

Hard copy $(H C) \quad 3, \quad-3$
Microfiche (MF)
 ff 653 July 65

FOREWORD

This report entitled "Thermal Analyzer Computer Program for the Solution of General Heat Transfer Problems," LR 18902, was prepared by the Lockheed-California Company under NASA Contract NAS 9-3349. Although originally developed by Lockheed in 1956 and continually updated over the past several years, the Thermal Analyzer Program was extensively modified for use under this contract.

Other reports prepared under this contract are:
LR 18899
A Transient Heat Transfer and Thermodynamic Analysis of the Apollo Service Module Propulsion System - Final Report

Vol. I - Phase I Transient Thermal Analysis
Vol. II - Phase II Thermal Test Program
LR 18900 A Transient Heat Transfer and Thermodynamic Analysis of the Apollo Service Module Propulsion System - Summary Report

LR 18901 An Introduction to Spacecraft Thermal Control
LR 18903 Thermal Analyzer Computer Program for the Solution of Fluid Storage and Pressurization Problems

LR 18904 Computer Program for the Calculation of Incident Orbital Radiant Heat Flux

LR 18905 Computer Program for the Calculation of ThreeDimensional Configuration Factors

This report was written by Mr. H. D. Schultz of Lockheed's Thermodynamics Department. The contributions of Messrs. R. B. David, F. R. Mastroly, and J. R. Gardner, also of the Lockheed-California Company, to this report are gratefully acknowledged. Mr. David was responsible for the programing and wrote Section VII and Appendices D and E of this report. Messrs. Mastroly and Gardner. wrote computer manuals for two earlier versions of the Thermal Analyzer Program. Much of the content of the present report was adapted from the previous manuals.

TABIE OF CONTENTS

Page
FORENORD i
LIST OF FIGURES ix
LIST OF TABLES xi
SUMMARY xiii
I - INTRODUCTION l-1
II - PROGRAM DESCRIPTION AND CAPABIEITIES 2-1
III - PROBLEM SETUP 3-1
BASIC THERMAL SYSTEM AND ELECTRICAL ANALOG 3-1
PROBLEM LUNPING 3-2
Location of Lumps 3-2
Choice of Lump Size 3-7
METHOD OF SOLUTION 3-7
METHOD USED TO DETERMINE COMPUIING INTERVAL 3-10
CALCULATION OF CIRCUIT PARAMETERS 3-11
Resistor Values 3-12
Capacitor Values 3-20
Variable Resistors and Capacitors 3-20
Heat Inputs 3-21
IV - FUNCTIONS AND SPECIAL SUBROUTINES 4-1
DEFINITION OF TERMS 4-1
LIST OF ADDRESSABLE ELEMENTS 4-2
MATHEMATICAL OPERATIONS $4-4$
CURVE INTERPOLATION 4-6
Linear Interpolation 4-6
Parabolic Interpolation 4-10
Bivariate Interpolation 4-1.4
RADIATION FUNCTIONS 4-17

TABLE OF CONTENTS (Continued)

Pag:
Radiation with Constant Factor 4-13
Radiation with Variable Factor 4-19
Radiation with Matrix 4-19
CONVERGENCE AND STEADY-STATE SUBROUTINES 4-23
MAXIMUM-MINIMUM SUBROUTINE 4-25
SAVE CURRENT DATA SUBROUTINE 4-27
TEMPERATURE CARD PUNCH SUBROUTINE 4-23
CURVE PLotTIING SUBROUTINE 4-29
AERODYNAMIC HEATING AND ABLATION SUBROUTIINES 4-31
MISCELLANEOUS FORTRAN OPERATIONS 4-32
Variables 4-32
Statement Numbers 4-32
Comment Cards 4-33
GO TO Statements 4-33
Conditional Control and Logical Expressions 4-34
DO Statements 4-35
THERMAL PROPERTIES LIBRARY 4-37
Library Tape 4-37
Interpolation Routines 4-43
V - PROGRAM INPUT 5-1
SPECIAL DATA CARDS 5-2
DATA CARD FORMATS 5-3
BLOCK I, INITIAL TEMPERATURES 5-4
BLOCK 2, RESISTORS 5-5
BLOCK 3, CAPACITORS 5-6
BLOCK 4, INPUT DATA 5-8

0

TABLE OF CONTENTS (Continued)

Page
BLOCK 5, TIME CONSTANTS 5-10
RESTART BLOCKS 5-11
FUNCT SUBROUNINE 5-14
PRINT SUBROUTINE 5-19
Standard Print Format 5-19
FORMAT Declarations 5-21
VI - EXAMPLE PROBLEMS 6-1
EXAMPLE \#1 6-1
Problem Description 6-1
Conduction Resistors 6-3
Radiation Resistors 6-3
Capacitors 6-3
RC Products 6-4
Curves 6-5
Time Block 6-5
FUNCT Subroutine 6-7
PRINT Subroutine 6-7
Computer Input for Example \#l 6-8
Computer Output 6-8
EXAMPLE \#2 6-17
Problem Description 6-17
Conduction Resistors 6-18
Radiation Resistors 6-21
Capacitors 6-21
RC Products 6-?2
Curves 6-23

TABLE OF CONTENTS (Continued)

Page
Time Block 6-24
Restart Block 6-25
FUNCT Subroutine 6-25
PRINT Subroutine 6-26
Computer Input 6-26
Computer Output 6-26
VII - GENERAL PROGRAM INFORMATION 7-1
INCORRECT DATA INPUT 7-1
Common Input Frrors 7-1
Function Subroutine Errors 7-2
Data Diagnostic 7-3
Data Debugging Routine 7-4
PROGRAM CAPACITY 7-4
Version A (Short Problems) 7-4
Version B (Maximum Problems) 7-5
Version C (Pressurization) 7-5
MACHINE EXECUTION TIME 7-5
APPENDIX A - ECKERT AERODYNAMIC HEATING A-1
ECKERT'S RECOMMENDED PROCEDURE A-1
MODIFICATION OF ECKERT'S RELATIONS FOR DIGITAL COMPUTING USE A-2
PROGRAM INPUT A-4
Method 1 A-6
Method 2 A- 6
LIMITATIONS OF ECKERT'S AERODYNAMIC HEATING METHOD A-9

TABLE OF CONTENTS (Continued)

Page
EXAMPLE PROBLEM A-10
Capacitors A-11.
Radiation Resistor A-II
Conduction Resistor A-11
Eckert K Factor A-12
NOMENCLATURE FOR AFPENDIX A A-19
APFENDIX B - ABLATION B-1
PROGRAM INPUT B-2.
EXAMPLE PROBLEM B-5
APPENDIX C - DIGITAL COMPUIER SOLUTION FOR PASSAGE AIR AND WALL TEMFERATURES C-1
APPENDIX D - COMPUTER OPERATION D-1
ARRANGEMENT OF THE DECK D-1
COMPUTATION SEQUENCE D-10
DESCRIPTION OF PROGRAM DECKS D-14
tape USAGE D-17
NOTES ON COMPUTER OPERATION D-18
APPENDIX E - DATA DIAGNOSTIC PROGRAM E-1
PROGRAM OPERATION E-1
PROGRAM SETUP E-2
REFERENCES R-1

LIST OF FIGURES

Figure
Page

3-1 Physical Geometry and Corresponding Thermal Network
for a Re-entry Structure 3-3
3-2 Physical Geometry and Corresponding Thermal Network for an Electronic Equipment Rack 3-5
3-3 Physical Geometry and Corresponding Thermal Network for a Window Section 3-6
4-1 Correct and Incorrect Inputs for Curves Described by Parabolic Interpolation 4-12
6-1 Physical Geometry and Corresponding Thermal Network for Example Problem 1 6-2
6-2 Temperature History of Upper and Lower Surfaces 6-6
6-3 Physical Geometry and Corresponding Thermal Network for Example Problem 2 6-19
6-4 Temperature Plots for Example Problem 2 6-72
6-5 Temperature Plots for Example Problem 2 Restart 6-73
C-1 Physical Geometry and Corresponding Thermal Network for a Portion of an Air Passage C-4
C-2 Function $f_{3}(\beta)$ Required for Passage Air Temperature Solution C-15
C-3 Functions $f_{1}(\beta)$ and $f_{2}(\beta)$ Required for Passage AirTemperature SolutionC-16
D-1 Deck Setup for Thermal Analyzer Program D-3
D-2 Program Linkage Arrangement - Version A D-4
D-3 Program Linkage Arrangement - Version B D-5
D-4 Simplified Flow Diagram of Computer Program D-20
E-1 Source Program Deck Setup for Data Diagnostic Program E-4

LIST OF TABLES
Table Page
4-1 Thermal Properties Library Identification Codes 4-39
4-2 Data Classification Codes 4-44
5-1 Input Format for FUNCT Subroutine 5-15
5-2 Summary of Functions and Special Subroutines 5-17
5-3 Input Format for PRINT Subroutine 5-20
6-1 Input for Example 1 6-9
6-2 Computer Output for Example 1 6-12
6-3 Input for Example 2 6-28
6-4 Computer Output for Example 2 6-34
A-1 Input for Aerodynamic Heating Example Problem A-14
B-1 Input for Ablation Example Problem B-7
D-1 Program Capacity D-1
D-2 Program Deck Order - Version A D-6
D-3 Program Deck Order - Version B D-8
D-4 Program Listing D-21
E-I Diagnostics E-5
E-2 Data Diagnostic Program Listing E-8

SUMMARY

This report discusses the application of the Thermal Analyzer Program, developed for the IBM 7040/7094 direct coupled digital computer or the IBM 7094 digital computer, to complex transient heat transfer problems. The report also discusses a separate data "debugging" program developed for the IBM 7040 digital computer, which allows examination of the program input data prior to submitting the problem for execution.

The transient heat transfer solution is obtained by converting the physical system into one consisting of lumped thermal capacities connected by thermal resistors, and then using the lumped parameter, or finite differences, approach to solve for the temperature history of the system. This solution, although discontinuous in space and time, can be obtained to any desired degree of accuracy by proper selection of lump size and computing interval within certain limitations as described herein.

The program affords direct solution of complex transient problems involving conduction, convection, radiation, heat storage, and ablation. In addition, by being able to specify any quantity as an arbitrary function of any other, it is possible to include such problems as change of state, variable thermodynamic properties, arbitrary variable boundary conditions, and other non-linear effects.

This report discusses the method used to transform the physical heat transfer problem into a resistance-capacitance ($\mathrm{R}-\mathrm{C}$) network (which is analogous to an electrical circuit), the numerical evaluation of the equivalent electrical elements, and the method of presentation (input format) required to input the problem into the computer. Several example problems illustrating most of the program features are included.

I - INTRODUCTION

Transient thermal phenomena may be studied experimentally, analyzed by graphical or relaxation methods such as the Schmidt plot, or calculated by direct solution of the appropriate differential equations or finite difference equations and approximations. Such methods are usually quite tedious and difficult even for relatively simple cases, and may be inaccurate if the problem is at all intricate.

With increasing aircraft speeds, and with space exploration a reality, the need for accurate transient heat transfer analyses of complex systems has become more acute. Detailed analyses are required for accurately predicting transient structural temperature distributions during high-speed flight, component and environmental temperatures in a space vehicle, the ablation requirements for a reentry body, and in many other cases where hand computations do not suffice. Conventional aircraft, which employ many thermal systems, also require detailed temperature analyses to assure proper system design and operation.

Because of the increased need for detailed thermal analyses, artificial methods are often substituted for the exact solutions of the proper differential equations as a means of obtaining a solution. The method selected for this program is one of many such methods in use and employs the electrical resistance capacitance analog. There are two reasons for this choice:

1. The equations describing any general heat transfer problem are of the same form as those describing an equivalent electrical R-C network. The electrical network equations are simple to set up in finite difference form, and consequently the heat transfer problem may be solved to any desired degree of accuracy.
2. The network setup is easy to visualize in relation to a schematic diagram of the physical problem.

To facilitate the solution of such an analogous network, the Lockheed-. California Company has developed the Thermal Analyzer Program. The purpose
of this report is to enable a heat transfer engineer who is unfamiliar with the program to use it successfully in solving his problem. A basic familiarity with heat transfer laws is assumed, and hence primary emphasis is placed on the conversion of the physical problem into one that can be interpreted by the computer. Examples demonstrating the program features are included.

The Thermal Analyzer Program is written in FORTRAN IV for the IBM $7040 / 7094$ direct coupled digital computer or the IBM 7094 digital computer. It computes transient temperature distributions in configurations of arbitary complexity, using the electrical resistance-capacity analogy. Solutions are obtained by converting the physical system into one consisting of lumped thermal capacities connected by thermal resistors, and then using the lumpedparameter, or finite-differences approach to solve for the temperature history of a system.

The program permits direct solution of complex transient problems involving conduction, convection, radiation and heat storage. Furthermore, since it is possible to specify any quantity as an arbitrary function of any other, it is aiso possible to solve such problems as change of state, variable thermodynamic properties, arbitrary variable boundary conditions, and other nonlinear effects.

In developing the Thermal Analyzer Program, a primary objective has been to maximize input flexibility, and hence to keep the program as general as possible. Input format has not been restricted to any particular geometry, rather it is such that resistors and capacitors can be connected in the same manner as could the actual equipment components. Additions or other changes to the network can easily be made by adding or removing cards in the program input deck.

An outstanding feature of the program is its ability to accept various subroutines, or functions, as required by the particular problem. Currently available are various general-purpose and special functions which permit numerous mathematical operations beyond solution of the electrical network itself. These functions are discussed in Section IV.

Standard FORTRAN statements are accepted, allowing the user to add his own subroutines as required. More important, this flexibility in
handling subroutines allows new ones to be added without altering the basic program.

The program has the capability to run consecutively several cases which are basically similar, but differ in the value of certain parameters. An example of this is a parametric study of the effect of varying the surface emissivity and absorptivity of a space vehicle. A second restart feature is available in which several cases are run consecutively with the results of the first used as inputs to the second, and so on. The temperatures at the end of each case are recorded on tape and used as the initial temperatures for the subsequent case.

The program also allows the user to specify the format for printing the answers. In addition to the tabulated answers, an option provides for machine plotting of the results.

The steps required to solve a problem using the Thermal Analyzer Program are as follows:

1. The physical problem is set up and defined.
2. The physical problem is specified in terms of time, temperature, and a thermal network analogous to an electrical network consisting of resistances and capacities. This re-definition and re-description of the problem is known as lumping, and puts the problem in the only form which the computer is able to solve.
3. The network is described in detail in a form which allows it to be accepted by the computer program and solved. This involves writing up the program in a standard format.
4. This description of the network is transferred to punched cards which are then put into the computer.
5. The computer program solves the problem and provides the answers.
6. The program then provides for printing these answers in a format which can be prescribed by the user.
7. The answers thus printed are then interpreted by the user to provide the desired solution for the original problem.

Step I It is assumed that anyone using this program will be able to describe and specify his problem. The user must have a detailed knowledge of the
configuration, inçluding conduction paths and surface properties if conduction and radiation are important heat transfer modes. In addition, it is assumed that boundary conditions, such as external heat inputs and adiabatic interfaces, are known.

Step 2 The most crucial and time-consuming step is the conversion of the physical problem into an equivalent resistance-capacitance network. The user must divide the physical geometry into sections called "lumps" and then calculate the resistance and capacity of these lumps. The capacity of each lump is the thermal capacity (mass times specific heat) of that portion of the physical problem which the lump represents. The use of the lumping process implies that a given portion of the actual structure is at a uniform average temperature. In lumping a problem there are many factors which influence the size, shape, and number of lumps to be used. Among these are the nature of the physical problem, the amount of detailed information desired, and the anticipated transient response rates and temperature gradients. Some of the considerations involved in problem lumping are discussed in Section III, where several examples are presented. Once the method of lumping has been established, each capacitor and resistor is assigned an integer designation number. Although the designation numbers are arbitrary, a systematic numbering scheme is usually employed for convenience. The user then computes the network resistor and capacitor values, following the general procedures outlined in Section III.

Step 3 After computing the network parameters, the problem must be described on input data sheets (General Purpose Data Sheets or FORTRAN Coding Sheets) in a prescribed manner. The input format is described in detail in Section V. The problem description is divided into five distinct blocks and two subroutines. The first three blocks define the network and give the initial values of the temperatures, resistors, and capacitors. The fourth block is a list of sub-blocks of data required for the problem solution. An example of the type of data that might appear here is the point-by-point description of a curve which is to be used by the functions (described below) for interpolation. Each data sub-block is assigned ar
arbitrary designation number so that it may be referenced later in the program. The fifth block of data lists the printing interval, the final time of the case, and the initial time. The latter two times correspond to the real time of the physical problem.

The user must then prepare a standard FORTRAN subroutine (the FUNCT subroutine) in which he specifies the miscellaneous functions, or operations, which the program must perform. In general, the FUNCT subroutine specifies all operations necessary to solve the problem with the exception of the actual heat balance. An example of a function is the interpolation of a curve described in block 4, to perhaps specify the external heating rate to a portion of the network. The FUNCT subroutine may also be used to call in special subroutines such as aerodynamic heating, ablation, curve plotting, and several others. A complete list of the available functions and special subroutines is given in Section IV.

The last item which the user must code on input sheets is the PRINT subroutine, in which he specifies the quantities that are to be printed out at each printing time, and the desired output format. The program has been set up so that essentially every quantity of interest has an addressable storage location and may therefore be printed out. Section V describes the format used in writing the PRINT subroutine.

Although the FUNCT and PRINT subroutines are ordinary FORTRAN subroutines, standard input formats are presented in Section V, and the user need not have a knowledge of FORTRAN to prepare these routines. Steps 4 and 5 The information on the input sheets is transferred to punched cards which are then input to the computer, and the problem is solved. The actual running of the program is described in Appendix D. Step 6 The answers are printed on a line printer using the format prescribed by the user in the PRINT subroutine. As mentioned above, machine plotting of the results is optional.

Step 7 Interpretation of the answers to provide the desired solution for the original problem should present no difficulties.

BASIC THERMAL SYSTEM AND ELECTRICAL ANALOG

The Thermal Analyzer Program requires that the problem be described as an equivalent network using resistance, capacity, and temperature to define the heat transfer situation.

Thermal resistance refers to resistance to heat flow, analogous to electrical resistance which refers to resistance to current flow.

In any case involving heat transfer between two points, at temperatures T_{i} and T_{k}, the heat flow is given by an equation (analogous to Ohm 's electrical law) as follows:

$$
\begin{equation*}
q=\frac{T_{i}-T_{k}}{R} \tag{3-1}
\end{equation*}
$$

Some simple examples might be given here:

$$
\begin{aligned}
& \text { For conduction, } q=k A \frac{\Delta T}{\Delta x} \Rightarrow R=\frac{\Delta x}{k A} \\
& \text { For convection, } q=h A \Delta T \Rightarrow R=\frac{I}{h A}
\end{aligned}
$$

If q is in Btu/hr or Btu/sec, R must be in $\mathrm{hr} .{ }^{\circ} \mathrm{F} / \mathrm{Btu}$ or $\mathrm{sec} .{ }^{\circ} \mathrm{F} / \mathrm{Btu}$, respectively.

Transient analyses differ from steady-state analyses in that heat storage in a material undergoing a heating or cooling process is accounted for, thus causing a time lag in the temperature response of the material. The quantity of heat thus stored, and the description of the temperature response, will depend on the properties of the material itself. These properties determine the quantity called "thermal capacity," which
behaves in the thermal network in the same manner as electrical capacity behaves in an electrical network. Thermal capacity must be in the units of heat quantity per degree of temperature (e.g., Btu $/{ }^{\circ} \mathrm{F}$) and is a function of the material's density, specific heat and volume. Physically, the thermal capacity of a material represents the amount of heat stored in a given volume for each degree of temperature rise experienced by the material.

For most materials, property values such as thermal conductivity, emissivity, and specific heat will be a function of temperature. In those cases where this variation is significant, it may be taken into consideration in the program through the use of curves as discussed in Section IV.

PROBLEM LUMPING

To transform the physical problem into a form suitable for the computer, it is necessary to convert it into an equivalent resistance-capacitance ($\mathrm{R}-\mathrm{C}$) network. This is accomplished by dividing the physical system into sections called "lumps" and calculating the resistance and capacity of these lumps. A "lump," then, is any portion of the physical problem which (though not necessarily physically disconnected) will not be connected to any other portion of the problem except by resistors. The discussions to follow outline some of the considerations involved in problem lumping.

Location of Lumps

Although the lumps may take any size or shape, they should bear a simple relationship to the physical geometry. As a general rule, the nodes (the points where the lump capacities are assumed to be concentrated) should be located at those points where temperature data are desired, and these in turn are dictated by the nature of the problem itself. This is illustrated by the following examples. In each instance, the node locations are determined first and the lump boundaries iocated afterwards.

Example 1, Re-entry Structure - Figure 3-1 shows a re-entry structure consisting of an inner and outer skin separated by a z-section, with the outer skin protected by a ceramic coating. It is assumed that the section is not. influenced by other such sections and that the problem is two-dimensional,

GEOMETRY

THERMAL NETWORK

Figure 3-1. Physical Geometry and Corresponding Thermal Network for a Re-Entry Structure
i.e., no heat flow in and out of the plane of the drawing. However, it is a simple matter to connect many such sections into a complex three-dimensional problem. For this example, the temperature of the ceramic surface and the underlying structure is of primary importance. Also, it is assumed that large lateral temperature gradients exist near the z-section, with smaller gradients further out. With these points in mind, the resulting network is as shown in the lower sketch in Figure 3-1.

With regard to lump boundaries, the usual procedure is to place them so that the nodes are approximately in the center of the lumps except, of course, at the boundaries of the various layers. The problem of lump boundaries and the calculation of resistors and capacitors are discussed in detail in subsequent sections.

Example 2, Electronic Equipment Rack - Figure 3-2 shows an electronic equipment rack consisting of intersecting webs on which heat dissipating components are mounted. The corresponding thermal network is shown in the lower sketch. Since component temperatures are of primary interest here, the various capacities are assumed to be concentrated at points corresponding to equipment locations. However, this places the nodes inside the web boundaries as shown at the free ends of the two webs. At the juncture between the two webs, a string of zero capacitance nodes (designated by $\boldsymbol{\otimes}$ in Figure 3-2 and often referred to as "dummy" nodes) is required to effect a connection between webs. This technique is particularly useful in a complex network where many such interconnecting webs are involved, since it allows each web to be treated separately and then connected to other such webs at the various dumm nodes.

Example 3, Spacecraft Window - A section of a spacecraft window
exposed to convection and radiation on both surfaces is shown in Figure 3-3. For this problem, one-dimensional heat flow is assumed. Three lurips have been arbitrarily assumed for the conduction network through the window, with nodes appearing at the boundaries to properly account for convection and radiation, both of which depend on the surface temperature.

The preceding illustrations are of but a few of the many lumping situations which arise. Probably the most important factor in problem lumping

0

Figure 3-3. Physical Geometry and Corresponding Thermal Network for a Window Section
is experience, and this cannot be acquired merely by reading reports. Also, since no two situations are identical, it is impossible to cover all conceivable situations in a single report. It is hoped, however, that the examples presented here and in subsequent sections will provide some insight into the problems involved.

Choice of Iump Size
In selecting the optimum lump size, recourse must be made to logic, and, most of all, experience. Here again, the nature of the physical problem will dictate to a great extent the final decisions. Generally, the choice of lump size will be based upon these factors:

1. Consideration of inaccuracies introduced into the system resulting from the finite difference method of solution. These inaccuracies decrease (not necessarily linearly) as lump size decreases. About the only definite statement which can be made is that lump size should be as large as possible without causing excessive inaccuracies.
2. Anticipated temperature gradients and relative rates of transient response. Where it is suspected that large temperature gradients will occur, nodes should be placed closer together than those where these gradients are smaller. This is especially true when the thermal diffusivity of a particular layer is very small, with the resulting temperature gradients across it being highly nonlinear.
3. Convenience in visualizing the network and making calculations.
4. Program capacity. Ordinarily the capacity of the computer is not approached; on occasion, for extremely large and complex problems, this becomes an important consideration.
5. Consideration of machine time, which costs money. Not only do small lumps increase the number of nodes to be computed, but also they result in a smaller computing interval (difference in real time between successive steps), thus greatly increasing machine time.

METHOD OF SOLUTIION

As previously indicated, the Thermal Analyzer Program solves equations in finite difference form by means of an R-C electrical analog finite difference method. The comparable values in the two systems may be noted as follows:

THERMAL	ELECTRICAL
Temperature	Voltage
Heat Flux	Current
Resistance	Resistance
Capacity	Capacity

At a given node point k,

the solution is obtained by applying Kirchhoff's Law at a point, or

$$
\begin{equation*}
\sum_{j} \frac{T_{j, \theta}-T_{k, \theta}}{R_{j}}+q_{k}=C_{k} \frac{d T_{k}}{d \theta} \tag{3-2}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{j, \theta}= & \text { Temperature at time } \theta \text { of any arbitrary node } j \text { connected to } \\
& \text { node } k \text { by a resistor } R_{j} \\
R_{j} \quad= & \text { Resistor connecting nodes } j \text { and } k \\
T_{k, \theta} \quad= & \text { Temperature of node } k \text { at time } \theta \\
T_{k, \theta+\Delta \theta}= & \text { Temperature of node } k \text { after time increment } \Delta \theta \\
C_{k} \quad= & \text { Capacity of node } k \\
\mathrm{C}_{k} \quad= & \text { Arbitrary heat input into node } k
\end{aligned}
$$

By making the assumption that the surrounding temperatures, \mathbb{T}_{j}, remain constant over a time interval $\Delta \theta$, it is possible to integrate equation 3-2 directly. However, as a result of a comparison study, it was found that better results were obtained by using the equation which results from assuming

$$
\begin{equation*}
\frac{d T_{k}}{d \theta} \approx \frac{T_{k, \theta+\Delta \theta}-T_{k, \theta}}{\Delta \theta} \tag{3-3}
\end{equation*}
$$

and solving for $T_{k, \theta}+\Delta \theta$ directly than by using the integrated equation. This comparison was made by running the same problem using both equations and varying the computing interval $\Delta \theta$. It was found that the linear equation, i.e., that obtained by using equation 3-3, was far less sensitive to $\Delta \theta$, and that the results obtained using the integrated equation approached the linear results as $\Delta \theta \rightarrow 0$. Although the integrated equation is "exact," it is suspected that the linear approximation, which "leads" the exact solution (it predicts higher temperatures in a warming system, lower temperatures in a cooling system), tends to anticipate the results. As a result, the equation used by the computer to solve the heat balance at a node was derived by combining equations 3-2 and 3-3 to obtain

$$
\begin{equation*}
T_{k, \theta}+\Delta \theta=\frac{\Delta \theta}{C_{k}}\left[\sum_{j} \frac{T_{j, \theta}-T_{k, \theta}}{R_{j}}+q_{k}\right]+T_{k, \theta} \tag{3-4}
\end{equation*}
$$

If the value of capacity C_{k} is zero, e.g., in a steady state problem, $T_{k, \theta}$ in Equation 3-2 is replaced by $\mathrm{T}_{\mathrm{k}, \theta+\Delta \theta}$ to give

$$
\begin{equation*}
T_{k, \theta}+\Delta \theta=\frac{\sum_{j} \frac{T_{j, \theta}}{R_{j}}+q_{k}}{\sum_{j} \frac{1}{R_{j}}} \tag{3-5}
\end{equation*}
$$

If no capacitor is attached to node k, i.e., C_{k} unspecified, no heat balance is computed at node k and T_{k} remains unchanged.

It is to be noted that the new temperature at a node is based upon the temperatures at the previous time point. To make the new temperatures independent of the order in which they are computed, each node is provided with two temperature storages, one for the "old" temperature, $T_{k, \theta}$, and one for the "new" temperature, $T_{k, \theta}+\Delta \theta$. At the beginning of each cycle, the values in the two storages are identical. During the heat balance, the temperatures in the "T at θ " block are used to compute new values which go into the "T at $(\theta+\Delta \theta)^{\prime \prime}$ block, the old temperature values remaining unchanged. At the end of the heat balance, the temperatures in the " θ " block are set equal to those in the " $(\theta+\Delta \theta)$ " block and the process repeated.

MEIHOD USED TO DETERMINE COMPUTITNG INTERVAL

In the section on lump size, it was stated that smaller lumps result in a smaller $\Delta \theta$. At each time point θ, the machine computes the time constant, or RC product, of each node for which a non-zero capacitor is specified. This time constant is defined as the product of the capacity of the node times the equivalent resistance to that node. This equivalent resistance is defined as the parallel combination of all resistors connected to the node in question. Therefore,

$$
\begin{equation*}
(R C)_{k}=\frac{C_{k}}{\sum_{j} \frac{1}{R_{j}}} \tag{3-6}
\end{equation*}
$$

where $(R C)_{k}=$ time constant of node $k \sim$ seconds (if R in sec $-\mathrm{F} / \mathrm{Btu}$). Since, for conduction, $R=\delta / k A$, and for capacity, $C=\rho c A \delta$, the RC product of a node is a function of the square of its thickness (δ) in the direction of the heat transfer, viz.

$$
\begin{equation*}
\dot{R C}=\frac{C}{\sum_{j} \frac{1}{R_{j}}}=f\left[\frac{\delta}{k A} \cdot \rho_{c} \delta A\right]=f\left[\frac{\rho_{\mathrm{C}}}{k} \cdot \delta^{2}\right] \tag{3-7}
\end{equation*}
$$

To obtain the computing interval, $\Delta \theta$, the computer searches the network to find the minimum RC product and compares this with the printing interval (the real-time increments for which the output is desired). The computer then takes whichever is smaller and multiplies it by a certain fraction to obtain $\Delta \theta$. Ordinarily this factor is 0.25 , and unless changed by the user in the FUNCT subroutine, it remains so. However, there are times when a factor other than 0.25 is convenient, for example:

1. Increased $\Delta \theta / R C$ (possibly as large as 0.9) can be used when only a small percentage of the nodes have small RC products compared with the others, and when a major reduction in machine time can be obtained at the cost of a small reduction in accuracy.
2. Reduced $\Delta \theta / \mathrm{RC}$ (as small as 0.1 or even smaller) should be used when it is desired to have the machine compute more frequently during certain portions of the program. In conjunction with the MMF function to be described subsequently, this procedure enables the computer to pick up the maximum and minimum temperatures of a particular node with a greater degree of accuracy. Since it is possible to make $\Delta \theta / R C$ a variable, a reduced $\Delta \theta / R C$ during one portion of the program can be offset, as far as machine time is concerned, by an increased $\Delta \theta / R C$ during the other portions of the program.

CALCULATION OF CIRCUIT PARAMETERS

This section presents the general procedures employed to calculate capacitors and resistors, and the methods used to accommodate the various modes of heat transfer (conduction, convection, and radiation). The procedures required to transcribe the network parameters to data input sheets are described in Section V.

In the discussions which follow, it is assumed that ordinary engineering units will be used for program input. Specifically, the following units are assumed:
a. Heat Flow, Btu/sec
b. Temperature, ${ }^{\circ} \mathrm{F}$
c. Time, sec
d. Resistance, $\sec { }^{\circ} \mathrm{F} /$ Btu
e. Capacitors, Btu/ ${ }^{\circ} \mathrm{F}$

In cases not involving radiation, any consistent set of units may be employed for program input. Also in such cases, the time scale can be changed and all temperatures input as absolute (${ }^{\circ} \mathrm{R}$ or ${ }^{\circ} \mathrm{K}$) quantities. However, for radiation resistors the machine adds $460^{\circ} \mathrm{F}$ to the appropriate temperatures, and since a dimensional quantity, the Stefan-Boltzmann constant, is incorporated into the program as discussed later, it is not recommended that units other than those tabulated above be used for cases involving radiation.

Resistor Values

Resistors must be of the dimension time ${ }^{\circ} \mathrm{F} /$ Btu. For most practical engineering problems, particularly those involving materials with low RC products, the most convenient unit of time is seconds. Consequently, resistance is given in sec ${ }^{\circ} \mathrm{F} / \mathrm{Btu}$, and the heat flow is in Btu/sec. The form of the resistor depends on the particular mode of heat transfer involved.

Conduction Resistors - In all cases, conduction resistors are computed by the formula

$$
\begin{equation*}
R=3600 \int_{c}^{\delta} \frac{d x}{k A}, \frac{\sec ^{\circ} F}{B t u} \tag{3-8}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathbf{k}=\text { thermal conductivity, Btu/hr ft }{ }^{\circ} \mathrm{F} \\
& \mathrm{~A}=\text { cross-sectional conductive heat transfer area, } \mathrm{ft}^{2} \\
& \mathbf{x}=\text { distance along conductive path, ft } \\
& \mathrm{R}=\text { resistance, sec- }{ }^{\circ} \mathrm{F} / \mathrm{Btu}
\end{aligned}
$$

For a rectangular parallelepiped or a cylinder with vertical sides, or for any configuration with constant cross-section, vertical sides, and parallel faces,

$$
\begin{equation*}
\mathrm{R}=\frac{3600 \delta}{\mathrm{kA}}, \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}} \tag{3-9}
\end{equation*}
$$

Radiation Resistors - Since the radiation interchange from surface 1 to surface 2 is

$$
\begin{equation*}
\mathrm{q}_{1-2}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{R}=\frac{\epsilon_{12} \cdot \mathrm{~A}_{1} \mathrm{~F}_{12} \sigma\left(\tau_{1}{ }^{4}-r_{2}^{4}\right)}{3600} \mathrm{Btu} / \mathrm{sec} \tag{3-10}
\end{equation*}
$$

(where $\boldsymbol{\tau}_{\mathbf{i}}=$ absolute temperature of node $i \sim{ }^{\circ} R$)
R will be of the form

$$
\begin{equation*}
R=\frac{3600}{\epsilon_{12} A_{1} F_{12} \sigma\left(\tau_{1}^{2}+\tau_{2}^{2}\right)\left(\tau_{1}+\tau_{2}\right)} \tag{3-11}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \epsilon_{12}=\text { emissivity factor } \\
& \mathrm{A}_{1}=\text { area of radiating surface, } \mathrm{ft}^{2} \\
& \mathrm{~F}_{12}=\text { shape factor from surface } 1 \text { to surface } 2 \\
& \boldsymbol{\sigma}=\text { Stefan-Boltzmann Constant }=0.1713 \times 10^{-8} \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{R}^{4}
\end{aligned}
$$

The thermal analyzer program computes the radiation resistor

$$
\begin{equation*}
R=\frac{1.0}{\sigma K_{r a d}\left[\left(\mathrm{~T}_{1}+460\right)^{2}+\left(\mathrm{T}_{2}+460\right)^{2}\right]\left[\left(\mathrm{T}_{1}+460\right)+\left(\mathrm{T}_{2}+460\right)\right]} \tag{3-12}
\end{equation*}
$$

given the value

$$
\begin{equation*}
K_{\mathrm{rad}}=\frac{\epsilon_{12} \mathrm{~A}_{1} \mathrm{~F}_{12}}{3600} \frac{\mathrm{ft}^{2} \mathrm{hr}}{\mathrm{sec}} \tag{3-13}
\end{equation*}
$$

The value for σ must not be included since it is built into the program. Note that since the program adds $460^{\circ} \mathrm{F}$ to each temperature, all temperatures must be in ${ }^{\circ} \mathrm{F}$.

In addition to the above, it is possible to have the computer evaluate its own value for $K_{r a d}$ as will be discussed in Section IV.

Convection Resistors, No Change in Fluid Temperature -

$$
\begin{equation*}
R=\frac{3600}{\int_{0}^{A} h d A_{h}} \frac{\sec ^{\circ} \mathrm{F}}{\operatorname{Btu}} \tag{3-14}
\end{equation*}
$$

0
where:
$R=$ resistance, $\sec -{ }^{\circ} \mathrm{F} / \mathrm{Btu}$
$h=$ heat transfer coefficient, Btu/hr-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$
$A_{h}=$ convective heat transfer area, $f t^{2}$
For common sections when an average value of h can be used for the given area A_{h},

$$
\begin{equation*}
R=\frac{3600}{h A_{h}} \frac{\sec ^{\circ} \mathrm{F}}{B t u} \tag{3-15}
\end{equation*}
$$

Convection Resistors, With Change in Fluid Temperature (Duct Temperature Drop) - The problem may be approached from two directions. The first assumes that the time for the fluid to pass a lump portion of the duct wall is very small compared with the time constant of the wall lump, i.e.,

$$
\frac{\theta_{\mathrm{L}}}{T_{\mathrm{W}}}=\frac{\mathrm{Lh} \mathrm{P}}{3600 \rho_{\mathrm{W}} c_{W} A_{W} V} \ll I
$$

and that the thermal capacity of the fluid element is very small compared with the thermal capacity of the wall element, i.e.,

$$
\frac{C_{a}}{C_{w}}=\frac{\rho_{a} c_{v} A_{c}}{\rho_{w} c_{w} A_{w}} \ll 1
$$

where:

$$
\begin{aligned}
& \mathrm{L}=\text { total passage length, ft } \\
& \theta_{\mathrm{L}}=\text { time for fluid to flow through the passage, sec } \\
& T_{\mathrm{W}}=\text { wall time constant, sec } \\
& \mathrm{h}=\text { heat transfer coefficient, Btu/hr-ftt } \mathrm{t}^{2}-{ }^{\circ} \mathrm{F} \\
& \mathrm{P}=\text { perimeter of passage, ft } \\
& \mathrm{P}_{\mathrm{W}}=\text { density of wall material, } 1 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

$c_{w}=$ specific heat of wall material, $B t u / l b{ }^{\circ} \mathrm{F}$
$A_{w}=$ wall cross-section, ft^{2}
$C_{a}=$ thermal capacity of fluid, Btu $/{ }^{\circ} \mathrm{F}$
$\mathrm{C}_{\mathrm{w}}=$ thermal capacity of wall, Btu/ ${ }^{\circ} \mathrm{F}$
$\rho_{a}=$ density of fluid, $l b / f^{3}$
$c_{v}=$ fluid specific heat at constant volume, Btu/ lb ${ }^{\circ} \mathrm{F}$
$A_{c}=$ passage cross-section area, $f t^{2}$
$\mathrm{V}=\mathrm{velocity}, \mathrm{ft} / \mathrm{sec}$

This problem is treated as in methods 1 and 2 , in the following paragraphs. If these ratios are not very small, the problem must be treated as in method 3:

1. With uniform temperature in the passage walls in planes normal to the airflow direction,

$$
\begin{aligned}
& R_{A}=\frac{3600}{W c_{p}} \\
& R_{B}=\frac{3600}{W c_{p}\left(e^{\beta}-1\right)}
\end{aligned}
$$

where:

$$
\begin{aligned}
\beta & =h A_{h} / \mathrm{W} c_{p} \\
h & =\text { heat transfer coefficient, Btu/hr-ft } t^{2}-{ }^{\circ} \mathrm{F} \\
A_{h} & =\text { convective heat transfer area, ft }{ }^{2} \\
W & =\text { weight flow of fluid, lb/hr } \\
c_{p} & =\text { fluid specific heat at constant pressure, Btu/lb- }{ }^{\circ} \mathrm{F} \\
T_{i} & =\text { wall temperature, }{ }^{\circ} \mathrm{F} \\
T_{n-1} & =\text { air temperature at inlet of the passage, }{ }^{\circ} \mathrm{F} \\
T_{n} & =\text { air temperature at passage outlet, }{ }^{\circ} \mathrm{F}
\end{aligned}
$$

2. With temperature gradients in the passage walls in planes normal to the flow direction as well as in the flow direction, the setup becomes somewhat more complicated.

0

$\overrightarrow{\text { FLOW DIRECTION }}$
at the inlet end

$$
R_{i}=\frac{3600}{(h A)_{i}\left|\frac{1}{\beta}-e^{-\beta}\left(1-e^{-\beta}\right)^{-1}\right|}
$$

and at the outlet end

$$
\begin{aligned}
& r_{i}=\frac{3600}{(h A)_{i}\left\{\left(1-e^{-\beta}\right)^{-1}-\frac{1}{\beta}\right\}} \\
& R=\frac{3600\left(e^{\beta}-1\right)}{a\left\{\left(1-e^{-\beta}\right)^{-1}-\frac{1}{\beta}\right\}}
\end{aligned}
$$

where

$$
\begin{aligned}
& a=\sum_{i=1}^{n}\left(h A_{h}\right)_{i} \\
& \beta=\sum_{i=1}^{n} \frac{\left(h A_{h}\right)_{i}}{W c_{p}}
\end{aligned}
$$

and T_{i}, T_{n-i} and T_{n} are defined as before.
3. If the conditions $\theta_{L} / T_{W} \ll l$ and $C_{a} / C_{W} \ll l$ are not met, the problem may be set up as follows:

FLOW DIRECTION
$C_{a}=\rho c_{v} A_{c} \Delta x$
$R_{a}=\frac{3600}{W c_{p}}$
$R_{b}=\frac{3600}{h A_{h}}$

This is a more general case; however, the conditions necessary for using Methods 1 or 2 are met in ordinary passage flow.

Derivations and plots of the equations presented above are given in Appendix C. The symbols \longrightarrow indicate that the inlet air temperature at section (i) is to be set equal to the outlet air temperature at section (i-l); i.e., to cause the temperatures to be influenced by upstream heat transfer but independent of downstream heat transfer. Failure to do this will cause the equations describing the network response to contain terms not present in the lumped parameter equations of the thermal system. For those cases where method 1 or 2 can be used, the computer is equipped to transfer the new temperature at the exit of one lump to the "inew" temperature block of the inlet temperature of the next lump downstream. This transfer is made in the Function routine by the statement $T(i)=T(i-1)$. The statement $\operatorname{TN}(i)=\operatorname{TN}(i-1)$ should also appear if it is desired to print out the temperatures since $T(i)$ will be destroyed in the heat balance before printing occurs. As an example, consider the network:

In the FUNCT subroutine, the instructions

$$
\begin{aligned}
& T(103)=T(102) \\
& T(105)=T(104) \\
& \text { etc. }
\end{aligned}
$$

should appear. The capacitance of nodes 102, 104, atc. should be specified as zero. Nodes 103, 105, etc. should not be mentioned in the capacitor block.

In the event that method 3 is required, the same instructions must appear in the FUNCT subroutine, but the true capacitance must be specified for the fluid nodes. The dummy nodes (T_{n-1} in the figure on page 3-18) should not be mentioned in the capacitor block.

Capacitor Values

The thermal capacity of a lump is calculated in all cases through the formula

$$
\begin{equation*}
C=A \delta \int_{\mathbb{T}_{1}}^{\mathbb{T}_{2}} \frac{\rho_{c}}{T} d T+\int_{0}^{\delta} \rho c A d x \tag{3-16}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{C}=\text { thermal capacity, Btu } /{ }^{\circ} \mathrm{F} \\
& \rho=\text { density, } I b / \mathrm{ft}^{3} \\
& \mathrm{C}=\text { specific heat, Btu } / I b^{\circ} \mathrm{F}
\end{aligned}
$$

In most cases of practical interest, ρ and c are constant over a large temperature range, and the above formula reduces to

$$
\begin{equation*}
C=\rho c \int_{0}^{\delta} A d x \tag{3-17}
\end{equation*}
$$

where:

$$
\int_{0}^{\delta} A d x=\text { volume of lump, } f t^{3}
$$

Variable Resistors and Capacitors
In many cases of practical interest, material properties, and hence resistor and capacitor values, are temperature dependent. To handle this problem the user can input the value as a function of temperature in curve form, or the machine can be given tables of the material properties and
directed to compute its own values of resistance and capacitance as described in Section V. To accomplish the latter, the Thermal Analyzer Program has a special library tape containing thermal properties of several commonly used structural materials, insulations, propellants, and pressurant gases. The data contained on this tape, and the functions required to call for it, are discussed in Section IV.

Heat Inputs
Heat inputs to a particular node can be called out directly in the function subroutine as a constant or variable quantity, as described in Section IV. Many times, however, it is convenient to specify the heat input to a particular node in the form of a temperature through a resistor, where

(3) If $T_{i} \gg T_{k}$, then q_{k} is essentially independent of T_{k}, and R_{k} can be computed by the relationship

$$
R_{k}=\frac{T_{i}}{q_{k}}
$$

As an example, to input $15 \mathrm{Btu} / \mathrm{sec}$ into a particular node set $\mathbb{T}_{i}=15 \times 10^{10}$ (for $15 \mathrm{Btu} / \mathrm{sec}$), and therefore

$$
R_{k}=\frac{15 \times 10^{10}}{15}=10^{10} \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\text { Btu }}
$$

IV - FUNCTIONS AND SPECIAL SUBROUTINES

The FUNCT subroutine is the most important and the most powerful section of the Thermal Analyzer Program. This subroutine contains a listing of all arithmetic operations, curve interpolations, and special functions including radiation, which are to be performed during program execution. The functions are executed at the start of each cycle (before the heat balance) in the order specified, a characteristic which becomes important when the execution of one function involves the result of another. This section presents a brief description of the functions and special subroutines available, what they are capable of, and where input errors are most likely to occur. The FUNCI subroutine input format is described in Section V.

DEFINITION OF IERMS
In the following discussion, several terms are used repeatedly to refer to the various elements of a given function callout. These terms are defined below:

1. Floating-Point Number - All numerical values are input in floating point, and as such must contain a decimal point. The number 30.6 is an example. For very large or very small numbers, such as 1010 or 10^{-10}, the capital letter E is used to signify a power of 10 . For example, 1.30E6 means 1.30x10 ${ }^{6}$ and $6.91 \mathrm{E}-4$ means 6.91×10^{-4}.
2. Fixed-Point Number - Fixed point numbers are integers, either positive or negative, and as such are characterized by the absence of a decimal point. They are used to designate data subblocks and in numerous instructions to indicate the number of steps or items involved in the execution of that instruction.
3. Literal Numbers - These elements are characterized by a letter followed by a number in parentheses, such as $T(6), R(14)$, etc. These are the addresses of the various items of numerical data, i.e., the location in the computer core where the data is stored. They tell the computer where to look for the numerical data required to perform a given instruction. As a result of this, they are referred to as "addressable elements."

In discussing the various functions the following notations are used:

1. When the variables of a function are arbitrary circuit elements, the independent variable is denoted by X and the dependent variable by Y.
2. N denotes the designation number of a data sub-block.
3. Unless otherwise specified, the letters A, B, C, D, E, F, G denote floating point constants whose values may appear explicitly in the function callout, or may be stored in an addressable element.
4. When the variables of a function are temperatures, Y refers to the temperature at time $\theta+\Delta \theta$ and X refers to the | temperature at time θ.

LIST OF ADDRESSABIF ELEMENTS

Each item of numerical data of interest to the user is assigned an address which can. then be used to refer to that item. A list of these addresses follows:
$T(i) \quad$ "Old" temperature of the i-th node (see below)
$\operatorname{TIN}(i) \quad$ "New" temperature of the $i-$ th node
$R(i) \quad$ Resistor number i
C(i) Capacitor number i
RC(i) The RC product at $C(i)$
Q(i) The arbitrary heat input into $C(i)$
$P(I N+i)$ The i-th number in the data block whose designation number is N, and where $L N=\operatorname{LOC}(N)$ (see Section V). In determining the i-th number the designation number itself is not counted. Also, when specified in this manner, the $P E R$ in a periodic curve is not counted.
M(i) The i-th miscellaneous element, where

$$
\begin{array}{ll}
\text { M(1) } & \text { Current time, } \theta \\
M(2) & \text { Initial time }
\end{array}
$$

The missing elements $M(10)$ and $M(13)$ were used in a former version of the Thermal Analyzer Program, written in machine language.

The temperature designated as $T(i)$ is the "old" temperature of node i and is usually used as the independent variable when calculations involving temperature are performed, eg., heat balances. $\mathbb{N N}(i)$ is the "new" temperature of node i and is used in the functions as the dependent variable, or the new calculated temperature. At the end of each heat balance $T(i)$ is set equal to $\operatorname{TN}(i)$.

Any of the built-in subroutines (or functions) of the FORTRAN IV system may be used as an arithmetic statement in the FUNCT routine. Because of the many operations available, only a few will be mentioned here. For a more detailed listing, the user is referred to the FORTRAN reference manual.

The arithmetic operation symbols $+,-, *, /, * *$ denote addition, subtraction, multiplication, division, and exponentiation, respectively. Unless changed by the use of parentheses, the order of computation is understood to be as follows:
(a) exponentiation (**)
(b) multiplication and division (* and /)
(c) addition and subtraction (+ and -)

For example, the expression

$$
Y=A+B / C-D * E * F-G
$$

will be taken to mean

$$
Y=A+\frac{B}{C}-D^{E} F-G
$$

Parentheses may be used to override the order in which the operations are to be computed. If parentheses appear, the expression within the innermost parentheses is computed first, following the order of computation given above. The computation then proceeds outward to the next parentheses, and so forth. As examples, the expression

$$
Y=(A+B) / C-D^{*} *\left(E^{*} F\right)-G
$$

will be taken to mean

$$
Y=\frac{A+B}{C}-D^{E F}-G
$$

and the expression

$$
Y=A+(B /(C-D)) * *(E * F-G)
$$

will pe taken to mean

$$
Y=A+\left(\frac{B}{C-D}\right)^{E F-G}
$$

In addition to these arithmetic operations, the common mathematical functions such as logarithm, exponential, sine, cosine, square root, arctangent, and absolute value are available to the program user. Since their use is self-explanatory, they are listed below with only a brief explanation.

Function
LOG
EXP

SIN

COS

SQRT
ATAN

ABS

Description
Logarithm to the base e
Powers of \dot{e} or exponential

Sine of an angle whose measure is given in radians

Cosine of an angle whose measure is given in radians

Square root
Arctangent or angle in radians of a given tangent value

Absolute value

As an example,

$$
Y=A+\operatorname{SQRT}(B * O C)
$$

$$
Y=A+\sqrt{B^{C}}
$$

In the FORTRAN language it is also possible to have functions of functions. As an example

$$
Y=\operatorname{EXP}(\operatorname{SQRT}((\operatorname{COS}(2 . * A)) * * 2 .+B))
$$

means

$$
Y=e^{\left(\cos ^{2} 2 A+B\right)^{1 / 2}}
$$

CURVE INTERPOLATION

One of the most commonly used functions involves some sort of curve interpolation, of which three types are available, viz., linear, parabolic, and linear bivariate. With curve interpolation, any addressable element listed above can be made a function of any other, or others, including itself. In addition to specifying simple interpolation, the instructions may be modified to provide for multiplying the curve value by some other number which can be either a fixed factor or some other variable.

A description of the various interpolation routines follows. The use of these routines will be further illustrated by the example problems of Section VI.

Linear Interpolation

This is the simplest and most commonly used interpolation routire. The callout is

$$
Y=\operatorname{LIN}(X, N)
$$

where

$$
Y=\text { linear function of } X \text { given by curve } N
$$

$$
T(1)=\operatorname{LIN}(M(1), 23)
$$

The temperature of node l is a linear function of time given by curve 23.

Curve 23 might appear as shown below:

CURVE 23

The curve would be described on input data sheets as follows:

COLUMN

5	10	15	25	35	45	55	65	6972
DEC	23							4001
DEC06		0.	400.	600.	400.	1400.	800.	4002
DECO1		0.						4003
DEC	-23							4004

The input format is described in detail in Section V. Briefly, a card containing DEC in columns 1,2 , and 3 and the curve designation number in columns 6 through 10 must precede the data, and a card containing DEC in columns 1,2 , and 3 and the negative of the curve designation number in columns 6 through 10 must terminate the curve. The curve designation numbers
are arbitrary. The actual curve is described by listing the coordinates of the points circled on the plot. Each independent variable must immediately precede the corresponding dependent variable, and the independent variables are listed in increasing order. The integers in column 5 specify the number of floating point values on that card. The zero on the third card is a flag indicating the end of the data. Either a four- or fivedigit card sequence number, at the user's discretion, is placed in columns 68 through 72.

In the above example, if current time, $M(1)$, lies between 0 . and 600., interpolation for $T(1)$ takes place along the straight line connecting these two points. If $M(1)$ lies between 600. and 1400 ., interpolation takes place along the straight line connecting these two points. If $M(1)$ is less than $0 .$, or greater than 1400., the case is terminated.

As mentioned previously, it is also possible to have periodic functions. An example of a periodic curve is the external heat input to a shell node of an orbiting satellite. The fact that a curve is periodic does not alter the function specification; only the curve itself need be modified. Consider the example

$$
Q(17)=\operatorname{LIN}(M(1), 26)
$$

where curve 26 is to be described by linear interpolation and is periodic. This curve is described to the program by the period (3 sec) followed by the curve itself as shown below.

25
15
26 PER DECO 6 DECO DEC -26

The interpolation itself takes place exactly as in the linear interpolation described above, with the exception that the independent variable cannot lie outside the curve since the curve is understood to be indefinitely extended in both directions as indicated in the diagram.

When fitting a linear curve to a sharp discontinuity, such as a heating cycle,

the input specification for the curve should list the following coordinates:
0. , T_{1}
θ_{1}, T_{1}
θ_{1}, T_{2}
θ_{2}, T_{2}
θ_{2}, T_{1}
θ_{3}, T_{I}
θ_{3}, T_{2}
etc.

If the program finds itself computing at a time at which one of the discontinuities occurs, it will recognize the former value of the dependent variable. For example, if a computing point should occur at θ_{1} or θ_{3}, T_{1} will be chosen as the proper temperature; if a computing point occurs at $\theta_{2}, \mathbb{T}_{2}$ will be chosen. This problem will occur only if a computing time point occurs exactly at a point of discontinuity.

Parabolic Interpolation
Where additional accuracy is desired, parabolic interpolation may be employed. However, it requires greater care in the selection of input points as discussed below. The callout is

$$
Y=\operatorname{PAR}(X, N)
$$

where

$$
Y=\text { parabolic function of } X \text { given by curve } N
$$

As an example, consider

$$
C(15)=\operatorname{PAR}(T(15), 1)
$$

The capacitance of node 15 is a function of the temperature of node 15 as given by curve 1. Curve 1 is to be described by parabolic interpolation. The curve and the data points input to the program are shown below:

15	10	15	25	35	45	55	65
DEC	1						
DEC06		0.	0.	40.	. 3	60.	. 2
DEC06		100.	. 3	120.	. 5	125.	. 5
DEC03		160.	. 5	0.			
DEC	-1						

If the independent variable, $T(15)$, lies between 0 . and 60., interpolation takes place by using that interpolating parabola which passes through the first 3 points and whose axis is parallel to the Y-axis. If $T(15)$ lies between 60. and 120., the interpolating parabola is that parabola passing through the 3 rd , 4 th , and 5 th points and parallel to the Y -axis. If $\mathrm{T}(15)$ lies between 120. and 160., the interpolating parabola is that parabola passing through the 5th, 6th, and 7 th points and parallel to the Y-axis. If $\mathrm{T}(15)$ is off the curve (less than 0 . or greater than 160 .) the case is terminated.

These consecutive interpolating parabolas having only one point in common make it possible to describe discontinuous curves as well as curves which are made up of parabolic segments and linear segments (as curve l). However, this manner of choosing parabolas always requires that an odd number of points be used in the curve description.

Since the parabolic curve-interpolation subroutine fits a curve to each successive series of three points, the choice of curve points is very critical. It must be emphasized that any sharp discontinuity should provide the end of one and the beginning of another set of three points. For example, Figure 4-1 shows the different interpretations of the same curve which would be given by different divisions. Note the extreme example of faulty interpolation which can occur in the case of a very steep curve.

When fitting a parabolic curve to a sharp discontinuity, such as the heating cycle described under Linear Interpretation in this section,

the input specification for the curve should contain the following coordinates:
0

$$
\begin{array}{lll}
0, & T_{1} \\
\theta_{a}, & T_{1} \\
\theta_{1}, & T_{1} \\
\theta_{1}, & T_{a} \\
\theta_{1}, & T_{2} \\
\theta_{\mathrm{b}}, & \mathrm{~T}_{2} \\
\theta_{2}, & \mathrm{~T}_{2} \\
\theta_{2}, & \mathrm{~T}_{2} \\
\theta_{2}, & \mathrm{~T}_{1} \\
\theta_{c}, & \mathrm{~T}_{1} \\
\theta_{3}, & \mathrm{~T}_{1} \\
& \text { etc. } &
\end{array}
$$

If the program should find itself computing at a time which coincides with one of the discontinuities, it will recognize the previous value of the dependent variable. For example, for the above cyclic temperature, if the computing time point should occur at θ_{1} or θ_{3}, T_{1} will be chosen as the proper temperature; if the program should be computing at time θ_{2}, T_{2} will be chosen.

Bivariate Interpolation

Frequently, there are situations where a variable is a function of more than one independent variable. Examples of this are:
(a) Internal losses in electronic components, which are commonly functions of current consumption and temperature.
(b) Thermodynamic and transport property data, which are usually temperature and pressure dependent.

The Thermal Analyzer Program is equipped to handle such problems through use of the linear bivariate interpolation routine. The callout is

$$
\mathrm{Y}=\mathrm{BIV}(\mathrm{XI}, \mathrm{X} 2, \mathrm{~N})
$$

where
Y is a bivariate function of Xl and X 2 given by Table \mathbb{N}.
In setting up a table to be described by bivariate interpolation, the first word on the first line following the table designation number must be uuvvv. where uuu is a three-digit number equal to the number of rows in the table and VVv is a three-digit number equal to the number of columns in the table. Do not count the row and column that uuuvvv. appears in. Following the first word of the first line the values of the independent variable X2 are listed. For each of these values there is an entry below it corresponding to the value of the independent variable XI appearing at the left. In other words, the data appear on the input sheet just as one might tabulate it on a sheet of paper, with the addition of the number uuuvvv. The table need not be terminated with a flag indicating the end of the data since the quantity of data is specified by the number uuvvr.

As an example of the use of bivariate interpolation, consider the problem of the internal heat dissipation of a battery, where the losses are a function of both the battery temperature and the current consumption. In this example, the battery will be designated as node 3 . It will be assumed that the current is a known function of time and is to be linearly interpolated from curve 1. The battery losses in watts are tabulated below:

IOSSES (WATTS) VS. IOAD (AMPS)

Current~amps 1Temperature $\sim{ }^{\circ} \mathrm{F}$	0.	1.0	2.0	4.0	6.0
10.	0.	1.5	3.3	8.1	14.5
40.	0.	1.3	2.8	7.0	12.6
70.	0.	1.1	2.4	5.9	10.7
100.	0.	0.9	1.9	4.8	8.8
130.	0.	0.7	1.5	3.7	6.9

The bivariate curve will be designated as Table 8 and is described in the data block as follows:

COLUNT

5	10.15	25	35	45	55	65
DEC	8					
DEC06	005005.	0.	1.0	2.0	4.0	6.0
DEC06	10.	0.	1.5	3.3	8.1	14.5
DEC06	40.	0.	1.3	2.8	7.0	12.6
DEC06	70.	0.	1.1	2.4	5.9	10.7
DEC06	100.	0.	0.9	1.9	4.8	8.8
DEC06	130.	0.	0.7	1.5	3.7	6.9
DEC	-8					

The function specification for this example is

$$
Q(3)=\operatorname{BIV}(T(3), \operatorname{LIN}(M(1), 1), 8) * .000946
$$

where the constant is the conversion factor from watts to Btu/sec. In the function callout the independent variables, current and temperature, must appear in the order listed because Table 8 is set-up with temperature values listed in the first column. Otherwise, the program would attempt to horizontally interpolate using $T(3)$ as independent variable and would run off the curve since the values listed range only from 0 to 6 . If there are more than five values of the independent variable X 2 , the data cannot be listed on input sheets in the tabular arrangement shown above because each card is restricted to a maximum of six floating point entries. In that event, the elements of the table are listed on input sheets in consecutive order, reading from left to right on each row and down each column of the table. To illustrate, consider the addition of a sixth and seventh column to the tabulation of "Losses vs. Load" as shown below:

Current \sim amps \downarrow Temperature $\sim{ }^{\circ} \mathrm{F}$	0.	1.0	2.0	4.0	6.0	8.0	10.0
10.	0.	1.5	3.3	8.1	14.5	21.8	30.3
40.	0.	1.3	2.8	7.0	12.6	19.7	28.1
70.	0.	1.1	2.4	5.9	10.7	16.5	25.0
100.	0.	0.9	1.9	4.8	8.8	14.2	22.2
130.	0.	0.7	1.5	3.7	6.9	12.1	20.0

Table 8 might appear on the input sheet as follows:

COLUMN

5	$10 \quad 15$	25	35	45	55	65
DEC	8					
DEC06	005007.	0.	1.0	2.0	4.0	6.0
DECO?	8.0	10.0				
DEC06	10.0	0.	1.5	$3 \cdot 3$	8.1	14.5
DECO2	21.8	30.3				
DEC06	40.0	0.	1.3	2.8	7.0	12.6

1 $\mathbf{5}$	10	15	$\mathbf{2 5}$	$\mathbf{3 5}$	45	s5	65
DECO2	19.7	28.1					
DEC06	70.0	0.	1.1	.2 .4	5.9	10.7	
DECO2	16.5	25.0					
DEC06	100.	0.	0.9	1.9	4.8	8.8	
DECO2	14.2	22.2					
DECO6	130.	0.	0.7	1.5	3.7	6.9	
DECO2	12.1	20.0					
DEC	-8						

Although six quantities may be listed on each card, the method shown above is preferred since the input is easier to read. The only requirement is that the table elements be listed in proper order.

RADIATION FUNCTIONS

As mentioned in Section III, "Calculation of Circuit Parameters," the machine is equipped to compute radiation resistors by the formula

$$
\begin{equation*}
R=\frac{1}{\sigma K_{r a d}\left[\left(T_{1}+460\right)^{2}+\left(\mathrm{T}_{2}+460\right)^{2}\right]\left[\left(\mathrm{T}_{1}+460\right)+\left(\mathrm{T}_{2}+460\right)\right]} \tag{4-1}
\end{equation*}
$$

where the user computes and inputs to the program in the FUNCT subroutine the value

$$
\begin{equation*}
K_{\text {rad }}=\frac{\epsilon_{12} A_{1} F_{12}}{3600} \quad \text { for } R \sim \frac{\sec { }^{\circ}{ }_{F}}{\text { Btu }} \tag{4-2}
\end{equation*}
$$

Three radiation resistor functions are available as discussed in the following sections.

Radiation With Constant Factor

This is the simplest and most commonly used radiation function. It is used in those situations where a fixed $K_{\text {rad }}$ is applicable. The basic callout is:

$$
R(A)=\operatorname{RAD}\left(B, C, K_{r a d}\right)
$$

where A is the designation number of the resistor connecting nodes B and C. As an example, consider the case of a one square foot plate with a surface emissivity of 0.8 radiating to outer space (shape factor $F=1.0$). For this case,

$$
K_{r a d}=\frac{(0.8)(1.0)(1.0)}{3600}=2.22 \times 10^{-4}
$$

If the resistor designation number is 106 and the plate and space are nodes 7 and 100, the function callout is

$$
R(106)=\operatorname{RAD}(7,100,2.22 E-4)
$$

The order in which the two nodes are specified is immaterial since the program merely uses this information to solve for the resistor value using equation 4-1.

Radiation With Variable Factor

This is the same as the previous function except the value of $\mathrm{K}_{\text {rad }}$ is a variable. Examples of this are cases where the system geometry varies with time, or, more commonly, where the surface emissivity is temperature dependent. The callout is:

$$
R(A)=R A D(B, C, X)
$$

where the value of $K_{r a d}$ is stored in X, which may be either an addressable circuit element or a curve interpolation callout.

Two examples of the radiation with variable factor instruction are:

$$
\begin{aligned}
& R(106)=\operatorname{RAD}(7,100, R(200)) \\
& R(106)=\operatorname{RAD}(7,100,(\operatorname{LIN}(T(7), 13)))
\end{aligned}
$$

0
In the first example, the value of $K_{r a d}$ has been temporarily stored in an unused resistor location. This procedure is often used when the value of $K_{\text {rad }}$ is to be changed through a restart, as described in Section V. In the second example, the value of $K_{r a d}$ is linear $\perp y$ interpolated from curve 13 usfng the temperature of node 7 as independent variable. This instruction f_{a} convenient when the surface emissivity is temperature dependent. Radiation With Matrix

In using the radiation functions described above, it is necessary to know $K_{\text {rad }}$ in advance, and this in turn requires a knowledge of the geometric view factor F_{12} and the emissivity factor. Calculation of shape factory is beyond the scope of the program and is not covered here (see, however, references 1 and 2).

In most cases, the emissivity factor is computed by one of the following formulas:
infinite parallel plate

$$
\epsilon_{12}=\frac{1}{\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{2}}-1}
$$

concentric cylinder or sphere with $A_{2}>A_{1}$

$$
\epsilon_{12}=\frac{1}{\frac{1}{\epsilon_{1}}+\frac{A_{1}}{A_{2}}\left(\frac{1}{\epsilon_{2}}-1\right)}
$$

two surfaces whose size is small compared with their distance apart

$$
\epsilon_{12}=\epsilon_{1} \epsilon_{2}
$$

surface A_{1} much smaller than, and completely enclosed by, surface A_{2}

$$
\epsilon_{12}=\epsilon_{1}
$$

However, for those problems where several nonparallel surfaces are involved and the above formulas are not considered satisfactory, the program is equipped to compute the overall shape factor \mathcal{F}_{12} in contrast to the geometrical shape factor F_{12}. The method used is discussed in detail in several heat transfer texts, such as McAdams (Reference 3), and will not be covered here. The method basically is to set up the radiation energy interchange equations and solve them through use of determinants. It is to be noted that the machine performs the calculation of $\mathrm{K}_{\mathrm{rad}}$ only once, and hence the various quantities such as emissivity must all be assumed to be constants.

The Radiation with Matrix callout is

$$
R(A)=\operatorname{RRM}(B, C, N)
$$

where A is the designation number of the resistor connecting nodes B and C, and. \mathbb{N} is the designation number of the table containing the data used to compute $K_{r a d}$. Since this routine is used where several surfaces are involved, table \mathbb{N} will appear in several resistor callouts. Also, it is possible to
P R have more than one such system in a given network, and to have the same surface appear in more than one matrix. Consider the case of four walls arranged in a square pattern:

$$
\begin{aligned}
& \varepsilon=0.1 \\
& A=10 \mathrm{ft}^{2} \\
& \varepsilon=1.0 \\
& A=10 \mathrm{ft}^{2}
\end{aligned}
$$

The shape factors have been computed to be 0.4 between opposite walls, and 0.3 between adjacent walls. The corresponding circuit is shown below. The node and resistor number assignments are completely arbitrary.

The RRM callouts for the above network are:

$$
\begin{aligned}
& R(15)=\operatorname{RRM}(12,26,6) \\
& R(19)=\operatorname{RRM}(12,16,6) \\
& R(12)=\operatorname{RRM}(12,3,6) \\
& R(23)=\operatorname{RRM}(26,3,6) \\
& R(7)=\operatorname{RRM}(16,26,6) \\
& R(14)=\operatorname{RRM}(16,3,6)
\end{aligned}
$$

Table 6 contains the following information:

- the order of matrix of configuration factors, which in this example is 4.
- the matrix of configuration factors (row order)
- each node number and the area, emissivity, and reflectivity of each of these nodes.

For a 4th order matrix, the input would be as shown below. The subscripts refer to the order in which the nodes are listed, and are not necessarily the node or resistor designation numbers.

$\left(A_{1} F_{11} I^{-A_{1}} \rho_{1}\right)$	$A_{1} F_{12}$	$A_{1} F_{13}$	$A_{1} F_{14}$
$A_{2} F_{21}$	$\left(A_{2} F_{22^{-~}} A_{2} / \rho_{2}\right)$	$A_{2} F_{23}$	$A_{2} F_{24}$
$A_{3} F_{31}$	$A_{3} F_{32}$	$\left(A_{3} F_{33}-A_{3} / \rho_{3}\right)$	$A_{3} F_{34}$
$A_{4} F_{41}$	$A_{4} F_{42}$	$A_{4} F_{43}$	$\left(A_{4} F_{44}-A_{4} / \rho_{4}\right)$

$$
\left.\begin{array}{l}
N_{1}, A_{1}, \epsilon_{1}, \rho_{1} \\
N_{2}, A_{2}, \epsilon_{2}, \rho_{2} \\
N_{3}, A_{3}, \epsilon_{3}, \rho_{3} \\
N_{4}, A_{4}, \epsilon_{4}, \rho_{4}
\end{array}\right\}
$$

the order in which the nodes are listed must correspond to the order of matrix rows.
where

$$
\begin{aligned}
& \mathbb{N}_{i}=\text { node number } i \\
& A_{i}=\text { area of node } i \\
& \epsilon_{i}=\text { emissivity of node } i \\
& \rho_{i}=\text { reflectivity of node } i \text {, usually equal to (} 1-\epsilon_{i} \text {) }
\end{aligned}
$$

The input for this particular example is shown below. (The reflectivity of node 26 has been taken as 0.01 to avoid division by zero).

DEC	6	
DECO1		4.
DECO4		-11.1
DECO4		3.0
DECO4		4.0
DECO4		3.0

> TABLE DESIGNATION NUMBER
$25 \quad 35$
45
ORDER OF MATRIX
DECO4 -11.1
3.0
-14.3
3.0
4.0

4.0	3.0
3.0	4.0
-25.0	3.0
3.0	-1000.

1	5	10	15	$\mathbf{2 5}$	$\mathbf{3 5}$
$\mathrm{DECO4}$		12.	10.	.10	.45
$\mathrm{DECO4}$		3.	10.	.30	.90
$\mathrm{DECO4}$		16.	10.	.60	.70
$\mathrm{DECO4}$		26.	10.	.99	.40
DEC	-6				.01

Note that, wi.th the exception of the curve designation numbers, all values in the table are input as floating point numbers. The machine computes the radiation K factor by the formula

$$
\left(K_{r a d}\right)_{i j}=\frac{1}{3600} \frac{\epsilon_{i} \epsilon_{j}}{P_{i} \rho_{j}} A_{i} A_{j}\left|\frac{D_{i j}}{D}\right|
$$

where:

> D is the determinant of the matrix
> Di,j is the minor of the element (i,j), i.e., the determinant of the matrix formed by removing the i-th row and the j-th column.

The absolute value sign around the ratio $D_{i j} / D$ comes about because as the equations were written, the machine could compute a negative K-factor, whereas the direct solution of the simultaneous equations involved results in positive K-factors.

CONVERGENCE AID STEADY-STATE SUBROUTINES
Since most problems to be solved by the Thermal Analyzer involve transient analysis, the initial values chosen for resistance, capacity, and temperature assume some importance. If it is desired to begin a transient problem at some steady-state condition and then apply variable courdary conditions (as would often occur in aerodynamic heating problems), it is very important that the initial conditions approximate the true steadystate conditions as nearly as possible before the transient conditions are applied. In many cases, the starting temperatures are uniform throughout the rework and thus present no problem. However, many problems, such as
the transient heating of a reentry vehicle, involve nonuniform starting temperatures. To handle this problem, the converge (CVG) function is used, the callout being

CALL $\operatorname{CVG}(A, N, M)$
where
$\left|T_{\theta+\Delta \Theta}-T_{\omega}\right| \leq A=$ degree of convergence (defined below).
$N=$ maximum number of iterations to be executed in the convergence attempt.
$M=$ number of iterations between prints of the output block.
When this function is encountered in the FUNCT routine, the heat balance and list of functions are evaluated repeatedly with time held constant (although with a finite computing interval) until the temperatures reach the required convergence, i.e., until the largest temperature difference of any node on consecutive passes is less than A (usually input as 0.005). When the temperatures have converged, the convergence function is removed from the function list, the regular output block is printed with "time" set to the number of iterations required for convergence and with " $\Delta \theta$ " set to the designation number of the last node to converge. The case is then executed in the normal matter. If the temperatures fail to converge after \mathbb{N} iterations, the case is discontinued, with a print of the regular output block with "time" set to \mathbb{N}.

When using the CVG function, it should be remembered that the degree of convergence, A, is not necessarily the maximum deviation from the true converged temperatures, but merely the maximum temperature change of any node between two successive cycles. Consequently, it is quite possible that the deviation from the converged temperature could be several orders of magnitude greater than A and could amount to several degrees. For this reason, a small value of A, such as 0.005 , should be used.

As input above, the CVG uses the capacitor values as input. To speed the convergence process, an optional form of the input can be used, namely

$$
\operatorname{CALL} \operatorname{CVG}(A, N,-M)
$$

where the negative sign on M is a flag which causes the convergence iteration to be executed with all capacitors set to zero. However, some care must be exercised when using zero capacitors in those cases which involve radiation resistors. Because radiation resistors vary inversely as the cube of the corresponding temperatures, they are very sensitive to small temperature changes. If the converged temperatures are very much different from the initial guesses, oscillations could be set up which will prevent convergence. In most cases, however, a reasonable set of initial temperatures should converge even if the zero capacitor option is used in cases involving radiation.

When the CVG function is used to solve purely steady-state cases, it is necessary to specify some non-zero final time in the time block to guarantee that the CVG function is executed properly. The value used should be of the order of the minimum RC product of the network to guarantee that a few "normal" cycles, i.e., with progressive time, are computed.

In addition to the CVG routine, a similar function (STS) is available which operates on the heat balance only and does not execute the function list during each iteration. Therefore, if there are radiation resistors or heat inputs called out in the functions, it is generally preferable to use the CVG subroutine. The steady-state function callout

CALL STS (A)

assigns zeros to all capacitors, and causes iteration through the circuit to proceed until the largest temperature difference of any node on consecutive passes is less than A. The original values of the capacitors are then restored, a flag is set to ignore the steady-state function in ensuing passes, and the case continued.

MAXIMUM-MINIMUM SUBROUTINE

In addition to the temperature-time history of the various nodes, it is often desired to know also the maximum and minimum temperatures of these nodes, and to be able to obtain them without having to search through
the normal output data. This is especially true in large programs where several hundred temperatures may be involved.

This problem is handled by use of the maximum-minimum function (NT), the callout being
$\operatorname{CALL} \operatorname{MMF}\left(\theta_{i}, \quad \theta_{f}, N, S\right)$
where θ_{i} and θ_{f} are explicit (floating point) numbers, or addressable elements. During the time interval $\theta_{i}<\theta<\theta_{f}$, the maximum-minimum function records all local maximum and minimum temperatures of all nodes whose designation numbers are listed in data table \mathbb{N}. The value S indicates the frequency with which the program is to search the output to determine the maximum and minimum temperatures, e.g., a l requires a search every cycle, a 2 requires a search every second cycle, etc. The node designation numbers appear in table \mathbb{N} as floating point numbers. This table is terminated by a zero flag. To illustrate the use of the MMF function, assume that over the time interval $0-100 \mathrm{sec}$, the program is to conduct a search every other computing cycle to determine the maximum and minimum temperatures of nodes 7, 15, 83, and 94, which will be listed in Table 3. The table appears as follows:

DEC	3		15. 83.	94.	0.
$\operatorname{DECO5}$	-3	7.			

The instruction in the FUNCT subroutine is

$$
\text { CALL MMF (0., } 100 ., 3,2)
$$

Generally, the search is required for the entire time span of the case and the following instruction would be used:

$$
\text { CAL工 MMF }(\mathrm{M}(2), \mathrm{M}(3), 3,2)
$$

$M(2)$ and $M(3)$ are the initial and final times for the case, respectively. The maximum and minimum temperatures are automatically printed following the regular time history print. This maximum-minimum output contains the range of the function (since there can be more than one MMF in a case), followed by a table with five non-zero columns. The first column is the designation number of the nodes (in the same order as given in the input table N), the second column is the list of the local maximums, the third column is the list of local minimums, the fourth column contains the times of the local maximums, and the fifth column contains the times of the local minimums. The MMF subroutine is illustrated in Example \#2 of Section VI.

Only distinct local maximums and minimums are recorded. Therefore, if the rate of temperature change with time for a node does not change sign during the range of the $M \mathbb{M F}$ function, no maximum or minimum is recorded for that node. On the other hand, if the temperature of a node, after increasing for a while, remains constant for a time, and then decreases, a maximum would be recorded at the last time point for which the temperature was constant.

As a result of the manner in which the computer handles MMF data, there is a limitation on the amount of such data which can be obtained from a single case. Specifically, there must be less than 6000 maximums and minimums (representing 3000 cycles) in order for all of them to be printed. (A case with 200 nodes undergoing 20 temperature cycles would total $2 \times 200 \times 20=8000$ and this exceeds this limit). If the total exceeds 6000, only the first (chronologically speaking) 6000 will be printed and all subsequent max-min data will be lost. This limitation can be overcome by dividing the case into two or more segments, with the additional cases run as restarts using the SAV function described below.

SAVE CURRENT DATA SUBROUTINE

This function makes it possible to use the output of one case as input to another in conjunction with the restart feature. An example of its use would be a full-life analysis of a recoverable satellite, with separate cases being run for ascent, orbit and recovery.

Ordinarily a restart case uses as its basis the data which existed at the start of the previous case. The Save Current Data (SAV) function provides the means whereby the answers of one case may be used as input into the next. The callout is

CALI SAV (A, B)

At the first time point for which A is greater than or equal to B, the data currently in core, i.e., the current values of temperature, resistance, and capacitance, are stored on tape to be used in the subsequent case. In nearly all cases A will be current time, $M(1)$. The value of B may appear explicitly (floating point) or it may be an addressable element, e.g., final time, $M(3)$. As an example,

CALL SAV (M(1), M(3))
will save the data in core at the end of each case, to be used as the initial conditions for the subsequent case.

TEMPERATURE CARD PUNCH SUBROUTINE

This subroutine is frequently used in complex cases as an alternate restart feature. It provides for the automatic recording of all temperatures on punched cards in proper format for the initial temperature block. The function specification is

CALL PUNCHT (θ, A, B)
where θ is the time at which the temperatures are to be saved, and cards are required for nodes A through B. θ may be an explicit (floating point) number or an addressable element. A and B are listed in fixed-point notation. If the Iunction is specified as $\operatorname{CALJ} \operatorname{PUNCHT}(\theta, 0,0)$ the program will interpret the zeros as a special code requiring the punching of temperature cards for al1 nodes.

The advantage of this subroutine is that once the temperatures are recorded, the case may be removed from the computer and resumed later when machine time becomes available. Also, in complex cases requiring several hours of computer time, it is customary to call for punched cards at various times throughout the run. Then, if an error occurs, the case may be re-run starting at the last time for which valid temperature cards were obtained.

To help identify the punched cards, the information in columns 6 through 14 of the case identification card (Section V) and the time θ are automatically punched on each card. Thus, if this subroutine is used, it is desirable that the information on the case identification card begin with some code, for example, CASE B-2.

CURVE PLOTTING SUBROUTINE
In many problems it is desirable to obtain the results in curve form in addition to the tabulated output. To accomplish this, the Thermal Analyzer Program has a subroutine to write a plot tape which controls a machine plotter. The function specification for the plotting routine is

CALU TPIOT(N)

where \mathbb{N} is the designation number of the table containing the information to write the tape. Table \mathbb{N} must contain the following items, in the order listed:
(a) the initial time of the plot.
(b) the final time of the plot.
(c) the time interval between successive plots (discussed below).
(d) all nodes whose temperatures are to be plotted.
(e) a zero flag terminating the table.

All of these entries must be floating point. The plotting routine does not automatically plot the temperatures at each computing cycle, the frequency
of the plot being specified by the user. The program subtracts the final time from the initial, and divides that quantity by the specified frequency (item C above) to determine how often the temperatures are to be plotted. If these times do not coincide with computing times, the machine will plot the temperatures for each subsequent computing time. For example, if the initial and final times are 0 and 100 sec , the time interval between plots specified at 10 sec , and the computing interval set at 3 sec , the temperatures would be plotted at $0 \mathrm{sec}, 12 \mathrm{sec}, 21 \mathrm{sec}, 30$ seconds, etc. If the user desires a plot every computing cycle, the third storage location of table \mathbb{N} must be set equal to the computing interval $M(5)$ by the following function specifications:

$$
\begin{aligned}
& \operatorname{IN}=\operatorname{IOC}(\mathbb{N}) \\
& P(L N+3)=M(5) \\
& \text { CALL TPIOT }(\mathbb{N})
\end{aligned}
$$

Although this routine will only plot temperatures, in practice any addressable quantity can be plotted simply by storing that. quantity in an unused temperature location. For example, to plot $R(4)$, one could set $\operatorname{TN}(200)=R(4)$ and plot $T(200)$. Note that at the end of the heat balance, $T(200)$ is set equal to $\mathbb{N}(200)$, so it is necessary to store $R(4)$ in the "new" temperature location.

This routine is currently set up to plot a maximum of 5 temperatures per curve. If, for example, 8 nodes are specified in table N, the first 5 will be plotted on one curve and the remaining 3 on a separate curve. A maximum of 20 nodes may be listed per table and a maximum of 20 tables may be used.

As an example of the input for the plotting routine, suppose that it is desired to plot the first and last 100 sec of a case that runs continuously from 0 to 500 sec . The temperatures of nodes $24,68,72$, and 93 are to be plotted at $10-\mathrm{sec}$ intervals. For this case two tables could be set up as follows:

$\xrightarrow{\text { COLUMN }}$	1	10	15	25	35	45	55	65
	DEC	20				24.	68.	72.
	$\begin{aligned} & \text { DECO6 } \\ & \text { DECO2 } \end{aligned}$		$\begin{aligned} & 0 . \\ & 93 \end{aligned}$	$\begin{array}{r} 100 . \\ 0 . \end{array}$	10.	24.	68.	72.
	DEC	-20						
	DEC ${ }_{\text {DEC06 }}$	21	400.	500.	10.	24.	68.	72.
	DECO2		93.	O.				
	DEC	-21						

The function specifications are

CAL工 TPLOT (20)
CALL TPIOT (21)

In Section VI, plots have been obtained for 5 nodes in Example Problem \#2 to illustrate the use of the function and the quality of the curves. Note that the information on the case identification card (see Section V) is automatically printed at the top of each curve.

AERODYNAMIC HEATTING AND ABLATION SUBROUTINES
The Eckert Aerodynamic Heating subroutine computes the surface convective heat transfer by the reference temperature method. The primary advantage of this method is that it allows incompressible skin friction relations to be employed in evaluating high-velocity-flow heat transfer. This is accomplished by evaluating the air properties at a suitably defined reference temperature, which depends only on the wall, local inviscid flow, and recovery temperatures.

The Ablation subroutine computes the amount of material that is ablated (if the temperature is above the ablation temperature) as a function of time as part of the heat balance. This solution is applicable to one-dimensional heat transfer to a pure subliming (non-charring) surface.

These specialized subroutines are discussed in detail in
Appendices A and B. Example problems are set up and written on data input sheets to demonstrate the use of each subroutine.

Although a knowledge of FORTRAN is not required to use the Thermal Analyzer Program, an understanding of a few basic FORTRAN operations is highly desirable. The following is a brief discussion of some of the most commorly used operations, along with some general information useful in writing the FUNCT subroutine. The topics include the use of fixed- and floating-point variables, statement numbers, comment cards, and control statements. The treatment of each topic is brief, and the reader is referred to the FORTRAN reference manual for more detailed information.

Variables

A variable is a symbol or name which refers to a place in memory where the number or value represented by that name is stored. The name of any variable consists of one or more alphabetic or numerical characters, the first of which must be alphabetic (A through Z). The maximum number of characters permitted in the name is 6 for the 7094 processor. Names beginning with the letters I, J, K, I, M, or \mathbb{N} are variable names for fixedpoint numbers. All other names represent floating-point values. For example, Kl5 and NEXT are valid integer variables and A50 and VALUE are valid floating-point variables. In general, fixed- and floating-point variables cannot be mixed. As examples:

$$
\begin{array}{ll}
B=A * I & \begin{array}{l}
\text { is not permitted since } B \text { and } A \text { are floating- } \\
\text { point numbers and } I \text { is a fixed-point number }
\end{array} \\
B=A+2 & \begin{array}{l}
\text { is not permitted since } B \text { and } A \text { are floating- } \\
\text { point numbers and } 2 \text { (without decimal) is } \\
\text { fixed-point. }
\end{array} \\
B=A+2 . & \begin{array}{l}
\text { is permitted since } A ; B, \text { and } 2 . \text { (with decimal) } \\
\text { are all fixed -point numbers. }
\end{array}
\end{array}
$$

Statement Numbers

It is frequently desirable to identify a statement by name or number. This is accomplished by a numerical statement number (any intejer from 1 to 32767) placed in columns 1 through 5 of the data input sheet.

The only other restriction is that a statement number must not be repeated in any subroutine. The use of statement numbers will become more apparent in the following sections.

Comment Cards

Occasionally the user may wish to have comments printed out in the FUNCT and PRINT subroutines. This is accomplished by placing the letter C in column l of the data input sheet and the desired comments in columns 7 through 72. The comment card is then ignored by the FORTRAN processor, and serves merely to furnish commentary information in the program listing.

GO TO Statements

Unconditional transfer statements which begin with the words GO TO permit the user to alter arbitrarily the sequence in which the program statements are to be executed. A frequent use of the GO TO statement is to skip an inapplicable instruction as shown by the first example in the following section.

To illustrate an unconditional transfer statement, the instruction

$$
\text { GO TO } 17
$$

means that the next statement to be executed is the one labeled 17. Statement 17 may either precede or follow the GO TO statement. All statements in between will be skipped and, once statement 17 is executed, the computer will execute those which follow, in the order in which they appear.

Computed GO TO statements are used as a switch for branching to one of several places in the program, depending on the integer value of a test location. To illustrate, the statement

$$
\text { GO TO }(7,4,28,9), \mathrm{K}
$$

transfers control to the statement labeled $7,4,28$, or 9 when the current value of K is $1,2,3$, or 4 , respectively.

Frequently it is desirable to execute a particular function, or set of functions, only under certain specified conditions. This is accomplished by the IF statement which directs control to one of three different statements, depending on the value of an arithmetic expression. The statement

$$
I F(X) A, B, C
$$

will direct the computer to immediately execute statement A if the value of (X) is negative, to execute statement B if (X) is zero, and to execute statement C if (X) is positive. Any statements between the IF statement and the next executed statement (A, B, or C) will be skipped. The expression (X) may be any legal FORTRAN arithmetic expression discussed in the preceding sections.

To illustrate the use of the conditional control statement, consider a lunar spacecraft which is slowly rotating about one axis. The solar heating rate to shell node 10 is to be linearly interpolated from curve 10. At $45,000 \mathrm{sec}$, however, the vehicle stops rolling and the heating rate to node 10 is a constant value, say $0.085 \mathrm{Btu} / \mathrm{sec}$. The appropriate functions might appear as follows:

$$
\begin{array}{ll}
& \operatorname{IF}(M(1)-45000 .) 2,3,3 \\
2 \quad & Q(10)=\operatorname{LIN}(M(1), 10) \\
& G O T O 4 \\
3 & Q(10)=0.085
\end{array}
$$

If current time is less than $45,000 \mathrm{sec}$, statement 2 is executed. Statement 3 is then skipped by the insertion of a GO TO statement which directs control to statement 4. The latter is not shown but would presumably follow statement 3. If current time is equal to or greater than 45,000 sec , the IF statement directs control to statement 3, after which statement 4 and succeeding functions are executed in a normal manner.

A logical IF statement has been added to the FORTRAN IV language so that decisions can be based directly on the true or false value of a quantity which is logical rather than arithmetic in nature. The statement

$$
I F(Y) F
$$

means that if the logical expression (Y) is true, execute the statement F and then proceed to the statement following F; otherwise (if Y is false), do not execute F, but simply proceed to the following statement. F may be any single executable statement except another logical IF statement or a DO statement.

Comparisons can be made by means of the logical operators . OR., .AND., or .NOT.; or by any of the following relational operators:

Symbol
.EQ.
.NE.
. LT.
.LE.
.GT.
-GE. Greater than or equal to

Two examples of the use of logical IF statements are given below:

IF (M(6).EQ.80..OR.T(26).GE.500.) GO TO 5
means that if the minimum RC product equals 80 or if the temperature of node 26 is greater than or equal to 500 , proceed immediately to statement 5 .

$$
I F(M(1) \cdot G E \cdot 35 . . A N D \cdot M(1) \cdot L E \cdot 70 .) T(30)=1100 .
$$

means that if current time is between 35 and 70 , set the temperature of node 30 equal to 1100.

With the logical IF statement it is possible to simplify the functions required for the lunar spacecraft example given above. To illustrate, the two statements

$$
\begin{aligned}
& Q(10)=0.085 \\
& \operatorname{IF}(M(1) . \operatorname{IT} \cdot 45000 .) \quad Q(10)=\operatorname{IIN}(M(1), 10)
\end{aligned}
$$

are equivalent to the four statements listed previously. The second function merely overrides the first if current time is less than $45,000 \mathrm{sec}$.

D0 Statements
Most computer programs involve a group of steps which are to be executed in a repetitive fashion. The iteration or DO statement greatly facilitates the definition and control of these repetitive steps. The statement

$$
\text { DO } A I=B, C, N
$$

controls the repetition of all succeeding statements down through and including the statement labeled A. Repetition of these statements is controlled by varying the index called I, from an initial value of B to a terminal value of C in increments of N . If the integer \mathbb{N} does not appear the increment is understood to be l. For example, the statements

$$
\begin{aligned}
& \mathrm{DO} 13 I=1,3 \\
& \mathrm{Q}(I)=0.25 \\
& \mathrm{R}(I+100)=\operatorname{RAD}(I, 100, .3 E-5) \\
& 13 \text { CONTINUE }
\end{aligned}
$$

will cause the following operations to be performed:

$$
\begin{aligned}
& Q(1)=0.25 \\
& Q(2)=0.25 \\
& Q(3)=0.25 \\
& R(101)=\operatorname{RAD}(1,100,0.3 E-5) \\
& R(102)=\operatorname{RAD}(2,100,0.3 E-5) \\
& R(103)=\operatorname{RAD}(3,100,0.3 E-5)
\end{aligned}
$$

The terminating statement need not always be a CONNINUE card as shown in the above example. However, the last statement in an iteration loop cannot be a transfer statement, conditional or unconditional, or another iteration statement. The termination of a DO loop with a CONTINUE card is always acceptable and is recommended as a means to avoid the above difficulties. Another restriction on the use of DO loops is that control must never be transferred from outside to any card within the iteration loop with the exception of the first, or DO statement, card.

THERMAL PROPERTIES LIBRARY

The thermal properties library contains tables of physical properties of a number of propellants, pressurants, simulated propellants, structural materials, and insulations. Special data search and interpolation routines are incorporated into the Thermal Analyzer Program to utilize the library data.

Library Tape

The thermal properties and library tape are discussed in detail and completely listed in Reference 2. The property tables contain data on density, specific heat, and thermal conductivity vs. temperature for liquids and solids; vapor pressure, viscosity, heat of vaporization, and surface tension vis. temperature for liquids; and specific heat, thermal conductivity, and compressibility factor vs. temperature and pressure for gases. The properties data are given in the following units:

Density, $\quad 1 b / \mathrm{ft}^{3}$
Specific heat, $B t u / l b{ }^{\circ} F$
Thermal conductivity, $\mathrm{Btu} / \mathrm{hr}$ ft ${ }^{\circ} \mathrm{F}$
Vapor pressure, psia
Viscosity, lb/ft sec
Heat of vaporization, Btu/lb
Surface tension, $\operatorname{lb} / \mathrm{ft}$

The library itself is contained on a reserved tape. Each curve is uniquely identified by a six-character code consisting of both a material and a property identification. Table $4-1$ is a complete listing of the identification codes and titles of every library table. The use of the library tape is described below.

A flag in the data-block of the Thermal Analyzer will cause the compiler to search the data tape for the specific table called for by the flag. That table will then be stored in place of the flag. There must be an exact correspondence between the identification of the tables stored on tape and the flags used to call the tables to be used in the program. The flag consists of six alphameric characters in columns 6-11, preceded by the mnemonic code "TAP" in columns 1-3. (See Table 4-1.) The data entry and flag are as follows:

COLUMV

DEC	401	Table No.
TAP	NTO-13	I.D. of table stored on tape
DEC	-401	End -of-table flag

This entry means that the material properties data table identified as Table "NIO-13" (Thermal Conductivity of Liquid Nitrogen Tetroxide) is to ce stored as Table 401 within the Thermal Analyzer input data block.

In all cases where data are available, the tables are accurate for
linear interpolation within $\pm 5 \%$ over the appropriate temperature range. To construct a useful data library, it was necessary to extend

TAP	NTO-11
TAP	NTO-12
TAP	NTO-13
TAP	NTO-14
TAP	NTO-15
TAP	NTO-16
TAP	NTO-17
TAP	NTO-22
TAP	NTO-23
TAP	NTO-28
TAP	OXY-11
TAP	OXY-12
TAP	OXY-13
TAP	OXY-14
TAP	OXY-15
TAP	OXY-16
TAP	OXY-17
TAP	OXY-22
TAP	OXY-23
TAP	OXY-28
TAP	FLU-11
TAP	FLU-12
TAP	FLU-13
TAP	FLU-14
TAP	FLU-15
TAP	FLU-16
TAP	

DENSITY OF LIQUID NITROGEN TETROXIDE

 101012266SPECIFIC HEAT OF LIQUID NITROGEN TETROXIDETHERMAL CONDUCTIVITY OF LIQUID NITROGEN TETROXIDEVAPOR PRESSURE OF LIQUID NITROGEN TETROXIDEVISCOSITY OF LIOUID NITROGEN TETROXIDEheat of vaporization of liquid nitrogen tetroxideSURFACE TENSION OF LIQUID NITROGEN TETROXIDESPECIFIC HEAT OF GASEOUS NITROGEN TETROXIDETHERMAL CONDUCTIVITY OF GASEOUS NITROGEN TETROXIDECOMPRESSIBILITY FACTOR OF GASEOUS NITROGEN TETROXIDE
 DENSITY OF LIQUID OXYGEN
 SPECIFIC HEAT OF LIQUID OXYGEN
 THERMAL CONDUCTIVITY OF LIQUID OXYGEN
 VAPOR PRESSURE OF LIQUID OXYGEN
 vISCOSITY OF LIQUID OXYGEN
 HEAT OF VAPORIZATION OF LIQUID OXYGEN
 SURFACE TENSION OF LIQUID oxygen
 SPECIFIC HEAT OF GASEOUS OXYGEN
 THERMAL CONDUCTIVITY OF GASEOUS OXYGEN
 COMPRESSIBILITY FACTOR OF GASEOUS OXYGEN
 DENSITY OF LIQUID FLUORINE
 SPECIFIC heat of Liquid fluorine
 thermal conductivity of liquid fluorine
 VAPOR PRESSURE OF LIQUID FLUORINE
 viscosity of liouid fluorine
 heat of vaporization of liquid fluorine
 SURFACE TENSION OF LIQUID FLUORINE
 SPECIFIC HEAT OF GASEOUS FLUORINE
 thermal conductivity of gaseous fluorine
 COMPRESSIBILITY FACTOR OF GASEOUS FLUORINE
 DENSITY OF LIQUID OXYGEN DIFLUORIDE
 SPECIFIC HEAT OF LIQUID OXYGEN DIFLUORIDE
 THERMAL CONDUCTIVITY OF LIQUID OXYGEN DIFLUORIDE
 VAPOR PRESSURE OF LIQUID OXYGEN DIFLUORIDE
 vISCOSITY OF LIQUID OXYGEN DIFLUORIDE
 HEAT OF VAPORIZATION OF LIQUID OXYGEN DIFLUORIDE 136012266
 SPECIFIC HEAT OF GASEOUS OXYGEN DIFLUORIDE
 COMPRESSIBILITY FACTOR OF LIQUID OXYGEN DIFLUORIDE
 DENSITY OF LIQUID CHLORINE TRIFLUORIDE
 SPECIFIC HEAT OF LIQUID CHLORINE TRIFLUORIDE
 THERMAL CONDUCTIVITY OF LIQUID CHLORINE TRIFLUORIDE
 VAPOR PRESSURE OF LIQUID CHLORINE TRIFLUORIDE
 VISCOSITY OF LIQUID CHLORINE TRIFLUORIDE
 heat of vaporization of liouid chlorine trifluoride
 SURFACE TENSION OF LIQUID CHLORINE TRIFLUORIDE
 SPECIFIC HEAT OF GASEOUS CHLORINE TRIFLUORIDE
 COMPRESSIBILITY FACTOR,GASEOUS CHLORINE TRIFLUORIDE
 DENSITY OF LIQUID AEROZINE 50
 SPECIFIC HEAT OF LIQUID AEROZINE 50
 THERMAL CONDUCTIVITY OF LIQUID AEROZINE 50
 VAPOR PRESSURE OF LIQUID AEROZINE 50
 VISCOSITY OF LIQUIO AEROZINE 50
 heat of vaporization of liguid aerozine 50
 surface tension of liouid aerozine 50
 SPECIFIC HEAT OF GASEOUS AEROZINE 50
 THERMAL CONDUETIVITY OF GASEOUS AEROZINE 50
 COMPRESSIBILITY FACTOR OF GASEOUS AEROZINE 50
 DENSITY OF LIQUID MONOMETHYL HYDRAZINE
 SPECIFIC HEAT OF LIQUID MONOMETHYL HYDRAZINE
 THERMAL CONDUCTIVITY OF LIQUID MONOMETHYL HYDRAZINE
 VAPOR PRESSURE OF LIQUID MONOMETHYL HYDRAZINE
 102012266
 103012266
 104012266
 105012266
 106012266
 107012266
 108012266
 1.09012266
 110012266
 111012266
 112012266
 113012266
 114012266
 115012266
 116012266
 117012266
 118012266
 119012266
 120012266
 121012266
 122012266
 123012266
 124012266
 125012266
 126012266
 127012266
 128012266
 128012266
 129012266
 130012266
 131012266
 132012266
 133012266
 134012266
 135012266
 138012266
 140012266
 141012266
 142012266
 143012266
 144012266
 145012266
 146012266
 147012266
 147012266
 148012266
150012266
151012266
152012266
153012266
154012266
155012266
155012266
156012266
157012266
158012266
159012266
160012266
160012266
161012266
161012266
162012266
163012266
164012266

```
TABLE 4-1
(Continued)
```

TAP	$\begin{aligned} & M M H-15 \\ & M M H-16 \end{aligned}$	VISCOSITY OF LIOUID MONOMETHYL HYDRAZINE HEAT OF VAPORIZATION OF LIQUID MONOMETHYL HYDRAZINE
TAP	MMH-17	SURFACE TENSION OF LIQUID MONOMETHYL HYDRAZINE
TAP	MMH-22	SPECIFIC HEAT OF GASEOUS MONOMETHYL HYDRAZINE
TAP	MMH-23	THERMAL CONDUCTIVITY, GASEOUS MONOMETHYL HYDRAZINE
TAP	MMH-28	COMPRESSIBILITY FACTOR,GASEOUS MONOMETHYL HYDRAZINE
TAP	DIB-11	DENSITY OF LIQUID DIBORANE
TAP	DIB-12	SPECIFIC HEAT OF LIQUID DIGORANE
TAP	D18-13	THERMAL CONDUCTIVITY OF LIQUID DIBORANE
TAP	D18-14	VAPOR PRESSURE OF LIQUID DIBORANE
TAP	DIB-15	VISCOSITY OF LIQUID DIBORANE
TAP	DIB-16	HEAT OF VAPORIZATION OF LIQUID DIBORANE
TAP	DIB-22	SPECIFIC HEAT OF GASEOUS DIBORANE
TAP	DIB-28	COMPRESSIBILITY FACTOR OF GASEOUS DIBORANE
TAP	HYD-11	DENSITY OF LIQUID HYDROGEN
TAP	HYD-12	SPECIFIC HEAT OF LIQUID HYDROGEN
TAP	HYD-13	THERMAL CONDUCTIVITY OF LIQUID HYDROGEN
TAP	HYD-14	VAPOR PRESSURE OF LIQUID HYDROGEN
TAP	HYD-15	VISCOSITY OF LIQUID HYDROGEN
TAP	HYD-16	HEAT OF VAPORIZATION OF LIQUID HYDROGEN
TAP	HYD-17	SURFACE TENSION OF LIQUID HYDROGEN
TAP	HYD-22	SPECIFIC HEAT OF GASEOUS NORMAL HYDROGEN
TAP	HYD-23	THERMAL CONDUCTIVITY OF GASEOUS PARA HYDROGEN
TAP	HYD-28	COMPRESSIBILITY FACTOR OF GASEOUS PARA HYDROGEN
TAP	HA5-11	DENSITY OF LIQUID HYBALINE AS
TAP	HA5-12	SPECIFIC HEAT OF LIQUID HYBALINE A5
TAP	HA5-13	THERMAL CONDUCTIVITY OF LIQUID HYBALINE A5
TAP	HA5-14	VAPOR PRESSURE OF LIQUID HYBALINE AS
TAP	HA 5-15	VISCOSITY OF LIQUID HYBALINE AS
TAP	HA5-22	SPECIFIC HEAT OF GASEOUS HYBALINE AS
TAP	HA5-23	THERMAL CONDUCTIVITY OF GASEOUS HYBALINE A5
TAP	HA5-28	COMPRESSIBILITY FACTOR OF GASEOUS HYBALINE AS
TAP	NIT-11.	DENSITY OF LIQUID NITROGEN
TAP	NIT-12	SPECIFIC HEAT OF LIQUID NITROGEN
TAP	NIT-13	THERMAL CONDUCTIVITY OF LIQUID NITROGEN
TAP	NIT-14	VAPOR PRESSURE OF LIOUID NITROGEN
TAP	NIT-15	VISCOSITY OF LIQUID NITROGEN
TAP	NIT-16	HEAT OF VAPORIZATION OF LIQUID NITROGEN
TAP	NIT-17	SURFACE TENSION OF LIQUID NITROGEN
TAP	NIT-22	SPECIFIC HEAT OF GASEOUS NITROGEN
TAP	NIT-23	THERMAL CONDUCTIVITY OF GASEOUS NITROGEN
TAP	NIT-28	COMPRESSIBILITY FACTOR OF GASEOUS NITROGEN
TAP	HEL-22	SPECIFIC HEAT OF GASEOUS HELIUM
TAP	HEL-23	THERMAL CONDUCTIVITY OF GASEOUS HELIUM
TAP	HEL-28	COMPRESSIBILITY FACTOR OF GASEOUS HELIUM
TAP	660-11	DENSITY OF LIOUID - 6 ETHYLENE GLYCOL
TAP	660-12	SPECIFIC HEAT OF LIQUID - 6 ETHYLENE GLYCOL
TAP	G60-13	THERMAL CONDUCTIVITY OF LIQUID -6 ETHYLENE GLYCOL
TAP	660-14	VAPOR PRESSURE OF LIQUID - 6 ETHYLENE GLYCOL
TAP	G60-15	VISCOSITY OF LIOUID . 6 ETHYLENE GLYCOL
TAP	650-22	SPECIFIC HEAT OF GASEOUS . 6 ETHYLENE GLYCOL
TAP	G60-23	THERMAL CONDUCTIVITY OF GASEOUS . 6 ETHYLENE GLYCOL
TAP	G60-28	COMPRESSIBILITY FACTOR , GASEOUS -6 ETHYLENE GLYCOL
TAP	F11-11	DENSITY OF LIQUID FREON 11
TAP	F11-12	SPECIFIC HEAT OF LIQUID FREON 11
TAP	F11-13.	THERMAL CONDUCTIVITY OF LIQUID FREON 11
TAP	F11-14	VAPOR PRESSURE OF LIQUID FREON 11
TAP	F11-15	VISCOSITY OF LIQUID FREON 11
TAP	F11-16	HEAT OF VAPORIZATION OF LIQUID FREON 11
TAP	F11-17	SURFACE TENSION OF LIQUID FREON 11
TAP	F11-22	SPECIFIC HEAT OF GASEOUS FREON 11

VISCOSITY OF LIOUID MONOMETHYL HYDRAZINE
HEAT OF VAPORIZATION OF LIQUID MONOMETHYL HYDRAZINE
SURFACE TENSION OF LIQUID MONOMETHYL HYDRAZINE
THERMAL HEAT OF GASEOUS MONOMETHYL HYDRAZINE COMPRESSIBILITY FACTOR, GASEOUS MONOMETHYL HYDRAZINE DENSITY OF LIOUID DIBORANE
SPECIFIC HEAT OF LIQUID DIBORANE
THERMAL CONDUCTIVITY OF LIQUID DIBORANE
VAPOR PRESSURE OF LIQUID DIBORANE
VISCOSITY OF LIQUID DIBORANE
heat of vaporization of liquid diborane
SPECIFIC HEAT OF GASEOUS DIBORANE
DENSITY OF LIQUID HYOROGEN
SPECIFIC HEAT OF LIQUID HYDROGEN
THERMAL CONDUCTIVITY OF LIQUID HYDROGEN
VAPOR PRESSURE OF LIQUID HYDROGEN
HeAR OF VAPORIZATION OF LIQUID HYDROGEN
SPECACE TENSION OF LIQUID HYDROGEN
OF GASEOUS NORMAL HYDROGEN
位
DENSITY OF LIQUID HYBALINE AS
thecir heat of liquid hybaline as
THERMAL CONDUCTIVITY OF LIQUID HYBALINE A5
VISCOSITY OF LIQUID HYBALINE AS
SPECIFIC heat of gaseous hybaline as
thermal conductivity of gaseous hybaline as
COMPRESSIBILITY FACTOR OF GASEOUS HYBALINE AS
O NITROGEN
Thermal heat of Liquid nitrogen
VAPOR
VISCOSITY OF LIQUID NITROGEN
heat of vaporization of liguid nitrogen
SURFACE TENSION OF LIQUIO NITROGEN
al
TOMPRESS
SPECIFIC HEAT OF GASEOUS HELIUM
THERMAL CONDUCTIVITY OF GASEOUS HELIUM
DENSITY OF LIOUID O6 ETHYLENE GLYCOL
165012266
165012266
167012266
168012266
169012266
170012266
171012266
172012266
173012266
17401.2266

175012266
176012266
178012266
180012266
181012266
182012266
183012266
184012266
185012266
186012266
187012266
188012266
189012266
190012266
191012266
192012266
193012266
194012268
195012266
198012266
199012266
200012266
201012266
202012266
203012266
204012266
205012266
206012266
207012266
208012266
209012266
210012266
218012266
219012266
220012266
221012266
222012266
223012266
224012266
225012266
228012266
229012266
230012266
231012266
232012256
233012266
234012266
235012286
236012286
237012286
238012266

TABLE 4-1

(Continued)

TAP	F11-23
TAP	F11-28
TAP	BERL-1
TAP	BERL-2
TAP	8ERL-3
TAP	AL22-1
TAP	AL.22-2
TAP	AL 22-3
TAP	AL70-1
TAP	AL.70-2
TAP	AL 70-3
TAP	AL 70-4
TAP	MGA3-1
TAP	MGA3-2
TAP	MGA3-3
TAP	T6AL-1
TAP	T6AL-2
TAP	T6AL-3
TAP	T110-1
TAP	T110-2
TAP	T110-3
TAP	C103-1
TAP	C103-2
TAP	C103-3
TAP	S321-1
TAP	5321-2
TAP	S321-3
TAP	INCX-1
TAP	INCX-2
TAP	INCX-3
TAP	INCX-4
TAP	RE41-1
TAP	RE41-2
TAP	RE41-3
TAP	RE41-4
TAP	L12A-1
TAP	L12A-2
TAP	L12A-3
TAP	L128-1
TAP	L128-2
TAP	L128-3
TAP	L12C-1
TAP	L12C-2
TAP	L.12C-3
TAP	L120-1
TAP	L12D-2
TAP	LI2D-3
TAP	L62A-1
TAP	L62A-2
TAP	L62A-3
TAP	L62B-1
TAP	L628-2
TAP	L628-3
TAP	L62C-1
TAP	L62C-2
TAP	L62C-3
TAP	L620-1
TAP	L620-2
TAP	L62D-3
TAP	L92A-1
TAP	L92A-2

THERMAL CONDUCTIVITY OF GASEOUS FREON 11
239012266 COMPRESSIBILITY FACTOR OF GASEOUS FREON 11
DENSITY OF BERYLLIUM
SPECIFIC HEAT OF BERYLLIUM
THERMAL CONDUCTIVITY OF BERYLLIUM
DENSITY OF ALUMINUM 2219-T87
SPECIFIC HEAT OF ALUMINUM 2219-T87
2219-T87
DENSITY OF ALUMINUM 7075-T6 240012266

SPECIFIC HEAT OF ALUMINUM 7075-T6
312012266
THERMAL CONDUCTIVITY OF ALUMINUM 7075-T6,AS RECEIVED 313012266
THERMAL CONDUCTIVITY OF ALUMINUM 7075-T6,ANNEALED 314012266
DENSITY OF MAGNESIUM AZ31B-H24 321012266
DENSITY OF MAGNESIUM AZ3IB-H24
322012266
SPECIFIC HEAT OF MAGNESIUM AZ31B-H24
323012266
$\begin{array}{ll}\text { THERMAL CONDUCTIVITY OF MAGNESIUM AZ31B-H24. } & 323012266 \\ \text { DENSITY OF TITANIUM 6AL4V } & 331012266\end{array}$
DENSITY OF TITANIUM 6AL4V
332012266
SPECIFIC HEAT OF TITANIUM GAL4V 333012266
THERMAL CONDUCTIVITY OF TITANIUM GAL4V 341012266
DENSITY OF TITANIUM Alloat 342012266
THERMAL CONDUCTIVITY OF TITANIUM AlIOAT 343012266
DENSITY OF COLUMBIUM C-103 351012266
SPECIFIC HEAT OF COLUMBIUM C-103
352012266
THERMAL CONDUCTIVITY OF COLUMBIUM C-103 353012266
DENSITY OF STAINLESS STEEL 321
SPECIFIC HEAT OF STAINLESS STEEL 321
THERMAL CONDUCTIVITY OF STAINLESS STEEL 3213363012266
DENSITY OF INCONEL X
SPECIFIC HEAT OF INCONEL X
THERMAL CONDUCTIVITY OF INCONEL X
THERMAL CONDUCTIVITY OF INCONEL X, SOLUTION TREATED
DENSITY OF RENE 41
SPECIFIC HEAT OF RENE 41
THERMAL CONDUCTIVITY OF RENE 41, 2HR SOLN TREATED
THERMAL CONDUCTIVITY OF RENE 41, 4HR SOLN TREATED
DENSITY OF LINDE SI-12 (8 LAYERS/INCH)
SPECIFIC HEAT OF LINDE SI-12
thermal conductivity of Linde si-12 (8 LAYERS/INCH)
DENSITY OF LINDE SI-12 110 LAYERS/INCH)
SPECIFIC HEAT OF LINDE SI-12
THERMAL CONDUCTIVITY OF LINDE SI- 12 (10 LAYERSIINCH) DENSITY OF LINDE SI-12 (12 LAYERS/INCH)
SPECIFIC HEAT OF LINDE SI-12
THERMAL CONDUCTIVITY OF LINDE SI-12 112 LAYERS/INCH) DENSITY OF LINDE SI-12 (14 LAYERS/INCH)
SPECIFIC HEAT OF LINDE SI-12
THERMAL CONOUCTIVITY OF LINDE SI-12 (14 LAYERS/INCH) DENSITY OF LINDE SI-62 (40 LAYERS/INCH)
SPECIFIC HEAT OF LINDE SI-62
THERMAL CONDUCTIVITY OF LINDE SI-62 (40 LAYERS/INCH)
DENSITY OF LINDE SI-62 (60 LAYERSIINCH)
SPECIFIC HEAT OF LINDE SI-62
THERMAL CONDUCTIVITY OF LINDE SI-62 (60 LAYERS/INCH) 453012266
DENSITY OF LINDE SI-62 (80 LAYERS/INCH)
SPECIFIC HEAT OF LINDE SI-62 462012266
THERMAL CONDUCTIVITY OF LINDE SI-62 180 LAYERSIINCH) 463012266
DENSITY OF LINDE S1-62 (100 LAYERS/INCH)
471012266
SPECIFIC HEAT OF LINDE SI-62 472012266
THERMAL CONDUCTIVITY OF LINDE SI-62 1100 LAYERS/INCH) 473012266
DENSITY OF LINDE SI-92 (80 LAYERS/INCH).
481012266
SPECIFIC HEAT OF LINDE SI-92
482012266
some properties data by means of extrapolation and/or estimation into regions where data were unavailable. All such "extended" data are flagged and interpolations based on these data are automatically noted by the interpolation routines, and suitable explanations are printed out. These "extended" data. are not necessarily accurate to within $\pm 5 \%$ but are included as a convenience.

Interpolation Routines

Once the required tables are stored in the data block, the properties may be called for in the FUNCT subroutine, using either the linear or bivariate interpolation routines discussed previously, or the linear interpolation with integration routine discussed below. Linear interpolation should be used for the solid and liquid properties data, except for the conductivity of insulations which requires the special integration feature. For gases, the bivariate interpolation routine is required since the properties are temperature and pressure dependent. The tables are interpolated horizontally with temperature as independent variable and vertically with pressure as independent variable. As a result, the function specification must be of the form

$$
Y=B I V \text { (pressure, temperature, table number) }
$$

An integer code has been added at the beginning of each table to indicate the special nature of the table and the method of acquiring the data, if applicable. The absence of the code or a code " 0 " indicates that no special procedures (such as extrapolation) were required to obtain the data, and that interpolation is to take place in a normal fashion. The data classification codes and their explanations are given in Table 4-2.

Since the actual property values in such tables are always positive, the absolute magnitude of the value is used during interpolation. "Extended" data are entered as negative numbers, thus allowing the interpolation routine to recognize when such values have been used, and to print a comment that this has occurred. Note, however, that if the code is zero or does not appear, negative values are treated as negative.

TABLE 4-2
DATA CLASSIFICATION CODES
Code
Explanation
0
Normal curve
I
2
Extrapolated data
Fitted parabola
Estimated values
"Dummy" values
Values for 1 atmosphere pressure
Values for saturation line
7
Special bivariate interpolation routine, used in vicinity of saturation line

15

16
71
73
1 plus 5
1 plus 6
7 plus 1
7 plus 3

A special situation exists for interpolation on incomplete bivariate curves indicated by code "7." The properties of gases involve the saturation line, beyond which data are meaningless. In the neighborhood of the saturation line, interpolation will be attempted with only one, two, or three meaningful points. This difficulty is surmounted by entering all points beyond the saturation line as zeros. The routine then recognizes the situation, and shifts its base points until it has four meaningful values. It then extrapolates to the required point. Note, again, that this will occur only if a non-zero code is entered in the table. (See Reference 2.) If the code is zero or does not appear, normal linear bivariate interpolation will occur, and any zero or negative value is treated as zero or negative.

A special linear interpolation and integration subroutine, XIIN, has been included which determines the area under a specified curve, \mathbb{N}, from XI to X 2 divided by $\mathrm{X} 2-\mathrm{XI}$:

$$
\begin{equation*}
\operatorname{XLIN}(X I, X 2, N)=\frac{1}{X 2-X 1} \int_{X I}^{X 2} F_{N}(X) d X \tag{4-3}
\end{equation*}
$$

This routine is intended specifically to compute temperature-dependent conductivity of insulation. The routine integrates by the trapezoidal rule from the left end of the curve to Xl , from the left end of the curve to X 2 , and then divides the difference by $\mathrm{X} 2-\mathrm{XI}$. Equation (4-3) above then becomes:

$$
\begin{equation*}
\operatorname{XIIN}(X 1, X 2, \mathbb{N})=\frac{1}{X 2-X 1} *\left(\int_{-460}^{X_{2}} F_{N}(X) d X-\int_{-460}^{X_{1}} F_{N}(X) d X\right) \tag{4-4}
\end{equation*}
$$

XIIN is a variation of function LIN, and uses identical coding in evaluating the curve at first XI , then X 2 . It integrates the preceeding part of the curve as it locates the interval in which it interpolates. Having integrated and interpolated for XI , the answers are saved, and a second pass is made to evaluate the same functions for X 2 . Then the difference between the integrals is taken, divided by ($\mathrm{X} 2-\mathrm{XI}$), and that value is returned as the value of function XIIN.

The curve, data block N, is required to be monotonically increasing in the independent variable, but following the last value of the dependent variable there must be a flag less than the last value of the independent variable. This is the same rule that applies to function LIN.

An example of the function specification is

$$
K=X I N(T(14), T(15), 28)
$$

where the conductivity for the resistor connecting nodes 14 and 15 is to be obtained by integrating curve 28 .

V - PROGRAM INPUT

This section describes how to transcribe the sketch of the electrical analog network to data cards. It also describes how to prepare the subroutines which contain the functions and the print format.

The problem description for each case is divided into five distinct blocks and two subroutines. The first three blocks define the network and give the initial values of the temperatures, resistors, and capacitors. The fourth block is a list of sub-blocks of data required by the functions and subroutines. The fifth block lists the print interval, and the initial and final times of the case. The functions and subroutines used in the case are listed in FORTRAN statements in the FUNCT subroutine. The PRINT subroutine contains the list of quantities to be printed at each specified printing interval, plus the desired output format.

A scheme whereby all circuit elements may be referenced between blocks is completed by the user as he describes the circuit. In block 1 , each node is assigned an integer which is the designation number of that node throughout the blocks following. Likewise, in block 2, each resistor is assigned a designation number. Each set of data in block 4 is also assigned a designation number. Moreover, the program automatically assigns designation numbers to certain computed and input quantities which are thereby available to the user. A complete list of these addressable quantities was given in Section IV.

The problem description is written on input data sheets or FORTRAN coding sheets of a standard form. Each line of data (blocks 1 through 5) will become a card with columns 1,2 , and 3 containing a three-lettered mnemonic code, columns 4 and 5 either containing a numerical value or left blank, and columns 6 through \mathbb{N} containing the data. Columns $N+I$ through 72 are then available for user's comments and a card sequence number, if desired.

SPECIAL DATA CARDS

The three-lettered mnemonic code in columns 1, 2, and 3 will take one of the following seven forms:

1. Case Identification Card (CID). This is a card placed at the beginning of each case to identify the output. The letters CID appear in columns 1, 2, and 3, followed by user's comments in columns 6 through 72. If the user desires, these comments may be printed out at the top of each page of output belonging to that case (see "FORMAT Declarations" discussed later in this section).
2. DEC Card. The letters DEC in columns 1, 2, and 3, and a numerical value greater than zero in columns 4 and 5 indicate that the data on that card are not to be handled in any special way, but merely to be entered into consecutive storage. The integers in columns 4 and 5 represent the number of values or sets of values on that card, as discussed in the following sections.
3. Increment Card (INC). This card is used to abbreviate a repetitious list of data. It can only be used in the initial temperature, resistor, and capacitor blocks, and in the data block. It is best explained by an example:

DECO1	a	b.	
INC	2	-3.0	4

means that card $D E C O 1 a b$ is to be repeated 4 times, each time incrementing the first number on the card by 2 and the second number by -3. Thus the 2 cards above are equivalent to the following 5 cards:

DECO1	a	b.
DECO1	$a+2$	$b-3.0$
DECO1	$a+4$	$b-6.0$
DECO1	$a+6$	$b-9.0$
DECO1	$a+8$	$b-12.0$

Note that fixed- and floating-point numbers must be incremented by fixed- and floating-point numbers, respectively. The number of times the card is to be incremented (4 in the above example) is given in fixed point as shown. As a further example, suppose that the following cards are to be incremented:

DECO1	4	5	50	0.
DECO1	5	6	50	0.
DECO1	6	7	50	0.
DECO1	7	8	50	0.
DECOI	8	9	50	0.

The proper instructions are as follows:

DECO1	4	5	50	0.	
INC	1	1	0	0.	4

4. Periodic Data Card (PER). The letters PER in columns 1, 2, and 3, with columns 4 and 5 left blank indicate a periodic curve. The period of the curve is given in floating-point notation in columns 6 through 15 . When a periodic curve is specified, the PER card follows the DEC card which contains the curve designation number.
5. End of Block Card (NBK). Each of the first five blocks is terminated by a card having NBK in columns 1,2 , and 3 .
6. Geometric Resistor Card (RES). This card is used to specify a resistor whose value is automatically computed by the Thermal Analyzer, given the resistor geometry and the designation number of the curve describing the material conductivity vs temperature. See page 5-6 for details.
7. Geometric Capacitor Card (CAP). This card is used to specify a capacitor whose value is automatically computed by the Thermal Analyzer, given the capacitor geometry and the designation numbers of the curves describing the material specific heat and density vs temperature. See page 5-8 for details.

DATA CARD FORMATS

All CID, INC, PER, and NBK cards have columns 4 and 5 blank. RES and CAP cards always contain a zero (or a blank) in column 4 and a 1 in column 5 . DEC cards have columns 4 and 5 blank only when the information contained on the card is the designation number of a curve or table or when the card is a flag in the restart block. In other words, a DEC card will have columns 4 and 5 blank if an only if the card does not contain a floating-point number. Otherwise, a zero (or blank) is placed in column 4 and an integer equal to the number of floating-point numbers contained on the card is placed in column 5 .

The numerical data are contained in columns 6 through 65. The first field always begins in column 6. Fixed-point numbers have a field width of 5 columns and must end in the last column of the field in which they appear. Floating-point numbers have a field width of 10 columns and do not have to end in the last column of the field except when the E format (indicating a power of 10) is used to input the value. It is recommended, however, that all values end in the last column of the field to facilitate checking of the input data.

Any column to the right of the last field containing numerical data can be used for comments. However, certain of these comment columns should be reserved for a card sequence number. Ordinarily a 4 -digit number starting in column 69, or a 5 -digit number starting in column 68 is sufficient. The chbice and use of sequence numbers is purely arbitrary, and is at the discretion of the user. As a general rule, however, a systematic scheme, such as that shown in the examples which follow, should be employed to facilitate subsequent changes in the deck and to allow for machine sorting of the cards. Five-digit sequence numbers are useful in cases where a large number of curves are required. A commonly used and convenient procedure is to let the first three digits of the sequence number represent the curve number, and the last two digits represent the card number of that curve. This system is used by the Orbital Radiation Program (Ref. 4) which has an output option to supply the external heating rate history in the form of curves punched in proper format for the Thermal Analyzer Program.

BLOCK 1, INITIAL TEMPERATURES

In block 1 , each node is listed by a designation number (fixed-point) by which the node will be referenced in later blocks, followed by the initial value of the temperature at that node (floating-point number). Up to 4 nodes and their initial temperatures may be listed on each card. An example of a temperature input listing two nodes on a card is shown below.

Note that fixed-point numbers are listed in 5-column fields, and floatingpoint numbers are listed in lo-column fields. No columns may be skipped between fields.

Since in many practical cases a uniform initial temperature applies to a large portion of the network, the computer is programmed automatically to increment initial temperatures. For example:

DECO1	1	70.
DECO1	50	100.
$D E C O 1$	80	20.

would be interpreted as
$T(1)$ through $T(49)$ have an initial temperature of $70^{\circ} \mathrm{F}$. $T(50)$ through $T(79)$ have an initial temperature of $100^{\circ} \mathrm{F}$. $T(80) \quad$ has an initial temperature of $20^{\circ} \mathrm{F}$.

Note that storage is reserved for nodes 1 through 80 whether they are used or not. Thus, these locations may be used for storing miscellaneous floating-point data.

The initial temperature block, as well as the resistor, capacitor, data, and time blocks, must be terminated with an NBK card.

BLOCK 2, RESISTORS

Each resistor is listed by the designation number of the resistor, followed by the designation numbers of the two nodes which the resistor connects, followed by the initial value of the resistor. In those cases where all values of a resistor are to be computed by a function, a dummy initial value (as zero) must be given. All resistors must be given in this block even though they may be described later (for instance, radiation resistors). Up to -2 resistors may be listed on a card. An example of a resistor input is shown below.

COLUMV

An input option provides for the program to compute its own resistor values, given the resistor geometry and a curve of the material conductivity as a function of temperature. The resistor is computed by the formula

$$
\mathrm{R}=\frac{\delta}{\mathrm{kwd}} \sim \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
$$

where

$$
\begin{aligned}
\delta= & \text { the distance along conductive path } \\
\mathrm{k}= & \text { the thermal conductivity } \\
\mathrm{w}, \mathrm{~d}= & \text { the width and depth of the cross-sectional } \\
& \text { conductive heat transfer area }
\end{aligned}
$$

The resistor is automatically computed if described in block 2 as follows: COLUMN

1	5	10	15	20	30	40	50
RESO1	A	B	C	δ	W	d	N

where

$$
\begin{aligned}
A= & \text { the resistor designation. number } \\
B, C= & \text { the nodes which resistor } A \text { connects } \\
\delta, \mathrm{w}, \mathrm{C}= & \text { the length, width, and depth of the resistor } \\
\mathrm{N}= & \text { the designation number of the curve containing } \\
& \text { the material conductivity as a function of } \\
& \text { temperature }
\end{aligned}
$$

Any consistent set of units may be employed. A, B, C, and N are listed in fixed-point notation in 5-column fields. δ, w, and d are given in floatingpoint in l0-column fields. The program updates the resistor value each computing cycle, after interpolating for the conductivity as a function of the temperature of node B.

This option is applicable only when the resistor cross-section is uniform. The conductivity curve can be described in the data block, or may be called in from the thermal properties library.

ELCCK 3, CAPACITORS

Each node at which there is a capacitor is listed by that node's designation number (already assigned in block l), followed by the value of the caplacitor. If the capacity is to be computed by a function, a dummy initial value must be given.

At each node for which a capacitor is specified, i.e., appears explicitly in the capacitor block, a new temperature is computed for that node. If, however, no capacitor is specified for a given node, no heat balance is computed, and the temperature of that node remains unchanged, unless changed by a fundtion statement.

Up to four capacitor values can be listed on a card. An example of a capacitor input is shown below:

COLUTM

0

```
M 5 10 20 69 72
DECO1 _ 25 }\mp@subsup{\underbrace}{~}{..117
```

 capacitor (node) designation number
 number of capacitors listed on this card
 4-digit sequence number consisting of "3" (to signify
 capacitor block) followed by the capacitor designation
 number.
    ```

An input option provides for the program to compute its own capacitor values, given the node geometry and curves of density and specific heat as a function of temperature. The capacitor is computed by the formula
\[
\mathrm{C}=\delta \mathrm{wd} \rho \mathrm{c} \quad \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F}}
\]
where
\[
\begin{aligned}
\delta, \mathrm{w}, \mathrm{~d} & =\text { the length, width, and depth of the node } \\
\rho & =\text { the material density } \\
\mathrm{c} & =\text { the material specific heat }
\end{aligned}
\]

The capacitor is automatically computed if described in block 3 as follows: COLUMS
\(\longrightarrow\) GAPOI \begin{tabular}{ll}
5 \\
\hline
\end{tabular} \(20 \quad 30\) 30
w \(\begin{array}{lll}40 & 45 & 50 \\ \mathrm{~d} & \mathrm{~N}_{1} & \mathrm{~N}_{2}\end{array}\)
where
\(\mathrm{A}=\) the capacitor designation number
\(N_{1}=\) the designation number of the curve containing the material specific heat vs temperature
\(\mathbb{N}_{2}=\) the designation number of the curve containing the material density vs temperature

Any constistent set of units may be employed. \(A, \mathbb{N}_{1}\) and \(\mathbb{N}_{2}\) are given in fixed-point notation in 5-column fields, and \(\delta\), w, and d are given in floatingpoint notation in lo-column fields. The capacitance of node \(A\) is updated each computing cycle, after the program interpolates curves \(N_{1}\) and \(N_{2}\) for the specific heat and density.

\section*{BLOCK 4, INPUT DATA}

Block 4 consists of individual sub-blocks of input data which are used by the functions. The function which uses the data determines the nature of the numbers in the sub-block. For instance, the data might be the point by point description of a curve which the function will use for interpolation. Also, the data block is very convenient as a storage for data constants used for special calculations, or as temporary storage to be used as required during various portions of the program.

Each sub-block of data is identified by a fixed-point number called the designation number of the sub-block. The designation numbers are arbitrary, but can be used only once. A DEC card with the designation number listed in columns 6 through 10 must precede the sub-block, and a DEC card with the negative of the designation number listed in columns 6 through 10 must terminate the sub-block.

To illustrate, suppose that the curve plotted below is to be described in the data block.


Curve 15 would appear on the input data sheet as follows:
COLUMN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 15 & 10 & 15 & 25 & \({ }^{35}\) & 45 & 55 & B & 72 \\
\hline DEC & 15 & & & & & & & 4001 \\
\hline DEC06 & & 0. & 60. & 50. & 110. & 90. & 220. & 4002 \\
\hline DEC05 & & 150. & 570. & 200. & 1000. & 0. & & 4003 \\
\hline DEC & -15 & & & & & & & 4004 \\
\hline
\end{tabular}

In block 4, the sequence numbers are often assigned as consecutive integers starting with 4001 . In the above example, card 4001 contains the curve designating number, and card 4004 contains the negative of the curve designation number. The actual curve is described on cards 4002 and 4003 by listing the coordinates of the points circled on the plotted curve. Each independent variable must immediately precede the corresponding dependent variable, and the independent variables must be listed in increasing order. The number of points needed to describe a curve depends on the accuracy required, and the type of interpolation routine employed. The machine as yet does not know whether the variables are time, temperature, or something else;
this information being given in the FUNCP subroutine. The zero on card 4003 is a flag indicating the end of the curve. This flag can be any number as long as it is less than the preceding value of the independent variable, which in this example is 200. This point is important, for if all values of the independent variable were negative, then the zero would not be correct. If, for example, the last value of the independent variable were -50., the end-of-curve flag would have to be something like -51 .

The designation number of a sub-block may be used in the FUNCT and PRINT subroutines to refer to a particular element in the sub-block. Before such a reference can be made, however, a locating statement must be made in the subroutine in which the reference is made. For example, to refer to a value in curve 15 above, the statement
\[
L 15=L O C(15)
\]
is first necessary. Then the sixth number in curve 15 (in this case the value 220.) would be referred to as
\[
P(I 15+6)
\]

In determining the sixth number note that the table designation number itself is not counted. Also, if this had been a periodic curve, the value given for the period would not be counted.

As stated previously, the data block must be terminated with an NBK card. Occasionally, a thermal analyzer problem will be run in which block 4 is not required. In this case two consecutive \(N B K\) cards must appear at the end of the capacitor block.

\section*{BLOCK 5, TIME CONSTANTS}

Block 5 contains the printing interval, the final time of the case, and the initial time of the case. These are the only three quantities to appear in block 5, and they must be given in the order listed above. The unit of time must be consistent with that used throughout the problem, normally seconds. A sample time block is shown on the following page.

\section*{COLUNN}


These items can, of course, be listed on separate cards, thus allowing room for comments following the numbers.

\section*{RESTART BLOCKS}

Many times it is desired to run several cases which are basically similar, differing only in the values of certain parameters. An example of this is a parametric study of the insulation thickness required for a given application where only resistor and capacitor values are changed between cases. Another example is an Earth-orbiting vehicle, where solar inputs can vary depending upon the angle between the Earth-sun line and the orbit plane. The restart can also be used to string several transient cases together, with the final temperatures of one case being used as the initial temperatures for the case which follows.

To use the restart feature, one or more restart blocks (each one constituting a separate case) can be added, with each restart block causing the preceding case to be re-run as a new case with certain changes as indicated in the restart block. A restart block can change any or all of the data sub-blocks, but if a data sub-block, e.g., a curve, is changed, it must be restarted in its entirety together with the same designation number used in the original case and it must contain the same or fewer numbers than the data sub-block being replaced. If the curve is periodic, the PER card must be included in the restart. Also, a restart block can change the time block, but if the time block is changed, it must be restarted in its entirety. If more than one restart block follows a case, each succee \(\dot{\text { ming }}\) restart block is interpreted to be changes to the immediately preceding case, and not changes to the original case.

Since each restart is a separate case, a CID card is inserted ahead of each restart to identify the output. This card is not mandatory, but its use is recommended. The next card is a flag indicating to which block the cards following the flag refer. The flags are as follows (note absence of decimal point):

COLUMN
\begin{tabular}{lll}
\(\longrightarrow 1\) & 10 & New initial temperatures \\
DEC & 1 & New resistors \\
DEC & 2 & New capacitances \\
DEC & 3 & New time block \\
DEC & 4 & New data sub-blocks \\
DEC & 5 &
\end{tabular}

Immediately following each of the initial value change flags (1, 2, or 3) are the change cards. Each of these change cards contains two items, the first being the designation number of the item to be changed and the second being the new initial value of that item. A DEC 0 card ends each set of change cards pertaining to a particular class of quantities, e.g., resistors. If the time block is to be changed, a DEC 4 card followed by the complete time block, i.e., print interval, final time and initial time, plus a DEC 0 at the end is required. A DEC 5 card precedes the new data sub-blocks, with a DEC 0 card after the last new sub-block. Each restart block, i.e., all the changes required for a given case, is terminated with an NBK card.

As an example of a restart, the following changes are to be made
in a case:
(a) \(T(17)=50\).
(b) \(R(15)=6000\).
(c) \(C(11)=0.031\)
(d) New linear curve 40, where,
\[
\begin{aligned}
& y=17 . \text { at } x=0 . \\
& y=53 . \text { at } x=100 .
\end{aligned}
\]
(e) New time block, where,
\[
\begin{aligned}
& M(4)=10 . \\
& M(3)=500 . \\
& M(2)=150 .
\end{aligned}
\]

The input is shown on the follo:ing prge. The oreer in which the various blocks are changed is arbitrary.


One very usetul application of the restart feature is in the analysis of an Earth-orbiting vehicle for which several sets of solar inputs may be applicable depending upon the orientation of the orbit plane with respect to the Earth-sun line. For this case the basic deck incorporates only the storage required to accommodate the solar data. To prevent the basic deck from running, the initial and final times should be input as zero. The correct time block can then be included in the various restart decks which load the particular solar inputs for each orbit orientation.

The following points should be kept in mind when using restarts:
- A restart block can only change values which had been given in the original case.
- A restart cannot change the structure of the network, i.e., the way the various resistors and capacitors are connected.
- A restart cannot add or delete data sub-blocks, but merely change the data contained in these sub-blocks.
- A restart block cannot change the FUNCT or the PRINT subroutines.
- The data within a restart block can be incremented, but those increment cards used in the original case are no longer applicable and must be repeated if the restart data is to be incremented.

\section*{FUNCT SUBROUTINE}

The FUNCT subroutine is an ordinary FORTRAN subroutine in which the user lists all curve interpolations, arithmetic operations, and special functions to be performed during program execution. These functions are executed at the beginning of each computing cycle, before the heat balance is performed. - A standard input format is described below so that the user need not have a knowledge of FORTRAN to prepare this routine. If the user is familiar with FORTRAN he should still learn to fill out the forms as described, but then should not hesitate to employ his knowledge to supplement the capabilities of the prepared program.

The input form for the FUNCT subroutine is illustrated in Table 5-1. All of the information shown must appear in the subroutine and, with the exception of the functions, these are generally the only items which must appear. With the exception of the first card, the information begins in column 7. A four-digit sequence number is placed in columns 77 through 80 of each card as a convenience in sorting or making changes to the deck.

The statement \$IBFTC FUNCT on the first card identifies the function subroutine and must be input as shown. The statement NODECK, NOREF will delete from the output the internal reference listing for the subroutine and will eliminate the punching of a binary deck. If either of these items is desired, replace NODECK (or NOREF) with DECK (or REF), leaving no blank spaces; e.g., DECK, REF.

The statement SUBROUTINE FUNCT sets up the linkage between the FUNCT subroutine and the calling program, and must be input as shown.

The variables listed in the COMMON declaration are assigned locations in a reserved section of core so they will not be destroyed by overlay operations. Card 6003 must also appear as shown.

The DIMENSION declaration tells the processor how much space in memory must be allocated or reserved for each collection of elements. Each variable which appears in the program in subscripted form must appear in a DIMENSION statement, and the statement must precede the first appearance of the variable. For example, on card 6004, 16 storages are reserved for the collection of elements called M, which are defined in Section IV. The DIMENSION declaration should be filled out exactly as shown. If the user wishes to add another
subscripted variable to the subroutine, storage may be reserved by including on card 6004 the name of the variable followed in parentheses by the number of quantities requiring storage space. Alternately, a second DINENSION card could be added to accomplish the same purpose.

From the user's standpoint the EQUIVALENCE declaration is required so that he may refer to the temperatures, resistors, capacitors and heating rates in terms which are meaningful to him. As an example, it allows the user to refer to a particular temperature by a \(T\) followed in parentheses by the node designation number. The user must fill in the blank spaces within the parentheses on cards 6006 through 6010 with the five integers defined below:
\begin{tabular}{ll}
\(\frac{\text { CARD }}{\text { INTEGER }}\) \\
6006 & \(\mathrm{j}=1+\) greatest temperature designation number \\
6007 & \(\mathrm{k}=\mathrm{j}+\) greatest temperature designation number \\
6008 & \(\mathrm{~m}=\mathrm{k}+\) greatest resistor designation number \\
6009 & \(\mathrm{n}=\mathrm{m}+\) greatest capacitor designation number \\
6010 & \(\mathrm{p}=\mathrm{n}+\) greatest capacitor designation number
\end{tabular}

Since columns 7 through 72 are all available for data input, the EQUIVALENCE declaration could actually be written on two cards, instead of six as shown. The integers in column 6 are codes indicating that the information on that card is a continuation of the information on the previous card. The REAL statement defines the variables \(M\) and IIN as floating-point values, since ordinarily these variable names are reserved for fixed-point values.

Next, all functions which the program is required to execute are listed, in the order of their execution. The order of execution is generally unimportant except when the execution of one function involves the result of another. For the user's convenience, the functions discussed in Section IV are summarized in Table 5-2.

The FUNCT subroutine is always terminated with the RETURN statement and the END declaration. The RETURN statement marks the completion of the intended task, and returns control to the calling program. The END declaration merely signals the processor that there are no more cards to be translated for that program.

TABLE 5-2.
SUMMARY OF FUNCTIONS AND SPECIAL SUBROUTINES
\begin{tabular}{|c|c|c|}
\hline FUNCTION & EXAMPIE & MEAIvING \\
\hline LINEAR INTERPOLATION & \(\mathrm{Y}=\operatorname{IIN}(\mathrm{X}, \mathrm{N})\) & Y is a linear function of X given by curve \(N\) \\
\hline PARABOLIC INIERPOLATION & \(\mathrm{Y}=\mathrm{PAR}(\mathrm{X}, \mathrm{N})\) & Y is a parabolic function of X given by curve \(N\) \\
\hline BIVARIATE INTERPOLATION & \(\mathrm{Y}=\mathrm{BIV}(\mathrm{XI}, \mathrm{X} 2, \mathrm{~N})\) & Y is a bivariate function of XI and X 2 given by table \(\mathbb{N}\) \\
\hline LINEAR INTERPOLATION WITH INIEGRATION & \(\mathrm{K}=\mathrm{XLIIN}(\mathrm{XI}, \mathrm{X} 2, \mathrm{~N})\) & K (thermal conductivity of insulating material) is \\
\hline \(\therefore\) & & \begin{tabular}{l}
\[
\frac{1}{\mathrm{X} 2-\mathrm{X1}} \int_{\mathrm{X} 1}^{\mathrm{X} 2} \mathrm{~F}_{\mathrm{N}}(\mathrm{X}) \mathrm{dX}
\] \\
where XI and X 2 are the temperatures of the nodes on each side of the insulation
\end{tabular} \\
\hline RADIATION WITH CONSTANT FACTOR & \(R(A)=R A D(B, C, K)\) & Resistor A connects nodes \(B\) and \(C\) and the \(K\) factor is a fixed constant. \\
\hline RADIATION WITH VARIABLE FACTOR & \(R(A)=R A D(B, C, X)\) & Resistor A connects nodes \(B\) and \(C\) and the \(K\) factor is stored in the circuit element X. \\
\hline RADIATION WITH MATRIX & \(R(A)=R R M(B, C, N)\) & Resistor \(A\) connects nodes \(B\) and C and table N contains the data used. to compute the \(K\) factors. \\
\hline CONVERGENCE & CALI CVG(A, \(\mathrm{N}, \mathrm{M}\) ) & The heat balance and list of functions are evaluated repeatedly until the temperatures reach the required convergence, A. A maximum of \(N\) iterations are to be performed, and a print is required every M-th iteration. If M is negative, convergence will be attempted with all capacitors set to zero. \\
\hline
\end{tabular}

TABIE 5-2 (Cont)
\begin{tabular}{|c|c|c|}
\hline FUNCTION & EXAMPIE & MEANING \\
\hline STEADY STATE. & CALI STS(A) & All capacitors are set to zero, the function list is ignored, and the heat balance evaluated repeatedly until the required convergence, \(A\), is obtained. \\
\hline MAXIMUM-MINTMUM & \[
\begin{aligned}
& \text { CAIL MMF }\left(\theta_{i}, \theta_{f},\right. \\
& \mathbb{N}, S)
\end{aligned}
\] & The program searches the output every 5 -th computing cycle between times \(\theta_{i}\) and \(\theta_{f}\) to determine the maximum and the minimum temperatures of the nodes listed in table \(N\). \\
\hline SAVE CURRENT DATA & CALI SAV(A, B & If A (usually current time) is greater than \(B\), the data currently in core are stored on tape and used as initial conditions in the subsequent case. \\
\hline INITIAL TEMPERATURE CARD PUNCH & CAIL PUNCHTT
\[
(\theta, A, B)
\] & The temperatures A through B at time \(\theta\) are recorded on punched cards in proper format for the initial temperature block. \\
\hline CURVE PLOTMTING & CALI TPLOT(N) & The temperatures of all nodes listed in table \(\mathbb{N}\) are to be machine plotted. \\
\hline AERODYNAMIC HEATING & \[
\begin{aligned}
& \text { CALL EAH i }(j, K, \\
& \left.H, \alpha_{o}, F\right)
\end{aligned}
\] & The aerodynamic heating to node \(j\) is to be computed by the reference temperature method. K is the Eckert K factor, \(H\) is the location where the calculated heat transfer coefficient is to be stored, \(\alpha_{o}\) is the surface angle of attack, and \(F\) is a code indicating whether node \(j\) is located on an upper or lower surface. \(H, \alpha_{0}\), and \(F\) are optional inputs. \\
\hline ABLATION & CALL ABL (i, N ) & The surface (ablating) node number is i and table \(N\) contains the ablator properties used to calculate the network parameters. \\
\hline
\end{tabular}

The PRINT subroutine is an ordinary FORTRAN subroutine in which the user specifies the quantities that are to be printed out at each printing interval, and the desired output format. Like the FUNCT subroutine, no knowledge of \(\operatorname{FORTRAN}\) is necessary to prepare this routine. However, to take advantage of the ability to specify the output format, the user is encouraged to learn the basic rules in writing format statements. In the discussion which follows, emphasis is placed on the input for a "standard" print format which will be acceptable to the user in most cases. This format lists the data in six full columns, with the corresponding time appearing by itself to the left of the first row of output. None of the quantities are labeled, but this is of little consequence unless a very large number of quantities are being printed. The advantages of this format are its simplicity and the fact that it requires no knowledge of format statements by the user. Following the explanation of this "standard" format, some of the general rules pertaining to the writing of format statements are reviewed for those who wish to label their output.

\section*{Standard Print Format}

The input form for the PRINT subroutine is illustrated in Table 5-3. The first eleven cards contain essentially the same information as the corresponding cards in the FUNCT subroutine (Table 5-1). The blank spaces in the EQUIVALENCE declaration must be filled in with the integers \(j, k, m, n\), and \(p\) defined in the preceding section. The RFAL statement in the PRINT subroutine does not declare LIN to be a real, or floating-point, value since the variable IIN will not ordinarily appear in this subroutine.

The WRITE statement specifies the quantities to be printed and references the statement number of the FORMAT declaration which specifies the arrangement of the output data. The general form of the WRIIE statement is
\(\operatorname{WRIIE}(6, N) A, B, C, \ldots\)
where 6 is the designation number of the system output tape, \(N\) is the number of the corresponding FORMAT declaration, and the quantities A, B, C, etc.,
TABLE 5-3
INPUT FORMAT FOR PRINT SUBROUTINE

are to be printed in that order. On card 7012, for example, the statement
\[
\text { WRIIE }(6,10) M(1) \text {, }
\]
will cause the value of current time to be printed first. The user should then list the remaining items of interest, separated by commas, in the order in which they are to be printed. Any addressable element may be printed out. Although not required by the program, if the standard six-column format is used, these elements should be listed six to a card for convenience in identifying the output. There is no limit to the number of items that may be printed. Ary character other than 0 (zero) or a blank may be used in column 6 as a continuation flag. However, the maximum number of continuation cards in any ctatement iṣ 19. If more than 20 lines are required, the remaining items are listed on additional WRITE statements, all of which begin

\section*{WRITE \((6,10)\)}

When the designation numbers to be listed in a WRIIE statement are consecutive, they can be abbreviated. To illustrate, if the temperatures of nodes 20 through 85 are to be printed consecutively, an acceptable WRITE statement is

WRIIE \((6,10)(T(I), I=20,85)\)
The FORMAT statement shown in Table 5-3 calls for the values to be printed out using the \(E\) format (for powers of 10 ), with seven quantities listed on the first line, and six on each remaining line.

The PRINT subroutine must be terminated with the RETURN and END cards.
The output format described above is illustrated in Example \#l of Section VI. The following section describes the FORMAT declaration in more detail for those who wish to take advantage of the opportunity to specify the output format.

\section*{FORMAT Declarations}

When the results are to be printed on one or more lines of paper, the computer must know how the information is to be distributed among the columns on each printed line. The information to be printed on a particular line may be thought of as a unit output record. Some line printers for the IBM 1401
and 1410 computers can accept unit output records containing 100 characters while other printers, such as the 1401 with special features, provide 132 printer columns. The following discussion pertaining to output will assume the use of a line printer which can accept records containing 132 characters. Regardless of the printer used, the first character of each record is actually not printed. Instead, it is interpreted by the printer as a special code for control of paper movement just prior to printing the record. As a result, only 131 characters are available to the user to become printed information on 131 columns of the printed line.

Each unit output record is made up of one or more fields, a field being a group of one or more columns whose contents can or must be described separately. Each field is described by a format code which specifies the form, size, and location of each field from left to right within each of one or more records. The purpose of the FORMAT declaration is to make this code available to the computer during execution of the WRIIT statement. The remainder of this section is concerned with the definition, description, and use of format codes.

Field Specification Codes - Numerical output will take one of the following three forms:
1. Integers (I-fields) - Integers are printed out without decimal point; for example,
\(\pm X X X\)
2. Floating Point With Exponent (E-fields) - When using this form, the decimal point is printed immediately to the left of the leading significant digit; for example,
\[
\pm 0 . x_{1} x_{2} x_{3} x_{4} E \pm n_{1} n_{2}
\]
applies to a request for 4 decimal places.
3. Floating Point Without Exponentiation (F-fields) - An example of this form applicable to a request for 5 decimal places is
\[
\pm x_{1} x_{2} x_{3} \cdot x_{4} x_{5} x_{6} x_{7} x_{8}
\]

In all three examples, the negative sign will appear if the quantity is negative, but the + sign will never appear.

A field specification for an I-, E-, or F-field consists of one of the letters \(I\), \(E\), or \(F\) followed by an integer which specifies the size of the field, i.e., the number of available columns to be used. If the \(E\) or \(F\) field is specified, an additional code is required to denote the location of the decimal point. For example, \(I 6\) specifies a six-column integer field, and FlO. 5 specifies a ten column F-field with five numbers following the decimal point. Caution should be exercised in specifying the field width of E-fields since accuracy to one significant digit only requires an E-field of eight columns, i.e.,
\[
\pm 0 . X_{1} E \pm m_{1} n_{1}
\]

As examples of the general output appearance of \(E\) and \(F\) fields, consider the number -13.175492. The output appearance for several different field specification codes are shown below:

Code
F10.6
F10. 3
F10.0
E10. 3
E10. 4

Output Appearance
\(-13.175492\)
\(-13.175\)
-13.
-0.132E 02
0.1318 E 02 (invalid)

Note that E-field specifications must provide at least 7 columns in excess of the number of decimal places required. Regardless of the format code, the last digit always appears in the last column of the field.

Format Declarations for Records Containing Numerical Data OnIy - The general form of the FORMAT declaration is simply a statement number followed by the word FORMAT followed by the format code in parentheses; i.e.,

NN FORMAT (format code)
Its use is best explained by examples. Suppose that we wish to print the variables \(M(5), T(6), R(18), C(26), J 1\), and \(K L O D\) in that order. The first
four are floating point variables, and the latter two are fixed point. If the WRIIE statement were

WRIIE \((6,35) \mathrm{M}(5), T(6), R(18), C(26), J 1, K L O D\)
the FORMAT declaration might appear as

35 FORMAT (F10.4, F10.4, F10.4, F10.4, I5, I5)
or
35 FORMAT (4F10.4, 2I5)
Both formats would result in identical outputs consisting of a 10column F-field for the floating point numbers, and a 5 column integer field for the fixed point numbers. The printed line might appear as follows (note that the first column is always skipped):

COLUMN
\[
\begin{array}{rrrrrr}
\mathbf{2} & \mathbf{1 0} & \mathbf{2 0} & \mathbf{3 0} & \mathbf{4 0} & \mathbf{4 5} \\
& \mathbf{5 0} \\
50.0000 & -31.7183 & 8267.9526 & 1.8913 & 6 & -83
\end{array}
\]

Parentheses may be used within the format code to indicate repetition of the format description within the parentheses for all succeeding lines. For example, the WRITE statement
\[
\text { WRITE }(6,10)(T(I), \quad I=1,50)
\]
and corresponding FORMAT declaration
10 FORMAT (6E15.4/(7F15.2))
Will cause the first six temperatures to be printed on the first line using tie E-field format. Then, the remaining 44 temperatures will be listed, sever rer line using the F-field format. The slash (/) indicates the end of a recond, i.e., the end of a printed line, as explained in the next section.

Printer Carriage Control - In order to print an output record, the line printer must first be told on which line that record should be printed. With this information, the printer can then move the carriage which holds the paper the desired amount just prior to the printing of a line. The printer receiyes the desired carriage control information in the form of a one character code placed at the first of the output record being readied for printing. The first position of the record, therefore, is never printed and is always assumed to be a carriage control code. It is therefore imperative that each output record be format coded to provide a carriage control code in the first column.

Single line spacing means that the paper is advanced one line before printing. The code for single line spacing is a blank (a). With some risk of error, a blank is ensured if the first field is an I-, E-, or F-field which has been provided with more than enough columns to print the given number. A much safer approach is to force a blank in the first character of the output record by making the first field a skip field. This is accomplished by incorporating in the format code the specification \(m \mathrm{XX}\), where mn is an integer representing the number of columns to be skipped. Some examples are given below.

In the last example of the preceding section
FORMAT (6E15.4/(7F15.2))
was assumed to be a suitable FORMAT declaration. A much preferred form, in which we are certain to have a blank as the leading character of each record, is
FORMAT (1X,6E15.4/(1X,7F15.2))

When this form is used, each new record described begins with a IX field. The first line has the format \(1 \mathrm{X}, 6 \mathrm{E} 15.4\) and all succeeding lines are described as IX, 7F15.2. .

Line spacing is accomplished by use of a slash (/) or multiple slashes ahead of or following any record description. The above example is now repeated several times to illustrate this technique:

Example 1
FORMAT (1X, 6E15.4//(1X,7F15.2))

The double slash causes an extra blank line to appear after the first line is printed. The first slash marks the end of the first line and the second slash marks the end of the second line.

\section*{Example 2}
\[
\text { FORMAT }(1 X, 6 E 15.4 / / / /(1 \mathrm{X}, 7 \mathrm{~F} 15.2))
\]

By the same reasoning quadruple slashes cause three extra blank lines. In general, \(\mathbb{N}\) slashes appearing at the end of a record description will produce N -I extra lines after that record.

Example 3
FORMAT (IX, 6E15.4/(1X, 7F15.2)/)

The slash before the final right parentheses does not cause an extra line. The combination "/)" has the same effect as the final parentheses ")" by itself.

\section*{Example 4}
FORMAT (1X,6E15.4/(1X,7F15.2)//)

The double slash causes one extra blank line after each record coded (1X,7F15.2).

Example 5
FORMAT (//IX,6E15.4/(IX,7F15.2))
The double slash causes two blank lines before the first record is printed, so the printing begins on the third line. In general, if \(\mathbb{N}\) slashes appear at the very beginning of the format code, \(\mathbb{N}\) extra blank lines will result.

Hollerith Fields - The use of a Hollerith or H-field enables the user to provide for the printing of alphameric words or phrases in the form of comments, titles, headings, etc., to explain the numerical results being printed. Use of \(H-f i e l d s\), while frequently desirable, is optional. An H-field is of the form
where
sss is a space count which may be any integer up to 132 ．
H is the symbol identifying the Hollerith field．
ccc．．．ccc denotes the contents of the sss spaces following immediately after the letter H；ccc．．．ccc includes all blanks and special char－ acters，i．e．，all blank spaces indicated by the symbol a mus．t be included in the space count．

Hollerith fields are especially useful to print messages，titles，and headings，without calling for the value of variables．Also，they can be used for lineprinter carriage control．Since the use of a line printer requires that the first position of any output record be a carriage control character it is convenient to introduce a one space Hollerith field as the first field of every output record，as shown below．
\begin{tabular}{llc}
\begin{tabular}{c} 
Desired Paper \\
Movement Upward
\end{tabular} & \begin{tabular}{c} 
Required Carriage \\
Control Code
\end{tabular} & \begin{tabular}{c} 
Simplest Way \\
of Coding
\end{tabular} \\
one line & 0 （a blank） & 1 HO \\
two lines & 0 （zero） & IHO \\
skip to top of next page & \(I\) & \(1 H 1\)
\end{tabular}

To illustrate，the format used as an example above FORMAT（IX，6E15．4／（IX，7F15．2））
could be written
FORMAT（1Hロ6E15．4／（1Hロ7F15．2））
and in each case the output would appear the same，i．e．，single－spaced．If we wished to start printing at the top of the page，the appropriate format code is

FORMAT（1H16E15．4／（1H ロTF15．2））
To further illustrate the use of Hollerith fields assume that it is desired to list the current time \(M(1)\) ，print interval \(M(15)\) ，minimum \(R C\) product \(M(6)\) ，and the node at which the minimum \(R C\) product appears \(M(9)\) ．

Furthermore, this information is to be printed on one line and labeled as follows:
 SECONDS \(\wedge\) AT \(\wedge\) NODEXXXXX.

The carets ( \(\wedge\) ) indicate that a blank space is to be provided. If a paper movement of two lines (double space) is desired before writing this line, the appropriate WRITE statement and FORMAT declarations appear as follows:
\[
\text { WRITE }(6,837) M(1), M(15), M(6), M(9)
\]

837 FORMAT (6H 0 TIME=, F8.0, 8H C SECONDS, \(5 \mathrm{X}, 15 \mathrm{HCOMP} . \mathrm{O}\) INTERVAL=F8.3, 8HO SECONDS,
\(15 \mathrm{X}, 8 \mathrm{H}(\mathrm{RC}) \mathrm{MIN}=, \mathrm{F} 8.3,16 \mathrm{HO}\) SECONDS \(\triangle\) AT O NODE, F 6.0 )
The following remarks pertaining to the above FORMAT declaration are applicable:
1. The zero in the first Hollerith field serves as carriage control, moving the paper upward two lines.
2. Any character lying within the Hollerith field, i.e., any character found within the sss spaces following the \(H\), will be printed exactly as it appears in the format code. These spaces within the H-field must be counted carefully to ensure that the correct space count is used. An error in the space count will usually render the format code invalid.
3. It is not necessary to separate by a comma an H-field from any characters which follow it on the right. Thus, in
\[
8 \mathrm{H}(\mathrm{RC}) \mathrm{MIN}=, \mathrm{F} 8.3 \ldots
\]
the comma could be optionally omitted after the equal sign. The comma in

\section*{F8.3,16HOSECONDS. ....}

Is required. The reason is that commas are required to mark the end of one field code and the beginning of another when the computer has no other means of determining this demarcation. Due to space count, an H-field, unlike other field codes, provides sufficient information for the computer to determine where it ends.
4. The integer 1 on the second line of the FORMAT declaration is a continuation code, and appears in column 6 .

The reader should now be in a position to interpret the "standard" Format code given in the Section "Standard Print Format", i.e.,

FORMAT (1HO, 7E18.8/(19X,6E18.8))
After the paper is advanced 2 lines, the first 7 numerical quantities are . listed, using an 18 column E-field format. On each succeeding line the first 19 spaces are skipped, followed by 6 numerical quantities again using the E-field format.

Alphameric Fields - Alphameric or "BCD" information may be stored internally in the computer and printed out when desired using the A-field code. This code has the following form:

Axx
where xx is the field width or the number of columns allocated for the field, and \(A\) is the code letter for this type of field.

The use of A-fields will not be discussed in detail except for explaining the procedure to have the information on the CID card printed in the output. To accomplish this, the COMMON card in the PRINT subroutine must appear as

COMMON P, M, MISCEL(23), CID(12)
Then, assuming the FORMAT declaration is statement number 101 and it is desired to skip to the top of the next page, the WRITE statement and FORMAT declarations appear as follows:
\[
\operatorname{WRITE}(6,101)(\operatorname{CID}(I), I=1,12)
\]

101 FORMAT (1HI///33X, 12A6)
The triple slash will cause the top two lines to be skipped. Thirtythree spaces are skipped to approximately center the CID information on the top of the page: The line skipping and centering are, of course, optional.

\section*{VI - EXAMPLE PROBLEMS}

Two examples demonstrating the various program features are presented in this section. These problems are worked in detail to show the complete process involved in converting the physical system into an equivalent RC network and the transcription of this network onto the data sheets from which the data cards are punched. The computer output is shown for both problems.

EXAMPIE \#l - Temperature response of an equipment-mounting plate during suborbital test flight of a lifting re-entry vehicle.

\section*{Problem Description}

A number of heat-dissipating electronic components are mounted on a \(0.10-i n\). aluminum plate in the equipment bay of an unmaned lifting reentry test vehicle. The plate and equipment radiate on both sides to quartz fiber insulation attached to the internal surfaces of the upper and lower skins. The skin temperatures are known functions of time from a separate ascent and re-entry heating analysis. Assuming a mean heat dissipation of \(100-\mathrm{w} / \mathrm{sq} \mathrm{ft} \mathrm{( } 0.095 \mathrm{Btu} / \mathrm{sec}-\mathrm{ft}^{2}\) ) and an equipment density of 25 psf , the problem is to determine the temperature rise of the aluminum plate and equipment during the suborbital flight. The physical picture and corresponding thermal network are shown in Figure 6-1.

The insulation is divided into lumps either 1.0 in. or 0.5 in. thick, with nodes appearing on the interior boundaries where radiation to the equipment plate occurs. Although node and resistor designation numbers are completely arbitrary a systematic scheme is employed for convenience. The following material properties are assumed.


\section*{NETWORK}


NODE 2
NCDE 3
NODE 4

NODE 6
NODE 7
NODE 8
NODE 9

Figure 6-1. Physical Geometry and Corresponding Thermal Network


\section*{Conduction Resistors}
\[
\begin{aligned}
& R 2=R 3=R 6=R 7=R 8=\frac{3600 \delta}{k A}=\frac{(3600)\left(\frac{1}{12}\right)}{(0.06)(1)}=5000 \frac{\text { sec }^{\circ} \mathrm{F}}{\mathrm{Btu}} \\
& R I=R 9=\frac{3600 \delta}{k A}=\frac{3600 \frac{0.5}{\mathrm{l}}}{(0.06)(1)}=2500 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\end{aligned}
\]

The resistance through the external skins is neglected, since it is negligible compared with that through the insulation.

\section*{Radiation Resistors}

The radiation \(K\) factors are computed using the effective emissivity factor given by the infinite parallel plate formula, and a view factor of unity.
\[
\begin{aligned}
& { }^{\epsilon_{12}}=\frac{1}{\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{2}}-1}=\frac{1}{\frac{1}{0.1}+\frac{1}{0.8}-1}=0.0975 \\
& K_{4}=K_{5}=\frac{\epsilon_{12} \mathrm{FA}}{3600}=\frac{(0.0975)(1.0)(1.0)}{3600}=2.71 \times 10^{-5}
\end{aligned}
\]

\section*{Capacitors}

For the insulation nodes:
\[
\begin{aligned}
& C 2=C 3=C 7=C 8=C 9=\rho c \delta A=(3.0)(0.25)\left(\frac{1}{12}\right)(1)=0.0625 \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F}} \\
& C 4=C 6=\rho c \delta A=(3.0)(0.25)\left(\frac{0.5}{12}\right)(1)=0.0313 \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F}}
\end{aligned}
\]

For the equipment and mounting plate, assuming an average specific heat of 0.15 for the electronic components:
\[
C_{5}=25(0.15)+\rho c \delta A=3.75+175(0.2)\left(\frac{0.1}{12}\right)(1)=4.04 \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F}}
\]

No capacitors are required for nodes 1 and 10 since their temperatures are specified by a curve.

RC Products
Although not required by the computer, the user should be familiar with the computation of \(R C\) products. To illustrate the procedure, the RC products are computed for this example.

Nodes 2 and 9:
\[
(\mathrm{RC})_{2}=(\mathrm{RC})_{9}=\frac{\mathrm{C} 2}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}}=\frac{0.0625}{\frac{1}{2500}+\frac{1}{5000}}=104 \mathrm{sec}
\]

Nodes 3, 7, and 8:
\[
(\mathrm{RC})_{3}=(\mathrm{RC})_{7}=(\mathrm{RC})_{8}=\frac{\mathrm{C} 3}{\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}}=\frac{0.0625}{\frac{1}{5000}}=313 \mathrm{sec}
\]

The RC products of nodes 4,5 , and 6 depend on the value of the radiation resistors 4 and 5 , which are temperature dependent. Assuming all three nodes are at \(150^{\circ} \mathrm{F}\) :
\[
\begin{aligned}
R 4 & =R 5=\frac{1.0}{\sigma K_{4}\left[\left(T_{4}+460\right)^{2}+\left(T_{5}+460\right)^{2}\right]\left[\left(T_{4}+460\right)+\left(\mathrm{T}_{5}+460\right)\right]} \\
& =\frac{1}{\left(0.1713 \times 10^{-8}\right)\left(2.71 \times 10^{-5}\right)(4)(610)^{3}}=23700 \frac{\mathrm{sec}{ }^{\circ} \mathrm{F}}{\mathrm{Btu}}
\end{aligned}
\]

Nodes 4 and 6:
\[
(\mathrm{RC})_{4}=(\mathrm{RC})_{6}=\frac{\mathrm{C} 4}{\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 4}}=\frac{0.0313}{\frac{1}{5000}+\frac{1}{23700}}=1.29 \mathrm{sec}
\]

Node 5:
\[
(\mathrm{RC})_{5}=\frac{\mathrm{C}_{5}}{\frac{1}{\mathrm{R}^{4}}+\frac{1}{\mathrm{R}_{5}}}=\frac{4.04}{\frac{1}{23700}+\frac{1}{23700}}=47900 \mathrm{sec}
\]

Initially, nodes 2 and 9 have the lowest RC products, but if the temperatures of nodes 4,5 , or 6 become quite large, resistors 4 and 5 decrease and it is possible that later in the problem ( \(R C)_{\min }\) would appear at either node 4 or 6 . If several nodes all have the same RC product, the one with the lowest designation number is used to determine the computing interval. In this example, however, the initial \((R C)_{\text {min }}\) is greater than the specified l00-sec printing interval and therefore
\[
\Delta \theta=(0.25)(100)=25 \mathrm{sec}
\]

Later in the problem, if ( RC\()_{\min }\) becomes less than 100 sec , the computing interval will be \(0.25(\mathrm{RC})_{\text {min }}\).

\section*{Curves}

Two curves are required, namely the variation of \(T(1)\) and \(T(10)\) with time. These temperature histories are assumed to be known and are input as curves 1 and 10, respectively. These curves are shown in Figure 6-2.

\section*{Time Block}

The following times are assumed:
Print interval \(=100 \mathrm{sec}\)
Final time \(\quad=2300 \mathrm{sec}\)
Initial time \(=0 \mathrm{sec}\)


Figure 6-2. Temperature History of Upper and Lower Surfaces

\section*{FUNCT Subroutine}

The five constants required for the EQUIVAIENCE declaration are as follows:
\(j=1+\) greatest temperature designation number \(=1+10=11\)
\(\mathrm{k}=\mathrm{j}+\) greatest temperature designation number \(=11+10=21\)
\(\mathrm{m}=\mathrm{k}+\) greatest resistor designation number \(=21+9=30\)
\(\mathrm{n}=\mathrm{m}+\) greatest capacitor designation number \(=30+9=39\)
\(\mathrm{p}=\mathrm{n}+\) greatest capacitor designation number \(=39+9=48\)
The following function callouts are required:
(a) Variation of \(\mathbb{T}(1)\) and \(\mathbb{T}(10)\) with time
\[
T(1)=\operatorname{INN}(M(1), 1)
\]
\[
T(10)=\operatorname{IIN}(M(1), 10)
\]
(b) Radiation with constant \(K\) factor
\[
\begin{aligned}
& \mathrm{R}(4)=\operatorname{RAD}(4,5,2.7 \mathrm{E}-5) \\
& \mathrm{R}(5)=\operatorname{RAD}(5 ; 6,2.7 \mathrm{E}-5)
\end{aligned}
\]
(c) Heat input to node 5
\[
Q(5)=0.095
\]

Two additional instructions \(\mathbb{T N}(1)=T(1)\) and \(\mathbb{T N}(10)=T(10)\) are necessary only if it is desired to print the temperatures of nodes 1 and 10 in the output. The reason is that, unless otherwise specified, the "new" temperatures of these nodes never change from their initial value of \(70^{\circ} \mathrm{F}\) (since no capacitors are specified and hence no heat balance is performed). Then, at the end of each computing cycle, \(T(i)\) is set equal to \(\mathbb{T N}(i)\) and the temperatures interpolated from curves 1 and 10 are replaced by the value \(70^{\circ} \mathrm{F}\), which is then printed in the output. Note that the heat balance on the nodes with capacitors is properly executed whether these additional instructions are added or not since the independent variable used in the heat balance is \(T(i)\), not \(\operatorname{TN}(i)\).

\section*{PRINT Subroutine}

The print format is set up to list the data in six full columns, with the corresponding time appearing by itself to the left of the first
row of output. This is the standard output format described in Section V. The output specification includes all temperatures, radiation resistors 4 and 5, the minimum RC product, and the node at which ( RC\()_{\min }\) appears.

\section*{Computer Input for Example \#1}

The input for Example \#l is shown on data input sheets in Table 6-1. In addition to the previous instructions the following remarks are applicable:
1. The order in which nodes, resistors, capacitors, and curves are input is arbitrary.

The user's name and phone number should appear on the first temperature card to identify the output.
3. A liberal use of the space available for comments will help identify various information for future reference.

Computer Output
The computer output for Example \#l is shown in Table 6-2. The first two pages list the FUNCT subroutine and the PRINT subroutine. The third page lists the initial temperature, resistor, capacitor, data, and time blocks just as they appear on the input sheets (Table 6-1). The number 2266 added to the sequence number during keypunch is the Lockheed-California Company designation number for the Thermal Analyzer Program.

The answers are printed on the fourth and fifth pages of Table 6-2. As an example of how the output is read, the temperatures, etc., existing at 1500 sec are tabulated below. .

Current time \(=1500 \mathrm{sec}\)
\(T(1)=979.0^{\circ} \mathrm{F}\)
\(T(2)=844.7^{\circ} \mathrm{F}\)
\(T(3)=631.8^{\circ} \mathrm{F}\)
\(T(4)=469.0^{\circ} \mathrm{F}\)
\(T(5)=117.2^{\circ} \mathrm{F}\)
\(T(6)=630.1^{\circ} \mathrm{F}\)
\(T(7)=958.9^{\circ} \mathrm{F}\)
\(T(8)=1383.4^{\circ} \mathrm{F}\)
TABLE 6-1
INPUT FOR EXAMPLE 1 (2 of 3)

TABLE 6-1

6-11
TABLE 6-2. COMPUTER OUIPUT FOR EXAMPLE 1


0

(CONIINUED)



O
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & &  & & & \\
\hline \multicolumn{7}{|l|}{TABLE 6-2. (CONTINUED)} \\
\hline 0. &  & \[
\begin{array}{ll}
0.70000000 \mathrm{E} & 02 \\
0.70000000 \mathrm{E} & 02 \\
0 .
\end{array}
\] & \[
\begin{aligned}
& 0.70000000 \mathrm{E} \text { 02 } \\
& 0.70000000 \mathrm{E}
\end{aligned}
\] & \[
\begin{array}{ll}
0.70000000 \mathrm{E} & 02 \\
0.70000000 \mathrm{E} & 02
\end{array}
\] & \[
\begin{aligned}
& 0.7 c 000000 E \quad 02 \\
& 0.36255127 E \\
& 0.75
\end{aligned}
\] & \[
\begin{aligned}
& 0.70000000 \mathrm{E} \\
& 02 \\
& 0.36 \angle 55127 E \\
& 0.5
\end{aligned}
\] \\
\hline 0.09999999803 &  & \[
\begin{aligned}
& 0.17061070 \\
& 0: 7392987 E \\
& 0: 702 \\
& 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 0.73934828 E \\
& 0.17066099 E
\end{aligned} 02
\] & \[
\begin{array}{lll}
0.70204655 E & 02 \\
0.50000000 E & 03
\end{array}
\] & \[
\begin{gathered}
0.72350296 E \\
0.36067738 E \\
0.35
\end{gathered}
\] & 0.70071597 E
0.32
0.36070864 E
0.5 \\
\hline 0.20000000 E 03 & \[
\begin{array}{ll}
0.70000000 E & 03 \\
0.753950296 & 02 \\
0.09999999 E & 0.3
\end{array}
\] & \[
\begin{aligned}
& 0.37191358 \mathrm{EX} \\
& 0.1235808 \mathrm{E} \\
& 0.13 \\
& 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 0.12153303 \mathrm{E} \\
& 0.39688206 \mathrm{E} \\
& 0 .
\end{aligned}
\] & \[
\begin{array}{ll}
0.805255195 & 02 \\
0.77000000 \varepsilon & 02
\end{array}
\] &  & \(0.70925584 E\)
\(0.35789173 E\)
0.05 \\
\hline 0.30000000503 & \[
\begin{array}{ll}
0.78 .000 c 00 E & 03 \\
0.947623716 & 02 \\
0.09499999 E & 02
\end{array}
\] & 0.48854344 E
0.203
0.20000600
03 0. & \[
\begin{array}{ll}
0.19034791 E & 03 \\
0.81977893 E & 03
\end{array}
\] & \begin{tabular}{l}
\(0.11440361 E 03\) \\
0.21500000 E 04
\end{tabular} &  & \(0.76948616 E\)
0.351345422 .02 \\
\hline 0.40000000803 &  & \begin{tabular}{l}
\(0.56403683 E\)
0.39882060 E
0.3 \\
0.
\end{tabular} & 0.260244136
\(0.12989896 E 64\) &  & \(0.79459974 \mathrm{E}^{\text {c }}\) -
0.283621096 & \(0.93392884 E\)
\(0.33649234 E\)
0. \\
\hline 0.50000000 E O3 &  & \[
\begin{aligned}
& 0.611224826 \\
& 03 \\
& 0.59247985 E \quad 03 \\
& 0 .
\end{aligned}
\] & \(\begin{array}{lll}0.32316525 E & 03 \\ 0.15123849 E & 04\end{array}\) & \[
\begin{aligned}
& 0.21530426 \mathrm{E} \\
& 0.21900000 \mathrm{E}
\end{aligned}
\] & \begin{tabular}{l}
\(0.81929317 E\) \\
0.245080808 \\
0. \\
\hline
\end{tabular} & \(0.12988888 E\)
\(C: 30707234 \mathrm{E}\)
05 \\
\hline 0.600000 COE 03 &  & \[
\begin{array}{ll}
0.64719986 E & 03 \\
0.75350880 E & 03 \\
0 .
\end{array}
\] & 0.37781873 E
0.16320350 E
0. & \(\begin{array}{lll}0.26415143 E & 03 \\ 0.22080000 E & 04\end{array}\) & \(\begin{array}{ll}0.84567910 \in & 02 \\ 0.21381519 E & 05\end{array}\) &  \\
\hline 0.70000000 E 03 & \begin{tabular}{l}
\(0.8440000 C E\) \\
03 \\
\hline \(.44408 C 5 E\) \\
03
\end{tabular} \(\begin{array}{ll}0.414408 C 5 E & 03 \\ 0.09999999 E & 03\end{array}\) & \[
\begin{aligned}
& 0.67766861 E \\
& 03 \\
& 0.88359604 \mathrm{E} \\
& 03 \\
& 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 0.42498742 \mathrm{E} \\
& 0.17115814 \mathrm{E} \\
& 0.1
\end{aligned}
\] & \[
\begin{gathered}
0.306457866 \\
0.22399999 E \\
0.23
\end{gathered}
\] & \begin{tabular}{l}
0.87238984 E 02 \\
0.19012549 E 05
\end{tabular} & \[
\begin{aligned}
& 0.25820921 E \\
& 0.21955337 E \\
& 0.35
\end{aligned}
\] \\
\hline 0.80000000 E 03 &  & \[
\begin{aligned}
& 0.70473283 E \\
& 03 \\
& 0.99115331 \mathrm{E} \\
& 0 .
\end{aligned}
\] & \(\begin{array}{ll}0.465597776 & 03 \\ 0.17716763 E & 04\end{array}\) & O.34186970E
0.22400000
0. & 0.901652056
\(0.17245023 E 05\) & \(0.33156329 E 03\)
\(0.18124875 E 05\) \\
\hline 0.90000000603 & \[
\begin{array}{ll}
0.87600000 E & 03 \\
0.60512380 & 03 \\
0.69999499 E & 03 \\
0.039
\end{array}
\] & \[
\begin{aligned}
& 0.72929558 E \\
& 0.10821043 E \\
& 0 .
\end{aligned}
\] &  & 0.37113343 E
\(0.22360000 \mathrm{O}^{03}\)
0.4 & \(0.93321960 E\)
\(0.15913963 E \quad 02\) & \(0.40028416 E\)
\(0.15190412 E\)
0 \\
\hline \(0.09999999 E 04\) &  & \[
\begin{aligned}
& 0.75185104 \mathrm{E} \\
& 0.7150212 \mathrm{O} \\
& 0.1590212 \\
& 0 .
\end{aligned}
\] & \(\begin{array}{lll}0.53064865 E & 03 \\ 0.18459523 E & 04\end{array}\) & \(0.39530033 E 8\)
\(0.22319999 E 4\) & \(0.96730053 E \quad 02\)
\(6.14991052 E \quad 05\) & \begin{tabular}{l}
\(0.46034737 E\) \\
\(0.13055789 E\) \\
\hline 05
\end{tabular} \\
\hline 0.11000000 E 04 &  & \[
\begin{aligned}
& 0.7723052 G E \\
& 0.12242496 E \\
& 0 . \\
& 0 .
\end{aligned}
\] & c.55671351E
\(0.18687038 E\)
0.04 & \(0.41538455 E\)
\(0.22200000 E\) & \(0.10039252 E\)
\(0.14085317 E\) & \(0.51050630 E\)
\(0.11528993 E 8\)
0.05 \\
\hline 0.12000000504 & \[
\begin{array}{lll}
0.918000006 & 03 \\
0.82572646 & 03 \\
0.0999999 E & 03 \\
0.099999
\end{array}
\] & \[
\begin{aligned}
& 0.78994734 \mathrm{E} \\
& 03 \\
& 0.12786131 E \\
& 0 .
\end{aligned}
\] & 0.579180976
\(0.18810684 E\)
0.04 & \(0.43222253 E \quad 03\)
0.220000006
04 & \begin{tabular}{l}
0.104297036 \\
0.134347695 \\
\hline 05
\end{tabular} & 0.551283536
\(0.10432640 E\)
0.05 \\
\hline
\end{tabular}
TABLE 6-2. (CONIINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(0.13000000 E\) & & \[
\begin{aligned}
& 0.9300000 \mathrm{E} \\
& 0.87917111 \mathrm{E} \\
& 0.09999999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 03 \\
& 03
\end{aligned}
\] & \[
\begin{aligned}
& 0.80582423 \mathrm{E} \\
& 0.13229030 \mathrm{E} \\
& 0 .
\end{aligned}
\] & & \[
\begin{aligned}
& 0.59851721 \mathrm{E} \\
& 0.18873320 \mathrm{E}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.44638080 E \\
& 0.21799999 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.10842127 E \\
& 0.12899929 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.58393256 E \\
& 0.96338193 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] \\
\hline \(0.13999999 E\) & 04 & \[
\begin{aligned}
& 0.95400000 \mathrm{E} \\
& 0.92334776 \mathrm{E} \\
& 0.09999999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 03 \\
& 03
\end{aligned}
\] & \[
\begin{aligned}
& 0.82426919 \mathrm{E} \\
& 0.13579357 \mathrm{E} \\
& 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.61561422 \mathrm{E} \\
& 0.18831363 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.45840325 \mathrm{E} \\
& 0.21399999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.11273802 \mathrm{E} \\
& 0.12452172 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.60982078 E \\
& 0.90417093 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] \\
\hline \(0.15000000 E\) & 04 & \[
\begin{aligned}
& 0.97800000 \mathrm{E} \\
& 0.95898052 \mathrm{E} \\
& 0.98548014 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 03 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.84476697 E \\
& 0.13834853 E \\
& 0.59999999 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.63188629 \mathrm{E} \\
& 0.18707935 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.46906038 E \\
& 0.20999999 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.11721960 E \\
& 0.11973185 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.630167 C 7 E \\
& 0.85025568 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] \\
\hline 0.16000000 E & 04 & \[
\begin{aligned}
& 0.98800000 E \\
& 0.98677257 E \\
& 0.97171213 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 03 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.86272401 \mathrm{E} \\
& 0.14004283 \mathrm{E} \\
& 0.59999999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \[
\begin{aligned}
& 0.64769918 \mathrm{E} \\
& 0.18477961 \mathrm{E}
\end{aligned}
\] & 03
04 & \[
\begin{aligned}
& 0.47901399 E \\
& 0.20320000 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.12184091 E \\
& 0.11630581 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.64589774 \mathrm{E} \\
& 0.81892129 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 04
\end{aligned}
\] \\
\hline \(0.16999999 E\) & 04 & \[
\begin{aligned}
& 0.98400000 \mathrm{E} \\
& 0.10072728 \mathrm{E} \\
& 0.9606937 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.87081108 \mathrm{E} \\
& 0.14064947 \mathrm{E} \\
& 0.5 \$ 999999 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \(0.66133881 E\)
\(0.18015420 E\) & 03
04 & 0.48824015 E
0.19360000 E & 03
04 & \(0.12657857 E\)
\(0.11315288 E\) & 03
05 & \[
\begin{aligned}
& 0.65775389 \mathrm{E} \\
& 0.79487673 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] \\
\hline 0.18000000 E & 04 & \[
\begin{aligned}
& \mathrm{C} .98000000 \mathrm{E} \\
& 0.10202923 \mathrm{E} \\
& 0.95216984 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.87445297 \mathrm{E} \\
& 0.14008209 \mathrm{E} \\
& 0.59999999
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \[
\begin{aligned}
& 0.6717722 \mathrm{E} \\
& 0.17438259 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.49600982 \mathrm{E} \\
& 0.18400000 \mathrm{E}
\end{aligned}
\] & 03
04 & \[
\begin{aligned}
& 0.13140851 \mathrm{E} \\
& 0.11042460 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.66609942 E \\
& 0.77686273 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] \\
\hline 0.19000000 E & c4 & \begin{tabular}{l}
0.94800000 E \\
0.10259638 E
0.94604029 E
\end{tabular} & \[
\begin{aligned}
& 03 \\
& 04 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.86732227 E \\
& 0.1382209 \mathrm{E} \\
& 0.5999999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \(0.67864677 E\)
\(0.16797774 E\) & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.50202907 \mathrm{E} \\
& \mathrm{C} .17439999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.13630372 \mathrm{E} \\
& 0.10816120 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.67109285 \mathrm{E} \\
& 0.76421797 \mathrm{E}
\end{aligned}
\] & \\
\hline 0.20000000E & 04 & \[
\begin{aligned}
& 0.91600000 \mathrm{E} \\
& 0.10248831 \mathrm{E} \\
& 0.94214528 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.85182516 \mathrm{E} \\
& 0.13615756 \mathrm{E} \\
& 0.59999999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \[
\begin{aligned}
& 0.08050308 \mathrm{E} \\
& 0.16115524 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.50578301 E \\
& 0.16480000 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.14123559 \mathrm{E} \\
& 0.10644735 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.67298458 E \\
& 0.75631223 E
\end{aligned}
\] & \\
\hline \(0.20999999 E\) & 04 & \[
\begin{aligned}
& 0.8620000 \mathrm{E} \\
& 0.10178459 \mathrm{E} \\
& 0.94025739 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.82781392 \mathrm{E} \\
& 0.1330184 \mathrm{E} \\
& 0.5999999 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \(0.67755535 E\)
\(0.15248423 E\) & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \(0.50694314 t\)
\(0.14780000 t\) & 03 & \[
\begin{aligned}
& 0.14617427 \mathrm{E} \\
& 0.10533698 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 05 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& \text {.. } 7211336 \mathrm{E} \\
& 0.752515799
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] \\
\hline 0.22000000 E & 04 & \[
\begin{aligned}
& 0.78600000 \mathrm{E} \\
& 0.10047156 \mathrm{E} \\
& 0.94019347 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 02
\end{aligned}
\] & \[
\begin{aligned}
& 0.78578499 E \\
& 0.12847551 E \\
& 0.59997999 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \[
\begin{aligned}
& 0.66791797 E \\
& C .13827737 E
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.50523114 \mathrm{E} \\
& \mathrm{C} .12340000 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & \[
\begin{aligned}
& 0.15109108 \mathrm{E} \\
& 0.10486240 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 05
\end{aligned}
\] & \[
\begin{aligned}
& 0.06872783 E \\
& 0.75238769 E
\end{aligned}
\] & \\
\hline 0.23000000 E & 04 & \[
\begin{aligned}
& 0.71000000 \mathrm{E} \\
& 0.98326895 \mathrm{E} \\
& 0.94229066 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 03 \\
& 02
\end{aligned}
\] & \begin{tabular}{l}
\(0.73511326 E\)
0.12183146 E \\
\(0.59999999 E\)
\end{tabular} & \[
\begin{aligned}
& 03 \\
& 04 \\
& 01
\end{aligned}
\] & \[
\begin{aligned}
& 0.65068914 \mathrm{E} \\
& 0.12148283 \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04
\end{aligned}
\] & 0.49975958 E
C .99000 COOt & \[
\begin{aligned}
& 03 \\
& 03
\end{aligned}
\] & \[
\begin{aligned}
& 0.15595522 \mathrm{E} \\
& 0.105218595
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 0.66234028 \mathrm{E} \\
& 0.75660551 \mathrm{E}
\end{aligned}
\] & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathrm{T}(9)=1870 \cdot 7^{\circ} \mathrm{F} \\
& \mathrm{~T}(10)=2100 \cdot 0^{\circ} \mathrm{F} \\
& \mathrm{R}(4)=11973 \cdot \mathrm{sec}^{\circ} \mathrm{F} / \mathrm{Btu} \\
& \mathrm{R}(5)=8502 \cdot \mathrm{sec}^{\circ} \mathrm{F} / \mathrm{Btu} \\
& (\mathrm{RC})_{\min }=98.5 \mathrm{sec} \\
& (\mathrm{RC})_{\min }
\end{aligned}
\]

Prior to \(1500 \mathrm{sec}(R C)_{\min }\) is greater than 100 sec so the computing interval is based on the specified \(100-s e c\) print interval. As a result, the program prints 100 . for \((R C)_{\min }\) and 0 . for the node number.

EXAMPIE \#2 - Temperature response of a satellite equipment bay from launch through the first orbit.

\section*{Problem Description}

The electronic equipment rack of an earth-orbiting satellite is shown in Figure 6-3. A thermal analysis of this bay is to be performed for the time from launch through the first orbit, assuming an adiabatic interface with the rest of the vehicle. The bay consists of two intersecting aluminum webs on which three electronic components are mounted, and an aluminum outer shell. The heat dissipation of two of these components is constant, while that of the third is periodic with time.

Two sets of external heating curves are required: (1) a curve showing the ascent heating up to the time of orbit insertion, and (2) six periodic curves showing the incident orbital radiation. The ascent heating pulse is estimated in this example. The orbital heating curves were obtained from the Orbital Radiation Program (Ref. 4) for an earth-orientei horizontal cylinder in a llf-mile circular orbit. A noon launch at an inclination angle of 32.5 degrees and a zenith angle of 180 degress at the center of the equipment bay are assumed.

The initial values of surface emissivity and solar absorptivity will be changed in a restart. In addition, certain items will be plotted to demonstrate the plotting routine and a max-min search will be conducted for some of the more important nodes.

The physical geometry and equivalent thermal network are shown in Figure 6-3.

Since component temperatures are of primary interest here, the various capacities are assumed to be concentrated at points corresponding to equipment locations. The capacitance of the flush-mounted equipment is lumped with that of the adjacent web. The bracket-mounted equipment is represented by a separate node connected by a conduction resistor to the adjacent web. At the juncture between the two webs, a string of zero capacitance nodes (designated by \(\bigotimes\) and often referred to as "dummy" nodes) are used to effect a connection between webs. Perfect thermal contact at the web juncture, and at the web-shell intersection is assumed in this example. Also, the placement of shell nodes at the web-shell intersection implies that the external heating (or cooling) rates are much greater than heat losses by conduction to the vehicle interior.

The following materiel properties are assumed:

Property \(\quad\) Aluminum
\(\mathrm{k}=\) thermal conductivity, Btu/ hr \(\mathrm{ft}^{\circ} \mathrm{F} \quad 70\). \(\begin{array}{ll}\mathrm{c}=\text { specific heat, Btu/ } 1 \mathrm{~b}^{\circ} \mathrm{F} & 0.20\end{array}\)
\(\rho=\) density, \(\mathrm{lb} / \mathrm{ft}^{3} 175\).
\begin{tabular}{lc} 
Property & \(\frac{\text { Aluminum }}{}\) \\
\(\mathrm{k}=\) thermal conductivity, \(\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}\) & 70. \\
\(\rho=\) specific heat, \(\mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F}\) & 0.20 \\
\(\rho=\) density, \(\mathrm{lb} / \mathrm{ft}^{3}\) & 175.
\end{tabular}

\section*{Conduction Resistors}
\[
\begin{aligned}
& \text { On the webs } \\
& \begin{aligned}
& \mathrm{R} 14=\mathrm{R} 17=\mathrm{R} 24=\mathrm{R} 27=\frac{3600 \delta}{\mathrm{kA}}=\frac{3600\left(\frac{2}{12}\right)}{(70)\left(\frac{0.10}{12}\right)} \overline{\left(\frac{12}{12}\right)}=4620 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}} \\
& \mathrm{R} 13=\mathrm{R} 15=\mathrm{R} 16=\mathrm{R} 18=\mathrm{R} 23=\mathrm{R} 25=\mathrm{R} 26=\mathrm{R} 28=\frac{\mathrm{RIL}}{2}=2310 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}} \\
& \mathrm{R} 104=\mathrm{R} 105=\mathrm{R} 106=\mathrm{R} 107=\frac{360 \mathrm{c} \cdot \delta}{\mathrm{kA}}=\frac{360 \mathrm{c}\left(\frac{12}{12}\right)}{(70)\left(\frac{0.10}{12}\right)} \overline{\left(\frac{9}{12}\right)}=8240 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\end{aligned}
\end{aligned}
\]

0

-
0
NETWORK


NOTE: THE DESIGNATION NUMBER OF EACH SHELL TO SPACE RADIATION RESISTOR (NOT SHOWN) IS 1000 + THE SHELL NODE NUMbER. SPACE IS NODE 1.

Figure 6-3. Physical Geometry and Corresponding Thermal Network
for Example Problem

On the shell
\[
\begin{aligned}
& R 11=R 12=R 21=R 22=\frac{3600 \delta}{\mathrm{kA}}=\frac{3600\left(\frac{13}{12}\right)}{(70)\left(\frac{0.06}{12}\right)\left(\frac{12}{12}\right)}=11100 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}} \\
& R 101=R 102=R 103=\frac{3600 \delta}{\mathrm{kA}}=\frac{3600 \frac{12}{12}}{(70)\left(\frac{0.06}{12}\right)\left(\frac{13}{12}\right)}=9500 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\end{aligned}
\]

To compute R108, assume that each aluminum \(Z\) section is 5 in . in length with a cross-section as follows:


Ignore the resistance through each flange but assume a contact conductance of \(500 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\) between the lower flange and the web, and between the upper flange and the equipment.
\[
\mathrm{R}_{\text {CONTACT }}=\frac{3600}{\mathrm{kA}}=\frac{3600}{(500)\left(\frac{0.5}{12}\right)\left(\frac{5}{12}\right)}=415 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\]

The resistance through the web of the \(Z\) section is
\[
R_{\mathrm{WEB}}=\frac{3600 \delta}{\mathrm{kA}}=\frac{3600\left(\frac{1.0}{12}\right)}{70\left(\frac{0.12}{12}\right)\left(\frac{5}{12}\right)}=1030 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\]

The total resistance through one Z section is
\[
R=2 R_{C O N T A C T}+R_{W E B}=2(415)+1030=1860 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\]

Since there are two of these in parallel
\[
R 108=\frac{R}{2}=930 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\]

Radiation Resistors
Internal radiation is ignored in this example; however, each shell node must have a radiation resistor to space. In the basic deck assume \(\alpha_{s}=0.8\) and \(\epsilon=0.8\). In the restart assume \(\alpha_{s}=0.4\) and \(\epsilon=0.7\).

Basic deck
\(\mathrm{Kll}=\mathrm{Kl2}=\mathrm{K} 13=\mathrm{K} 21=\mathrm{K} 22=\mathrm{K} 23=\frac{\epsilon \mathrm{FA}}{3600}=\frac{(0.8)(1)\left(\frac{13 \times 12}{144}\right)}{3600}=2.40 \times 10^{-4}\)

Restart
\[
\mathrm{Kl1}=\mathrm{K} 12=\mathrm{K} 13=\mathrm{K} 21=\mathrm{K} 22=\mathrm{K} 23=\frac{(0.7)(1)\left(\frac{13 \times 12}{144}\right)}{3600}=2.10 \times 10^{-4}
\]

Since both \(\alpha_{s}\) and \(\epsilon\) are required in the shell heating functions (see below) these values, as well as the value of the radiation \(k\) factor, are stored in Table 103. The appropriate changes are made to Table 103 in the restart.

Capacitors
For the webs, excluding the capacitance of the electronic components
\[
\begin{aligned}
\mathrm{Cl4} & =\mathrm{Cl5}=\mathrm{Cl} 7=\mathrm{Cl} 8=\mathrm{C} 24=\mathrm{C} 25=\mathrm{C} 27=\mathrm{C} 28 \\
& =\rho \mathrm{c} \delta \mathrm{~A}=(175)(0.2)\left(\frac{0.06 \times 12 \times 9}{1728}\right)=0.131 \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F}}
\end{aligned}
\]

For the shell
\[
\begin{aligned}
\mathrm{C} 11 & =\mathrm{C} 12=\mathrm{C} 13=\mathrm{C} 21=\mathrm{C} 22=\mathrm{C} 23 \\
& =\rho \mathrm{C} \delta \mathrm{~A}=(175)(0.2)\left(\frac{0.10 \times 12 \times 13}{1728}\right)=0.316 \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F}} \\
\mathrm{C} 16 & =\mathrm{C} 26=0 .
\end{aligned}
\]

Assume that each of the three electronic components has a capacitance of \(1.5 \mathrm{Btu} /{ }^{\circ} \mathrm{F}\) (including the mounting bracket for node 29). Therefore,
\[
\begin{aligned}
\mathrm{C} 29 & =1.5 \mathrm{Btu} /{ }^{\circ} \mathrm{F} \\
\mathrm{C} 24 & =1.5+0.131=1.63 \mathrm{Btu} /{ }^{\circ} \mathrm{F} \\
\mathrm{C} 28 & =1.5+0.131=1.63 \mathrm{Btu} /{ }^{\circ} \mathrm{F}
\end{aligned}
\]

RC Products
The RC products for web node 15 and shell node 21 are computed to estimate the computing interval for this problem. On the web
\[
(\mathrm{RC})_{15}=\frac{\mathrm{C} 15}{\frac{1}{\mathrm{R} 105}+\frac{1}{\mathrm{R} 14}+\frac{1}{\mathrm{R} 15}+\frac{1}{\mathrm{R} 108}}=\frac{0.131}{\frac{1}{8240}+\frac{1}{4620}+\frac{1}{2310}+\frac{1}{930}}=71 \mathrm{sec}
\]

Since the network for node 15 is similar to that of the other web nodes with the addition of the small resistor, Rl08, it appears that the minimum RC product for the webs occurs at node 15 .

Because shell node 21 has a radiation resistor attached to it; its \(R C\) product \(i s\) temperature dependent. If, for example, \(\mathrm{I}(21)=250^{\circ} \mathrm{F}\),
\[
\begin{aligned}
R(1021) & =\frac{1}{\sigma \mathrm{~K}_{21} 4[\mathrm{~T}(21)+460 .]^{3}} \\
& =\frac{1}{\left(0.1713 \times 10^{-8}\right)\left(2.4 \times 10^{-4}\right)(4)(710)^{3}}=1700 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\end{aligned}
\]
and
\[
(\mathrm{RC})_{21}=\frac{\mathrm{C}(21)}{\frac{1}{\mathrm{R} 21}+\frac{1}{\mathrm{R} 101}+\frac{1}{\mathrm{R} 28}+\frac{1}{\mathrm{R} 1021}}=\frac{0.316}{\frac{1}{11100}+\frac{1}{9500}+\frac{1}{2310}+\frac{1}{1700}}=260 \mathrm{sec}
\]

If \(T(21)=-100^{\circ} \mathrm{F}\)
\[
R(1021)=\frac{1}{\left(0.1713 \times 10^{-8}\right)\left(2.4 \times 10^{-4}\right)(4)(360)^{3}}=13000 \frac{\mathrm{sec}^{0} \mathrm{~F}}{\mathrm{Btu}}
\]
and
\[
(R C)_{21}=\frac{0.316}{\frac{1}{11100}+\frac{1}{9500}+\frac{1}{2310}+\frac{1}{13000}}=448 \mathrm{sec}
\]

It appears, therefore, that the minimum RC product will occur at node 15, and will have a value of about 71 sec . In this example problem \(M(7)\) is set at 0.6 , causing a computing interval of about 43 sec . During ascent, however, the specified print interval is less than 43 seconds. Hence, during this time the computing interval is determined by the print interval rather than the ( \(R C\) ) min.

Curves
The following curves are required:

\section*{CURVE NO.}

\section*{DESCRIPIION}

101 Shell ascent heating (including radiation) from liftoff to the time of orbit insertion ( 700 sec ). This one curve will be assumed applicable to all six shell nodes. The value of the heating rate for times equal to or greater than 700 sec is set at zero so this curve has no effect on the orbital analysis.

102
Print interval \(M(4)\) vs time.

A table storing the constants \(\alpha_{S}, \epsilon\), and the shell radiation K factor.

A table listing the nodes (11, 12, 24, 28, and 29) for the maximum-minimum search.

A table listing the nodes (11, 12, 24, 28 and 29) and time intervals for the plotting function.

A periodic curve showing the heat dissipation of the component at node 24.

A periodic curve showing the solar spectrum radiation to shell nodes 11 and 21.

211 A periodic curve showing the infra-red radiation to shell nodes 11 and 21.

112 A periodic curve showing the solar spectrum radiation to shell nodes 12 and 22.

212 A periodic curve showing the infra-red radiation to shell nodes 12 and 22.

A periodic curve showing the solar spectrum radiation to shell nodes 13 and 23.

A periodic curve showing the infra-red radiation to shell nodes 13 and 23 .

\section*{Time Block}

The following times are assumed:
Print interval \(=5\) sec for \(0 . \leq M(1) \leq 150\).,
10 sec for \(150 .<M(1) \leq 200\), and 300 sec for \(M(1)>200\).
Final time \(=6200 \mathrm{sec}\)
Initial time \(=0 \mathrm{sec}\)

The only changes required are the values of \(\alpha_{s}\), \(\epsilon\), and \(K_{\text {RAD }}\) which are stored in Table 3. Note that this table must be changed in its entirety, including the table designation number.

\section*{FUNCT Subroutine}

The following functions are required:
(a) An instruction to set \(M(7)=0.6\).
(b) An instruction to change the temperature of the shell radiation sink, node l, from its value of \(50^{\circ} \mathrm{F}\) applicable to ascent, to a value of \(-460^{\circ} \mathrm{F}\), appropriate for the orbital phase. Only a slight inaccuracy results if this change is made instantaneously at 150 sec since the shell temperature is sufficiently large that the choice of sink temperature is relatively insignificant.
(c) Callouts for the ascent heating and radiation functions for the external shell. These instructions are combined in a DO loop. Since the radiation \(K\) factor is obtained from storage Table 103 a locating statement \(\mathrm{Ll03}=\mathrm{LOC}(103)\) precedes the radiation callout.
(d) Callouts for the shell orbital heat inputs. A logical IF statement will precede these instructions so that they are skipped if time is less than 700 sec , the assumed orbit insertion time. The instructions will appear as
\[
\begin{aligned}
& Q(11)= Q(11)+\text { Area * Absorptivity * LIN (M(1), 111) } \\
&+ \text { Area * Emissivity * LIN (M(1), 2ll) } \\
& \text { etc. }
\end{aligned}
\]

The term \(Q(11)\) on the right side of the equation is required when more than one heat input is called out for a particular node, and it is desired that they be summed. Otherwise, each successive callout would merely replace the previous value. In this example problem, the term is actually not required since the first callout (item (C) above) specifies that \(Q(11)=0\). for \(M(1)>700 \mathrm{sec}\).
(e) Callouts for the heat dissipation of nodes 24, 28, and 29 .
(f) An instruction to obtain the print interval, \(M(4)\), from curve 102.
(g) The plotting function callout for nodes 11, 12, 24, 28, and 29.
(h) The max-min function callout for nodes \(11,12,24,28\), and 29.

The five constants required for the EQUIVALENCE statement are:
\[
\begin{aligned}
& j=1+29=30 \\
& k=30+29=59 \\
& m=59+1023=1082 \\
& n=1082+29=1111 \\
& p=1111+29=1140
\end{aligned}
\]

\section*{PRINT Subroutine}

The output specification for this case consists of all temperatures, and the heat rejection at nodes 24, 28, and 29. Each of these items is given an appropriate label to illustrate the flexibility of the FORTRAN language in writing Format statements. The first line of output lists the current time, computing interval, minimum RC product, and the node at which the ( RC ) min appears.

Four prints are specified on each page of output. To accomplish this, the variable BLOCK is used to sum the number of prints and when BLOCK \(=5\). , the program is instructed to eject, print the information contained on the CID card, and then set BLOCK = 1. to indicate the first print on that page. The remaining WRITE statements are then executed in a normal manner.

\section*{Computer Input}

The input data for Example \#2 is shown in Table 6-3. Note that curves 111, 2ll, 112, 212, 113, and 213 are missing since they are obtained directly as punched cards from the Orbital Radiation Program.

\section*{Computer Outout}

The computer output for Example \#2 is shown in Table 6-4. The first two pages list the FUNCT and PRINT subroutines. The next five pages list the initial temperature, resistor, capacitor, and data blocks exactly as they appear on the input sheets (Table 6-3), with the addition of the heating rate curves obtained from the Orbital Radiation Program.

The answers for the basic case are printed on the next 14 pages. During the time that a 5 or 10 sec print interval is requested, the computing interval is six-tenths of the print interval. When a 300 -sec print interval is requested, the computing interval is six-tenths of the \((R C)_{\min }\) which, as anticipated, appears at node 15 and has a value of about 7 l sec. The Maximum-Minimum output appears immediately following the answers. Zeros are printed for the maximum and minimum temperatures of nodes 28 and 29 since the temperatures increase monotonically. Four distinct maximums and minimums were recorded for shell nodes 11 and 12.

The new data required for the restart are printed following the Max-Min output, exactly as it appears on the input sheet. The succeeding pages show the answers for the restart and the Maximum-Minimum output. It appears that the changes in surface radiation properties has little effect on the temperatures of the electronic components.

The machine plotted temperatures are shown in Figures 6-4 and 6-5 for the basic case and restart, respectively. The information on the CID card is automatically printed on the top of each figure. The format used to identify the node numbers and symbols is also standard. The scales are selected by the program according to the overall range of temperatures and time.
Soen px 7924.1

0

\section*{TABLE 6-3 \\ INPUT FOR EXAMPLE 2 (2 of 6)}

soen bx 7924.1

TABLE 6-3
INPUT FOR EXAMPLE 2 (4 of 6)
FORA DX 7024.1

form dx 7924.1



TABLE 6－4
COMPUIER OUIFUT FOR EXAMFLE 2

\section*{FUNET}

\begin{tabular}{|c|c|c|c|c|}
\hline SIPRQnJTJMF F：JNCT & 22650002 & & & \\
\hline  & \[
22660003
\] & & & \\
\hline Oly & 22660004 & & & \\
\hline  & ， 22650005 & & & \\
\hline 1 101111）． 2 （11．10114＾1，RC111） & 22660006 & & & \\
\hline PFAL M，LIN & 27660007 & & & \\
\hline \(4171=0 \cdot t\) & 22660008 & ， 1 & & \\
\hline  & 22662009 & ， 2 & ， 3 & ． 4 \\
\hline  & 22660010 & ， 5 & & \\
\hline \(9711=1\) ，\({ }^{\text {a }}\) & 22660011 & ， 6 & & \\
\hline  & 22669012 & ， 7 & & \\
\hline altan）＝a（taln） & 22669013 & ． 8 & & \\
\hline  & 27680014 & ． 9 & & \\
\hline  & 22660015 & .10 & & \\
\hline CONTIVIF & 2266C016 & ．11 & ， 12 & \\
\hline  & 22660 C17 & .13 & ． 14 & ， 15 \\
\hline 20 \(21=1,3\) & 2266 C018 & ．16 & & \\
\hline （1） & 2256 C019 & & & \\
\hline 1 LTVM（1），？ 7 ＋＋1） & 22660020 & ． 17 & & \\
\hline 2（t＋2＾）＝つけt1） & 22665021 & ． 18 & & \\
\hline cinttive & 22660022 & ．19 & ， 20 & \\
\hline 9（？ 2 ）LIN（M（1）．106） & 22660023 & ， 21 & & \\
\hline つ（ ）9）＝n－r3－ & 22660024 & ， 22 & & \\
\hline  & 22660025 & ． 23 & & \\
\hline M（4）＝Lin（M）（l），in ） & 22660026 & ，24 & & \\
\hline Cati rolntilns） & 22660027 & ． 25 & & \\
\hline CALL M4F（41？），4（3），1＾4，1） & 22660028 & ． 26 & & \\
\hline TN（1）＝T（1） & 22660029 & ， 27 & & \\
\hline QFTIJRN & 2266 O630 & ． 28 & & \\
\hline ENT & 22660031 & ． 29 & & \\
\hline
\end{tabular}

\section*{TABLE 6-4 (Continued)}
```

 06/15/65
 EXTFRNAL FORYULA NUMGER - SOURCE STATEMENT - INTERNAL FIRMULA NUMBER(S)
 SUBRNIIINE DRINT 2260n102
 COMMON P,M,YISCEL(231,CIO(12) 22660103
 OT4ENSION D(1GONC,M(I6),TN(1),T(1),R(1),C(1),Q(1),RC(1) 2266C104
 EO:IVILFVCE (P(1),TN(1)),(P(39),T(1)1,(P(59),R(1)),(P(1nR2),C(1)1,226601O5
    ```

```

 QEAL M 22660107
 IF (MIl).EQ.O.) RLOCK=4. 2266C108
 BLOCK=9LOCK+1. C 22680109
 IF (BLTCK.ED.5.) WQITF (6.10n) (CID(I),I=1,12) 22660110
 IF (BLOCK.FQ.5.) BLOCK=1.
 22560111
 WRITF (A,1r() M(1),M(15),M(6),M(a)
 WQITE (A,15>)
 22650112
 22660113
 1 T(11),T(12),T(13),r(21),T(22),T(23)
 22650114
 Z T(14),T(15),T(16),T(17),T(19),T(24),T(25),T(26),T(27),T(29)
 WQITF (K,103) T(24),T(29),T(29),0(24),Q129),3(29)
 22650115
 22660116
 ^ F马QMAT (IH1/I/lH,l\AB)
 22660117
 In^ FJQMAT (1H1/1/!H,'12A6)
22660117
FFRO, RH SFETNIS,5X,QHIRCIMIN=,FR.3,1SH SECONOS AT VIDE,FK.O) 22GGO1119

```

```

1; 3x,52H TEMDERATIRE OF INTERNAL WEG NODES ; 22660121
2 1274 VODE

```

```

1m3 FORMAT (53H^EOUIPMENT TEMPERATURFS AVO HEATING RATES / 22660125

```

```

 ? 11H NFMP. ,3F1N.n/4 2% 22660127
 11H O(RTIS/SFC),3F10.4) 2266C128
 RETUQN 2266C129
 ENO
 22660130
 | .1 | .2 | , 3 |
| :--- | :--- | :--- |
| .4 | | |
| .5 | .6 | .7 |
| .11 | | |
| .12 | , 13 | .14 |
| .15 | , 16 | .17 |
| .18 | .19 | .20 |
| .21 | .22 | .23 |

24
, 25

```


\section*{TABLE 6-4 (Continued)}


\section*{TABLE 6-4 (Continued)}


TABLE 6-4 (Continued)


\section*{TABLE 6-4 (Continued)}


\section*{TABLE 6-4 (Continued)}


0

0

TABLE 6-4. (CONTINUED)


0

TABLE 6-4. (CONTINUED)

O
0

\section*{TABLE 6-4. (CONITNUED)}
\[
\begin{aligned}
& \text { กิํ } \\
& \text { ํ ํ } \\
& \stackrel{\sim}{\sim} \dot{\sim} \\
& \text { N® } \\
& \text { No }
\end{aligned}
\]

TABLE 6-4. (CO

TABLE 6-4. (CONTINUED)


0

TABLE 6-4. (CONTINUED)

0
0

\section*{TABLE 6-4. (CONTINUED)}

TABLE 6-4. (CONTINUED)


theqmal analyjer exayple problem two
TABLE 6-4. (CONTINUED)


0

0

range nf minimum-maximum
\[
\begin{aligned}
& \text { MAX T } \\
& \\
& 92973553 \\
& .15754692
\end{aligned}
\]

\section*{TABLE 6-4. (CONTINUED)}



MNNE MNON
\[
\begin{aligned}
& 7721 \mathrm{E} \\
& 3425 \mathrm{E} \\
& 1376 \mathrm{E} \\
& 6805 \mathrm{E}
\end{aligned}
\]

\[
\dot{\Sigma} \stackrel{ \pm}{\sim} \stackrel{x}{\sim} \stackrel{0}{\sim}=
\]


O

0

\section*{0}



0

O

0

0



0
\[
0
\]

TABLE 6-4. (CONTINUED)

0

\section*{0}


TABIE 6-4. (CONTINED)

0
0
TABLE 6-4. (CONTINUED)
TABLE 6-4. (CONTTNUED)

0
0
TABLE 6-4. (CONPINUED)

TABLE 6-4. (CONIINUED)

0 TABLE 6-4. (CONTINUED)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ＋+ & & & & & & & & & & & & ＋ & & & & & & & & & \\
\hline & & & & & & & & & & & & \(+\) & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & \(\cdots\) & M & 0 & I & 0 & － & & & & & & & \\
\hline \(\#\) & & & & & & & & & & & － & & & & & & & & & & \\
\hline E！ & & & & & & T & & & 4 & U & H & \(\square\) & ＋0 & & & & & & & & \\
\hline & & & & & & & & & 号 & － 0 & & & －5 & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & ＋ & T\％ & & & & & & & & & \\
\hline & & & & & & & & & & & －1 & & & & & & & & & & \\
\hline & & & & & & & & & & ＋ & ， & & & & & & & & & & \\
\hline & & & & & & & & & & & & \(\square\) & & & & & & & & & \\
\hline & \(\square\) & & & \(\square\) & & & & & & & \(\underline{\square}\) & \(\underline{+}\) & & & & & & & ， & 0 & \\
\hline \＃ & & & & & 11 & II， & & & & & & \(\square\) & & & ， & & & & & O & \\
\hline \(+\) & & 1 & & & 1 & － & & & H & ＋ & It & \(\square\) & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \(\square\) & \\
\hline II & & & & & & & & & & & & \(\square\) & & & & & & & & & \\
\hline \(\square\) & － & ＋1 & & ＋+ & \％ & \(\square\) & & & & \(\square\) & & \(\square\) & Y1 & － & & － & & & & \(\square\) & \\
\hline & & 1 & & & & & & & \(\cdots\) & ！ & 11 & H & & & & & & & & \％ & \\
\hline \(\pm\) & & & & & 1 & 11 & & & 1 & \(\pm\) & & & H & & & & & & & o． & \\
\hline & & & & & & & & & & & & ， & & & & & & & & & \\
\hline － & T & ＋1 & & 1 & ； & － & & & ＋ & － & \(+\) & － & & & & & & & & & \\
\hline H－ & & & & & 1 & ！ & & & & ＋ & T & \(\square\) & T & & & \(\underline{\square}\) & & & & \(\bigcirc\) & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & ＋1， & & & & & & & \％ & & & & & & & & & \\
\hline \(\#\) & － & 1 & & ＋ & ！ & ！ & & & & ＋1 & \(\square\) & \(\square\) & \(\bigcirc\) & & & & & & & & \\
\hline \＃ & \(+1\) & － & & & ！！ & －1 & & & & \％ & i－1 & － & ＋i & & － & & ＋ & & & ＋1， & \\
\hline 5 & H & 1 & T & ！ & ：\(:\) & －1 & & & ！ & H & I & \(1+1\) & ＋1 & & & H & & & 1, & \(\bigcirc\) & \\
\hline 1 & & 1 & & & IT & & & & － & & & & 1 & & & & \[
7
\] & & & \％ & \\
\hline \％1： & & Til & & & \＃ & 1 & & & I & & & & ＋ & & & & & & & － & \\
\hline & & & & & ＋ & & & & & 1 & & & & & & & & & ， & & \\
\hline & & \(+\) & & & 1 & \(\square\) & & & & ＋ & & & & & & & & & & & \\
\hline & 3 & ？ & ＋ & & － & H & & & ， & ， & & 4 & & & ＊ & \(\bigcirc\) & & & & & \\
\hline & & & & & － & & & & & & & & & 7 & & & & & & & \\
\hline & \(\cdots\) & \(t\) & & & & & & &  & & & 1 & & & \(x\) & & & & & \(\bigcirc\) & 0 \\
\hline & & & & & ＋ & ！ & & & & & & \％ & & & & 1 & & & & \％ & ＋ \\
\hline & \％ & & & & & I & & & & & & & & \({ }^{4}\) & & － & & & & & 0 \\
\hline & & ！： & & & H & & & & & & & － & & ¢ 6 & & & & & & & \\
\hline & \(\bigcirc\) & & \(\cdots\) & & & \(\because\) & & & & & & － & & & & & & & & 0 & ＜ \\
\hline ＋ & u & It & \(\pm\) & 1 & ＋ & ！ & & & & 3 & － & & ＋ & 5 & & ， & & & & \％ & 7 \\
\hline \(\square\) & 0 & ＋ & & 1 & 1 & 4 & & & & \％ & & ＋ & & 1 & & & & & & 6： & \\
\hline & 든 & & \(\square\) & & & \(\square\) & & & & & & \％ & & & & 1 & & & & & \\
\hline ＋ & － & & & & 1 & ＋ & & & 1 & & & 4 & & & － & & & & & & \(\underset{\square}{1}\) \\
\hline & & & & \[
11
\] & & & & & & & & \(\pm\) & & & & & & & & 0 & \\
\hline & \(\stackrel{\text { cla }}{\text { cl }}\) & ？ & ！i！ & & 1 & ＋ & & & ！ & ： & & & & & & － & & & & － & \\
\hline & \({ }^{2}\) & & \(+1\) & ！！ & T： & ！！！ & & & ＋ & & 8 & ＋ & & & & ＋ & & & T！ & H & \\
\hline & － & & ＋i & & & \(\because\) & ！ & & & ＋ & \(\stackrel{4}{4}\) & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & 4 & & & & & & & & & & & \(\cdots\) & ， & & & g & \\
\hline & ， & & & & 1 & － & & & & & & \({ }^{\circ}\) & & & & & & & & 0 & \\
\hline 1 & \(\underset{\sim}{2}\) & － & －1 & \(!\) & \(\square\) & ＋1 & & & ， & I & & 3 & ＋11 & 1 & & & & & 1 & & \\
\hline & 嵒 & － & ！ & & \(\because\) & 1 & & & & & & \(\rightarrow\) & & & & R & & & & & \\
\hline － & & \(\square\) & ！ & & 1 & 11 & 1 & & －1， & & & & & & & & & & & & \\
\hline \(\square\) & & & & & & & & & & & & & & & & & & & & 0 & \\
\hline \(\square 17\) & \(+\) & －1 & \(\pm\) & H1 & 1 & ＋ & & & & ＋ & & & & K & 8 & & \[
11
\] & & 1 & 0 & \\
\hline 1， & 1 & 1 & & & & ！ 1 & & & & ＋ & & & & & & & & & & \(\cdots\) & \\
\hline 13 & － & T & It： & － & & \(\square\) & & & & & & & & & & & & & & 1 & \\
\hline ＋7 & & & IT & & ＋ & & & & & & & & & & & & & & & & \\
\hline & & & & & \(+\) & & & & & & & & & & & & & & & 号 & \\
\hline & & FI： & \(-7\) & & ＋： & ＋ & & & & & & & & \({ }^{+3}\) & & & & & & － & \\
\hline & & ！： & 1 & 1 & ＋ & ＋1 & & & \(\pm\) & \(\underline{+}\) & & & & 10 & & H & & & & \(\underline{1}\) & \\
\hline & & ： & \(\cdots\) & & & \％ & & & \(\square\) & & & \(\cdots\) & & & & ＋ & & & TI & ＋ & \\
\hline \(\square\) & & & F－ & & & & & & & & & & & & ＋ & 1 & & & & & \\
\hline 1－1 & & & & & & & & & & & & & & & ． & & & & & 0 & \\
\hline & & Q & & & & － & & & & & & － & & & S： & & & & 1. & & \\
\hline & & P & － & & & & & & & & & & & & & & & & & & \\
\hline \(\square\) & \(\square\) & & & － & & ！ & & & & \(\square\) & & \(\square\) & & & & 1； & & & & & \\
\hline E & & & & & & & & & T & H & & & & T & & & & & & & \\
\hline & & & & & & & & & & L & & & & Nコ & & & & & & & \\
\hline ＋ & \(\square\) & & & & & － & & & & & & & & & \％ & I． & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
0
OM.

VII - GENERAL PROGRAM INFORMATION

INCORRECT DATA INPUT

Common Input Errors
In a program as complex as the Thermal Analyzer, a wide variety of input errors can occur. Some of the most frequent are:
1. Number of items on a DEC card does not match the number in columns 4 \& 5. This usually occurs in the data block and results in the input data on that card being truncated after the number of items specified in columns \(4 \& 5\) have been stored. However, if more items are asked for than exist, blank fields are read, and zeros are inserted into the data at that point.
2. Floating-point number is punched without a decimal point. Depending on the position of the number in the field, this results in a multiplication by a power of ten.
3. Integer number is not right-adjusted (blanks left at the right end of the field). This error results in a multiplication by a power of ten. Usually, the integers are either node or resistor numbers, and a multiplication by ten changes the entire circuit, and often results in values being stored into the wrong block or even completely out of the data area.
4. A capacitor is specified for a node whose temperature is to remain constant or is to be supplied by the FUNCT subroutine. Any capacitor listed in the capacitor block causes a heat balance to be performed at that node and the computed temperature to be stored, thus destróying the value assigned. This is true for zero-valued capacitors as well as positive capacitors.

Most other errors in input are checked by the program. However, the foregoing errors are impossible to detect as the current program makes use 0 the FORTRAN system library routines to read and convert the data.

Function Subroutine Errors
Certain errors occur fairly often in the FUNCT subroutine. Triese too, cannot be checked in the current program, because the Function subroutine (FUNCT) is compiled by FORTRAN.

One of the more common Function errors is incorrect use of the "old" and the "new" temperature blocks. For each listed capacitor, a new temperature is computed as a function of the capacitance, time step, its old temperature, the old temperatures of neighboring nodes, and any arbitrary heat inputs. In the special case of a zero-valued capacitor, the new temperature is a function only of the old temperatures of its neighboring nodes, and any other heat inputs. The new temperatures are computed during the heat balance. Then all temperatures in the new temperature block are moved into the old temperature block in preparation for the next cycle. Therefore, any value stored into the "old" temperature block will have an effect on the heat balances performed on itself and on its neighbors, but it will be replaced by its "new" value immediately thereafter. If it has no capacity, its new value will be its initial input value.

Another frequent Function subroutine error is misuse of the time step, \(\Delta \theta\). Three values of time step are provided in the miscellaneous block, \(M(I)\). \(M(5)\) contains the actual time step used to arrive at the current time. Usually, at the time of a print, a short time step is needed to arrive at the print time, and M(5), if printed, gives a false indication of step size. Therefore the time step that would have been used, had this not been a print cycle, is provided in \(M(15)\). For cycles other than print cycles, \(M(5)=M(15)\). For certain purposes it is necessary to know the time step used in the previous heat balance. This quantity is provided in M(14).

Control of the printing interval by means of a value interpolated from a time-dependent curve is often a convenient device, but care must be taken in the choice of points for the curve. If, at time \(=\theta\), it is desired to change the printing interval from \(\mathrm{PI}_{1}\) to \(\mathrm{PI}_{2}\), one may use a step-function curve of the form:
\[
\begin{aligned}
& \theta_{\text {initial }}, \mathrm{PI}_{1} \\
& \theta-\mathrm{PI}_{1}, \mathrm{PI}_{1} \\
& \theta-\mathrm{PI}_{1}, \mathrm{PI}_{2} \\
& \theta_{\text {final }}, \mathrm{PI}_{2}
\end{aligned}
\]

The print interval must be changed at or before one print interval before the time at which the new interval is to take effect, since the next time to print is decided at the time of printing, but before the function subroutine is entered.

\section*{Data Diagnostic}

A large amount of data diagnostic is included in the program. The diagnostic routines always print a comment describing the type of error found. For example, if one of the node numbers mentioned in the resistor block is greater than the highest numbered node mentioned in the temperature block, the program sets an error flag to prevent execution of the program, and prints. the comment:

If the input data overflows the data storage region, \(P\), the program sets an error flag to prevent execution, and prints the comment:
\[
M_{\wedge} \mathrm{DATA}_{\wedge} \mathrm{STORAGE}_{\wedge} \mathrm{EXCEEDED}_{\wedge} \mathrm{MOTAL}_{\wedge} \mathrm{OF}_{\wedge \wedge}{ }^{\mathrm{NNNN}}
\]

In these examples, the three-letter symbols, MMM, NNN, LIL, and JJJ represent numbers that appear in the diagnostic comment.

Unfortunately, not all errors can be checked by the program. For example, if a resistor is connected to a wrong node, but the node number is legitimate, the problem is still a legal problem, but not the problem that the user wants to solve. Note, again, that some errors cause the FORTRAN system to reject the problem, and this situation can mean that not all of the data has been examined. For example, an error in the Function or Print routines that
deletes compilation means that no data has been read at all. A decimal point or other non-integer character in an integer field means that the data inspection is terminated at that point and the data following has not been examined. Any error that is illegal to FORTRAN will delete the problem at that point.

Some diagnostic has also been provided in the execution phase. This includes such errors as a zero or negative time step, attempted division by zero in certain situations, interpolation requested outside the range of the curve, and a number of other more specific errors which are checked in specific subroutines. Undoubtedly there are errors in this phase that could be but have not been diagnosed. But the diagnostic continually becomes more complete as new errors are encountered.

\section*{Data Debugging Routine}

A short version of the compiler portion of the program has been devised, for the purpose of checking data only. This program, described in Appendix E, includes the same diagnostic included in the main program, excepting the error checks during execution.

\section*{PROGRAM CAPACITY}

Currently there are three versions of the program. Two versions have 16000 storage locations available for data, but do not include the fluid storage and pressurization subroutines. One of these, Version A, has been set up to run short problems with minimum overlay. The other, Version B, has been set up with maximum overlay to allow inclusion of the largest possible function and print routines. Version \(C\), including fluid storage and pressurization, has 13000 storage locations available for data.

\section*{Version A (Short Froblems)}

There are 16000 storage locations available for data. This is sufficient to handle the largest problem encountered to date, although some of the largest have had to be revised somewhat to fit into the available storage. This allows approximately 1000 temperatures and capacitors, 2500 resistors, and approximately 3500 words in the data blocks. Approximately 2700 storage
locations are available for the FUNCT and PRINT subroutines. This means that the degree of sophistication allowable is strictly limited.

\section*{Version B (Maximum Problems)}

The data storage available is the same as for version \(A\), above. The linkage has been changed to allow maximum storage for the function and print routines. There are about 4800 storage locations available for these routines in version B. Additional space can be gained in two ways:
1. By eliminating unused subroutines, such as linear, parabolic andor bivariate interpolation, or by eliminating the larger unused routines in dependent links, such as the radiation resistor matrix. Note that the largest routine actually used limits the possible saving.
2. By breaking the Function and/or Print routines into several functions, with unique names for each, and adding \$INCLUDE cards at the proper places.

Version C (Pressurization)
13000 storage locations are available for standard input data in version C. (The dimension size is 14000, but approximately 1000 locations are used for special fluid storage and pressurization program storage.) For further details of version \(C\), see Reference 9.
- MACHINE EXECUTION TIME

The execution time for the Thermal Analyzer is almost wholly dependent on the particular problem to be solved. Small problems (depending also on the particular functions used) will often run faster than \(0.01 \mathrm{~min} /\) cycle, where a cycle is defined as one full pass through the program. On the other end of the scale, the largest problems to date take about \(0.25 \mathrm{~min} / \mathrm{cycle}\). The time required is a function of the number and type of arithmetic operations, the size of the network, the subroutine functions used, and the amount of overlaying required. The number of cycles required to complete execution is tree time range, \(M(3)-M(2)\), divided by the computing interval, \(\Delta \theta\). Generally, \(\Delta \theta\) is a variable and is computed as the product of the network \((R C)_{\min }\) and the factor stored in \(M(7)\). Unless changed by the user in the FUNCT subraitine,
\(M(7)=0.25\). If the printing interval is less than the \((R C)_{\min }\), the computing interval is determined as the product of the printing interval and \(M(7)\).

A quick estimate of \(\Delta \theta\) may be obtained by multiplying \(M(T)\) by the smallest of the following three quantities:
1. The print interval.
2. The smallest capacitor times its smallest connecting resistor.
3. The smallest resistor times its smallest connecting capacitor.

This method is far from fool-proof, since in particular, radiation resistors are variable inversely with the cube of the temperatures of connected nodes. Also, computations 2 and 3 above, may not give the minimum RC value. In anticipation of a long run, perhaps the best method of getting a time estimate is to run the program for a very short time history and print out the time step or the number of cycles used.

\section*{APPENDIX A}

ECKERT AERODYNAMIC HEATING

The Eckert Aerodynamic Heating subroutine is a valuable tool in performing convective heat transfer calculations for high-velocity flows. The program computes the aerodynamic heating rate when given trajectory, flow field, and air property data in a prescribed manner. Eckert's calculation procedure, or the reference temperature method, as it is commonly called, eliminates the dependence of skin friction, and hence wall heating rate, on variable fluid properties associated with highvelocity flow. This allows heat transfer calculations to be accomplished as with incompressible flow where property variations across the boundary layer are negligible.

\section*{ECKERT'S RECOMMENDED PROCEDURE}

The recommended heating equations follow. Additional explanation can be found in Reference 5. The symbols used are defined in the table of nomenclature given at the end of this section.

For two-dimensional laminar flow over an isothermal and isobaric surface
\[
\begin{align*}
& \mathrm{St}=0.332\left(\mathrm{Re}^{*}\right)^{-0.5}\left(\operatorname{Pr}^{*}\right)^{-0.667}  \tag{A-I}\\
& \mathrm{q}_{\mathrm{W}}=\mathrm{h}\left(\mathrm{~T}_{\mathrm{R}}-\mathrm{T}_{\mathrm{W}}\right) \tag{A-2}
\end{align*}
\]

Where the asterisk denotes property values to be evaluated at a reference temperature given by
\[
\begin{equation*}
T^{*}=0.28 \mathrm{~T}_{e}+0.22 T_{R}+0.50 T_{W} \tag{A-3}
\end{equation*}
\]

For two-dimensional turbulent flow over an isothermal and isobaric surface
\[
\begin{equation*}
\mathrm{St} \mathrm{t}^{*}=0.0296\left(\mathrm{Re}^{*}\right)^{-0.2}\left(\operatorname{Pr}^{*}\right)^{-0.667} \tag{A-4}
\end{equation*}
\]

The wall heat transfer is calculated from equation \(A-2\). The reference temperature given by equation A-3 is assumed valid for both laminar and turbulent flows.

MODIFICATION OF ECKERI'S RELATIONS FOR DIGITAL COMPUTING USE
In the form given in the previous section the equations do not lend themselves to computer calculation; therefore, they are modified as explained here:

For turbulent flow, from equation A-4:
\[
\begin{equation*}
h_{T}=0.0296 \frac{k^{*}}{X}\left(R^{*}\right)^{0.8}\left(\operatorname{Pr}^{*}\right)^{0.333} \tag{A-5}
\end{equation*}
\]

Combining equation A-5 with equation A-2 results in
\[
\begin{equation*}
q_{W T}=\frac{0.0296}{X^{0.2}}\left[\frac{R e^{*}}{X} \frac{M_{\infty}}{M_{\infty}}\right]^{0.8}\left(\operatorname{Pr}^{*}\right)^{0.333} k^{*}\left(T_{R}-T_{W}\right) \tag{A-6}
\end{equation*}
\]

Using the Mach number definition
\[
M=\frac{u}{c}
\]
and the perfect gas relation
\[
\frac{c}{c_{\infty}}=\left(\frac{T}{T_{\infty}}\right)^{0.5}
\]
the Reynolds number term in equation A-6 is modified, resulting in the following expression:

0
\[
\begin{equation*}
\frac{\operatorname{Re}^{*}}{\bar{X}}=\left[\frac{\operatorname{Re}_{\infty}}{X}\left(\frac{M_{e}}{M_{\infty}}\right)\left(\frac{T_{e}}{T_{\infty}}\right)^{0.5}\left(\frac{\rho_{e}}{\rho_{\infty}}\right)\right]\left(\frac{\rho^{*}}{\rho_{e}}\right)\left(\frac{\mu_{\infty}}{\mu_{e}}\right)\left(\frac{\mu_{e}}{\mu^{*}}\right) \tag{A-7}
\end{equation*}
\]

Next, the viscosity relation
\[
\frac{\mu_{\infty}}{\mu_{e}}=\left(\frac{T_{\infty}}{T_{e}}\right)^{0.69}
\]
and perfect gas law
\[
\frac{\rho^{*}}{\rho_{\mathrm{e}}}=\frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{~T}^{*}}
\]
are used to modify equation \(\mathrm{A}-7\) to the following form:
0
\[
\begin{equation*}
\frac{R e^{*}}{X}=\left[\frac{R e_{\infty}}{X}\left(\frac{M_{e}}{M_{\infty}}\right)\left(\frac{\rho_{e}}{\rho_{\infty}}\right)\left(\frac{T_{e}}{T_{\infty}}\right)^{-0.2}\right]\left(\frac{\mathrm{Te}}{T^{*}}\right)^{1.69} \tag{A-8}
\end{equation*}
\]

Defining the Reynolds number ratio as
\[
\frac{R e_{e}}{R e_{\infty}}=\left(\frac{M_{e}}{M_{\infty}}\right)\left(\frac{\rho_{e}}{\rho_{\infty}}\right)\left(\frac{T_{e}}{T_{\infty}}\right)^{-0.2} .
\]
the expression for \(q_{w}\) becomes
\[
\begin{align*}
q_{W T}= & \frac{0.0296}{X^{0.2}}\left[\left(\frac{R e_{\infty}}{X M_{\infty}}\right) M_{\infty}\left(\frac{R e_{e}}{R e_{\infty}}\right)\left(\frac{\mathrm{Te}^{2}}{T^{*}}\right)^{1.69}\right]^{0.8}\left(\operatorname{Pr}^{*}\right)^{0.333}  \tag{A-9}\\
& k^{*}\left(T_{R}-T_{W}\right)
\end{align*}
\]

By a similar process the expression for laminar flow becomes
\[
q_{W L}=\frac{0.332}{X^{0.5}}\left[\left(\frac{R e_{\infty}}{X M_{\infty}}\right) M_{\infty}\left(\frac{R e_{e}}{R e_{\infty}}\right)\left(\frac{T_{e}}{T^{*}}\right)^{1.69}\right]^{0.5}\left(\operatorname{Pr}^{*}\right)^{0.333} k^{*}\left(T_{R}-T_{W}\right)
\]

Equations A-9 and A-10 are combined to give the programmed form
\[
\begin{align*}
q_{W}= & K \beta\left[\left(\frac{R e_{\infty}}{X M_{\infty}}\right) M_{\infty}\left(\frac{R e_{e}}{R_{\infty}}\right)\left(\frac{R e}{T^{*}}\right)^{1.69}\right]^{a} \quad\left(P^{*}\right)^{0.333}  \tag{A-11}\\
& k^{*} M_{\infty}^{b}\left(T_{R}-T_{W}\right)
\end{align*}
\]
where the factor \(\beta\) has been included as an angle of attack modifier. Its use is optional and \(\beta\) will have a value of unity unless changed by the user as described below. The term \(M_{\infty} b\) is included to give the Eckert equation the same form as that used by another aerodynamic heating method, which is no longer being used. The recovery temperature is computed from the following:
\[
\begin{equation*}
T_{R}=T_{e}\left[1+P_{r}^{e}\left(\frac{y-1}{2}\right) M_{e}^{2}\right] \tag{A-12}
\end{equation*}
\]
where \(\operatorname{Pr}^{e}\) is the temperature recovery factor. A constant value of \(\operatorname{Pr}=0.71\) is used in the program.

\section*{PROGRAM INPUT}

Several tables must always be provided in the data block when the Eckert heating routine is used. The designation numbers of these tables are permanently reserved and linear interpolation of the data is understood. The user must always provide tables \(1,3,4,5,6,8,11,12\), and 13 . If the angle of attack multiplier \(\beta\) is not understood to be unity, tables 2 and 7 must also be provided. The following list shows the composition of each table.

TABLE DESIGNATION NUMBER
\begin{tabular}{|c|c|c|}
\hline 1 & \(\theta\) & H \\
\hline 3 & H & \(\log _{10}\left(\frac{\mathrm{Re}_{\infty}}{\mathrm{XM}}\right)\) \\
\hline 4 & \(\mathrm{T}^{*}\) & \(\log _{10}\left(\mathrm{Pr}^{0.333} \mathrm{k}\right)\) \\
\hline 5 & \(M_{\infty}\) & \(\frac{\mathrm{Re}{ }_{e}}{\operatorname{Re}_{\infty}}\) \\
\hline 6 & \(M_{\infty}\) & \(\frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{T}_{\infty}}\) \\
\hline 8 & Constants \(\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{Y}\) in that & order \\
\hline 11 & \(\theta\) & \(M_{\infty}\) \\
\hline 12 & H & \(\mathrm{T}_{\infty}\) \\
\hline 13 & \(M_{\infty}\) & \(\frac{M_{e}}{M_{\infty}}\) \\
\hline 2 & \(\theta\) & \({ }^{\alpha}\) R \\
\hline 7 & \(\alpha\) & ```
\beta or constants K}\mp@subsup{K}{W}{
    and. K
``` \\
\hline
\end{tabular}
\begin{tabular}{ll}
INDEPENDENT & DEPENDENTT \\
VARIABIE & VARIABIE \\
\hline
\end{tabular}

H

\(\log _{10}\left(\mathrm{Pr}^{0.333 \mathrm{k}}\right)\)
\(\frac{\operatorname{Re}_{e}}{\operatorname{Re}_{\infty}}\)

Note that tables 3 and 12 contain only atmospheric data and as such are standard, reusable tables. This is also true of table 4, which contains thermodynamic and transport properties data. The trajectory is defined in tables 1 and 11 , and the local flow field in tables 5, 6, and 13. Table 8 lists the constants \(a, b, e\), and \(Y\) from equations 11 and 12. Using the Blasius expressions for skin friction (equations 1 and 4)' and assuming the fluid is air with \(\gamma=1.4\), these constants are:
\begin{tabular}{c|c|c|c|c}
BOUNDARY LAYER & \(a\) & \(b\) & \(e\) & \(y\) \\
\hline laminar & 0.5 & 0 & 0.5 & 1.4 \\
turbulent & 0.8 & 0 & 0.333 & 1.4
\end{tabular}

The angle of attack multiplier \(\beta\) is optional. Two possible methods exist for its use.

Method I
In this method the angle of attack multiplier is input in table 7 as
\[
\beta=f(\alpha)
\]
where the angle of attack is obtained from
\[
\begin{array}{ll}
\text { For the top surface, } F=0 & \alpha=-\left(\alpha_{R}-\alpha_{0}\right) \\
\text { For the bottom surface, } F=1 & \alpha=\left(\alpha_{R}-\alpha_{0}\right)
\end{array}
\]

Both \(F\) and \(\alpha_{0}\) are input as part of the function callout as described below. The vehicle angle of attack \(\alpha_{R}\) is given in table 2 as a function of time.

\section*{Method 2}

This method consists of inputing two slopes, \(K_{W}\) and \(K_{I}\), in table 7 , and having the machine compute the angle-of-attack multiplier by one of the following equations:
\[
\begin{array}{ll}
\alpha>0 \text { (a windward surface) } & \beta=1+K_{W} \alpha \\
\alpha<0(\text { a leeward surface }) & \beta=I+K_{L} \alpha
\end{array}
\]

The vehicle angle of attack \(\alpha_{R}\) is again given in table 2 as a function of time.

0
Shown below is a sketch of the \(\beta\)-a relation used in Method 2.

The sign convention used to determine \(a_{R}\) and \(\boldsymbol{a}_{\circ}\) is indicated below.
\[
F=0(T O P \text { SURFACE })
\]

One additional quantity is required as data input to the computer when using the Eckert Aerodynamic heating routine. This. is the K factor in equation \(A-11\) which, as can be seen by comparing equations \(A-9, A-10\), and A-ll, is given by the following:

Laminar flow
\[
\begin{equation*}
K=\frac{0.332 A}{x^{0.5}} \tag{A-13}
\end{equation*}
\]
\[
\begin{equation*}
K=\frac{0.0296 \mathrm{~A}}{X^{0.2}} \tag{A-14}
\end{equation*}
\]

Turbulent flow

The subroutine callout takes one of the following forms:

CALL EAH4 (\(\left.j, \mathrm{~K}, \mathrm{H}, \boldsymbol{a}_{\mathrm{o}}, \mathrm{F}\right)\)
CALL EAH3 (\(\left.j, K, a_{o}, F\right)\)
CALL EAH2 (\(j, K, H\))
CALL EAHI (\(j, K\))
where
\(j\) is the node number for which \(q\) is computed.
\(K\) is the floating point constant \(K\), or the location where \(K\) is stored.
\(H\) is the location where the value of the heat transfer coefficient is to be stored, if desired.
\(a_{0}\) is the vehicle surface angle in radians. If not specified, the angle-of-attack multiplier \(\beta\) is understood to be unity.

F is a flag which is 0 for an upper surface and 1 for a lower surface. \(F\) is vacant if \(\alpha_{0}\) is vacant.

Several example callouts are:
1. CALL EAHI (\(16,0.02\))

Means compute the aerodynamic heating to node 16 with \(\mathrm{K}=0.02\) and \(B\) is understood to be 1 .
2. CALL EAHI \((16, P(L+3))\)

Means compute the aerodynamic heating to node 16 , and find the value of the K factor in the third storage location of the table whose designation number corresponds to L .

This arrangement allows \(K\) to be a variable expressed by some other function.
3. CALL EAH2 \((16,0.02, P(L 20+2))\)

Means the same as (l) except that the value of the heat transfer coefficient is to be stored in the second storage location of the table whose designation number corresponds to L20. This arrangement allows \(h\) to be called out in the print block.
4. CALI EAH3 (\(16,0.02,0.2,0)\)

Means the same as (1) except that the angle of attack multiplier \(\beta\) is computed by Method I above with \(\alpha_{0}=0.2\) radians, and the node is located. on the upper surface.
5. CALL EAHH \((16, P(L+3), P(L 20+2), 0.02,1)\)

Means compute the aerodynamic heating to node 16 , find the \(K\) factor in the third storage location of the table whose designation number corresponds to \(L\), and store the value of the heat transfer coefficient in the second storage location of the table whose designation number corresponds to L20. The angle of attack multiplier \(\beta\) is computed by
- Method I with \(\alpha_{0}=0.2\) radians, and the node is located on a bottom surface.

The recovery temperature in \({ }^{\circ} \mathrm{F}\) is automatically stored in the addressable element \(M(12)\).

LIMITATIONS OF ECKERT'S AERODYNAMIC HEATING METHOD
The aerodynamic heating subroutine described herein is strictly valia within certain limitations. These are summarized below:
1. In deriving Eckert's relations for digital computing the reference temperature form was used, rather than reference enthalpy. This assumes constant specific heat and Prandil number.
2. Effects of dissociation and ionization are neglected in the heating relations. This limits the velocity range for which the equations are valid. For example, dissociation of the air molecules behind a normal shock begins at approximately Mach 6, for an altitude of \(200,000 \mathrm{ft}\).
3. Near continuum flow is required, i.e., \(H \leqslant 200,000 \mathrm{ft}\).
4. Two-dimensional flow along a constant pressure and temperature surface is assumed.
5. Steady, or slowly accelerating, flow is required.

The above assumptions probably limit the accuracy of the method to something like \(\pm 10 \%\) for a typical ascent trajectory.

\section*{EXAMPLE PROBLEM}

To illustrate the procedure in using the Eckert heating subroutine, a simple ascent heating problem is set up. Suppose it is desired to calculate the transient temperature response of an aluminum honeycomb skin located at a distance of 45 ft from the nose of the vehicle. The vehicle trajectory (altitude and Mach number vs time) and local flow field parameters are assumed known. A sketch of a unit surface area of the skin and the corresponding thermal network are given below.

The following assumptions are made:
1. The boundary layer is turbulent for the first 135 sec after launch, at which time transition to laminar flow occurs instantaneously.
2. The external skin (node 2) radiates to a free space sink of \(50^{\circ} \mathrm{F}\).
3. The skin rear face is perfectly insulated.
4. The aluminum properties are:
\[
\begin{aligned}
\rho & =0.1 \mathrm{lb} / \mathrm{in}^{3} \\
\mathrm{c}_{\mathrm{p}} & =0.2 \mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F} \\
\epsilon & =0.55 \\
\mathrm{k}_{\mathrm{HONEYCOMB}} & =8 \frac{\mathrm{Btu} \mathrm{in} .}{\mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}} \\
\mathrm{C}_{\text {HONEYCOMB }} & =0.03 \frac{\mathrm{Btu}}{{ }^{\circ} \mathrm{F} \mathrm{ft}^{2}}
\end{aligned}
\]

Capacitors
Lump each skin with half of the honeycomb core
\[
\begin{aligned}
C 2 & =C 3=\rho V c_{p}+\frac{.03}{2} \\
& =0.1 \frac{1 b}{i n^{3}} \times .016(144) \mathrm{in}^{3} \times 0.2 \frac{B t u}{1 b{ }^{\circ} \mathrm{F}}+0.015=0.0611 \frac{\text { Btu }}{{ }^{\circ} \mathrm{F}}
\end{aligned}
\]

Radiation Resistor
\[
\mathrm{KI}=\frac{\epsilon \mathrm{FA}}{3600}=\frac{0.55(1)(1)}{3600}=1.53 \times 10^{-4}
\]

Conduction Resistor
\[
\mathrm{R} 2=\frac{\ell}{\mathrm{kA}}=\frac{0.968 \mathrm{in} \times 3600 \frac{\mathrm{sec}}{\mathrm{hr}}}{8 \frac{\text { Btu in. }}{\mathrm{hr} \mathrm{ft}{ }^{2}{ }^{\circ} \mathrm{F}} \times 1 \mathrm{ft}^{2}}=436 \frac{\mathrm{sec}^{\circ} \mathrm{F}}{\mathrm{Btu}}
\]

\section*{Eckert K Factor}
\[
\begin{aligned}
& \mathrm{K}_{\text {turbulent }}=\frac{0.0296 \mathrm{~A}}{\mathrm{X}^{0.2}}=\frac{0.0296(1)}{(45)^{0.2}}=0.0138 \\
& \mathrm{~K}_{\text {laminar }}=\frac{0.332 \mathrm{~A}}{\mathrm{X}^{0.5}}=\frac{0.332(1)}{(45)^{0.5}}=0.0496
\end{aligned}
\]

The program input is shown in Figure A-1. The value of the turbulent \(K\) factor is stored in the location \(T(4)\). Tables 1 and 11 contain, respectively, the vehicle altitude and Mach number vs time. These are assumed values and are typical of large liquid fuel boosters. Tables 3 and 11 contain \(\log _{10}\left(\mathrm{Re}_{\infty} / X M_{\infty}\right)\) and freestream temperature vs altitude for Patrick Air Force Base, Florida. These tables were constructed from the measured data published in Reference 6. Table 4 contains \(\log _{10}(\operatorname{Pr} 0.333 \mathrm{k})\) vs temperature, using the data of Reference 7. Thus, tables 3, 4, and 11 contain real properties data, applicable to any Cape Kennedy launch. Actually, the difference between the Patrick Air. Force Base Standard Atmosphere and the 1962 U.S. Standard Atmosphere (Reference 8) is so slight that the data in these tables may be used with considerable confidence regardless of the launch site. Tables 5, 6, and 13 list assumed values for the flow field parameters (\(\mathrm{Re}_{e} / \mathrm{Re}_{\infty}, \mathrm{T}_{e} / T_{\infty}\), and \(M_{e} / M_{\infty}\)) as a function of freestream Mach number. These values depend primarily on the vehicle geometry. The constants \(a, b, e\), and \(\gamma\) applicable to a turbulent boundary layer are stored in Table 8. In the time block the initial and final times are set at 0 and 160 sec , with a print interval of 5 sec . For a typical ascent heating problem, the computing interval should not exceed 5 sec to prevent temperature oscillations.

The FUNCT subroutine should be self-explanatory. Card 6008 contain the radiation function and, if current time does not equal 140., all other functions are ignored with the exception of the Eckert Heating routine. The \(K\) factor is obtained from \(\mathbb{N}(4)\). If current time equals 140., the turbulent \(K\) factor stored in \(\mathbb{T N}(4)\) is replaced by the laminar \(K\) factor (with a value 0.0496). Also, the constants a and e of table 8 are replaced by their laminar values.

Note that these changes are made at 140 sec , rather than at 135 sec when transition is assumed to occur. This is a result of the finite difference solution which, with a computing interval of \(\Delta \theta \mathrm{sec}\), assumes that the value of each independent variable remains constant during the time \(\theta-\Delta \theta\). Thus, if the exponent e stored in table 8 is changed at 140 sec , the new value is used by the EAH subroutine during the interval 135-140 sec.

The PRTNT subroutine is set up to list the current time, node 2 temperature, node 3 temperature, recovery temperature, and aerodynamic heating rate on a single line of output. The first 4 items will appear in the F-field format, and the heating rate in the E-field format.
TABLE A-1
INPUT FOR AERODYNAMIC HEATING EXAMPLE PROBLEM (I of 5)

TABLE A-1
INPUT FOR AERODYNAMIC HEATING EXAMPLE PROBLEM (3 of 5)

TABLE A-I
INPUT FOR AERODYNAMIC HEATING EXAMPLE PROBLEM (5 of 5)

\section*{0}

NOMENCLATURE FOR APPENDIX A
\begin{tabular}{|c|c|c|}
\hline & a & Exponent in equation \(\mathrm{A}-11\) \\
\hline & A & Heated surface area, \(\mathrm{ft}^{2}\) \\
\hline & b & Mach number exponent in equation A-11 \\
\hline & c & Speed of sound, ft/sec \\
\hline & \({ }^{c} p\) & Specific heat, Btu/ \(/ b^{\circ} \mathrm{F}\) \\
\hline & C & Thermal capacitance, Btu/ \({ }^{\circ} \mathrm{F}\) \\
\hline & e & Prandtl number exponent in equation A-12 \\
\hline 0 & h & Heat transfer coefficient, \(\mathrm{Btu} / \mathrm{ft}^{2} \sec ^{\circ} \mathrm{F}\) \\
\hline & H & Altitude, ft \\
\hline & k & Thermal conductivity, Btu/ft \(\sec { }^{\circ} \mathrm{F}\) \\
\hline & K & Eckert K factor defined by equations A-13 and A-14 \\
\hline & \(K_{W}, K_{L}\) & Surface slopes \\
\hline & Pr & Prandtl number \\
\hline & q. & Surface heat flux, Btu/ft \({ }^{2}\) sec \\
\hline & Q & Surface heat flux, Btu/sec \\
\hline & R & Thermal resistor, \(\sec ^{\circ} \mathrm{F} /\) Btu \\
\hline & Re & Reynolds number \\
\hline & St & Stanton number \\
\hline & T & Temperature, \({ }^{\circ} \mathrm{R}\) \\
\hline & u & Velocity, ft/sec \\
\hline
\end{tabular}

0

\section*{NOMENCLATURE FOR APPENDIX A (Continued)}
\(V\) Volume of lump, in 3
X Equivalent boundary layer length, ft
a Local angle of attack, radians
\(\alpha_{\mathrm{R}} \quad\) Vehicle body axis angle of attack, radians
\(\alpha_{0} \quad\) Vehicle surface angle, radians
\(\beta \quad\) Angle of attack multiplier
\(\mu \quad\) Viscosity, lb/ft sec
\(\gamma \quad\) Ratio of specific heats
\(\epsilon \quad\) Emissivity
\(\theta\) Time, sec
\(\rho\) Density, lb/ft \({ }^{3}\)

Subscripts
e Boundary layer edge
R Recovery
w Wall
\(\infty \quad\) Freestream

\section*{Superscripts}
* Evaluated at the reference temperature given by equation A-3

\section*{APPENDIX B}

ABLATION

The ablation subroutine is an extension of the Thermal Analyzer
Program to solve problems involving transient and steady-state ablation. The function calculates the amount of material that is ablated (if the temperature is above the ablation temperature) as a function of time as part of the heat balance using the finite difference technique. The amount of material that is ablated is then removed from the network by a switching arrangement, while the normal transient temperature distribution is calculated for the remaining ablation material and back-up structure. The ablation function, like most other functions, must have entries in the data block and FUNCT subroutine with the data block being a table of information that the function needs to perform the ahlation process.

The ablation function will only ablate a network that has the nodes at the boundaries of the lumps. The nodes and their information must be put into the table and listed in the capacitor block in the order in which they will ablate, but the node numbers need not be assigned consecutively. The machine calculates the resistors and capacitors in the ablating layer at each cycle, allowing for material removal. All material properties, e.g., thermal conductivity, heat ablation, etc., may be made a function of any variable. The three limitations of the program are:
1. Only ablation from a solid to a gas without a char layer may be considered.
2. Only one-dimensional heat transfer can be handled in the ablation material.
3. Ablation network resistors and capacitors may not be input by the geometric methods discussed on pages 5-6 and 5-8.

Some of the items that make the program very flexible are:
1. Heat of ablation and temperature of ablation may be made a function of temperature, heating rate, enthalpy, or time.
2. The ablating system may be stopped and started an infinite number of times.
3. It can handle the case of any number of layers of different ablation materials.
4. Many ablating systems can be handled at one time, either separately or linked together at a nonablating node.
5. \(\rho, c_{p}\), and \(k\) may be a function of any variable.
6. Radiation from the ablating node with emissivity as a variable can be handled by the program.

\section*{PROGRAM INPUT}

The ablation subroutine callout is
\[
\text { CALL } A B L(i, N)
\]
where \(i\) is the first (surface) ablating node number and \(N\) is the designation number of the table which contains the ablator properties used for the calculation of the capacitors and resistors in the ablating network.

To illustrate the use of this function, consider the example of a 4-link ablating chain sketched below.

(NOTE the correspondence between node and resistor numbers. This is an absolute necessity when using the ablation function.)

Node 16 is the first ablating node; i.e., the material is ablated from left to right in the figure. The network to the left of \(C_{16}\) is normally a description of the heat input (which would include radiation outward) to the outermost ablating material. The network to the right of \(\mathrm{C}_{28}\) (starting with node 40) would be the structure to which the ablating material is attached.

The ablation table contains the list of capacitor-resistor links in the same order that ablation will take place. Note that although the ablation table would be a sufficient description of the ablation network, this ablation network must have been described in the resistor block and capacitor block just as any part of the network was described. However, the initial values assigned to the ablation resistors and capacitors will be replaced by those found by computation using the tabular properties and hence can be input as zero.

The leading line of the table must be entered as 10 zeros, the two trailing columns (columns 9 and 10) must be entered as zeros, and the final line consists of one zero. These bordering zeros result in a convenient matrix reference scheme for the user of the ablation function as well as providing necessary storage for the ablation program. The first 8 entries on the intermediate lines contain, in order, the following information:
1. Node and corresponding resistor designation numbers
2. Ablator thermal conductivity - Btu/hr ft \({ }^{\circ} \mathrm{F}\)
3. Ablator density - \(\mathrm{lb} / \mathrm{ft}^{3}\)
4. Ablator specific heat - Btu/lb \({ }^{\circ} \mathrm{F}\)
5. Cross-sectional area normal to heat flow - \(\mathrm{ft}^{2}\)
6. Initial resistor length - in.
7. Ablation temperature - \({ }^{\circ} \mathrm{F}\)
8. Heat of ablation - Btu/lb

The ablation table (designated as Table 4 in this example) is entered as
\begin{tabular}{lllllllllll}
0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. \\
16. & \(\mathrm{K}_{16}\) & \(\rho_{16}\) & \(\mathrm{C}_{16}\) & \(\mathrm{~A}_{16}\) & \(\mathrm{x}_{16}\) & \(\mathrm{~T}_{16, \mathrm{a}}\) & \(\mathrm{H}_{16, \mathrm{a}}\) & 0. & 0. \\
21. & \(\mathrm{K}_{21}\) & \(\rho_{21}\) & \(\mathrm{C}_{21}\) & \(\mathrm{~A}_{21}\) & \(\mathrm{x}_{21}\) & \(\mathrm{~T}_{21, \mathrm{a}}\) & \(\mathrm{H}_{21, \mathrm{a}}\) & 0. & 0. \\
3. & \(\mathrm{K}_{3}\) & \(\rho_{3}\) & \(\mathrm{C}_{3}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{x}_{3}\) & \(\mathrm{~T}_{3, \mathrm{a}}\) & \(\mathrm{H}_{3, a}\) & 0. & 0. \\
28. & \(\mathrm{K}_{28}\) & \(\rho_{28}\) & \(\mathrm{C}_{28}\) & \(\mathrm{~A}_{28}\) & \(\mathrm{x}_{28}\) & \(\mathrm{~T}_{28, \mathrm{a}}\) & \(\mathrm{H}_{28, \mathrm{a}}\) & 0. & 0.
\end{tabular}
where the various quantities may be identified by reference to the above list. Each entry must be in floating point. During execution, the ninth column will be updated as ablation progresses and will contain the accumulative amount of material (in in.) ablated at that particular node. Consequently, in the PRINT subroutine, a WRIIT statement listing the addresses
\[
P(I 4+19), P(I 4+29), P(I 4+39), P(I 4+49)
\]
where
\[
I_{4}=\operatorname{LOC}(4)
\]
will cause to be printed the total material ablated at each node as a function of time. To aid in data reduction, each time a new link begins to ablate, and each time a node stops ablating, the regular output block is automatically printed.

There is no restriction on the number of ablating links in an ablating chain or on the number of separate ablating chains in a particular case. Further, there is no restriction on the number of resistors going into the left-most capacitor (in this case \(\mathrm{C}_{16}\)). However, each interior ablating node must have exactly one resistor to the left and one resistor to the right. If the terminal ablating node is only "half ablating" (input by setting \(T_{28, a}\) equal to a fictitiously large number), there is no restriction on the number of resistors attached to the terminal ablating node.

As the material ablates from left to right, the outer boundary is considered to move to the right. Thus, in the example capacitor number 16 continually moves; and if all nodes are completely ablated away, node numbers 21,3 , and 28 and resistor numbers 16,21 , and 3 will vanish from the circuit. Then the circuit will consist merely of

Again we have assumed that the right-hand part of the original \(C_{28}\) was nonablating material so that the ablation stops at this point.

EXAMPLE PROBLEM
To illustrate the procedure in using the ablation subroutine, the following simple problem is set up. Consider the application of a low temperature subliming ablator near the nose region of a highly accelerating solid fuel rocket. The ascent heating pulse is assumed known. A sketch of a unit surface area of the skin and the corresponding thermal network are shown below.

A 4-link ablating chain is set up using the node and resistor designation numbers of the example discussed in the preceding section. The following assumptions are made:
1. The outermost surface of the ablator (node 16) radiates to a free space sink of \(50^{\circ} \mathrm{F}\). The surface emissivity is 0.8 resulting in a radiation \(K\) factor of \(2.22 \times 10^{-4}\).
2. Conduction resistor 40 connects the substructure skin nodes 40 and 50. \(R(40)\) has a value of \(2000 \mathrm{sec}{ }^{\circ} \mathrm{F} / \mathrm{Btu}\), and each skin node has a capacitance of \(0.10 \mathrm{Btu} /{ }^{\circ} \mathrm{F}\).
3. The ablator properties and dimensions are:

Thermal conductivity \(=0.08 \mathrm{Btu} / \mathrm{hr}\) ft \({ }^{\circ} \mathrm{F}\) at \(0^{\circ} \mathrm{F}\)
\(=0.12 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}\) at \(600^{\circ} \mathrm{F}\)
\begin{tabular}{ll}
Density & \(=66 \mathrm{lb} / \mathrm{ft}^{3}\) \\
Specific heat & \(=0.35 \mathrm{Btu} / \mathrm{lb}{ }^{\circ} \mathrm{F}\) \\
Cross-sectional area & \(=1.0 \mathrm{ft}^{2}\) \\
Initial lump thickness & \(=0.2 \mathrm{in}\). for resistors 16,21 , and 3 \\
& \(=0.1 \mathrm{in}\). for resistor 28 \\
Ablation temperature & \(=535^{\circ} \mathrm{F}\) \\
Heat of Ablation & \(=600 \mathrm{Btu} / \mathrm{lb}\)
\end{tabular}

The program input is shown in Table B-1. Dummy values are entered for the ablation material resistors and capacitors since these are computed each cycle by the ABI subroutine. The assumed aerodynamic heat pulse is shown as curve l of the data block. The ablation table 4 is entered using the assumed properties listed above. The ablator conductivity is shown in curve 5. The initial and final times are set at 0 and 100 seconds, with a print interval of 2.5 sec .

In the FUNCT subroutine, card 6008 calls for linear interpolation of curve 1 to obtain the aerodynamic heating to node 16. On cards 6010-6013, the values of thermal conductivity listed in table 4 are updated each cycle by interpolating curve 5, using as independent variable the average temperature of the nodes to which the particular resistor is attached. Card 6014 calls in the Ablation subroutine, and card 6015 specifies the space radiation function. The radiation flux is computed and stored in the variable QRAD16 by subtracting the space sink temperature from the wall temperature, and dividing by the space.radiation resistor.

The PRINT subroutine calls for the output to be listed in six columns, with the corresponding time appearing by itself to the left of the first line of output. The first line will consist of the temperatures of nodes \(16,21,3\), 28 , 40 and 50, in that order. The second line will list the accumulated amount of material ablated at nodes \(16,21,3\), and 28 ; the aerodynamic heating rate; and the radiation loss to space.
TABLE B-1
INPUT FOR ABLATION EXAMPLE

\section*{APPENDIX C}

DIGITAL COMPUIER SOLUTIION FOR PASSAGE AIR AND WALI TEMPERAIURES

The basic approach in the computation of passage air and wall temperatures is the lumped parameter technique widely employed in the electrical analog solution of problems involving partial differential equations. The network for convection at a surface where there is no appreciable variation of the fluid temperature in the flow direction is simply a resistance, \(R_{c}\), connecting each of the node points representing the surface temperatures of the solid to a node point representing the fluid bulk temperature, where
\[
R_{c}=\frac{I}{h A_{c}}
\]
\(h=\) heat transfer coefficient
\(A_{c}=\) area for convective heat transfer per surface temperature node

Such is not the case for the network for convection from a gas to a surface where the convective heat transfer gives rise to appreciable variations of the gas temperature in the flow direction, and the analysis of this situation is therefore presented in somewhat greater detail here. The partial differential equation describing the variation of fluid bulk temperature, \(T\), with distance in the flow direction, X , and time, \(\theta\), is
\[
\left(\frac{\rho c_{v} A_{c}}{p}\right)\left(\frac{\partial T}{\partial \theta}\right)+\left(\frac{W c_{p}}{p}\right)\left(\frac{\partial T}{\partial X}\right)+h\left(T-T_{i}\right)=0
\]
where
\(T_{i}=\) passage wall temperature
\(\mathrm{V}=\) flui.d mean velocity
\(\mathrm{W}=\) fluid flow rate
\({ }^{c} p=f l u i d\) specific heat at constant pressure
\(c_{v}=\) fluid specific heat at constant volume
\(h \quad=\) heat transfer coefficient
\(\mathrm{p}=\) perimeter of cross-section for heat transfer
\(A_{c}=\) cross-sectional area of passage
The rates of change of flow work and kinetic energy of the fluid are neglected in the preceding equation as these terms are small compared with the rate of change of the internal energy of the fluid and the heat transfer rates as represented by the first and second, and the third terms, respectively.

The straightforward application of the lumped parameter technique entails the substitution of the equivalent difference for the distance derivative, \(\left(\frac{\partial T}{\partial X}\right)\), viz.
\[
\left(\frac{\partial T}{\partial X}\right) \approx \frac{T_{n}-T_{n-1}}{(\delta X)}
\]
in the equation above to yield
\[
\left\{\rho c_{v} A_{c}(\delta X)\right\}\left(\frac{\alpha T_{n}}{d \underline{\theta}}\right)+\left(W c_{p}\right)\left(T_{n}-T_{n-1}\right)+\{n p(\delta X)\}\left(T_{n}-T_{i}\right)=0
\]

The network representation for this equation is as shown below, where
\[
\begin{aligned}
& \mathrm{C}=\rho_{c_{v} A_{c}(\delta X)} \\
& R_{a}=\frac{1}{W c_{p}} \\
& R_{b}=\frac{1}{h p(\delta X)}
\end{aligned}
\]

Application of this lumped parameter network to the air passage of the problem at hand (and to heat exchanger passages in general where the fluid is a gas) necessitates the use of a very large number of node points for a moderate accuracy in the problem solution. It is shown below from a consideration of a simplified network for a typical element of the complete representation that the capacitor shown in the circuit above may be removed from the circuit without significantly affecting the accuracy of the solution. This in itself does not relieve the requirement for a large number of node points; however, it does permit the term in the original partial differential equation corresponding to this capacitance, \(\left(\rho c_{v} A_{c} / p\right)(\partial T / \partial \theta)\), to be removed. Once this term is removed a more refined approximation than that employed above may be substituted for the second term, \(\left(W c_{p} / p\right)(\partial T / \partial X)\); whence, a smaller number of node points will produce an equivalent accuracy.

A slice of thickness (\(\delta \mathrm{X}\)) of the portion of an air passage included between planes of symmetry is illustrated in Figure C-l. Also illustrated is the equivalent network considering variations of the wall temperature in the direction of airflow only. The triangular symbol schematically indicates a cathode follower (functionally a vacuum tube amplifier with unity gain). The purpose of this component is to reproduce the potential (temperature) of a given node point at a second node point without drawing any appreciable current (heat flux) from the first. If cathode followers are not inserted as

Figure C-1. Physical Geometry and Corresponding Thermal Network for a Portion of an Air Passage
indicated, the equations describing the network response will contain terms not present in the lumped parameter equations of the thermal system. The presence of cathode followers is rationalized on a physical basis by noting that cathode followers isolate air node point temperatures from any effects \(0=\) convective heat transfer at downstream nodes but not from upstream nodes in accordance with the physical facts.
\[
\begin{aligned}
& R_{a}, R_{b} \text {, and } C \text { are computed as indicated previously and } \\
& T_{a w}=\text { adiabatic wall temperature } \\
& h_{0}=\text { external heat transfer coefficient } \\
& A_{w}=\text { shaded area of the figure above } \\
& A_{0}=p_{0}(\delta X)=\text { external area for heat transfer } \\
& c_{W}=\text { specific heat of wall } \\
& \rho_{w}=\text { density of wall } \\
& k_{w}=\text { thermal conductivity of wall } \\
& R_{c}=\frac{l}{h_{0}} A_{O} \\
& C_{W}=\rho_{W} c_{W} A_{W}(\delta X)
\end{aligned}
\]

If the removal of the capacitances representing the rate of chanse o: internal thermal energy of the passage air with respect to time is not to ra? a significant effect on the solution, an obvious requirement is that these capacitances be very small compared with other capacitances of the system (\(t .\). passage wall capacitances), i.e.
\[
\frac{C}{C_{W}}=\frac{\rho c_{V} A_{c}}{\rho_{W} c_{w} A_{W}} \ll l
\]

An additional consideration is involved as a result of the fact that ti:e ell
 stream points due to the finite time required for the air to traverse \(\div . .2\) passage. The electrical capacitors representing the thermal capacit: \(\because: \leq\). air, \(C\), the resistances, \(R_{a}\), and the cathode followers, form an eleat:
circuit which may be described as a delay line. The delays in this case represent the time required for an air particle to pass from the inlet of the passage to downstream node points. Removal of the capacitors representing the thermal capacity of the air eliminates the delays and is thus tantamount to assuming air particles traverse the passage in zero time. This is justified if the actual time of traverse, \(\theta_{I}\), is very small compared to a suitable measure of the time required for a significant change of the wall temperatures. Such a measure is the time constant, \(\tau\), (resistance-capacitance product) of a wall temperature node point for changes of the air temperature. (The term, time constant, is employed in the usual sense here, i.e., the time required for a node point potential to respond within \(1 /\) e or \(37 \%\) of the final steadystate value resulting from a step change of an adjacent node point potential.)
\[
\begin{aligned}
& \tau=\mathrm{R}_{\mathrm{b}} \mathrm{C}_{\mathrm{W}}=\frac{\rho_{\mathrm{W}} \mathrm{c}_{\mathrm{W}} A_{\mathrm{w}}}{\mathrm{hp}} \\
& \theta_{\mathrm{I}}=\frac{\mathrm{L}}{\mathrm{~V}}
\end{aligned}
\]
where
\[
L=\text { total passage length }
\]

The second condition that must be satisfied is then
\[
\frac{\theta_{\mathrm{L}}}{\tau}=\frac{\mathrm{L} \mathrm{hp}}{\rho_{\mathrm{W}} \mathrm{c}_{\mathrm{W}} A_{\mathrm{W}} \mathrm{~V}} \ll I
\]

The partial differential equation describing the variation of fluid bulk temperature, \(T\), with distance in the flow direction, \(X\) and time, \(\theta\), then reduces to
\[
\left(\frac{\partial T}{\partial X}\right)+\left(\frac{h p}{W c_{p}}\right)\left(T-T_{i}\right)=0
\] time does not appear explicitly in this equation it may be treated in the same manner as the ordinary differential equation
\[
\left(\frac{d T}{d X}\right)+\left(\frac{h p}{W c_{p}}\right)\left(T-T_{i}\right)=0
\]
insofar as obtaining a solution is concerned with the understanding that instantaneous values of the wall temperature, \(T_{i}\), will be employed in the solution. Assuming that the wall temperature may be considered uniform over a segment of the passage of length \((\delta X)\) and noting the boundary condition
\[
(T)_{x=0}=T_{n-1}
\]
where
\[
T_{n-1}=\text { air temperature at the inlet of the segment }
\]
the solution becomes
\[
T=T_{i}+\left(T_{n-1}-T_{i}\right) e^{-\frac{h p X}{W} c_{p}}
\]

Setting \(X=(\delta X)\) yields the segment outlet air temperature, \(T_{n}\)
\[
T_{n}=T_{i}+\left(T_{n-1}-T_{i}\right) e^{-\beta}
\]
where
\[
\begin{aligned}
& \beta \triangleq \frac{h \mathrm{~h}}{\mathrm{Wc}} \mathrm{p} \\
& \mathrm{~A}=\mathrm{p}(\delta \mathrm{X})=\begin{array}{l}
\text { effective area of the segment } \\
\text { for convective heat transfer }
\end{array}
\end{aligned}
\]

Integrating the heat transfer rate to the wall per unit length over the length of the segment yields the heat transfer rate to the wall segment, \(Q_{i}\),
\[
\begin{aligned}
& Q_{i}=\int_{0}^{(\delta X)} q d X=\int_{0}^{(\delta X)} h p\left(T-T_{i}\right) d X \\
& Q_{i}=\int_{0}^{(\delta X)} h p\left(T_{n-1}-T_{i}\right) e^{-\left(\frac{\beta X}{\delta X}\right)} d X \\
& Q_{i}=\frac{(h A)}{\beta}\left(T_{n-1}-T_{i}\right)\left(1-e^{-\beta}\right)
\end{aligned}
\]

Eliminating the segment inlet temperature, \(T_{n-1}\), between this expression and the expression for the segment outlet temperature yields
\[
Q_{i}=\left(W c_{p}\right)\left(e^{\beta}-1\right)\left(T_{n}-T_{i}\right)
\]
and eliminating the wall temperature, \(T_{i}\), between the same two expressions yields
\[
Q_{i}=\left(W c_{p}\right)\left(T_{n-1}-T_{n}\right)
\]

The simplest network satisfying these relationships is shown in the following sketch. (As indicated previously, cathode followers are inserted between this passage segment network and the identical network for the adjacent segments.) Comparison of this network with that previously obtained indicates that, in addition to the absence of a capacitor representing the rate of change of the internal thermal energy of the air, the following differences exist: the wall temperature node location is midway between rather than adjacent to air temperature nodes; and the resistance connecting the segment air outlet temperature node, \(T_{n}\), to the wall temperature node, \(T_{i}\), is smaller by the ratio \(\beta /\left(e^{\beta}-1\right)\). Note that as (\(\delta \mathrm{X}\)) and hence \(\beta\) approach zero this ratio approaches unity, and that the resistances connecting the segment air inlet and outlet temperature nodes are identical.

\section*{0}

\[
\begin{aligned}
& R_{A}=\frac{1}{W c_{p}} \\
& R_{B}=\frac{1}{W c_{p}\left(e^{\beta}-1\right)}
\end{aligned}
\]

Since significant temperature gradients may exist in the passage wal. in planes normal to as well as in the direction of the airflow, the analesis is extended here to include convection to (N) wall temperature nodes anoma the periphery of each segment. The partial differential equation becores
\[
\left(\frac{\partial T}{\partial X}\right)+\frac{1}{\left(W c_{p}\right)} \sum_{i=1}^{N}(h p)_{i}\left(T-T_{i}\right)=0
\]
and the boundary condition is as before
\[
(T)_{x=0}=T_{n-1}
\]

The solution is then
\[
T=\frac{1}{\alpha}\left(1-e^{-\frac{\beta X}{(\delta X)}}\right) \sum_{i=1}^{N}(h A)_{i} T_{i}+T_{n-1} e^{-\frac{\beta X}{(\delta X)}}
\]
where
\[
\begin{aligned}
& a \stackrel{\Delta}{\triangleq} \sum_{i=1}^{N}(h A)_{i} \\
& \beta \triangleq \frac{a}{W c_{p}}
\end{aligned}
\]

Setting \(X=(\delta X)\) yields the segment outlet air temperature, \(\mathrm{T}_{\mathrm{n}}\),
\[
T_{n}=\frac{1}{a}\left(1-e^{-\beta}\right) \sum_{i=1}^{N}(h A)_{i} T_{i}+T_{n-1} e^{-\beta}
\]
and integrating the heat transfer rate per unit length over the length of the passage yields the following expression for the heat flux to each wall node point.
\[
\begin{gathered}
q_{i}=(h p)_{i} \int_{0}^{(\delta X)}\left(T-T_{i}\right) d X \\
q_{i}=(h A)_{i}\left\{\frac{1}{a}\left(1+\frac{e^{-\beta}}{\beta}-\frac{1}{\beta}\right) \sum_{i=1}^{N}(h A)_{i} T_{i-}\right. \\
\\
\left.+\frac{1}{\beta}\left(1-e^{-\beta}\right) T_{n-1}-T_{i}\right\}
\end{gathered}
\]

Eliminating the term involving the summation between this expression and the expression for the passage segment air outlet temperature
\[
\begin{aligned}
q_{i}= & (h A)_{i}\left\{\left(1-e^{-\beta}\right)^{-1}-\frac{1}{\beta}\right\}\left(T_{n}-T_{i}\right)+(h A)_{i}\left\{\frac{1}{\beta}-e^{-\beta}\left(1-e^{-\beta}-1\right\}\right. \\
& \left(T_{n-1}-T_{i}\right)
\end{aligned}
\]

0
The simplest network satisfying these relationships is illustrated below. (Again, cathode followers must be inserted between this network and the adjoining networks.)

\[
\begin{aligned}
& R_{i}=\frac{1}{(h A)_{i}\left\{\frac{1}{\beta}-e^{-\beta}\left(1-e^{-\beta}\right)^{-1}\right\}}=\frac{f_{1}(\beta)}{(h A)_{i}} \\
& r_{i}=\frac{1}{(h A)_{i}\left\{\left(1-e^{-\beta}\right)^{-1}-\frac{1}{\beta}\right\}}=\frac{f_{2}(\beta)}{(h A)_{i}} \\
& R=\frac{1}{a\left\{\left(1-e^{-\beta)^{-1}}-\frac{1}{\beta}\right\}\right.}
\end{aligned}
\]

It is not immediately apparent that for \(\mathbb{N}=1\) the network above reduces to the network previously presented for a single wall temperature node, and this is therefore demonstrated here. For \(\mathbb{N}=1\) the circuit becomes

The resistor, \(R_{l}\), will be replaced with two series connected resistors whose series resistance equals that of \(R_{1}\) and whose ratio is equal to \(r_{1} / R\) as illustrated.

Solving for \(R_{I A}\) and \(R_{I B}\)
\[
\begin{align*}
& R_{1 A}=\frac{R_{1}}{\frac{r_{1}}{R}+1} \\
& R_{1 B}=\frac{R_{1}}{1+\frac{R}{r_{1}}} \tag{0}
\end{align*}
\]
\[
\begin{array}{r}
R_{1 A}+R_{1 B}=R_{1} \\
\frac{R_{1 B}}{R_{1 A}}=\frac{r_{1}}{R}
\end{array}
\]

0
Since there is no current drawn from either node \(t\) or node \(T_{n}\) and since \(R_{1 B} / R_{1 A}=r_{1} / R\), the potentials \(t\) and \(T_{n}\) are equal. Hence, the node points \(t\) and \(T_{n}\) may be connected to one another without affecting the circuit operation. Thus, the circuit becomes

The resistances \(R\) and \(R_{I A}\) may now be combined into a single resistance, \(R_{H}\); ar: \(r_{1}\) and \(R_{1 B}\) may be combined into a single resistance, \(R_{B}\).

\[
\begin{aligned}
& R_{A}=\frac{1}{\frac{1}{R}+\frac{1}{R_{1 A}}}=\frac{R R_{1}}{R_{I}+r_{I}+R} \\
& R_{B}=\frac{1}{\frac{1}{r_{1}}+\frac{I}{R_{1 B}}}=\frac{r_{I} R_{1}}{R_{1}+r_{1}+R}
\end{aligned}
\]

Substituting the expressions for \(R_{1}, r_{1}\) and \(R_{1}\) yields values of \(R_{A}\) and \(R_{B}\) identical to those obtained in the one wall temperature node analysis, viz.
\[
\begin{gathered}
R_{A}=\frac{1}{W c_{p}} \\
R_{B}=\frac{1}{W c_{p}\left(e^{\beta}-1\right)}
\end{gathered}
\]

Since calculation of the factors \(f_{1}(\beta), f_{2}(\beta)\) and \(f_{3}(\beta)\) \(\left(\frac{1}{\left\{\frac{1}{\beta}-e^{-\beta}\left(1-e^{-\beta}\right)^{-1}\right\}}, \frac{1}{\left\{\left(1-e^{-\beta}\right)^{-1}-\frac{1}{\beta}\right\}}\right.\) and \(\left.\frac{e^{\beta}-1}{\left\{\left(1-e^{-\beta}\right)^{-1}-\frac{1}{\beta}\right\}}\right)\)

\footnotetext{
is quite tedious, and may be inaccurate for small values of \(\beta\), these functions are shown in Figures \(\mathrm{C}-2\) and \(\mathrm{C}-3\).
}

o
Figure C-2. Function \(f_{3}(B)\) Required for Passage Air Temperature Solution

Figure C-3. Functions \(f_{1}(\beta)\) and \(f_{2}(\beta)\) Required for Passage Air Temperature Solution

\section*{APPENDIX D}

\section*{COMPUTER OPERATION}

The Thermal Analyzer Frogram exists in three versions: Version A for rezular problems, Version*B for maximum-sized problems, and Version \(C\) for fluid storage and pressurization problems. Table D-l summarizes the capacity of the three versions of the program.

TABLE D-1
PROGRAM CAPACITY
\begin{tabular}{lccc}
\hline \multicolumn{1}{c}{ Version } & \begin{tabular}{c}
"A" \\
(Regular)
\end{tabular} & \begin{tabular}{c}
"B" \\
(Maximum)
\end{tabular} & \begin{tabular}{c}
"C" \\
(Pressurization)
\end{tabular} \\
\hline Overall Data Storage & 16,000 & 16,000 & 13,000 \\
Temperatures & \(\sim 1000\) & \(\sim 1000\) & 300 \\
Resistors & \(\sim 2500\) & \(\sim 2500\) & 700 \\
Data Block & \(\sim 3500\) & \(\sim 3500\) & 10,000 \\
FUNCT and PRINT & \(\sim 2700\) & \(\sim 4800\) & 1100 \\
\hline
\end{tabular}

This appendix describes the arrangement of the program deck, computation sequence, and tape usage for Versions \(A\) and \(B\). It also contains a brief description of the program decks and a complete listing of the basic program and subroutines. Version \(C\), which is applicable to fluid storage and pressurization problems, is described in detail in Reference 9.

ARRANGEMENT OF THE DECK
The program deck is arranged as follows. The two subroutines, PRINT and FUNCT, are inserted in the program deck between the two cards:
\$IEDIT SYSINI
and

\section*{\$ENTRY MAN6}

The input data - temperatures, resistors, etc. - are inserted between the next two cards:

\section*{\$DATA}

\section*{END}

Figure D-1 is a representation of the deck setup.
The \$IEDIT SYSLB3 card sets up the system to read the required subroutines from a reserved program library tape: Unit A8 on the Stand-Alone 7094, and unit SYSLB3 on the 7040/7094 D.C. Provision is made for the operator to mount the required tape by a \$PAUSE card on the Stand-Along 7094, and by a \$SETUP card for the \(7040 / 7094\) D.C. The required linkage is set up as the programs are read and loaded. Figures \(D-2\) and \(D-3\) show the overlay linkage arrangement for Versions \(A\) and B. Both versions use the same basic program and subroutines - the only difference is the way the various subroutines or functions are combined into links. While it is possible to combine the subroutines in a variety of ways, these two versions should cover most situations that may arise. Tables D-2 and D-3 show the order of the program deck for each version. Each subroutine is represented in these tables by its initial card. Version A should be used wherever possible as Version B obtains its additional capacity at considerable expense in execution time.

Additional capacity can be obtained, if necessary, by eliminating certain of the subroutines that are not used in a particular problem. The following subroutines are referenced only by the FUNCT and/or PRINT subroutines, and if not used there, they may be eliminated for a given run.

Subroutine or Function
IIN
BIV
PAR
TANKA
RAD SAV

Deck Name LIN6 BIV6

PAR6, ATR6*
TNK6
RAD6
SAV6

0

Figure D-1. Deck Setup for Thermal Analyzer Program

D-3

Figure D-2. Program Linkage Arrangement - Version A

0

\footnotetext{
Figure D-3. Program Linkage Arrangement - Version B
}
o

\section*{PROGRAM DECK ORDER - VERSION A}

0
TABLE D-2
(CONTINUED)
```

SORIGIN C,SYSLB2,REW 0079
\$INCLUDE
CPLOTR,LSYMBL,LBCD,LNUMER,LTRANS,LINER
0081
\$IBLDR SCLG
\$IBLDR AXS5
\$ORIGIN
\$IBLDR MFOG
A,SYSLB2,REW
0082
\$IEDIT SYSINI
0083
0084
C INSERT FUNCT AND PRINT ROUTINES HERE
C
SDATA
CDATA INSERT INPUT DATA HERE, FOLLOWED BY ANY RESTARTS
C
END
\$EOF 0086
\$IBSYS 0087
SYSLB3
\$PAUSE PLEASE REMOVE TAPE 290 FROM UNIT A8, SAVE IT, START
\$RESTORE
\$EOF
0090

```

\section*{TABLE D-3}

\section*{PROGRAM DECK ORDER - VERSION B}
\begin{tabular}{|c|c|c|c|}
\hline SJOB & 7,15,10000 & 5174833780 O12266B 43233 DAVID & 2266 \\
\hline SID JOB & 22668 DAVID & THERMAL ANALYSER - FORTRAN, LONG JOES & \\
\hline \$ID & 7,15,10000 & 5174833780 Ol22663 43233 DAVIC & 2266 \\
\hline \$PAUSE PL & ASE MOUNT RESERVE & E TAPE 290 On unit ab, Start & \\
\hline SATEND & 0,77777 & & \\
\hline \$SETUP L33 & T290, DISK, , : & & 0003 \\
\hline SASSIGN & SYSLE3 & & 0004 \\
\hline SASSIGN & SYSLB2 & & 0005 \\
\hline SATTACH & 82 & & 0006 \\
\hline \$AS & SYSLB? & & 0007 \\
\hline SATTACH & A8 & & \\
\hline \$AS & SYSLB3 & & 0009 \\
\hline \$EXECUTE & IBJOB & & 0010 \\
\hline SIBJOB & MAP, LOGIC & & 0011 \\
\hline SFILE & 'UNIT16', A (2), & READY,NOLIST, INOUT, HIGH,BIN,BLK=457 & \\
\hline SIEDIT & SYŞLB3, SRCH1 & & 0012 \\
\hline \$IBLDR MAN6 & & & 0013 \\
\hline \$IBLDR EXT6 & & & 0014 \\
\hline \$IBLDR LOC6 & & & 0015 \\
\hline \$IBLDR 4046 & & & 0016 \\
\hline \$IBLDR U096 & & & 0017 \\
\hline \$IBLDR U106 & & & 0018 \\
\hline \$IBLDR U126 & & & 0019 \\
\hline SORIGIN & A, SYSLE2 & & 0020 \\
\hline \$IBLDR CPAG & - & & 0021 \\
\hline \$IBLDR CPB6 & - & & 0023 \\
\hline \$IBLDR CPC6 & & & 0024 \\
\hline \$ORIGIN & A,SYSLB2 & & 0028 \\
\hline SIBLDR EXC6 & & & 0029 \\
\hline SORIGIN & C,SYSLB2 & & 0030 \\
\hline \$IBLDR CDAG & & & 0031 \\
\hline SORIGIN & C,SYSLE2 & . & 0032 \\
\hline \$IBLDR HTB6 & & & 0033 \\
\hline \$IBLDR LINS & & & 0035 \\
\hline \$IBLDR PARG & & & 0036 \\
\hline SIBLDR ATRG & & & 0037 \\
\hline SIBLDR BIVG & & & \\
\hline SORIGIN & D, SYSLB2 & & 0039 \\
\hline \$IBLDR TNK6 & & & 0040 \\
\hline SINCLUDE & FUNCT & & 0041 \\
\hline \$ORIGIN & E,SYSLB2,REW & & 0043 \\
\hline \$INCLUDE & PRINT & & 0042 \\
\hline \$IBLDR CVG6 & & & 0050 \\
\hline \$ORIGIN & E,SYSLB2,REW & & \\
\hline \$IBLDR RAD6 & & & 0044 \\
\hline \$ORIGIN & E,SYSLB2,REW & & \\
\hline \$IBLDR MMF6 & & & 0047 \\
\hline \$ORIGIN & E,SYSLB2,REW & & \\
\hline \$IBLDR SAVG & & & 0048 \\
\hline SORIGIN & E,SYSLE2,REW & & \\
\hline \$IBLDR SVT6 & & & 0049 \\
\hline SORIGIN & E,SYSLB2,REW & & \\
\hline SIBLDR TPTE & & & 0051 \\
\hline SORIGIN & E,SYSLB2,REW & & \\
\hline \$IBLDR PNT6 & & & A0051 \\
\hline SORIGIN & E,SYSLB2,REW & & \\
\hline \$IBLDR EAH6 & & & 0057 \\
\hline SORIGIN & EAX,SYSLB2,REW & & \\
\hline \$IBLDR EA16 & & & 0053 \\
\hline SORIGIN & EAX,SYSLR2,REW & & \\
\hline \$IBLDR EA26 & & & 0054 \\
\hline
\end{tabular}
o

\section*{TABLE D-3}
(CONTINUED)
```

SORIGIN EAX,SYSLBZ,REW
SORIGIN
\$IBLDR EA46
SORIGIN E,SYSLB2,REW
EAX,SYSLB2,REW
0056
\$IBLDR RRMG
\$IBLDR MDTG
SORIGIN C,SYSLB2,REW
0079
SINCLUDE
\$IBLDR BTPG
LPLOTR,LSYMBL,LBCD,LNUMBR,LTRANS,LINER
0081
\$IBLDR SCLG
\$IBLDR AXS6
\$ORIGIN
A,SYSLB2,REW
0082
\$IBLDR MFOG
SYSIN1 00083
SIEDIT SYSINI
C INSERT FUNCT AND PRINT ROUTINES HERE
SDATA
CDATA INSERT INPUT DATA HERE, FOLLOWED BY ANY RESTARTS
END
END
SEOF

```

```

SUNLOAD SYSLB3 PLEASE REMOVE TAPE 290 FROM UNIT A8, SAVE IT, START
\$PAUSE PLEASE REMOVE TAPE 290 FROM UNIT A8, SAVE IT, START
SEOF
\$IBSYS 0090
0091

```

Subroutine or Function
PUNCHT
\(\left.\begin{array}{l|l}\text { EAH1 } \\ \text { EAH2 } \\ \text { EAH3 } \\ \text { EAH4 }\end{array}\right\}\) EAH

RRM
CVG

Deck Name
PNT6

RRM6, MDI6*
CVG6***
*Where two subroutines are listed, the second is called if and only if the first is called
**EAH is called if and only if any one of EAH1, EAH2, EAH3, or EAH4 is called.
***CVG6 (CAIL CVG) executes a PRINT, and must therefore be in the same link or a link dependent from PRINT.

To remove a given subroutine it is necessary simply to remove the \$IBLDR SUBR. card from the deck, and to remove the \$ORIGIN card just ahead of it if and only if the \(\$ 1 B L D R\) card removed was the only one in that link. That is, two \$ORIGIN cards must not appear together.

\section*{COMPUTATION SEQUENCE}

The \$IEDIT SYSINI card transfers loading to the standard input tape, and subroutines FUNCT and PRINT are read from it. The system then loads Link 0 into core and transfers control to it. Link l, the compile phase lini, is entered to read and compile the data in the following order:
1. Initial temperatures
2. NBK card
3. Initial resistors and connections
4. NBK card
5. Initial capacitors
6. NBK card
7. Data Blocks
8. NBK card
9. Print Interval, Final Time, Initial Time
10. NBK card

Two passes through the data are made. The first determines the kind of data and the number of items on a card. All cards are read, printed, a nd stored on tape 4. The second pass converts the data from BCD to the required (floating-point or integer) binary and stores it on the compiled data tape, tape 3.

The execution phase is then loaded, the compiled data is read from tape 3 into core, and control passes to subroutine HTBAL (deck name HTB6) which is the controlling subroutine during execution of the time-history. HTBAL calls the FUNCT subroutine, which in turn calls any subroutines there needed. On the return from FUNCT, HTBAL executes a heat balance for each node listed in the capacitor block, according to one of the two following formulas:
\[
T_{k, \theta}+\Delta \theta=\frac{\Delta \theta}{C_{k}}\left(\sum_{j} \frac{T_{j}, \theta}{R_{j}}-T_{k, \theta} \sum_{j} \frac{I}{R_{j}}+q_{k}\right)+T_{k, \theta}
\]
where
\begin{tabular}{rl}
\(T_{k}, \theta+\Delta \theta\) & \(=\) The temperature of node \(k\) at time \(\theta+\Delta \theta\) \\
\(T_{k}, \theta\) & \(=\) The temperature of node \(k\) at time \(\theta\). \\
\(T_{j, \theta}\) & \(=\) The temperature of node \(j\) at time \(\theta\). \\
\(R_{j}\) & \(=\) The value of resistor \(j\), connecting nodes \(j\) and \(k\). \\
\(\sum_{j}\) & \(=\) Sum including all nodes connected to node \(k\) by a resistor. \\
\(C_{k}\) & \(=\) The value of the capacitor at node \(k\). \\
\(q_{k}\) & \(=\) The value of the arbitrary heat input to node \(k\).
\end{tabular}

If the value of the capacitor, \(C_{k}\), is zero,

At the same time, the R-C product of each node having a non-zero capacitor is computed
\[
(R C)_{k}=C_{k} / \sum_{j} \frac{1}{R_{j}}
\]

The smallest RC product in the network or the printing interval, whichever is smaller, become the "minimum R-C product," and the time step for the following cycle, \(\Delta \theta\), is some fraction (normally, 0.25) of this (RC\()_{\min }\).

At this point, the program calls those subroutines requiring both "old" and "new" temperatures: Convergence (CVG), Minimum and Maximum Temperatures (MMF), and Save Current Data (SAV). These routines are used only if they have been called for in the FUNCT routine.

All temperatures in the \(T_{\theta+\Delta \theta}\) (new) temperature block are then moved into the \(T_{\theta}\) (old) temperature block, thus destroying the old temperatures and making the two blocks identical. Note that this operation specifically includes temperatures not mentioned in the capacitor block, so-called "fixed temperatures." To change the value of a "fixed temperature," it is necessary to change the value on the \(\mathrm{T}_{\theta}+\Delta \theta\) (new) block. If the old value is changed, that value will be used for that cycle only in the heat balance (as one of \(\mathrm{T}_{j, \theta}\)) and then will be destroyed by the original value left unchanged in the \({ }^{T} \theta+\Delta \theta^{\text {(new) block. }} \mathrm{T}_{j}, \theta+\Delta \theta\) is stored in \(\mathrm{P}(\mathrm{i})\), and \(\mathrm{T}_{j}, \theta\) is stored in (\(\mathrm{P}(\max \mathrm{T}+\mathrm{i})\). That is, the new temperature block comes first in the P data storage region.

The program then calls the PRINT routine and computes the next time to print if it has reached print time. It then computes the current time for the next cycle, calls the plot routine if plotting has been called for, and then returns control to the Function routine for the next cycle. When, in computing the current time for the next cycle, the current time is greater than the final time (specified in the time block), \(\Delta \theta\) is chosen so that the current time is equal to the final time for the next cycle, and at the end of the next cycle, control is returned to the executive program in link 0. From there, if plotting has been called for (CALL TPLOT) the plotting routines are called in and executed. Then, if maximum and minimum temperature monitoring has been called for (CALL MMF), the max-min output routine (MFOUT) is called in and executed.

Thereafter, control passes back to the compilation phase, and any restarts are compiled. A restart consists of only one block of input data, followed by an NBK card. However any value that was compiled in the initial case may be changed. There are five flags, each one telling the program that the items following it are to be changed in the initial case. Flag lindicates that the cards following are temperature cards. Similarly, resistor and capacitor values are changed by cards following Flags 2 and 3, respectively. Flag 4 indicates a new time block, which must be changed in its entirety. Flag 5 is used to indicate changes to the data block. Note that each subblock of data (a curve or table) must be changed in its entirety, the restart containing all identifications, values, and if in the original curve, the period. When a data block is changed, the new values are stored starting at the beginning of that data block. Care must be taken not to exceed the storage allotted to that data block in the initial case. If that allotment is exceeded, the remainder will be stored in the next following data block or blocks, thus destroying some information. Each restart may include any or all of the above changes, and each must end with an NBK card. There is no theoretical limit to the number of restarts for a given run, but practical considerations, such as the size of deck, the machine time used, etc., will limit the number.

Following all of the restarts, the last card read by the program should be the "END" card. This card signals the program to exit and avoids an "End of file reading..." diagnostic. It also enables the program to complete plotting and minimum-maximum output before exiting.

The cards following the "end" card are system instructions to restore the system tapes used and allow removal of reserved and special output tapes, as required. Figure D-4 is a simplified flow diagram of the program. It applies to both Versions A and B. Table D-4 is a complete listing of the basic program and subroutines.

DESCRIPTION OF PROGRAM DECKS
A brief description of the function and operation of each of the program decks follows. The subroutines called for in the FUNCT and PRINT routines are discussed in more detail in Section IV.

MAN6 Initiates program and exits to system.
EXI6 Controls the program flow between compile, execution, and post-processing phases; contains block-common storage for information that must not be destroyed between phases.

UO46 Defines tape unit 4 as BCD
U096 Defines tape unit 9 as BCD
0106 Defines tape unit 10 as BCD
Ul26 Defines tapeunit 12 as BCD
LOC6 Locates the beginning point of a data block. Let \(I=L O C\) (N), where \(N\) is a data block designation number, then \(P(L+I)\) is the first point in the data block.

CPA6 Performs first-pass compilation of input data and stores it on unit 4.

CPB6 Performs second-pass compilation of input data, reading unit 4 and writing unit 3 .

CPC6 Performs compilation and posting of changes specified in restart blocks, writes revised data on unit 3 .

EXC6 Initiates execution phase; contains block common storage for those items that may not be destroyed during the execution phase.

CDA6 Reads compiled data from unit 3 into core storage.
HTB6 Controls execution of the time history of the required problem; performs the basic heat balance on each node; updates

FUNCT Controls the execution of each cycle except for heat balance and time calculations. Calls such routines as it needs to perform the required operations; performs user's miscellaneous calculations and circuit value changes.

PRINT Writes the required output on the system output tape according to the format(s) specified.

LIN6 Performs linear interpolation for the independent variable and data block specified as \(Y=\operatorname{LIN}(X, N)\)

BIV6 Performs bivariate linear interpolation for the independent variables and the data block specified as \(Y=\operatorname{BIV}(X I, X 2, N)\) where X 1 is the vertical independent variable, and X 2 is the horizontal independent variable.

PAR6 Performs parabolic interpolation for the independent variable and the data block specified as \(Y=\operatorname{PAR}(X, N)\). Data block \(N\) must have an odd number of point pairs.

ATR6 Called by PAR6 to assist in parabolic interpolation.
INK6 Initiates pressurization program, and stores data block numbers for use in pressurization. CALI TANK A (K) results in a diagnostic in versions \(A\) and \(B\).

CVG6 Iterates through the whole program, but holds time constant until the temperatures have achieved steady state. CALL CVG (\(A, N, M\)), where \(A\) is the greatest allowable temperature difference between cycles, \(\mathbb{N}\) is the upper limit on the number of cycles to be used, M is a print flag signaling to print every \(M\) cycle. If \(M\) is negative, all capacitors are treated as if zero valued.

RAD6 Calculates the value of a radiation resistor. The function specification \(R(A)=R A D\left(B, C, K_{r a d}\right.\)) will cause resistor \(A\) to be computed according to the equadion
\(R(A)=1 \cdot /\left\{\cdot 1713^{*} 10^{-8} K_{r a d}\left[\left(T_{B}+460\right)^{2}+\left(T_{C}+460\right)^{2}\right]\right.\)
\[
\left.\left[T_{B}+T_{C}+920\right]\right\}
\]

MMF6 Finds local maxima and minima for the temperatures listed in data block N.CALL MMF \(\left(\theta_{i}, \theta_{f}, N, S\right)\), where \(\theta_{i}\) and \(\theta_{f}\) give
the time range desired, \(\mathbb{N}\) is the data block containing the temperature numbers, and \(S\) means perform this test every Sth cycle.

SAV6 Initiates a call from HTB6 to SVI6 when the first argument, \(A\), is greater than or equal to the second, B. CALL SAV (A, B).

SVI6 Writes the current condition of the data onto tape 3, the compiled data tape. This allows a restart to continue from the point at which the previous case stopped, or to rerun a portion of case with new parameters.

TPI6 Writes time and the values of the temperatures listed in data block \(\mathbb{N}\) onto tape 11 to be post-processed by BTP6 for the plotter. CALL TPLOT (N).

PNT6 Punches cards giving the temperature numbers and values suitable for use as an initial temperature block. CALL PUNCHT (\(\theta, \mathrm{A}, \mathrm{B}\)) where \(\theta\) is the time at which temperatures are to be punched, and \(A\) and \(B\) are the smallest and highest temperature numbers punched. If \(A=B=0\) all temperatures will be punched.

EAl6 Sets up a call to EAH6 with two arguments, node number \(j\) and constant K, i.e., CALL EAHI (j, K)

EA26 Sets up a call to EAF6 with three arguments, H to be stored CALI EAH2 (\(j, K, H\))

EA36 Sets up a call to EAH6 with four arguments, adding \(a_{o}\) and surface flag to EAHI arguments in place of \(H\). CALL EAH3 (\(\left.j, K, a_{o}, F\right)\)
EA46 Sets up a call to EAH6 with five arguments, adding the location for storing H. CALI EAH4 (\(\left.j, K, H, a_{o}, F\right)\)
EAH6 Computes the aerodynamic heating to node \(j\), given \(K, a_{0}\), and a flag telling whether the node is upper or lower surface. Eckert's aerodynamic heating equation is used. EAH6 is called from EAI6, EA26, EA36, or EA46.

RRM6 Computes radiation resistors by the same formula as RAD6, except that \(K_{r a d}\) is computed from a radiation matrix given in data block \(N\), and is dependent on all the temperatures in the matrix network. MDI6 is called from RRM6. \(R(A)=\operatorname{RRM}(B, C, N)\) where \(B\) and \(C\) are the nodes directly connected to resistor \(A\), and \(N\) is the data block number.

MDI6 Matrix inversion routine used by RRM6. Maximum matrix size is \(15 \times 15\).

BTP6 Plot post-processor routine reads the information stored by TPT6, sorts it and, for the Calcomp plotter, writes it on a tape for off-line processing. For the S-C 2040 plotter, it displays directly on the CRT.

AXS6 Routine for drawing axes for the Calcomp plotter, called by BTPG.

SCI6 Routine for selecting scales and scaling information for the Calcomp plotter called by BTP6.

MF06 Minimum-maximum temperature post-processor reads information stored on tape by MMF6, sorts it and prints it.

\section*{TAPE USAGE}

The following list gives the tapes used during compilation and execution of a program, depending in some cases on the requests made in the FUNCT subroutine.

COMPIIE PHASE TAPE USAGE
\begin{tabular}{ll}
Tape No. & \multicolumn{1}{c}{ Use } \\
2 & Contains program overlay links \\
3 & Store compiled data \\
4 & Store semi-compiled data \\
5 & System standard input \\
6 & System standard output \\
8 & Not used \\
9 & Used by pressurization program \\
10 & Used by pressurization program \\
11 & Not used \\
12 & Materials Library tape (Reserved) \\
16 & Not used
\end{tabular}

Tape No.

2

3
4

5

6
8

9

10
11
12
16
\[
\begin{aligned}
& \text { Contains program overlay links. } \\
& \text { Read compiled data. Rewrite if SAV is called. } \\
& \text { Not used } \\
& \text { Not used } \\
& \text { System Standard Output } \\
& \text { Specified temperatures for off-line use, Reserve. } \\
& \text { Min-max intermediate output. } \\
& \text { Min-max intermediate output. } \\
& \text { Plot intermediate output } \\
& \text { Not used } \\
& \text { Plot output (Calcomp Plotter) }
\end{aligned}
\]

\section*{NOTES ON COMPUTER OPERATION}

Some general observations regarding computer operation, and some difficulties which frequently arise are discussed in the following paragraphs.
1. When running on the IBM 7094 Stand Alone machine, difficulty has been encountered due to dirty tape heads. In particular, the overlay tape (B-3) is used so heavily on the largest jobs, that within a couple of hours a tape read check is almost certain to occur. This happens when the overlay communication region is trying to reach the next link, which is still on tape, but cannot due to the dirty tape head. Overlay communication remains in a two-instruction loop until operator action intervenes.
2. Versions \(A\) and \(B\) have a built-in indicator using sense lights to indicate the degree of completion of the time history. The sense lights are used as binary indicators showing l6ths of the time history completed. This enables the operator to determine that the job appears to be progressing properly.
3. On the \(7040 / 7094\) D.C. it has been found that not more than one tape may be set up to be deblocked from disk to tape. Thereiore, if more than one tape is to be processed off-line or by a later job, all but one such tape must be assigned to a physical tape.
4. Backspacing a simulated (disk) tape is a complicated and timeconsuming operation. Therefore, after each link is loaded, the thermal analyzer calls for a rewind of the overlay tape. It might prove more efficient to make the overlay tape physically a tape, but this has not been tested.

Figure D-4. Simplified Flow Diagram of Computer Program
```

SIBFTC MANG MAN6000
C AS OF 12/4/64 MAN6001
NLAG = 1 MAN6002
CALL EXETIV (NLAG) MAN6002
CALL FXIT MAN6004
STOP MAN6OO5
END MANGOOS
SIBFTC EXTG EXT6000
SUBROUTINE EXETIV (NLAG) EXT6001
C AS OF 5/25/65
COMMON P(16000),M(16),MAXT,MAXR,MAXC,KSP,KST,KURV7,NCVG,NSTS,NFAB EXTGOO3
COMMON NABL(10),NKSP,LMMF,NRMF,NREAD,CC(12) EXT6004
COMMON NR,MAXP,MAXK,MAXS,MAXM EXTGOO5
COMMON /CP2/ ERROR,MAXMUM EXTSOOG
COMMON /CPITMI ITIMO
COMMON /CPPLT/NPLT,NEND,KSKIP
EXT6020
COMMON /EXFLG/NTFLG,NSAV,NFLG EXTG021
COMMON /EXPLT/ NLFLG EXT6022
MAXMUM=16000 FXTGO25
ITIMO = 1 EXTGO26
NEND=0 - EXT6O27
NPLT=1 EXTGO28
ERROR=0. EXT6020
NTYPE=0 EXT6030
NTFLG=0 EXT6031
lR=1
- EXT6032
8 CALL COMPIL(IR) EXT6033
IF (ERROR.EQ.O..AND.NEND.EQ.O)' CALL EXCUT(NLAG) EXT6035
IF (ERROR.NE.0.1 WRITE (6,100) EXT6036
100 FORMAT(44HOERROR HAS OCCURRED SOMEWHERE IN ABOVE CASE.) EXT6037
IF (LMMF.GT.2) CALL MFOUT EXT6038
IF (NPLT.GT.I) NBIT=1 EXT6039
IF (NBIT.GT.0) CALL BITAP EXT6040
IF (NEND.GT.O) RETURN EXT6041
IR=2
GO TO }
END
EXT6042
TO 8 EXT6043
END EXTGO45

```

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\$IRMAP} & \multicolumn{3}{|l|}{U046} & \\
\hline & ENTRY & - UNOL 4 & & 1104 \\
\hline - UNO4. & PZF & UNIT04 & & \(\cup 46\) \\
\hline UNI T04 & FILE & , UT4, READY, INOUT, BLK \(=22\), BCD,NOLIST & & \\
\hline & END & , & & \(\cup\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SIPMAP U096} \\
\hline & ENTRY & - UnOQ. & Un96 \\
\hline - UNO9. & PZE & UNITO9 & 1496 \\
\hline UNITO9 & FILE & , B (3), READY, INOUT, ELK \(=22, B C D, N O L\) S \(T\) & U 96 \\
\hline & END & & \(\cup 96\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SIRMAP UIOG} \\
\hline & ENTRY & -UN10. & U106 \\
\hline - UNIO. & PZF & UNTTIO & U 06 \\
\hline \multirow[t]{3}{*}{UNIT10} & File & , A (3), READY, INOUT, BLK \(=22,8 C D, N O L I S T\) & U 06 \\
\hline & \multirow[t]{2}{*}{END} & , & \(\cup 06\) \\
\hline & & & \\
\hline
\end{tabular}
```

\$IBMAP UI26
-UNIZ. PZE UNITIZ
1}2
UNITI2 FILE ,G(2),READY,INPUT,BLK=22,BCD,NOLIST (
UNITI2 FILE ,B(2),READY,INPUT,BLK=22,BCD,NOLIST U O
END
U 26
U}2

```
```

SIBFTC CPAG
CPAGOCO
SUBROUTINE COMPIL (IR)
C SUBROUTINE COMPIL (IR) CPAGOOI
C AS OF 04/27/65
C 8/21/64 CHANGED TO INCLUDE MINMAX
CPA6002
CPA6003
COMMON P, M, MAXT, MAXR, MAXC, KSP, KST, KURV 7, NCVG, NSTS, NFAB CPA6004
COMMON NABL,NKSP,LMNF,NRMF,NREAD,CC CPAGOOS
COMMON NRECD, NWPD, NWCT, NWST, NWTM CPA6006
COMMON /CPZ/ERROR,MAXMUM CPAGOOT
COMMON /CPPLT/ NPLT,NEND CPA6007
COMMON /EXPLT/ NLFLG CPAGOOO
DIMENSION CZ(6),CY(6)
DIMENSION A(12), I 1(12), I 2(12), I 3(12), NABL(10), CC(12)
DIMENSION P(16000), IRLINE(1), KPSD(1), NSTRT(1), M(16), KDAT(1)
EQUIVALENCE (P(4000), IRLINE(1)), (P(8000), KPSD(1)), (P(13000),
1 NSTRT(1)), (P(1), KDAT(1))
REAL M, INC, NBK,NET
INTEGER CP
DATA ENDF/6H -1/, CPAGO16
DATA NET/GHNET -1,
DATA DEC/6HDEC , CPAGO18
DATA INC/GHINC f
DATA INC/6HINC /
DATA PER/GHDFR , CPAGO2O
DATA NBK/6HNAK CPAGO21
DATA CID/6HCID CPA6O22
DATA CID/GHCID , CPAGO23
DATA TAP/6HTAP , CPAGO24
DATA RES/GHRES 1 CPAGO25
DATA CAP/6HCAP , - CPASO26
DATA COD/GHCOD 1 CPAGO27
DATA ZERO/6H0OOOOO/
CPAGO28
DATA (CZ(I),I=I,6)/2HO1,2HO2,2HO3,2HO4,2HO5,2HO6/,BLANK/IH/ CPAGO2O
DATA (CY(I),I=1,6)/2H 1,2H 2,2H 3,2H 4,2H 5,2H 6/,ZERZ/2HOO/ CPA6030
209 FORMAT (A3,A2,12A6)
209 FORMAT (A3,A2,12A6
CPA6039
FORMAT (5X,12AG) CPA6040
CPA6039
FORMAT (5X, A3,I2,12AG) CPA6041
FORMAT (1H1,9X,12A6)
FORMAT (4OHO KOUNT IS NOT CORRECT IN COMPIL ROUTINE , CPA6044
FORMAT (I 3, 3X, I 2
FORMAT (7HOCODE= AG,12H IS ILLEGAL.) CPA6050
FORMAT (25HOCANNOT FIND GURVE NAMED AG,17H ON LIBRARY TAPE.) CPAGO51
232 FORMAT (53HOCODE= NET IS ILLEGAL IN THIS VERSION. USE VERSION C.) CPAGO53
233 FORMAT (5H ** ,A3,A2,12AG,23H ** THIS CARD IGNORED.) CPAGO53
NCVG = l
CPA6054
NSTS = 1 CPAGON55
MATLIB =1 CDAGO56
NSW2=1
NPLT=1
NPLT=1 CPAGO58
NLFLG=1 CPAGO5O
NFAB = 1 CDAGOGI
NSW2=1 CPMORG2
LINE = 1 }\quad\begin{array}{l}{\mathrm{ CPASGO63}}
LMMF =1
NRMF=0
CPA6064
NRMF=0 CPASO65
NREAD=0 CPAGO66
DO 101 I = 1, 10 . CPA6066
NABL(I) = 0
CPA6068
101 CONTINUE CPM, CPAG069
GO TO (105, 149, 149), IR CPAG070
105 REWIND 4
DO 107 I = 1 MAXMUM CPAGO72
P(I) = O. CPAGO73

```
```

107 CONTINUF CPAGO74
KOUNT = 1
CPAGO75
110 CP= -
CPAGO76
IF (MATLIB.ER.1) READ (5,209) CM,CX,(AII),I=1,12)
CPA6079
IF (MATLIB.EQ.1) READ (5,209) CM,CX,(AII),I=1,12)
1101 DO 1102 1=1,6
1102 IF (CX.EQ.CY(I).OR.CX.EQ.CZ(I)) CP=I
CPA6081
CPA6082
IF (CX.EQ.BLANK.OR.CX.EQ.ZERZ.OR.CX.EQ.ZERY) CP=O
IF (CP.GF.O) GO TO 1103
CP=0
ERROR=1.
WRITE (6,215)
1103 IF (LINE.LT.60) GO TO 111
109 WRITE (6,212) (CC(I),I=1,12)
LINE = 1 (CM.EQ.CID) GO TO 117
IF (CM.FQ.TAD) GO TO 150
WRITE (6,211) CM,CP,(A(I),I =1,12)
LINE=LINE+1
IF (CM .EG. DEC) GO TO 116
IF (CM.EQ. INC) GO TO 118
IF (CM .EQ. PER) GO TO 119
IF (CM .EQ. NPK) GO TO 120
IF (CN-EO.PES) GO TO 123
IF (CM.EQ.CAD) GO TO 124
IF (CM.EG.NET) GO TO 170
WR (CM.EO.CON) GO TO IT2
CPAG102
115 WRITE (6,223) CM
ERROR=1.
GO TO 110
112 KOD = 9
GO TO 125
116 KOD = 1
GO TO 125
117 CMID=CM
ICP=CP
DO 1171 I=1,12
CC(I)=A(I)
1171 CONTINUE
LINE=1
WRITE (6,212) (CC(I),I=1,12)
GO TO 110
KOD=3
GO TO 125
1 1 9
KOD = 4
GO TO 125
120 KOD = 5
KOUNT = KOUNT + 1 CDAGI23
IF (KNUNT - 6) 125, 171, 122 CPAG124
121 KOD KOU
GO TO 125
WRITE (6, 215)
ERROR =2.
RETURN
123 KOD=7
GO TO 125
124 KOD=8
GO TO 125
150 IF (MATLIB.EQ.2) GO TO 160
MATLIB=2
FIRST=0.

```

\section*{TABLE D-4. (Continued)}
```

    WRITE (6,211) CM,CP,(A(I),I=1,12)
    CPAG137
CPA6138
151 LINE=LINE+1
IF (Z1.NE.TAP) GO TO 151
IF (Z3.EQ.A(1)) GO TO 110
IF (Z3.EQ.A(1)) GO TO 110
REWINO }1
FIRST=FIRST+1.
IF (FIRST.FQ.1.) GO TO 151
WRITE (6,224) A(1)
ERROR=1.
160 MATLIS=1
GO TO 110
170 WRITE (6,232) CM
ERROR=1.
175 READ (5,209) CM,CX,(A(J),J=1,12)
RNAD (5,209) CM,CX,(A(J),J=1,12)
WRITE (6,233) CM,CX,(A(J),J=1,12)
GO TO 175
125 WRITE (4,218) KOD,CP
WRITE (4, 210) (A(I), I = 1, 12)
IF (KOUNT - 6) 110, 130, 122
130
END FILE }
REWIND 4
REWIND 3
CALL COMP2
RETURN
49 CALL RESTRT
RETURN
END
CPA6130
CPAGI4N
CPAG141
CPAG142
CPA6142
CPA6143
CPA6144
CPA6144
CPAG145
CPA6146
CPA6147
CPA614R
CPA6149
CPA6149
CPA6151
CPA6151
CPAG152
CPA66153
CPA6154
CPAG155
CPA6163
CPA6163
CPA6165
CPAG166
CPA6167
CPA6168
CPAG16a
CPAG160
CDAS170
CPAG171
CPA6172
END (a)
CPAG173

```

```

        DO 131 I= 1,5000 CPR6070
        KDAT(I)=10 CPR6070
    131 CONTINUE
    IK = 1.
    CPB6071
    CPB6072
    MAXS=1
    132 READ (4, 218) KOD, KOD 1
        CPB6075
        IF (NGRC,F0, 2) NGRCl=2- CPB6076
        IF (NGRC.EN. 2) NGRCl=2
        CPB6ח77
        GO TO (134, 135, 136, 137, 138, 139), KOUNT CPB6078
    C READ IN INITIAL TEMPERATURES OF ALL NODES
C
OOTO (3,13,9.13,14,13,13,13) OKOD
READ (4, 200) (I I(I), A(I), 1 = 1, KOD 1)
DO 7 I = 1, KOD 1
J=I 1(1)
IF (J - MAXT) 5, 5,4
4 MAXT=J J.O) WRITE (6,232) J,A(I)
IF (J.EQ.0) ERROR=1.
P(J) = A(I)
ITEM = J
ATEM = A(1)
7 CONTINUE
GO TO }13
9 READ (4, 201)N1,N 1,N 2 - NP66094
J = ITEM CPB6096
AA = ATEM
DO 12 I = 1,N 2 CPB6097
J J + N 1 CPB6098
AA}=AA+
AA =AA + A 1
M, CPB6100
(J) =AA CPBT) MAXT=J CPG101
ITEM = J
ATEM = AA
CONTINUE
GO TO }13
WRITE (6,219) KOD,BCDR(KOUNT) CPB6106
kOO,BCDB(KOUNT
RETURN
14 KOUNT = KOUNT + 1 CDB6109
TEMPX=0.
DO 141 I=1,MAXT
IF.(KOAT(I).EQ.10) P(I)=TEMPX CPB6113
IF (KDAT(I).NE.1O) TFMPX=P(I) CPB6113
141 CONTINUE
READ (4, 200) 1 1(1)
WRITE (3) MAXT, NCVG, NSTS
WRITE (3) (P(I), I = 1, MAXT) CPB6117
WRITE (3) MAXT, NCVG, NSTS CPB6119
WRITE (3) (P(1),I=1, MAXT) . CPB6119
OO 15I = 1,500n CP86120
15 CONTINUE CPB6122
WRITE (6,250) MAXT,MAXT CPB6123
WRITE (6,250) MAXT,MAXT C CPES124
MAXIM=MAXT+MAXT - CPB6125
WRITE (6,251) MAXT,MAXIM CPB6126
C GO TO 132 CROS IN RESISTERS CP6127
C. READ IN RESISTERS CPB6129
CPB6130

```
```

135 GO TO (17,13,24,13,30,13,29,13),KOD
17 READ (4, 202),111(1), I2(I), I 3(I), A(1), 1=1, KOD 1) CPB6131

```

```

DO 22 I=1,KODI
J=J 1(I)
IF (J.GT.MAXR) MAXR=J
IF(J.LE.O) WRITE (6,233) I1(I),I2(I),I3(I),A(I)
IF(J.LE.O) ERROR=1.
P(J) = A(I)
L=L+1
IRLINE(L)=1 3(I) + 4096*(I.2(I) + 4096*J)
IF (J.GE.2048) IRLINE(L)=-IRLINE(L)
ITFM = J
ITEM 2 = I 2(I)
ITEM 3 = I 3(I)
ATEM = A(I)
IF (ITEM2.LE.MAXT.AND.ITEM3.LE.MAXT) GO TO 22
WRItE (6,234) ITEM,ITEM2,ITEM3,MAXT
ERROR=1.
22 CONTINUE
GO TO 132
J=ITEM CPB615I
DO 2501 I=1,N2
J=J+11(1)
ITFM2=ITFM2+I2(1)
ITEM3=ITEM3+I3(1)
XI= X1+X
YI=Y1+Y e
Z1=Z1+Z
KKRV=KKRV +KCRV
IF (J.GT.MAXR) MAXR=J CPB6160
P(J)=X1/(YI*ZI)
L=L+1
IRLINE(L)=ITEM3+4096*(ITEM2+4096*J)
IF (J.GE.2048) IRLINE(L)=-IRLINE(L)
ITEM=J
NSTRT(KGRC) = J+4096*KKRV
KGRC=KGRC+1
IF (ITEM2.LE.MAXT.AND.ITEM3.LE.MAXT) GO
GO TO 2501 CPB6169
ERROR=1.
2501 CONTINUE
24 GO TO (2401,25),NGRC
2401 READ (4,203) I1(1),I2(1),13(1),A11),N2
J = ITEM
DO 28I = 1,N N
J=J + I l(1)
ITEM 2 = ITEM 2 +1 2(1)
ITEM 3 = ITFM 3+1 3(1)
ATEM = ATEM + A(1)
IF (J.GT.MAXR) MAXR=J
26 P(J) = ATEM
L = L + l
IRLINE(L) = ITEM 3 + 4096*(ITEM 2 + 4096*J)
IF (J.GE.2048) \RLINE(L)=-IRLINE(L).
ITEM = J
IF (ITEM2.LE.MAXT.ANO.ITEM3.LE.MAXT) GO TO 28
WRITE (6,234) ITEM,ITEM2,ITEM3,MAXT
ERROR=1.
28 CONTINUE
GO TO }13
CPB6131
CPB6133
CP86134
I(1),I2(I)I3(I)AII) CPB6135
19 IF(J.LE.O) WRITE (6,233) II(I),I2(I),I3(I),A(I), CPB6136
CPO6137
CPB6137
CPB6137
CDB6130
CPB6140
CPB6140
CPB6141
CPB6142
CPB6143
CPB6144
CPB6145
CPB6146
CPB6147
CPB6148
CPB6140
CPB6150
CPB6152
CPB6153
COB6154
CPR6155
CPB6156
CPB6157
CPB6158
CPB6159
CPB6161
CPB6162
CPP6163
CPE6163
CP36164
CP86165
CP86166
CP86166
CPB6168
CPB6170
CPR6171
CPB6172
CPB6173
CPB6174
CPB6175
CPB6176
CPB6176
CD56178
CPR6170
CPR6170
CPB6181
CPB618
CPB6182
CPB6183
CPB6184
CPB6185
CPB6186
CPB6186
CPB6187
CPB6188
CDE6180
CD86180
CPRG191

```
```

29 READ (4,240) II(1),I2(1),13(1),X,Y,Z,KCRV
CPB6192
A(1)=X/(Y*Z)
NGRC=2
Xl=X
Y1=Y
Z1=Z
NSTRT(KGRC)=I1(1)+4096*KCRV
KGRC=KGRC+1
KKRV=KCRV
GO TO 18
KOUNT = KOUNT +.1
READ (4, 202) ! 111)
WRITE (3) MAXR, NCVG, NSTS
WRITE (3) (P(I), I = 1, MAXR)
DO 31 1 = 1, MAXR
P(I) = 0.
31 CONTINUE
MAXIM=MAXIM+MAXR
WRITE (6,252) MAXR,MAXIM
GO TO 132
C READ IN CAPACITORS
136 GO TO (33,13,46,13,52,13,13,431,KOD
33 READ (4, 200) (I 1(I), A(I), I = I, KOD 1)
NOP = 0
DO 42 I = 1, KOD 1.
J=I 1(I)
IF (J.GT.MAXT) WRITE (6,235) J,MAXT
IF (J.GT.MAXT) ERROR=1.
IF (J.GT.MAXC) MAXC=J
35 IF (J.LE.0) WRITE (6,232) J,A(I) CPB6223
IF (J.LE.O) ERROR=1.
P(J)=A(1) . CPB6225
ITEM = J CPB6226
ATFM = A(I) CPR6227
KPSD(IK)=11(I)+4096*(KKRV+4096*KKRVI) CPB6228
MPSD(IK)=-KPSD(IK) CPB6228
MAXP = MAXP + 1 CPB6230
NODCON=0
IK=IK+1
DO 41 K = 1, L
IDAT 1 = IRLINE(K)/16777?16
IF (IRLINE(K).LT.0) IDATI=IABS(IDAT1)+2048
IDAT 2 = MOD(IRLINE(K)/4096, 4096)
IDAT 3 = MOD(IRLINE(K), 4096)
IF (IRLINE(X).LT.O) IDAT2=IABS(IDAT2)
IF (IRLINE(K).LT.O) IDAT3=1ABS(IDAT3)
IF (I l(I) - IDAT 2) 38, 37, 38
OO 3601 I9=1,KGRC
KGR=MOD(NSTRT(I9),4096
KGR=MOD(NSTRT(I9),4096)
IF (KGR.EQ.IDATI) GO TO 3602 CPB6244
3601 CONTINUE
KGK=0
3602 KPSD(IK)=IDAT 3+4096*(IDAT 1+4096*KGK)
IF (KGR.EQ.IDATl) NSTRT(I9)=0
MAXP = MAXP + 1
NODCON=1
IK = IK + I
IF (I 1(I) - IDAT 3) 41, 40,41
CP86193
CPB6194
CPB6105
CPB6196
PB6197
CPB6197
CP86198
CPB6199
CPB62nO
CPB6201
CPB6201
CPB6202
CPB6203
CPB6204
CPB6205
CPB6206
CPB6207
CPB6208
CPB6200
CPR6210
CPB6211
C CAD IN CAPACITORS CPR6212
CPB6213
CPB6214
CPB6214
CPB6215
CPB6215
CPB6216
CPB6217
CPB6218
CPB6219
CPB6220
CPB6221
CPB6222
CPB6230
CPB6231
CPB6232
CPB6233
8623
CPB6234
CPB6234
CPB6235
CPB6236
CPB6237
CPB6238
CP86239
CP56240
CPB6241
CPE6242
CP86243
CPB6245
CPB6245
CPB6246
CPB6247
CPB6248
CPB6249
CPE6250
CPB6251
CPB6252

```

TABLE D-4. (Continued)

\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& K S T=K S P+M A X P \\
& K S T I=K S T
\end{aligned}
\] & & \[
\begin{aligned}
& \text { CPB6314 } \\
& \text { CPB6315 }
\end{aligned}
\] \\
\hline & NKSP \(=\) KST - 1 & & CP86316 \\
\hline & \(J J=0\) & & CP86317 \\
\hline & \(\mathrm{N} 2=0\) & & CPB6319 \\
\hline & MAXIM \(=\) MAXIM+MAXC & & CP86319 \\
\hline & WRITE (6,253) MAXC, MAXIM & & CPB6320 \\
\hline & MAXIM \(=\) MAXIM+MAXC & & CPB6321 \\
\hline & WRITE \((6,254)\) MAXC, MAXIM & & CPB6322 \\
\hline & MAXIM=MAXIM+MAXC & & CPB6323 \\
\hline & WRITE \((6,255)\) MAXC, MAXIM & & CPB6324 \\
\hline & MAXIM \(=\) MAXIM+MAXP & & CPB6325 \\
\hline & WRITE (6,256) MAXP, MAXIM & & CPB6326 \\
\hline & GO TO 132 & & CPB6327 \\
\hline \(c\) & & & CPB6329 \\
\hline c READ & D IN DATA SUB-BLOCKS & & CPB6329 \\
\hline c & & & CPB6330 \\
\hline 137 & GO 10 \((56,13,56,67,68,13,13,13,691)\) & , KOD & CP86331 \\
\hline 56 & IF (KOD 1) 57, 57, 64 & & CPB6332 \\
\hline 57 & READ (4, 204) NTAB & & CP86333 \\
\hline & IF (NTAB) 62, 58, 59 & & CPB6334 \\
\hline 58 & WRITE (6, 2201 & & CPB6335 \\
\hline & GO TO 132 & & CDS6336 \\
\hline 59 & IF (NSW2.FO. \({ }^{\text {(}}\)) (\%O TO 501 & & CPR6337 \\
\hline & WRITE (6,230) NTAEO,NTAB & & CPB6338 \\
\hline & ERROR \(=1\) - & & CPR6339 \\
\hline & NSW2=1 & & CPB6340 \\
\hline & \(K S T=K S T I+J J\) & & CPB6341 \\
\hline 591 & NSTRT \((M A X S)=K S T+2 * * 18 * N T A B\) & & CP86342 \\
\hline & NSW2 \(=2\) & & CPB6343 \\
\hline & NTASO=NTAR & & CPB6344 \\
\hline & MAXS \(=\) MAXS +1 & & CPB6345 \\
\hline & GO TO 132 & & CPB6346 \\
\hline 62 & If (NSW2.FQ.2) G0 TO 621 & & CPB6347 \\
\hline & WRITE (6,231) NTADC & & CPB6348 \\
\hline & ERROP \(=1\). & & CPB634? \\
\hline 621 & NSW2=1 & & CPB6350 \\
\hline & IF (NTAB+7) 63,51,53 & & CPB6351 \\
\hline 61 & KURV \(7=K\) KT \(1+J J-K S T\) & & CPR6352 \\
\hline 63 & \(K S T=K S T 1+. J J\) & & CPB6353 \\
\hline & GO TO 132 & & CPE6354 \\
\hline 64 & READ (4, 205) (AlI), \(1=1, \mathrm{KOD} \mathrm{1)}\) & & CPB6355 \\
\hline 641 & DC \(551=1, \mathrm{KOD} \mathrm{1}\) & & CPBS356 \\
\hline & \(J J=J J+1\) & & CPBS357 \\
\hline & \(P(J J)=A(I)\) & & CPE6358 \\
\hline 65 & CONTINUE & & CPB6359 \\
\hline & IF (N2.GT.0) GO TO 661 & & CPB6360 \\
\hline & GO TO 137 & & CPE6361 \\
\hline 66 & READ (4,206) AINC,N2 & & CPR6362 \\
\hline & A(1) \(=\mathrm{P}(\mathrm{JJ})\) & & CP86363 \\
\hline & \(\mathrm{KODI}=1\) & & CPR6364 \\
\hline 651 & \(A(1)=A(1)+A I N C\) & & CPB6365 \\
\hline & \(\mathrm{N} 2=\mathrm{N} 2-1\) & & CPB6,366 \\
\hline & G0 T0 641 & & CPB6367 \\
\hline 67 & READ (4, 205) A 11 & & CPB6368 \\
\hline & 呅JJ + 1) = 32767. & & CDB6360 \\
\hline & \(P(J J+2)=A(1)\) & & CPR637n \\
\hline & \(J J=J J+2\) & & CPR6371 \\
\hline & GO TO 132 & & CP86372 \\
\hline 68 & KOUNT \(=\) KOUNT +1 & & CPB6373 \\
\hline & \(K S T=K S T-1\) & & CDE6374 \\
\hline
\end{tabular}
```

    NWCTE=\J) NWCT, NCVG, NSTS CORG375
    WRITE (3) (P(I), 1 = 1, NWCT) CPB6377
    NRECD = NRECD + 2 COR6378
    READ (4, 205) A(1) CPB6370
    WRITE (3) MAXS, NCVG, NSTS CPB6380
    WRITE (3) (NSTRTII), I = 1, MAXS) CPB6381
    NWST = MAXS CPRG3R2
    JJ=0
    DO 69 I=1,40
    P(I)=0.
    CONTINUE
    MAXIM=MAXIM+NWCT
    WRITE (6,257) NWCT,MAXIM CPE6389
    MAXIM=MAXIM+MAXS
    WRITE (6,258) MAXS,MAXIM
    IF (MAXIM.LT.MAXMUM) GO TO 132 (PE6301
    ERROR=1. CPQ630?
    WRITE (6,244) MAXMUM,MAXIM CPES303
    GO TO 132
    691 READ (4,204) ICOD CPRG395
KDAT(JJ+1) = 32765 \& CPB6396
KDAT(JJ+2) = ICOD CPA6307
JJ=JJ+2
GO TO 132
138 GO TO (70, 13, 13, 13, 72, 72), KOD
C70 READ (4, 200) (II(1),A(I),I=1,KOO1)
70 READ (4, 205) ( A(I),I=1,KODI)
DO 71 ! = 1, KOD 1
c JJ = Ill1)
JJ= JJ+1
P(JJ+20)=A(I)
71 CONTINUE
GO TO 132
KOUNT = KOUNT + 1
C THE FOLLOWING 5 CARDS GO WITH THE NON-C CARDS ABOVE
P(1)=P(23)
P(2)=P(23)
P(3)=P(22)
P(4)=P(21)
IF (P(24).NE.0.) P(7)=P(24)
P(11)=D(2)
JJ=16
WRITE (3) JJ, NCVG, NSTS
WRITE (3) (P(I), I = 1, JJ)
NWTM = jJ
END FILE 3
NRECD=9
REWIND }
139 PEWIND 3
RETURN
END
CPB6394
cDR6300
C70 READ (4, 200) (II(1),A(I),I=1,KODI) CPF6401
CDP6403
CDP64^4
CDE6405
CPB6406
CDP64r:7
CDP64r.7
COR640R
CPE6409
CPB6410
CP86411
COS6412
CDP6413
CPR6414
CDES415
CPS6416
CPP6417
CPR6417
CPB6419
CD86420
CDB6421
CDR642?
CR642?
CORG423
CDFG424
CPE6425
CPB6426

```

```

    JJ }\overline{\overline{7}}\mp@subsup{\}{1}{1}1=1, NREC
    CPC6070
    READ (3) N1
    PC6071
    READ (3) (P(J), J = JJ, MAXP)
    JJ= MAXP + 1
    75
CONTINUE
READ (3) N 1
READ (3) (M(I),I=1,N1)
MAXP = MAXP + N1
REWIND 3
IF (MAXP -MAXMUM) 701,701,81
81 WRITE (6, 222)
100 ERROR=2.
701 IF (MATLIB.EQ.l) READ (5,209) CM,CX,(A(I),I=1,12)
IF (MATLIB.EQ.2) READ ( 12,209) CM,CX,(A(I),I=1,12)
CP=-1
1101 DO 1102 I=1,6
1102 IF (CX.EQ.CY(I).OR.CX.EQ.CZ(I)) CP=I
IF (CX.EQ.BLANK.OR.CX.EQ.ZERZ.OR.CX.EQ.ZERY) CP=O
IF (CP.GE.O) GO TO 1103
WRITE (6,215)
FRROR=1.
CP=0
1103 IF (CM.ER.END) GO TO 900
IF (CM.EQ.TAP) GO TO 150
IF (LINE.LT.60) GO TO.7011
WRITE (6,212) (CC(I),I=1,12)
LINE =1
7011 IF (CM.EQ.CID) GO TO 117
WRITE (6,211) CM,CP,(A(I),I=1,12)
LINE = LINE+1
IF (CM .EQ. DEC) GO TO 702
IF (CM.EQ. INC) GO TO 703
IF (CM.EQ.COD) GO TO 707
IF (CM.EQ. PER) GO TO 704
IF (CM .EQ. NPK) GO TO }70
WRITE (6,223) CM
ERROR=1.
GO TO 701
117
CMID=CM
ICP=CP
DO 1171 I=1,12
CC(I)=A(I)
1171 CONTINUE
LINE=1
WRITE (6,212) (CC(I),I=1,12)
GO TO 701
IF (NATLIB.EQ.2) GO TO 160
MATLIB=2
FIRST = 0.
WRITE (6,211) CM,CP,(A(I),I=1,12)
LINE = LINE+1
151 READ ( 12 ,209) Z1, Z2,Z3
IF (Z1.NE.TAP) GO TO 151
IF (Z3.EQ.A(I)) GO TO 701
IF (Z3.NE.ZERO) GO TO 151
REWIND 12
FIRST = FIRST+1.
IF (FIRST.EQ.1.) GO TO 151
WRITE (6,224) A(1)

```

CDC6072 CPC6n73 CPC6074
CPC6n75 CPC6076
CPC6077 CPC6078 CPC6079 CPC6080 CPC6081 CPC6082 CPC6083 CPC6084 CPC6085 CPC6086 CPC6087 CPC6088 CPC6089 CPCSO90 CPC6091 CPCOOQ2 CPC6093 CPC6094 CPC6095 CPC6096 CPC6097 CPC6098 CPC6099 CPC6100 CPC6101 CPC6102 CPC6103 CPC6104 CPC6105 CPC6106 CPC6107 CPC6108 CPC6109 CPC6110 CPC6111 CPC6112 CPC6113 .CPC6114 CPC6115 CPC6116
.CPC6117 CPC6118
CPCE119
CPC6120
CPC6121
CPC6122
CPC6123 CPC6124
CPC6125
CPC6126
CPC6127
CPC6128
CPC6129
CPC6130
```

ERROR =1.
CPC6131
VATLIE=1 CDC6132
G) TO 701
CPC6133
*
GO TO 706 CPC6135
703 KOO = 2
<0 TO 706
CPCS136
OO TO }706\mathrm{ CPC5137
T04 KOO=3 CPSN138
60 TO 706 CPC6139
707 KOD = 5 - CPC6140
GOTO 700 CPC6140

```

```

706 WRITE (4,218) KOD,CP (CPC6142
WRITE (4, 210) (A(I), I = 1, 12)
IF (KOO.LT,4) GO TO 701
IF (KOD.EQ.4) GO TO 708 C. CPC61456
WRITE (6,215) CPC6147
ERROR=1.
7OB END FILE 4 CPC6149
REWIND 4
714 READ (4, 218) KOD, KOD 1
GO TO (717, 122, 122, 719), KOD CPC6152
717 IF (KOD 1) 718,718,716 CPC6153
716 WRITE (6, 250)
250 FORMAT (34H KODI IS NOT ZERO IN RESTART BLOCX )
ERROR=1.
GO TO }71
122 WRITE (6,215) CPC6158
ERROR=1. CPC6150
GO TO }71
719 REWIND 4
REWIND 3
MAXP = 0
M(1)=M(2)
M(11)=M(2)
JJ=1
DO 800 I = 1, NRECD
GO TO (780, 780, 782, 784, 784, 784, 786, 788, 7901, I CPC6168.
780 N 1 = MAXT
GO TO 798
782 N 1 = MAXR
GO TO 798
784 N 1 = MAXC
GO TO 798
786 N 1 = NWPD
GO TO 798
788 N1 = NWCT
GO TO 798
700 N 1 = NWST
CO- CDC6.170
WRITE (3) N 1, NCVG, NSTS
MAXP = MAXP + N1
WRITE (3) (P(J), J = JJ, MAXP)
JJ = MAXP + 1
800 CONTINUE
N1 = 16
K'PITE (3) N I, NCVG, NSTS
WRITE (3) (M(I),I=I,NI)
FNO FILE 3
RENIND 3
RETURN
7!8 READ 14, 204) NBLK
CPC6148
R14 REWIND 4 CPC6150
- CPC6151
CPC6153
CPC6154
FORMAT (34H KODI IS NOT ZERO IN RESTART BLOCK ) CPC6155
CDC6156
REWIND }
CPC6160
CPC6161
CPC6161
CDC6163
CPC6163
CPC6164
CPC6165
CDC6166
CPC6167.
CPC6160
CPC6170
CDC6171
CDC6171
CPC6172
CPC6173
CPC6174
CPC6174
CPC6175
CPC6176
CPC6177
CPC6178
CDC6.170
CPC6180
CPC6181
CPC6181
CPC6182
CPC6183
CPC6184
CPC6184
CPC6185
CPC6186
CPC6187
CPC6187
CPC6189
CPC6190
CPC6190
CPC6101

```
```

    IF (NBLK.EQ.11.GNO TO 7144.5) GO TO (720,730,740,750,760),NBLK
    WRITE (6,236) NBLK
    ERROR=1.
    NBLK =1
    GO TO }71
    722 IF (KOD 1) 721, 721, 723
721 READ (4, 204) I
GO TO }71
723 READ (4, 200) (i 1(1), A(I), I = 1, KOD 1)
DO 724 I = 1, KOD 1
J=1 1(1)
JJ = J + MAXT
P(JJ) = A(I)
P(J) = A(I)
ITEM = I 1(1)
ATEM=A(I)
724 CONTINUE
GO TO 720
725 READ (4, 201) N 1, A 1, N 2
J = ITEM
AA = ATEM
DO 726 I = 1, N 2
J=J +N1
JJ = J + MAXT *
AA = AA + A 1
P(J)=AA
P(JJ)=AA
ITFM = J
ATEM = AA
CONTINUE
GO TO }72
730 READ (4, 218) KOD, KOD 1
GO TO (731, 734, 122, 719), KOD CPC6227
731 IF (KOD l) 721, 721, 732
732 READ (4, 200) (I 1(I), A(I), 1 = 1, KOD 1)
DO 733 I = 1, KOD 1
J=11(I) + 2*MAXT
P(J) = A(I)
ITEM=I 1(I)
ATEM = A(I)
CONTINUE
GO TO }73
734 READ (4, 201) N 1, A 1,N 2
J = ITEM
AA = ITEM
AA = ATEM = N N ,
J=J +N 1
JJ=J + 2*VAXT
AA = AA + A 1
P(JJ) = AA
ITEM = J
ATEM = AA
CONTINUE
GO TO }73
740 READ (4, 218) KON, K(ID 1
READ (4, 218) KO2, K(1D 1 CPC6249
GO TO (741, 744, 122, 719), KOD CPC6250
741 IF (KOO 1) 721, 721, 742
CPC6251
742 READ (4, 200) (I 1(I), A(I), I = I, KOD 1)
CPC6252

```
```

    0O 743 I = 1, KOD 1
    J=I 1(I)+2*MAXT + MAXR
    P(J) = A(I)
    ITEM= I 1(I)
    ATEM = A(I)
    743 CONTINUE
743 CONTINUE
744 READ (4, 201) N 1, A 1,N 2
J= ITEV:
AA = ATEM
DO 746 I = 1, N >
J=J N N 1
JJ = J + 2*MAXT + MAXR
AA=AA + A I
P(JJ)=AA
ITEM = J
ATEM = AA
746 CONTINUE
746 CONTINUE
750 JJ = 5
751 READ (4, 218) KOD, KOD 1
GO TO (752, 122, 122,719), KOD
GO TO (752, 122, 122,719), KOD ( OPC6274
753-READ (4, 205) A(I),I=I,KOD1)
DO 754 I = 1, KOD 1 A CPC6277
IF (JJ.EQ.1) M(7)=A(*)
IF (JJ.EQ.1) GO TO 754 CPC6280
M(JJ)=A(I) CPC6281
754 CONTINUE
GOTO 751
760 READ (4, 218) KOD, KOD 1
IF (KOD.EG.4) GO TO }71
759 READ (4, 204) NTAB
READ (4, 204) NTAB
761 L = LOC (NTAB)
762 READ (4, 218) KOD, KOD 1
GO TO (764,770,763,719,773) ,KOD CPC6290
763 L = L + 1
READ (4, 205) A(1)
P(L) = A(1)
GO TO 762
764 IF (KOD 1) 759, 759, 766
766 READ (4, 205) (A(I), l = 1, KOD 1)
KOD2=KOD1
DO 769 I = 1, KOD 1
L = L + 1
P(L)=A(I)
CONTINUE
769 CONTINUE
770 IF (KOD1.LE.O) KOD1=KOD2
GO TO (7701,7702,7703,7704,7705,7706),KOD1
7701 READ (4,241) (A1(I),I=I,KOD1),INCR

```

```

7702 READ (4,242) (Al(I),I=1,KOD1),INCR
7702 READ (4,242)(A1(1),I=1,KODI),INCR
7703 GO TO 771
7703 READ (4,243) (Al(I),I=1,KOO1),INCR
7703 GO TO 771 (Al(I),I=1,KOD1),INCR
GO TO 771 (Al(I),I=1,KOD1),INCR
7705 READ (4,245) (A1(I),I=1,KOD1),INCR
CPC6253
CPC6254
CDC6255
CPC6256
CPC6257
201) N 1, A 1,N
CPC6257
CPC6258
CPC6259
CPC6260
CPC6260
CPC6261
CPC8262
CPC5263
CPC6264
CPC6265
CPC6266
CPC6267
CPC6268
CPC6268
CPC6269
CPC6270
750 = 5 ClOC6271
751 READ (4, 218) KOD, KOD 1- CPC627?
753 READ (4, 205) 1 A(I),I=I,KOD1)
CPC6277
JJ= JJ-1
CPC6279
CPC6282
GO TO 751
CPC6283

```

```

    CPC6284
    CPC8285
    CPC6287
CPC6288
CPC6289
CPC6290
CPC6291
CPC6292
CPC6293

```

```

CDC6294
CPC6́295
CPC6296
CPC6296
CPC6298
CPC6200
769 CONTINUE
CPC6300
CPC6301
770 IF (KOD1.LE.O) KOD1=KOD2
CPC6302
CPC6302
CPC6303

$$
\begin{aligned}
& \text { CPC6303 } \\
& \text { CDC6304 }
\end{aligned}
$$

$$
00 \text { v }
$$

$$
\operatorname{READ}(4,241)(A 1(I), I=I, K O D I), I N C R
$$

CPC6304
CPC6305
CPC6306
CPC6306
CPC6307
CPC6308
CPC6309
CPC8310
CPC6311
CPC6312
CPC6312

```
GO TO 771 CPC6314
7706 READ (4,246)(A1(I),I=1,KODI),INCRGO TO 771CPC6315
771 DO 772 I = 1,KODI\(A(I)=A(I)+A 1(I)\)
 \(\mathrm{L}=\mathrm{L}+1\)
 \(P(L)=A(I)\)
 772 CONTINUEINCR=INCR-1CPC6316
CPC6317
CDC6310
CDC6310
CPC6310
\(C D C 6310\)
CPC6320
CPC6320
CPC6321
 GO TO 762 60 TO 771
 CPC6322
 GO TO 762
773 READ \((4,204)\) ICOD
CPC6323
 773 READ 4,2041 CPC6324
 \(\operatorname{KOAT}(\mathrm{L}+\mathrm{I})=32765 \quad\) CPC6325
 \(\begin{array}{ll}\text { KDAT }(L+1) & =32765 \\ \text { KDAT } \\ \text { CDC6326 }\end{array}\)
 \(\operatorname{KDAT}(L+2)=1 C O D\)
 \(L=L+2\)
 GO TO 762 CPC5329
 CDC6327
 CDC
900 REWIND 3
CPC6329
CPC6330
 REWIND 4
 CPC6331
 WRITE \((6,237) \quad\) CPC6332
 NEND \(=1\) - CPC6333
 RETURN - CPC6334
 END
CPC6335
SIBFTC EXC6
SUBROUTINE EXCUT(NLAG)
ExC6001
C AS OF 05/19/65 ExC6002
COMMON P(16000),M(16),MAXT,MAXR,MAXC,KSP,KST,KURV7,NCVG ExC6003
COMMON NSTS,NFAB,NABL(10),NKSP ExC6004
ExC6005DIMENSION KP(1)
EQUIVALENCE (P(1),KP(1)) ExC6006
COMMON /CP2/ERROR ExC6007 ExC6008
COMMON /EXADR/LCTN,LCTO,LCR,LCC,LCQ,LCRC,LCPS,LCK,LCKA
COMMON /EXADR/LCTN,LCTO,LCR,LCC,LCQ,LCRC,LCPS,LCK,LCKA
COMMON /EXPLT/ NLFLGExC6009
,NSAV,NFLGExC6010
COMMON /EXSTA/ NC,NCURI,NCURV(20)ExC6010
COMMON /EXCVG/ NFLAG,ITMAX,ITER,NODE,PMI,PM,DTO,ATEM,NTEM,MTEM ExC6012ExC6013
NSAV \(=0\) NSAV=0 ExC6014 ExC6015
NLFLG=0
NLFLG=0
All ExC6016
CALL HTBAL(NLAG)
ExC6017
RETURN ExC601R
 END
ExC6020

TABLE D-4. (Continued)

TABLE D-4. (Continued)

TABLE D-4. (Continued)
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{201} & GO TO (202,201),LIT & \[
\begin{aligned}
& \text { HTB6061 } \\
& \text { HTB6062 }
\end{aligned}
\] \\
\hline & CALL SLITE (I) & HTB6063 \\
\hline & GO TO 203 & HTB6064 \\
\hline 202 & CONTINUE & HTB6065 \\
\hline \multirow[t]{5}{*}{203} & CONTINUE & HTB6066 \\
\hline & \(R C M=M(4)\) & HTB6067 \\
\hline & \(M(9)=0\). & HTB6068 \\
\hline & \(J=K S P\). & HTB6069 \\
\hline & NN \(=\) MOD(KPSD(J),4096) & HTB6070 \\
\hline \multirow{3}{*}{44} & \(N N=1 S I G N(N N, K P S D(J))\) & HTB6071 \\
\hline & IF (NN.EQ.O) GO TO 50 & HTB6072 \\
\hline & GO TO 14 & HTB6073 \\
\hline \multirow[t]{3}{*}{5} & NN \(=\) MOD(KPSD (J), 4096) & HTB6074 \\
\hline & NN = ISIGN(NN,KPSD(J)) & HTB6075 \\
\hline & IF (NN) 6, 7, 19 & HTB6076 \\
\hline 6 & IF (J.LT.NKSP) GO TO 8 & HTB6077 \\
\hline 7 & \(N F L A G=2\) & HTB6078 \\
\hline \multirow[b]{4}{*}{3} & \(P(N R C)=A B S(P(N C)) / S U M 2 * S I G N(1 ., P(N R C))\) & HTB6079 \\
\hline & IF (SUM2.EQ.0.) WRITE (6,2003) N2 & HTB6080 \\
\hline & IF (SUM2.EO.O.) ERPOR \(=\) ? & HTB6081 \\
\hline & FORMAT \((23\) HOSUM (\(1 . / R)=0\). FOR NODE (5) & HTB6082 \\
\hline \multirow{3}{*}{2003} & IF (M(16).LE.0.) \(P(N R C)=A B S(P(N R C))\) & HTB6083 \\
\hline & IF (1R.EQ.2) GO TO 10 & HTB6084 \\
\hline & IF (P (NC).NE.O.) GO TO 11 & HTB6085 \\
\hline \multirow[t]{2}{*}{10} & P(NTNK) \(=(\) SUM \(1+P(N O)) /\) SUM 2 & HTB6086 \\
\hline & GO TO 13 & HTB6087 \\
\hline \multirow[t]{2}{*}{11} & & HTB6088 \\
\hline & IF (P(NRC).NE.O.) GO TO 132 & HT86089 \\
\hline 2001 & FORMAT (23HO R-C PRODUCT FOR NODE I 4, 6 H (IS E 20.8) & HTB6090 \\
\hline \multirow[t]{3}{*}{130} & WRITE (6, 2001) N 2, P(NRC) & HTB6091 \\
\hline & \(E R R O R=2\). & HTB6092 \\
\hline & GO TO 13 & HTB6093 \\
\hline 132 & IF (ABS(P) NRC)).GE.RCM) GO TO 13 & HTB6094 \\
\hline \multirow[t]{2}{*}{12} & \(M(9)=N 2\) & HTB6095 \\
\hline & \(R C M=A B S(P(N R C))\) & HTB6096 \\
\hline \multirow[t]{5}{*}{13} & SUM I \(=0\). & HTB6097 \\
\hline & SUM \(2=0\). & HTB6098 \\
\hline & SUM \(3=0\). & HTB6099 \\
\hline & GO TO (14, 72, 99), NFLAG & HTB6100 \\
\hline & \(\mathrm{N} 2^{2}=-\mathrm{NN}\) & HTB6101 \\
\hline \multirow{7}{*}{14} & NTNK \(=\) N2+11 & HTB6102 \\
\hline & \(N C=N 2+14\) & HTE6103 \\
\hline & NTOK \(=\) N \(2+12\) & HTB6104 \\
\hline & \(N Q=\mathrm{N}_{2}+\mathrm{I} 5\) & HTB6105 \\
\hline & \(N R C=N^{2} 2+16\) & HTB6106 \\
\hline & \(J=J+1\) & HTB6107 \\
\hline & NN \(=\) MOD(KPSD(J)/4096,4096) & HTB6108 \\
\hline \multirow{4}{*}{19} & IDAT \(=\) MOD(KPSD(J), 4096) & HTB6109 \\
\hline & \(N R=N N+I 3\) & HTB6110 \\
\hline & NTOM \(=1\) IDAT + 12 & HTB6111 \\
\hline & \(J=J+1\) & HT86112 \\
\hline \multirow[t]{4}{*}{22} & SUM \(1=\) SUM \(1+P(N T O M) / P(N R)\) & HTB6113 \\
\hline & SUM \(2=\operatorname{SUM} 2+1 \cdot / P(N R)\) & HTB6114 \\
\hline & SUM \(3=\) SUM \(3+P(N T O K) / P(N R)\) & HTB6115 \\
\hline & GO TO 5 & HT86116 \\
\hline 50 & WRITE (6, 52) & HTB6117 \\
\hline \multirow[t]{2}{*}{52} & FORMAT 135 H SOMETHING ROTTEN IN HTBAL ROUTINE & HTB6118 \\
\hline & GO TO 770 & HTB6119 \\
\hline \multirow[t]{2}{*}{72} & \(M(6)=R C M\) & HTB6129 \\
\hline & \(M(16)=M(16)+1.0\) & HTB6121 \\
\hline
\end{tabular}
```

    M(14)=M(5) HTB6122
    DO 724 I=KSP,NKSP HTB6123
    IF (KPSD(I)) 721,725,722 HTB6124
    7 2 1
ND = MOD(NN,4096)
ND=MOD(NN,4096)
K2 = MOD(NN/2**12,4096)
IF (K1.EQ.O.OR.K2.EQ.0) GO TO 724 HTB6129
RHO = LIN(P(ND),KI) HTB6130
CP = LIN(P(ND),K2)
J = ND+MAXT
RHO1 = LIN(P(J),K1)
CP1 = LIN(P(J),K2)
NC = ND+2*MAXT+MAXR
P(NC)=P(NC)*CP/CP1*RHO/RHOI HTB6136
GO TO }72
722 ND = MOD(KPSD(I),4096)
NR = MOD(KPSD(1)/4096,4096)
K3 = KPSD(I)/2**24
IF (K3.EQ.0) GO TO }72
J = NR+2*MAXT
J1=NR=ND+MAXT
FACT=LIN(P(ND),K3)
FACTl=LIN(P(J1):K3)
P(J)=P(J)*FACT/FACT1
724 CONTINUE
725 CONTINUE *
IF (NSAV.NE.O) CALL SAVT3
ITIMO = ITIME
GO TO (56, 99, 56), NSTS
56 GO TO (108,60,60,108),NCVG
108 GO TO (73,109,111,109),LMMF
109 LMMF=3
CALL MMF(0.,0.,1,1)
LMMF=4
GO TO 73
60 60 TO (115,112,111,115),LMMF HTB6159
111 WRITE (6,2005) LMMF
2005 FORMATITH LMMF=I5,4X,36H WRONG VALUE AT THIS POINT IN HTBAL.,
GO TO 770
112 LMMF=4
115 CALL CVG(-1.,1,1)
M(5) = M(7)*M(6)
M(15) = M(5)
GO TO (50, 3, 3, 76), NCVG
J = MAXT + 1
DO 74 I = I, MAXT
P(J)=P(1)
J=J+1
CONTINUE
IF (M(8)) 79, 75, 79
IF (NPRINT) 78, 77, 77
M(8) = 0.
CALL PRINT
IF (NPRINT) 78, 97, 76
M(11)=M(11) +M(4)
M(5) = M(7)*M(6)
IF (M(5).GT.0.) GO TO 80
WRITE(5,2002) M(5)
GO TO }77
2002 FORMAT (16H1 DELTA THETA = E15.6,24H MUST BE GREATER THAN 0.1 HTB6183
HTB6125
HTB6126
HTB6127
HTB6128
HTB6129
HTB6130
HTB6131
HTB6132
HTB6133
HTB6136
7 2 4
LMMF=4
CALL CVG(-1,,1,1)
HTB6137
HTB6138
HTB6139

```
M(14) \(=\) M(5) HTB6 122
```HTB6123
HTB6134
HT86135
HHE6139
HTB6140
HT86141
HTE6142
HTB6143
HTB6143
HTB6144
HTB6145
HTB6146
HTB6147
HTB6148
HTB6149
HTBS151
HTB6152
HTB6153
HTB6154
HTB6155
HTB6156
HTB6157
HTB6158
HTB6159
HTB6160
HTB6161
HTB6152
HTB615
HTB6163
HTBE163
HTB6164
HTB6165
HT86166
H
HTB6168
HTB6160
HTB6170
HTB6171
HTB6173
HTB6174
HTB6175
HTB6176
HTB6176
HTB6177
HTB6178
HTB6179
HTB6180
HTB6181
HTB6182
HTB6183
```

```
80 }\begin{array}{ll}{M(15)=M(5)}\\{}&{PM 1 =M(1)}\\{}&{IF (NLFLG.GT}
HTB6184
        IF (NLFLG.GT.1) CALL TPLOT(-1)
        M(1) = M(1) + M(5)
        IF (M(11) - M(3)) 83, 82, 82
        82M(11)=M(3) HTB6189
        LPT = 2
        GO TO 84
        83 LPT = 1 H M M H6102
        84 IF (M(1) - M(11)) 85, 90, 87 HTB6103
        85 NPRINT = - 1 HTB6194
        GO TO 3
        M(5) = M(11) - PM 1
```



```
90 GO TO (92, 93), LPT. HTB6198
92 NPRINT = 1 WOTO 3 HTBG190
        GO TO 3
93 NPRINT = 0 HTB6201
        GO TO 3
        ERROR=2.
    WRITE (6,2004) ERROR
2004 FORMAT (36HOERROR HAS OCCURRED. JOB TERMINATED. 6H LEVELF4.1/ HTB6205
    I 28HOLAST TIME POINT CALCULATED.) HTB6206
    CALL PRINT HTB6207
    NLAG=2 HTB6208
        RETURN
    MRTURN (NLFLG.GT.1) CALL TPLOT(-1) HT86209
    GO TO (96,111,111,94),LMMF HTB6211
94 NLAG=3 HTBG212
        GO TO 91
96 GO TO NLAG=2
91 GO TO (95,98,98),NFAB
91 GO TO (95,98,98),NFAB
98 GO TO 99
        RETURN
    END
        HTB6185
        HTB6186
        HTB6187
        HTB6188
        HTB6190
        HTB6191
87 M(5) M(11) - PM 1- HTB6195
770 HTB6202
HTB6218
HTB6219
```

```
$IBFTC BIVS
    FUNCTION BIV (XV,XH,K,ERR )
C AS OF 06/12/65
    COMMON P(16000),M(16)
    COMMON /CPZ/ERROR
    DIMENSION KP(1)
    EQUIVALENCE (P(1),KP(1))
    REAL M
    L=LOC(K)+1
    KFLL=0
    KOD=32765
    IF (KOD.EQ.KP(L)) KOD=KP(L+1)
    IF (KOD.NE.32765) L=L+2
    LV = P(L)/1000.+.1
    LH = AMOD(P(L),1000.) +.1
    IF (P(L+1).GT.P(L+2)) GO TO 20
    IF (XH.LT.P(L+1)) GO TO 50
    DO 15 J=2,LH
    Ll=L+J-1
    IF(P(LI).GT.P(LI+1)) GO TO 50
    IF (XH.LE.P(LI+1)) GO TO }3
15 CONTINUE
50 ERROR=2.
    ERROR=2.
    6,90) K,XV,XH
    IF (XH.GT.P(L+1)) GO TO 50
    DO 25 J=2,LH
    LI=L+J-1
        *
    IF (P(LI).LT.P(Ll+1)) GO TO 50
    IF (XH.GE.P(LI+1)) GO TO 30
25 CONTINUE
    GO 10 50
    L2=L+LH+1
    L3=L2+LH+1
    IF (P(L2).GT. P(L3)) GO TO 40
    IF (XV.LT.P(L2)) GO TO 50
    DO 35 I=1,L.V
    L2=L+I*(LH+1)
    L3=L2+LH+1
    IF (P(L2).GT.P(L3)) GO TO 50
    IF (XV.LE.P(L3)) GO TO 60
35 CONTINUE
    GO TO }5
    IF (XV.GT.P(L2)) GO TO 50
    DO 45 I =1,LV
    L2= L+I*(LH+1)
    L3=L2+LH+1
    IF (P(L2).LT.P(L3)) GO TO 50
    IF (XV.GE.P(L3)) GO TO }6
    45 CONTINUE
    GO TO 50
    60 Jl=L2+L1-L
    J2=J1+1
    J3 =L 3+L1-L
    J4=J3+1 BIV5053
    IF'IKOD.EQ.32765.OR.KOD.EQ.O) GO TO 80
    61 KFiG=0
    IF (P(J1).EO.O.)KFLG=KFLG+1
    IF (P(J2).EQ.0.)KFLG=KFLG+2
    IF (P(J3).EO.O.)KFLG=KFLG+4
    IF (P(J4),EQ.O.) KFLG=KFLG+8
```

BIV6000
Biv6001 BIVEOO2 BIV6003 BIV6004 BIVGOOS BIV6006 BIV6006 BIV6007
AIV6008 BIV6nna BIV6010
Biv6nll
BIV6012
BIV6013
BIV6014
BIV6015
BIV6016
BIVGO17
BIV6018
BIV6019
BIV6020
BIV6n21
BIV6022
BIV6023
BIV6024
BIV6025
BIV6026
BIV6027
BIV6028
BIV6029
BIV6030
BIV6031
BIV6032
BIV6033
BIV6034
BIV6035
BIV5036
BIV6037
BIV6038
BIV6039
BIV6040
BIV6041
BIV6042
RIV6043
BIV6044
BIV6045
BIV6046
BIV6047
Biv6042
BiV6049
BIV6050
BIV6051
BIV6052
BIV5053
BIV6054
BIV6055
RIV6056
BIV6057
BIV6058
BIV6059

```
    IF (KFLG.EQ.O) GO TO 70
    KFLL=KFLG
62 Jl=Jl+1
    J2= J2+1
    J3= J3+1
    J4= J4+1
    LI=LI+1
    GO TO 61
64 Jl=J1-1
        J2= J2-1
        J3= J3-1
        J4= J4-1
        Ll=L1-1
        GO TO 61
        Jl=J1+LH+1
        J2= J2+LH+I
        J3= J3+LH+1
        J4=J4+LH+1
        L.3 = L 3 +LH+1
        GO TO 61
        Jl=J1-(LH+1)
        J2=J2-(LH+1)
        J3=J3-{LH+1)
        J4=J4-(LH+1)
        *
        L3=L3-(LH+1)
        GO TO 61
        Z1=ABS(P(J1))+(ABS(P(J2))-ABS(P(J1)))/(P(LI+1)-P(LI))
    1 * (XH-P(LI ))
        Z2=ABS(P(J3))+(AES(P(J4))-ASS(P(J3)))/(P(LI+1)-P(LI))
    1 *(XH-P(L) ))
        L4=L3-LH-1
        BIV=Z1+(Z2-Z1)/(P(L3)-P(L4)) *(XV-P(L4))
        IF (KOD.EQ.O.OR.KOD.EQ.32765) GO TO }7
        IF (TIME.EQ.M(1)) GO TO }7
        IF (TIME1.EQ.M(11)) GO TO 79
        TIME=M(1)
        IF (TIME1.NE.M(11)) WRITE (6,92)
        TIMEI=M(11)
        WRITE (6,93) K,KOD,XH,XV,BIV
        IF (KFLL.NE.O) WRITE (6,91) K,KOO ,XV,XH,BIV
7 9 \text { RETURN}
        Z1= (P(J1))+1 (P(J2))- (P(J1)))/(P(LI+1)-P(L1))
    1%(XH-P(Ll) ) ( Z2= (P(J3))+1 (P(J4))- (P(J3)))/(P(LI+1)-P(L1))
    2 *(XH-P(Ll ))
        GO TO 75
        FORMAT (24HOOFF BIVARIATE CURVE NO. I5,16H. VERTICAL I.V.=E12.4,
    1 18H, HORIZONTAL I .V. =E12.4,IH.)
91 FORMAT (29HOEXTRAPOLATION USED FOR GURVE I5, 7H, FLAG=I3, BIV6IO2
    1 16H. VERTICAL I.V.=E12.4,18H, HORIZONTAL I.V.=E12.4, BIV6I03
    2 11H, DEP.VAR.=E.12.4) BIV6104
92 FORMAT (47HODERIVED VALUES USED IN THE FOLLOWING CURVES... , BIVG106
93 FORMAT (2OH BIVARIATE CURVE NO. I6,8H COD = I6, BIV6107
    I11H X(HOR)= E12.4,12H X(VERT) = El2.4,12H Y VALUE =E12.4) BIV6108
        END
BIVSIO9
```



```
    LL = LL - 2
        WRITE (6, 42) X,N LIN6058
        WRITE (6, 73) (P(I), I = LL, LU) LIN6060
        73 FORMAT(29HOCURVE POINT PAIRS FOLLOW.... /(1X,3(2E18.8,4X))) LING061
    42 FORMAT (27HOINDEP VAR FOR LIN INTERP. = E 20.8, 7H CURVE= 1 4, LING062
        1 16H OFF CURVE, LIN6063
        IF (ERROR.EQ.O.) WRITE (6, 75)
        FORMAT 130HO LAST TIME POINT CALCULATED, LINGO65
        M(8)=1.
        IF (ERROR.EO.O.) ERROR=2.
        RETURN
        RETURN LIN6068
$IBFTC ATRG
FUNCTION ATRP 1 (C, X)
C AS OF 12/4/64
        DIMENSION C(1)
        I = 5
        IF (C(1) - x) 3, 3, 1
        IF(C(1+2)-C(I)) 16, 17,17
    17 I = I + 4
    GO TO 1
    J=1+3
    ATRP 1 = (17)
    18 WRITE (6, 101) X, (C(K), K = 1, J)
    101 FORMAT (13H OFF CURYF X= E 16.8/(1H 2E 16.8))
    RETURN
3 IF (X - C(I)) 4, 4, 5
4 TELA = (C(1-1) - C(I - 3))/(C(I - 2)-C(I - 4))
    TELB = (CII + 1)-C(I - 1))/(CII) - C(I - 2))
    ATRP 1 = C(I - 3) + (X - C(I - 4))*TELA + (X - C(I - 4))*(X - C(I
    1 - 2))*(TELB - TELA)/(C(I) - ((I - 4))
        RETURN
        IF (C(I + 2)-C(II) 6,6,7
        ATRP 1 = C(I + 1)
        J}=1+
        GOTO 18
        I=I + 4
        GO TO 3
    END
```

 LIN6059
 LIN6064
 LIN6066
 LIN6O67
 LIN6068
    ```
SIPFTC PARG
        FUNCTION PAR (X,N)
FUNCTION PAR I
C Y=PARABOLIC FUNCTION OF X GIVEN EY CURVF.N
    COMMON P, M
    DIMENSION P(16000), M(16),C(8)
    REAL M
    PER = 32767.
    LL = LOC(v)
    LL=LL+1
    NFLAG = 1
    IF (P(LL - 1) - PER) 3, 2, 3
2 PER = P(LL)
    LL = LL + I
    NFLAG = 2
3 LU = LL
    J = LL
    LU =LU + 2
    IF (P(LU) - P(J)) 7, 5,6
    J = LU
    GO TO 5
    LU=LU-1
    IF (X-P(LL)) 9, 10, 10
    GO TO (40, 14), NFLAG
    IF (P(LU - 1) - XI 12, 25, 25
    GO TO (40, 18), NFLAG
    DO 15 J = LL, LU, 2
    P(J) = P(J) - PER
    CONTINUE
    GO TO 8
    DO 20 J = LL, LU, 2
    P(J)=P(J) + PER
    CONTINUE
    GO TO 8
25 LL = LL + 4
    DO 28 J = LL, LU, 4
    IF (X - P(J)) 27, 27, 28
27 LL = J - 4
    GO TO 44
    CONTINUE
    LL = LL - 4
    40 WRITE (6, 42) X,N
    42 FORMAT (27HOINDEP VAR FOR PAR INTERP. = E 20.8, 7H CURVE= I 4 ,
    1 16H OFF CURVE ,
    WRITE (6, 43) (P(I), I = LL, LU)
    FORMAT (16HOCURVE POINTS = 4E 18.8)
    CALL PRINT
    CALL EXIT
    STOP
44 LU = LL + 5
    I = 0
    DO45 J = LL, LU
    I=I +1
    C(I) = P(J)
45 CONTINUE
    C(I + 1)=0.
    PAR = ATRP I(C, X)
    RETURN
    END
```


60 CONTINUE M4F6061
REWIND 10 MFOOO2
RETURN
FND MMF6へ64
\$1BFTC RAD6 RADGOMn
FUNCTION RAD (N 1, N 2, CV) RAD6001
C AS OF 04/27/65 RAD6002
RAD6003
C RADIATION WITH CONSTANT OR VARIARLF FACTOR CV

c
RAD6004
COMMON P, M, MAXT RAD6006
DIMENSION P(2GOOO)
DIMENSION P(16000), M(16) RAD6007
REAL M SIGK $=C V * .1713 E-8$ RAD6008$J=\operatorname{MAXT}+N 1$RAD6009
RAD6010$\mathrm{T} 1=\mathrm{P}(\mathrm{J})+459.6$
$J=M A X T+N 2$RAD6011
$T 2=P(J)+459.6$ Ran6012
RAD $=1 . /(S I G K *(T 1 * T 1+T 2 * T 2) *(T 1+T 2))$RAD6013
RETURN RAD6015END-SIBFTC SAVG
SUBROUTINE SAV(X,Y) SAV6001
C AS OF 04/27/65 SAy6002
COMMON P(16000), M(16), MAXT, MAXR, MAXC SAV6003
COMMON /EXFLG/ATFLG,NSAV,NFLG SAV6nO4
REAL N:savbnns
NSAV $=0$
IF (X.LT.Y.OR.NFLG.GT.O) GO TO 20 SAV6006
NFLG=1 SAVK008NSAV=16008
RETURN SAVGOInENDsAVBnll
\$IBFTC EA16 FA1600n
C AS OF 05/07/65 EA16001
EA16002
C,KSP,KSTDIMENSION P(160ON),M(16)
FA160n4
REAL MFA 16004
FA160n5
$K=2 * M A X T+M A X R+Y A X C+N O D E$ EAl6nOG
KOD=1 FA16חก7$A L P H O=0$.$M F=0$EAlGOnf
EA16007CALL ECHERT (KOD,NODE, ALPHO, HF,HJ,TER)
EA16010
P(K) =
RETURN EA16011
FND EA16nlz

TABLE D-4. (Continued)

```
SIBFTC EAZA FA2GOOO
    SUBROUTINE FAH 2 (NODF, OK, VAR)
C AS OF 04/27/65 EA26002
    COMMON P, M, MAXT, MAXR, MAXC, KSP, KST EA26003
    DIMENSION P(160OO), M(16) EA26004
    REAL M FA26OO5
    K=2*MAXT + MAXR + MAXC + NODF EA26OOG
    KOD = 1
    ALPHO = 0.
    MF=0
    CALL ECHERT (KOD, NODE, ALPHO, MF, HJ, TER)
    P(K) = HJ*OK*TER
    VAR = HJ
    RETURN
    END
EA2600?
FA260nR
EA26009
EA26010
EA26011
EA26012
EA26013
EA26\cap14
$IPFTC EA36 EA36ONO
C SURROUTINE EAH 3 (NODE, OK, ALPHO, MF) EA36OO1
    AS OF 04/27/65 EA36002
    CONMON P, M, MAXT, MAXR, MAXC, KSP, KST EA36003
    DIMENSION P(16000),M(16) EA36004
    REAL M
    KOD = 2
    CALL ECHERT (KOD, NODE, ALPHO, MF, HJ, TER) EA36007
    K = 2*MAXT + MAXR + MAXC + NOOE FA3GONR
    P(X) = HJ*QK*TER EA36009
    RETURN E EA36010
    END EA36011
SIBFTC EA46 EA46000
SUBROUTINE EAH 4 (NODE, QK, VAR, ALPHO, MF) EA45001
C AS OF 04/27/65 EA46002
    COMMON P, M, MAXT, MAXR, MAXC, KSP, KST EA46003
    DIMENSION P(16000), M(16) EA46004
    REAL M EA46005
    K = 2*MAXT + MAXR + MAXC + NODE EA46OOG
    KOD = 2 FA4GON7
    CALL ECHERT (KOD, NODF, ALPHO, MF, HJ, TER) EA46008
    P(K) =HJ*QK*TER EA46\cap\capQ
    VAR = HJ 
    EA46010
    END-EAM6011
    END EA46012
```


TABLE D-4. (Continued)

| SIBFTC EAHG | | EAH6000 |
| :---: | :---: | :---: |
| | SUBROUTINE ECHERT (KOD, NODE, ALPHO, K, HJ, TER) | EAH6001 |
| c | AS OF 04/27/65 | EAH6002 |
| c | | EAH6On3 |
| C | AERODYNAMIC HEATING USING ECHERT FORMULA | EAH6004 |
| C | | EAH6005 |
| | COMMON P, M, MAXT, MAXR, MAXC, KSP, KST, KURV 7 | EAH6006 |
| | DIMENSION P(16000), M(16) | EAH6007 |
| | REAL M, LIN | EAH600\% |
| | GO TO (1, 2), KOD | EAH600? |
| 1 | BETHA $=1$. | FAH6010 |
| | GO TO 15 | EAH6011 |
| 2 | ALPHR = LIN(M(1), 21 | EAH6012 |
| | IF (K) 3, 3, 4 | EAH6013 |
| 3 | ALPHA $=$ ALPHO - ALPHR | EAH6014 |
| | GO TO 5 | EAH6015 |
| 4 | ALPHA $=$ ALPHR - ALPHO | EAH6016 |
| 5 | IF (KURV 7-3) 7, 7, 6 | EAH6017 |
| 6 | BETHA $=$ LIN(ALPHA, 7) | EAH6O18 |
| | GO TO 15 | EAH6019 |
| 7 | $J=\operatorname{lnc}(7)$ | FAH6^20 |
| | IF (ALPHA) $8,8,10$ | EAH6021 |
| 8 | BETHA $=P(J+2) * A L P H A+1$. | EAH6022 |
| | GO TO 15 | EAH6023 |
| 10 | BETHA $=P(J+1) * A L P H A+1$. | EAH6024 |
| 15 | QMAX $=\operatorname{LIN}(\mathrm{M}(1), 11)$ | EAH6O25 |
| | $S=$ LIN(OMAX, 5) | EAH6026 |
| | $H=L I N(M(1), 1)$ | EAH6027 |
| | ALRDXM $=$ LIN(H, 3) * | EAH6028 |
| | TLDTM $=$ LIN(OMAX, 6) | EAH6029 |
| | TMAX = LIN(H, 12) | EAH6030 |
| | TL = TLDTM*TMAX | EAH6031 |
| | QMLDMM $=$ LIN(OMAX, 13) | EAH6032 |
| | QML $=$ QMLDSAM*QMAX | FAH6O33 |
| | $J=\operatorname{Loc}(8)$ | EAH6034 |
| | $A=P(J+1)$ | EAH6035 |
| | $B=P(J+2)$ | EAH6036 |
| | $Q L=P(J+3)$ | EAH6037 |
| | GAMMA $=P(J+4)$ | EAH6O38 |
| | QN $=0.71 * *$ QL* ($\mathrm{GAMMA}-1.) / 2)$.$* QML**2$ | EAH6039 |
| | $J=$ MAXT + NODE | EAH604n |
| | TLPDTL $=0.5 *(1 .+(P(J)+459.6) / T L)+0.22 * Q N$ | EAH6041 |
| | TLP $=$ TLPDTL*TL | EAH6042 |
| | TR $=$ TL* (1. + QN) | EAH6O43 |
| | $M(12)=1 R$ | EAH6044 |
| | ALPRK = LIN(TLP, 4) | EAH6045 |
| | PRK $=10.0 * *$ ALPRK | EAH6046 |
| | $\text { RLDXM }=10.0 * * A L R D X M$ | FAH6047 |
| | HJ $=$ BETHA*(S*RLDXM*QMAX/TLPDTL**1.69)**A*OMAX**B*PRK | EAH6048 |
| | TER $=$ TR - P(J)-459.6 | EAH6049 |
| | RETURN | EAH6050 |
| | END | EAH6051 |

TABLE D-4. (Continued)

$11 \begin{array}{ll}\text { CONTINUE } & \text { CVG6061 } \\ \text { DTO } & =\text { DIFM }\end{array}$
$J=$ MAXT +
CVG6063
307 DO $308 \mathrm{I}=1$, MAXT
$P(J)=P(I)$
CVG6064
CVG6065
$J=J+1$
CVG6066
308 CONTINUE
IF (NFLAG.EQ.1) 60 TO 55
IF (DIFM.GE.ATEM) GO TO 14
13 NCVG $=4$
55 ITER $=0$
$\begin{array}{lll}13 & \text { NCVG }=4 & \text { CVG607n } \\ 55 & \text { ITER } & =0\end{array} \quad$ CVG6071
$M(1)=$ ITMAX
$M(9)=$ NODE
$M(6)=$ DTO
56 CALL PRINT
NFLAG $=2$
GO TO 6
14 IF (ITMAX - NTEM) 15, 16, 16
15 IF (ITER - MTEM) 6, 55, 55
16 M(1) = NTEM
CALL PRINT
WRITE $(6,60)$ ITMAX, DTO,NODE
CVG6067
CVG6068
CVG6069
CVG6ก7n
$M(1)=$ ITMAX CVG6072
CVG6072
CVG6073
CVG6075
CVG6076

CVG6080
CVG6081
60 FORMAT $133 H O T E M P E R A T U R E S$ DID NOT CONVERGE IN I7,12H ITERATIONS. CVG6083
18 H MAX. $\mathrm{DT}=\mathrm{E} 12.4,8 \mathrm{H}$ AT NODE I5) CVG6084
GO TO 51
CVG6085
END CVG6086
SIBFTC STS6 STS6000
SUBROUTINE STS (GR; STS6001
C AS OF 04/27/65.
C AS OF 04/27/65
STS6002
C AS OF $04 / 27 / 65$. STS6003
C STEADY STATE FINDS EQUIL. STARTING TEMPS. WITH HEAT BALANCE EQ. STS6004
C STS6005
COMMON P, M, MAXT, MAXR, MAXC, KSP, KST, KURV 7, NCVG, NSTS STS60.06
DIMENSION P(16000), M(16) STS6007
REAL M STSGOOR
1 GO TO $(2,10,10)$, NSTS \quad STS6009
2 NSTS 2 2 STS6010
NLAG $=1$
STS6011
4 CALL HTBAL (NLAG) STS6012
DIFM $=0$.
$J=$ MAXT +1
$J=$ MAXT +1 SAXT STS6014
DO 6 I $=1$, MAXT STS6015
DIF $=A B S(P(I)-P(J)) \quad$ STS6016
IF $=$ (DIFM ${ }^{+}$- DIF) $5,6,6$
STS6017
IF (DIFM - DIFI 5, 6, 6 STS6018
5 DIFM $=\mathrm{DIF} \quad$ STS6019
5
6
6 CONTINUE
STS6020
$J=$ MAXT + 1 STS6021
$\begin{array}{ll}\text { DO } 81=1, \text { MAXT } & \text { STS6O22 }\end{array}$
$P(J)=P(I) \quad$ STS6023
$J \doteq J+1$ STS6024
8 CONTINUE STS6O25
IF (DIFM - QK) 9, 4, 4 STS6026
$9 \quad$ NSTS $=3$
STS6027
STS6027
10 RETURN
STS6028
END STS6029

```
$IBFTC RRMG
    RRM6000
        FUNCTION RRM (N 1,N 2,N)
    C AS OF 06/12/65
    COMMON P, M, MAXT
    COMMON /CPZ/ERROR
    DIMENSION P(1600::, M(16), A(15, 15)
    REAL M
    L=LOC(N)
    KORD = P(L + 1)
    IF (KORD.GT.15) \therefore TO 60
    L=L + 2
    K=L + KORD*KOR:
    NSB l = 0
    NSB 2 =0
    KOUNT = 0
    K2 = K + 4*KOR= - 1
    J=0
    DO 18 I =K,K K, i
    J=J + 1
    NODE = P(I)
    IF (NODE -N 1) \therefore.4,5
4 A I = P(I + 1)
    E 1 = P(I + 2)
    RHO 1 = P(1 + 3
    NSB 1 = J
    GO TO 17
5 [ IF (NODE - N 2): :, 6, 18
    E2=P(I + 2)
    -RRM6026
    RHO 2 = PII + 3: RRM6027
    NS8 2 = J RRN6028
17 KOUNT = KOUNT + : 
    IF (KOUNT - 2): : 20, 19 RRM6030
    18 CONTINUE . RRM6031
    19 WRITE (6, 70) N: N 2,N M NRM6032
    70 FORMAT (7HO NOCE: 4, 3HOR I 4, 24HDOES NOT APPEAR IN TABLE 16) RRM6033
    GO TO 80 RRM6035
    GO TO }8
    RRM6035
    20 A 1 = A 1*A 2 RRM6037
    E1=E 1*E 2 RRN6038
    RHO 1= RHO 1*R\cdots:? RRM6030
    LTEM=L RRM6040
    K=0
    K 2 = 0
    DO42 1 ='1, Kに:-
    IF (I NSQ l) \therefore 2l, 22- RRM6043
IF (I - NSE 1) こ: 21, 22
    GO TO 42
    K=K+1
    00 40 J = 1, KC:
    IF (J - NSR 2) =.. 39, 24
    24 K 2 = K 2 + 1
    A(K,K2)=P(1) RRM6050
    M9 L=L+ =PIL RRM6051
40 CONTINUE RRM6053
K 2 = 0 % R NRM6054 
    NN = KORD - 1 R RRM60566
    CALL MDETR (NN, A) 
    L = LTEM RRN6059
    DO 5OI=1, Kこ:- RRM6060
```

```
        DO 50 J = 1, KORD R(1, J)= R(L)
        A(I,J) = P(L)
        RRM6062
        L=L+1 . RRM6063
50 CONTINUE
            CALL MDETR (KORD, C, A)
            QK = (0.4811 E. - 12*E 1*A 1)/(0.1713E - 8*RHO 1)*ABS(DIJ/C)
            JN1=MAXT+N1
            JN2=MAXT+N2
            Tl=P(JN1)+460.
            T2=P(JN2)+460.
            RRM=1./(0.1713E-8*QK*(T1*T 1+T2*T2)*(T1+T2))
            RETURN
            WRITE (6,61) N,KORD
            FORMAT (1OHOTABLE NO. I6,17H HAS MATRIX ORDER IG, RRMGO73
            Case DELETED.
            ERROR=2.
            RETURN
            END
                    RRM6075
RRM6076
RRN6077
```


SIBFTC SVTG SVT6000SURROUTIME SAVT3SVT6001
C AS OF 06/04/65SVT6002
COMMON P(16000), M(16), MAXT,MAXR,MAXC, NDUMY(20), DUMMY(12), NR, SVT6003
1 MAXP, MAXK, MAXS, MAXM SVT6004
COMMON /EXFLG/NTFLG,NSAV,NFLG SVT6005
DIMENSION LX(9) SVTG006
REAL M SVT6n07NSAV=0SVT6008
REMIND 3 sVT60no
$L X(1)=$ MAXT SVT6010
$L x(3)=$ MAXR SVT6011
$L X(3)=$ MAXR SVT6012
$L X(4)=$ MAXC SVT6013$L \times(5)=$ VAXC SVT6914
$L X(6)=M A X C$ SVTGO15
$L X(7)=$ MAXP SVT6016
$L X(8)=$ MAXK SVT6017
$L X(9)=$ MAXS SVT6018$L 2=0$SVT6ก19
DO $10 \quad \mathrm{I}=1,9$ SVT6020$L 1=L 2+1$SVT6021$L 2=L 2+L X(1)$SVT6022
K'RITE (3) LX(I),LI,L2 SVT6023
WRITE (3) (P(J),J=L1, L2) SVT6024CONTINUESVT6025L. $1=1$SVT6026
L2=MAXM SVT6027WRITE (3) MAXM,LI,L2WRITE (3) (MII),I=L1,L2)SVT6029
END FILE 3 SVT6030
REWIND 3 SVT6ก31
RETURN SVT6ก3?
END SVT6033

$P(L+1)=P(L+1)+P(L+3)$ TPT6061
28 CONTINUE TPT6062
END TPT6064
\$IBFTC PNT6 DNTGOOn
SURROUTINE PUNCHT(TINF,N1,N2) PNTGOn 1
$C \quad$ AS OF 04/27/65 PNT6002
REAL M PNT6003
IF (M(1).NF.TIME) PFTURN PNT6005
$N A=N I+M A X T$ PNTGOnG
IF (N1.EQ.O) NA $=1+M A X T$ PNT6007
$N B=N 2+M A X T$ PNTGOOR IF (N2.EQ.O) NB= NAXT $+4 A X T$ PNT6009
DO 10 I =NA,NR PNT6OIn
IF (I.EQ.NA.OR.I.EQ.NR) GO TO 9 PNT6011
$I X=I-M A X T$ PNT6O13

 SEQ \(=1 X+10000\)

 PUNCH I1,IX,P(I),CC(1),CC(2),TIME,ISFQ PNT6015
 10 CONTINUE PNT6016

 FORMAT (5HDECO1, I5,F10.2, \(7 X, A G, A 3,5 H-A T F 7.0,8 H\) SECONDS, PNT6O18

 \(111 \mathrm{X}, \mathrm{I} 5,8 \mathrm{X})\)

 PNT6019

 DNT6n2n
 \$IBFTC TNK6 TNK6001
SUBROUTINE TANKA(N) TNK6003
RETURN (42HOCALL TO TANKA IS ILLEGAL IN THIS VERSION.) TNK6004
END TNK6n06


```
11 REWIND 11 BTP6062
    KC=KC+I'1
    YS(2) = 0.
BTP6063
    YS(1) = 1.E16
    N=0
    NFLAG = 1
    K=0
        DO 3 I = 1 , NTRECD BTP6069
3 READ (11) NTAB
        BACKSPACE 11
        DO 16 KK = 1 , NPECD
        READ (II) NTAS,NT,(KNOD(I),I=1,NT),TIMI,TIMF,DTIM,TIM,
    1 (TEMD(I),I=1,NT)
        IF (KURV(KC) .NE. NTAB) GO TO 16
        GO TO (12,13), NFLAG
        XS(2) = TIMF
        XS(1) = TIMI.
        DO 15 I=1,NT
        TNODE(I) = KNOD(I)
        MFLAG = 2
        NODES = NT
        K=K+1
        P(K) = TIM
        N=N+M2+K
        DO 14I = I,NT
        P(N) = TEMP(I)
        BTP6088
        IF (TEMP(I) •GT• YS(2)) YS(2) = TEMP(I) BTPG089
        IF (TEMP(I) LTT.YS(I)) YS(I)= TEMP(I) BTPSOSO
        N=N+M2
        continue
        N=O
6 CONTINUE
        IF (YS(1).NE.YS(2)) GO TO 17
        YS(1)=YS(1)-1.
        YS(2)=YS(2)+1.
        YS(1)=YS(1)-(YS(2)-YS(1))/10.
        YS(2)=YS(2)+(YS(2)-YS(1))/10.
        REWIND 11
        NPTS = K
        MM = 0
        N=0
        IF (KSKIP.GT. 1) GO TO 20
C DETERMINE SCALE AND DRAW AXIS
        CALL PLOTS (BUFFER,914)
        KSKIP = 2
    BTP6107
    20 CALLASCALE (XS,2,XRANGE,XMIN,DX,1,ERX) BTP6108
        CALLASCALE (YS,2,YRANGE,YMIN,DY,1,ERY) BTP6109
        L=2.3-(ERX-XMIN)/10. BTP6110
        IF (L.LT.0) L=0
        CALL XYAXIS(1.,1.,XRANGE,1.,XMIN,OX,L,5.,.3,.21,0.,XTITLE,18,0.)
        L=2.3 -(ERY-YMIN)/10. BTP6113
        IF {L.LT.O\ L=O BTP6114
        CALL XYAXIS(1.,1.,YRANGE,1.,YMIN,DY,L,.1,3.,.21,90.,YTITLE,18,90.)BTP6115
        YN = 6.0 ETP6116
        DNO = PNO + 1. BTP6117
        KX=0 N + 1.
        BTP6118
        KX=KX + 1 BTP6119
        v=v+M2
BTP6120
    B = BCD(KX) BTP6121
```

```
    MM = MM + = 1 NO NPTS . NTO6127
    DO 30 1 = 1 , NPTS
    K=N+I
    X = (P(I) - XMIN) 1DX + 1.0
    Y=(P(K) - YMIN) /DY +1.0
    XP(I) = X
    YP(I) = Y
    BTP6128
    CALL SYMBL4 (X,Y,H,B,O.0,1) BTP6129
30 CONTINUE
BTP6129
    X = XRANGE + 1.5
    YN = YN - 5 1.5 BTP6132
    YN = YN - . 5 S O BTPG133
    CALL SYMBL4 (X,YN,H,B,O.0,1) BTP6133
    CALL SYMBL4 (X,YN,HT,TITLEN,0.0,12) ETPG135
    X = X + 1.2
    BTP6136
    Y = TNODE(MM)
    BTP6137
    IF NUMBER (X,YN,HT,Y,O.O,-1) BTPG138
    IF (NODES .GT. MM .AND. KX . LT. NOK)GO TO 25
    Y = 9.5
    X = XRANGE /2. - 3.
    z = x + 1.8
    CALL SYMBI.4 (X,Y,HT,TITLE,0.0,18)
    CALL NUMBER (Z,Y,HT, PNO ,O.0,-1)
    BTP6144
    CALL SYMBL4(X,Y-0.3,HT, CC ,0.,61) BTP6145
    XSPACE = XRANGE + 7.0
    CALL PLOT (XSPACE,0.0,-3)
    IF (NODES .EO. MM) GN TO 11
        GO TO 24
        IF (KSKIP .LE. 1) GO TO 95
        IF (NEND.EQ.O) GO TO }9
    94 PRINT 222,PNO
    222 FORMAT137HO REMOVE PLOT TAPE AND MARK AS HAVING F5.O ,8H PLOTS IBTP6153
        CALL TRWEND
        PAUSE 55555
        BTP6154
        PAUSE 55555 RNO RTP6155
        WRITE(6,222) PNO . BTP6156
95 REWINO 11
    RETURN BTP6158
    RTP6157
    END BTP6159
```

| \$IBFTC SCL6 | | | SCL6000 |
| :---: | :---: | :---: | :---: |
| | SUBROUTINE ASCALE (X, N, S, YMIN, DY, K, YMAX) | | SCL6001 |
| c | | | SCL600? |
| C | X - the given array of values to be scaled, and | the output | SCL6003 |
| \bigcirc | SCALED VALUES | | SCL6004 |
| c | N - No. OF X VALUES | | SCL6005 |
| c | S - NO. OF INCREMENTS | | SCL6006 |
| c | YMIN - GENERATED MINIMUM X VALUE, ROUNDED DOWN | | SCL6007 |
| C | DY - GENERATED INCREMENT | | SCL6008 |
| c | X - SPACING BETWEEN X VALUE Storages | | SCL6009 |
| C | YMAX = GENERATED MAXIMUN X VALUE, NOT ROUNDED | | SCL6010 |
| C | | | SCL6011 |
| | OIMENSION X(2) | | SCL6012 |
| | YMAX $=X(1)$ | | SCL6013 |
| | YMIN $=X(1)$ | | SCL6014 |
| | $N P=N * K$ | | SCL6015 |
| | DO $6 \mathrm{I}=\mathrm{K}, \mathrm{NP}, \mathrm{K}$ | | SCL6016 |
| | IF (YMAX •LT. X(I)) YMAX = X (I) | | SCL6017 |
| | IF (YMIN .GT. $X(I)$) YMIN $=X(I)$ | | SCL6018 |
| 6 | CONTINUE | | SCL6010 |
| | IF (YMIN .NE. YMAX) GO TO 20 | | SCL6020 |
| | $D X=1.0$ | | SCL6021 |
| | YMIN $=$ YMIN - (S/2.0)*DX | | SCL6022 |
| | GO TO 36 | | SCL8023 |
| 20 | $D X=($ YMAX - YMIN)/S | | SCL6024 |
| | $N A=0$ | | SCL6025 |
| | IF (Dx-1.) 25, 36, 30 | | SCL6026 |
| 25 | $D X=D X * 10$. | | SCL6027 |
| | $N A=N A-1$ | | SCL6028 |
| | IF IDX .LT. 1. .OR. DX .GE. 10.) GO TO 25 | | SCL6029 |
| | 60 TO 35 | | SCL6030 |
| 30 | IF (DX .GE. 1. .AND. DX .LT. 10.1 GO To 35 | | SCL6031 |
| | $D X=D X / 10$. | | SCL6032 |
| | $N A=N A+1$ | | SCL6033 |
| | GO To 30 | | SCL6034 |
| 35 | | | SCL6035 |
| | IF (DX . LE. 4.) $\mathrm{DY}=4 . * 10 . * * N A$ | | SCL6036 |
| | | | SCL6037 |
| 36 | RNDFTR $=-0.9$ | | SCL6038 |
| | IYMIN = YMIN/DY + RNDFTR | | SCL6039 |
| | YMIN = FLOAT(IYMIN)*DY | | SCL6040 |
| | DO $40 \mathrm{l}=1$, NP, K | | SCL6041 |
| | $X(I)=(X(I)-Y M I N) / D Y$ | | SCL6042 |
| 40 | CONTINUE | | SCL6043 |
| | RETURN | | SCL6044 |
| | END | | SCL6045 |

TABIE D-4. (Continued)

```
CALL PLOT (XC, YC, I)
AX56061
I=I - 1 N I N I=1 
I=I - 1 N I N I =1 
```



```
YC = YC - CR*DATK
CALL PLOT (XC, YC, I)
XC = XC + SR*DATK
YC = YC + CR*DATK
CALL PLOT (XC, YC, I)
ICNT = ICNT - 1 
IF (ICNT •LE. O) RETURN
GO TO 205
END
AxS6064
AXS6065
AXS6065
AXS6067
AXS6067
AX56069
AXS6071


\section*{TABIE D-4. (Continued)}
```

32 JJ=JJ-1 WRITE (6,202) ND1,(TEML(K),TEMS(K),TIML(K),TIMS(K),K=1,JJ)
REWIND?
GO TO 3
4 0 ~ C O N T I N U E ~
200 FORMAT (28H1 RANGE OF MINIMUM-MAXIMUM //4X,2E18.8, MF06066
202 FORMAT (4HO I IO,4E18.8/(14X,4EI8.8))
FORMAT (4HO I10,4E18.8/(14X,4E18.8))
REWIND 10
770 RETURN
END

```

MF06061
MF06062
    MFOSO63
MF06064
MF06065
MF06065
MF06067

\(1 E=E 12.4,23 H\) DEPENDENT VARIABLE \(=\) EI2.4 XLN6055GO TO 50
SUM \(=\operatorname{SUM}+(P(J)-P(J-2)) *(P(J-1)+P(J+1)) / 2\).XLN6056
28
30CONTINUEXLN\(L L=L L-2\)XLNOOSWRITE \((6,42) \mathrm{x}, \mathrm{N}\)16057
XLNGO5O
(6, 73) (P(I), \(1=L L, L U)\) ..... XLN6059
73 FORMAT(29HOCURVE POINT PAIRS FOLLOW.... / (1X, 3(2E18.8,4X)))
XLN6060
XLN6061
FORMAT (27HOINDEP VAR FOR LIN INTERP. = E 20.8, 7H CURVE = 1 , ..... XLN6062
IF (ERROR.EQ.O.) WRITE (6, 75)\(X L N 6063\)
\(X L N 6064\)

FORMAT (30HO.O. WRITE (6, 75)
75 FORMAT (3OHO LAST TIME POINT CALCULATED, ..... XLN6065\(M(8)=1\).
XLN6066 IF (ERROR.EQ.O.) ERROR=2. ..... XLN6067
RETURN
IF (NJC.EQ.2) GO TO 85XLN6069
NJC=2 XLN6070
SUM \(=\) SUM \(+(X-P(J-2)) *(P(J-1)+X L N) / 2\). ..... XLN6071
\(\mathrm{x}=\mathrm{x} 2\)
XLN6072
SUM \(=0\).
XLN6073
XLN6073
GO TO 26 ..... XLN6074
85 SUM2=SUM+(X-P(J-2))*(P(J-1)+XLN)/2. ..... XLN6075
XLIN=(SUM2-SUM1)/(X2-X1) ..... XLNG076
RETURN ..... XLN6077 ..... XLN6078
END
END

\author{
APPENDTX E \\ DATA DIAGNOSTIC PROGRAM
}

A special program has been written, based extensively on the compile Dhese of the Thermal Analyzer Program, which scans input data and notes any errors that it finds. The purpose of this program is to allow a short diagnostic run for a large data deck before submitting it to execute.

\section*{PROGRAM OPERATION}

The program actually compiles the data, printing notes on any errors it.finds as it goes along. A much more rigorous examination is made in this routine than in the regular Thermal Analyzer compile phase.

In the Thermal Analyzer several errors can cause the program to terminate before completing its error check. The coding covering most of these errors has been changed in this program to allow the error check to continue. In particular, optional error exits have been selected so that bad data that would cause termination of the run under normal circumstances will simply be noted end the program will continue execution.

To simplify the program set-up on the computer, the special tapes used for the Thermal Analyzer have been eliminated from this job. All the program decks are contained in the card deck submitted to the computer. Therefore the Erogram library tape used with the Thermal Analyzer is not used with this program. Any curves which are requested from the material properties library tepe will merely be noted. The tape is not searched, and therefore is not reeied. However, the program cannot make sure that the requested curve actuaily is on the tape; if it is not, a diagnostic will result later from the Thermal \(\therefore\) : s? yzer run.

Since the problem is not executed, those diagnostics peculiar to the \(=\because E z u t i o n\) phase of the Thermal Analyzer do not appear in this program. For
example, a condition producing a time step of zero can be detected only in the execution phase. An independent variable that goes beyond the range of the independent variable specified in a curve for interpolation can only be detected in the execution phase. Such errors will not be noted in the diagnostic program.

Since the Thermal Analyzer has versions with different storage allocations, some of the errors do not apply to.all versions. For example, if the data exceeds 14000 storages but not 16000 , it cannot be run on version \(C\), but may be run on versions \(A\) or \(B\). Where such restrictions apply, the diagnostic will so state.

PROGRAM SET-UP
Figure E-l shows the deck set-up for the diagnostic program, and Table E-l is a list of the diagnostic comments that could occur.

The input date is set-up je:st as for the Thermal Analyzer:
1. Temperature block cards
2. NBK card
3. Resistor block cards
4. NBK card
5. Capacitor block cards
6. NBK card
7. Data Sub-block cards
8. NBK card
9. Time block cards
10. NBK card
11. Restart \(\}\) Repeat as often as needed.
12. NBK card
13. END

When the data deck is ready, it is inserted into the diagnostic Frosram deck following the \$DATA card; it is input data for this program, too. Following the last data card, which is the "END" card, are the required proEram termination cards to return control to \(I B\) monitor system, \(\$ E O F\) and §DSYS.

Table E-2 is a complete listing of the eleven data diagnostic program suibroutines.


Figure E-I Source Program Deck Setup For Data Diagnostic Program
DECK NAME: DIAG
TIdWOD :TNILINOYA
\[
\begin{aligned}
& 215 \text { FORMAT ( } 66 H O^{\circ} \text { COUNT IN COLS. } 4 \text { AND } 5 \text { IS NOT AN INTEGER LESS THAN OCOMPO25 } \\
& \text { IR EQUAL TO } 6 \text { ) } \\
& 223 \text { FORMAT (7HOCODE =AG, } 12 H \text { IS ILLEGAL.) } \\
& \hline 214 \text { FORMAT (56FO BLOCK COUNT IN COMPIL ROUTINE IS AN UNREASONABLE VALUCOMPO21 } \\
& \text { 1E })
\end{aligned}
\]
TABIE E-I DIAGNOSTICS (Continued)



\section*{TABIE E-2}

\section*{DATA DIAGNOSTTC PROGRAM LISTING}

\section*{sIBFTC DIAGI}

C \(\quad\) AS OF \(12 / 4 / 64\)
```

NTAG=1

```

```

 CALL EXIT..- 2088M005
 STOP 2088M006
 END
 2088MOO7

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SIBMAP DIAG2} \\
\hline & ENTRY & - UN04. \\
\hline . 0104 & PZE & UṄ 104 \\
\hline \multirow[t]{2}{*}{UNIT04} & FILE & , UT 4 , READY, INOUT, BLK \(=22, \mathrm{BCD}\), NOL IS T \\
\hline & END & \\
\hline \multirow[t]{2}{*}{STBMAP} & DIAG4 & \\
\hline & ENTRY & - UnOO. \\
\hline . UNO9. & PZE & UNITO9 \\
\hline \multirow[t]{2}{*}{UN1TO9} & FITE & , B (3), REAOY, INOUT, BLK=22,ECD,NOLIST \\
\hline & END & \\
\hline \multirow[t]{2}{*}{_ \$1BMAP} & DIAG3 & \\
\hline & ENTRY & . UN゙10. \\
\hline -UN10. & PZE & UNITIO \\
\hline UNITIO & FILE & , A (3), READY, INOUT, BLK=22,BCD, NOLIST \\
\hline & ENO & .. \({ }^{\text {a }}\) (READY, \\
\hline
\end{tabular}

\section*{TABIE E-2. (Continued)}
```

\$IBFTC DIAGS
SUBROUTINE EXETIV (NLAG)
AS OF 5/25/65
COMMON P(14000),M(16),MAXT,MAXR,MAXC,KSP,KST,KURV7,NCVG,NSTS,NFAB EXETVOIO
COMMON NABL(10),NKSP,LMMF,NRMF,NREAD,C(112) EXETVO2O
COMMON NR,MAXP,MAXK,MAXS,MAXM EXFT OZO
COMMON /CP2/ ERROR,MAXMUM EXETO21
COMMON ICPITN/ ITINO
1 TKTHK(5),TKWALI,TKWAL2,INNOD,KCUT,
FMCO,FMNO,FMOLC,VGAS,IGC,IPRESS,FMOLN,FMIN,FMAX,PMIN,
3- PMAX,FMOLX,TSAT,ANGLE,TX,PR,TANKV,
MM(50), NUMTAB(100),
RADI(4),NSEX(50),HELB(14) ,LLFLOW,HELT,HELP,HELW
,ISTRAT,SAREA,IOPTSX(5)
COMMON /CONTR/ TLIQ,SCLIQ,TGAS,SCGAS,SCALL,TLSMAX,SCINT,TSGAS,
1COMUN(5),DMCC,TLMAX,TALL,FMLO,GAVITY,FKG,FKL,ZC,PC,ZN,FMLU,FMLLA,
2 ZX,CP\overline{X},TLA,GAMYA,RHOL,PHOG,CPL,CPG,RLAM,MCNT,PN,FMC,FMN,R
COMMON/CHP/SMCV,SMCA, SMNV, SMNA, SDMCC, SMLAS,SMLUSS, SUMEX, HELWS,GOLD,
1 ANGOLD,FMG,FML,TS,DELTS,DELVS,FMGAS
COMNON/CPPLT/NPLT,NEND,KSKID
COMMON /EXFLG/NTFLG,NSAV,NFLG
COMMON/EXPLT/ NLFLG
DIMENSION VS(100),FLA(25))
EQUIVALENCE (P(13651),VS),(P(13751),FLA)

```


```

 NEND=0
 NPLT=1
 ERROR=0. EXFT n25
 NTYPE=0
 EXFT 025
 XFT 025
 NTFLG=0
 CALL COMPIL(IR)
 EXET O26
    ```

```

 - EXETVO60
 NLAG=2
 IF (NEND.GT.O) RETURN EXETOT72
 IF (ERROR.GT.1.1 ERROR=O. EXETOT73
 IFI1.EQ.1) 6O TO 5 EXETOT8
 RETURN EXETOTG
 END
 EXET099
    ```

TABLE E-2 (Continued)



\section*{TABLE E-2 (Continuea)}
```

119 KOD = 4
GO TO 125
enmpn6n
COMPO61
120 KOO =5
cOMPO62
KOUNT = KOUNT + 1
COMPO63
IF (KOUNT - 6) 125, 121, 122 COMPO63
121 KOD = 6
COMP065
FRROR =2
-- ERROR =2.
123 KOD=7
GO TO 125
124 KOD=8
124 KOD=8
COMPO67
COMDO67
CNvon60
COMPO691
150 WRITE (6,211) CM,CP,(A(I),I=1,12) DIAGO7O2
WRINE (6,232) A(1) DIAGO703
LINE = LINE +2
DIAGO7C4
GO TO 110
COMPO7
170 NETSN=2
CALL INSIDE
GO TO 110
READ (10,209) CM,CX,(A(I),I=1,12)
IF (A(1).NE.FNDF) GO TO 1101
NETSW=1 UFNDF) GO TO 1l01
REWIND 10
GO TO 110
190 READ (9,209) CM,CX,(A(I),I=1,12)
COMP0717
A(1).NE.ENDF) GO TO 1101. COMPO718
NETS:N=0
COMP0719
--....GEWIND GO
COvPO719
125 WRITE (4,218) KOD,CP
_...WRITE (4, 210) (AlI), I = 1, 12)
IF (KOUNT - 6) 110, 130, 122
COMPO721
COMP.773
END FILE 4 4, llo, 130, 122 O
RENIND 4... COMPO75
REWINO 3
CALL COMP2
COMP077
RETURN
CALL PESTRT - 079
RETURN
RNO
......END _-.......
080

```

\section*{TABLE E-2 (Continued)}

SIBFTC DIAG7
SUBROUTINE INSIDE
1911002
- C AS OF 6130165

COMMON P(14000)
COMMON /CPNET/INTYPE,TKRAD, TKLEN,TEMPZ, NRAD,NCIR,NSECT, NTNK, ITKJHK 5 I, TK̈WAL1, TKWAL 2 , INNOD, KOUT,
2 FMCO,FHNO,FHOLC,VGAS,IGC,IPRESS,FMOLN,FMIN,FMAX,PMIN,
3 .......... PMAX,FMOLX,TSAT,ANGLE,TX,PR,TANKV,
5-… RADI (4: , HELE (14), LLFLO \(\because\),HELT,HELP,HELS , ISTRAT, SAREA, IOPTSX(5), FथULTF(5),STRINP(20
7 ,GSOLD (2),TTCPBL(2),DLIO ,NLSURF,ICALL
- Equivalense (fyultel(1), flt), (FMULTF(2), FLKL) DIVENSION VS(250), DUMMY(500)
1 , NUMTAB(100), NEXii(125),NSEX(125), MM(125)
DIMENSION LNO(250),NLNNS(125),NGNNS(125)
EGUIVALENCE (P(13251),VS), (P(13501), DUMMY)
1,(P(12526), NLMTAB), (P(12e26),NEXW), (P(12751),NSEX), (P(12876),MM) EQUIVALENCE (P(12276),LNO), (P(12151), NLNNS), (P(12026),NGNNS) REAL LEN

1911007
PI =...3.14159255 1011004
\(\mathrm{V}=0\).
INSD \(F L A=0\).
CALL SPEAD
INSD
INODE = INNOD REWIND 9
c - TANKV = VOUUME OF TANK
VOLX=DI*TKRAD**2 INSOOO7
IF (NTYPE.EO.2). TANKV \(=1.33333 * V O L X * T K P A D \quad\) INSDOO71 IF (NTYPE.EQ.1) TANKV=VOLX*(1.33333*TKRAD+TKLEN) INSDOOT2
ITIM = I
1911008
SUM \(=0.0\)
1911008
1911009
DO \(10 \quad \mathrm{I}=1\), NTNK
1911010 SUM \(=\) SUM + TKTHK (I) 1911011
10 CONTINUE FNRAD \(=\) NRAD
FNCIR =NCIR FNSECT = NSECT KEYNOD \(=-1\)
IF CYL[NDER NTYPE=1, IF SPHERE NTYPE=2
,IF SPHERE NTYPE=2 . 1911017
._... PI \(2=3.14159255 * 2 . C\) NRES \(=0\) 1911018

C COMPUTE RADIAL RESISTORS FOR HEYISPHE 1911021
\(15 \mathrm{KK}=\mathrm{NIRAD} / 4 \quad 1911022\) \(\begin{array}{ll}K K= & \text { NIRAD/4 } \\ M=0 & 1911022 \\ K 191023\end{array}\)
\(K I=(N C I R+N T N K+1)\)
1911024
\(J J=N R A D\)
1911025
\(J 1=N C I R+N T N K+1 \quad 1911026\)
\(I I=N C I R+N T N K \quad 1911027\) DO 50..KI= 1,KK 1911028 \(K=K I-1\)

1911029
\(0040 \mathrm{JI}=1, \mathrm{JJ}\)
\(J=J I-1 \quad I=1, I I, 1\)
\(M=M+1\)
\(N O D E=\)
\(=\)
\(M-1 \quad\) +INODE
NRES \(=\) NRES +1
1911030
1911031
1911032 NODEI = NODE+1

1911033 . . 1911056 - 1911057

NNO, NNOE1, FLa
1911058
8002 FORMAT(5HDECOI, 3:5,E10.3,50X)
INSDO59
30 CONTINUE
1911060

TABLE E-2 (Continued)


1911061 1911063
1911064
1911065
1911066
1911068
1911069
1911070
1911071
1911072
1911074
INSD075
INSDO85
1911090
1911091
1911092
1911093
1911094

1911096
1911097
1911098
911099

1911101
1911102
NSD 11
1911116
1911117
1911118
1911119
1911120

1911122
1911123
1911124
1911125
1911127
1911128
1911129
911291
1911130
1911132
911147
NSD148
1911149
191150
1911152
1911154


TABLE E-2 (Continued)


\section*{TABLE E-2 (Continued)}
```

 SIEFTC DIAG8
 SUEROUTINE SREAD.
 C - SUEROUTINE SREAD
 C IF KOUT=1 --SOME AUXILIARY PRINT
 IF KOUT=2 --ALL AUXILIARY PRINT
 COMMON P(14000)
 COMMON /CPNET/NTYPE,TKRAD,TKLEN,TEMPZ,NRAD,NCIR,NSECT,NTNK,
 1 TKTHK(5),TKWAL1,TKWAL2,INNOD,KOUT,
 FMCO,FMNO,FMOLC,VGAS,IGC,IPRESS,FMOLN,FMIN,FMAX,PMIN,
 PMAX,FMOLX,TSAT,ANGLE,TX,PR,TANKV,
 4 MM(50), NUMTAB(100),
 RADI(4),NSEX(50),HELB(14)
 ,ISTRAT,SAREA,IOPTSX(5)
 DIMENSION VS(100),FLA(250)
 EQUIVALENCE (P(13651),VS),(P(13751),FLA)
 EQUIVALENCE (IOPTSX(1),IRSTRT),(IOPTSX(2),IPTLIQ),
 1 (IOPTSX(3),LIBTAP),(IOPTSX(4),MTIME
 MTIME = MACHINE (IOPTSX(5),RUT)
 MTIME = MACHINE TIME FOR THIS SEGMENT (MINUTES) IF RUN IN SEGMENTS
 KUT = TIME(IN SECONDS) AT WHICH CURRENT SEGMENT IS TO BE CUT
 DIMENSICN STRINP(7),FMULTF(5)
 OIMENSION IFRROR(1)
 2266200
 CALL FXPPT (IERROR,NERROR)
 CALL FSWTON(3,32,33,45)
 CALL FXNPRT(1,32)
 READ(5,10) NTYPE,NRAD,NCIR,NSECT,NTNK,INNOD,IGC,IPRESS,KOUT
 1 ,(IOPTSX(I),I=1,4),KUT1,KUT2,KUT3
 IF_(IERROR(1).GT.0) GO TO 1
 WRITE (6,2101 NTYPE,NRAD,NCIR,NSECT,NTNK,INNOD,IGC,IPRESS,KOUT
 1 , (IOPTSX(I),I=1,4),KUT1,KUT2,KUT3
 IERROR(1) =IABS(IERROR(1))
 MTIME = MTIME *60
 KUT = 1000000*KUT1 + 1000*KUT2 + KUT3
 IF (NTYPE.LT.l.CR.NTYPE.GT.2) GO TO l01
 2 IF (NRAD.LE.O.OR.MOD(NRAD,4).NE.O) GO TO 102
 4-IF(NSECT.LT.1) GO TO 104 (GF 2266200
 5 IF (NTNK.LT.O.OR.NTNK.GT.5) GO TO 105 GO TO 105 2266211
 -\frac{6}{7}\cdots.IF (IGC.LT.1.OR.IGC.GT.2)
 IF (IPRESS.LT.1.OR.IPRESS.GT.2) GO TO 107 2266213
 READ (5,20) TKRAD,TKLEN,TEMPZ,TKWAL1,TKWAL2 22652131
 .._IF (IEPROR(1).GT.O)GOTO II 2266214
 WRITE (6,211) TKRAD,TKLEN,TEMPZ,TKWALI,TKWAL2 2266215
 IERROR(I) =IABS(IERROR(1)) 2266216
 11. CONTINUE 2266217
 READ (5,20) (TKTHK(I),I=1,5)
 IF (IERROR(1).GT.0) GO TO 12 226621B
 NRITE.(6,211) (TKTHK(I),I=1,5) 2266219
IERROR(I) =IABS (IERROR(I)")}226622
12 CONTINUE 201 PR,VGAS,TSAT,FMOLC,FMCLN,FMOLX,TX
2266221
READ (5, 20) PR,VGAS,TSAT,FMOLC,FMOLN,FMOLX,TX
IF (IERROR(1).GT,O)GO TO,13
IF (IERROR(1).GT.O)GOTO I'
IERROR(1) =IABS(IERROR(1)) 2266224
CONTIVUE 2266225
READ (5, 20) FMIN,FMAX,PMIN,PNAX
IF (IERROR(1).GT.0) GO TO.14 2266226
\#RITE (6,211) FMIN,FMAX,PMIN,FYAX 2266227
IERROR(1) =IABS(IERROR(1)) 2256228

```


\section*{TABLE E-2 (Continued)}



\section*{TABLE E-2 (Continued)}


\section*{TABIE E-2 (Continuei)}


TABIE E-2 (Continued)


\section*{TABLE E－2（Continuad）}
```

 WRITE (6,353) CODE(KOD),KODI, (A(I),I=1,12)
 IERROR(1)=IABS(IERRCR(1)) COM21313
 GO TO 132
 17 READ (4, 202) (1 1(1), I 2(I), 1 3(I), A(I), I = 1, KOD 1)
 IF (IERROR(1).GT.0) GO TO 175
 URITE (6,2531)
 WRITE (5,354) CODE(KOD), KODI,(II(I),I2(I),I3(I),A(I),I=I,KODI)
 IERRCR(1)=IABS(IERROR(1))
 175 CONTINUE
1= 20 22 1=1,KODl
J=I 1(I)
:7 IF(J.LE.0) WRITE (6,233) II(I),I2(I),I3(I),A(I)
:7 IF(N.LE.0) WRITE (6,233) II(I),I2(I),I3(I),A(I) COMP137
Z0`"位j)=A(I) L = L + 1 MRLINE(L)=I 3(I) + 4096*(I 2!1)+4096*J) COMP140 IF(J.GE.2048) IRLINE(L)=-IRLINE(L) ITEM = J ITEM 2 = \ 2(I) ITEM 2 =1 2(I) ATEM = A(1) IF (ITEM2.LF.MAXT.AND.ITEN3.LE.MAXT) GO TO 22 WRITE (6,234) ITEM, ITEMZ,ITEM3,MAXT ERROR=1. 22 CONTINUE GO TO 132 25 READ (4,241) I1(1),I2(1),I3(1),X,Y,Z,KRVC,:2 IF (IERROR(1).GT.0) GO TO 2502 WRITE (6,2531) WRITE (6,356) CODE(3),I1(1),I2(1),I3(1),X,Y,Z,KRVC,N2 IERROR(1) =IABS(IERROR(1)) -2502 CONTINUE J=1TEM DO 2501 I =1,N2 J=j+I1(1) ITENZ=ITEN2+12(1) ITE:3=1TEM3+13.11) Y I = X 1 + X Yi=Y I + Y Z1=2l+2 KくOV=くKRV+KCRV IF (J.GT.\becauseAXR) MAXR=J P(J)=X1/(YI*Z1) L=L+l !?L!!E(L)=ITEN3+40S6*(IT=N2+4C96*J) !?L!E(L)=ITEM3+40S6*(ITENO+4C96*J) !T:} \becauseミTこT(くうRC)=J+4096*KKRV C-C=<E?C+1 :F I:TE:`2.LE.NAXT.AND.ITEM3.IE.MAXT) GO TO 2501
AY:TE (5,234) TTEM,ITE:A2,ITHE3,NAXT
二\becauseッハァ=!.
\becauseM:品
\because:% (2401,25),NGRE
\because: % (2401,25),NGRE
:=(:SFRこR(:).GT.C) GO TO 24O2
\because: S (5,2531)
\therefore=:E(6,357) CCOE(3),11(1),12(1),13(1),4(1),N2
:O,
:二:\because?::!)=IAES(IERROR(1)
COM21312
MAXR=J_CONP134
IF (J.GT.MAXRO) MAXR=J.
COMP138
CONP139
*:TE2.LE.NAXT.AND.ITEM3.IE.NAXT) GO TO 2501
COM2144
M, (L,203) 11(1),12(1),13(1),4(1),N2 COM21478
COM214779
COM21480
COM21481
COM21481
COM21482
COM21482
CON21483

```

\section*{TABLE E-2 (Continued)}
```

 J= 1ItM
 com<1484
 J== J+III(i)
 ITEM 2 = ITEM 2 +1 2(1)
 ITEN 3 = ITEM 3 + 1 3(1)
 ATEM=ATEM +A(1)
 IF (J.GT.MAXR) MAXR=J
 26 P(J)=ATEM
 IRLINE(L) = ITEM 3 + 4096*(ITEM 2 + 4096*J)
 IF (J.GE.2048) IRLINE(L)=-IRLINE(L)
 ITEM= =
 IF (ITEM2.LE.MAXT.AND.ITEM3.LE.MAXT) GO TO 28
 WRITE (6,234) ITEM,ITEM2,ITEM3,MAXT
 ERROR=1.
 28 CONTINUE
 GO TO 132
 READ (4,240) I1(1),12(1),13(1),X,Y,Z,KCRV
 IF (IERROR(1).GT.0) GO TO 2901
 URITE (6,2531)
 WRITE (6,356) CODE(7),I1(1),12(1),13(1),X,Y,Z,KCRV
 IERROR(1) =IABS(IERROR(1))
 2901 CONTINUE
A(1)=X/(Y*Z)
NGRC=2
_ XI=X
Y1=Y
Z1=Z
NSTRT(KGRC)=11(1)+4096*KCRV
KGRC=KGRC+1
KKRV =KCRV
GO TO 18
30 KOUNT = KOUNT + 1
READ (4, 202! I 1(1)
IERROR(1) =IAGS(IERROR(I)
WRITE (3) MAXR, NCVG, NSTS
WRITE (3) (P(I), l = 1, MAXR)
DO 31_I= =1, MAXR
31 CONTINUE
MAXIM=MAXIM+MAXR
WRITE (6,252) MAXR,MAXIM
GO TO }13
C
136 GO TO (33,32,46,32,52,32,32,43), KOO
READ (4,210) (A(I),I=1,12)
WRITE (6,358) CODE(KOD),KODI, (A(1),I=1,12)
IERROR(1) =IABS(IERROR(1))
GO TO 132
READ (4, 200) (I 1(I), A(I), I = 1, KOD 1)
IF (IERROR(1).GT.O) GO TO 3301
WRITE (6,259)
WRITE (6,260) CODE(KOD), KODI, (II(I),A(I),I=1,KODI)
IERROR(1) = IABS(IERROR(I))
3301 CONTINIUE
NOP = 0
39 DO 42 I = 1, KOD 1
J=II(I)
IF (J.GT.MAXT) WRITE (6,235) J,MAXT
COMP149
COMP150
COMP151
COMP152
COMP153
COM2154
COMP156
COMP157
COMP158
COM21581
COMP159
COM21591
COM21592
COM21593
COMP160
CONP161
COM21161
COM21611
COM21612
COv21613
COM21614
COM21615
C0M21162
COM21162
COM21162
CON21162
COM21162
COM21163
CON21164
CON21164
COM21164
COM21165
COMP162
COMP163
COM21631
COMP164
COMP165
COMP166
COMP167
COMP16R
COM21681
COM21682
COMP169
COMP169
COMP170
CONP171
COMP172
COM2174
COM2174
COM21741
COM21742
COM21743
COM21743
COM217744
COMP174
CON21745
CON21746
COM21747
COM21748
COM21748
COM21749
COMP175
COMP176
COMP177
COM2178

```

\section*{TABLE E-2 (Continued)}
```

 IF (J.GT.MAXT) ERROR=1. COM2178
 IF (J.GT.MAXC) MAXC=J
 IF(J.LE.O) URITE (6,232) J,A(I)
 IF (J.LE.O) FRROR=1.
 36 P(J) =A(I)
ITEM=}
ATEM = A(I)
KPSD(IK)=11(I)+4096*(KKRV+4096*KKRV1)
K\overline{SOTIK})=-KPSD(IK)
MAXP = MAXP + 1
NODCON=0
IK}=IK
DO 41 K = I,L
IDAT l = IRLINE(K)/16777216
IFTIRLINE(K).LT.0) IDATI=IABS(IDAT1)+2048
IDAT 2 = MOD(IRLINE(K)/4096, 4096)
IDAT 3 = MOD(IRLINE(K), 4096)
If (TRLINE(K).LT.O) IDAT2=IABS(IDAT2)
IF (IRLINE(K).1T.0) IDAT3=1ABS(IDAT3)
1-10, IDAT 2) 33, 37, 38
KGR=MOD(NSTRT(I9),4096)
KGK=MOD(NSTRT(I9)/4096,4096)
IF (KGR.EO.IDATl) GOTE 3602
3601 CONTINUE
KGK=0
3602 KPSD(IK)=IDAT 3+4096*(IDAT1+4096*KGK)
IF (KGR.EQ.IDAT1) NSTRT(I9)=0
MAXP_N MAXP_士_1.
NODCON=1
IK = IK + I
33 IF (111I)-IDAT 3) 41, 40,41
40 DO 4001 [9=1,KGRC
KGR=,M0D(NSTRT(I9),4096)
KEK=MOD(NSTRT(I9)/4095,4096).
IF (KGR.EO.IDATI) GO TO 4002
4COI' CONTINUE
-4002-KSKSO(IK)=IDAT 2+4096*(IDAT 1+4096*KEK)
IF (KGR.EQ.IDAT1) NSTRT(IG)=0
-MAXP=, MAXP.+1
NODCON=1
IK = IK + I
41 CONTINUE
IF (NODCON.EG.1) GO TO 42
ERROR=1.
WRITE.(6,236) I1(I) COMP1992
CONTINUE
IF (NOP) 132, 132,48
READ.(4,242) 11(1),X,Y,Z,KKRV,KKRV1 COM22011
IF (IERROR(1).GT.C) GO TO 4201 (
WRITE (6,261) CODE(KOD),I1(1),X,Y,Z,KKRV,KKRVI
IERROR(1) =IABS(IERRORIlI)
4201 CONTINUE
A(1)=X*Y*Z
NGRC=2
GO TO 39
46···..60 TO (47,4701),NGRC
READ (4,201) NI,A1,N2
IF (IERROR(1).GT 0) GO TO 471 COM22021
WRITE (6,358).GT.O) GO TO 471 COV22022
WRITE (6,358)
COM22023

```

\section*{TABIE E-2 (Continued)}
```

 WRITE (6,262) N1,A2,N2
 IERROR(1) =IABS(IERROR(1))
 COM22024
 COM22025
 NOP = NOP + 1
 KOD 1 = 1
 GO TO }5
 4701 READ (4,243) N1,X1,Y1,Z1,IK1,IK2,N2
 IF (IERROR(1).GT.O) GO TO 4705
 WRITE (6,358)
 WRITE (6,263)NI,X1,Y1,21,IK1,IK2,N2
 IERROR(1) =IABS(IERROR(1))
 -4705 CONTINUE
 --
 KOD1=1
 GO TO 49
 4702 [1 (1) = ITEM+N2
X=X+X1
Y=Y+Y1
A(1)=X*Y*Z
KKRV=KKRVV+IK1
KKRVI=KKRVI +IK2
IF (NOP - N 2) 49, 132, 132
NOP = NOP + (O-1
GO TO (50,4702),NGRC
50 I 1(1) = ITEM + N 1
A(1)=ATEM+A 1.
52 KOUNT = KOUNT + 1
MAXP = MAXP + 1
KPSD(MAXP)=0
IERROR(I) = IABS(IERROR(1))
WRITE (3) MAXC, NCVG, NSTS
WRITE (3) (P(I), I = 1, MAXC)
DO 53_1 =1, MAXC
P(I)=0.
53 CONTINUE
WRITE (3) MAXC, NCVG, NSTS
WRITE (3) (P)I), I= = MAXC)
WRITE (3) MAXC, NCVG, NSTS
WRITE (3) (P(I), I = I, MAXC).
WRITE (3) MAXP, NCVG; NSTS
WRITE (3) (KPSD(I), I = 1, MAXP)
NNPQ = MAXP
NRECD=7
KSP = 2*MAXT + MAXR + 3*MAXC + 1
KST = KSPP + MAXP
KST 1 = KST
NKSP=KST - 1
J=0.
N2=0
MAXIM= MAXIM+MAXC
MAXIM= MAXIM+MAXC COM22321
WRITE (6,253) MAXC,MAXIM COM22322
MAXIM=MAXIM+MAXC
WRITE (6,254) MAXC,MAXIM.
MAXIM=MAXIM+MAXC
WRITE (6,255) MAXC,MAXIM
MAXIM=MAXIM+MAXP
WRITE (6,256) MAXP,MAXIM
C
137 GO TO (56,55,56,67,68,55,55,55,691),KOD
COM22323
COM22324
COM22325
COM22326
COM22327
COM22327
COM22328
COM22329
COvP233
COMP234
COMP235
COMP236
COM2237

```

TABLE E-2 (Continued)
```

 55 READ (4,210) (A(I),I=1,12)
 WRITE (6,264) CODE(KOD), KOD1, (A(1),I=1,12)
 IERROR(1)=IABS(IERROR(1))
 GO TO 132
 56 IF (KOD 1) 57, 57, 64
READ (4, 204) NTAB
IF (IERROR(1).GT.0) GO TO 5701
WRITE (6,265)
WRITE (6,266) NTAS
IERROR(1) =IABS(IERROR(1))
. 5701 cONTINUE
IF (NTAB) 62,58,59
58 WRITE (6, 220)
60 IO 132
59 IF (NSN2.EQ.1) GOTOT591
WRITE (6,230) NTABO,NTAB
ERROR=1.
NSW2=1
KST=KST1+JJ
591 NSTRT(MAXS)=KST+2**18*NTAB
NSW2=2
NTABO=NTAB
MAXS = 4AXS +1
GO TO 132
62 IF (NSWZ.EQ.2) GO TO 621
WRIIE (6,231) NTACO
ERROR=1.
621 NSW2=1
IF (NTAB+7) 63,61,63.
61 KURV 7 = KST1 +JJ-KST
63 KST = KST 1 + JJ
GO TO 132
READ (4, 2O5) (A(I), I = I, KOD 1)
IF (IERROR(1).GT.0) GO TO 6401
WRITE (6,265)
WRITE (6,267) CODE(KOD),KODI,(A(I),I=1,KOD1)
IERROR(1) =IABS(IFRROR(1))
6401 CONTINUE
641 DO651 = 1, KOD 1
JJ=JJ + I
R(JJ)=A(I)
65 CONTINUE
COMP255
IF (N2.GT.0) GO TO 661 COM22551
*- GO.IQ 132
66 READ (4,206) AINC,N2
IF (IERROR(1).GT.0) GO TO 6601
WRITE (6,265)
IERROR(1) =IABS(IERROR(1))
6601 CONTINUE
A(1)=O(JJ)
KOD1=1
A(1)=A(1)+AINC
N2=N2-1
GO TO 641
67 READ (4, 205) A(1)
IF (IERROR(1).GT.0) GO TO 6701
WRITE (6,265)
WRITE (6,268) CODE(KOD),A(1)
IERROR(1) =IASS(IERROR(1))
6701 CONTINUE =IASS(IERROR(1))
CON22371
COM22372
COM22373
COM22374
CONP238
COMP239
COMP239
COM22391
COM22392
CON22303
COM22394
CON22.395
COMP240
N
COMP241
COMP242
COMP243
COMP2431
COMP2432
COMP2433
COMP2434
COM22435
COM22435
COMP2437
COMP244
COMP246
COMP247
COMP2471
COMP2472
COMP2473
-COMP2474
CONP248
COMP249
COMP250
COMP251
COM22511
COM22512
COM22513
COM22514
COM22515
COM2252
COMP253
COMP254
COM22551
COMP256
OM22561
COM22562
COM22563
COM22564
COM22565
COM22566
COM22566
COM22562
CON22562
COM22563
COM22564
COM22565
OM2256
COMP257
COM22571
COM22572
COM22573
COM22574
COM22575

```

\section*{TABLE E-2 (Continued)}
```

 P(JJ+1)=32767.
 P(JJ+2)=A(1)
 JJ = JJ + 2
 KOUNT = KOUNT + 1
 1...-
 KST = KST - 1
 NWCT = JJ
 WRITE (3) NWCT, NCVG, NSTS
 WRITE (3) (PTT); 'I E1;NWCT)
 NRECD = NRECD + 2
 READ (4, 205) A(1)
 IERROR(1) =IABS(IERROR(1))
 WRITE (3) MAXS, NCVG, NSTS
 WRITE (3) (NSTRT(I), 1 = 1, MAXS)
 NWST = MAXXS
 JJ=0
 DO 69 I = 1,40
 69 CONTINU
 CONTINUE
 MAXIM=MAXIM+NWCT
 WRITE (6,257) NWCT,MAXIM
 MAXIM=MAXIM+NAXS
 WRITE (6,258) MAXS,MAXIM,MAXIM
 IF (MAXIM.LT.MAXMUM) GO TO 132%
 ERROR=1.
 WRITE 16,244) MAXMUM,MAXIM
 IF(MAXIM.LE.16000) WRITE (6,245)
 IF(MAXIM.GT.16000) WRITE (6,244) MAXAB,MAXIM
 691 READ (4,204;1000
 KDAT(JJ+1) = 32765
 KDAT (JJ+2)=1COD
 KDAT(JJ+2)
 GO TO 132
 138 GO TO (70,73,73,73,72,72) ,KOD
 READ (4,210) (A(I), I=1,12)
 WRITE (6,269) CODE(KOD),KOD1,(A(I),I=1,12)
 IERROR(1)=1ASS(IERROR(1))
 GO TO 132
 C70 READ (4, 200) (11(I),A(I),I=1,KOD1)
70 READ (4, 2Q5).S, A(I),I=1,KODI)
IF (IERROR(1).GT.OI GO TO 7001
WRITE (6,270) CODE(KOD), KODI, (A(I),I=1,KODI)
IERROR(1) =IABS(IERROR(1))
7001 CONTINUE
DO 71 I = 1, KOD 1
C- - JJ = = JJ!I)
P(JJ+20)=AlI
P(JJ+20)=A(I)
71_CONTINUE
GO TO 132
72 KOUNT = KOUNT + 1
C THE FOLLOWING 5_CARDS GO WITH THE NON-C CARDS ABOVE
P(1)=P(23)
P(2)=P(23)
P(3)=P(22)
P(4)=P(21)
IF (P(24).NE.O.) P(7)=P(24)
P(11)=P(2)
JJ=16
WRITE (3) JJ, NCVG, NSTS
COMP258
COMP259
COMP260
COMP261
COMP261
COMP262
COMP263
COMP264
P
COMP265
COMP266
COMP267
COMP268
COM22681
COMP269.
COMP270
COMP271
CONP272
COM22721
COM22722
COM22723
COM22724
COM22725
COM22726
COM22727
COM22731
COM22732
COM22733
DIAG2733
DIAG2734
COM22734
COM22731
COM22732
COM22733
COM22734
COM22735
COM2274
COM22741
COM22742
COM22743
COM22744
COM2275
COM2275
COM22751
COM22752
COM22753
COM22754
COMP276
COM2277
COM2277
COMP278
COMP278
COMP279
COMP280
COMP281
COM22810
COM22810
COM22810
COM22810
COM22810
COM22810
COM22810
COM22811
COMP282
WRITE (3) (P(I), I = 1, JJ)
NWTM = JJ
COMP283
COMP284
COMP284
NRECD=9
COMP285
COMP285
REWIND 4
139 REWIND 3
COMP286
COMP287
RETURN
COMP288

```

\section*{TABLEE E-2 (Continued)}


\section*{TABLE E-2 (Continued)}
```

 246 FORMAT (5x,6E10.0,I5)
 280 FORMAT (1HO 44H FOLLOWING CARD OUT OF PLACE IN THIS RESTART)
 RESTO21
 251 FORMAT (1H A 3,I2,12AG)
 252 FORMAT (1HO 7OH AN ILLEGAL CHARACIER HAS BEEN REPLAC
 1THE FOLLOWING CARD 15X,5HDEC I5)
 22660223
 253 FORMAT (IHO 64H FOLLOWING CARD ILLEGAL IN TEMPERATURE BLOCK OF PRE
 22600223
 IVIOUS RESTART)
 254 FORMAT (1HO B8H TERM
 TRESTART ONT OBH TERMINATING CARD OF ONE OF THE BLOCKS IN PREVIOUS 22660227
    ```

```

 IN THE FOLLOWING CARD OF THE TEMP BLOCK OF THE REPACED BY A ZERO I22660229
 56 FORMAT THOWING CARD OF THE TEMP BLOCK OF THE PREVIOUS RESTART) }226602
 257 FORMAT (1HO 5X,A3,I2,I5,FIO.2,I5I 22660231
 IUS RESTARTI
    ```

```

 259 FORMAT (IHO11GHAN ILLEGAL CHARACTER HAS BEEN REPLACED BY A ZERO 22660234
 1 THE FOLLOWING CARD OF THE RESISTOR BLOCK OF THE PREVIOUS RESTARTI22660235
 FORMAT TIHO 62H FOLLUWING CARD ILIEGAL IN CAPACITOR BLOCK OF PREVI22660236
 IOUS RESTART)
 261 FORMAT (1HO112H AN ILLEGAL CHARACTER HAS BEEN REPLACEO BY A ZERO 22660238
 ZERO 122660239
 IN IHE FOLLCWING CARD OF THE CAP ELOCK OF THE PREVIOUS RESTART) 22660240
 IESTART
 FORMAT (lHOII3H AN IOLEGAL CHARACTEZ
 IN THE FOL
 264 FORMAT OM ON THE TIME BLOCK OF THE PREVIOUS RESTARTI }2266024
    ```

```

 265 FORMAT (1H A SING CARD IN A DATA SUB-BLOCK OF THE PREVIOUS RESTART) 22660246
 266 FORMAT (1H A3,I2,F10.2,I5)
 22660248
 268 FORMAT (1H A , I2,4F10.2,I5) 22660249
 269 FORMAT (1H A 3,I2,4F10.2,I5)}22660250
 270 FORMAT (1HA3,12,5F10.2,I5)
 271 FORMAT (5X,3H***,5X,6HCURVE AG,36H FROM LIBRARY TAPE WILL APPEAR HDIAG0252
 DIMENSION IERROR(i) 2266024
 DATA IERROR(1) /32/,NERROR/1/
 CALL FSWTON(3,32,33,45)}226602
 CALL FXNPRT(1,32)
 NRECD=?
 MATLIB =1 CESTO32
 LINE=1 . COMPO32
 _149_REWIND_4. COMPO32
 139 REWIND 3 % COMP288
 DO 310 I = 2, 16 COMP301
 310
 CONTINUE
 M(7) = 0.25
 MAXP=0
 jJ=-1
 DO 75 1 = 1, NRECD COMP307
 - DO 75 1 = 1, NRECD
 MAXP = MAXP + N 1
 READ (3) (P(J), J = JJ, MAXP) COMP310
 JJ = MAXP + 1 . COMP 311
 75 CON广年NXP + 1
 CONTINUE
 COMP314
 NM(1),I=1,N1
 REWINO }
 IF (MAXP -MAXMUM) 701,701,81 COMP317
 81 WRITE (6, 222)
 COMP318
COMP322

```

\section*{TABLE E-2 (Continued)}
\begin{tabular}{|c|c|c|}
\hline 100 & ERROR \(=2\). & COMF 323 \\
\hline 701 & IF (MATLIB.EQ.1) \(\operatorname{READ}(5,209)(\mathrm{CM}, \mathrm{CX},(\mathrm{A} 11), \mathrm{I}=1,12)\) & REST325 \\
\hline 1101 & \(C P=-1\). & REST3251 \\
\hline 1102 &  & REST3251 \\
\hline & IF (CX.EQ.BLANK.OR.CX.EQ. ZERZ.OR.CX.EQ.ZFRY) CP = & REST3251 \\
\hline & IF (CP.GE.0) G̃o To 1103 ( \({ }^{\text {a }}\) & COMP 3251 \\
\hline & WRITE (6,215) & REST3251 \\
\hline & ERROR \(=1\). & REST3251 \\
\hline & \(C P=0\) & REST3251 \\
\hline 1103 & IF (CM.EQ.END) GO TO 900 & REST3251 \\
\hline & IF (CM.EQ.TAP) GO TO 150 & REST3251 \\
\hline & IF (LINE.LT.60) GO "To \(70111^{\circ}\) & REST 3252 \\
\hline & WRITE (6,212) (CC(I), I=1,12) & REST3253 \\
\hline & LINE =1 & \\
\hline 7011 & IF CM.EQ.CID GOTOM117* & REST3255 \\
\hline & WRITE (6,211) \(\mathrm{CM}, \mathrm{CP},(\mathrm{A}(\mathrm{I}), \mathrm{I}=1,12)\) & REST3256 \\
\hline & LINE \(=\) LINE +1 & REST3257 \\
\hline & IF (CM EQ. DEC) GO TO-702 & COMP 332 \\
\hline & IF (CM .EQ. INC) GO TO 703 & COMP333 \\
\hline & IF (CM.EQ.COD) GO TO 707 & REST333 \\
\hline & IF CM EQ. PER Go TO 704 & COMP3 34 \\
\hline & IF (CM .EQ. NRK) GO TO 705 & COMP335 \\
\hline & WRITE (6,223) CM. & REST336 \\
\hline & ERROR \(=1\). & REST3361 \\
\hline & GO TO 701 & REST3362 \\
\hline -117 & \(C M I D=C M\) & REST3363 \\
\hline & ICP \(=C P\) & REST3364 \\
\hline & DO 1171 I \(=1,12\). & REST3365 \\
\hline & \(C C(I)=A(1)\) & REST3366 \\
\hline 1171 & CONTINUE & REST3367 \\
\hline & LINE=1 & REST3367 \\
\hline & WRITE \((6,212)\) & REST3368 \\
\hline & GO TO 701 & REST3369 \\
\hline 150 & WRITE (6,211) , CM, \((2,(A 1 I), I=1,12)\) & DIAG3372 \\
\hline & WRITE (6,271) A(1) & DIAG3373 \\
\hline & LINE = LINE + 2 & DIAG3374 \\
\hline & GO TO 701 & REST338 \\
\hline 702 & \(K O D=1\) & REST3381 \\
\hline & GO TO 706 & REST3382 \\
\hline 703 & \(K O D=2\) & COMP330 \\
\hline & GO 10706 & COMP340 \\
\hline 704 & \(K O D=3\) & COMP341 \\
\hline & GO TO 706 & COMP 342 \\
\hline 707 & \(K O D=5\) & REST3421 \\
\hline & GO TO 706 & REST3422 \\
\hline 705 & \(K O D=4\) & COMP343 \\
\hline 706 & WRITE 14,2182 KOO, 12 P & REST347 \\
\hline & WRITE (4, 2l0) (A(1), I = 1, 12) & COMP348 \\
\hline & IF (KOD.LT.4) GO TO 701 & REST349 \\
\hline - & IF (KOD.ES.4) GO TO. 708. & REST3401 \\
\hline & WRITE (6,215) & REST3492 \\
\hline & ERROR=1. & REST3493 \\
\hline 708 & END EILE 4 - & COMP 350 \\
\hline & REWIND 4 218) KOD & COMP351 \\
\hline 714 & READ (4, 218) KOO, KOD 1 & COAP352 \\
\hline & IERROR(1) = IARS (IERROR11) & 22663521 \\
\hline & GO TO (717,1221,1221,719), KOO & 2266353 \\
\hline 1221 & READ (4,210) (A(I), I=1,12) & 22663531 \\
\hline & WRITE \((6,280)\)-- & 22663532 \\
\hline & WRITE \((6,251) \operatorname{CODE}(\mathrm{KCD}), \mathrm{KODI},(\mathrm{AlI}), I=1,12)\) & 22663533 \\
\hline & IERROR(1) = IABS(IERROR(1)) & 22663534 \\
\hline & GO TO 714 & 22663535 \\
\hline 717 & IF (KOD 1) \(718,718,716\) & COMP354 \\
\hline 716 & WRITE (6, 250) & COMP355 \\
\hline
\end{tabular}

\section*{TABLE E-2 (Continued)}


\section*{TABLE E-2 (Continued)}
\begin{tabular}{|c|c|}
\hline IERROR(1) = IARS(IFRROR(1)) & 27663944 \\
\hline 7231 CONTINUE & 22663945 \\
\hline DO 724 I I I , KOD 1 & Comp 395 \\
\hline \(J=11(1)\) & COMP 396 \\
\hline \(J J=J+\operatorname{MAXT}\) & COMP 397 \\
\hline \(P(J J)=A(I)\) & COMP398 \\
\hline \(P(J)=A(I)\) & COMP300 \\
\hline ITEM = I 1 ( \()\) & COMP400 \\
\hline \(A T E M=A(1)\) & COMP4 \({ }^{\text {Cl }}\) \\
\hline 724 CONTINUE & COMP402 \\
\hline GO TO 720 & CCMP403 \\
\hline 725 READ (4, 201) N 1, A 1, N 2 & CONP404 \\
\hline IF (IERROR(1).GT.0) GO TO 7251 & 22664041 \\
\hline WRITE (6,255) & 22664042 \\
\hline WRITE (6,256) CODE (KOD), KOOI, N1, AI, N2 & 22664043 \\
\hline IERROR(1) =IARS(IERRCR(1)) & 22664044 \\
\hline 7251 CONTINUE & 27664045 \\
\hline J \(=\) ITEM & CONP405 \\
\hline \(A A=\triangle T E M\) & COMP406 \\
\hline DO \(726 \mathrm{I}=1, \mathrm{~N}^{2}\) & COMP407 \\
\hline \(J=J+N 1\) & COMP408 \\
\hline \(J J=J\) MAXT & Comp409 \\
\hline \(A A=A A+A 1\) & COMP410 \\
\hline \(P(J)=A A\) & Conp411 \\
\hline \(P(J J)=A A\) & COMP412 \\
\hline ITEM \(=J\) & COMP413 \\
\hline \(A T E M=A A\) & Compli4 \\
\hline 726 CONTINUE & COMP415 \\
\hline GO TO 720 & COMP416 \\
\hline 730 READ (4, 218) KOD, KOD 1 & COMP417 \\
\hline IERROR(1) \(=\) IABS(IERROR(1)) & 22664171 \\
\hline GO TO (731, 734,7301,7191, KOD & 2266418 \\
\hline 7301 READ (4,210) & 22664181 \\
\hline WRITE (6,257) & 22564182 \\
\hline WRITE (6,251) CODE(KCD), KCDI, (A) 1 ), I=1,12) & 22664183 \\
\hline IERROR(1) =IABS (IERROR(1)) & 22664184 \\
\hline GO TO 730 & \\
\hline 731 IF (KOD 1) 721, 721, 732 & COMP419 \\
\hline 732_READ (4, 200) 11 1(I), A(1), I = 1, KOD 1) & COMP420 \\
\hline IF (IERROR(1).GT.0) GO TO 7321 & 22664201 \\
\hline WRITE (6,259) & 22664202 \\
\hline WRITE (6,258) CODE (KOD), KODI, (A(I), I = , KODI) & 22664203 \\
\hline IERROR(1) = IABS(IERRCR(1)! & 22664204 \\
\hline 7321 CONTINUE & 22664205 \\
\hline DOO \(733 \mathrm{I}=1, \mathrm{KOD} \mathrm{1}\) & COMP421 \\
\hline \(J=11(1)+2 * M A X T\) & CONP422 \\
\hline \(P(J)=A(I)\) & COMP423 \\
\hline ITEM = I I(I) & COMP424 \\
\hline \(A T E M=A(I)\) & COMP425 \\
\hline 733 CONTINUE & COMP426 \\
\hline -GO TQ 730 & COMP427 \\
\hline 734 READ (4, 201) N 1, A 1, N 2 & COMP428 \\
\hline IF (IERROR(1).GT.0) GO TO 7341 & 22664281 \\
\hline _-WRITE (6,259) & 22664282 \\
\hline WRITE (6,256) CODE(KOD), KODI, N1, Al, N2 & 22664283 \\
\hline IERROR(1) =IABS(IERROR(1)) & 22664284 \\
\hline 7341 CONTINUE & 22664285 \\
\hline \(J=1 T E M\) & COMP429 \\
\hline \(A A=\triangle T E M\) & COMP430 \\
\hline DO 736 I = 1, M 2 & Conp431 \\
\hline \(J=J+N 1\) & COMP432 \\
\hline \(J J=J+2 * M A X T\) & COMP433 \\
\hline \(A A=A A+A 1\). & CONP434 \\
\hline \(P(J J)=A A\) & CONP435 \\
\hline ITFM \(=\) J & COMP436 \\
\hline
\end{tabular}


\section*{TABLE E-2 (Continued)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{-} \\
\hline \[
\begin{aligned}
& \text { IF (JJ.EQ:I) GO TO } 754 \\
& M(J J)=A(1)
\end{aligned}
\] & \[
\begin{aligned}
& \text { REST } 4692 \\
& \text { CONP470 }
\end{aligned}
\] \\
\hline 754 CONTINUE & COMP471 \\
\hline GO TO 751 & Сомp472 \\
\hline 760 READ (4, 218) KOD, KOD 1 & COMP473 \\
\hline IERROR(1) = IABSTIERRORIT) & 22664731 \\
\hline IF (KOD.EQ.4) GO TO 719 & 22664732 \\
\hline 759 REAO (4, 2041 NTAB & COMP474 \\
\hline IF (IERROR(I).GT.0) GO TO 7591 & 22664741 \\
\hline WRITE 16,264\()\) & 22664742 \\
\hline WRITE (6,256) CODE (KOD), KODI, NTAB & 22664743 \\
\hline IERROR(1) =IARS (IERROR(I) & 22664744 \\
\hline 7591 CONTINUE & 22664745 \\
\hline I61F (NTAB) 760, 714, 761 & COMP475 \\
\hline \(761 \mathrm{~L}=\mathrm{LOC}(N T A B)\) & REST476 \\
\hline 762 READ (4, 218\() \mathrm{KOD}, \mathrm{KOD} 1\) & COMP477 \\
\hline IERROR(1) = IABS (IERROR(1)) & 22664771 \\
\hline GO TO 1764,770,763,719,773) , KOD & REST479 \\
\hline \(763 \mathrm{~L}=\mathrm{L}+1\) & Comp470 \\
\hline READ (4, 205) A(1) & \[
\operatorname{COMP480}
\] \\
\hline IF (IERROR(1).GT.0) GO TO 7631 & \[
22664801
\] \\
\hline WRITE (6,264) & 22664802 \\
\hline - WRITE (6,258) CODE(KOD),KODI, A(1) & 22664803 \\
\hline IERROR(1) =IABS(IERROR(1)) & 22664804 \\
\hline 763 i CONTINUE & 22664805 \\
\hline \(\mathrm{P}(1)=\mathrm{A}(1)\) & COMP481 \\
\hline 764 GO TO 762 \({ }^{\text {IF }}\) (KOD 1) 759, 759, 766 & COMP482 \\
\hline 764 IF (KOD 1) 759, 759, 766
766 READ (4, 205) (AII), \(=1, \mathrm{KOD} \mathrm{1)}\) & COMP483 \\
\hline 766-READ (4, 205 (IERROR(1).GT.0) GO TO 7661 & COMP484 \\
\hline WRITE (6,264) 7661 & 22664841 \\
\hline WRITE (6,258) CODE(KOD),KOD1, (A(I), \(1=1, K O D 1)\) & 22664842 \\
\hline IERROR(1) =IARS(IERROR(1) \({ }^{\text {a }}\) ( \({ }^{\text {a }}\) & 22664843
22664844 \\
\hline 7661 CONTINUE & 22664845 \\
\hline \(\mathrm{KOD2}=\mathrm{KCO} 1\). & 22664846 \\
\hline DO \(769 \mathrm{I}=1\), KOD 1 & CONP485 \\
\hline \(\mathrm{L}=\mathrm{L}+\mathrm{l}\) & COMP486 \\
\hline 769 CONTINUE \(=\) P(I) & COMP48? \\
\hline 769 GONTINUE
GO TO 762 & Covp488 \\
\hline 70 GO TO 762 l (KODI.LE.0) K001 \(=\) KOD2 & COMP489 \\
\hline  & REST4890 \\
\hline 7701 READ (4,241) (A1) 1 ), I=1,KOD1). INCR & \\
\hline _-IF_(1ERROR (1).GT.0) GO TO 771 & 2266500 \\
\hline WRITE (6,264) & 22665001 \\
\hline WRITE (6,265) CODE (KOD), KODI, (A(I), \(1=1, K O D I), I N C R\) & 22665002 \\
\hline  & 22665003 \\
\hline  & \\
\hline IF (IERROR(1).GT.0) GO TO 771
WRITE \((6.264)\) & 22665011 \\
\hline  & 22665012 \\
\hline WRITE 16,266\()\) CODE (KOD), KODI, (A(I), I= \(1, \mathrm{KODI})\), INCR
GO. TO 7707 & 22665013 \\
\hline 7703 READ (4,243) (Al(1), I=1,KOD 1), INCR & 22665014 \\
\hline 7703 READ (4,243) (A1) I) :I=1,KOD1), INCR & \\
\hline IF (IERROR(1).GT.
WRITE \((6,264)\) & 2266502 \\
\hline WRITE \((6,264)\)
WRITE \((6,267)\)
CODE & 22665021 \\
\hline  & 22665022 \\
\hline \(7704 \operatorname{READ}(4,244)(A 11), I=1, K O D 1)\), INCR & 226650?3 \\
\hline IF (IERROR(1).ET.0) GO TO 771 & 2266502 \\
\hline WRITE (6,264) & 22655021 \\
\hline WRITE (6,268) CODE (KOD), KODI, (ACI), \(1=1, K O D 1), I N C R\) & 22665022 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
GO TO 7707 \\
READ (4,245) (A1(I), I=1,KODI), INCR
\end{tabular} & 22665023 \\
\hline \multirow{3}{*}{7705} & IF (IERROR11.-GT.0) 60 TO 771 - & 2266503 \\
\hline & WRITE (6,264) & 22665031 \\
\hline & WRITE (6,269) COOE (KOD),KODI, (A) 1 ), \(1=1, K O D 1)\), INCR & 22665032 \\
\hline \multirow{5}{*}{7706} & GO TO 7707 & 22665033 \\
\hline & READ (4,246) (A1(1), I= 1, KOD1), INCR & 27.665033 \\
\hline & IF (IERROR(1).GT.0) GO TO 771 & 2266504 \\
\hline & WRITE \((6,264)\) & 22665041 \\
\hline & WRITE (6,270) CODE(KOD), KODI, (A1), I=1,KODI), INCR & 22665042 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 7707 \\
& 771
\end{aligned}
\]} & GO TO 7707 & 22665043 \\
\hline & IERROR(I) = IABSIIERROR(I) & 2266505 \\
\hline & DO \(772 \mathrm{I}=1, \mathrm{KODI}\) & REST4893 \\
\hline & A(I) \(=\) A \((1)+\) Al( 1 ) & REST4894 \\
\hline \multirow{6}{*}{772} & \(\mathrm{L}=\mathrm{L}+1\) & REST4894 \\
\hline & P(L) \(=\) A(I) & REST4895 \\
\hline & CONTINUE & REST4896 \\
\hline & INCR \(=\) INCR-1 & REST4897 \\
\hline & IF (INCR.GT.0) GO TO 771 & REST4898 \\
\hline & GO 10762 & REST4899 \\
\hline \multirow[t]{3}{*}{773} & READ (4,204) ICOD & REST490 \\
\hline & KDAT \((L+1)=32765\) & REST4901 \\
\hline & KDAT (L+2) \(=1000\) & REST4902 \\
\hline \multirow{5}{*}{900} & \(\mathrm{L}=\mathrm{L}+2\) & REST4903 \\
\hline & GO TO 762 & REST4904 \\
\hline & REWINO 3 & REST4905 \\
\hline & REWIND 4 WRITE \((6,237)\) & REST491
REST4911 \\
\hline & NEND \(=1\) & REST4911 \\
\hline & RETURN & \\
\hline & END & REST494 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Eimmeman, E.R. & Computer Program for the Computation of ThreeDimensional Configuration Factors, Lockheed-California Company, LR 18905, June, 1965 \\
\hline Z & An Introduction to Spacecraft Thermal Control, Lockheed-California Company, LR 18901, July, 1965 \\
\hline ミ. Xeams, W.H. & \[
\frac{\text { Heat Transmission, McGraw-Hill Book Company, Inc., }}{1954 .}
\] \\
\hline こevelıi, B.A. & Computer Program for the Calculation of Incident Orbital Radiant Heat Flux, Lockheed-California Company, LR 18904, June, 1964 \\
\hline Ec:ert, E.R.G. & Engineering Relations for Heat Transfer and Friction in a High Velocity Laminar and Turbulent Boundary Layer Flow Over Surfaces with Constant Temperature and Pressure, ASME Transactions, August, 1956 \\
\hline \(\therefore\) Smitin, 0. & A Reference Atmosphere for Patrick Air Force Base, Florida, NASA TN D-595, March,1961 \\
\hline Yeth, F. & Principles of Heat Transfer, International. Textbook Company, 1961 \\
\hline \(\varepsilon\). & U.S. Standard Atmosphere, 1962, prepared under sponsorship of NASA, USAF, and the U.S. Weather Bureau, U.S. Printing Office, December, 1962 \\
\hline \begin{tabular}{l}
5. Hirasena, P.S., Josevinine Iaue, 2na \\
I. Stulainer
\end{tabular} & \[
\frac{\text { Thermal Analyzer Computer Program for the Solution }}{\frac{\text { Of Fluid Storage and Pressurization Problems, }}{\text { Lockheed-California Company, IR 18903, July, }} 1965}
\] \\
\hline
\end{tabular}```

