particular solution of the heated shell on which is

superposed a solution for a cold shell. The total solution is required to satisfy

the fully restrained boundary condition. The loading is indicated in Fig. C.Z.
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The particular solution for the heated shell follows from Ref. 12 for a linearly

varying temperature distribution through the thickness that is constant otherwise

(Fig. C.Z), assume

® = T + _T I" To, T 1 - constO _ °

I
I
I

I

I

It follows that

Temperature above ambient (strain free)

ntT IhZ Fv - i

cO = c_t T - - co Z4a i- w T

_tT ihZ

_$ = _t T -o Z4a

Fv - 1
i- V

I
I

I
I

M,, M 0 = (l+w) • st DT D = Eh3/1Z(1-v 2)

N,, N e, Q$ = o

The solution for the cold shell is obtained from Ref. 11 once the constants C1, C 2

are determined to satisfy the boundary conditions that

e@ (x = M) Icold = - eT

V(x-- _) = 0
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with

Eah

P
. cO

cold
= C1 (beix+ l+---w"ber'x)x

+ C2" (-ber x+ l+----w"bei'x)x

Eah

2
P

--. V=C 1 ( _ )-bei'x +-_-" ber'x
P

( _v )+ C Z ber'x + • bei'x
P

For the cold shell, it follows that

Eahc
T

(_ = _

1 Pa(t_ )

/ h_-,,,, T f,

2
P

Eah_T ( bei'c2 : - pa(_-----_ --K-w2" ber'______)
P

The total solution is then given by

N_ ! (C ber'x.... + C 2 •a 1 x bei'Xx )

.(beix+ber'x)NO =a" cl ---f-- C 2 • (ber x

1 (CI ber'x+ C2 bei'x )Q+ :a "

133
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hM,

D - (l+w) • c_thT 1 +--9-- • C I • ber x +--_ "
Ea 2 p

bei x

- (l-v) " (bei'x ----w " ber'x)l + C2"x 2 x
P

I vbei x - -_ •
P

P

hMo/D = (i+ v) _thT 1

p 3 ) (bei'xber x + _ bei x + (l-v) x
P

+ C 2 w • bei x - •
P

ber x) (l-v) ( ber'xx 2
P

l P Ic6 --a sin 6 • c T + Ea----h i bei x + l+____w. ber'x)m

+ C2" (-ber x + l+----w"bei'X)lx

/

+ v = ae cos_ + IN@6v o T E---h _ - v N 6
a

l+w aQ!_• cos 6 - _ Sin_

The constant (Vo) can be chosen so that 6 v (x = _) = 0.
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Appendix D, Input Data for Shallow Spherical Shell, Static Load Problem

A. Pseudo Instructions

leO 09001 KAROO1 10001 SSRO01 BILD

2.0 09001 KARO01 ADDS

3.0 11001 TLCO01 ADDS

4,0 09001 VTCO01 READ

5,0 09001 VTCO01 FLIP

6,0 11001 VFRO01 13002 TSCO01 MULT

7,0 13001 KKRO01 09001 VTCO01 MULT

8,0 12001 KPRO01 COLS

9,0 11001 VFRO01 9003 KPCO01 MULT

lO.O ]2001 KKCO01 ROWS

11,0 g002 LTCOOI COLS

]2,0 WAROOI READ

]3,0 WARO01 13001 KKROel WASH

14,0 11001 KWRO01 13002 TSCO01 CHOL

15,0 09001 VTCO01 ROWS

16,0 VTRO01 12001 DICO01 MULT

17.0 09004 DACO01 COLS

18,0 12001 DICO01 INKS

19,0 13001 KKROOI 12001 DICO01 MULT

PO,O I]001 RFCO01 INKS

21.0 ATCO01 READ

P2oO ATCO01 12001 DICO01 ADDS

23,0 10001 SSRO01 DTCO01 MULT

P4.O 11001 SACO01 INKS

pS,O HALT

11001 TLCO01 -10800

13001 KKRO01 10800

13002 TSCO01 10800

11001 VFRO01

09002 LTCO01

12001 KPRO01

09003 KPCO01

12001 KKCO01

13001 KKRO01

13002 TSCO01

11001 KWROOI

12001 DICO01

VTRO01

09004 DACO01

12001 DICO01

11001 RFCO01

DTCO01

11001 SACO01 10800

10800

2014T6

B. Material Table

530, 12,5E-6 16,0E+6 8,0E+6 16o0E+6

8,0E+6 8,0E+6 16°0E+6 4,0E+6

0 0

_..OE+6

_,OE+6
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1 1 31
2

9 l

I 2 31

2
9 2

1 "4 31

2

9 3

2

9 4

I 5 31

2

9 5

I 6 _t

2

9 6

1 7 31

2

9 7

i 8 31

2

9 8

1 9 91

2

9 9

1 10 31

2

9 10

1 II 31

2

911

1 ]2 _I

2

9 12

1 13 31

2

9 13

I ]4 31

2

9 14

1 15 31

2

915

1 16 31

2

9 16

1 17 31

2

9 17

1 18 31

2

9 18

1 19 31

2

9 19
1 )0 31

2

JPL Technical Memorandum 33-305

C. Element Data

2 3 1
50 530

1.3592 28.468 1,27720.46487 28.468

3 2 4

1.27720.46487 28.468 1,3592

2 5 4

1,3592 28.468 2.8554
3 4 6

150 100
•075 20

28.5 0
•075 20

50 530 150 i00

28.468 1.92540.33950 28-433 0

• 075 20
50 530 150 i00

28,357 1,92540,33950 28.433 0

• 075 20
50 530 150 I00

1,27720,46487 28,468 1,92500,33950 28.430 2,683 0,97660 28,357 0

5 6 4 .075 20

50 530 150 I00

2.8554 28,357 2.68320,97660 28.357 1,92540o33950 28,433 0

7 8 5 ,075 20
50 530 150 I00

4,3437 28.167 4.27770,75428 28.167 2,8554 28,357 0

6 5 8 .075 20

50 530 150 100

2,68320,97660 28.357 2.8554 28,357 4,27770,75428 28,167 0
8 9 6 .075 20

50 530 150 I00

4.27770.75428 28.167 4.08171,4856 28,170 2.68320.97660 28,357 0

I0 Ii 7 .075 20
50 530 150 i00

5.8200 27.900 5.79780,50727 27,900 4*3437 28.167 0

8 7 II .075 20
50 530 150 I00

4,27770,75428 28,167 4.3437 28,167 5,79780,50727 27,900 0

11 12 8 .075 20
50 530 150 I00

5,79780,50727 27.900 5,73161.0106 27.90@ 4,27770,75428 28,167 0

12 1"4 8 .075 20
50 530 150 100

5,73161,0106 27,900 5,62171.5063 27.900 4,27770,75428 28.167 0
9 8 13 .075 20

50 530 150 I00

4.08171,4856 28,167 4.27770.75428 28.167 5,62171,5063 27.900 0

13 14 9 ,075 20

50 530 150 i00

5.62171,5063 27.900 5,46901,9906 27,900 4.08171,4856 28,167 0

]I I0 15 ,075 20

50 530 150 I00

5,79780,50727 27,900 5,8200 27.900 6,7981 27,677 0

15 16 II ,075 20

50 590 150 I00

6.7981

12 11

5,73161,0106

16 17 12

50

6.75210.78919 27.677 6.61481.5678

13 12 17

50

5.62171.5063 27,900 5.73161,0106
17 18 13

5O

27.677 6.75210.78919 27.677 5.79780.50727 27.900 0

16 ,075 20

50 530 150 I00

27,900 5,79780,50727 27.900 6.75210,78919 27.677 0
•075 20

530 150 i00

27.677 5,73161,0106 27.900 0

,075 20

590 150 100
27.900 6,61481.5678 27.677 0

•075 2O

530 150 I00
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!
I
I

I

I

!
!
B

!
I
I

I
1

!

I
!

9 20

1 21 31

2

9 21

I 22 31

2

9 22

] 7_ 31
2

9 23

I P4 31
2

9 24

I Y5 31
2

9 25

1 P6 31
2

9 26

l 77 3!

2

9 27

I 28 31
2

9 28

1 P9 31

2

9 29

1 30 31
2

9 30

1 _1 31
2

9 31

1 32 31
2

9 32

1 33 31

2

9 33

1 34 31

2

9 34

1 _5 31

2

9 35

1 36 31
2

9 36

1 37 31
2

9 37

1 38 31

2

9 38

1 39 31

2

9 39

1 40 31

6.61481,5678 27,677 6,38812,3251 27.677 5.62171,5063 27.900 0

14 13 18 .075 20

50 530 150 100

5,46901,9906 27.900 5"62171,5063 27,900 6,38812,3251 27,677 0

19 20 15 ,075 20
50 530 150 100

7.7600 27,423 7,74690.45117 27.423 6,7981 27,677 0
16 15 20 ,075 20

50 530 150 100

6.75210,78919 27.677 6,7981 27,677 7.74690,45117 27,423 0

20 21 ]6 ,075 20

50 530 150 100

7,74690,45117 27,423 7,70750,90086 27.423 6,75210,78919 27,677 0

21 22 16 .075 20

50 530 150 100

7,70750.90086 27,423 7,64211,3475 27.423 6.75210.78919 27.677 0

i7 16 22 ,075 20

50 530 150 100

6,61481,5678 27,677 6.75210,78919 27.677 7,64211,3475 27,423 0

22 23 17 .075 20
50 530 150 100

7,64211,3475 27,423 7.55081,7896 27,423 6,61481,5678 27,677 0
23 24 17 .075 20

50 530 150 100

7.55081.7896 27,423 7,43402.2256 27.423 6,61481,5678 27.677 0

18 17 24 .075 20

50 530 !50 I00

6,38812,3251 27.677 6.61481.5678 27.677 7,43q02,2256 27,423 0

24 25 18 ,075 20

50 530 150 100
7.43402,2256 27.423 7.29202.6541 27,423 6.38812,3251 27.677 0

26 _7 19 .075 20

50 530 150 100
8.2453 27.281 8.24180.23977 27,281 7.7600 27,423 0

20 19 27 .075 20

50 530 150 100

7.74690,45117 27,423 7.7600 27,423 8.24180,23977 27.281 0

27 28 20 .075 20
50 530 150 100

8,24180,23977 27,281 8.21390,71866 27,281 7.74690,_5117 27,423 0

21 20 28 ,075 20

50 530 150 100

7,70750,90086 27,423 7,74690.45117 27,423 8,21390,71866 27.281 0

28 29 21 ,075 20

50 530 150 lO0

8.21_90.71866 27,281 8.15821.1950 27,281 7,70750,90086 27,423 0

22 21 29 ,075 20
50 530 150 i00

7.64211.3475 27.423 7.70750,90086 27.423 8,15821.1950 27.281 0

29 30 22 ,075 20

50 530 150 100

8,15821.1950 27.281 8.07501,6674 27,281 7,64211.3475 27,423 0

23 22 30 ,075 20

50 530 150 100

7.55081,7896 27.423 7,64211,3475 27,423 8,07501,6674 27.281 0

30 31 23 ,075 20

50 530 150 100
8,07501,6674 27,281 7,964_2.1340 27,281 7,55081,7896 27,423 0

24 23 31 ,075 20

I
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I

2
9 4C

1 41 31

2

9 41

1 42 _]

2

9 42

1 43 3]

2

9 43

1 44 31

2

9 44

1 45 31

2

9 45

1 46 31

2

9 46

1 47 31

2

9 47

1 48 31

2

9 48

1 49 31

2

9 49

i 50 31

2

9 50

I 51 31
2

9 51

1 52 31

2

9 52

I 53 31
2

9 53

1 54 31

2

9 54

1 55 31

2

9 55

1 56 31

2

9 56

i 57 31
2

9 57

I 58 31

2

9 58

I 59 31

2
9 59

50 530 150 i00
7.43402,2256 27.423 7.55081.7896 27.423 7,96442,1340 27,281 0

31 32 24 .075 20
50 530 150 I00

7.96442.1340 27.281 7,82682.5935 27,281 7.43402,2256 27,423 0

25 24 32 .075 20
50 530 150 I00

7,29202,6541 27,423 7,43402,2256 27,427 7.82682.5935 27.281 0

32 _3 25 .075 20
50 530 150 100

7.82682,5935 27.281 7.74802.8201 27,281 7.29202.6541 27.423 0

27 26 34 ,075 20
50 530 150 I00

27,281 8.72018.24180,23977 27.281 8.2453

34 35 27
5O 53O 150 I00

27.133 0
• 075 20

8.7201 27,133 8.70540.50699 27-133 8.24180,23977 27,281 0

28 27 35 ,075 20
50 530 150 I00

8.21390.71866 27,281 8.24180.23977 27.281 8,70540,50699 27,133 0

35 36 28 .075 20
50 530 150 I00

29 28 36 ,075 20
50 530 150 100

8.15821,1950 27.281 8.21390.71866 27.281 8.66121,0123 27,133 0

36 37 29 .075 20
50 530 150 I00

8,66121,0123 27,133 8,58761,5142 27.133 8,15821.1950 27,281 0
30 29 37 ,075 20

50 530 150 i00

8,07501,6674 27,281 8,15871,1950 27,281 8.58761,5142 27,133 0
37 38 30 .075 20

50 530 150 I00

8,58761.5142 27,133 8,48502,0110 27.133 8.07501,6674 27.281 0

31 30 38 .075 20

50 530 150 I00

7.96442.1340 27.281 8.07501,6674 27.281 8.48502.0110 27.133 0

38 39 31 ,075 20

50 530 150 I00

8,48502.0110 27.133 8.35382.5009 27,133 7.96442,1340 27,281 0

32 31 39 .075 20

50 530 150 i00

7,82682.5935 27,281 7.96442.1340 27.281 8,35382,5009 27,133 0

39 40 32 .075 20
50 530 150 I00

8,35382,5009 27.133 8.19422,9824 27.133 7,82682,5935 27.281 0

33 32 40 .075 20
50 530 150 i00

7,74802,8201 27,281 7,82682,5935 27,281 8,19422,9824 27,133 0

41 42 34 ,075 20

50 530 150 I00

9,1924 26,977 9,19010,26736 26,977 8.7201 27,133 0

35 34 42 .075 20
50 530 150 I00

8,70540,50699 27,133 8,7201 27,133 9.19010,26736 26.977 0

42 43 35 .075 20
50 530 150 I00

9,19010,26736 26,977 9,15900.80135 26,977 8,70540,50699 27,133 0

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I
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I
I

I
II

II

II
I
B

II
I

I
I

i
I

I
I

I

1 60 31

2

9 60

1 61 31

2

9 51

1 62 31

2

9 62

1 63 31

2

9 63

1 64 31

2

9 64

i 65 31

2

9 65

1 66 31

2

9 66

I 67 31

2

9 67

1 68 31

2

y 68

1 69 31

2

9 69

1 7O 31
2

9 70

1 71 31

2

9 71

1 72 31

2

9 72

1 73 31

2

9 73

1 74 31
2

9 74

1 75 31

2

9 75

I 76 31

2

9 76

1 77 31
2

9 77

1 78 31
2

9 78

1 79 31

2

36 35

8,66121,0123

43 44 36

50

9,15900.80135 26.977 9.09691.3325

37 36 44

43 ,075 20

50 530 150 I00

27.133 8.70540.50699 27.133 9,15900.80135 26.977 0

• 075 20
530 150 I00

26,977 8,66121,0123 27,133 0

•075 20

8.58761,5142

44 45

9,09691,3325

38 37

8,48502,0110

45 46

9,00411.8592

39 38

8,35382,5009

46 47

8,88082,3796

40 39

8.19422,9824

47 48

8,72732.8919

42 41

9,19010,26736 26.977 9.1924

49 50 42

50 530 150 I00

27,133 8,66121,0123 27,133 9,09691.3325 26,977 0

37 ,075 20

50 530 150 i00

26,977 9,00411,8592 26,977 8.58801,51400 27,130 0
45 ,075 20

50 530 150 I00

27.133 8,58761,5142 27,133 9.00411,8592 26,977 0

38 .075 20
50 530 150 I00

26,977 8,88082,3796 26,977 8.48502,0110 27,133 0

46 ,075 20
50 530 150 100

27,133 8,48502,0110 27,133 8,88082,9796 26.977 0

39 ,075 20
50 530 150 100

26,977 8.72732,8919 26,977 8,35382,5009 27,133 0

47 *075 20
50 530 150 100

27.133 8.35382,5009 27.133 8,72732,8919 26,977 0

40 ,075 20
50 530 150 i00

26,977 8,63803,1440 26,977 8,19422,9824 27,133 0

49 ,075 20

50 530 150 I00

26,977 9.6618 26,812 0

,075 20

50 530 150 i00

9.6618 26.812 9,64550.56174 26.812 9,19010.26736 26,977 0

43 42 50 .075 20
50 530 150 100

9,15900,80135 26,977 9,19010.26736 26.977 9.64550,56174 26-812 0
50 51 #3 ,075 20

50 530 150 100

9,64550,56174 26,812 9,59651.1216 26,812 9.]5900,80135 26,977 0

44 43 51 .075 20

50 530 150 ]00
26,977 9,15900,80135 26,977 9,59651,12169.09691.3325

51 52 44

50 530 150 I00

9.59651,1216 26.812 9.51501,6778 26.812 9,09691.3325

45 44 52

50 530 150 I00

9,0041].8592 26,977 9.09691,3325 26.977 9,51501.6778

52 53 45

5O 530 150 100

9,5]501,6778 26,812 9,401_2,2282 26*8]2 9,00411,8592
46 45 53

50 530 150 I00

8,88082.3796 26,977 9.00411,8592 26.977 9,40132.2282

53 54 46

50 530 150 lO0

26.812 0

•075 20

26.977 0

•075 20

26.812 0

• 075 20

26,q77 0

• 075 20

26,812 0

• 075 20

!
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I

9 79
1 80 31

2

9 8O

1 81 31

2

9 81

1 82 31

2

9 82

1 89 31

2

9 83

I 84 31

2

9 84

I 85 31

2

9 85

1 86 _I

2

9 86

1 87 31

2

9 87

1 88 31

2

9 88

1 89 31

2

9 89

1 90 31

2

9 9O

1 91 31

2

9 91

1 92 31

2

9 92

1 93 31

2

9 93

1 oa 31

2
9 94

1 95 31

2

9 95

1 96 31

2

9 96

1 97 31

2

9 97

1 o8 31

2

9 98

1 99 31

9,40132.2282 26,812 9.25592.7710 26.812 8.88082.3796 26,977 0
47 46 54 ,075 20

50 530 150 I00

8.72732.8919 26.977 8,88082,3796 26.977 9,25592,7710 26.812 0

54 55 47 .075 20
50 530 ]50 I00

9.25592,77]0 26.812 9.07913,3045 26,812 8.72732.8919 26.977 0

48 a7 55 ,075 20
50 5_0 ]50 ]00

8.63803.1440 26.977 8.72732.8919 26.977 9.07913.3045 26.812 0

56 57 49 .075 20
50 530 150 I00

10.136 26.63710,132 0.29475 26.637 9.6618 26.812 0

50 49 57 .075 20
50 530 150 i00

9.64550.56174 26.812 9,6618 26.81210.132 0.29475 26.637 0

57 58 50 ,075 20

50 530 150 lO0

10.132 0*29475 26.63710*097 0.88345 26.637 9.64550,5617& 26.812 0

5] 50 58 .075 20

50 530 150 i00

9.59651,1216 26.812 9,64550,56174 26.81210.097 0.883_5 26,637 0

58 59 51
50 530 150 i00

10.097 0,88345 26.63710.029 1.4690 26.637 9.5q651.1216

52 51 59

9.51501.6778

59 60

I0.029 1,4690

53 52

9.40132.2282

60 61

9.92662.0497

5a 53

9.25592.7710

61 62

9,79072,6234

55 %4

9.07913.3045

62 63

9.62153.1882

57 56

10.132 0.29475 26.69710,136

64 65 57

50 530 ]50 I00

26.812 9.59651.1216 26.81210.029 1.4690

52

50 530 150 ]00

26.637 9.92662,0497 26.637 9%51501,6778

6O
50 530 150 100

26.812 9.51501.6778 26.812 9,92662.0497

53
50 530 150 i00

26,637 9.79072,6234 26.637 9.40132.2282

61
50 530 150 I00

26.812 9.40132,2282 26,812 9.79072.6234

54
50 530 150 I00

26.637 9,62]53.1882 26,637 9,25592,7710

62

50 530 ]50 100

26.812 9,25592.7710 26.812 9.62153.1882

55

50 530 150 I00

26.637 9,52473.4667 26,637 9.07913,3045

64

50 530 150 I00

26.63710.6

5O 530 150 I00

•075 20

26.812 0

• 075 20

26.637 0

• 075 20

26.812 0

•075 20

26,637 0

•075 20

26,812 0

•075 20

26.637 0

• 075 20

26.812 0

• 075 20

26,637 0

.075 20

26.812 0
• 075 20

26,456 0

• 075 20

10.6 26.45610,582 0.6]628 26.45610.132 0.29475 26.697 0

58 57 65 .075 20

50 530 150 100
10.097 0,88345 26,63710.132 0.29475 26,6_710,582 0.6]628 26.456 0

65 66 58 ,075 20

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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I

2
9 99

1100 31
2
9100

1101 31
2

9101
1102 31
2

9102
1103 31
2
9103

1104 31
2

9104

1105 31

2

9105

1106 31

2

9106

1107 31

2

9107
IINA _I

2

9108
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5O
10,582 0,61628 26,45610.528 1.2306

59 58 66

530 150 100

26.45610,097 0,88345 26,637 0

• 075 20
50 53O 150 I00

I0,029 1,4690 26.63710,097 0,88345 26,63710,528 1,2306 26.456 0

66 67 59 ,075 20

50 53O 150 100

10.528 1.2306 26.45610.439 1,8407 26.45610,029 1,4690 26.637 0
60 59 67 ,075 20

50 530 150 I00

9,92662,0497 26,63710.029 ],4690 26,63710,439 1,8407 26,456 0

67 68 60 ,075 20

50 530 150 I00
I0,439 1,8407 26,45610,314 2.6446 26,456 9.92662,0497 26,637 0

61 60 68 ,075 20

50 530 150 I00

9,79072.6234 26,637 9,92662,0497 26,63710,314 2,4446 26,456 0

68 69 61 ,075 20

50 530 150 I00

10,314 2.4666 26.45610,155 3,0401 26,456 9.79072,6234 26.637 0
62 61 69 .075 20

50 530 150 I00

9.6215 3.1882 26,637 9.7907 2,6234 26.63710,155 3.0401 26,456 0

69 70 62 ,075 20

50 53O 150 I00

10.155 3,0401 26,456 9,9607 3,6254 26,456 9,6215 3,1882 26,637 0

69 62 70 ,075 20

50 530 150 I00

9,5247 3,4667 26,637 9,6215 3,1882 26,637 9,9607 3,6254 26,456 0
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D. Matrix

VTC0Ol 142 1

11 11 1,0 12

14 14 1.0 15

P] )l 1,0 22

P4 24 1.0 25

ql 31 0,940 32

32 32 0.940 33

35 34 0,342 34

_6 36 1,0 41

43 43 1.0 44

46 46 1,0 51

53 53 1.0 54

56 56 1,0 61

61 62 -0,342 62

64 64 0,940 65

65 6E 0.940 66

72 72 1.0 73

75 75 1.0 76

82 82 1,0 83

85 85 1.0 86
92 91 0.342 91

93 93 1.0 94

94 95 -0.342 95

I01 I01 l,O 102

104 104 1,0 105

111 IIi 1,0 112

I]4 114 1.0 115

l?l 121 1,0 122

].p4 124 1.0 125

131 131 l.O 132

134 134 1.0 135

141 141 0,940 142

142 142 0.940 143

145 144 0.342 144

146 146 1,0 151

153 153 1,0 154

156 156 1,0 161

163 163 1.0 164

166 166 I.0 171
173 173 l.O 174

176 176 1.0

181 181 0.940 182

182 182 0.940 183

185 184 0.342 184

• 86 186 1,0 191

195 193 1.0 194

196 196 l.O 201

203 203 1,0 204

2n6 206 1.0 211

7t3 21q l.O 214

P!6 216 1,0 221
2?3 2_ 1,0 224

226 226 1.0 231
233 233 1.0 234

2_6 236 1.0 241

243 243 1,0 244

2a6 246 1,0 251

251 252 -0,_42 252

254 254 0.940 255

Data and Title Cards

0

12 1,0 13

15 1,0 16

22 1,0 23
25 1,0 26

31 0.342 31

33 1,0 34

35 -0.342 35

41 1.0 42
44 1.0 45

51 1,0 52

54 1.0 55

61 0.940 62

62 0.940 63

64 0.342 64

66 1.0 71

73 l,O 74

76 1.0 81

83 1.0 84

86 1.0 91

92 -0.342 92
94 0 _'_ 95
95 0,940 96

102 1.0 103

105 1.0 106

112 1,0 113

115 1.0 116

122 1.0 123

125 ].0 126

132 1,0 133

135 1.0 136

141 0.342 141

143 1.0 144

145 -0.342 145

151 1.0 152

154 1,0 155

161 1,0 162

164 1,0 165

171 1.0 172

174 ],0 175

181 0,342 181

183 1.0 184

185 -0.342 185

191 1.0 192

194 1,0 195

201 1,0 202

204 1.0 205

211 1.0 212

214 ].0 215

221 1,0 222
224 1.0 225
231 1.0 232

234 1,0 235

241 1.0 242

244 1.0 245

251 0.940 252

252 0.940 253

254 0.342 254

13

16

23

26

32

34

35

42

45

52

55

61

63

65

71

74

81

84

91

92

94

96

103

106

113

116

I23

126

133

136

142

144

145

152

155

162

165

172

175

182
184
185

192
195

202
205
212

215

222
225
232
235
242
245

251
253
255

1.0

1.0

1.0

1,0

-0.342

0,940

0.940

1,0

1.0

1.0

1.0

0.342

1.0

-0,342

1,0

1,0

1,0

1,0

0.940

0.940

0.342

1.0

1.0

1.0

1.0

1.0

1,0

1.0

1.0

1,0

-0.342

0.940

0.940

1.0

1.0

1.0

1.0

1.0

1.0

-0.342
0.940

0,940

1.0

1.0

1.0

1.0

1.0

1.0

1.0

l.O

1.0

1.0

1.0

1.0

0,342

1.0

-0-342

I

I

I

I

I

I

I

l

I

I

I

I

l

l

I

I

I
14Z
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I
I

I
I

I
I

I
l

I
I

I
I
I

I

I
I

255
26,2
26,5
272

275
2F_2
285
292

295
3O2
3O5

312

315
3>2

325
3_2
333

._34
341
344
351
354

361
364
37]
374
3R1

384
391

394
401

402
405
406

413
4]6

423
496

4"_3

443

446
453

456
463

466
473

476
&.F_I
4R4

485
492

4_5
502
505

512

522

525

255
262
2K,,5
272

275
282
285
292

295
302
305

312

315
322

325
331
333

335
341
344
351
354

361
364
371
374
3Rl

384
391

394
401

402
404
406

413

416
423
426

433
436
443

446
4_3
456
463

466
473
476
482

484
485

492
495
5O2
505

5]2
515
522

525

0.940 256 256 1.0 261
1.0 263 263 1.0 264

1.O 266 266 1.0 271

l,O 273 273 1.0 274
1.0 276 276 1.0 28I
1.0 283 283 1.0 284
1.0 286 286 1.0 291

1.0 293 293 1.0 294

1.0 296 296 1,0 301

1.0 303 303 1.0 304

l,O 306 306 1,0 311

1,0 313 313 1,0 314

1,0 316 316 1,0 321

1.0 323 323 1.0 324

1,0 326 326 1,0 331

0,342 331 332 -0.342 332
],0 334 334 0,940 335

-0.342 335 335 0.940 336

1,0 342 342 1,0 343

l,O 345 345 1,0 346

1,0 352 352 1,0 353

1,0 355 355 1,0 356

1,0 362 362 1,0 363

1,0 365 365 1,0 366

1,0 372 372 1,0 373

1,0 375 375 1,0 376

1,0 382 382 !_0 389

1.0 385 385 l.O 386
1,0 392 392 1,0 393
1,0 395 395 1,0 396

O.q40 402 401 0.342 401

0,940 403 403 1,0 404

0,342 404 405 -0,342 405

1.0 411 411 1.0 412

1,0 414 414 1,0 415

1.0 421 421 1.0 422
1.0 424 424 1,0 425

1.0 431 431 1.0 432
].0 434 4_4 1.0 435

1.0 441 441 1.0 442

l,O 444 444 l,O 445

1,0 451 451 1.0 452

1,0 454 454 1,0 455

1.0 461 461 1.0 462

1,0 464 464 1.0 465

1,0 471 471 1,0 472
1.0 474 474 1.0 475

1,0 481 481 0,940 482

-0.342 482 482 0.940 483

0,940 485 484 0.342 484

0,940 486 486 1,0 491

l.O 493 493 1,0 494

1,0 496 496 1,0 501
1.0 503 503 1.0 504

1.0 506 506 1.0 511

1,0 513 513 1,0 514

1,0 516 516 1,0 521

1,0 523 523 1.0 524
1,0 526 526 1,0 531

261
264
271

274

281

284

291

294

301

304

311

314

321

324

331

332

334

336

343

346

353

356

363

366

373

376

393

386

393

396

402

404

405

412

415

422

425

432

435

442

445

452

455

462

465

472

475

481

483

485

491

494

501

5O4

511

514

521

524

531

1,0
1,0
I*0

1,0

1,0

I*0

1,0

1,0

1,0

1,0

I*0

1,0

I*0

1,0

0,940

0,940

0,342

l,O

1,0

1,0

1,0

1,0

1,0

1.0

1.0

1,0

1.0

l,O

1,0

1,0

-0,342

0.940

0,940

1,0

1.0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

i-0

1,0

1,0

0.342
1.0

-0.342
1.0

1.0
1.0
1,0
1,0

1,0
1.0
1.0

1.0

I
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5_2
5_5
5a2
545
5_2
5_9
554
561
564
571
574
581
5_4
591
5Q4
6O]
6O4
611
614
621
624
631
6"_2
6_5
6a6

532
5_5
542
545
551
553
555
561
564
571
574
581
584
591
5q4
601
604
611
614
621
624
691
632
634
6_6
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l.O 533 533 1.0 534
].0 536 536 1.0 541
1.0 543 543 1.0 544
l.O 546 546 1.0 551
0.342 551 552 -0.342 552
1.0 554 554 0.940 555

-0,342 555 555 0,940 556
1.0 562 562 1.0 563
1.0 565 565 1.0 566
1.0 572 572 1.0 573
1.0 575 575 1.0 576
1.0 582 582 1.0 583
1.0 585 585 1.0 586
1.0 592 592 1.0 593
1.0 595 595 ],0 596
1.0 602 602 1,0 603
],0 605 605 1,0 606
1.0 612 612 1.0 613
1.0 615 615 1.0 616
1.0 622 622 1,0 623
1.0 625 625 1,0 626
0.940 632 631 0.342 631
0.940 633 633 i.0 634
0.342 634 635 -0.342 635
1,0

144

534

541

544

551

552

554

556

563

566

573

576

583

586

593

596

603

606

613

616

623

626

632

634

635

1.0

1.0

1.0

0.940

0,940

0.342

1.0

1.0

1,0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

-0.342
0.940
0.940

I
I

I
I
I

I
I

I

I
I

I
I

I
I
I

I
I
I
I



II

I

II

I

I

i

II

I
II

I

I
I

I
I

l
I
I

I
I

WARO01

II

]5

_4

54

6_

74

q4

104

154

184

7&4

344

4O4

414

484

_94

55_

564

634

24
1]
15
24
34
5_

64
74
94

104

144
154

184
194

254

264
334

344
404

414
484,

49_
554

564
634
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-I 0

0 12 12 0
0 16 16 0

0 26 26 0

0 36 36 0

0 56 56 0

0 66 66 0

0 76 76 0

0 96 96 0

0 106 106 0

0 146 146 0

0 156 156 0
0 186 186 0

0 196 196 0

0 256 256 0

0 266 266 0

0 336 336 0

0 346 346 0
0 406 406 0

0 416 416 0

0 486 486 0

0 496 496 0

0 556 556 0

0 566 566 0
0 636 636 0

145

14

22

32

52

62

72

92

102

142

152

182

192

252

262

332

34.2

402

412

482

492

552

562

632

14
22
32
52
62
72
92

102
142
152
182

192
252

2_62

332
342

4O2
412

482
492
.552
562

632

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
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Appendix E. Input Data for Shallow Spherical Shell Dynamic Characteristics Problem

A. Pseudo Instructions

C SHALLOW SHELL PROBLENt LOW FREQUENCY FLEXURAL MODES OF FREE SHELL.
(

C FORMATION OF THE STRUCTURE MASS AND STIFFNESS MATRICES,
C

1.0 09001 KERO01 BILD
1.5 10001 NERO01 CONT
2,0 10001 NERO01 ADDS
3.0 9001 KERO01 ADDS

C

¢ IMPOSITION OF SYMMETRY AND BOUNDARY CONDITIONS,
C

4.0 9001 VTRO01 READ
5,0 9001 VTRO01 COL5
6,0 9002 VTCO01 FLIP
7.0 11002 KARO01 9002 VTCO01 MULT
8,0 09003 VFRO01 10001 KVCO01 MULT
9,0 10002 KTCO01 ROWS

10,0 11001 MARO01 9002 VTCO01 MULT
11,0 9003 VFRO01 10001 MVCO01 MULT

C

C DECOMPOSITION OF THE MASS MATRIX.
C

13.0 11004 MTROO1 9002 MRRO01 CHIN
14,0 9002 MRRO01 FLIP

C

C FORMATION OF THE DYNAMIC MATRIX.
C

15,0 11003 KTRO01 10001 NFCO01 CHOL
16.0 9002 MRRO01 10002 KBCO01 MULT
17.0 11006 DYCO01 DECO

C

C DETERMINATION OF EIGENVALUES AND EIGENVECTORS.
C

18,0 10001 DYDO01 10002 EVDO01 ROOT
19.0 10002 EVDO01 CODE

C

C INVERSE TRANSFORMATION OF THE EIGENVECTORS,
C

20.0 11005 MIRO01
21.0 11007 ETCO01
22.0 9001 VTRO01

C

C PRINTOUT OF RESULTS*
C

23.0 10003 EIDO01
24.0 11007 ETCO01
25.0

9002 EVCO01 MULT
COLS

10006 ETCO01 MULT

INKS

INKS

HALT

5402

11001 MARO01 5400
11002 KARO01 5400

9002 VTCO01
9003 VFRO01

10001 KVCO01
10002 KTCO01

11003 KTRO01

1OO01 MVCO01
10002 MTCO01

I100_ _TROOI
11005 MIRO01

i0001 MFCO01

10002 KBCO01
11006 DYCO01
10001 DYDO01

10003 EIDO01
9002 EVCO01

11007 ETCO01
10O04 ETCO01
11007 ETCO01

-I00

B. Material Table

2014T6 530,0 12.5E-6 16,0E+6 8.0E+6 16,0E+6
8.0E+6 8,0E+6 16,0E+6 4.0E+6

OOOO000000000
4.0E+6

4,0E+6
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C. Element Data
I

1 1 31
9 1
1 2 31
9 2
1 3 31
9 3
1 4 31
9 4
1 5 31
9 5
] 6 31

6
1 7 31
9 7
1 8 31
9 8
I 9 31

9 9

1 I0 31

9 I0

i Ii 31
9 II

1 12 31

9 12
1 13 31

9 13

1 14 31
9 14

1 15 31

9 15
1 16 31

9 16

1 17 31
9 17

1 18 31
9 18
1 19 31
9 19
1 20 31
9 20

1 21 31
9 21
1 22 31
9 22

1 23 31
9 23

1 24 31

9 24
1 25 31

9 25

.i 26 31

9 26
1 27 31

9 27

1 28 31

9 28
1 29 31

1 2 3
0,0 0.0 28,50

1 3 4
0,0 0,0 28,50

2 5 6

I,800 0,0 28,44
6 3 2

3.233 1,339 28.28
3 6 7

1,273 1.273 28,44
3 7 8

1,273 1.273 28.44
8 4 3

1,339 3.233 28,28
4 8 9

0,0 1,800 28,44

5 10 II

3,500 0.0 28,28
11 6 5

5,100 I*014 28,02

6 II 12

3,233 1,339 28,28
12 7 6

4.326 2,889 28.02
7 12 13

2.475 2,475 28.28
13 8 7

2,889 4*326 28.02
8 13 14

lo339 3o233 28.28
14 9 8

1,014 5.100 28,02
9 14 15

0,0 3,500 28,28
16 II i0

6,900 0,0 27,65
11 16 17

5.100 1.014 28*02

17 12 II
6.375 2.640 27,65

12 17 18
4.326 2.889 28*02

18 13 12
4.879 4,879 27,65

13 18 19

2.889 4.326 28,02
19 14 13

2,640 6,375 27,65
14 19 20

1,014 5o100 28.02
20 15 14

0,0 6*900 27*65
16 21 22

6.900 0.0 27.65
22 17 16

8.533 1,697 27,14
17 22 23

1.800 0,0 28,44

1.273 1,273 28.44

3.500 0*0 28,28

1,273 1.273 28.44

3.233 1,339 28.28

2,475 2,475 28*28

0,0 1,800 28,44

1.339 3*233 28,28

5,200 0,0 28,02

3"233 1.339 28*28

5,100 1,014 28,02

2*475 2.475 28*28

4.326 2,889 28.02

1.339 3.233 28.28

2,889 4,326 28,02

0,0 3.500 28,28

1,014 5,100 28,02

5.100 I*014 28*02

6*900 0.0 27*65

4*326 2.889 28*02

6.375 2.640 27*65

2,889 4*326 28*02

4,879 4,879 27,65

I*014 5.100 28.02

2.640 6*375 27*65

0,0 5*200 28.02

8*700 0,0 27-14

6.375 2,640 27.65

1,96E-5 0-075 20
1.273 1.273 28,44 0

1,96E-5 0.075 20
0,0 1,800 28,44 0

1.96E-5 0.075 20
3-233 1,339 28,26 0

1,96E-5 0,075 20
1.800 0.0 28.44 0

1,96E-5 0,075 20
2,475 2.475 28.28 0

1.96E-5 0*075 20
1,339 3.233 28*28 0

1=96E-5 0,075 20
1,273 1.273 28,44 0

1.96E-5 0,075 20
0.0 3=500 28,28 0

1.96E-5 0*075 20
5.100 1,014 28,02 0

1,96E-5 0.075 20
3,500 0,0 28.28 0

1.96E-5 0,075 20
4,326 2.889 28.02 0

1,96E-5 0.075 20
3,233 1.339 28*28 0

1.96E-5 0.075 20
2,889 4,326 28*02 0

1=96E-5 0.075 20
2,475 2.475 28,28 0

1,96E-5 0.075 20
1,014 5.100 28*02 0

1*96E-5 0*075 20

lo339 3*233 28,28 0
lo96E-5 0.075 20

0,0 5.200 28,02 0
1.96E-5 0.075 20

5.200 0.0 28,02 0
1,96E-5 0*075 20

6*375 2,640 27,65 0
1,96E-5 0.075 20

5,100 1,014 28,02 0
1,96E-5 0,075 20

4,879 4.879 27,65 0
1.96E-5 0.075 20

4*326 2*889 28,02 0
1,96E-5 0.075 20

2,640 6,375 27,65 0
1.96E-5 0.075 20

2.889 4,326 28.02 0
1.9_6E-5 0,075 20

0,0 6.900 27*65 0
1,96E-5 0,075 20

1.014 5.100 28,02 0
1.96E-5 0*075 20

8.533 1,697 27.14 0
1.96E-5 0.075 20

6*900 0.0 27e65 0
1*96E-5 0.075 20

I
I
I

I
I

I

I
I

I
I

I
I
I

I
I
I
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9 29 6*375 2*640
1 30 31 17 23

9 30 6*375 2+640

1 31 31 24 18

9 31 7.234 4,833
1 32 31 18 24
9 32 4,879 4,879

I 33 31 18 25
( 33 #,879 4,879
1 34 31 26 19
9 34 4,833 7.234
1 35 31 19 26
9 35 2,640 6*375
1 36 31 19 27
9 36 2.640 6.375
1 37 31 28 20
9 37 1.697 8.533
1 38 31 20 28
9 38 0,0 6,900
1 39 31 21 30
9 39 8,700 0,0
1 40 31 31 22
9 40 10.40 2.068
1 41 31 31 23
9 41 10,40 2,068
1 4_ 31 23 3!
9 42 8.038 3*329
1 43 31 23 32
9 43 8,038 3.329

1 44 31 33 24
9 44 8,814 5.889
1 45 31 33 25
9 45 8,814 5*889
1 46 31 25 33
9 46 6,152 6.152
1 47 31 25 34

9 47 6.152 6.152
1 48 31 35 26
9 48 5.889 8.814
1 49 31 35 27

9 49 5.889 8.814
1 50 31 27 35
9 50 3,329 8,038
1 51 31 27 36
9 51 3.329 8.038
1 52 31 37 28
9 52 2.068 10.40
i 53 31 37 29
5 53 2,068 10.40
1 54 31 29 37
9 54 0,0 8.700

JPL Technical Memorandum 33-305

27.65 8-533 1.697
24

27e65 8-038 3,329
17

27.14 4,879 4.879
25

27.65 7.234 4,833
26

27,65 6.152 6,152
18

27,14 2,640 6.375
27

27*65 4*833 7.234
28

27.65 3*329 8*038
19

27.14 0,0 6.900
29

27*65 1-697 8,533
31

27.14 10.60 0.0
21

26,46 8,533 1.697
22

26*46 8*038 3.329

32

27.14 10.40 2*068
33

27.14 9,793 4.056
23

26*46 7.234 4+833
24

26*46 6-152 6.152
34

27.14 8,814 5,889
35

27.14 7*495 7,495
25

26.46 4*833 7.234
26

26,46 3,329 8,038
36

27,14 5*889 8.814
37

27.14 4.056 9*793
27

26*46 1.697 8.533
28

26.46 0,0 8,700
38

27,14 2,068 10,40

27,14 8.038 3,329 27,14 0
1.96E-5 0*075 20

27.14 7*234 4.833 27.14 0

1,96E-5 0,075 20

27.65 6*375 2*640 27.65 0
1.96E-5 0*075 20

27.14 6.152 6.152 27,14 0

1.96E-5 0.075 20
27.14 4,833 7*234 27.14 0

1*96E-5 0*075 20
27.65 4.879 4.879 27.65 0

1.96E-5 0.07S 20
27.14 3,329 8.038 27.14 0

1*96E-5 0*075 20
27.14 1.697 8*533 27.14 0

1.96E-5 0*075 20
27*65 2*640 6*375 27.65 0

1.96E-5 0*075 20
27.14 0,0 8,700 27.14 0

1.96E-5 0*075 20
26.46 10,40 2,068 26*46 0

1.96E-5 0.075 20
27,14 8.700 0.0 27.14 0

1.96E-5 0.075 20
27.14 8.533 1.697 27.14 0

1 oLr 5 0 075 _^¢-v_-- G

26*46 9*793 4*056 26*46 0
1.96E-5 0.075 20

26.46 8.814 5*889 26,46 0

1,96E-5 0,075 20
27,14 8*038 3*329 27.14 0

1.96E-5 0.075 20
27.14 7*234 4.833 27.14 0

1.96E-5 0.075 20
26*46 7,495 7*495 26*46 0

1.96E-5 0*075 20
26*46 5*889 8.814 26,46 0

1,96E-5 0,075 20

27.16 6.152 6.152 27.14 0
1.96E-5 0.075 20

27.14 4*833 7,234 27.14 0
1,96E-5 0.075 20

26.46 4,056 9.793 26.46 0
1.96E-5 0.075 20

26*66 2*068 10.40 26*46 0

1.96E-5 0*075 20
27.14 3.329 8*038 27.14"0

1.96E-5 0.075 20
27.14 1.697 8.533 27.14 0

1,96E-5 0.075 20

26*46 0*0 10.60 26*46 0
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I

VTR001

22
31
33
33
33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
35
_3
52
61
64
71
74
81
84
92
96

106
113
116
123
126
133
136
143
146
154
164
172
175
182

192
195
2O3

212

224
231
234
241

D*

83

22
31
42
62
73
92

112
123
142
153
173
192
203

223

242
2_3
272
283
313
343
373

_5
43
52
61
64
71
74
81
84
92
96

106
113
116
123
126
133
136
149
146

164
172
175
182

192
195
203

221
224

234
241

Matrix Data and Title Cards (Symn_etric _v{odes)

-I 0

1,0 24 24 1,0 26 26
I,0 32 32 1,0 33 22
•7738 33 43 -0,7070 33 52

1,527 33 63 -1,129 33 72
-1,741 33 82 1,527 33 83

•6464 33 93 -1,250 33 102

1,481 33 113 -0e9677 33 122
-3,319 33 132 1.783 33 133

1.481 33 143 -4*867 33 152
-1.006 33 162 *9575 33 172
-4.298 33 182 1.927 33 183

1,927 33 193 -10.38 33 202
-5.580 33 212 ,4026 33 222

-1,741 33 232 ,8049 33 233

• 6942 33 243 -4,959 33 252
-7.318 33 262 ,6941 33 263

.8049 33 273 -9,563 33 282
-8,755 33 292 ,4026 33 293
-10736 33 323 -1,868 33 333
-3,452 33 353 -7,394 33 363
-8.732 33 383 -2,442 34 34

1,0 36 36 1*0 42 42
1*0 44 44 1,0 46 &6
1,0 54 54 1,0 56 56
1,0 62 62 1,0 63 63
1*0 65 65 1,0 66 66
1,0 72 72 1,0 73 73
1,0 75 75 1.0 76 76
1.0 82 82 1,0 83 83
1,0 85 85 1,0 86 86
1.0 93 93 1,0 94 94

1.0 102 102 1,0 104 104
1.0 111 111 1,0 112 112
1,0 114 114 1,0 115 115
1,0 121 121 1,0 122 122
1,0 124 124 1,0 125 125
1,0 131 131 1.0 132 132
1,0 134 134 1,0 135 135
1,0 141 141 1,0 142 1_2
I.0 144 144 1,0 145 145
1+0 152 152 1.0 153 153
1,0 156 156 1,0 162 162
1,0 166 166 leO 171 171
1,0 173 173 1,0 174 174
1,0 176 176 1.0 181 181
1,0 183 183 I,0 184 184
1,0 186 186 1,0 191 191
1,0 193 193 1.0 194 194
1,0 196 196 1,0 202 202
1,0 204 204 1,0 206 206
1.0 214 214 1,0 216 216
1,0 222 222 1,0 223 223
1,0 225 225 1,0 226 226
1,0 232 232 1,0 233 233
1*0 235 235 1.0 236 236
1,0 242 242 1,0 243 243

1,0
*7738
,6464

1.274
-2*728

*3005
1,783

-4=969
,3005

1,927

7,945
,9575

,6942
-3*960

,8049
-7,421

,6942
-5,176
-4*940
-4.513

1.0
1,0
1,0
1.0
1.0
1,0
1.0
1,0
1,0
1,0
1.0
1.0
1,0
1.0
1.0
1,0
1.0
1.0
1.0
1.0
1.0
1,0
1,0
1.0
1,0
1.0
1.0
1.0
1.0
1.0

1,0
1.0
1,0
1.0
1,0
1.0

I
I
I

I
I

I
I

I
I

I
I

I
I
I

I
I
I
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I
I

I
I
I

I

I

I
i
1

I
I
I

I
I

I
I

I

244
Z51

254
261

264
271

274

281
284

292
296

306

313

316

3_3

326

333
336

343
346

3'53

356

363
366

373
376

Q"v

244
251
254
261
264
271
274
281
284
292
296
306
313
316
323
326
333

343
346
353
356
363
_66
373
376
j _+i ,qp

JPL Technical Memorandum 33-305

1,0

1,0

1,0
1,0

1,0

1,0

1,0
1,0
I,O

1,0

1.0
i*0

1,0

1,0

1,0

1,0

1,0
1.0

1.0
1,0

1,0

1.0

1,0
1,0

1.0

1.0

1.0

245 245 1.0
252 252 1,0
255 255 1,0
262 262 1.0
265 265 1.0
272 272 1,0

275 275 1,0
282 202 1,0
285 285 1,0
293 293 1,0

302 302 1,0

311 311 1,0
314 314 1.0
321 321 1,0
324 324 1,0

331 331 1,0
334 334 1,0
341 341 1,0
344 344 1 * 0
351 351 1.0
354 354 1,0
361 361 1,0
364 36/+ 1 * 0
371 371 1,0
374 374 1,0
382 382 I*0
_oo 380 1,0

246
253
256
26"_
266
273
276
283
286
294
3O4
312
315
322
325
332
335
342
345
352
355
362
365
372
375
383

151

246
253
256
263
266
273
276
283
286
2()4
304

312
315
322
325
332
335
342
345
352
355
362
365
372
375
383

1.0
1,0
1.0
1.0
1.0
1.0
1.0
1,0
1,0
1.0
1.0
I*0
I*0
1,0
I*0
1.0
1,0
1,0
1.0
I*0
I*0
1.0
I*0
1.0
1.0
I*0


