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ABSTRACT
Using the p]ate bending theory developed by Reissner, this

paper is concerned with the influence of plate thickness on the

bending stress distribution near the singular crack point for two

posrrns

basic geometries. These are the internal or finite crack and the

‘externa] or semi-ipfjgj;e gragﬁg‘in a plate of infinite extent.
The bodndary problems are formulated by means of Fourier sine or
cosine transforms and then reduced to systems of dual integral
equations. The behavior of the local stresses is governed by a
single Fredholm integral equation of the second kind which can be

solved numerically., It is found that the bending strengths of

cracked plates generally decrease as the plate thickness increases
e T - e a

from zero to some finite, but small, value. This is evidenced by
the high elevation of the intensity of the local stresses as the
ratio of plate thickness to crack (or bond) length is perturbed
slightly from zero. In particular, moment-intensity factor,

which governs the magnitude of the moment distribution around the
crack tip, is defined. Such a factor has been known in fracture

mechanics to determine the onset of rapid crack extension in

brittle materials.
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INTRODUCTION

One of the basic requirements for the strength analysis of
plates containing flaws or cracks is the knowledge of the singu-
lar character of the stress field in the neighborhood of the crack
point. Approximate, but useful, information may be conveniently
assessed by assuming the material to behave elastically everywhere
in the plate. When dealing with plate geometries of the discon-
tinuous type such as the crack-like configuration, the mathematical
problem involves the determination of solutions to certain differ-
ential equations with mixed boundary conditions. The solution of
such mixed boundary-value problems is considerably more complicated

than that of their unmixed counterparts.

In recent years, several investigators have discussed the na-
ture of the local stresses around a sharp crack in a thin plate
subjected to out-of-plane bending loads. Based on the Poisson-
Kirchhoff theory of thin plates and the technique of Fadle eigen-
function expansions, Williams [1]4 found that the elastic stresses
near the tip of a semi-infinite crack vary as the inverse square
root of the radial distance from the crack front. His results
were not complete in that the strength or magnitude of the local
stresses was left undetermined. It was Sih and Rice [2,3] who
later cleared the way for finding the coefficients in the eigen-
function expansions by application of the theory of complex func-

tions. However, since the results in [1-3] were obtained from the

4Numbers in brackets designate References at end of paper.
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classical fourth order theory of thin plates, the edge conditions
at the crack surfaces are satisfied only in an approximate manner
in that the three physically natural boundary conditions of pre-
scribing bending moment, twisting moment and transverse shear
stress are replaced by two conditions. Owing to such a replace-
ment, the stress distribution in the immediate neighborhood of

the crack edges will naturally be affected and will not be accu-

rate.

To overcome the aforementioned shortcoming, Knowles and Wang
[4] employed the sixth-order theory of Reissner [5] and obtained
the crack-tip stresses in a plate whose thickness is vanishingly
small., Their ingenious ana]ysfs makes use of the theory of sin-
gular integral equations. However, the extension of the method
in [4] to cracked plates with finite plate thickness does not

appear to be tractable.

Presented in this paper is another method of solution which
allows the examination of the effect of plate thickness on the
detailed structure of the bending stresses in a region close to
the crack front. Two basic problems are considered. 1In the first,
an infinite plate with a straight crack of finite length is sub-
jected to all around bending at infinity. A special case of this
problem is that in [4] when the plate thickness becomes vanishing-
1y small. In the second, the infinite plate is weakened by two
semi-infinite, collinear cracks and is bent symmetrically about
the bond plane connecting the crack tips. Stress solutions are

computed and plotted versus the ratio of plate thickness to crack
-3-



or bond length.

REISSNER'S EQUATIONS

The detailed features of the Reissner theory of plate bending
can be found in [5]. Hence, only those equations which are per-
tinent to the present discussion will be cited. With reference
to a system of rectangular coordinates x, y, bending and twisting
moments will be denoted by Mx’ M

and Hx while Vx and Vy will

y y
stand for the transverse shear stress resultants. The transverse
deflection of the midplane of the plate is w. In the absence of
lateral loads on the faces of the plate, w, Vx’ and Vy are re-

quired to satisfy the differential equations

2V aV

X 4y Y -

5x T3y -0 (1.1)
- k2y2 = . D 9 (v2

VX k2v vX D X (v2w) (1.2)
- K292y = - D 9_ (y2 1.3

v, - KPeRV D 35 (v2w) (1.3)

in which D = Eh3/12(1-v2) is the flexural rigidity of the plate
with E being the Young's modulus, h the plate thickness, and v
the Poisson's ratio. The Laplacian operator v2 in two-dimensions
is 92/4x2 + 32/3y2 and k2 = h2/10, Once w, V., and Vy are known,

the moments may be found from

32w 92w , v,
MX=-D(W+V§)TZ)+2k_3_)—(— (2,])



= - 2 _Y
32w v Vv
= - - 2 (X 4 Y
ny (1-v) D X3y + k (ay + 3% ) (2.3)

and the average rotations Bys B about the y- and x-axes are

y
given by
_ oW 2k 2
Bx T X * (T-V)D Vx (3.7)
_ W 2k?2
By = -3y 57D Vy (3.2)

In the sequel, the midplane of the plate will always occupy
the xy-plane with the z-axis being normal to the plate surface.
On a typical edge of the plate, say x = 0, it is possible to

specify one member of each of the pairs

(Moo 8 (Hys 8 (V, W) (4)

x? xy?

Moreover, if the problem possesses symmetry about the xz-plane,

the conditions
g, = H =V =0, fory =20 (5)
must be fulfilled.

FORMULATION OF THE PHYSICAL PROBLEM

Let an infinite plate of constant thickness h be cut along
certain straight segments belonging to the yz-plane and be sub-

jected to bending loads in such a way that the problem is sym-
-5-



metric with respect to both the xz- and yz-planes. Then, on
the uncut portion of the plate in the yz-plane, the symmetry

conditions
B. = H =V, =0, forx =20

may be enforced. Since the edges of the cut are to be free from
twisting moment and transverse shear, the last two conditions

apply in the entire yz-plane, i.e.,

Hyy(osy) = V. (o,y) = 0 (6)
for all values of y.

Now, the y-dependence in egs. (1.1) through (3.2) may be
removed by subjecting all these equations to either the Fourier
sine or cosine transform in y according to whether the function
transformed is odd or even in y. Assumed to be satisfied are
the regularity conditions such as that the displacements, etc.
are bounded as x? + y2 » », In this way, the resulting ordinary
differential equations may be solved without difficulty. Apply-
ing the symmetry conditions, eq. (5), the solution in the trans-

formed domain may be written as
a2Dw® = e”%X A(a)Llax + B(a)] (7.1)
a(1-v)087 = e™®* {A(a)[(1-v)(ax + B(a) - 1) - 4kZa2]

+ 4k242 p(x,a) C(a)} (7.2)




a(]-v)DB; = e {A(a)[(1-v)(ax + B(a)) - 4k2a2?]

+ 4k%a? s(ak) p(x,a) C(a)} (7.3)
and
Mo = e™* {A(a)[2 + 4k2a% - (1-v)(ax + B(a))]
- 4k2a2 s(ak) p(x,a) C(a)} (8.1)
M; = ™ [A(a)[2v - 8k2a2 + (1-v)(ax + B(a))]
+ 4k2a2 s(ak) p(x,a) C(a)} (8.2)
Hiy = e"** [A(a)[4k2a2 - (1-v)(ax + B(a) - 1)]
- 2 (1 + 2k2%2a2) p(x,a) C(a)} (8.3)
VS = 20 {p(x,a) C(a) - A(a)} (8.4)
v; = 20" %% [s(ak) p(x,a) C(a) - A(a)} (8.5)
in which
1

s(p) = [1 + (1762)1%, p(x,a) = exp {ax [1 - s(ak)1]

The superscripts ¢ and s are introduced to denote, respectively,
the cosine and sine transforms of the function under consideration,

For instance,

wé(x,a) = [ w(x,y) cos ay dy
0



is the cosine transform of the deflection w(x,y), and

o 8

B,(x,y) sin ay dy

S -
By(x,u) y

is the sine transform of the average rotation By(x,y). Once
the unknown functions A(a), B(a) and C(a) are determined in the

transformed domain, the appropriate inversions, i.e., for example,

wix,y) = %

Ji w€(x,a) cos ay da
0

B, (x,y) = 2 ? 83(x,a) sin ay da
y Ty

may be used to convert the solution into the physical domain.
Taking the transform of eq. (6), i.e.,
Hey(0se) = Vi(o,a) = 0

and applying these conditions to eqs. (8.3) and (8.4) yield
A(a) = C(a) , B(a) = - (1+v)/(1-v)

Hence, eqs. (7.1) to (8.5) may be expressed in terms of a single

unknown A(a) as
a2Dw® = e”®* A(a) {ax - [(1+v)/(1-v)1} (9.1)

a(]-v)DB§ = e"® A(a) {(1-v)ax - 2 - 4k2a2 [1 - p(x,a)]}
(9.2)




a(]—v)DB; = e ™ Afa) {(1-v)ax - (1+v)
- 4k%a? [1 - s(ak) p(x,a)]} (9.3)
and

ME = ™%X A(a) {3+v = (1-v)ax

X
+ 4k2a2 [1 - s(ak) p(x,a)]} (10.1)

M§ = = e Afa) {(1-v)(1-ax)
+ 4k202 [1 - s(ak) p(x,a)]} (10.2)
Hiy = e ® A(a) {- (1-v)ax + (2 + 4k2a2) [1 - p(x,a)]} (10.3)
v§ = 2ae” % A(a) [p(x,a) - 1] (10.4)
V3 = 2ae”™®* A(a) [s(ak) p(x,a) - 1] (10.5)

The function A(a) can be evaluated from the single remaining

boundary condition of specifying either MX or B, on the edge

X
x = 0. This will be done in the subsequent sections.

SINGLE INTERNAL CRACK

Suppose that a thin plate containing a crack of length 2a,
Fig. 1, is bent by uniform moment of intensity M0 at infinity.
The solution to this problem may be obtained by judiciously
superposing the simple solution of an uncracked plate under uni-
form bending to that of a cracked plate with bending moment ap-

plied to the crack surfaces. Thus, it suffices to solve the
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problem of specifying uniform moment MO on the segment x = 0,
|yl<a of the plate. Referring to Fig. 1, the conditions to be

satisfied on x = 0 are

0, |yl-a (11.1)

8, (0,y)

M (0,y) = M, |yl<a (11.2)

Because of symmetry with respect to the xz-plane, it can be easily
deduced from eqs. (9.2) and (10.1) that Al(“) satisfies the pair

of dual integral equations

i % Aj(a) cos ay da = 0, y > a (12.1)
0
i A](a) t(ak) cos ay do = % My » ¥y < a (12.2)
0

where the function t(ak) stands for
t(p) = 3+v + 4p2 [1 - s(p)]

The objective here is to reduce the simultaneous system of
dual integral equations to a single integral equation involiving
one unknown function. This can be accomplished by first defining

uly) = l—A](a) cos ay da , y < a (13)

3|
o-— 38

In view of eq. (12.1), the Fourier inversion theorem [6] gives
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1

= A](a) = u(y) cos ay do (14)

O —

Equation (14) may be substituted into the integrated expression
of eq. (12.2) and the problem reduces to the determination of

the function u(y) such that®

o a
f t(ak) sin ay da f u(n) cos an dn = —12T-M Yy , ¥y < a (15.1)
0 0 °
and
u(y) =0,y > a (15.2)

As a departure from the method of solution employed in [4],
the determination of the behavior of u(y) near the endpoints of
the crack will be somewhat guided by the solution of the analogous
crack problem in classical plate theory. 1In the classical theory,

the singular character of the stresses arises from the solution

M
*
u(y) = 545 7a%yZ , y < a

Therefore, it is plausible to admit in the modified theory the

representation

_ % u(t) todt < 16
U(.Y) £ Ty s Y a ( )

5If the order of integration were reversed, eq. (15.1) would be-
come a singular integral equation as in [4]

-11-



so that in the 1imit as y-+a, u(y) becomes

u(y) = v(a) vaz-yZ + 0(&12-)'2)3/2 (17)

where the leading term preserves the y-dependence of the classical
*
solution, u (y). Note that the representation, eq. (16), is a

special case of Abel's integral equation [7] whose solution is

O R (18)

Upon substitution of eq. (16) in (15.1) and use of the iden-
tity [8]

t
J 9%5—31 dy = J(at)
o VEZ-y?

where Jo is the usual zero-order Bessel function of the first

kind, eq. (15.1) becomes

O -

p(t) t dt [ t(ak) Jo(at) sinay da = My , y < a (19)
0
Now, let

9(p) = y5 {2 + 42 [1 - s(6)]} = 0(17) , as o > =

such that t(p) may be expressed as

t(p) = (1+v) [1 + g(p)] (20)

-12-



Making use of eq. (20) and the known result [8]

Jo(at) sin ay do = {

O~— 38

it is possible to put eq. (19) in the form

o

y v(t) t dt M0

a
= y - [ w(t) t dt [ g(ak) J_(at) sin ay do ,
0 VyZ-t? T+v 0 0 °

y <a (21)

which coincides with a special case of Abel's integral equation.
From a relationship similar to that between eqs. (16) and (18),

eq. (21) can be transformed to

[>+]

d
p(t) + f p(t) t© dt f ag(ak) Jo(aT) Jo(at) da
0 0

Mo

=1+—\)’t<a ) (22)

Introducing the dimensionless quantities

A=

K -
EQ*‘:‘

. o(e) = 72 VE y(ak)
o

et

the Fredholm integral equation

1
e(g) + [ F(e,n) e(n) dn = Ve , £ < 1 (23)
0

is obtained. The kernel F(t,n) is given by

-13-



Flean) = /B [ sg(as) 3 (£s) 3 (ns) ds
0

Another form of F(£,n) that is more amenable to numerical calcu-

lation 1is

Fgan) = S VEn I(e 2) K (n D)

/en [ s f(xs) J (gs) 9 (ns) ds , 0 < & <n (24)
0

since the function

f(o) = oZ+nZ g(p) = 0(=) , as p + =

where C = [2(]+v)]'1, n2 = 1/2 and hence the integral in eq.
(24) converges rapidly. In eq. (24), I0 and K0 are the modified

Bessel functions of the first and second kinds, respectively.

It is clear that ¢(g) fully determines the solution of the

problem. From eq. (16), the function u(y) may be found:

Moa2 1 Y o(g) deg
1+v y/a VaZgZ-y?

u(y)

M 1 o(g) "
° {e(1) vaZ-y? - [ VaZgZ-y? [—] d&} (25)

T+v y/a Ve

Inserting eq. (25) into eq. (14), the only unknown in egs. (9.1)
through (10.5) is obtained:

~14-



Ay(a) = 5oy [ 78 o() 9 (eat) de

0
TTMoa 1 (D(E) 1
= zrreey (201 9y(ea) - [ 0y(eae) [5—1 & de} (26)

The solution of the problem has now been taken to a point at which
the moments, shear resultants, etc. in the plate may be computed
once ¢(¢) is evaluated from eq. (23). Such a task can be best

performed on an electronic computer. The numerical values of ¢(¢g)

will be reported later on.

It should be pointed out that the convergence of the integral
in eq. (24) becomes increasingly slower as A takes on smaller

values. However, in the limit as r+0, the results simplify con-

siderably since

g(rs) - 1% » F(g,n) ~» ]—,2,7 §(g-n) , for A > 0

where §(p) is the Dirac delta generalized function. Thus, for

vanishingly thin plates, the classical results

1+v MO
o(g) = (g3z5) 78, uly) = 535 Ya%-y7

_ 0
are recovered.

TWO EXTERNAL CRACKS

The problem of two semi-infinite plates bonded together along

-15-



a straight line segment of length 2a as shown in Fig. 2 may be
solved in the same way. The unbonded portions of the joined
plates may be viewed as two semi-infinite cracks. To preserve

a finite bending moment across the bond 1ine described by x = 0,
|y|<a, the moment at infinity must fall to zero. The conditions

for x = 0 are

B, (0,y) = 0, |y|<a (28.1)

M (0,y) = 0, |y|>a (28.2)

For the present formulation, it is more convenient to express the

condition, eq. (28.1), as

3g, (0,y)

*
In addition, the resultant moment M transmitted to the bond line

from each half of the plate must be specified, i.e.,
a 1
[ M (o,y) dy = 5 M (30)
0

By application of eqs. (9.2) and (10.1), the conditions expressed
by eqs. (28.2) and (29) become

o 8

Az(a) t(ak) cos ay da = 0 , y > a (31.1)

Az(a) sin ay da = 0 , y < a (31.2)

oO+~— 8
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Similarly, eq. (30) takes the form

*

Az(a) t(ak) cos ay da = 5 M (32)

el

2
T ) dy

O —

o 8

From the pair of dual integral equations given by eqs. (31.1)
and (31.2), subject to the condition eq. (32), the unknown func-

tion Az(a) is fully determined.

Proceeding as in the problem of a single crack, a new func-

tion
viy) = _12;_ f Az(a) t(ak) cos ay da
0
is defined such that the Fourier inversion theorem yields

A2(“) t(ak) = v(y) cos oy dy

o “—

because v(y) = 0 for y>a as demanded by eq. (31.1). It follows

that eq. (32) may be simplified:

? v(y) dy = A,(o0) t(o) = % M (33)
0

Eliminating the function Az(a) in eq. (31.2), the unknown in the

problem changes to v(y) governed by
© . a
g %%%F%l da g v(n) cos an dn =0 , y < a (34.1)

and

-17-



viy) =0,y > a (34.2)

To restrict the nature of the moment singularities at the

crack tips, v(y) is taken as
0 y > a (35.1)

M1, § elt) diy
r VaToy?  y J[EToy?

, 0 <y <a (35.2)

which satisfies eq. (34.2) automatically. Before the remaining

conditions can be expressed in terms of ¢(t), it is necessary to

calculate

Az(a) t(ak) =

Q-9

v(y) cos ay dy

* a a t
_ M [[ S5 oY gy + [ 4(t) dt [ €05 oY 4y
m o V/aZ-y~? o] o VtZ-y~?
M ;
= 55— [9, (aa) + [ ¢(t) 9 (at) dt] (36)

0

Putting « = 0 in eq. (36) and inserting the result subsequently
into eq. (33) give

2 -1
v = [1+ [ 4(t) dt] (37)
0

Under these considerations, eq. (34.1) further reduces to

-18-



© (aa) © (at)
J' -—(——k—)—— sin aa do + f ¢(t) dt f —(—)— sin ay da = 0 ,
y < a (38)

The above integral equation may now be transformed to a special

case of Abel's integral equation by introducing the function

_ 1+ _ 2 (p)-1 _ 1
h(e) =1 - 5057 = (3% sGTTO=TGHTT - °G2) »

as p > =

into eq. (38). The result is

f oft) dt | [ h(ak) Jo(aa) sin ay da
o YyZ-t? 0
a )
+ [ ¢(t) dt [ h(ek) Jo(at) sin ay do , ¥y < a
0 0

from which ¢(t) is obtained [7]:

p(t) = G](t,a) + ? G](t,r) ¢(t) dt , t < a (39)
0
where

G](t,r) =t £ ah(ak) Jo(at) Jo(ar) do
The dimensionless notation

v(g) = 2 ¢(ag)

)

-19-



carries eq. (39) into

1
\{’(g) = G(Es]) + f G(E,T\) ‘1’(1’1) dn s & < 1 (40)
o
in which
G(5.n) = /E7 | sh(as) 3 (es) 9 (ns) ds (41)
0

When & and n are not zero simultaneously, the integrand in eq.
(41) is 0(1/53/2) as s»» and hence the integral converges. On
the other hand, if both ¢ and n are zero, the integrand is 0(1/s)
as s>~ and the integral diverges. For the purpose of finding the
singular part of the integral in subsequent work and increasing

the rate of convergence of the numerical evaluation of eq. (41),

the identity
s -
| crimz 9o(Es) 9, (ns) ds = I (gm) K (nm) , 0 <& <n
will be used to put the kernel G(g,n) in the form

6(g,n) = 5 VB0 I (e D)

7) Ko(n %)

o

/'E_n? sq(rs) J (gs) J (ns) ds , 0 <& < (42)
0

where C = [2(1+v)]-] as before and m2 = (2+v)/[2(1+v)]. The
function q(p) is obtained by comparing the Laurent series expan-

sions of h(p) and C/(p2%2+m2), i.e.,

-20-



a(e) = sremz - hle) = 0(l5) , as o » =

In terms of the solution, ¥(g), of the Fredholm equation,

eq. (35.2) gives

1

*
viy) =XM1,y Ll dyy (43)
T VaZ-y? y/a VYaZgZ-y?
and Az(u) is obtainable from eq. (36) as
M !
Ap(a) = oty [9(0a) + ({ e ov(g) 9 (eag) de] (44)
in which vy is
! -1
vy = [0+ [/ v(e) de] (45)
0

The problem is essentially solved since ¥(g) can be found numer-
ically. Once this is done, the stresses and displacements every-

where in the plate may be calculated.

Some insight into the solution for small values of A can be
gained by considering the limiting case of thin plates. When

A>0, it is not difficult to show that

h(rs) - 5%; , G(z,n) ~» 5%; §(g-n) , for » >~ O

In this case, the solution of eq. (40) is

-21-



N

y(g) = T+ Lim s(g - 1 + ¢)

€0
With v = (1+v)/(3+v), the functions v(y) and Az(a) simplify to

* *

M
s A (a) = ——— o 4
pe) = g (ea) (46)

M

viy) = ———
n/a -y

STRESS DISTRIBUTION NEAR SINGULAR CRACK POINTS

The distribution of stress in the vicinity of a sharp crack
plays an important role in the examination of the stability be-
havior of plates weakened by flaws. Without going into the de-
tails of the theory of brittle fracture, which can be found in
the work of Irwin [9], it is pertinent to find the singular part

of the solution,

First, consider the problem of a plate with a finite crack
under uniform bending, Fig. 1. From eq. (26), it is seen that
the singular part of the solution depends only on the first term

for A](a), i.e.,

™ a

A](G) = fTT%;T o(1) J](aa) + -=-

Moreover, the functions s(p) and p(x,a) in eqs. (8.1) to (8.5)

can be expanded in Laurent series to give

1 1
+T6-p—5+0(l—8-),a50—>oo

‘0“1-'

1
]

'OIJ —

_ 1
s(p) =1 + >

-22-




2 2
PUx,a) = 1 - gir 3+ By 57 - qape L) - 61 43

x2

2 1 1
*oggae L) - 28] gv + 0(5s) 5 as w > =

Under these considerations, the transforms of the moments and

shear resultants in eqs. (8.1) to (8.5) become
Ms = ?TT%GT 2(1) e™* J;(aa) [(T+v)ax + (1+v)

1o (47.1)

1
-+
o

(47.2)

1
%1N

+
o
—

!
~
| I—

Hey = zrreeT ¢(1) €% 9y(ea) [O+v)ax - gz + 0(1)] (47.3)

c nMoa —aX x 1 1
VX S - T @(]) . oe J](aa) [?F? o + O(ET)] (47-4)
s nMOa —ax x 1 1
Vy = - TR o(1) . ae J](aa) [ffr ot 0(;7)] (47.5)

Defining the polar coordinates r, R], Ro, 8, 69, 6, as shown in

Fig. 1, and making use of the Bessel integral-identities

sin cos
[o¢]

f ae_ax J,(aa) . L ] ay da = - —_‘—3—§—7 L ]
° ] cos (R]RZ) /

N W

(eq+6,)
sin
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etc., eqs. (47.1) to (47.5) can be

physical domain:.

@(1)Moa r
M, = - ———— [- cos
»’R]R2 a
ax 3
+ sin (6
R]R2 2 1
¢(1)M0a r
M = =« ———— [- cos
y /AR, a
ax .3
- sin 5 (o
R]R2 2 1
o(1)M a ax
Hey = - 0
/R]R2 R]R2
VX = Vy = 0(1) as R]R2 - 0

easily inverted into the

(48.1)

(48.2)

(48.3)

(48.4)

It is useful to obtain explicitly the singular character of the

moments near a crack tip,

(48.4) further reduce to

say (o,a). As R,~0, egs.

K] 05 1 3
Mx = - —— [cos —= + — sin 6, sin — 62] + 0(1)
/2R2 2 2 2
K] 62 1 3
M = - —— [cos — - — sin 6, sin — 92] + 0(1)
y /2R, 2 2 2
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(49.2)



K 1 3
1 .
H, = « —— ., [— sin 6, cos —68,] + 0(1) (49.3)
Xy R, 2 2 2 2
Ve =V, = 0(1) , as Ry > 0 (49.4)

in which the shear resultants remain finite at the crack tip.

This is in contrast to the classical solution [1] where VX =V

y
= o(r™3/2

) as R2—>0° For the special case of vanishingly thin
plates, eq. (27) gives

I )
Ky = 3+y Mo /a

and eqs. (49) agree with those obtained by Knowles and Wang [4].

In general, the parameter K], which controls the intensity
of the local stress field, depends on the plate thickness h and

Poisson's ratio v through ¢(1) as

K1 = ¢(1) M0 Va (50)

whose critical value has been known to determine the onset of
rapid crack propagation [9]. The variation of #(1) with

A = h/(av10) is computed numerically by solving the Fredholm in-
tegral equation given by eq. (23). The results are shown graph-
ically in Fig. 3 for Poisson's ratio of 0.0, 0.3, and 0.5. It
is seen that the strength of the moment singularity, governed by
K], increases rapidly as the plate thickness changes from zero

to some finite, but small, value. For v = 0.3 and a plate thick-
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ness to crack length ratio of 0.1, the value of K] is approxi-
mately 62% greater than that found for a vanishingly thin plate.
In fact, it can be demonstrated analytically that the rate of

increase of the K]—factor is infinite at » = 0, i.e.,

3¢e(1)

= + o as x» - 0 (5])

The required proof is worked out in the Appendix.

An assumption of the Reissner theory of plate bending is that

the in-plane stresses o,, o, and = vary linearly over the thick-

X y Xy
ness of the plate:
f j 3 1
l Ox i | MX |
! i - 12z ;
| |
?_._Txy_: _nyJ

For this reason, some caution must be exercised in the application
of the results in Fig. 3 when ) becomes sufficiently large, since
nonlinear distributions, especially local disturbances near the
crack edges and the surfaces of the plate, are not accounted for
in the present theory. However, further refinements would lead

to a three-dimensional analysis of the problem which is the sub-

ject of another investigation.

The singular behavior of the solution for the problem of two
semi-infinite plates joined along a finite segment, Fig. 2, can
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be deduced in the same way. From eq. (44), Az(a) may be approx-
imated by

YM* Jo(aa)
2 t(ak)

Ay(a) = ¥oe--

The Laurent expansions developed earlier for s(p) and p(x,a) may
again be used to obtain expressions of Mi, M;, etc. which are
similar in form to those in eqs. (47) except that they are now
expressed in terms of the zero-order Bessel function, J_(ca).

0
The integrals required for the Fourier inversion are of the type

? —ax sin
ae Jo(aa) [ ] ay da
) cos
r sin 3

o (R]R2)3/ [cos] e - 2 (o1 + o)

and so on. As before, the singular terms are found to be

YM* 6]+62 Xr 3
M, = ——— {sin ( ) - cos [o - — (e] + 62)]}
X R, R 2 R, R 2
TYRIR2 172
+ 0(1) (53.1)
*
YM e]+e2 Xr 3
My = ——— {sin ( ) + cos [o - — (e] + 62)]}
™ R]R2 2 R]R2 2
+0(1) (53.2)
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*

o= - M (X oin o - 2 (e, + 0,)1} + 0(1) (53.3)
Xy m/R R, R,R 2

172 ™
v, = Vy = 0(1) , as R{R, ~ 0 (53.4)

In the immediate vicinity of the crack tip at (o, -a), i.e., as

R]+0, eqs. (53) can be simplified:

K] 6] ] 3
M, = [cos — + — sin 6, sin — e]] + 0(1) (54.1)
/ZR] 2 2 2
K] e] 1 3
M. = [cos — - — sin 8, sin — e]] + 0(1) (54.2)
y /2R 2 2 2
K 1 3
H, = —— [ sin 8, cos — ;1 + 0(1) (54.3)
Xy /IRy 2 2
Ve =V, = 0(1) as Ry » 0 (54.4)

Here, K] is defined as

*
K, = M
-

(55)

Unlike eq. (50), the value of K] is inversely proportional to the
square root of the only characteristic dimension in the plane of
the plate. Note that, however, the angular variation of the sin-
gular part of the moments is the same as that shown in eqs. (49)

for the finite crack problem.
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To find the variation of y in eq. (55) with » = h/(a/10)
where a is the half bond length, the integral equation, eq. (40),
is first solved numerically on an electronic computer for v(g)
from which y is calculated by means of eq. (45). Figure 4 indi-

cates how the slope of the curve becomes unbounded as A»»0, i.e.

3Y , ¢

¥ , as » > 0 (56)

This condition is verified in the Appendix. The significance of
this result is that the local intensification of the bending
stresses increases appreciably as the plate thickness is varied
slightly from zero. For example, as h increases from zero to
one-tenth the bond length, K] increases approximately 62% for

v = 0.3. The point on the curve in Fig. 4 for » = 0 corresponds

to y = (1+v)/(3+v).

Finally, it should be mentioned that the present method of
solution can also be applied to solve boundary problems of cracked
plates owing to skew-symmetric bending loads such as twisting mo-

ments. The same type of results would be expected.
APPENDIX

The proof that the slopes of the curves in Figs. 3 and 4 be-
come infinite at » = 0 will now be given. To this end, it suf-
fices to show that the expressions 3¢(1)/3x and 3y/3x become un-

bounded in the 1imit as A-0.
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Differentiating the Fredholm integral equation given by

~eq. (23) with respect to 1 gives

1
E%)‘i‘ﬂ"(f)[ﬂ%;—rllﬂn) ¢ Fle,n) 280)y g0 =0, £ <1 (57)
in which
F(eon) | (o(rs) |
= /&n ? S J,(gs) 9, (ns) ds
(0]
L_éﬁigil% Lsg'(xsz

As A»0, it can be easily established that

g(rs) - T%C » 9'(xs) » - T%C , o(g) - ;:X a3

and hence
L aF(e,n) Wk 1
Vim [ 225200 o(n) dn = - g3p [ s? J,(es) ds [ n 3, (ns) dn
A+0 0 0 0

4 VE
- - 35 [ s gles) 9y(s) ds

Remembering that

2
F(E,n) g Ty G(E-n) , as A > 0
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and setting ¢ 1, eq. (57) yields the result

vim 22(1) . 41y f s 3,(s) Jy(s) ds (58)

A->0

Since the integrand may be written as
s J (s) Jd,(s) = 1 [- cos 2s + 1 (2 + sin 2s)
) 1 I Is

+ 0(%7)] as s >

the integral in eq. (58) becomes unbounded at the upper 1imit and

thus eq. (51) is verified.

To establish eq. (56), the same line of reasoning may be fol-

lowed. Starting from eq. (40) in the form

av(e) _ 3G(e,1) + I [BG(E,n) ¥(n) + G(&,n) BW(n)] d

) P\ R "
£ o< (59)
Wwith
— G(&,n) 1 'h(ks)
= ,/;;';;Z s ‘g‘Jo(ES) J,(ns) ds
LaG(gin)J ;sh‘(AsU
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it can be shown that

. av(e) _ aG(e,1) 2 .. 3v(g)
1im = > + 1im
NS I 3+v NS
+ ]Ev i 36(%;”) [Tim 6(n = 1 + €)] dn
0 €>0

since

G(g,n) ~» 5%; §(g-n) as » »~ 0
and

h(0) = 35 , h'(0) = - H1%y)

Equation (60) may be simplified and rearranged to read as

T4y 5 3¥(e) _ 3+v 36(g,1)

3+v A0 3\ T+v A

and hence it follows from eq. (45) that

1
- 3G(g,1)
Tim &+ = - [ Vg 2221 d¢
x>0 A o oA

where the integrand is given by

v

e G(g,1) = - %%%i¥% g ? 52 Jo(gs) Jo(s) ds
0

Carrying out the integration yields

-32-
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1 I
.9 4(1+
112 =X T%;;%% £ gdg [ s2 Jo(gs) Jo(s) ds

0

- HE [ 5 0,() 07050 05 o

(=3
>

(59)

which is the same as eq. (58). This completes the proof of eq.

(56).
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FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

TITLE OF FIGURES

FINITE CRACK IN INFINITE PLATE
SEMI-INFINITE CRACKS IN INFINITE PLATE

MOMENT INTENSITY VERSUS RATIO OF PLATE THICKNESS TO
HALF CRACK LENGTH

MOMENT INTENSITY VERSUS RATIO OF PLATE THICKNESS TO
HALF BOND LENGTH

-34-



Fige 1 - Hartranft and Sih
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