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FOREWORD

This report is based upon the dissertation submitted by the author

in partial fulfillment of the requirements for the Ph.D. degree in

Engineering at UCLA. A summary of some of the results was presented

at the Fifth International Symposium on Rarefied Gas Dynamics, Oxford,

England, 4-8 July 1966 and published in the symposium proceedings.

(Rarefied Gas Dynamics, C.L. Brundin, editor, Vol. 1, Academic Press,

New York, 1967, p. 253.) The research described here was supported

chiefly by the National Science Foundation (under Grants GP-534 and

GK-580), by the National Aeronautics and Space Administration (under

NASA Grant NsG 237-62), and by the UCLA Department of Engineering.

These studies were part of a continuing program of research using

supersonic molecular beams.
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ABSTRACT

Scattering of modulated Argon atomic beams (with energies of

the order of 1 ev and hydrodynamic speed ratios of the order of 7)

from cleaved mica and from vacuum-deposited silver on cleaved

mica consistently showed a multilobular pattern on a polar flux dia-

gram. The scattering distributions are believed to be the first

measured for beams with energies between 1 and 10 ev. Parameters

varied during the experiments were (a) surface temperature and

(b) time from deposition. The observed quasi-specular lobe bear

a close resemblance to the distribution observed by other investi-

gators who have scattered thermal energy beams from various sur-

faces and behave in some respects as predicted by one simplified

collision model. Analyses of the data indicate that the detected

molecules may have consisted of both scattered Argon atoms and

flash desorbed unknown species from the surface° This suggestion

might be tested by mass-spectrometric differentiation of the

scattered molecules.

In addition to the aforementioned results, contributions in

experimental and analytical techniques to scattering measurements

are included. Basic concepts from the theory of linear operators

xiv



are used to derive analytical relations between the TOF (time-of-

flight) signals, the time-domain analogue of the steady-state beam

speed distribution function and a gate function characterizin_ the

modulation process. Sums and products of dynamic operators

represent the sequence of dynamic perturbations imposed upon a

molecular beam in the course of a scattering experiment. Central

moment expansions of these sums and products in the time-domain

provide a powerful simple and physically meaningful framework for

determining the densities and the pertinent parameters of speed

distribution functions of the incident and scattered flow fields. These

concepts are applied also to a novel classification and characteri-

zation of ionization detectors (based on their dynamic effect in an

experiment). A novel concept of calibration is developed and applied

to the design, characterization and use of an Orbitron type detector.

XV



CHAPTER I

INTROD UC TION

The study described here represents another application of

supersonic molecular beams at the UCLA Molecular-Beam

Laboratory and the first phase of a continuing study of interactions

of neutral-particle beams with solid surfaces. The intermediate-

energy arc-heated supersonic beam developed in this laboratory

(References 23, 24) facilitates investigations of the dynamic process

occurring at the surface in an energy range not investigated

previously.

The purpose of neutral particle-surface collision studies

varies depending on the interest and viewpoint of the investigator.

The gas dynamicist focuses his attention on the change in the velocity

distribution function of a gaseous flow field caused by the presence

of a condensed phase. From this point of view, the particle-surface

interaction problem is reduced to the definition of the boundary con-

ditions for the equations characterizing the gas-phase flow field.

The chemical physicist (or physical chemist, depending on

which permutation is currently in vogue) is interested primarily in

the surface as a perturbing field environment for interesting inter-

actions between the electron-orbital fields of different species. His

investigations center around the perturbation operator of the surface

and its effect on the interaction of the species.

The solid-state physicist sits on the other side of the fence

from the gas dynamicist. He views the surface as an interface at

which lattice disturbances mo.qt nftpn n_g_,_o+_ LT".... ,- ......

relate the perturbation at the surface to its effects on the lattice.
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This classical division of emphasis still was pronounced in

1963 when the work reported here was initiated. Since then, investi-

gators have focused more on the alternative views of the same

problem. This was evident in December of 1966 at the "inter-

disciplinary" Symposium on Fundamentals of Gas-Surface Inter-

actions held in San Diego (GR IX), which appropriately had sessions

on a) the surface and its characteristics, b) adsorption and reaction

of gases on or with surfaces, and c) scattering processes, including

energy and momentum transfer.

The gas dynamicist is concerned more and more with lattice

dynamics and its effects on the interaction of the surface with the

flow field. This concern has paralleled the increased interest in

high-speed flows relative to the surfaces of space vehicles and

satellites. The surface can be viewed no longer as a) an elastic

reflector of particles, or b) a temporary reservoir from which

incident particles are reemitted with energies and momenta bearing

no correlation with their initial state. This evolution of outlook is

displayed in the contents and cited references of the proceedings of

successive symposia on Rarefied Gas Dynamics (GIR I-V).

Physical chemists are realizing that a kinetic temperature

derived from equilibrium velocity distribution functions does not

describe adequately the complete range of energy and momentum

transport phenomena at the surface. Particle-surface interactions

often involve non-equilibrium excitations and the measured responses

then cannot be described in terms of equilibrium approximations.

A recent review of atomic processes at solid surfaces (Refer-

ence 7) gives increased attention to the modern experimental tech-

niques and results from scattering experiments with molecular

beams. It is disconcerting, however, to find statements which relate



a characteristic time of the energy transport to a so-called thermo-

dynamic requirement that the velocity distribution of scattered

particles be Maxwellian and obey the cosine law. As early as 1936,

Eucken 8 related a thermal accommodation coefficient, based on a

very simplified model_ to two relaxation times: one reflecting a

first-order energy-transfer model and the other corresponding to a

first-order desorption model. Today it is accepted generally that

single thermal and tangential and normal momentum accommodation

coefficients describe inadequately particle-surface transport

phenomena.

Recent quantitative models of the collision process consider the

induced motion of the lattice atoms within a classical-mechanics

3, 4, 10-16, 26-28, 30, 31, 37-39, 43
context. The gas-surface inter-

atomic potentials and the potential fields characterizing the lattice

are coupled in these models. Serious mathematical complications

have motivated a large number of simplifying assumptions, some of

which may be serious. Furthermore, even for some of the more

successful models, parameters describing the interatomic potentials

and the lattice potential fields are fitted to experimental results. The

most recent review of the current state of theoretical developments

is given in Reference 38.

The fact that more experimental work is required to provide

the data upon which a successful theoretical structure can be built is

accepted generally. Scattering experiments of molecular beams

from engineering surfaces were first performed by Hurlbut and

2O
co-workers. Paralleling this effort, experiments designed to

measure the energy ae_nmrnnd__tien _'_ _'^-_ ......_ ............... _,_, u_u_z" conditions

approaching equilibrium, were being perfected in various labora-

4O
tortes. Recent particle-surface scattering experiments, using
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molecular beams have been described mainly in papers presented at

the Rarefied Gas Dynamics Symposia (GR I- GR V).

Some experiments 17-19 have provided valuable guidelines and

verification of predictions by a simplified scattering model 26" 27, 37

based on the assumption that the tangential momentum is conserved

during the scattering process. Others 33-36 have been meticulously

concerned with the definition of the surface in the gas-surface inter-

action. One of the most difficult outstanding problems in meaningful

experimental programs is the definite characterization of the

surface, requiring a) control and measurement of the laboratory-

created vacuum environment and b) creation of well-defined crystal-

lographic surface structures. The vacuum deposition of silver on

cleaved mica, used in many of the experiments reported here, is

inspired by publications of and private communications from Smith
33-36

and Saltsburg. Other experiments valuable in this respect are

reviewed in Reference 32.

Even though the status of development of intense molecular

beams 9, 22-25 shows great progress, the seattering results reported

here are the first obtained from a modulated beam in the difficult

energy range of i-i0 ev. Extensions to higher intensities, other

energies, and other molecular species will advance the frontier of

collision and reactive kinetic measurements.

The scope of the experiments reported here is limited to the

_measurement of flux distributions of the scattered molecular flow

field when a l-ev supersonic argon beam impinges on various sur-

faces. _ In the following chapters, the experimental methods and

results are described with emphasis on the dynamics of the incident

and scattered molecular flow fields. _



The modulation and time-of-flight methods are examined in

this light in Chapter III. Important within this context are the rela-

tionships (developed in Appendices A through C) between the moments

of a class of speed distribution functions and those of their time-

domain analogues.

Chapter IV examines the detection process. The design and

operation of a new type of ionization detector developed specially for

these experiments is described. A novel dynamic calibration concept

is applied in charaeterizing the role of the detector in the experiment.

The scattering results presented in Chapter V are of a sur-

prising and unexpected nature. Flash desorption of adsorbed layers

by the incident beam may have been important.

Finally Chapter VI summarizes the conclusions and outlines

recommendations for future studies which might provide, among other

things, an answer to some of the many questions engendered by the

results reported here.



CHAPTER II

EXPERIMENTAL TECHNIQUE

Introduction

Consider the following experiment designed to characterize the

scattering of a well-defined neutral-particle beam from a surface.

A beam of particles is generated and collimated so that it

approaches a state of space coherence associated ideally with a single

ray. The beam is chopped in order to determine its density and speed

distribution by time-of-flight spectroscopy. The speed distribution

is resolved in the time domain by measuring the instantaneous rate

at which molecules cross a plane placed at a fixed distance from the

chopper. The resolving power is determined by the chopper gate

function, the flight length and the speed distribution. The instan-

taneous density (or the related instantaneous flux) is sensed by a

detector, completing the experimental characterization of the incident

beam.

Two alternative methods exist for characterizing the scattered

flow field. In the first, a modulated beam strikes the scattering

surface. In the second, a steady-state beam (whose velocity distri-

bution and density are known from earlier measurements) continu-

ously impinges on the surface, and the scattered molecular flow is

modulated and resolved by time-of-flight methods.

In either case, the instantaneous density is measured

sequentially in well-defined differential volumes in the unsteady

scattered-beam field. In the case when the scattered-particle field

is modulated, the time dependence of these densities is determined

uniquely by the time-of-flight process. Then this series of time-

dependent density measurements, in a tight mesh of differential



volumes, constitutes a complete characterization of the scattered-

particle field.

In the case when the incident field is modulated, the measure-

ment of the time-dependent scattered pulse also reflects the dynamics

of the processes occurring at the surface. If the characteristic times

of these processes are much smaller than the times of flight, they

can be neglected. In either case, the described sequential charac-

terization of the incident beam and the scattered particles defines an

operator gsc which describes the scattering processes at the
surface.

Figure 2.1 is a signal-flow representation of the series of

operations on a molecular flow field in a scattering experiment.

Modulation, time-of-flight, and detection are introduced in order to

characterize the incident and scattered molecular flow fields. Scat-

tering at the surface is the perturbation to be determined by the

experiment. The perturbation operator gsc' which characterizes

the interaction at the surface, is defined by the following operator

equation:

Xout - gsc Xin

which is read in the usual operator fashion: "The field vector

(2.1)

Xout
(describing the scattered molecular flow field) is obtained when the

incident field vector X. (describing the incident molecular flowin

field) is acted upon by (left-multiplied by) the operator gsc (describ-
ing the surface interactions)".

Vectors describing molecular flow fields are characterized by

........ j ...................................... j ..... j b _ • _ i,.,_ _

space. The velocity distribution and the density determine the

number and energy fluxes at a given point. Both the velocity distri-

bution function and the density can be intrinsically time-dependent.
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PRODUCTIONOF INCIDENT BEAM CHARACTERIZATION OF INCIDENT BEAM

NERATI OLLIMATI ODULATIO FLIGHT ETECT.ION

fPOSITIONING OF

r-'IOETECTOR
el

_'_SURFACE _/f TIMEOF"*!FLIGHT _ /_ ( ON_ I_ t'RO' 0'_)
//_ _SCATTERING_//_ DETECTI

CHARACTERIZATION OF SCATTERED BEAM

_'POSITIONING OF

e,"---I OETECTOR

ALTERNATIVE TO CHARACTERIZATION OF SCATTERED BEAM

SIGNAL-FLOW REPRESENTATION OF A MOLECULE-SURFACE

SCATTERING EXPERIMENT

FIGURE 2.1

SIGNAL FIELD VECTOR

1

2 X 2

3 X 3 = glmX2

4 X 4 = gltfX3

ALTERNATIVE (a):

5 X 5 = gscaX4

6 X 6 = g2tfaX5

7 X 7 = gdX6

ALTERNATIVE (b):

8 X 8 = gscbX2

9 X 9 = g2mX8

10 XZ0 = gtfbX9

11 Xll = gdXl0

FUNCTIONS AND P_a.P_AMETERS CHARACTE1KIZING THE

OPERATOR g( )

Al(t) - Modulator admittance (gate) function

L 1 ---"Flight distance from modulator to surface

f(u) = Speed distribution of collimated beam

Incident-Beam Modulation

Unknown (object of investigation); probably surface temperature,.

structure_ and composition and lattice dynamics.

R "----Radial coordinate of r a in spherical coordinate system
a describing flight distance

Fsc(R a, 0, 4, t) "-- Time-dependent distribution of velocity

magnitude @ _a(Ra, e, 4)

Detector design parameters

Scattered-Beam Modulation

Unknown (object of investigation)

A2(t) "-- Modulator admittance (gate) function

R b = Radial coordinate of r b in spherical coordinate system
describing flight distance

Fsc(R b, O, 4, t) = Time-dependent distribution of velocity

magnitude _ _b(Rb, 8, _b)

Detector design parameters.
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Transient molecular fields are often created by modulation of steady-

state fields at well-defined points in space. In the experiments

described here, the incident beam is modulated. One single detector

can be positioned sequentially to detect first the incident beam and

then the scattered molecules (at selected values of spatial

coordinates ).

The ion current (I +) corresponding to the scattered beam pulse

measured at pre-selected coordinates can be expressed in terms of

the pulsed incident beam (X4):

I+(t, R a, 0, _b) = gd g2tf gsc X4 (2.2)

where

X4 = gltf glm X4

The symbols are defined in Figure 2.1.

pulsed incident beam (X 4) to the steady-state beam (X2). The time-

of-flight operator gtf depends on the speed distribution of the

incident beam. It is therefore nonlinear and does not commute with

other operators. Hence, chopping the scattered beam instead of the

incident beam, while keeping the total flight distance constant, does

not yield the same current signal (I+).

(2.3)

Equation (2.3) relates the

This operator also may depend upon the parameters character-

izing the steady-state speed distribution of the incident beam. For

instance, gsc determined from experiments in which the incident

By the same token, gsc" which describes the interaction with

the surface, also may be nonlinear. It may depend on the time

characteristics of the incident pulse. If that were the case, gsc

obtained from a steady-state-beam excitation would differ (in certain

frequency ranges) from that obtained from a modulated-beam

excitation.
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molecules are from a gas phase in equilibrium with the surface

might differ from that obtained when supersonic beams excite the

surface, even if the total mean energy in both fields are the same.

Apparatus

The arc-heated supersonic molecular-beam apparatus

(Figure 2.2) used in these experiments was essentially the same as

described in References 23 and 24, which report the activity at the

UCLA Molecular-Beam Laboratory and discuss the performance of

this apparatus. A summarized description of the equipment follows.

The vacuum system resembles the majority of supersonic

molecular beam vacuum systems in that it is divided into three

chambers, a source chamber, a collimating chamber and a detection

chamber. Since the maximum allowable pressure for the three

chambers differ significantly from each other, three different pump-

ing systems were used.

The supersonic jet is produced by expanding, with pressure

ratios of the order of 104 to 105, the beam gas from a stagnation

chamber (located in the movable holder) through a source orifice into

the source chamber. Beam energies of the order of 1 ev are realized

as a consequence of heating the beam gas in the electric arc and then

converting the energy of thermal motion into energy of directed

motion in the jet. High beam intensities are realized as a conse-

quence of converting the thermal motion into directed motion in the

jet. At the operating conditions used to date, it is believed that the

beam-gas contamination (due to electrode erosion) is small. For

typical operating conditions, the fraction of the excited atoms and

ions was found to be (3.86 _ 0.58) x 10 -4 and (1.16 _= 0.66) x 10 -6

respectively (Reference 42). Their effect upon the results reported

here should be negligible.
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The beam is collimated by two circular orifices, the first

orifice located in a conical skimmer placed in the free jet and the

second orifice located in the wall separating the collimating and

detection chambers. The predicted beam diameter (at half intensity)

is about i. 25 cm. at the target location used in these tests. Maxi-

mum beam intensity is realized (for the pumping systems used

presently) at the skimmer particle-flow rate for which the beam is

attenuated by a factor of 1/e in the collimating chamber.

The speed distribution of the incident beam is measured using

a single-disk beam chopper, located in the collimating chamber.

The time-of-flight pulse was analyzed by methods described in

Chapter III. A description of the chopper and its characteristics is

given in References 23 and 24. Orbitron-type detectors were de-

signed and used in sensing the time-of-flight signals of both the in-

cident beam and the scattered atoms. The principle of detection and

the design and calibration of the Orbitron detector are described in

full in Chapter IV.

The detector positioning device is shown in Figure 2.3. It is,

with minor modifications, the same as described in Reference 3a.

The modifications include the addition of solenoid-operated brakes

which prevent movement of the detector during measurements.

Within the framework of the signal-flow diagram of Figure 2. i,

the detector positioning device selects the space coordinates at which

the transient pulse characterizing the magnitude of the velocity

vector is sensed. The solid angle monitored by the detector at any

selected position is determined by the area of the detector inlet

orifice and the distance R. It is therefore a constant for any series

of experiments. This implies that the ion-current pulse measured

at a given setting is equal to the ion-current pulse which would be
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measured if the detector orifice of infinitesimal size were used,

multiplied by the amplification factor Ad/R. Therefore the detector

signal is a direct measure of either a) the time-dependent magnitude

of the flux vector J(t,-_), b) the time-dependent density n(t,_)

within the finite volume determined by the active portion of the

ionizing region, or c) both a) and b) depending upon whether the

detector is of either a) the non-through-flow, b) the through-flow,

or c) the mixed-flow type. As determined by calibration (see

Chapter IV), the Orbitron detector used in the present studies be-

haved as a non-through-flow detector.

The Surface

The surface in most of the studies of particle-surface collisions

described here was formed by depositing silver on mica immediately

prior to the beginning of the observation period. Saltsburg and Smith

(Reference 33) determined, from back-reflection x-ray diffraction

studies, that if the mica substrate is held at 550 + 30 K during the

deposition period, then the (ii I) plane of the resulting silver crystal

is parallel to the mica surface. The mica in both the Saltsburg and

Smith experiments and the experiments reported here were cleaved

in air and located then in the chamber which was evacuated. In a

very recent paper (Reference 21), Jaeger, et al., report on their

careful experimental studies of the structure of silver films deposited

on mica substrates in ultra-high vacuum. They observed important

differences in the structure of the deposited silver films depending

upon a) whether the mica was cleaved in UHV (ultra-high vacuum) or

in air and b) the amount of water adsorbed on the mica. They further

conclude that "There is no epitaxial temperature per se for silver on

mica". In view of these results, it is felt that no definite statement

related to the structure of the deposited silver film in the experiments
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reported here can be made, with the exception of conclusions drawn

from the results themselves. This is discussed further in Chapter V

in conjunction with interpretation of the results. Other surfaces used

in these collision studies include mica, glass and brass surfaces,

all of which were contaminated by background and beam gases.

Procedure

The sequence of events followed in preparing and executing an

experiment involving scattering from freshly deposited silver sur-

faces is as follows:

1. Align the detector positioning device. This was done by

means of a light beam originating from a light source substituted for

the molecular-beam source. The target holder was oriented perpen-

dicular to the beam direction by ensuring that the light reflected from

the (shiny) brass target holder fell on the collimating orifice through

which the incident light beam traveled. The target then was oriented

manually to the desired beam incidence angle. The beam incidence

angle for all the experiments reported here was 8. = 60 ° (see
i

Figure 2.4).

2. Attach and align the detector. The detector was attached

to the arm of the positioning mechanism at the desired radial distance

R from the center of the target holder. It was aligned then so that

when the positioning arms were rotated externally by means of servo

motors to angular coordinates corresponding to those of the incident

beam, the detector axis would coincide with the beam axis. This

also was done by means of a light beam collimated along the same

path that would be followed by a molecular beam: When the i____ag_ _

the collimating orifice on the target holder could be seen distinctly

as a complete ellipse, the axis of the detector was considered to be

aligned.



TARGET
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The total alignment of the detector positioning system was

checked by rotating the detector holding arms (using the external

controls to the servo motors) to angular-coordinates settings that

would correspond to the specular-reflection direction. If the whole

system is aligned, the image of the collimating orifice on a surface

perpendicular to the path of the reflected beam:

a) is visible (proving that the detector axis is aligned and that

the surface of the target holder contains the point of intersection of

the two axes of rotation),

b) has the same shape as the collimating orifice (i.e.,

circular) in the case when 0. = 60 ° (proving the accuracy of the in-
i

cidence angle setting).

3. Evacuate the molecular-beam system and initiate flow of

liquid nitrogen through a coil in the detection chamber and a baffle

upstream from the detection chamber diffusion pump. The measured

background pressure in the detection chamber was in the vicinity of
-6

i0 torr during the experiments.

4. Heat the mica sheet.

5. When the mica has reached the desired temperature, shut

off the target heaters and turn on the heater imbedded in a ceramic

crucible which contains the silver to be deposited on the target.

Turn on the molecular beam, the chopper, and the beam

7. At the end of the deposition period, shut off the crucible

heater and close the shutter in the path of the evaporating silver.

8. Record detector signals for several values of angular

coordinates and for several values of time since the end of silver

.

detector.
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deposition. The steps omitted in experiments involving the mica,

glass and brass surfaces are obvious.



CHAPTER III

BEAM MODULATION AND TIME-OF-FLIGHT
SPECTROSCOPY

Introduction

The purpose of beam modulation and time-of-flight spectroscopy

is to determine the velocity distribution and density of a molecular

flow field. The principle is straightforward. If a known dynamic

(time-dependent) perturbation is introduced at a well-defined point in

the molecular flow field, its propagation in space is determined by

the velocity distribution of the flow field. This propagation can be

measured in the time domain by sensing either the instantaneous

density or flux of molecules at a given point in space, removed from

the point of modulation by a known distance L. The time sequence

of instantaneous densities or fluxes is referred to as the time-of-

flight (TOF) signal and is determined by the characteristics of the

time-dependent perturbation, the speed distribution of the molecular

field (along the radius vector joining the perturbation and sensing

points) and the distance L. The perturbation introduced is called

frequently modulation or chopping. Time-of-flight spectroscopy

refers to the procedure by which a measured TOF signal is inter-

preted to yield the speed distribution of the steady-state beam. This

choice of terminology is suggested by other spectroscopic methods

(light spectroscopy, mass spectroscopy) which also operate on the

analogous principle of sensing in a Fourier transformed domain the

propagation of a known perturbation in a frequency field whose

spectrum is to be determined.

_,-_i,=expei_in]ents u_ul-lu_u n_'_, the well-collimated incident

beam was modulated by means of rotating a disk (the chopper disk)

with two diametrically opposed slits in the path of propagation of the

19
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steady state beam. During a finite time interval (determined by the

angular opening of the slit, the cross sectional area of the beam, and

the angular speed of the disk) a pulse of the steady state beam is

allowed to propagate downstream of the disk, and the atoms are

sensed sequentially as they arrive at a distance L downstream.

If, in some experiments, it is necessary to select only those

molecules which lie within a narrow speed range, a second disk (the

"filter" disk) is added at a fixed distance from the chopper disk. The

slits of the filter disk are displaced by a fixed phase angle from those

of the first disk. The two rotating disks are referred to as the

"chopper-filter" or as the "velocity selector". In the experiments

described below, the selection of the speed bands was not essential.

The chopper-filter was used, however, because it filtered out the

light originating from the arc-jet. Whenever only the chopper disk

was used, the light signal provided a reference point on the time axis

of the recorded signal.

The design characteristics of the chopper and chopper-filter

and their respective driving motors are described in detail in Refer-

ences 23" and 24. The remainder of this chapter is devoted to the

analytical description of the modulation and TOF spectroscopy method.

The method, developed for the first time here, uses relation-

ships between the central moments of a general family of speed dis-

tribution functions and those of the corresponding time-of-flight

analogues. These relationships are used then in deriving moment

equations relating the central moments of measured TOF pulses to

the corresponding moments of the chopper gate (admittance) function

and parameters of the speed distribution function. In particular, the

zeroth-moment relationship relates the area under the measured

signal to the density of the steady-state beam.
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The analysis developed in this chapter is used in the next two

chapters to characterize dynamically a detector and a surface in a

scatte ring experiment.

Analysis of a Modulated Beam Signal

Consider a collimated beam of atoms having parallel trajec-

tories with a steady-state speed distribution f(u) du. The cross-

section of the beam is assumed to be well defined, i.e., the atom

density n in the beam is assumed to be constant within the bound-

aries of this cross-section and negligible outside. The speed distri-

bution is taken to be uniform across the cross-section of the beam.

A chopper disk, with its axis parallel to the trajectory of the beam

particles, rotates at an angular speed ¢0. A slit in the disk with

angular opening _ admits beam particles downstream of the disk

whenever it sweeps across the beam. An ionization detector is

placed at a distance LCD downstream from the chopper disk. The

background pressure is assumed to be sufficiently low so that scat-

tering of beam atoms by background molecules along the distance

LCD is negligible. The ionizing region is considered to be a plane

perpendicular to the axis of the beam, and the distance LCD is

measured between the chopper disk and the ionizing plane. The

dynamic characteristics of the detector are examined in detail in

Chapter IV.

Let A(t) be the instantaneous cross-sectional area of the

beam admitted by the slit at time t, i.e., the instantaneous parallel

projection of the slit area along the atom trajectory upon the beam

cross-sectional area. Let t = 0 represent the time when the first

particle is admitted by the slit. At time )% the rate at which atoms

in the speed-ratio range (s, ds) are admitted by the slit is:

J(s) dsA (k)
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where:

J(s) ds = nsf(s) ds is flux of atoms in range (s, s +ds)

s = u/7 is speed ratio

!
_, = (2kT/m) 2 is most probable random speed

T = beam temperature, degrees K

f(s) ds = fraction of atoms in beam with speed ratio in

range (s, ds)

k = Boltzmann' s constant

m = mass of atom

The number of atoms in the speed ratio range (s, ds) admitted by

the slit in the time interval (s, ds) is

dN(k, s) = J(s) ds A(I) dk (3. I)

An atom admitted at time I will arrive at x = LCD at time

t ->)t if its speed ratio is:

LCD (3.2)
-

Divide both sides of Equation (3. i) by dt,

dN(l,t) _ J(s) ds
dt _- A(_) d_ (3.3)

Equation (3.3) represents the instantaneous rate at which

atoms selected from those admitted in the interval (l,d_) cross the

ionizing region at time t.

The integral of Equation (3.3) represents the rate at which

atoms cross the ionizing plane at time t.

aN(t) _ _ as A(2t) dk (3 4)dt J(s )_-

Dividing both sides of Equation (3.3) by u = 7s and inte-

grating, to account for the atoms admitted over the finite time

interval from 0 to t, one obtains:



23

dN(t) _ dsdx - n f(s) _-A(k) d_ (3.5)

where dN(t)/dx is the instantaneous number of atoms per unit path

length.

Define the time-domain analogues of the speed distribution

function f(s) and the flux J(s)

p(t) -'-f(s) --ds (3.6)
dt

_(t) "-st(s) d__ss (3.7)
dt

and rewrite (3.4) and (3.5):

aN(t) _dt - 7 n _(t-t) A(_t) dX (3.8)

aN(t) _dx - n p(t-k)A(X) dX (3.9)

The right-hand side of Equations (3.8) and (3.9) represents the

convolution of two functions of time which, when Laplace transformed,

yields the product of the Laplace transforms of each function

J dN(t) fL }_ = 7nL {p(t)} L{A(t)} (3.10)

IdN(t) }L dx = nL {_(t)} L {A(t) } (3.11)

Equations (3.10) and (3.11) represent the formal solution to the

single-disk-modulation problem. They facilitate solving Equations

(3.8) and (3.9) to determine the speed distribution function f(s) from

a measurement of dN(t)/dx or of dN(t)/dt and knowledge of the

admittance (gate) function A(t).

dN(t)/dx is proportional directly to the instantaneous beam

density as measured by a through-flow detector:
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dN(t)dx - Ab nb(t) (3.12)

where

A b = effective cross sectional area of beam

nb(t) = instantaneous beam density, number/volume, as

measured in detector

dN(t)/dt is related directly to the instantaneous density in the

ionizing section of a non-through-flow detector. This is discussed

in greater detail in Chapter IV.

The computational difficulty in solving (3.8) or (3.9) is simpli-

fied considerably if the functional form of f(s) is known. The prob-

lem then is reduced to determining the unknown parameters of f(s).

This simplified problem is treated now in greater detail.

Let the speed distribution be of the form:

n 2
fn(S) ds = C s exp- (s-S) dsn

= Cn Fn(S) ds (3.13)

with the normalization factor C given by:
n

-1
Cn =Po {Fn(S) } (3.14)

In view of Equations (B. 7) and (B. 13) in Appendix B, the zeroth,

first and second moments of dN(t)/dx and dN(t)/dt may be related to

the corresponding moments of p(t) and ¢(t) respectively:

dN(t) !
o 1

/_o ITldN(t)

I dN(t)

=n/_ ° { p(t)}_z° {A(t)}

= Tn/_ ° {_b(t)}_ ° {A(t)}

= _i { p(t)} + Ol {A(t)}

(3.15)

(3.z6)

(3.17)
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t dN(t)
71 tTl

v2 _--_ I

tdi_(t)t
v2 i-_l

= 7: {¢(t)} + _l {A(t)}

= _2 { #(t)} + _2 {A(t)}

_2 {,(o} + _2 {A(O}

(3.18)

(3.19)

(3.20)

The moments of Pn(t) and $n(t) are related in turn to the

moments of f (s) as shown in Appendix A (Equations (A6.1) ton

(A6.9)).

Substituting for the moments of Pn(t) and _bn(t) in Equations

(3.15) to (3.20) and rearranging, one obtains the following relation-

ships :

t dN(t} t

Po {A(t) } = n

t dN(t) t

F-a-- _-
Po {A(t)_

•_ _l{f_(s)}

(3.21)

(3.22)

/dN(t)t

tdN(t)_
rl I IT _ - rl I{ACt)} -

tdN(t)
.v2 IT1 -Y2{A(t)}

_dN(t)
w2,,ITl - Y2{A(t) }

[_llTI[tdN(t) __l{A(t)t] 2"

LcD LcD

_ l{fn(S)} _ -- - e n 1(S)

LcD LcD

__l{fn+l(s)}-"_ e(s)

nl{fn-i (s)

- 1 "--f2n_l(S)
r/l{fn- 2 (s) }

r)l{fn(S)}
-I-_ (S)

rll{f,n_1(s)} n

(3.23)

(3.24)

(3.25)

(3.26)

Note that the left-hand sides of these equations represent directly

measurable quantities. The right-hand side of Equations (3.25) and

(3.26) are functions of S alone. Thus, it is possible to determine
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S, LCD/7 and n b from Equations (3.21), (3.23) and (3.25) if a

through-flow detector is used, or from Equations (3.22), (3.24) and

(3.26) if a non-through-flow detector is used. Values of Gn(S) are

displayed graphically in Figure 3.1, as a function of S, for values

of n -- 1, 2, 3, 4. The speed distribution of a well collimated nozzle

beam with parallel atom trajectories is given by a value of n = 2,

i.e.,

f2(s) = C2 s2 exp - (s - S) 2 (3.27)

Table 3.1 lists 8i(S) and _i(S) explicitly in terms of S. Note that

for large values of S it is not possible to distinguish between

distribution functions with different values of n.

Table 3.2 lists the values of the moments of some typical

gate functions. Here

O O

a+%
T -- (3.28)

tO

O

with a = slit aperture angle
O

¢ = angle through which rotor must turn in order to

sweep a radial line on a rotor disk across the beam.

tO = angular speed

is the "open time" of the gate functions. The impulse gate function

corresponds to the case where T is an arbitrarily small number.

The trapezoidal gate function represents a beam of quasi-rectangular
O

shape, with an arbitrary spanning angle % (see Figure 3.2). The
O O

case a = _ corresponds to a triangular pulse.

The rectangular gate function corresponds to either of the

physical models :

O O

or o o (3.29)
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n=2

n=3

n=4

0

I I I I I I
2 4 6 8 I0 12

HYDRODYNAMIC SPEED RATIO, S

I
14

THE DERIVED TIME-OF-FLIGHT FUNCTION _n(S) AS A

FUNCTION OF THE HYDRODYNAMIC SPEED RATIO

S FOR SEVERAL VALUES OF n

FIGURE 3.1
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The convolution integrals of Equations (3.8) and (3.9) have

particularly simple solutions when A(t) is an impulse function,

i.e., when:

A(t) = Po{A(t)} 5(t) (3.30)

we can express dN(t)/dx and dN(t)/dt as follows:

dN(t)

dx - .o{A(t)}n p(t) (3.31)

dN(t)
Po{A(t)}__ _/n $(t) (3 32)dt

Equations (3.8) and (3.9) have been solved analytically also

for the case of a rectangular gate function:

A(t) = A{K(t) - K(t-W)} (3. 33)

where

and K(t)

o

Aba
A - o

is the unit step function defined by

(3.34)

K(t)

1 for t> 0

0 for t>0

(3.35)

The exact solutions are given by Equations (C. 6) and (C. 7) in

Appendix C. It is shown also that when the criteria

(T/t) << 1 (C. 10)

T<<

are both satisfied, the instantaneous beam density nb(t) and beam

flux 1/Ab{dN(t)/dt } are given by
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nb(t) = nTp(t) (C. 17)

dN(t)
(l/A) at - T nT _(t) (C. 18)

Note that a plot of dN(t)/dx as given by Equation 3.5) versus U

defined by

represents the non-normalized speed distribution of atoms in the

modulated pulse at a distance LCD from the chopper. In general

this distribution depends on the gate function A(t). Only if A(t) is

impulsive does this speed distribution coincide with that of the

steady-state beam. When A(t) is impulsive we also have

= u " LCD/t (3.37)

Conclusions

In this chapter it is shown that

a) The TOF signal is obtained analytically in the form of a

convolution integral between the time-domain analogue of the

steady-state beam speed distribution function and a gate

function characterizing the modulation process. The opera-

tor gtf (see Figure 2.1) is therefore nonlinear.

b) A central-moment expansion of this convolution integral

provides a powerful, accurate, simple and physically

meaningful method for determining the pertinent parameters

of a speed distribution function as well as the density of the

steady-state beam.

c) It is only when one wishes to assess the relative fit of

alternate analytical forms of the distribution function to
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experimental data (providing the data is sufficiently accurate

for this purpose} that the complete inverse convolution is

required. Otherwise one needs to determine only as many of

the moments of the TOF signal as there are free parameters

in the speed distribution to be determined.

d) For the general class of speed distribution functions

discussed in Appendix A (out of which one in particular has

physical significance and is considered here} the second

central moment (the variance) is the highest central moment

required in order to obtain the density, the most probable

random speed _/, and the hydrodynamic speed ratio S.

The methods developed here are applied in the next chapter

in obtaining the detector characteristic function gd(t) from cali-

bration experimental runs. An extension of the same method is used

in Chapter V to interpret the particle-surface scattering results.



CHAPTER IV

BEAM DETECTION

Introduction

Sensitive detection remains the nemesis of atomic- and

molecular-beam experiments. Specifically, in scattering experi-

ments, the sensitivity of the defector determines to a large extent

the amount of information which can be extracted from an individual

measurement.

The most widely used detectors ionize a small fraction of the

neutral particles by electron bombardment and sense the resulting

ion current. In this chapter, the dynamic processes involved in the

detection process are analyzed and equations relating the ion cur-

rent to the instantaneous flux and density characterizing the input

are derived. This analysis should be applicable equally to the design,

calibration and use of ion vacuum pumps which are based on the

same dynamic principles.

The concept "linear detector" is introduced as a special case

of the general class of ionization detectors. The concept "through-

flow detector" is defined within this framework and in juxtaposition

to the other newly defined subclasses such as "mixed flow, "

"Maxwellian" and "equilibrium" detectors.

A new type of molecular-beam detector was designed and

built to fulfill the specific requirements of the experiments

described in this report. Since the goal of the experiments was

measuring the relative flux distribution of the scattered particles

as a function of solid angle, high sensitivity was emphasized.

Sensitivity here is defined as the zeroth moment of the detector

characteristic function. In the case of a through-flow detector,

34
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the sensitivity is equal to the derivative of the ion current with

respect to the density of the beam. In the case of a non-through-

flow detector, the sensitivity is equal to the derivative of the ion

current with respect to the incident flux of the beam.

High sensitivity was achieved in the Orbitron detectors (the

detectors were given the same name given to the pressure gauges

designed on the same principle) 29 by increasing the path length of

the ionizing electrons and by relaxing the through-flow requirements

(thus introducing a nonzero value of the detector characteristic

time). A detector whose purpose is to measure speed distributions

in addition to flux would require both a reduced characteristic time

and a high sensitivity. The goal of the required compromise would

be high accuracy in interpretation of the time-of-flight signal.

The detector was calibrated by a novel method suggested by

the equations derived here. The characteristic dynamic function

and the values of its parameters were obtained by means of this

calibration. It is believed that this procedure and analysis would be

valuable in designing and calibrating ionization detectors useful in

measurements of the density and composition of the upper atmosphere

by means of orbiting satellites. Using the technique developed here,

one should be able to uncouple in an unambiguous fashion the dynamic

parameters characterizing the motion of the satellite from the

density and mean kinetic energy of the atmosphere in which the

satellite travels.

Description and Analysis of the Detection Process

Consider a pulse of neutral, chemically stable molecular or

atomic particles admitted into a detector. The pulse is characterized

by the instantaneous values of the flux J(t) and density n(t) of the

particles. As is shown in Chapter II, if the particles in the pulse
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originate from a single plane at a distance L from the detector,

(where they were characterized by a velocity distribution fbiv) and

a density nb) both Jit) and n(t) canbe determined from these
quantities and from a time-of-departure distribution function A(t).

In this section we derive the characteristic function or opera-

tor of an ionization detector which relates the instantaneous ion

current produced by the detector to J(t) and n(t). Formally one can

write

I+(t) = gd x (J(t), n(t)) (4.1)

Here gd is an operator and Equation (4.1) is to be read as follows:

"the operator gd operates on the input functional X to produce the

output function I+(t)." In general gd need not be a linear operator.

It is linear if it depends only on the design and operational para-

meters of the detector and not on X or I+°

Figure 4.1 is a signal-flow diagram representing dynamically

the detection process. A fraction c of the incident flux passes

through the ionizing region, unimpeded except for the ionizing

collisions with the electrons. When pure (i. e., when c -_ I), this

mode of operation is defined as the through-flow mode. The re-

maining fraction (l-c) of the incident flux undergoes collisions with

the walls of the ionization cavity while being ionized. This transient

process continues until the excess particle density within the

cavity, nd(t), is depleted by net effusion to the steady state environ-

ment outside the detector.

Note that nd(t), the instantaneous density in the cavity, is not

equal to the instantaneous density of particles in the incident pulse,

n(t), unless c = 1. The density nd(t) is determined by the velocity

distribution function of the neutral particles inside the cavity fd(v),
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which is determined partially by the kinetics of the wall collision

and effusion processes. The mode of operation of the detector

realized when c=O is called the non-through-flow mode.

Let gld be the operator describing the wall-collision and

effusion dynamics, and let g2d be the operator describing the

dynamics of the ionization and ion-collection processes. It can be

shown from information theory and without assuming linearity of the

differentialequations describing these processes that

gd = g2d [c + (l-c) gld ]
(4.2)

If g2d and gld are known, Equations (4.1)and (4.2)represent the

solution to the problem.

Certain models of practical importance are examined now.

If the operator gd is linear, then the detector is called a linear

detector. If gd is linear, the representations of this operator in

different domains are related by linear transformations.

Specifically, let its representation in the time domain gd(t) be

Laplace transformable. Under these conditions (as shown in

Appendix B) the following relations exist between I+(t) and X(t) and

between their respective moments:

t

I+ (t) = _o gd(t-k) X{J(X), n(k)} clk

.o{gd(t)}

r_l{I+(t)}= r/l{gd(t)} + ,l{X(t)}

: {gd(t)}+

(4.3a)

(4.3b)

(4.3c)

(4.3d)

J = 2, 3,...
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The operator gd(t) can be looked upon as the calibration function of

the detector. In fact the calibration procedure would involve

measurement of the I+(t) function when a known pulse (whose J(t) and

nit) are known) is admitted into the detector. Equations (4.3) could

be used then to determine gd(t). If the detector is required just for

the purpose of measuring densities, only the zeroth moment

_o{gd(t)} is sufficient. _o{gd(t)} is called the calibration constant of

the detector. Higher moments are required only if the detector is

used in time-of-flight measurements to determine the velocity

distribution of a neutral-particle flow field. In that case the number

of moments of gd(t) which have to be known is determined by the
number of parameters required to determine the distribution

function of the magnitude of the velocity vector in a given direction.

It is shown in Appendix B that, in view of Equation (4.2), the

moments of gd(t) can be related to those of gld(t) and g2d(t) by the

following relations:

/4o{gd(t)} = _o{gd2(t)} IC + (l-C) /4o{gdl(t)} ] (4.4a)

"l{gdl (t) }

r;l{gd(t) } = _?l{gd2(t)} + (4.4b)

,o{gdl(t)} + c__1-c

For the purpose of obtaining a feeling about the physical implications

of the linearity constraint, we now examine the physical processes

described by each of the operators gld and g2d"

The operator g2d describes the ionization and ion-collection

process. The characteristic times describing these electron-

smaller by a few orders of magnitude than the characteristic times

involved in the wall collisions and effusion of gas particles.
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Therefore without loss of any generality we can write

= K (6(t)) (4.5)g2d {t)

In fact, if the mean free path of the electrons is large in comparison

with the dimensions of the ionizing region, the ion current produced

is given by

I+(t) = I- aJnd(t) (4.6)

so that K =I oJ.

The operator gld represents the unsteady effusive flow across

the plane separating the detector from the steady-state inactive

environment. It is linear if the velocity distribution function of the

neutral particles in the cavity, fld(V, t) is independent of the in-

stantaneous mean speed, U(t), of the incident particles. U(t) is de-

fined as follows:

U(t) =o J(t)/n(t) (4.7)

Note that the linearity constraint does not require that

fld(V,t) be time-independent. If it is, then the time-dependent flux,

Jld(t), is given by the product of the time-dependent density and a

time-independent mean speed, Uld, calculated from fld(V). Under

these conditions, it is possible to define a simplified operator, g_d"

X4{nld(t)} _ g_dX(J3(t)) (4.8)

whose time domain representation is given by

g, ld(t) --"K 1 exp(-t/T1) (4.9)

where _1 is the characteristic time for the effusion process in this

model and is given by
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T1 = Le/Uld (4.10)

If fld

equilibrium with the walls of the detector) then K 1

by

K 1 : A/V

(v) is in addition Maxwellian (but not necessarily in thermal

and L are given
e

(4.11)

L = 4V/A (4.12)
e

where A is the area of the orifice through which the molecules

communicate with the environment and V is the volume of the

detector cavity. The following equations summarize the description

of the different types of linear ionization detectors.

A. Through-Flow

I+(t) = K n(t) (4.13)

Moment (I+(t)) =K Moment (n(t)) (4.14)

Bo Non-Through-Flow

t

I+(t) = K _o gld(t-k) J(k) dk (4.15)

gld(t) = K 1 exp(-t/T) (4. 16)

Uo{I+(t)}--K kl 1 o{J(t)} (4.17)

r/l{I+(t)} = T 1 + r/l{J(t) } (4.18)

_{l+(t)} = vj{exp -t/T 1} + ))4{J(t)}j

j = 2,3 .... (4.19)
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C. Mixed-Flow

(4.21)

(4.22)

The through-flow (c=l) and the non-through-flow (c=0) modes are

special cases of the mixed-flow modes.

D. Non-Through-Flow Approximation to Mixed-Flow

This approximation involves two successive stages. In the

first stage the instantaneous current is approximated by a linear

operation on the input-flux (or rate) parameter alone, and does not

depend on the instantaneous incident density.

t

l+(t) = K._ gd(t-k) J(k) dk
-o

or (4.23)

t

I+(t) =K_o gd(t-k) ldN(k)/dt] clk

This approximation is useful for calibration purposes; if during

calibration, it turns out that one finds

{gd(t)} (4.24)

then the second stage of this approximation

gd(t) = k d exp (-t/T)

is applicable to a second-moment order.

(4.25)

(Note that, if Equation

(4.25) is applicable, then each side of Equation (4.24) equals T).
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In practice the effect of nonlinearity is minimized if any

combination of the following design or experimental conditions is

optimized:

i. The detector is designed such that a large fraction of the

atoms pass through the detector region unimpeded, i.e., the

detector approaches the through-flow mode. Under these conditions

the only possible source of nonlinearity (the collisions with the walls)

does not exist. This condition has to be maintained both during

calibration and during application.

2. If Td is determined from a calibration by means of a beam

of known velocity distribution and if the detector is used then to

measure the density and mean speed of the beam of unknown but

different velocity distribution, then any nonlinearity of the detector

can be expressed quantitatively in the form of a AT . This effect
e

will be negligible if

A_ e << rl l{J(t)} (4.26)

3. If the particles undergo many collisions with the walls

before being ionized, then their energy and momentum identity tends

to be lost. The more collisions, the smaller the effect of their

initial velocity distribution when crossing over into the active region,

and hence the smaller the chance of nonlinearity. The number of

collisions can be increased by proper baffling of the channel leading

to the ionizing region. A detector in which the molecules achieve

thermal equilibrium with the walls before being ionized is called an

equilibrium detector. Note that this constraint does not eliminate its

........................... s _,,_ "_"-_ ,.,-_.uuL,un if i_ is used as the

transducer element in a time-of-flight modulated-beam arrangement.

The disadvantage of such a detector lies in the fact that Td has a
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large value and, therefore, much larger flight times are required

to obtain meaningful results. The advantage lies in the fact that an

amplification is obtained which is useful in determining the total flux

in a pulse.

Design of the Orbitron Detector

Design Considerations

The following requirements were imposed on the detector used

in the scattering experiments.

1. A high signal-to-noise ratio.

2. The capability of detecting a transient pulse of atoms

with density of 10 -6 molecules/cc or lower.

3. The capability of monitoring both the incident beam and

the scattered beam. This capability facilitates aligning

the target and zeroing the positioning device.

4. A relatively low value of characteristic time so that the

transient nature of the pulse can be determined with

precision.

These requirements were met by a series of detectors designed

and built specially for the scattering experiments reported here and

characterized by increased path lengths of the ionizing electrons.

As indicated by Equation (4.6), the through-flow sensitivity K is

proportional directly to the path length of the electrons. Two

alternate methods of achieving increased path lengths had been re-

ported in the literature. In the magnetron, a magnetic field orbits

the electrons. This principle has been applied successfully in the

design of commercially available pressure gauges. The disadvan-

tages of this approach for the present application included a) the
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bulkiness of the detector would block a large portion of the incident

beam and b) the magnetic field close to rotating chopper disks

could create bothersome currents in the collector circuit.

An alternate principle for orbiting the electrons was described
29

by Mourad, Pauly and Herb. Ionizing electrons are injected into

an electrostatic field between two concentric cylinders with

energies and angular momenta such that the electron path lengths

are large in comparison with the radii of the cylinders. The

relatively large electron path lengths yield high detector sensitivi-

ties at relatively low electron current.

Pressure gauges built by Mourad and co-workers 29 have

reportedly electron path lengths of the order of 1000 cm at electron

ionizing currents of the order of tens of microamps. (Low electron

currents would be of special value for density measuring instruments

in satellites and space vehicles where electric power is at a premi-

um). For the present application, the through-flow sensitivity

factor K (not the path length) was maximized. An optimum value of

the electron ionizing current (maximizing the value of K) was

observed. This value (a function of the configurational design of the

detector) varied from 0.5 to 1.5 milliamperes.

A photograph of one of the later models of the detector is

shown in Figure 4.2. An earlier version is shown in Figure 18 of

Reference 23. The active components included a 3 mil tungsten wire

located at the axis of a thin-walled metallic cylinder and a coiled

filament serving as the heated cathode. The 3 rail central wire

served as the electron anode while the cylinder acted as the ion

collector. In later models, a grounded concentric shield of slightly

larger diameter than the collector diameter improved significantly

the signal-to-noise ratio.
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As indicated in Figure 4-3, the anode was maintained at

potentials in the range of 500-650 volts. It was observed generally

that the performance was relatively insensitive to the anode voltage.

However, for a given cathode temperature (i. e., for a given heating

current), the ion current increased significantly with the bias po-

tential up to a certain value and then decreased sharply. The

detector was operated with a bias potential slightly lower than the

value at which this ion current peaked. The potential of the collector

cylinder was fixed by the potential drop across the load resistor.

Signal Processing

The transient ion-current signal produced at the collector

cylinder of the Orbitron detector is processed as follows:

a) The ion current is transmitted by the central lead of a

triaxial signal cable to a load resistor of 15 Megohms. The ends

of the load resistor are connected to the input and ground connectors

of a Keithley 102B decade isolation amplifier with a maximum

amplification of 103. In order to reduce the effective capacitance

between the signal lead and the grounded outer shield, the inner

shield is driven from the amplifier output at the same phase as the

signal. Since the same length of signal wire is used during calibra-

tion and during measurements, the effective capacitance between

the collector and ground is expected to be small and constant.

Since any remaining capacitance acts dynamically as a characteristic

time appearing in the dynamic operator function

gs = (lit) exp - (tit) (4.27)C c

(4.28)
T = RLCc L
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its effect would be included in the detector characteristic function

gd(t) determined during calibration.

In any event, the effective capacitance does not affect the

interpretation of results which involve only the zeroth moment of

the ion current I+(t) since the zeroth moment of the signal proces-

sing operator, gs' is unity. Therefore

t_o{V(t) } = ,o{gs} _o{I+(t)} =/_o{I+(t)} (4.29)

Physically, this means that capacitance is not a source of electro-

static charge and does not contribute, therefore, to the total charge

carried by a pulse. Note, however, that the peak height of the

signal is affected by capacitance.

b) The steady current, a measure of the density of the back-

ground molecules, is indicated by a Keithley 610 A electrometer.

This instrument is connected between the low-potential end of the

load resistor and ground.

The use of the Northern Scientific NS-513 digital memory

oscilloscope, the generation of a triggering signal for the various

oscilloscopes and the Hewlett Packard pulse counter, and the use of
23-24

the x-y recorder have been described elsewhere. These

components either are passive or have a rise time much smaller

than characteristic times of concern here.

Calibration of the Orbitron Detector

Calibration of a detector means the determination of the trans-

fer function, gd(t), of the detector. The method is suggested by

Equations (4.3). An effusive oven beam is modulated by a chopper

whose admittance function is known. The speed distribution of the

beam is assumed to be Maxwellian at the measured temperature of
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the oven. Hence the instantaneous rate dN(t)/dt and density n(t) at

the entrance of the detector can be determined. (See Chapter III

and Appendix C). The transfer function is by definition the function

relating the measured ion current to dN(t)/dt and nit).

To simplify the analysis of the data, the purely non-through-

flow approximation of a linear detector is adopted. The approxi-

mation is tested by applying the criterion expressed by Equation

(4.24). In the calibration, described in detail here, accuracy of

the data warranted calculation of the zeroth, first and second

moments of gd(t). The first three moments of the recorded signal

traces were determined by means of a special planimeter designed

to measure all three moments simultaneously. The corresponding

moments of I+(t) were extracted by multiplying by the appropriate

amplification and scaling factors of the current-to-voltage trans-

ducer (load resistor), voltage amplifier, signal averager and x-y

recorder. Table 4.1 lists the moments of I+(t) for a series of

calibration runs for the Orbitron detector shown in Figure 4.2.

Calibration of one of the earlier versions of the Orbitron detectors

was reported in Reference 23. Figure 4.4 illustrates the arrange-

ment of the detector with respect to the chopper, while Table 4-2

lists some of the measured constant parameters related to the

modulation process and the beam.

The following equations were used to analyze the data.

a) The steady state density of a beam effusing from an oven

through an orifice of Area A at a distance LCD measured along the

axis of the orifice is given by

n b = A n /4yL 2so s od

where n is the density of the gas in the oven.
S

(4.30)
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Run No.

11

12

13

14

15

16

17

18

19

20

2.

20

21

22

23

24

25

TABLE 4.1

CALIBRATION OF ORBITRON DETECTOR

1. Measurements at constant beam density.

n b t_o[I+(t)] 771[I+(t) ] v2[I+(t)] 1/w

(atoms/era 3) (coulomb) (second) (sec 2) (second)

xlO -8 xlO 13 xlO 3 xlO 7 xlO 2

7.28 17.6 i. 665 i. 81 5.00

" 14.02 I. 45 I. 50 4.08

" 11.74 i. 30 I. 45 3.38

" 10. 18 1.17 I. 45 2.86

" 8.25 1. 075 1.28 2.36

" 8.68 I. 01 1.26 2.08

" 6.43 0° 96 1.22 i. 82

" 5.71 0.90 1.17 1.58

" 5.02 0. 864 1.11 1.42

" 17.6 1.67 1.98 5.00

Measurements at constant chopper speed.

7.28 17.6 I. 67 i. 98 5.00

I0.35 26.8 i. 65 2.07 "

7.65 19.8 1.82 2.22 "

4.39 I0.6 1.54 1.80 "

2.42 6.5 1.68 1.87 "

i. 67 4.1 I. 62 2.06 "
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TABLE 4.2

MEASURED AND DERIVED PARAMETERS,
OF ORBITRON DETECTOR

CALIBRATION

Date: May 12, 1966

Diameter of detector orifice, ddo

Area of detector orifice, Ado

Distance between detector and chopper axes, Rdc

Distance between detector and source orifices, Lod

Distance of detector orifice from chopper disk, Lcd

Source-orifice diameter, d
SO

Source-orifice area, A
SO

O

Chopper-slit aperture angle, a

Angle traversed by radial line on chopper disk

across detector orifice, _b = ddo/Rdc

Angle traversed by radial line on chopper disk
O

sweeping from photocell to detector orifice,

Most probable speed of Argon atoms in source
chamber, T = (2kT/m)½

O. 952 cm

2
0.71 cm

8.0 cm

10.0 cm

8.0 cm

0. 405 cm

2
0. 129 cm

2 °

0.119 rad

4 °

3.5x104cm/

see
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The relation between I+(t) and dN(t)/dt is given by Equation

(4.23). The relation between dN(t)/dt and $(t) is given by

Equation (4.8). Taking the moments of these two equations and

combining them, one obtains

 nb o{gda)}

= _l{gd(t)} + _l{A(t)} + _l{$(t)}

= v2{gd(t)} + v2{A(t) } + v2{$(t)}

(4.31a)

(4.31b)

(4.31c)

For a trapezoidal gate function the moments of A(t) are given in

Table 3.2. The moments of $(t) are related to the speed distribution

function f2(s) by Equations (A6.2) and (A6.5). The moments of the

corresponding non-normalized F2(s) are tabulated for the case of

interest (S=0) in Tables A1 - A4. Making all the necessary sub-

stitutions in Equations (4.31), one obtains

0

/_o{I+(t)}= [27/(_) ½ ] nb _Ad/_ po{gd(t)} (4.32a)

,i{I+(t)}

v2{I+(t)}

o o

= _l{gd(t)}+(LcD V_/2_) + (c_ +_)/2_ +&ttr

(LcD/T)2(I °2 2= v2{gd(t)} + -y /4) + (a + _2)/12_

(4.32b)

(4.32c)

where
O

&ttr = ¢/_ (4.33)

is the time elapsed between the photocell trigger signal and t = t o

The calibration runs, tabulated in Table 4.1, consist of two

sets. In the first the steady beam density was held constant while

the chopper angular speed was varied. The second set consists of

runs at constant chopper angular speed and variable beam density.
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Values of the zeroth, first and second moments of the ion

current, obtained from the constant beam density runs, are plotted

in Figures 4.5, 4.6, and 4.7 against the inverse of the rotor angular

speed in the first two figures and against the square of that quantity

in Figure 4.7. Values of the zeroth moment of the ion current,

obtained from the runs at constant chopper speed, are plotted against

the beam density in Figure 4.8.

As predicted by Equations (4.32), straight lines were drawn

through the data points in all four figures. Table 4.3 lists the slope

and intercept of the straight line in each figure. The intercepts of

the straight lines in Figures 4.5 and 4.8 are zero as predicted by

Equation (4.31a). By equating the experimental slopes and inter-

cepts to the corresponding analytical expressions given by Equations

(4.32), values of the first three moments of the function gd(t) were
obtained. These also are listed in Table 4.3. An additional value

of the second central moment of gd(t) was obtained by averaging the

values from the runs at constant chopper speed. The average value

thus obtained was 10.4xl0-8(sec2).

The adopted values for the moments of gd(t) are :
-22

zeroth: (3.2 ± 0.2) x 10 coulomb/molecule
-4

first: 3.1 x 10 second

second: 10.2 x 10-8(second) 2

Note that the criterion, expressed by Equation (4.24), for validity

of an exponential form of gd(t) is fulfilled remarkably well. The

characteristic dynamic function gd(t) of this Orbitron detector is
given therefore by

gd(t) = #o{gd(t)} exp (-t/T)
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with the value of the zeroth moment given above and T given by the

arithmetic average of the first moment and the square root of the

second central moment of gd(t)

-4
T = 3.2 x i0 second

The through-flow ionization sensitivity, K, defined by

Equation (4.6) is calculated from the following equation:

_o{gd(t)} = TK/V d

where Vd, the volume of the ionization cavity,

design of the Orbitron° One finds

K-- 2.0 x 10-17amp/(molecule/cm3)

was 20 cm 3 for this

Since this Orbitron was operated at an emission current of
-3

2.7 x 10 amperes and the ionization cross section for Argon is
-16 2

about 2.3 x 10 cm /atom, the mean electron-path length is"

-_ = K/aI- = 44 cm

Summary

In this chapter:

1. The dynamic characteristics of the detection process are

analyzed and defined in terms of design and operational parameters.

2. The concepts "through-flow mode" and "non-through-flow

mode" of operation are defined as idealized reference points in a

continuous range of possible modes of operation.

3. The general class of linear detectors is defined in terms

of linear operator theory (see Appendix B), and subclasses (such

as equilibrium detector) are discussed.
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4. Possible distortional effects of the signal processing gear

are examined critically. It is concluded that such effects would be

accounted for by a proper calibration procedure, and that the effect

would be of no importance in interpretations relying only on

measurement of the zeroth moment of I+(t).

5. The design considerations and characteristics of the

Orbitron detector are presented and discussed.

6. The detector was calibrated by a novel procedure based

on the analysis of linear detectors. Variation of the modulation

frequency during calibration provided a method of determining the

characteristic moments of the detector calibration function. The

Orbitron was found to behave in a purely non-through-flow mode
-4

with a characteristic time of 3.2 x 10 second, a through-flow

ionization sensitivity K = 2.0 x 10 -17 amp/(molecule/cm 3) and a

mean path length of ionizing electrons of 44 cm. The effective

overall sensitivity of the Orbitron detector was (3.2 + 0.2)

-22 coulomb
xl0

molecule "



CHAPTER V

RESULTS AND DISCUSSION OF RESULTS

Experimental Results

Spatial distributions of the flux of argon atoms scattered from

various silver, mica and brass surfaces are presented in Figures

5.1 to 5.5. The units of the radial magnitude in these polar plots

are arbitrary. They represent the zeroth moment (the area) of the

ion current signal as measured from the x-y recordings of these

signals. The zeroth moment of the ion-current pulse (see Equation

4.17) is proportional directly to the zeroth moment of the magnitude

of the flux. The zeroth moment of the flux pulse is proportional

directly to the total number of molecules in the pulse. Since the

incident-beam pulse is a constant for measurements at all scattering

angles, these polar plots represent the spatial distribution of the

scattered-beam flux.

In order to indicate, for the silver target, the variation of the

scattering distribution with the increase in time t since the end of

the deposition period, one might wish to present this distribution

for several values of t. However since only one detector was used,

only one scattering angle could be monitored at any given t. Hence,

cross plots were used. For a given value of the colatitude 0, a

smooth curve was fitted through the several points on a plot of the

zeroth moment of the recorded pulse versus t. See, e.g., Figure

5.6. From such plots for several values of O, the scattering distri-

butions for several values of t (e. g., Figures 5.1 and 5.2) were

---'_ "- _'_^_ *_ _+,,_ _ _,_=+_ rl,_t_il tbp_ _eatterin_ between

the surface normal and the incident beam, a series of measurements

was made in which only this region was monitored (Figure 5.3).
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For comparison with the distributions of Figures 5.1 - 5.3

a distribution measured for the brass target is presented in

Figure 5.5. The surface of this target was prepared (machined and

polished) using standard shop techniques. No attempt was made to

ensure a clean surface; the data were taken with the target at room

temperature.

Measurements were made also for several values of _ and

for two values (30° and 60 °) of 0. See Figure 5.7.

The solid angle monitored by the detector was varied slightly

by varying the distance from the target to the detector. For

Figures 5.1, 5.2, 5.3, 5.5 and 5.7, the distances from the target

to the detector were respectively 4.7, 3.0, 6.0, 3.8 and 3.5 cm.

These variations are believed to affect negligibly the conclusions

drawn here.

An examination of Figures 5.1 5.7 reveals"

a. The distributions are multiple-lobed for all targets in-

vestigated, even for the brass target. Within the accuracy of the

present data, three lobes are observed. (For convenience, these

three lobes will be called the back-scattering, the quasi-normal,

and the quasi-specular lobes).

b. For mica at 530°K (Figure 5.2), _? _-10 ° whereas for

mica at 300°K (Figure 5.3) and brass at 300°K (Figure 5.5) 7? _ + 15 °

where _ is the specular angle less the angle of the maximum of the

quasi-specular lobe.

. • -5 °c For the silver deposited at 525°K, (Figure 5 1), 77

....... O ......... O
whereas for the silver deposz_ea at _uu l,_ _zgure _. _.), 7? _ u

d. For the silver, the strengths of the back-scattering and

quasi-specular lobes decrease as t increases (Figures 5.1 and 5.2).
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(Strength of a lobe is defined as the magnitude of the lobe maximum

divided by the magnitude of the smaller of the two minimums). The

strength of the quasi-normal lobe increases monotonically as t

increases for the silver deposited at 525°K (Figure 5.1), but

decreases before it increases as t increases for the silver de-

posited at 500°K (Figure 5.2).

e. As t increases, the back-scattering lobe moves toward

the normal for silver deposited at 525°K (Figure 5.1) and away

from the normal for silver deposited at either 500°K (Figure 5.2)

or 300°K (Figure 5.3).

f. Scattering in the quasi-specular lobe is concentrated near

the _ = 0 plane (Figure 5.7).

g. For silver, the number of particles scattered per burst

in the hemispherical wedge defined by the origin and the area swept

out by the entrance of the detector as its centerline moves in the

= 0 plane increases as t increases. See Figure 5.8, where

integrals of the distribution curves of Figure 5.1 are plotted as a

function of t. Table 5.1 summarizes some of the results.

For the purpose of ensuring that the multilobular pattern

observed is not due to the detector characteristics, the exit orifice

of the detector was closed. The characteristic time of the detector

was increased. More importantly, all the molecules entering the

ionization cavity had to suffer at least one collision with the detector

walls before leaving the detector. The scattering pattern from mica

at room temperature was not changed (Figure 5.4).

• Discussion of Results

Examine Equations 2.2 and 2.3, keeping in mind that they are

valid for the case when the incident beam is modulated. Since the
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TABLE 5.1

SUMMARY OF RESULTS OF SCATTERING EXPERIMENTS

Temp.

Material Depos. Temp Time

o K o K min

Lobe Mnwlmum Minimum

No. 0 ° _o 0 o _o

1 45 0

Brass 300 -- 3 O 0

3 25 180

1 70 0

Mica 530 2 10 0

3 (a) 20 180

1 45 0

Mica 300 -- 2 5 0

3 20 180

1 65 0

Silver 0 2 10 0

3 30 180

1 65 0

Silver i00 2 (c)
5 0

3 30 180
525

1 65 0
3O 0

Silver 200 2 20 0 10
3 15 180

1 65 0
3O

Silver 300 2 20 0
10

3 10 180

1(d) 60 0
35 0

Silver 470 0 2 i0 0
0 0

3 i0 180

1 50 0
15 0

Silver 500 390 50 2 0 0 15 180
3 25 180

1 60 0
2O 0

Silver 365 100 2 i0 0
10 180

3 20 180

Silver I 50 3 30 180
]

Silver 300 300 100

Silver

Notes:

Lobe (b)

Strength Figure

2.98
i0 0

1.56 11
10 180

1.93

2.5
2O 0

1, 7 7a

15 180 I. 1

15 0 2,8
I, 45 8a

i0 180
2.1

20 0 5,07

0 0 I, 31 6a
4.0

2.87

6b
1.77

0
1.30

1.90
0

i. 44
0

2,24

1.36 6c

6d

2.0

2.1 7b

2.2

1.6

1.3 7c

1.3

1,8

I. 8 7d

1.1

10 180 2.42 8b

3 30 180 I0 180 2.62

I 2.14
150 2 0 0 15 180

3 30 180 i. 15

(a) This lobe is not well defined, probably due to lack of experimental points

between e = i0 ° and e -- 20 ° .

(b) Lobe strength is defined as ratio of maximum intensity to intensity

absolute minimum of polar plot.

(c) Second lobe is hardly noticeable.

(d) Peak is flat; O is hard to determine.
max

8c

8d
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incident beam is supersonic, the range of speeds is narrow, and

it is reasonable to consider the operator gsc to be linear, at least

within the realized range of speeds.

Since the detector is non-through-flow, X 4 can be taken as the

instantaneous molecular rate of incidence dNi(t)/dt. The zeroth

moment equation corresponding to Equation 2.2 is

t_o{I+(t,r)} = tto{gd(t) } po{g2tf(t)} tto{gsc(t,r) } Po{dNi(t)/dt} (5.1)

Note that the zeroth moment of g2tf is unity. Note also that the

zeroth moment of the operator gsc(t) represents a fraction whose

product with the number of particles in the incident burst yields the
--4-

number of particles scattered along the vector r. This is true as

long as the surface is not a source (positive or negative) of particles.

The source is negative (a sink) if some of the incident particles

remain imbedded within the solid lattice. The surface is positive if

some of the species from the surface separate and are counted in

the scattered phase. This process is called sputtering or desorption,

depending upon whether the sputtered species are characteristic of

the lattice or of the environment.

The first-moment equation corresponding to II-2 is

_71{I:c(t,r) } = _l{gd(t)} + _l{gtf[ t, fsc(t,v" r-_) ]}

+ _71{gsc(t,r) } + rll{dNi(t)/dr } (5.2)

The incident rate dN.(t)/dr is sensed by means of the same ioni-
1

zation detector so that one can write

,11t_i _tj = UltSdX_, v.

Combining Equations (5.2) and (5.3), one obtains
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= nl{gtf [ t, fsc (t, (v" r))] }

+ _l{gsurf (t" r)} (5.4)

Define the symbol At71

_ •_{_+o(_,r_}_{_(_)} (_.5)

Similarly one can write the second central moment equation

_._•_2{_:c(_,r_}-_2{_(_)}

=y2{gtf [ t,fsc(t,v'r)]} + y2{gsurf(t,r)} (5.6)

Consider now the case when

_l{gtf} > > 71 {gsurf }

u2{gtf} >> Y2{gsurf}
(5.7)

where (for brevity) the functional dependence (brackets) of the g's

are omitted. Further, assume that the speed distribution of

particles in the direction determined by r is

2
f(s) : s exp - (s-S)2" (5.8)

_o{S2exp - (s-S) 2}

where

S --_

V ° r

7
(5.9)

and
7 : most probable speed due to random

kinetic motion.

S = ratio of the hydrodynamic (directed)

speed to the most probable speed 7.

Both 7 and S depend implicitly on r. Note that in the special case
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of diffuse scattering the following relations apply:

a) S = 0 for all

1

b) 7 = (2kT/m) _

r

for all r

c) T does not vary with r

(5.10)

(5.11)

(5.12)

When the constraints (5.7) are satisfied and the speed distribution is

given by (5.8), Equations (5.5) and (5.6) can be combined to give

A_ 1 _l{gtf}

"i - i

(Aw2)2 U22- {gtf}

(5.13)

As shown in Chapter Ill, the right-hand side of Equation (5.1 3)

is a function of S only (see Equation 3.26) so that

Anl 1
--I" !

(A u2)_ f22(S)

(5. 14)

f_(S) (see Figure 3. I) is a monotonically decreasing function of S.

An 1
Therefore, --r is a monotonically increasing function of S. It

approaches S for large values of S. Hence, a spatial distribution

of the speed ratio of the scattered molecular field can be obtained by

measuring the three first moments of the modulated scattered field.

An
Figure 5.9 is a polar plot of i versus e in the plane of

(Av2)

incidence for scattering from a mica surface at 300°K. (The cor-

responding flux distribution is given in Figure 5.3).

solid angles centered around 0 = 0 °, 30 ° , and 60 ° suffer a smaller

proportion of inelastic collisions than atoms scattered into other
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solid angles. If one tries, however, to calculate the actual values

of S from Equation (5.14), one finds that imaginary values of S are
1

obtained. In fact, the minimum value of _ 2(S) corresponding to
I

S = 0 (see Figure 3. I) is i. 92, while the values of _-_(S) plotted in

Figure 5.9 range from 0.68 to 1.35. Possible explanations for this

are:

a) The detector characteristic time T d --" _?l{gd(t)} is

different when it is used to measure the scattered molecular field

than when it is used to measure a collimated incident beam. In that

case, a time difference A_'d "--_'dsc - _'di should be added to the

right hand-side of the Equation (5.4). Also, since the characteristic

function gd(t) of the detector was determined to be exponential, a

quantity (A_'d)2 should be added to the right hand side of Equation

(5.6). Equation (5.14) then should be modified as follows"

- i 1
I_ = I (5.15)

2 _(S)

If one substitutes into (5.15) a value of 1.92 for g2-_(S = 0) and the

values of _1 and Ay 2 corresponding to the smallest value of

A _l/(AT2)2 from Figure 5.9, then A_ d is larger than A_I. Since

this does not make physical sense, it cannot be the complete explan-

ation for the cited problem. In fact, an exponential residence time

function of the surface (as suggested by Eucken's formula for the

thermal accommodation coefficient, see Reference 8) with sufficiently

large values of mean residence time _?l{gsurf(t)} =° Tsurf is also

insufficient to explain the problem. (This is so because an exponen-

_-,_ _surf_.j -_ ,nuzs_inguzsnaDze mathematicaiiy from an exponential

gd(t). ) This leaves us with the only remaining alternative:
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b) The incident beam sputters some of the adsorbed species.

When a flash desorption process accompanies surface scattering,

the resulting characteristic function of the surface can be expressed

as follows: (See Figure 5.10).

gsurf = gsc + gdes

_j{gsurf(t)} = _j{gsc(t, r) } + _j{gdes(t,r)}

j = 0,1,...

(5.16)

(5.17)

Here po{gdes(t,r)} is the differential desorption yield, i.e., the

number of surface atoms desorbed into a differential solid angle at

r per unit incident particle. The resulting instantaneous current

is the sum of the two contributions:

i + -_ i + -_ des(t,surf(t'r) = sc(t'r) +I r) (5.18)

The contribution to the current due to desorbed species can be dis-

placed in phase from the contribution from the scattered atoms

because of the following reasons:

a) The mass of the desorbed species is larger than the

mass of the incident (or scattered) atom.

b) The mean energy of the desorbed species is smaller

than that of the scattered atoms.

c) The characteristic time of desorption (i. e., the time

interval between the departure of the desorbed species and impulsive

excitation of the adsorbed layer) is significantly larger than the

residence time of the scattered atoms.

Evidence that flash desorption is indeed a substantial con-

tributing factor to some of the signals (especially in the case of
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room-temperature surfaces) also is provided by the existence peaks

in some of the signals.

If flash desorption is the answer to the dilemma raised above,

can the multilobular patterns shown in Figures 5.1 to 5.5 also be

attributed to this additive surface process ? The answer to this

question cannot be obtained in a conclusive fashion from the data

presented here.

The distributions of scattering from silver deposited on

cleaved mica (e. g., Figure 5.1) show, that the relative strengths of

the back scattering and quasi-specular lobes decrease, whereas the

strength of the quasi-normal lobe increases, as t, the time from the

end of the silver deposition, increases• The scattering distribution

appears to become more diffuse as t increases.

Distributions with multiple lobes have been observed by other

investigators for diffractions of molecular beams from crystal sur-

faces (reviewed in Reference GR-VI), for sputtering of material
41

from metal targets, and for scattering of high-energy molecular
6

beams from various surfaces. Since a) the de Broglie wave length

for a 1 ev Argon atom is two orders of magnitude smaller than the

lattice constant for a silver crystal, b) all reported values of the

sputtering threshold for argon impinging on silver are equal to or

greater than 4 ev (Reference GR-VI, Table 10.3.1.1A) and c) the

multiple lobes reported in Reference 6 coalesced into a single lobe

as the beam energy was reduced to 100 ev, the multiple lobes re-

ported here were not anticipated.

The strong quasi-specular lobe resembles in some respects

the strongly non-diffuse single lobe reported for scattering of

thermal-energy beams from relatively clean polycrystalline

surfaces(5, 18-19, 32-35) The location of the lobe maximum between
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the specular direction and the target surface indicated in Figure 5.1

and in the upper left-hand quadrant of Figure 5.2 (a heated mica sur-

face) also was observed for smooth polycrystalline surfaces 19 and

33
for epitaxial surfaces. A relatively simple (but physically

appealing) collision model 26' 27, 37 also predicts such a displace-

ment from the specular direction for relatively clean surfaces and

sufficiently large values of the beam source temperature divided by

the target surface temperature. The shift of the lobe maximum

toward the surface normal indicated in the remaining three quadrants

of Figure 5.2, the upper left-hand quadrant of Figure 5.3 (a room

temperature mica surface) and Figure 5.5 (a room temperature

brass surface) is also reported in References 33 and 19 for increases

in roughness and/or contamination. However, for some of the

polycrystalline and/or contaminated target surfaces here, com-

pletely diffuse scattering should have been expected according to the

5, 17-19, 33-35
reported results for thermal-energy beam scattering

instead of the strong quasi-specular lobes observed.

Note that three-lobed distributions cannot be obtained by

adding two single lobed distributions. Hence at least one of these

distributions would have to be multiple lobed. Either situation would

be interesting and would warrant further study.

If a steady beam impinges on the target, the area of impact

soon might be completely free of adsorbed species, particularly if

the rate of desorption is higher than the rate of adsorption at the

existing environmental conditions. In this case, use of a steady-

state incident beam and modulation of the scattered field would

provide uncoupled information about the scattered atoms alone.

Application of the mass spectrometer, which was purchased recently

by the laboratory, can provide a conclusive test of the desorption



hypothesis, and uncouple the flux distribution of scattered Argon

atoms from other species.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Summary of Results

Scattering of modulated Argon atomic beams (with energies

above 1 ev and hydrodynamic speed ratios of the order of 7) from

cleaved mica and from vacuum-deposited silver on cleaved mica

consistently showed a multilobular pattern on a polar flux diagram.

Parameters varied during an extended series of experiments were

a) surface temperature, b) time from deposition, and c) space

coordinates. Both the incident-beam pulse and the scattered-beam

pulse were detected and analyzed by novel methods. Expressions

relating the recorded TOF signals to the speed distribution of the

beam and the gate function of the chopper are derived and used to:

a) characterize the direct beam,

b} calibrate the detector by determining its dynamic

characteristics.

c) analyze the signals of the scattered-beam pulse in

terms of the incident-beam pulse, and

d) draw tentative conclusions about the target characteristics

and their role in the scattering process.

Major contributions of this investigation are"

l) First measurements of scattering distributions for beams

with energies between 1 and 10 ev.

2) Observations of multilobular distributions of scattered-

beam flux.

3) Systematic analysis of the TOF speed distribution

spectroscopy technique. Derivation of relations between

85
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the central-moment expansions of the speed distribution,

chopper gate function, and time-of-flight signal.

4) Application of the above analysis to a novel calibration

concept of ionization detectors. This concept should be

applicable also to calibration and standardization pro-

cedures for ion vacuum pumps.

5) Analysis of the dynamic properties of the chopper, de-

tector, and target in scattering and flash-desorption

experiments.

6) Demonstration of feasability of measuring (in addition

to mean speeds and mean energies) the distribution of

hydrodynamic speed ratios as a function of scattering

angle.

Interpretation of these results would be facilitated if the contribution

of desorbed species were known.

Conclusions

i. The quasi-specular lobes bear a close resemblance to

those observed by other investigators who have scattered

thermal-energy beams from various clean surfaees.

2. The quasi-specular lobes behave in some respects as

predicted by one simplified collision model.

3. Careful analyses of the data indicate that the detected

molecules may have consisted of both scattered Argon

atoms and flash-desorbed unknown species from the sur-

face. This hypothesis can be tested in TOF experiments

with a mass filter (mass spectrometer) in series with the

ionization detector.



87

4. A satisfactory explanation of the multilobular pattern

of the measured flux distribution has not been found.

If the flash-desorption hypothesis is correct, uncoupling

of the contribution to the multilobular pattern by the

desorbed species would require a mass-spectrometer.

If such an investigation reveals a single-lobe contribution

by the scattered particles, it is anticipated that this lobe

would not be of the cosine-law type. This result would

be of interest in studies of the adsorbed state on surfaces.

Recommendations for Future Work

The unexpected results obtained in this study need further

exploration. The complete investigation of the multilobular pattern

is important, not only because of its importance in characterizing

the processes at the surface, but also because of its immediate

practical importance in space applications. It is recommended that

the recently acquired mass spectrometer be used in the following

two consecutive experiments, which differ only in the location of the

chopper.

a) Modulate the incident beam in order to provide separate

flux distributions of the scattered and desorbed species. By varying

the density and composition of the background, this type of experi-

ment can provide also information on the kinetics of the adsorption

and desorption processes as well as information on the interatomic

potentials between background and surface atoms.

b) Modulate the scattered molecular field when a steady-state

beam is incident, in order to provide higher resolution of the TOF

signals of the scattered field. Therefore more accurate spatial

distributions of the mean speed, mean energy, and hydrodynamic

speed ratios of the scattered molecules can be obtained.
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An increased density of the incident beam at the surface would

compensate for the reduction of the detector sensitivity which

accompanies an improvement in the TOF resolution of the scattered

beam signals. The recent installation of an additional diffusion

pump in the collimation chamber should increase this density

significantly by reducing the background scattering. Also, the

reduction of the overall distance between the skimmer orifice and

the scattering surface should be considered; one might accept poorer

collimation in order to reduce beam spreading.

Determinations of the first and second moments of the dynamic

calibration function gd(t) in situ during actual measurements are

recommended also. This is achieved (as suggested by Equations

(4.31b, c) by recording the signals at a given spatial coordinate

setting of the detector for different values of the chopper angular

speed. The intercepts in plots of the moments vs. appropriate

powers of the time intervals between signals give direct measures

of the higher-than-zero moments of the calibration function. It is

not necessary to assume a) that a detector behaves purely in

through-flow fashion and b) that reactance perturbations introduced

by the signal processing chain are negligible and/or independent of

the location of the detector.

Possibilities for future studies involving the factorial per-

mutation of parameters known or suspected to affect the scattering

interactions between gaseous flow fields and condensed phases are

obvious and the reader will not be burdened further with sententious

recommendations.
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APPENDIX A

A CLASS OF SPEED DISTRIBUTION FUNCTIONS, THE

CORRESPONDING TOF. FUNCTIONS, AND RELATED MOMENTS

A i. INTRODUC TION

Many problems in kinetic theory and rarefied gas dynamics

involve the evaluation of the moments of speed distribution functions

of the form

n _S)2F (s) = s exp - (s (AI.1)
n

Thus the zeroth moment go{Fn(S)} represents the inverse of

the normalizing factor of this function, so that the normalized speed

distribution is given by

n
f (s) = C s exp - "(s-S) 2

n n

F (s)
n

go{Fn(S}}

(A i. 2)

The first moment Nl{Fn(S)} represents the mean speed of the parti-

cles and is useful directly in calculating the mean energy of the

particles.

In modulated molecular beam experiments one often measures

the time-of-flight distributions p(t) and _(t) to a distance L, which

are related directly to the speed distribution, fn(S), and the flux

distribution, Jn(S)= 7sf(s), respectively.

In this appendix the Laplace transform of the speed distribution

is derived first and used then as a moment-generating function to

derive the moments of F (s). The moments of Pn(t) and Sn(t) aren

related directly then to the moments of F (s). Useful recursion
n
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formulas are derived and graphs of the various moments for

selected values of n are displayed,

A2, DEFINITIONS AND SOME BASIC RELATIONSHIPS

Laplace Transform:
oO

L{Fn(S)} _ _o Fn(s) exp(-ps)ds

Derivatives of Laplace Transform:

(-d/dp) n L{F(t)} = L{tnF(t)} = (-I)nFn(P)

Moments of a function f(t):

a° The m'th non-normalized moment of f(t):

oO

Pm {f(t)}$ lj tmf(t)dt m = 0, 1

b, The mtth normalized moment of f(t):

.m{f(tl}
Um{f(t) } : /_o{f(t)}

Nl{f(t)} is often referred to as the mean value of

f(t)°

(A2. l)

(A2.2)

(A2.3)

(A2.4)

c. The m'th central moment (or moment about the mean):

_m{f(t)} "[:/_o{f(t)}}-1

oO m

m = 1, 2 ....

In particular, for m : 2,

v2p_z J - u2t_, J .,lt-,-,j

is referred to as the variance of f(t).

(A2.5)

(A_..6)
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" _o_ -x2)dxerf y = (2/V_-) exp ( (Ai.7)

erfc y = 1 - erf y (Ai.8)

A3. THE LAPLACE TRANSFORMS OF F (s) -- snexp-(s-S) 2
n

From tabulated transforms we find

L{2(a/IT )½ exp(-at2)} = exp(p 2/4a) erfc (p/2(a) ½ ) (A3.1)

One of the shifting theorems states

L[ exp(-at)f(t) ] = L[ f(t) ]p--p+a
(A3.2)

Applying (A3.1) and (A3.2) to F (s) = exp-(s-S) 2, we find
O

1 (p-2S)2)erfc(1 (p-2S)) (A3.3)Fo(P) -- (_-/2) exp (-S 2) exp (

Applying (A2.2) with n=l, one obtains

1 1
Fl(P) --_ (p-2S) Fo (p) - -2exp(-S)2 (A 3.4)

By successive applications of (A2.2), the following recursion

equation is derived:

1 1

Fn(p) =_ (n-l) Fn_2 (p) +_ (p-2S) Fn_l(p)
(A3.5)

where n is an interger >- 2.

By successive applications, Fn(P) can be expressed in

polynomial form

n/2 ,. n/2 2i+l_n-2i-1
Fn(P) =%(p)i_ 0 a:l_n-2i_ _1 exp_(S 2) _ a2 n

i=0

where
• 1
= _ (p-2S)

(A3.6)
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and the coefficients a j are defined by
n

o
a = 1 for all n > 0
n

1 1
a = 1 for all n> 0 a = 0 for n = 0
n n

aj = aj + n-1 i-2
n n-1 T an-2

2 n(n-1) 3 (n+l)(n-2)
a - a = (A3.7)
n 4 n 4

Some of the a _ are displayed in Table A. 1.
n

A4. THE ZEROTH MOMENT F (s)
n

The Laplace transform of F (s) can be considered as a
n

moment-generating function. It follows from (A2.1), (A2.2), and

(A2.3) that

lim {d/dpf Fn(p) = (-l)m+n_m{Fn(S) } (A4. I)

p-_o

Applying (A4. 1) to (A3.5) for the case m=0, one obtains the recursion

formula for _o{Fn(S)}

1
;_o{Fn(S)} : -_ (n-l) Do{Fn_2(s)} + SDo{Fn_l(S)} (A4.2)

The zeroth moment can be expressed also in a polynomial form

n/2

.o{Fn(S)} = _b
i=0

a2isn- 2i+ _,a2i+is n-2i-1
n _ n

(A4.3)

where

q1"

l 1

-_(y)_(1 + erf S)

1
exp (-S_)

i
and the coefficients a

n
obey the relationships (A3.7)
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Table A. 2 gives the expressions for _o{Fn(S)} for 0 -< n -<5.

Figure A° i is a plot of the zeroth moment as a function of the

hydrodynamic speed ratio, S.

A5° HIGHER NORMALIZED MOMENTS

In view of the definition of F (s) (Equation AI, I) and the
n

definitions of _j{Fn(S) } (Equation A2, 3) one can write

_j{Fn(S) } = gj+k{Fn=_k (s)} k=0, 1,2,°.oj (A5.1)

so that, in particular, for k=j, we have

.j{Fn(S)}.o{Fn÷j(s)}

Applying this result to the definition of Tij{fn(S)} (Equation A2.4),

one obtains

7?j{Fn(S) } =/_o{Fn+j(s)} /.o{Fn(S)} (A5.3)

Consider the case for j=l, i.e., the first normalized moment

UI{Fn(S)} =/_o{Fn+l(S)} l.o{Fn(S)} (A5.4)

Substitute for Po<Fn+l(s)} from Equation (A4.2)

rll{Fn(S) = (lnY.o{Fn_l(S)} /.o{Fn(S)}) +S (A5.5)

Substituting from the definition of _l{Fn_l(S)} , we obtain the

recursion formula for the first moment

I + S (A5.6)rll{Fn(S)} = _n [_l{Fn_l(S) }1-1

Combining _o. oi _,,_ _..... , .....................

formula

1

uj{Fn(S) } = g (n+j-l) Uj_2{Fn(S) } + SUj_l{Fn(S) } (A5.7)

(A5.2)
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valid for j >- 0. Note that, combining (A5.2)and (A5.3), one

obtains, in general,

rl-l(Fn(S)} = [rlj(Fn_j{s)} ]-1

where j is a positive integer.

Tables A. 3 and A. 4 give expressions for r71 and _72 for values

of n from 0 to 4. Figures A.2 and A. 3 are graphical representa-

tions of Tables A. 3 and A. 4.

In view of (AIo 2), note that

(A5.8)

.o{fn(S)} -- Z (AS. 9)

IU_

and that

 j{F(s)} (A5.:o)

A6. RELATION BETWEEN THE MOMENTS OF Pn(t), $n(t)
AND f (s)

n

The time-domain analogues of the speed distribution function

fn(S) and of the flux Jn(S) are defined as follows:
F (s)

ds n ds

Pn (t) = fn(S) -dt .o{Fn(S)} dt
(A3.6)

ds sF (s)n ds

_n(t) = sf (s) -
n dt .o{Fn(S)} dt

(A3.7)

The zeroth moments are: (see Equation A2.3)

_fn ds/_o{Pn(t)} : (s) _-dt = 1
(A6. i)

(A6.2)
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OO

po{Cn(t)} = sfn(s) _ dt

= #l{fn(S)} = ri1{fn(S)} (A6.2)

The j'th moment of Pn(t) is by definition

_°tJfn(S) ds#j{Pn(t)} = _ dt

But, in view of Equation (A6.1) and the relation for t,

L
t =

7s

we may write

_lj{Pn(t)} = (TL---)j _l_j{fn(S) } (A6.3)

where

1

r)_j{fn(S)} = rij{fn_j(s)}
(A6.4)

Similarly, one derives the j'th moment of Cn (t)

(A6.5)

By algebraic manipulation of Equations (A6.3), (A6.4), (A5.1),

(A5.3) and (A5.10) one obtains the following recursion relations.

For

T)j{Pn(t)}:rIk{Pn(t)}rln_k{Pn_k(t)}

Tij{¢n(t)} : T)k{¢n(t)} T)j_k{+n_k(t)}

the special case j : 2 and k = 1

"2" n'"" "'lU"n "''J "lLt"rl-1 x'lJ

(A6.6)

(A6.7)

rl2{¢n(t)} = rll{¢n(t)}r)l{¢n_l(t)} (A6.9)
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Combining (A6.8), (A6.9) and (A6.3), (A6.5) one obtains

N2{Pn (t)} N1 {fn-1 (s)}

N21{Pn(t)} - _2 {fn-2 (s)} =*f2n-l(S) + 1

(A6. I0)

rI2{¢n(t)} rlI {fn(S)} ,

r}22{¢n(t)} - n2 {fn_l(S) } -_n(S) + 1

(A6.11)

These last expressions are valuable because they relate

moments of time-of-flight distribution functions to functions of only

the speed ratio S (i. e., they are independent of the ratio L/?).



APPEND_ B

THE ALGEBRA OF LINEAR OPERATORS AND CERTAIN
RELATIONSHIPS BETWEEN THE MOMENTS OF

THEIR SUMS AND PRODUCTS

B1. INTRODUCTION

In this Appendix, basic concepts from the theory of linear

operators are used to derive certain relationships used in Chapters

II - V. The customary non-mathematicians I escape clause is

adopted by the author in order to protect the domain of rigor and

elegance reserved to bona fide mathematicians. Proofs are not

offered in all cases.

B2. DEFINITION

Let X 1 and X 2 be two abstract vectors in vector space

representing two fields. Let g be an operator such that X 2 is ob-

tained when g acts on X 1

X 2 : g X 1 (B. 1)

The operator g is linear if the relationship B. 1 is linear.

of abstract operators is associative and commutative. The product

is associative, distributive and in general not commutative. If g

is linear, then the product is also commutative. (This last state-

ment is not necessarily true in Hermitian space, but is true for the

restricted applications of interest here. ) The identity operator I

is defined in the usual fashion

X -" I X (B. 2)

l=_g T_.DR_t_nt'r ^mt_t_tc ,_t_ m_ LINEAR OPERATORS

In the complex-domain representation (represented by the

Laplace variable p and its functions) the product and sum of linear

The sum
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operators remain identical in form. The identity operator represent-

ation is unity.

In the time-domain representation (related to the complex-

plane representation by means of the linear Laplace transformation

expressed by Equation A2.1) the product takes the form of a con-

volution integral; the sum remains identical in form to the sum in

the abstract space. The time-domain representation of the identity

operator is the 6(t) (Dirac) function.

In the signal-flow diagram representation (where the operator

g is represented by a box between two directed lines which represent

the vectors X) a product is given by boxes in series and a sum is

represented by operator boxes in parallel. The identity operator is

represented by the absence of a box and an uninterrupted directed

vector line.

Note that the vectors X. belong to the same space as the opera-1

tors g and all algebraic operations true for g apply also to operations

between X's and g's.

B4. RELATIONSHIP BETWEEN THE MOMENTS OF LINEAR

OPERATOR PRODUCTS AND SUMS

a) Sums

Let gl(t), g2(t) and g(t) be the time representation of two

linear operators, gl and g2' and their sum g.

g(t) = gl(t) + g2(t) (B. 3)

Then we can write

t_g(t)dt

if the integrals are

cO oO .

=_o tJgl(t)dt + _o tJg2(t)dt (B. 4)

"well behaved. " Hence, in general, the following
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relationships apply

when

/_j{g(t)} = _pj{gk(t)}
k

j = 1, 2, . . .

g(t) = _ gk(t) (B. 5)
k

b) Products

Let g(p) be the product of gl(p) and g2(p) in the complex

p- domain repre s entation.

g(p) = gl(p) g2(p) (B. 6)

and the corresponding representation in the time domain

t

g(t) = f gl(x) g2(t-x)dx
O

(B.7)

The first logarithmic derivative with respect to p of Equation (B.)

gives

g'(P) _ gl(P) g_(P)
+ (B.8)

g(P) gl(P) g2(P)

where

• dg(p)
g'(P) = dp (B. 9)

Taking the second derivative of (B. 6), dividing both sides by g(p)

and subtracting from the resulting equation the square of Equation

(B. 8), one obtains

(B. IO)

Recall (Equation A4.4) that the limit of the n'th derivative of a

Laplace transform as p tends toward zero gives the n'th moment of

the function in the time domain.
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Lira g(n)(p) = (_i)n fo tnf(t)dt
p--_O

= (-l)n n{f(t)} (B. ii)

One may apply this limiting process to (B. 6), (B. 8) and (B. 10); in

view of the definitions of the moments (Equations A2.4, A2.5), one

obtains the following relations

_0{g(t)} = ,0{g l(t)} _0{g2(t)} (B. 12)

_?l{g(t)} = ql{gl(t)} + ql{g2(t)} (B. 13)

_,2{g(t)}= u2{gl(t)} + u2{g2(t)} (B. 14)

Equation (B. 14) can be generalized by induction to give

wj{g(t)} = _ _{gk(t)} for all k j=2, 3 .... , (B. 15)
k

if g(p) = H gk(p) Equations (B. 5), (B. 12) to (B. 15) and thek
associative, commutative and distributive rules of liaear operators

establish the algebraic set of operations on linear operators and

their moment expansions.
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APPENDIX C

SOLUTION OF EQUATIONS (3.8) AND (3.9) WHEN

A(t) = A[K(t) -K(t-T)]

In general one can write

(t-x) [ K(x) -K(x -T)] _ = d_
0

(C. 1)

Applying (C. 1) to Equations (3.8) and (3.9), one obtains

t

dN(t) _ 7nA _ _(Z)d)t

dt dt_T
(c.2)

t

dN(t) _ nA f p(_.) d_.

dx Jt-T
(c. 3)

Substituting for _b(k) and p(Z) from Equations (3.8) and (3.9), and

for the speed distribution f(s) from Equation (27), we can write

dN(t) 7nA --('t 3
- s exp-(s-S)2ds

dt Do{F2 (s)} Jt-T
(C. 4)

dN(t) nA --{'t 2
- s exp -(s-S)2ds (C. 5)

dx Do{F2 (s)} Jt-T

The integrals in Equations (C. 4) and (C. 5) are solved by

introducing a change of variables y = s - S and integrating by parts,

with the result
f

dN(t) = 7hA texp-_s-S)2
dt _o{F2(s) } [ - [(s-S)2+ 3S(s-S)+ 3S2+ i]

exp-(a-S) 2
- 2 [(a-S)2+ 3S(a-S)+ 3S2+ i]

_-2 ($3+ 3/2 S) [erf(s-S) -erf(a-S)]}
(c.6)

113



• 114

Q

and

where

dN(t)_ nA exp-(s-S)2 (s-S) - exp - (a-S) 2

dx tto_F2(s)} 2 2

($2+ 1/2)[err(s-S) -erf(_-S)]
2

L

= 7(t-T)

"o {f2(s)} ¢_-_-(1 + erf S)($2+ 1/2) +
S exp(-S 2)

(a+S)

(c.7)

(c.8)

(c.9)

i--

In the case when

T
-- <<1
t

(c.io)

and

T << 72t3

2L 2 1 - STt/L
(C. 11)

it is possible to show that Equations (C. 6) and (C. 7) reduce to

dN(t) _ 7nA

at /_oF2(s) } (L/7)4(T/t5)exp-(L/_,t-S) 2

dN(t)

dx

= 7nAT_b(t)

_ nA

_o_F2(s) } (L/7)3(T/t4)exp -(L/Tt -S)2

= nATp(t)

(C. 12)

(c.13)

In the special case when S-* 0,

become

dN(t)

dt

Equations (C. 6) and (C. 7)

-- = (27nA/_-) {(s2+1) exp(-s 2)

- (c2+I) exp(-a2)} (C. 14)
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f dN(t)

dx
- (2nA/_-) {s exp(-s 2) -cr exp -(a2)}

- nA {erf(s) -erf(a)} (C. 15)

Note that 1/A{dN(t)/dx} represents the instantaneous density

of the beam at a distance LCD = s 7t downstream of the chopper,

while 1/A {dN(t)/dt} represents the instantaneous flux crossing a

plane at LCD.

Note also that Equations (C. 12) and (C. 13) are identical to the

Equations (3.31) and (3.32) which were derived for an impulse gate

function since in the case of a rectangular pulse

_o{A(t)} = AT (C. 16)


