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ABSTRACT

Time variations of the wind stress over the ocean
cause the boundary-layer flow to be significantly different
from that of the classical Ekman spiral. Simple analytical
solutions for the cases of rotating and oscillating wind
stresses are presented, and numerical solutions of the tran-
sitory boundary layers for more realistic wind variations are
given. These solutions are basically extensions of Ekman's
spiral solutions for the cases of a constant coefficient of
viscosity and his ''quadratic friction-relationship", and of
Fredholm's solution for the case of a step function in wind
stress. The results show that the large inertial oscillatioms
discussed by Ekman for the case of constant viscosity are even

more persistent when the ''quadratic friction-relationship" is

applied.




1. INTRODUCTION.

The now~classical paper of Ekman (1905) delineated
the major features of the boundary-layer flow to be expected
in the surface layers of the ocean due to wind stress, and the
Ekman spiral that corresponds to a éteady wind stress and a
constant coefficient of viscosity is often cited. Among other
specific but less well known results of Ekman's famous work
are the transitory solution for a step function in the wind
stress (attributed to Fredholm) and the steady spiral solution
that corresponds to Ekman's ''quadratic friciton-relationship".
Our results extend the transitory solution presented by Ekman
to other interesting variations of the wind stress, the intent
being to examine and illustrate the degree to which the flow in
the planetary boundary layer of the ocean may differ from that
of a steady-state spiral as a result of temporal variations of

the wind.

In addition to simple analytical solutions for ro-
tating and oscillating wind stresses, we present numerical com-
putations of the boundary-layer flow for more realistic vari-

ations of the wind for both a constant coefficient of viscosity




and for a coefficient of viscosity dependent upon the wind
stress and the shear flow in the boundary layer. These studies
were undertaken as an extension of our numerical studies of
the instability of Ekman boundary layers (Faller and Kaylor,

1966) at the suggestion of Dr. P. Welander.

The equations of motion that describe the transitory

Ekman boundary layer are:
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where the primes refer to dimensional variables. Horizontal
gradients of the flow and the vertical velocity are taken to
be zero, and there are no horizontal pressure gradients. The
Cartesian coordinates are right-handed with z' vertically
upward and the origin at the ocean surface, so that depth in
the ocean is given by negative values of 2z'. To take into
account the Coriolis force at some specific latitude ¢ it

is only necessary to replace Q by Q sin ¢ throughout the

analysis.




For the case of constant v equations (1) are

made non-dimensional by the following definitions:

) ]

u = u'/Vo sV = v'/Vo s z=2z'/D, t=0¢t'

where D = (v/Q)% is the characteristic depth of the Ekman

boundary layer and

P
Vo'= (u'2+v'2)2 at z = 0.

(Note that D as used here is smaller than the characteristic

depth used by Ekman (here designated DEk) by the factor
D/DEk= 1/7w.)

The non-dimensional equations are then:
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For later reference, the steady-state Ekman solution to (2) that
corresponds to a constant shear stress at the free surface and

zero stress at z = = "» in our notation is:




where ¢ 1is the angle between the stress and the positive

axis, and where we have used the boundary condition

dv/dz = ]/g at z = 0.

(3)
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2. ROTATING AND OSCILLATING WIND STRESSES.

Since (2) are linear equations, the solution for
an arbitrary variation of the wind stress may be composed from
a sum (or integral) of linearly independent periodic solutions,
For this reason, as well as for their intrinsic interest, we
first discuss simple harmonic solutions with frequency k cor-
respondent to harmonic variations of the wind stress with the

same frequency.

An harmonically oscillating wind stress with fixed
orientation (fixed 6) may be regarded as the sum of two vectors
of constant magnitude rotating in opposite directions. Their
rotation frequencies will be denoted by & =+ k where a positive
value of & indicates rotation in the cyclonic sense (in the
direction of increasing ©) and a negative & indicates anti-
cyclonic rotation. Evidently, from the linearity of the equationms,
the solution for an oscillatory stress of amplitude 1.414 will be
the sum of the solutions for the two oppositely rotating stresses

of constant magnitude 0.707.
A single rotating stress of frequency £ may be written

in component form as




T
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where T = du/dz|o and o= dv/dz]o. Assuming periodic

solutions to (2) we write the resultant velocity components as

u
= (2 {;‘fz} (zt +<b(z)) (5)

where U and ¢ are unknown functions of z. Substitution

of (5) into (2) gives

—(2+2)V= " u
) 22
(6)
2
3 Vv
( 2 + 2) u = 2
3 z

which are identical in form to the steady-state portions of

(2) and differ only in that the Coriolis terms are multiplied

by (1 + &/2). Thus the efféct of a uniformly rotating stress,
as opposed to a steady stress, is merely a modification of the
effective rate of rotation of the coordinate system, and we

anticipate that the solution to (6) will be an Ekman spiral




with modified amplitude and depth scales.

If we define a second non-dimensional depth by

%
zx = z' /D%, where D* = (v/Q(1 + %) )?, the solution of (6) is

u
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where § = 6 + 7/4, and where the ratio D*/D arises from the

new non-dimensionalizatjion of the stress. The total solution for

an oscillating stress is then the sum of the two solutions for

2 =4k and & = -k as follows:
u ' (8)
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where K. = +(1 + k/2)?, K, = +(1 - k/2)?, and k is always
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positive. For K2 the positive root is used when k/2<1, and the

negative root applies when k/2>1.

Some examples of the solution (8) for & = /4 are
shown in Figures 1 and 2 for k/2<1 and k/2>1, respectively.
For Figure 1 the two spirals correspond to k = 1 at the instant
when both rotating vectors are oriented along the x axis. Since

-1
the velocity vectors at z = 0 have the amplitudes Al = (2Kl)




and A, = (2K2)_l it may readily be seen that the terminal

point of the velocity at 2z = 0 executes an ellipse with the
major axis 45 degrees to the left of the oscillating stress.

The magnitude of the semi-major axis is A2 + Al and that of the
semi-minor axis A2 - Al' Figure 2 has been constructed for

k = 2m  as an example of k>2. There it is shown that the spiral
for #<2 is "left-handed". This may also be seen from (6) where
for 4<-2 the signs of the Coriolis terms are reversed and the
spiral must be that correspondent to negative rotation of the
coordinate system, the Southern Hemisphere case. Accordingly, for

k>2 the major axis of the ellipse at z = 0 is along the x axis,

the axis of the oscillating stress.

Figures 3 and 4 are examples of numerical solutions of
(2) for k=1 and k = 2m, respectively.* The computations
started with zero flow, and as a result there were transitory
components to the solutions, but it may be seen that the oscil-
lations of the surface velocity approached the theoretical ellipses
as discussed above. For k = 1 the theoretical semi-major axis
is 1.114 and the semi—minor axis, 0.300. For k = 2n the semi-axes

are 0.588 and Q.096.

When k = 2 there is a singularity in the solution (8).

This corresponds to resonance between the anticyclonically rotating

* The methods of numerical computation are discussed in the
appendix and in Faller and Kaylor (1966).




component of the oscillating wind stress (& = -2) and inertial
oscillations in the rotating system. Figure 5 is a numerical com-
putation that shows the steady amplification of the surface velo-

city due to this resonance.

To more clearly see the resonant case, note that in
an absolute reference frame the surface stress would be constant

in magnitude and direction, and the governing equations would

reduce to 90 = 32 U . The resultant flow would have the same
2
ot = dz

constant direction at all depths, and an equilibrium solution

could only be obtained for a finite depth of fluid.

3. A STEP FUNCTION IN THE WIND STRESS.

Ekman has presented an exact solution (found by Fredholm)
for the case of an abrupt increase in wind stress from zero to
a constant value, although the method of solution was not indicated.
One method would be to integrate the solution (8) over k using as
amplitudes for each oscillatory component those found from a
Fourier integral representation of a step function in stress. A
somewhat simpler procedure was 6utlined to us by Professor J. M.

Burgers and is as follows:

The velocity components are expressed in the complex

notation w = u + iv and the set (2) is written
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2w + 2iw = — (9)
ot dz

If we assume a solution of the form w = A ept + Az

it follows from (9) that X = (p + Zi)%. Then let A = (V2 = ip(p + 21)’15)_l
so that the shear at the free surface, dw/dz at z = 0, has

the value 0 for t>0 and the value VE for t<0. This follows

since [ept/ pdp = 2mi for t>0 and O for t<0. The integral

for w 1is then

- - =% %
w =(f§ﬂi) 1 Jp 1 (p + 2i) ? exp (pt + (p+ 21)7) dp
(10)
If equation (10) is differentiated with respect to time we

obtain

%%‘ = (2ni)’%' J(p + 21) 7% exp (pt + (p + 21)%2) dp
(11)

which must be essentially the integral solved by Fredholm.

In particular, at =z = 0 equation (11) may readily be integrated

to give

w(z = 0) = (2/m? Fe 21y, (12)




- 11 -

where © is a dummy time variable. Equation (12) is the
Fresnel integral (Jahnke and Emde, 1945) that describes the

Cornu spiral (see Figure 6).

Ekman graphically presented Fredholm's solution
by diagrams of velocity vs. time at various depths. As a
check on our numerical methods (anticipating other applications)
we obtained the numerical solution starting with (2), and we
found precise agreement with Ekman's.results at all depths.
Figure 6 shows the solution at 2z = 0 with time expressed in
pendulum hours for direct comparison with Ekman's diagram. The
particular feature of note is the large inertial oscillation
(period of 12 pendulum hours) which damps only inversely as the

square root of time.

We have also computed the transitory response to a
step function in wind for the variable coefficient of viscosity
which Ekman called the "quadratic friction~relationship". In our
notation the quadratic viscosity, in which "the frictional forces

were proportional to the square of the rate of gliding', is given

by
v = L2((du'/dz')2 + (dv'/dz')z)% (13)

where L is a mixing length that is independent of z'. Ekman's
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.steady—state solution to (1) using (13) is an equiangular spiral,

but with the constant angle of 49.1 degrees between the velocity

and the vertical shear compared to 45.0 degrees for the case of
constant viscosity.* Since there was no exact correspondence between
the characteristic depths of the two spirals, Ekman arbitrarily adop-
ted D' = 0.8 Z' for comparison with the characteristic depth DEk’

L %
where 2' = 1.16 L% (t/pw)*Q * 1is the depth at which the velocity

vanishes in the case of quadratic viscosity.

Our numerical results for a step function in stress and
using the relation (13) are presented in Figure 7 which shows the time
variations of the velocities at the depths =z' =0, 0.5 D', and 1.0 D',
these for comparison with Ekman's figures at the comparable depths for
the case of consfant viscosity. The principal difference of note in
the two transitory sblutions is that for the quadratic viscosity
the inertial oscillation damped much more slowly. At z = 0 it appears that
the inertial oscillation decays as t-% (Figure 7) compared to the

%

decay rate of t ° for constant viscosity (Figure 6).

4., VARIABLE WIND STRESS.

The original intent of this work was to integrate the

boundary-layer flow over time for a variable wind stress similar

* A third equiangular spiral of interest (54.7 degrees) is that found by
Rossby (1932) using (13) under the assumption of a linear decrease of L
with distance from the free surface, rather than constant L.
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to that which may occur over the ocean. To this end we

have performed two separate integrations: 1) the case with
constant viscosity and with the surface stress linearly pro-
portional to the wind speed; 2) the case of quadratic vis-
cosity with the stress proportional to the square of the
wind and with the mixing length linearly proportional to the
wind. The first case would correspond to a laminar laboratory
situation, and the second more closély approximates turbulent

oceanic conditions.

The variation of wind that was applied may be seen in
Figures 8 and 9, which correspond to the two cases listed above,
respectively. The time of each hodagraph is expressed in radians
of rotation of the coordinate system, 1 unit corresponding to
3.82 hours. The seéuence of wind vectors represents the following
meteorological events at some point over the ocean: The wind started
from W = 0, the center of a high pressure system. As the High
moved eastward a low pressure center approached the point in
question, and the wind increased steadily to W = 15m s-l with
constant direction from the SE. At t = 4.0 a warm front passage
gave an abrupt shift of the wind, and in the warm sector of the
approaching Low the wind held constant at W = 10 m s_l from
SSW. At t = 6.0 a cold front passed and the wind shifted sharply

to WNW at W = 20 m s . Thereafter the wind decreased slowly with
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nearly constant direction to W =0 at t = 10. The cycle was
then restarted for a short period, which accounts for the
hodagraphs at times t>10. This wind variation incorporates a
steadily increasing wind and abruptghifts in the wind direction.
It does not include all meteorologically interesting situations
that may occur and was meant only as a typical sequence due to

passage of large.scale pressure systems.

In Figure 8 depths are indicated on the hodagraphs in
terms of the characteristic depth D, and the wind and velocity
scales are arbitrary. Figure 9, the case of quadratic viscosity,
is meant to correspond to the real ocean and we have expressed
wind speeds in meters per second, flow speeds in centimeters per
second, and depths in meters. In an attempt to realistically ac-
count for a decrease of mixing length as the free surface is ap-
proached from below, we have added a logarithmic boundary layer to
the top of each spiral solution of Figure 9, in the manner of
Rossby and Montgomery (1935). The circled point on each hodagraph
indicates the point of attachment of the logarithmic layer to the

spiral.

Details of the quadratic viscosity and logarithmic
boundary layers are the following: Equations (1) were integrated
using the relation (13). The spiral solutions were computed with

the aid of the following two assumptions, applicable at 45 degrees
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latitude: 1) The mixing length was taken proportional to the
wind speed by the relation L = W/5 seconds; and 2) The wind
stress was taken proportional to the square of the wind speed
by the relation (T/pW)JE = u;= 20 x 10'2w, where u: is the
friction velocity for the water. The superposed logarithmic

layer was computed from the equation

1 = 11% - ' v ! ]
L X | Y/, | H+ ow) - n 27tz
k — - (14)
ow ow

where IA X'|is the magnitude of the velocity to be added to
the spiral solution in the direction of the wind. H = L/k - zéw
is the depth of the logarithmic layer, and k = 0.4 is von
Karman's constant. The roughness length for the water was taken

to be related to the wind by zéw = 10_2W seconds.

For the most part the above relations are based upon
empirical formulas from various sources (Rossby and Montgomery,
1935; Sverdrup, 1942) and a complete justification would be too
lengthy for this presentation. In the last analysis they are
justified only in so far as they produce reasonable approximations
to reality. The relations for zéw is based upon some recent

(unpublished) observations by one of the authors (Faller) of the

differential drift of floats and tracers near the surface of the
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ocean, but this value should be regarded only as a preliminary

estimate.

The most noteworthy aspect of ?iguress and 9 is the
rapid development of large inertial oscillations. In accord
with the results of Section 3, these are considerably greater
for the case of the quadratic viscosity, as may be seen par-
ticularly well near the time t = 10 when the wind dropped to
zero. Since inertial oscillations decay so slowly due to vis-
cosity, continued application of wind stress variations probably
would lead to a large accumulation of inertial energy. In the real
ocean, however, because of horizontal variations or the presence
of side boundaries, inertial oscillations will normally produce
oscillating pressure gradients that will result in both hori-
zontal and vertical fluxes of inertial energy, neither of which
are possible in the limited local model that we have used. As a
result, we have not considered it to be profitable to extend the

integrations over longer period of time.

With respect to the variation of wind that was chosen
for this example, it should be noted that the wind rotated anti-
cyclonically, correspondent toa location in the ocean to the south
of the path of the low pressure center. It may be anticipated
that if the wind rotated predominantly cyclonically, the resultant

inertial oscillations would be somewhat smaller, and the amplitude
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of the spiral flow would also be less, in accord with the results

found in Section 2 for rotating stress vectors of constant magnitude.

A P P ENDTIZX

The methods of numerical integration.

A detailed discussion of finite~difference methods,
stability criteria, and other pertinent material was presented
in an earlier paper concerned with the stability of Ekman boundary-layer
flow (Faller and Kaylor, 1966). These details will not be recon-
sidered here, and the interested reader should refer to the earlier

work. However, the following changes were required:

1) The numerical solution was computed for a single
vertical line of grid points, rather than for a two-dimensional

field of points.

2) The applied pressure gradient, which was the source

of the basic geostrophic flow in the earlier work, was eliminated.

3) The upper boundary condition of zero stress was
replaced with a condition of constant stress or a specified vari-
ation of stress with time. There was no change in the lower boundary

condition.
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4) The numerical stability criterion vAt'/Az'2<O.25
which arises from the viscous terms had to be replaced by the new
criterion Lz(dV'/dz')z=0At'/Az'2<0.20 for those cases with the

quadratic viscosity. This criterion was determined empirically

by trial and error.
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Figure 1. Theoretical solution for an oscillating wind stress
with angular frequency k % 1 and amplitude 1.414, The
solid spiral hodagraph corresponds to the cyclonically
rotating component (£ = 1) with magnitude 0.707, and
the dashed spiral corresponds to the anticyclonically

rotating component (£ =-1) of the same magnitude. Depths

are in terms of D for the steady Ekman spiral.
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Figure 2. Theoretical solution for an oscillating wind stress
with angular frequency k % 2 and amplitude 1.414. The
solid spiral corresponds to the cyclonically rotating
stress (% = 2), and the dashed spiral corresponds to

the anticyclonic component (2 = -2), each of magnitude

0.707.
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Figure 3. The terminal point of the surface velocity as a
function of time (radians) from a numerical solution
for an oscillating stress with angular frequency k = 1.
Initial flow conditions were a state of rest, and the
applied surface shear was given by du/dz[0 = -1.414
sin kt. The numerical solution approaches the theo-

retical ellipse described in the text.







Figure 4. The terminal point of the surface velocity as a
function of time (radians) from a numerical solution
for an oscillating stress with angular frequency
k = 2w, Initial flow conditions were a state of
rest, and the applied surface shear was given by
du/dz|o= 1.414 cos kt. The numerical solution ap-
proaches the theoretical ellipse described in the

text.
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Figure 5. The terminal point of the surface velocity as a
function of time (radians) from a numerical solution
for an oscillating stress with angular frequency k = 2.
Initial flow conditions were a state of rest, and the
applied surface shear was given by du/dz[o= 1.414
cos kt. Resonance of the anticyclonic component (2=-2)

is shown by the steady amplification of the velocity.







Figure 6. The terminal point of the surface velocity as a
function of time (penduluﬁ hours) for a step function
in stress, from a numerical solution with constant
viscosity. This result is identical with Fredholm's

solution (Ekman, 1905, Figure 3).
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Figure 7. Terminal points of the velocity as a function of
time (pendulum hours) at the depths D'= 0 (upper
figure), D' = 0.5 (lower left), and D' = 1.0
(lower right), from a numerical solution for a step
function in stress and with Ekman's 'quadratic
friction-relationship'. The inertial oscillations
may be seen to decay much more slowly than for the

case of a constant coefficient of viscosity (Figure 6).







Figure 8. Transitory solutions for a continuously varying wind
(dashed arrows) as a function of time (radians) for
the case of constant viscosity. Depths on the spiral

hodagraphs are in terms of the characteristic depth D.
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Figure 9. Transitory solutions for a continuously varying wind
(dashed arrows) as a function of time (radians) for
the case of the quadratic coefficient of viscosity.
Flow speeds indicated by the spiral hodagraphs are
in centimeters per second, wind speeds are in meters
per second, and depths are in meters. The circled point
on each hodagraph indicates the point of attachment of the

shallow logarithmic layer.
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