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1. INTRODUCTION

This report concerns an empirical solution to the single highest
peak (SHP) problem for a simple beam subjected to stationary random
excitation perfectly correlated in space and time. Both simply supported
and rigidly clamped boundary conditions are considered. These time
dependent stochastic solutions are obtained by examining the output
statistics of an analog circuit which simulates the physical system.

The results are presented in dimensionless form and find direct appli-
cation in estimating the probability that the maximum response, within
a finite time interval, remains below a preselected threshold level.

For completeness in this discussion, cursory reviews are made
of basic theory common to the random vibration of beams and to the
analog simulation of distributed structures. In this way, the reader can
more fully understand and conéequently appreciate the simulation pro-

cedure (and its limitations) used in this study.



2. BACKGROUND INFORMATION

The single highest peak (SHP) problem concerns the maximum
response statistics of a physical system subjected to random excitation.
Specifically, one seeks to predict the maximum response the system
may experience within a finite time interval.

The statistics of the SHP problem are time varying and reflect
a nontrivial exercise even for a simple mechanical configuration as a
single degree-of-freedom system subjected to Gaussian bandlimited
white noise. If the system is lightly damped with the natural frequency
fn and the bandwidth of the input excitation (1) is wide compared to the
half-power bandwidth of the mechanical system and (2) includes fn,
then the output response is as shown in Figure 1. This motion appears
as simple harmonic motion of frequency fn with a randomly varying

amplitude and phase.

Amplitude
4 Envelope

Figure 1. Response of a Lightly Damped Mechanical Oscillator to
Broadband Stationary Random Excitation




The RMS displacement response to this stationary excitation is

given by

where the mean square displacement response is

2 e e 2
pr:fo G, (w) dw=f0 IHo(w)l G () do (1)

The term Gx(w) is the displacement response spectral density, Gf(w)
the spectral density of the applied excitation, w_ the upper cutoff
frequency of the bandlimited excitation, and Ho(w) a displacement to

force frequency response function of the system defined as

1 1
H (o) = —° - (2)
et (-3) +i2g-—=
w
n n

For white noise, Gf(w) reduces to the constant GO and Eq. (1) becomes

-G Q
2 “c 2 ™Mo
4o = Gof 'Ho(w)l do=—5 I_ (3)
0 2m w

where the undamped natural frequency W and the system damping Q

are given by

(4)



The { term is the damping factor, m the mass of the system and In a

dimensionless integral varying in value from zero to one. Similarly,

the mean square velocity and acceleration responses are

wc 2 TTG Q
e j wle (w)l dw = ——o— II_ (5)
X °© 0 ° Zm w
n
G Quw
2 “c 4 2 T
Lp;{.= Gof w IHO(w)l dw=—02-—n III (6)
0 2m n

where the dimensionless integrals In’ Hn and IIIn are found in Ref-
erences 2 and 9. The integral Hn’ as with In’ is bounded and ranges
in value between zero and one. On the other hand, Z[IIn generally be-
comes unbounded as wc—'oo and tends to result in values substantially
greater than one as wC/wn > 1. For these reasons, Eq. (6) finds limited
practical application.

Other statistics regarding Figure 1 also are known. The prob-
ability distribution function is Gaussian for the instantaneous amplitudes
and is essentially Rayleigh for the individual peaks. The probability
distribution function for the SHP is neither Gaussian nor Rayleigh but

of the form

- w TQ
o

Pylel <p,T)xa o °F (7)

where Ao is dependent upon the initial conditions and @ is a stochastic

parameter dependent upon the damping Q and the threshold level |30 .




The term P is a dimensionless ratio of the maximum response ampli-
tude to the RMS response of the system to broadband stationary white
noise. For many applications of practical interest, Ao may be assumed
equal to unity with negligible error. Values of a may be found in
Reference 8 as families of curves in [50 for both [3+ and |B| . An
alternate and (perhaps) more descriptive manner of presenting the in-
formation contained in Eq. (7) is shown as Figure 2.

The form of the data presentation in Figure 2 represents a sto-
chastic solution for a constant probability value and is originally based
upon the results from an analog simulation study (Reference 3 ). This
curve is for the constant probability PM(|[3| < ﬁo) = 0. 95 and, as with
the ordinate P, the abscissa is likewise a dimensionless ratio consisting
of the natural frequency fn’ the system damping Q and the sampling time
interval T. This time interval corresponds to the time duration during
which the system response is observed. The product fnT corresponds
(approximately) to the number of response cycles so that fnT/Q may be
interpreted as the number of response cycles per Q of the system.

For a specific single degree of freedom system and a preselected prob-
ability value (fn, Q and PM(lﬁ‘ < [30) are thus fixed), the B response
varies exponentially with the time T and theoretically approaches oo
as T—=oo. The greatest rate of increase in “3‘ appears to occur with-
in the range 0 < fnT/Q < 3. For each desired probability value of
PM(|[3| < [30), a separate P curve is required. Each such B plot
appears similar to Figure 2 wherein, as expected, the curves associ-
ated with the higher probability values yield correspondingly higher
values.

The response of a distributed elastic structure to random ex-
citation is somewhat more involved than with the single degree-of-

freedom system. For the single degree-of-freedom system, it is




9SION 31TyM
AreUuoTyElS 03 Wa3sAg wiopearx I-jo-oa15a( 918ulS ® Jo osuodsoy wWnNWIXel 7 2andig

— O
u
L7

050 = (Cd 5 |gh)"

A

¢
N|
—

il
e
IO
|

o

>




recalled an ordinary differential equation is treated and the random
excitation is functionally dependent only upon time. For a distributed
structure, a partial differential equation must be examined wherein the
external loading is random excitation and usually is correlated with the
spatial dimensions as well as in time.

The structure has many (theoretically infinite in number) natural
or modal frequencies and associated with each such frequency is a
modal damping factor and a mode shape. These structural properties
are used to define generalized quantities such as generalized mass,
generalized damping, generalized stiffness and generalized force; all
of which are convenient to a modal analysis of the system. For many
engineering applications involving structures with nonuniform physical
and geometric properties, it is frequently advantageous to represent
such systems by discrete models. In this way, one treats sets of
ordinary differential equations by matrix procedures rather than solve
partial differential equations with variable coefficients. With either
approach, concepts based upon modal solutions* are equally appropriate.

The response due to an arbitrary loading is' dependent upon how
well the loading couples with the structure. Such coupling is a function
not only of the spectral frequency distribution of the applied excitation,
but also upon the spatial frequency distribution of this loading. Conse-
quently, to achieve a maximum coupling between the structure and the
input excitation, coincidence or resonance in both space and time is re-
quired. Such phenomena naturally give rise to concepts of space-time
spectral densities, space-time correlation functions and joint acceptances.
These concepts are common to calculations for the RMS response of a

distributed structure to random excitation.

For problems wherein the modal density (modal frequencies per ex-
citation bandwidth) is > 6, statistical energy procedures (Reference 10)
become effective analysis tools for RMS calculations.



For the SHP problem of a distributed structure, a most salient
question is what quantities does one use to categorize the maximum
response characteristics? By deciding upon a simulation procedure
(similar to Reference 3) to examine empirically the SHP statistics, the
dimensionless ratios used in Figure 2 appear appealing. Since the
RMS response of such a structure always can be estimated either theo-
retically and/or by measurement, this quantity is used to normalize
the response maxima so that the basic definition of the B ratio is un-
changed. In addition, by arbitrarily defining the dimensionless time
ratio as flT/Q1 , the basic form of the data presentation in Figure 2 re-

mains intact. The quantity f is the fundamental modal frequency of

1
the structure and Q1 is a measure of its modal damping. With these
definitions, the maximum response results are presented in a useful
form inasmuch as all of the various quantities in the dimensionless ratios
may be plausibly calculated, measured, or estimated.

This report considers principally the f results for a Bernoulli-
Euler beam with both simply supported and rigidly clamped boundaries
where the random excitation is stationary white noise with a correlation
of unity in both space and time. The beam and the excitation are simu-
lated electrically and the B results then determined from measurements
taken at the mid-span of the beam. Before examining these results in
detail, it is judicious to review briefly the basic theory for (1) the beam

dynamics and (2) the analog simulation.



3. BASIC BEAM THEORY

The equation of motion for a Bernoulli-Euler beam is of the

form

2 4
m-a—§+c%%+EI§——£=f(x,t) (8)
at ox

where m is the mass per unit length, ¢ a viscous damping coefficient,
E the Young's modulus and I a cross-section area moment of inertia.
The variable y represents the lateral displacement of the beam from
the static equilibrium position and is a function of the spatial dimension
x and time t so that y = y(x,t). The quantity f(x,t) is the applied ex-
citation and may be likewise a function of x and t. By assuming the
beam to be homogeneous and uniform, the coefficients of Eq. (8) reduce
to constants and the complexity of mathematics required to calculate

a solution is thereby decreased.

A modal solution of y(x,t) may be written in the form

yix, t) = > ¢ (<) qy(t) (9)
j

where d)j(x) is the jth normal mode of the system and qj(t) is the
normal coordinate associated with-the jth mode. The summation is
implied to range from one to infinity, thus including all of the elastic

modes of the distriButed structure.



The normal modes are orthogonal functions in x and are some-
times called the eigenfunctions of the system. Physically, they may
be interpreted as the spatial form of the free vibration of the system
in the absence of damping and all external forces. If a body is thus
distorted into one of the normal mode shapes, say <|>j(x) , then released;
the body will vibrate for all time in this jth mode with the modal fre-
quency w]. . The general form of the jth mode shape for a simple beam

may be expressed as
d.(x) =C.cosAx+ D sinAx+ E. coshAx+ F, sinh \ x (10)
J J J ) ] J ] J ]
where the parameter N\, is related to the jth modal frequency as
J

2 EI
Q)j— 4

()\,1)4 (11)
mi )

The numerical values of the quantity )\jl are obtained from solutions to
the frequency equation of the system, this equation being formed as a
result of applying the boundary conditions to Eq. (10).

The normal coordinate qJ_ (t) is obtained by solving the equation
of motion

. 5 F.(t)
B0 + 20w q.(t) +w q.(t) = —— (12)
j AR N j i v
]

where




C.
— =2t 0, (12a)
M. 1)

j
K2
- (12b)
MJ_ ]

The term _I\—/I]. is the generalized mass, Ej the generalized damping,
Ej the generalized stiffness and Fj(t) the generalized force. These
generalized quantities are related to the physical properties of the

beam by

) 2
ﬁj =f0 m ¢, (x) ¢j(x) dx = mfo ¢§'(x) dx (13)
_ Y. L,
. =fo ¢ 4 (%) &, (x) ax = cfo 6 (x) dx (14)
K -’ M (15)
i)
_ J;
F (t) :f b (x) f(x,t) dx (16)
j 0o I

If initial conditions are quoted, these may be incorporated into the solu-

tion by evaluating the expressions

11



I
/ m ¢.(x) y(x, t) dx
0 J

q.(t) = —
) M.
j
(17)
)
f m ¢.(x) y(x, t) dx

. 0 ]
q.(t) = —
j Mj

Since the form of Eq. (12) corresponds to that of a single degree-of-
freedom system, qj(t) may be interpreted as the output response of a
modal oscillator in the jth mode.

For forcing functions which are deterministic functions of space
and time, Eq. (9) is an appropriate solution. For forcing functions
which are random, the mean square response is a desired response
solution. If the forcing field is isotropic, homogeneous and stationary,
the mean square displacement response of an arbitrary linear elastic

beam may be written as

2 @ ¢
$ ) = ZJ“J zJ; ¢,(x) &y (x) fo H, (@) Hy (@) L (o) do (18)

b
where Hk(w) is the complex conjugate of Hk(w) and Hj(w) the jth modal

magnification factor

HJ(w) = (19)

12




The quantity ij(w) is expressed in terms of the spatial cross-spectral

density function of the applied excitation Gf(x, x',w) as

2 £
1
L. (0) =—— f f $.(x) ¢, (x') G (x, x', w) dx dx'
ik MM ool do o k d

j k) k
(20)
. . . .2
or in terms of the joint acceptance ij(w) as
Gf(xo,w)lz
L. () = jip (@) (21)
jk —_— = 2 2 -‘jk
MJ Mk wj wk
where
2 1 £ y
) ——————zf f b.(x) &, (x') Gylox, x', ) dx dx'
) G.(x ,w) 2" 70 Jo ]
f¥ o
(22)

The term Gf(xo’ w) refers to a spectral density of the applied excitation
at x wherein Xo is selected so that Gf(xo,w) is a maximum. In this

2
way, jjk(w) will vary from zero to one.
By assuming the j # k terms to be negligible in comparison with

those for j = k, the mean square response becomes

2 2 @
$ox) = >, ¢.(x>f |H.(w)| L. (0) dw- (23)
y j ] 0 ] ]

13




where the quantity ij(w)-* Lj(w) and appears in the form

£ 2
1
L.(w) =— f f $.(x) ¢.(x") G (x,x', w) dx dx' (24)
) sz w;} o Yo ) f

For an excitation perfectly correlated in space and time, Gf(x, x', w)~»™ G0

and the mean square response becomes

y]
f ¢.(x) dx
o J
P

[¢'0)
2 2 2
P_(x) = Go —> 2 ¢(X)f IH(w)| dw
y M. . J 0 )
] )
(25)
then reduces to
2 ZGO Q. 2
$(x) = —L 5ip° &= (26)
y 2 . 2 3 .4
Tm j=1,3,5... j wj

for a simply supported beam.

14




4. BASIC ANALOG CONCEPTS

To conduct an analog simulation study, physically realizable
electrical analogs depicting the dynamics of a distributed elastic beam
are required. In addition, special attention must be given to pro-
cedures for applying random excitation with a specific space-time cor-
relation function.

In this study, passive analog circuits are used to describe the
beam. Such circuits appear topologically similar to the physical system;
they correspond mechanically to a lumped parameter model and corre-
spond mathematically to a finite-difference model. By requiring force ~
current and velocity ™~ voltage, the network impedances become equiv-
alent to mechanical mobility and the resultant analog is called cate-
gorically a mobility analog. These networks consist of capacitors, in-
ductors, resistors and transformers — the latter component describing
the geometry of the structure. For this particular simulation,
capacitors m~ mass, inductors < flexibility and resistors ™~ damping.

Although various derivation methods may be used (Reference 7)
one of the most efficient procedures employs energy relationships associ-
ated with both the structure and the circuit (Reference 1). By equating
strain energy to the energy associated with an inductor and equating
kinetic energy to the energy associated with a capacitor, minimum com-
ponent circuits may be readily constructed. It is in describing the strain
energy expression (which are spatial functions of the lateral deflection)
that transformers are required. Such an analog circuit for a difference
segment of a simple beam is shown as Figure 3. For notational con-
venience, albeit a slight departure from traditional circuit symbolisms,
inductors Ln are noted by -AAA/, transformers are represented by the
conventional primary P to secondary S coding wherein the + signs

indicate the transformer polarity, and electr1cal grounds are shown by 47

15
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This difference model consists of two principal circuits, (1) for the

slope properties and (2) for the lateral deflection properties, and bothare
magnetically coupled by the transformer. Current flows in the slope
circuit correspond to the internal bending moments between stations
n to n+3 and n+% to n. Similarly, current flow in the lateral velocity
circuit corresponds to the internal shear between stations n to n+1.
All é voltages denote slope velocities at particular spatial positions
and, likewise, all ;r voltages denote lateral velocities at specific
spatial locations.

By using the scale factor: relationships given in Reference 7

as

F=Xp

a

kP

0

M = S Ie
° ka
Y:F e;r (2.7)
b ka
0 = e’

NPe 0
t =Nt
m e

the individual circuit components become of the form

17




i
[\

(28)

Pn Lx
T.°%5 "B,
n n 6
n+%
The notation . implies the mass and flexibility distributions are inte-
2

grated between stations n-3 to nt3. The scaling constants a, N and
Pe are selected such that the component values are consistent with
setting values available on the analog computer.

By assuming N = 1 and then substituting the expressions of Eq. (28)

into the frequency expression

2 4
2oEL o
it

it follows the modal frequencies (electrical) in cycles per second are

given by
1 (M : 1
== 2
fj(elec) > n_ Pn (29)
~—q]L_C
S n n

18




where n_ denotes the number of difference segments into which the
beam is subdivided. Since )\j = ju/f for a simply supported beam, the
fundamental modal frequency (electrical) for this particular structure

becomes

[a—

2
>y (30)

fl(elec) =

obwl"‘
ml J
o]

=]

By requiring the beam circuit to have its fundamental resonance at
fl(elec) = 100 cps, the various plausible interrelationships between
n_, Pn/sn’ Ln and Cn are shown in Figure 4.

By cascading circuits similar to that of Figure 3, an effective
sixteen cell analog model of a simply supported beam is shown as Fig-
ure 5. By simply closing the switch in the é circuit at station 0, the
beam boundary conditions convert to those for a simple beam rigidly
clamped at both ends. Due to symmetry, only half of the beam is shown
wherein station 0 corresponds to x = 0 and station 8 to x = £/2. The
transformer whiffle-tree*allows the random excitation to be distributed
with a correlation of unity in both space and time. For a sinusoidal
input as the applied excitation, the loading would appear as a uniformly
distributed harmonic forcing function. By applying such a harmonic
excitation and recording the y response magnitude at station 8, the
plots of Figure 6 are obtained. Since these plots denote the magnitude
of velocity to force frequency response functions, they may appropriately

be called plots of mobility magnitude.

The transformers are all center-tapped.

19
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Figure 4. Relationships for the Analog Circuit of a Simply Supported Beam
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5. ANALOG SIMULATION RESULTS

By using the circuits of Figure 6, three problems of interest are

considered

1. the effect of a flexible boundary in bending on the
fundamental modal frequency of a beam

2. the RMS profile of a beam subjected to random excitation
perfectly correlated in both space and time

3. the SHP response of a beam subjected to random ex-
citation perfectly correlated in both space and time

The first two problems may be treated efficiently by other analytical
and/or computational methods whereas the last problem is particularly
well adapted to this analog simulation.

The initial problem requires the first eigenvalue to the frequency

equation for a simple beam with the following boundary conditions

y(0,t) = 0 y(£,t)=0

(31)
M(0, £) = k4 (0, ) ML, t) = -k, (¢, 1)

By applying these boundary restraints to Eq. (10), there results the

determinant

23
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2 1
1 | IE-I' N1 : 1
} 0 J 1
_ - - - ._ _— e — — = _‘ —_— e —— -
sin N\ ./ ) cosh N £ - cos \N.A t sinh \ .4
j : j j | j
e e e e - =0
' EI ' EI
cos )\jl : f_ke )\jl (cosh )\jl + cos )\jl) : IT X.f sinh )\ £ (32)
' l
EI ! . .
-——)\1 sin \ .2 + (sin A.£ + sinh \ £) | + cosh M 4
Lky ] I ] j | j

which produces the frequency equation

> k. 2 2
2(N£) sinX € sinh A2 +]——] (1 - cos \.£ cosh \ 1)
j j j I j j
(33)
kel
+ 21—} N2 (sinX.f coshX £ - cos A\ £ sinh \ {) =
EI J J j j j

Modal frequencies are then determined by substituting the )\jl solutions

into the frequency expression

= —= (\ A
o (>\J )

thus producing the results of Figure 7. Note the ordinate is normalized

to the fundamental modal frequency of a simple supported beam, an easily
calculable quantity. These same results are obtained from the analog cir-
cuit simply by tuning the oscillator to the fundamental resonant frequency

of the network.

24
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The second problem resolves to evaluating the analytical expression

for the mean square response given by Eq. (18) as

]
2 %*
lby(X) = Ej: Ek: ¢).(X) ¢k(X) _[0 HJ. (w) Hk(“’) ij(w) dw

For the random forcing function considered here, that is a forcing func-
tion correlated perfectly in space and time, this expression may be
evaluated with relative ease. For forcing functions with variable spatial
correlation functions and for structures with flexible boundaries, this ex-
pression is far more tedious to evaluate precisely and various approxi-
mations subsequently are made. In the analog simulation, one simply
records the output response of a true RMS meter at the spatial position
of interest. Such RMS results are shown as Figure 8 wherein the ordinate
is normalized to the RMS response at the mid-span of the beam. Both
analog and calculated values agree closely for both the simply supported
and the rigidly clamped boundaries.

For the third problem, a purely analytical attempt is virtually
intractable and a simulation study thus is in order. By means of the
analog circuit shown in Figure 5 and using the format of Reference 3,
peak response statistics to stationary random excitation may be collected
and readily examined. Typical examples of the input excitation at any

point on the beam and the response at x = £/2 are shown as Figure 9.
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For this SHP problem, it is remembered that the beam has
achieved stationarity in its response and one measures the highest re-
sponse (both positive and negative) of the system which occurs within
the sampling time interval T. After accumulating 100 such readings,
these data are arranged to form histograms such that PM(l [3' < ﬁo)
values can be estimated. By repeating this procedure for each preselected
T value, plots similar to Figure 10 may be developed for any desirable
probability value of lﬁ' < [30 . The curve for the average absolute peak re-
sponse is found to be approximately the same as PM(' Bl < ﬁo) = 0. 50.

The peak response statistics are shown as [ plots of lﬁl versus
the dimensionless time parameter fl’I/Q1 . To form the B ratios, the
absolute maximum response values are normalized by the RMS response
of the system to stationary white noise. The curves in Figure 10, al-
though consistently higher, are similar in form to those for a single
degree-of-freedom system and graphically display the time dependency
of Iﬁl . Since there appears to be no consistent difference between the
data for a simply supported beam and that for a rigidly clamped beam,
one concludes the “3' response essentially is independent of boundary

conditions for a distributed elastic beam with rectangular geometry.
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6. CONCLUDING REMARKS

The analog simulation methods mentioned here are particularly
well suited for parametric studies wherein the physical systems are
defined by partial differential equations and the input excitation is
stochastic, Typical problems categorically include those dealing with
distributed structures and random excitation, transient thermal anal-
yses of structures, control system—elastic vehicle dynamics, vibration
attenuation characteristics of interstaging structure and viscoelastic
response characteristics. By coupling these analog concepts with con-
ventional analysis procedures common to structural dynamics and cir-
cuit analyses, impedance relationships naturally evolve so that additional
insight into the dynamic behavior of multi-degree-of-freedom systems is
obtained somewhat as a by-product.

The maximum response statistics presented as plots of |[3| versus
fl’l‘/Q1 show the time dependency of the maximum response for an
arbitrary distributed structure. A common application for SHP results
involves structural design in a random environment wherein a maximum
response criteria is appropriate. It is clear from such curves that the
| [3| ratio, for a constant probability, changes as a function of exposure
time in the random environment. This implies a maximum response
solution (or an equivalent thereof) must be achieved in order to have a
valid design for such an environment. The alternative is to employ
far more costly experimental design procedures or use gross ''over-
design'' factors.

By comparing the results of Figure 10 with equivalent results for

a square plate (Reference 4), the I [3| plots for both the beam and the plate
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appear nearly identical. In both cases, moreover, the data are noted

to be independent of boundary conditions. Since the practical implica-
tion of such results are noteworthy, additional selective experimental
and theoretical work should be considered before general conclusions
are definitively stated. In the absence of conflicting remarks, however,
the empirical stochastic solutions of Figure 10 may be used in the design

of both beams and plates of rectangular geometry subjected to random

excitation.

32




REFERENCES

1, Barnoski, R. L., '"Basic Analog Circuits for Two-Dimensional
Distributed Elastic Structures, " NASA CR-667, National Aeronautics
and Space Administration, Washington, D.C., January 1967.

2. Barnoski, R. L., '"Comments on the Mean Square Response, ' UCLA
Short Course on Measurement and Analysis of Random Data,
University of California at Los Angeles, Los Angeles, California,
90025, September 1966.

3. Barnoski, R. L., '""The Maximum Response of a Linear Mechanical
Oscillator to Stationary and Nonstationary Random Excitation, "
NASA CR-340, National Aeronautics and Space Administration,
Washington, D.C., December 1965.

4, Barnoski, R. L., ""The Maximum Response of Rectangular Plates
to Random Excitation, '"" Report No. MAC 504-16A, Measurement
Analysis Corporation, 10960 Santa Monica Blvd., Los Angeles,
California 90025, February 1967 (to be published as a NASA-CR).

5. Crandall, S. H., K. L. Chadiramani and R. G. Cook, '"Some First-
Passage Problems in Random Vibration, '"" Transactions of the ASME
Journal of Applied Mechanics, Paper No. 66-APM-Y.

6. Crandall, S. H. and W. D. Mark, Random Vibration in Mechanical
Systems, New York, Academic Press, 1963.

7. MacNeal, R. H., Electric Circuit Analogies for Elastic Structures,
New York, J. Wiley & Sons, Inc., 1962.

8. Mark, W. D., "On False-Alarm Probabilities of Filtered Noise, "
Proceedings of the IEEE, Vol. 54, No. 2, February 1966,
pp 316-317.

9. Roberts, J. B., '""The Response of a Simple Oscillator to Band-

Limited White Noise, '" Report No. 65/3, University College,
London, Department of Mechanical Engineering, London, W.C. T.,
May 1965.

10. Ungar, E. E., '"Fundamentals of Statistical Energy Analysis of

Vibrating Systems, ' AFFDL-TR-66-52, Wright-Patterson Air Force
Base, Ohio, May 1966.

NASA-Langley, 1967 —— 10 CR-816 33



