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1. STATEMENT OF THE PROBLEM

A launch vehicle guidance system provides the control system inputs neces-

sary to fly a prescribed trajectory. These inputs are generally in the form of attitude

commands whose purpose is to orient the vehicle in a prescribed direction. Normally,

the attitude control problem is concerned with the short-period dynamics of the vehicle,

where the fundamental aim is to achieve adequate stability and reasonably rapid (and

well-damped) response to input commands, with moderate insensitivity to external dis-

turbances (winds). The usual method of studying the short-period dynamics of the ve-

hicle is to analyze perturbations from a reference condition via linear methods and to

arrive at an autopilot configuration that meets design requirements. Actually, while

this problem may be analyzed to a large extent independently of the guidance problem,

the two cannot be completely divorced. The characteristics of the autopilot will have a

significant influence on trajectory dispersions, especially during the atmospheric phase.

Winds, for example, will tend to cause deviations from a reference trajectory. The

vehicle autopilot will usually be required to meet conflicting requirements: 1) to mini-

mize trajectory deviations; and 2) to minimize various excursions (e.g., angle of

attack) in order to ensure structural integrity of the vehicle.

The general features of the attitude control problem, especially as it relates

to trajectory deviations, are discussed in Sec. 3.1. Related discussions are contained

in other monographs in this series*. This monograph is concerned primarily with the
short-period dynamics of attitude control and is a direct extension of material in

"Short Period Dynamics" and "Elastic Body Equations," parts 1 and 2 of Vol. I in the

series. This material provides the conceptual framework for the autopilot design
problem that will be discussed here in some detail.

The distinguishing features of the attitude control problem of a launch vehicle
are:

a.

b.

C.

d.

eo

f.

The use of swivelled engines for attitude control.

The rapidly varying mass and inertial properties of the vehicle.

The extreme flexibility of the vehicle.

The influence of propellant sloshing.

Aerodynamic instability of the airframe.

The need for completely automatic control.

*cf. Vel. I, part 3, "Trajectory Equations;" Vol. HI, part 2, "Load Relief."



Because a failure of any one of a multitude of systems or components could

mean the loss of the vehicle, an extensive ground testing and evaluation program is

necessary. This has motivated the development of highly refined methods of analysis

that could provide the maximum confidence for successful flight. Probably the most

severe problem is that of vehicle flexibility, (12) which manifests itself in the sensing

of local elastic deflections by the gyroscopes. When the bending mode and control fre o

quencies are of the same order of magnitude, potential stability problems exist. The

problem is complicated by the facts that passive filtering compromises the gain and

phase margins of the fundamental control loop and that the bending-mode frequencies

vary in flight.

The monograph discusses the usual stabilization techniques as well as the

influence of various nonlinearities. The final section considers the errors introduced

by the use of various approximate transfer functions in design and analysis.

2



2. STATEOF THEART

Major designproblemsarise becausealaunchvehicle is aerodynamically
unstableandhighly flexible. Further complicationsare introducedby sloshingof
liquid propellants andthe inertia effects of swivelling engines. Theaim of anyanaly-
sis is to formulate the simplest mathematicalmodelthat will accountfor all signifi-
cant phenomena.Dependingon the precision of results required for specific purposes,
various simplified modelsmaybeused. Thus, for preliminary designstudies, only
crude estimatesmay be necessary. Alternatively, in finalizing a design, a rather ex-
tensive formulation is required. Consequently,the designproblem maybeanalyzed
at various levels of sophistication.

Thedesignof the attitude control systemis thus conductedin several phases.
Oneis concernedprimarily with developinganautopilot configurationthat achieves
adequateshort-period stability andperformance. This makesuse of the so-called
"time slice" approach, in which time-varying massandinertial properties are "frozen"
over a short period of time. In this way, the powerfultechniquesof linear analysisare
exploited most fully, thereby reducingoverwhelminganalytical difficulties to manage-
able proportions. This is usually followedby time-varying simulations ona computer
(incorporating all significant nonlinearities) and refinement of various elements of the

control system as necessary. The major input here (in addition to guidance commands)

is the wind profile -- more "specifically, a series of wind profiles. This permits an

evaluation of the system with respect to trajectory dispersions, induced binding loads,

and time histories of various parameters of interest (e.g., angle of attack and thrust
angle deflection).

It has also been found that the sloshing of the liquid propellants introduces

dynamic effects that may lead to instability unless properly compensated. For pur-

poses of analyzing this phenomenon, it has been found that the sloshing liquid may be

replaced by a rigid mass and series of pendulums whose size and location are a func-

tion of the tank shape and liquid level. (13)

From an analytical point of view, the most difficult part of the problem is the

need to design an autopilot for a high-order, nonlinear, time-varying system. Experi-

ence has shown that analyzing the system at fixed times of flight, in which a linear

constant coefficient representation is used, leads to a satisfactory design. Further

checks and refinements are made by simulating the complete time-varying dynamics

on a computer. At present, this procedure has been generally adopted and has been

validated by extensive flight experience.



Many of the problems mentioned above are seriously aggravated for certain

advanced configurations. In these cases, conventional methods are only marginally

effective, primarily because the bending mode and control frequencies are in close

proximity and the bending mode properties are not known wihh sufficient precision.

This has led to the consideration of so-called "adaptive control," a technique that is

beyond the scope of this monograph. It is considered in part 8 of Vol. III in the series.

4



3. RECOMMENDED PROCEDURES

A prerequisite to the design of a launch vehicle autopilot is the determination

of the mission profile, reference trajectory, and overall vehicle configuration. Studies

of this nature are conducted with varying degrees of sophistication. In the preliminary

phases of analysis, the vehicle is assumed to be a point mass that can be steered per-

fectly along the prescribed trajectory. Under the action of known aerodynamic, pro-

pulsive, and gravity forces, a reference trajectory is determined, along with payload

capacity, fuel volumes, burning rates, etc., which serve to define the overall vehicle

characteristics. For purposes of the ensuing discussions, it is assumed that the vehicle

configuration and mission profile have been specified. It is now necessary to investi-

gate the short-period dynamics of the vehicle and to design an autopilot that will:

a. Stabilize the vehicle.

b. Ensure reasonably rapid response to guidance commands.

c. Provide adequate safety margins for anticipated extraneous (wind) disturbances.

This design proceeds by stages, beginning with the use of highly simplified

mathematical models to determine "order-of-magnitude" parameters for the system.

Such an approach permits the analysis of general design philosophies and concepts,

yielding qualitative results on the relative merits of each. Furthermore, by intro-

ducing the various dynamic modes (sloshing, bending, instrumentation dynamics, etc.)

in stages, the salient features of each are determined with a minimum of complexity.

This approach has the virtue of providing maximum insight into the dynamic operation

of the system, free of the inertial and elastic coupling effects that tend to obsure

understanding.

Thus, the design of a launch vehicle autopilot may be conveniently divided

into four phases:

1. Point mass determination of reference trajectory.

2. Rigid body analysis to determine performance characteristics (drift, loading,

response time, etc.).

3. Flexible body analysis to determine filters, gyro locations, and stability

characteristics.

4. Computer simulation with nonlinear, time-varying coefficients to determine

both stability and performance characteristics in response to design winds.

In phase 2 the basic control gains are calculated. These are further refined

in phase 3 and usually result in values approximately 40-60% lower than those calculated



in phase2. Phase 4 gain values are the linearized curve fit values from phase 3, and

are the actual flight values which are programmed as a function of flight time.

The material that follows is divided into three main categories. Sec. 3.1 is

concerned with the general features of the attitude control problem, especially as it

relates to interaction with guidance and loads. A detailed treatment of these consider-

ations is contained in parts 2 and 10 of Vol. III in the series. Sec. 3.2 contains a com-

plete set of the equations of short-period dynamics derived in Ref. 1. Related material

on trajectory aspects and component dynamics may be found in part 3, Vol. I (Tra-

Jectory Equations), and part II, Vol. III (Component Dynamics), of the series.

In Sec. 3.3, the autopilot design problem is considered in detail. The general

features of the salient dynamic modes are discussed first, followed by a consideration

of the usual techniques for providing stability augmentation. The influence of various

nonlinear effects is considered next, together with appropriate analytical techniques.

A discussion of approximate transfer functions and of a complete computer simulation

concludes the presentation.

3.1 GENERAL FEATURES OF THE ATTITUDE CONTROL PROBLEM

The first requirement of attitude control is that there exist sufficient control

capability to counteract anticipated aerodynamic loads. Referring to Fig. 1, this re-

quirement is formulated quantitatively as

T 6 L >L L_ (I)
c max c oe _ max

where

T = control thrust
c

L = aerodynamic load per unit angle of attack
o_

= distance from mass center of vehicle to engine swivel pointc

L = distance from mass center of vehicle to center of pressure

6 = thrust deflection angle

o_ _, angle of attack

In short, the thrust control moment must be greater than the maximum anti-

cipated aerodynamic moment. Based on a maximum available thrust deflection angle,

8ma x, a maximum permissible angle of attack, O_max, is determined. Exceeding this
angle leads to loss of control. Eq. (1) yields only a first approximation of control

capability, since dynamic overshoot effects have not been considered. For preliminary

6
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Figure 1. Control Capability of Attitude Control System

estimates, one may reduce _max by 30-50 percent to take account of the dynamic ef-

fects. As the design is refined, complete time-varying computer simulations, using

many wind profiles, are employed to ensure that critical parameters are within design

limits. These factors are considered in detail in part 10, Vol. III (Response Studies)

of this series.

Before turning to a detailed consideration of the autopilot, which is concerned

primarily with stabilizing the short-period motions of the vehicle, it is necessary to

examine the influence of autopilot characteristics as they relate to loads and guidance.

As noted above, the induced angle of attack in response to winds (especially in regions

of high dynamic pressure) must be limited, to avoid loss of control. This induced

angle of attack must also be controlled in order to limit the resulting bending moment.

On the other hand, it is necessary to minimize deviations from the nominal trajectory,
7



since excessive guidance corrections result in payload penalty. These are conflicting

requirements. The broad features of possible tradeoffs may be studied with reference

to Fig. 2, which depicts the pitch plane geometry of the rigid vehicle. Neglecting the

x I

L

T T
C S

v -vw

zI

Figure 2. Geometry of Vehicle in Pitch Plane
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effects of bendingandsloshingand the lags due to actuator and instrumentation dy-

namics, the motion of the vehicle is described by

(T T - D) L T
e _..__ _ + .__c 0

m m m
(2)

= 5usa +Uc

= e +V +_w

(3)

(4)

where

D = drag

I = moment of inertia of vehicle about pitch axis

m = mass of vehicle

T = sustainer (nonswivelled) thrust
S

T T = T +TC S

V = forward velocity of vehicle

V = wind velocity
W

z = normal displacement of vehicle relative to inertial frame

V
W

= gust angle of attack = - --
w V

9 = attitude angle of vehicle relative to inertial frame

L

T
C C

_c =

and other symbols are as defined previously.

The control law is expressed as

(5)

9



KA = servoamplifier gain

KR = rate gyro gain

Ke = position gyro gain

K = gain of angle-of-attack sensor

In an attitude control system, Ke = 1. However, we write Keinstead of unity
to preserve the possibility of trading attitude control for other features. One may

also sense normal acceleration rather than angle of attack for use as a feedback con-

trol variable. This will generally lead to the same type of autopilot properties.

By straightforward manipulation of Eqs. (2) - (5), we obtain the transfer
functions

2

a2s +als+a 0

o_ V A
W

(6)

0

t_
W

A
(7)

6

W

2

/x
(8)

s (s2 + _tc KA KR s +/_c KA K0)
-- = (9)
o_ A

W

where

s = Laplace operator

C

a2 = -- K +mV {_

KA Tc KR //_c _ _c;I_L_ t

10



Te KA K6 I_ _c.___L_1 TT-Da 0 = +
mV ff T c . mV (/_e KA KC_ - #toy)

3 s 2
A = S +B 2 +BIS+B 0 (lo)

B2 = _tcKAKR +--_-c K +mV c_

TcKAKe (U + _e La_ TT-D

mY (Ltc K A K - _q)

Certain general features of this system are now readily derived.

sume a unit step input in gust

1
a (s) =--

W S

then the Final Value Theorum yields*

lira I_:;',) = -I
\v!

t-_

lira e = 0

lira 5 = 0

If we as-

In other words, in the steady state, e, 8, and cz are all zero and the vehicle

drifts in the negative z I direction with a velocity _ = V w.

T

*Assuming that A=O has all its roots in the left-half plane.
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Some further results relating to transient effects may be obtained by exami-

ning the characteristic equation (10). "finis has three roots, two of which (usually com-

plex conjugates) are associated with the rotary motion of the vehicle about its center

of gravity. The third root describes essentially the response of the flight path (lateral

drift) to wind. Since the fundamental time constant associated with lateral drift is

generally much greater than that associated with vehicle oscillation about the mass

center, it is reasonable to analyze a so-called "quasi steady-state" condition wherein

the first- and higher-order derivatives in e are set equal to zero. (4)

Thus by substituting Eqs. (4) and (5) in Eq. (3), we find

Setting the first and second derivatives of 9 equal to zero,

By substituting (12) into Eqs. (4) and (5) we obtain the quasi steady-state

values for o_ and 5; viz.,

KA K0#c (_-_ +_w) (13)ss PcZA(z0+

ZAZe  IV %)5 = - + (14)

We find, therefore, that the quasi steady-state values of e, _, and 5, depend

on the autopilot gains and the parameter (_/V + _). It is instructive to investigate
the conditions whereby _. is a constant. If we combine Eqs. (6) and (7) and apply the

quasi steady-state assumptions, we find

(15)

12



This shows that _ss = 0 whenever B0 = 0, regardless of the wind input.
Hoelker(4) calls this the Drift Minimum condition. To examine this effect quantita-

tively, consider the transfer function, Eq. (6), with B0 = 0. Then if c_w is _ unit step
input, we find

lira /_/ = - 1
m c (%+Ks)-

t-_ 1 +
\v/

Bo

Using the values given in Table 1, with K0 = 1 and I_ = 1.80 (which makes
= 0), this becomes

lim (V) = -0.0102
t-_

Thus, by applying the drift minimum condition, the lateral drift has been re-

duced by a factor of 50. The variables 6, 0_, and 6 take on values in accordance with

Eqs. (12) - (14). If K s is further increased such that B0 = 0, then _/V will take on a
positive value; i.e., the vehicle will drift into the wind. This will further reduce the

trajectory deviations. However, the motion is unstable (as indicated by a positive root

in the characteristic equation). Nevertheless, if the drift rate is small, one may ac-

cept a temporarily unstable condition in order to limit trajectory deviations.

The drift minimum condition, B0 = 0, may be expressed as follows.

+ De L_/ =TcKAK_( "@ "-'_e / (TT-D)(g'cKAK@ -P'@)

which, after a simple rearrangement, becomes

(17)

For an aerodynamically stable vehicle, _{_ < 0 and £s < 0, while [£_ I < £c"

This means that the right-hand side of Eq. (17) is always positive and the drift mini-

mum condition can be satisfied for some value of KA even if K s = 0. However, an

aerodynamically unstable vehicle will generally require some finite value for K s in
order that the drift minimum condition (17) be satisfied.

13



Table 1. Typical Launch Vehicle Parameters at Max q

I = 2.43 × 106 slug ft 2

= 38.0 ft

= 32.3 ft
C

L = 240,000 lbfrad

m -- 5830 slugs

T = 341,0001b
C

T T-D = 375,0001b

V = 1320 ft/sec

KA = 2

KR = 0.4 sec -1

_ta = 3.75

/_c = 4.54

Consider now the problem of minimizing the excursions in angle of attack in

response to wind gusts. We note from Eqs. (13) and (14) that the quasi steady-state

values of a and 5 are zero if Ko = 0, regardless of the gust magnitudes. The condition
Ko = 0 is called the Load Minimum(4) condition. In this case,

=8 =0
SS SS

while

ess = -(v + aw) (18)

, )v - mV V+O w (I9)

This indicates that the vehicle will turn into the wind and the lateral drift will

be opposite to the direction of wind velocity. The motion is unstable, since B0 < 0.
However, this may not be objectionable for short periods, especially when the prime

consideration is the reduction of aerodynamic loads on the vehicle.

14



In order to obtain some feel for the orders of magnitude involved, the system

was simulated on an analog computer. The results are displayed in Figs. 3 through 7.

The vehicle parameters of Table 1 were used, and in each case a step gust bf 0.10 rad

was applied as an input. While this is not a physically realistic gust, it serves to

highlight the response characteristics of the system. In all cases, the transients as-

sociated with oscillation of the vehicle about its c.g. damp out in less then 2 seconds.

Fig. 3 shows a stable condition; K s = 1 leads to B0 > 0, and all the roots of
the characteristic Eq. (10) have negative real parts. As noted earlier this ultimately

reaches a steady-state value, _'ss = Vw' which in the present case is Zss = 132 ft/sec

for a step input in c_w of 0.10 rad.

The drift minimum case is shown in Fig. 4, where K s = 1.80 corresponds to

B0 = 0. The zero drift condition is clearly evident.

In Fig. 5, K s is increased to 2.2, which leads to a positive _, indicating that

the vehicle now drifts into the wind. (Compare with Fig. 3.) As noted earlier, this is

because B 0 goes negative. Figs. 6 and 7 show the load minimum condition (K0 = 0) for

two values of Kor The essentially zero values for _ and 6 are quite apparent (follow-
ing the short-period transients). Also shown is the divergence in attitude, O, in a

negative direction, meaning that the vehicle turns into the wind. The positive values

for _ (lateral drift into the wind) have been discussed earlier in connection with Eq.

(19).

Further refinements in both design and concept are possible; for example, by

using time-varying coefficients in the simulation or time-varying gains on the feedback

parameters. This is rarely justified in the preliminary stages, although final validation

of the design should utilize as detailed a simulation as possible. The precise tradeoffs

between load alleviation and trajectory dispersion is a function of the particular mis-

sion and vehicle configuration.

3.2 EQUATIONS OF SHORT-PERIOD DYNAMICS

The equations of short-period dynamics are derived in Ref. 1. They repre-

sent perturbations from a nominal steady-state condition such that, by assuming small

deviations, a set of linear differential equations is obtained. These are valid only for

short time periods (time-slice approximation), since the mass and inertial properties

of the vehicle are time-varying. The attitude control system is usually designed by as-

suming negligible coupling between the pitch, roll, and yaw channels. This is generally

a very good approximation, since a conventional launch vehicle possesses a high degree

of axial symmetry. Consequently, only the pitch plane equations are presented below.

The design procedures for the yaw and roll channels will be similar to those developed

for the pitch plane.

15
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The following symbols are used in this section.

A 1, A 2 = reference areas; see Eqs. (25) and (26)

CN = normal force coefficient

D

r,F
Z

= drag

= total perturbation force acting parallel to vehicle body axis, Z

g = gravity acceleration

I = moment of inertia of reduced vehicle (i.e., excluding sloshingxx
masses) about pitch axis

I 0 = moment of inertia of rocket engine about its c.g.

IR = moment of inertia of rocket engine about swivel point; = I0 + MR LR2

K = accelerometer gain
a

K A = servoamplifier gain

K b = load torque feedback gain

K = engine servo gain
C

KI = integrator gain

KR = rate gyro gain

K = angle of attack meter gain
0_

L = length parameter along vehicle longitudinal axis; positive in aft
direction

L = distance from nose of vehicle to origin of body axis system (see
a

Fig. 8)

L = distance from c.g. of vehicle to accelerometer location; positiveA
forward

L = distance from origin of body axis system to engine swivel point
c

{see Fig. 8)

L = distance from c.g. of vehicle to angle of attack sensor; positivem
forward

LR = distance from c.g. of rocket engine to engine swivel point

20



ot

£
pi

L =
pi

L =
0t

distance from center of pressure in pitch plane to origin of body

axis system (see Fig. 8)

distance from hinge point of ith pendulum to origin of body axis

system (see Fig. 9)

length of vehicle

length of ith pendulum (see Fig. 9)

aerodynamic toad per unit angle of attack

m(£) = reduced mass per unit length along vehicle longitudinal axis;

m(_) d$ = m 0

m = reduced mass of vehicle; = m -_ m
0 T i pi

m = mass of i th pendulum
pi

m T = total mass of vehicle

m R = mass of rocket engine

M (i)= generalized mass of i th bending mode

= total perturbation moment about pitch axis of vehicle

q(i) = generalized coordinate of i th bending mode

Q(i) = generalized force (moment) of ith bending mode in (pitch, yaw,

Z;M
X

roll) plane

s = Laplace operator

t = time

T = control (gimballed) thrust
c

T = ungimballed thrust
s

T T = T +T - total thrustC S

T L = load feedback torque

U 0 = forward velocity of vehicle

P l



C
cn

e

e
c

0
a

e

e
F

e
PG

e
RG

e

U 0 = thrust acceleration = (T T - D)/m T

W = wind velocity parallel to Z ' axis
w

w = perturbation velocity of vehicle parallel to Z t axis

= perturbation angle of attack

= perturbation flight path angle; = _ - e

r. = pendulum angle (see Fig. 9)
pz

8 = rocket engine deflection angle

5 = command signal to rocket engine
c

= relative damping factor for accelerometer
a

_(i) = relative damping ratio for ith bending mode

= relative damping ratio for engine servo controller

= relative damping coefficient for rate gyro

= relative damping factor for angle-of-attack sensor

= perturbation attitude angle

= attitude command signal

= accelerometer signal

= angle of attack signal

= feedback signal

= position gyro signal

= rate gyro signal

T I.
C c

= control moment coefficient; -
I
YY

_c_ = aerodynamic moment coefficient; -

L_ _

I
YY
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(L,t)

p

a<i)

----bending deflection

= atmospheric density

= negative slope of i th bending mode in (pitch, yaw, roll) plane;

(i)
-5¢P

P

1" = time constant of position gyro
P

_o(i) = normalized mode shape function for the i th bending mode

w = undamped natural frequency for accelerometer
a

oJ

1

= undamped natural frequency for angle of attack meter

= undamped natural frequency of the ith bending mode

o0 = undamped natural frequency of the engine servo controller
cn

o0R = undamped natural frequency of the rate gyro

o-, . = undamped natural frequency of the i th pendulum
pl

Assuming that the origin of the body axis system coincides with the mass

center, the equations that describe the vehicle motion are summarized below. (See

Fig. 8.)

Rigid Body

_F
z

- +_

U 0 moU 0

I e =_M
YY Y

(20)

(21)

W
Ol - +_

U o w
(22)

W
W

w U 0

23
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0
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/
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_F
Z = - m T g e cos e 0 +T

C

1 2
6 - T T ._ q(i) (_(i) (£T) _ _PU0 A1

1

d£-u_/L 5CN(£)b(_ (_a - £) d£

+Z. q(i)/
1 "_0

L 5 C N (£) fL _ C N (£)
(_(i)(£)dL - "_1U0_ 0 5

+ "_mpilJOFpi+mR[_R'6+(£1 c-_R) _9"-# +Uoe

(25)

ZM = £ lIT c6- T T Z q(i) a(i) (£T)]_j TT _] q(i)40(i) (2'T)
y c i i

1+_pU:A 2
5 C N (£) _ {-L 5 C N (£)

5 q (£a - _) d£ - u--_J 0 • -
5 _ (_a _)2 d£

+ _ q(i)fL b C N (_) a(i) _(i) L 5 C N (£)
i J0 5 _ (La - _) (£) d_ - _ f (£a - _)

×(P'i)(_)d£] - _mi pi£ UoFpi+(_+mR%%)_pi +mR%U05

_ _ _ m _ boo

(26)
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Sloshing (See Fig. 9)

_0
pi Lpi

Bending

(Z,t) = _ q(i) (t)_(i) (Z)
i

ci (i) + 2 _i Wi _l(i) + oJ_ q(i) = Q(i)
M(i)

(27)

(28)

(29)

L

Q(i) = f0 _ Fz g)(i) (_) dL

- generalized force for i th bending mode

m
M (i) =_0 L ($)I_(i) (._)]2d$

- generalized mass for i th bending mode

_L

Electrohydraulic Actuator

:)s +W s+K w 6+2_c c c c

)K W 5 - +2_ca_ cc c c TL

(30)

(31)

(32)

(33)
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Figure 9. Schematic of Sloshing Pendulum, Pitch Plane
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i R

Feedback Signal

eF = _G+epG+e +eOl a

(34)

(35)

Rate Gyro

Position Gyro

i

Acce]erometer

= WR KR S 8 +_ q(i)
i

(36)

(37)

s + 2 Ca 2)e ',_0 8+(d -- 0_
a a a

Z;F
z

K
a m T

•t A 0 +[JO 8

Angle of Attack Sensor

"+,_. _ _ _-_ ('m)_<_

Engine Command Signal

(38)

(39)

(4O)
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The set of Eqs. (20) - (40) is a complete description of the short-period dy-

namics of the vehicle employing conventional autopilot control. These equations are

characterized by the usual linearity assumptions and by the fact that inertial coupling

between pitch, roll, and yaw is neglected. A complete six-degree-of-freedom for-

mulation is contained in Ref. 1. Questions related to nonlinearities, stochastic ef-

fects, load relief, trajectories, etc., are treated in the companion monographs in
this series. *

3.3 AUTOPILOT DESIGN

The autopilot design for a launch vehicle must take account of three main
fac tot s:

a. Short-period stability.

b. Aerodynamic loads.

c. Compatability with guidance.

The latter usually implies that guidance commands in the form of thrust

vector orientation are suitably translated into attitude (or attitude rate} commands to

the control system. This problem is discussed briefly in Ref. 1]. Compatability

with guidance also implies that deviations from a reference trajectory are within

tolerable bounds. In other words, the fuel expended in making guidance corrections

should not exceed prescribed limits; otherwise, the payload (or mission} capability

is impaired. This requirement generally conflicts with the need to limit aerodynamic

loads, wherein the design philosophy is to let the vehicle "roll with the punch." Pre-

liminary estimates of possible tradeoffs may be obtained by the methods described in

Sec. 3.1. Means of reducing bending loads on the vehicle by using auxiliary feedback

loops and manipulating autopilot gains are discussed in companion monographs in this
series. **

In Secs. 3.3.1 - 3.3.3, the fundamental problem of designing an autopilot to

stabilize the short-period motions of the vehicle is considered in detail. Having

established the control system configuration in the light of these requirements, a com-

plete, nonlinear, time-varying simulation is used to add whatever refinements are

necessary from a loads or guidance point of view.

3.3.1 Dynamic Modes

Much of the literature on launch vehicle autopilots uses such terms as "quasi-

normal modes," "artificially uncoupled modes," and "elastic and inertial coupling,"

without giving them a precise meaning. It would seem appropriate, therefore, to lay

*The complete list of monographs on Design criteria is contained in Ref. 1.

**See Vol. III, part 2, "Load Relief," and part 10, "Response Studies."
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some groundwork for the proper use of these terms. Basically, the vector matrix

equation for any conservative dynamic system may be expressed as

M_ +Kx = f (41)

The eigenvalues of the system are obtained from the determinant equation

IK-w 2 ml = 0 (42)

yielding n eigenvalues,* Wl' w2' '" "'' a_n' and n corresponding eigenvectors, v I, v 2,

.... , v n. The motion associated with a particular eigenvalue (frequency) is called a
principal mode. By defining a new variable in accordance with

n

x = rE1= CrVr (43)

Eq. (41) reduces to the n equations**

v f
2 r

+ oa c - (44)
r r r T

v Mv
r r

r=l, 2, .... , n

in which the Cr, called the normal coordinates, are uncoupled. The quantity v r f is

termed the generalized force corresponding to the r th mode, while v T M v r is the

generalized mass corresponding to the r th mode.

In the usual method of analyzing the short-period motion of a launch vehicle,

the bending modes are computed in terms of normal coordinates with the sloshing

pendulums and rocket engihes removed. Also, the sloshing modes are computed for a

rigi__._dvehicle. In this sense, we say that the bending and sloshing modes have been

artificially uncoupled. When obtaining the equations of motion, however, this coupling

is reintroduced via the forcing function terms. For example, looking at Eq. (29), we

see that the generalized force introduces coupling with the other bending modes and the

sloshing modes in accordance with Eq. (25). Depending on the manner in which these

terms arise, we speak of aerodynamic or inertial coupling, etc.

As a result, it is not strictly valid to analyze a specific mode independently of

the others in the system. However, when one mode is well separated in frequency

from the others, the degree of coupling is minimal, and the general features of this

*Assuming that x is an n vector.

**Making use of the orthogonality properties of the eigenvectors, v r.
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mode may be analyzed independently. The refinements introduced by adding the coupling

motions do not in general vitiate the qualitative dynamic features thus obtained. This

is, therefore, a useful approach and has been Widely used. It is basic to the discussions

contained in the following sections.

3.3. i.1 Rigid Body

For purposes of a preliminary analysis, it is convenient to assume that the

launch vehicle is completely rigid. The sloshing and engine inertia effects are re-

moved by assuming that m R, mpi -_ 0. In this case, Eqs. (25) and (26) reduce to

_F = -m g0cos0 +T 6
z T 0 c

bCN(£) 0 f0LSCN (£) ]d_- (_a-£)d_
_(_ U 0 b_

1 : -£ d__M = T _ O+ 0U A 2 5_y c c _ ot -- _a

fo L 5 C N (£) £]-_00 5_ (£a - _) 2d

containing 0/U 0 are generally negligible compared with _.The terms

sequently, if we write

2L = -_p U A 1 50t d£

Con-

(45)

L

1:/0= _PU A 2

5C N (£)

5_ (_a -0d£ (46)

then the force and moment equations reduce to

F z = -m TgO cosO O+TS- Lot 0t (47)
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EM = T £ 5+L £ ¢_ (48)
y c c t_ t_

L_ is thus the aerodynamic load per unit angle of attack, and _ serves to

locate the center of pressure. Eqs. (20) and (21) then take the form* (assuming

aw -- o)

g cos e 0 T L

U 0 m T U 0 m T U 0
(49)

= 6 + Uu a (50)b" ttc

where

T £
C C

_c - I (51)
YY

L £

_a,_- I (52)
YY

Eliminating _ between Eqs. (49) and (50), we obtain the transfer function re-

lating 0 to 6 as follows.

_c s + U00
-- = (53)

5[ __mTL2U0 -D_ D_gcos00]s3 + s s + UO

When £_ is positive (center of pressure forward of the c.g.), D_ is positive
and it is immediately apparent that the vehicle is aerodynamically unstable.

In regions of negligible aerodynamic pressure, Eq. (53) reduces to

O #c

8 2
S

(54)

*Note that m T = m 0 when there is no sloshing.
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When the aerodynamic pressure is not negligible, the forward velocity, U0,

is usually high enough that Eq. (53) is represented with sufficient accuracy by

0 _c

6 2
s -_

(55)

For example, using the data of Table 1 {with 00 = 80 deg), Eq. (53) becomes

0

5

(s + 0.0678)
C

(S 0.0042) (S2 + 0.0354 S - 3.75)

The dipole at the origin and the small damping term in the quadratic evidently

have little effect on the response characteristics of e. Approximation (55) is therefore

very good.

Designing an autopilot for the simplified system dynamics represented by

Eq. (55) is not particularly challenging. An appropriate control system configuration

is shown in Fig. 10. Here a simple first-order lag was used to simulate the electro-

hydraulic servoactuator, and gyro instrumentation dynamics were neglected. The

characteristic equation for this system is found to be

)( )s + K + Kc - + Kc KAc A KRDc _ s Dc-Us = 0 (56)

and Routh's criterion shows that stability is ensured if the relations

K A _zc > $z¢_ (57)

1
< K (58)

are both satisfied. The first of these is basically a static stability criterion; it states

that the restoring moment per unit attitude change must be greater than the overturning

moment. The second is a dynamic stability requirement; it stipulates that the lead

from the rate gyro must be greater than the lag from the actuator. A root locus diagram

for this system is shown in Fig. 11. Diagrams A and B differ only in the relative values

of _ and KR. In either event, KA = k/pc is the gain for neutral stability. It is also

apparent that an indefinite increase in KA does not lead to instability. This conclusion
is valid only for the simplified case considered here. The addition of lags due to fil-

tering and higher-order dynamic effects will set an upper limit on KA for stability.
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Figure 10. Autopilot for Simplified Rigid Body

For example, simple passive filtering is often employed to stabilize the bend-

ing modes. Figure 12 shows how a simple passive filter influences the rigid body

mode. The filter introduces a real pole on the imaginary axis in the s plane. This

has the effect of bending the root locus into the right-half plane for sufficiently high

values of open-loop gain. Adding still another passive filter yields the root locus

shown in Fig. 13. The deterioration in gain and phase margin is quite apparent. Con-

sequently, the use of passive filters to suppress bending mode signals has definite

limitations.

Again considering the autopilot schematic of Fig. 10, it is found that the steady-

state response of the system to a unit step command, 0 c, is given by

1
O = (59)
ss _a

1

_tcK A

Obviously, the higher the value of KA, the smaller the steady-state error.

Since there are definite upper limits to permissible values of K A, one must seek to

null the error by other means. This may, in fact, be done by adding integral control

in the forward loop such that
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Figure 11. Root Locus for Simplified Autopilot
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(KI 6 = K A _ + e E (60)c

It is easily verified that this results in zero steady-state error for all position

inputs. *

In studyin_ the simplified short-period dynamics of the vehicle, it is often

convenient to assume that _ _ e. This may be justified as follows. From Eqs. (49)

and (50), (assuming for simplicity that e 0 = 90 deg) we find

•rl s (r 2 s+ 1)

e -- (_'1s +1) (61)

where

m T U 0
1- =

÷.._
_ £C '

T
c

T -

2 mT U0/_c

A Bode plot of this transfer function is shown in Fig. 14. Using the data for a

typical large booster vehicle (Table 1), it is found thatr 1 = 15 andr 2 = 0.01. Thus,

in the frequency range 0. 067 - 100 rad/sec, O = ¢_ is a good approximation for this

class of vehicle. This is equivalent to assuming that the change in flight path angle is

negligible compared with the perturbations in 0 (or _ ).

With this approximation, a gust input is represented by the simplified autopilot

schematic of Fig. 15. It is readily found that

s +gc + gcKR#c-_ _ s+Kc A_c-_
(62)

*In the usual terminology of feedback control, the system is now a Type 1.
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It should be noted that the closed-loop poles in the above transfer function may

be obtained from a root locus such as Fig. 11, and these are identical to the closed-loop

poles for 0/0 c. However,

0 KAK _cC

e - 3 s 2 (63)

In other words, the zeros in the gust response make it differ from the com-

mand input response. This has the effect of decreasing the response time and tending

to make the response more oscillatory. * An important measure of performance quality

is the maximum overshoot in response to a disturbance input. Some crude "order-of-

magnitude" values may be obtained as follows.

Substituting the numerical values of Table 1 with K A = 2, Eq° (62) becomes

e Is2- 3.75)_s+15)
e _ (_+_.o_(: +_.9_ +_._)

(64)

In computing the time response of the fundamental mode, which has a frequency

on the order of 2.5 rad/sec, the zero at -15 effectively cancels the pole at -11.07.

Consequently, Eq. (64) may be approximated by

0 (s2 + c)

0w I(s+a)2+b 2]

(65)

a = 1.965

b = 1.83

c = -3.75

If now we take 0w to be a unit step input, then

1

0,t o +1I a2+o 2a lb2at_ e sin (bt +_)

_: b _0

(66)

where

2 b 2= a +

*A detailed discussion of this condition is contained in Sec. 3.1.3 of Vol. II, part 1,

"Linear Systems."
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,=1/ 2ab )

It is readily found that e (t) is a maximum when

t = 1[, -l[b_-_b]b t tan x a/

Using the given numerical values, we find that*

0 (t)]ma x = -0.648

and occurs at t = 1.09 sec.

0 = -0.52
SS

The final steady-state value is

which indicates about a 25-percent overshoot. For p_ negative (aerodynamically stable

vehicle) the steady-state attitude is positive, and the percent overshoot is almost negli-

gible for the data used here. Naturally, these results must be interpreted with due re-

gard for the approximations involved.

If integral control is used in the forward loop, ** the closed-loop transfer
function becomes

0
m

0
W

s(s 2-D_) s+K c
(67)

from which it is evident that the steady-state value is zero for a step input.

3.3.1.2 Fuel Sloshing

The forces and moments produced by sloshing of the liquid fuel may be dupli-

cated by an equivalent mass and pendulum whose parameters depend on tank shape,

liquid level, etc. Since a derivation of this result is not available in the open literature,

a complete analysis for one simple case is given in Appendix B.

*_ = 1.90 rad; 80 = 2.69.
**See Eq. (60).
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For purposes of autopilot analysis, it is assumed fl_at the appropriate

mechanical (pendulum) parameters are given. Retaining the simplified rigid-body

approximations of Sec. 3.3.1.1, the appropriate equations of motion, which include

the effects of sloshing, may be expressed as

_ Uo _ _ z (68)
m 0

_M

- Y (69)
I
YY

l_pi - Lpi m 0 I yYY

_;F = T 6-L C_ +_. m U^I'. (71)
z c a j pj _ P_

M = T £ 5 +L $ a- _ Spjlj 0I'p (72)y c c _ a J mpj j

Making use of the approximation

_ 0 (73)

the above equations lead to

= /_c5 +/_ 0 - _j _pjI _pj (74)

•. 1__[ %j o

+ I c a a mpj Spj .
yy J

where/Jc and/_a are defined by Eqs. (51) and (52) respectively, and

_pj - I
YY
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In order to obtainsomeinsight into the influence of sloshing, somefurther
approximationsmaybe introduced. First of all, it is generally true that sloshing ef-

fects do not become significant until the lannch vehicle is well above the regions of

maximum dynamic pressure. This is because liquid sloshing does not become ap-

preciable until the liquid level is relatively low in the tank. When this happens, the

vehicle is usually well above the sensible atmosphere. Also, in order to exhibit the

problem in its simplest form, it will be assumed that there is only one fuel tank (and

hence only one slosh pendulum), in which case the equations for e and r reduce to

0" = Pc 8 -/_p 1" (77)

[ Tc c] 1 [_+ m_00)

Eliminating r between these equations, we find

(78)

where

5 s (s+2 2 w;) (79)

2 1 [_L _--_)lJ (_ p) p]¢on + + - L /_ (80)0 p
P

2 = ¢02 _p _ ____)mr p Lp p _
(81)

I
2 yy

r = -- (82)
m 0

The autopilot configuration is as shown in Fig. 10, except that the vehicle

dynamics are now represented by the transfer function of Eq. (79). Fig. 16 shows

the location of the poles and zeros of the open-loop transfer function for this case.

The effect of the sloshing pendulum is represented by the pole-zero pair on the

imaginary axis.
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Someoverall featuresof the stability problem maynowbequickly ascer-
tained. In the case shown in Fig. 16, the slosh pole is above the slosh zero (Wp >
_r)" As a result, the angle of departure of the slosh pole is into the left-half plane,

and therefore the system is stable. In fact, angle c of Fig. 16 is given by

E = CR

whenever Wp > cc_r. For the ease when COp< C_r,

= (@R- @c) + 180 deg

Therefore, as long as Kc KR > 1, the system is stable if _p > wr-

We now examine the physical significance of this result. From Eq. (81), we

note that Wp > _r if

Lp
Lp \p c/

(83)

Ifthe pendulum hinge point is below the vehicle c.g. (L_ < 0 and _tp< 0), the
above inequalityis always satisfiedand the system is stable. V_hen the pendulum hinge

point is above the vehicle e.g., two cases must be distinguished. For Sp > 0 and

inequality (83) is still satisfied, and therefore the system is stable. However, in
the case

2

(L Lp) r- <_ L > 0
p L ' c

C

(85)

inequality (83) is not satisfied, and, in fact, it follows that wr > OJp. This is there-
fore the unstable condition.

The point on the vehicle a distance r2/L e forward of the c.g. is the "center

of percussion" for the vehicle. Consequently, if the pendulum hinge point is forward

of the c. g., the pendulous mass must "straddle" the center of percussion in order for
the motion to be stable.
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Whenthere are several fuel tanks on the vehicle (andtherefore several slosh
pendulums),the algebrainvolved in calculating the 0/8 transfer function becomes

enormously complicated. However, it may be shown (8) that the rules derived above

remain valid for any number of pendulums. A number of considerations limit the

range of usefulness of these rules. First of all, for high slosh frequencies, the

additional phase lag introduced by the actuator and instrumentation dynamics must

be taken into account. This will, of course, modify the angle of departure from

the slosh poles, and the rules given above may not apply. Second, it must be remem-

bered that aerodynamic effects were neglected, and in some instances this may vitiate
the results. Also, it was assumed that there was zero slosh damping. In reality,

there is always a small amount of damping due to the wiping action of the liquid against

the tank wall. The pole-zero configuration in this case is shown in Fig. 17 (for a two-

tank vehicle). The presence of slosh damping serves to bring the slosh dipole into the

left-half s plane such that a locus that would otherwise be in the right-half plane is

now completely containedwithin the left-half plane. Normally, the inherent damping

due to wall friction is very small, and additional damping is introduced by mechanical

baffles spaced at appropriate intervals along the tank wall. Since the slosh pole-zero

pairs are normally very close to one another, any unstable oscillation would build up

very slowly. As a result, annular baffles spaced at moderate intervals would be suf-

ficient to damp out any unstable oscillation before it grew to unacceptable proportions.

An unstable slosh condition could be made stable by appropriate filtering.

For example, in Fig. 18, the slosh zero is above the slosh pole (0% > O_p), but the
additional filtering, represented by the real poles at -1/1" 1 and -1/r 2, brings the de-

parture angle at the slosh pole into the left-half plane. However, the deterioration in

rigid-body response (lower gain and phase margins) is generally unacceptable.

Finally, it should be noted that the slosh parameters (hinge point, pendulum

mass and length) are a function of fluid level and therefore vary with flight time. For

this reason, a complete design validation requires a full nonlinear, time-varying com-

puter simulation.

3.3.1.3 Engine Inertia

The influence of engine inertia on the d.yn.amic properties of a simplified

autopilot may best be displayed by including the 5 term in the pitching moment

equation*; viz.,

I e = T £ 8+L £ O+ £ £
yy c c _ _ mR R c

*Strictly speaking, the added term is of the form (IR + m R £R P'c) "_" However,

quantity m R LR £c is generally much greater than IR. We have also used the _ _ 0

approximation.
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Figure 17. Root Loci Showing Influence of Slosh Damping

or, in transfer function form

e mR_R
_-=_c T

O

(86)
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Figure 18. Slosh Stabilization by Passive Filtering

Using this to represent the vehicle dynamics in the simplified autopilot

schematic of Fig. 10, the corresponding root locus appears as shown in Fig. 19. The

engine inertia effect manifests itself in the presence of a pair of zeros on the imaginary

axis. Therefore, the closed-loop frequency for the system is always less than

/Tc/mRL R, no matter how high the gain. Quantity/Tc/m R _1_ is often referred to as
the "tail wags dog" (TWD) zero. It is equal to the frequency at which the transverse

inertia forces resulting from the gimballing of the rocket engine cancel the thrust

forces due to the rocket angular deflection.
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Figure 19. Root Locus of Simplified Autopilot Showing Influence of Engine Inertia

This effect is seldom important for the rigid-body modes in the current gen-

eration of launch vehicles. It could conceivably be significant for vehicles where the

rocket engine mass is very large. In such cases, a TWD zero of the same order of

magnitude as the control frequencies could result and could seriously compromise the

control problem. Generally, however, the TWD zero is most important in the bending

stability problem. This question, which is the crucial one in the design of launch

vehicle autopilots, is considered next.
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3.3.1.4 Vehicle Flexibility

The flexibility of the vehicle enters the control problem primarily because

the sensing instrumentation (gyros) picks up not only the rigid-body motion but also

the local elastic distortions. Theoretically, because the vehicle is a continuous body,

the elastic motion is described by a system with an infinite number of degrees of

freedom (bending modes). In practice, either a truncation of the infinite series or a

lumped mass model is used to yield a system with a finite number of elastic modes.

The number of modes that are significant in a given situation depends on the bandwidth

of the primary dynamic modes. The high-frequency-attenuation properties of the basic

system transfer function, together with inherent structural damping, is sufficient to

dismiss the higher elastic modes from further consideration. In the current generation

of launch vehicles, five elastic modes are usually sufficient to describe the significant

dynamic properties of the vehicle. Often no more than three modes are needed.

How vehicle flexibility influences the autopilot design can be demonstrated by

assuming that only one bending mode is significant. In this case, the added degree of

freedom is described by Eq. (29). The generalized force, Q(i), is a function of the

normal forces on the vehicle, _; F z, and indicates how a particular bending mode is

coupled to all the other dynamic modes of the system. Considering only first-order

effects, the i th bending mode is excited primarily by rocket engine deflection. Thus

we write

= T 6 + _R _ _(i)c mR (_) dZ

since the point of application of these forces is at the rocket engine swivel point,

= L T. However, the bending modes are generally normalized at _ = _T such that

¢)(i) (_T) is always unity. Eq (29) therefore becomes

(s 2) q(i) = 1 ( s 2 )5 (87)2 + 2 _i C_.is + COi M(i) mR £R + Tc

As is evident from Eqs. (21) and (31), the rigid-body pitching motion is also

coupled to all the other dynamic modes of the system. Again, ifwe consider only

first-order effects, this may be described with sufficient accuracy by*

I _ = T .g 5+L Z O+ Z _ 5 (88)
yy c c _v (_ mR R e

*We continue to use the approximation, _ _ 0.
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The gyro outputs are

0)
epG = 8 + _G

q(i) (89)

(90)

and the feedback signal is

eF = eRG÷ePG (91)

Here we have written (r_ i) for a (i) (_G) where _G denotes the point on the

vehicle where the gyro is located.

We now seek to obtain the open-loop transfer function, 8F/8 E. The additional
relations pertinent to this objective are

OE = % - OF (92)

6c = KA( (93)

o0 s + W s +K 6 = K o0 5 (94)+2_c c c c c e c

For the moment, the effect of load torque feedback to the servoactuator is

neglected. A schematic diagram for the system is shown in Fig. 20.

From Eqs. (89) - (91) we obtain

KR coR s +1 + q(i

OF= 2+ 2_ R °JR S + it,2)

(95)

The first factor on the right-hand side of this equation may be expressed as
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/
/

/

2 2 2

KR _R s s +2_ R _RS+ U_R
+1 =

2 2 2 2

s +2_ R _Rs+a)R s +2_ R _RS+a)R

2 2

+2_R _R s+_,R

where

Normally, _R _ KR _" We have, therefore,

= _R_R - a)R_R 2 2 + ......

WR 1

Consequently, Eq. (95) may be expressed as

e F

1

From Eqs. (87) and (88), we find

2 c 2

(96)

(97)
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where

A o)

2

w k

= 1
T c a(i)

/_c M(i)

2 Tc UG-(i)
+

tJ't _c M(i) _C_

Tc aGO)
1-

_c M(i)

(98)

(99)

1 1

_k _k = A-_
(100)

Combining Eqs. (93) and (94),

5 K A Kc _c s + K I

0._ s + O_ 8 +K _
+2-c c c c

Making use of Eqs. (96), (97), and (i01), we obtain the complete open-loop

transfer function as follows.

F + n_

(101)

2 3 w s +c_ s +K c,_
s -_ s +2 WRS+ +2_c c c c

+ 2 _k s +
x (102)

s 2 +2]_t Wis +_i
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2 2 A(i)
KA Kc KR l'_cmR _R C°c C_R

K0 = T (103)
C

For studies in the low-frequency range, we may take OOR, _'c
In this case, the transfer function reduces to

"_ _ and m R -* O.

0
F

Kl(S + KI) (s + _)(s2 + 2 _k °ak s + U_k)

0E s(s2-Do_)(s+K)(s2+2_i a''s+l °¢i2)

(104)

K 1 = K A Kc KR Nc A(i) (105)

We see that by taking account of one bending mode, an additional pole-zero

pair has been introduced in the open-loop transfer function. In general, by consider-

ing n bending modes, n pole-zero pairs of this type will appear in the open-loop transfer

function. However, in this case, the algebra becomes enormously complicated, and

the use of a computer is mandatory.

Extensive experience with this problem has shown that the effects of each

bending mode can be analyzed separately. Indeed, the rigid-body and slosh modes can

also be examined independently of the bending modes. The results of a complete analog

or digital computer simulation usually lead to only minor refinements.

The analysis of the bending modes one at a time is permissible since they are

orthogonal. Coupling occurs only through the aerodynamic and engine inertia forces.

Coupling between slosh and bending forces, for example, is negligible, because these

modes are highly tuned (very low relative damping factor).

Therefore the analysis of only one mode at a time not only is instructive in

obtaining a basic insight to system dynamics; it also leads to results that are very

close to the final values obtained by complete computer simulation.

It is fairly straightforward to determine the stability properties of the sys-

tem with one bending mode included. Focusing attention on the low-frequency range,

we use the open-loop transfer function, Eq. (104), and adopt the approximation*

K I _ 0. Quantity T c oG(i)/Dc M (i) is of critical importance, and we distinguish three
cases:

*This is equivalent to neglecting the pole-zero pair in the vicinity of the origin in the

s plane.
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Case. 1

T -(i)
e °tO

Pc M(i)

< 0

Case 2 0 <

_c M(i)

< 1

Case 3

T - (i)
c vG

1 < •

_c M(i)

For Case 1, it is easy to see that A(i) > 0 and c_k < coi. The pole-zero con-

figuration appears as shown in Fig. 21. As long as _bR > _bc, the angle of departure of
the root locus from the bending pole is into the left-half plane. In this case, we say

that the bending mode is phase-stabilized. As long as the open-loop gain is above some

critical value, the system is stable. *

Examining Case 2, we see that A(i) > 0 and o_k > cdi are implied. The pole-

zero configuration then appears as shown in Fig. 22. The angle of departure of the

root locus from the bending pole is into the right-half plane, and the mode is there-

fore unstable for all values of open-loop gain. If we consider the effect of bending

mode damping, the situation might appear as shown in Fig. 23. Here one chooses an

open-loop gain sufficiently low that the closed-loop poles are still in the left-half

plane. This is called gain-stabilizing the bending modes. Note that the open-loop gain

must still be high enough to yield acceptable rigid-body response. This approach has

been found to be most useful for the higher bending modes and when aerodynamic ef-

fects are small (Iacz _ 0).

Turning to Case 3, we see that A (i) < 0 and a)k2 < 0 are implied. This means

that the open-loop gain, K 1, Eq. (105), is negative and that the bending-mode zeros

are on the real axis in the s plane (Fig. 24). Because the open-loop gain is negative,

the root locus is now determined by the zero-degree angle criterion (rather than the

usual 180 degrees). The angle of departure from the bending pole is still into the

right-half plane, as in Case 2, and the root locus has the general form shown. The

system is therefore unstable.

*For simplicity, we assume that the mode damping, _i, is zero.
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Figure 24. Pole-zero Configuration for Case 3

In the low-frequency range, only the condition represented by Case 1 is stable.

may always be ensured by locating the gyro so that aJ l) is negative; this generallyThis

means an aft location on the vehicle (at least for the lower bending modes).

To analyze the higher bending modes, we must use the more general transfer

represented by Eq. (102). * Assuming that aJ i) is negative, the pole-zerofuncUon

configuration and departure angles at the bending poles are as shown in Fig. 25. Note

that for increasing _i, the,departure angle tends to rotate in a clockwise fashion. This

*We still use the approximation KI _ 0.
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is because for the higher frequencies, the phase lags due to gyro dynamics and higher-

order actuator effects become more significant. Note that when the bending-mode fre-

quency passes the TWD zero, a 180-degree phase reversal is introduced. When aG(i)

is positive, the departure angles at the bending poles are 180 degrees from those shown

in Fig. 25. This condition is depicted in Fig. 26. It is apparent that the simple ex-

of checking the sign of q_(i) is no longer sufficient to ensure bending modepedient

stability where the higher bending modes are concerned. In fact, for actual vehicles,

some bending modes are always stable while others are unstable. It is therefore not

feasible to phase-stabilize all the bending modes, and some combination of proper

gyro location, filtering, and gain selection must be used. These factors are taken up

in detail in the next section.

3.3.2 Stabilization Techniques

The bending-mode stabilityproblem is the most difficultpart of launch vehicle

autopilot design, primarily because the bending-mode properties are not known with

great precision (especially the higher modes), and they vary with flight time. As long

as there is a fair separation in frequency between the bending and rigid-body modes, a

proper selection of gain, sensor location, and filtering will yield an acceptable design.

In the current generation of launch vehicles, the ratio of fundamental bending to rigid-

body mode frequency is on the order of 2.5 to 3. When this figure becomes lower, it

is increasingly more difficult to ensure adequate rigid-body response and at the same

time stabilize the bending modes. In this case, gain-stabilizing the (relatively) higher

bending modes is not effective, because there is little latitude in utilizing the struc-

tural damping, _i, when the frequencies are fairly low. It is therefore necessary to

use more sophisticated techniques. These are discussed in another monograph in this

series. * The more conventional approaches are considered next.

3.3.2.1 Filters

Sec. 3.3.1.4 showed that the lower bending modes can always be phase-

stabilized if the gyros are located at the aft end of the vehicle (a__(i) negative). How-

ever, it is often necessary to locate the instrumentation package near the nose of the

in which case (at least for the lowest bending mode), _G (i) is positive, andvehicle,

the mode is unstable. This corresponds to Cases 2 and 3, illustrated in Figs. 22 and

24 respectively. It is possible, however, to stabilize these modes by appropriate

passive filtering. The main requirement is to rotate the departure angle from the

bending pole into the left-half plane. Referring to Fig. 22, if a simple lag filter is

added to the open-loop transfer function, the situation depicted in Fig. 27 is obtained.

The original departure angle from the bending pole is shown by the dotted line. In-

__1 degrees of phase lag
troducing the simple lag filter (i.e., the pole at - _'F ) adds SF

to the bending pole departure angle, with the result that it is now directed into the

left-half plane. Thus the bending mode has been phase-stabilized. There is a penalty

*Vol. III, part 8, "Adaptive Control."
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Figure 27. Stabilizing an Unstable Bending Mode by Passive Filters (Case 2)

incurred here, in that the use of a passive filter decreases the gain and phase margins

for the rigid-body mode. In short, too large a value for the time constant, TF' will

seriously deteriorate rigid-body performance. A successful use of this approach,

therefore, requires a fair separation (about 3 or 4 to 1) between bending and rigid-

body frequencies. For

Tc c(i)
> 1

_c M(i)

64



which correspondsto Case3 of Sec. 3.3.1.4, the bending zeros are on the real axis.

This configuration is shown in Fig. 24. By adding a simple lag filter as before, we

obtain the condition shown in Fig. 28. The passive filter again adds @F degrees of
phase lag, which rotates the bending mode departure angle into the left-half plane.

The bending mode is now only gain-stabilized, since, for sufficiently high open-loop

gain, the bending mode becomes unstable.

It is helpful to examine some of these situations quantitatively. For this pur-

pose we will use the basic data for a typical launch vehicle, as given in Appendix A.

In all cases, the open-loop transfer function is

IITI

/

Figure 28. Stabilizing an Unstable Bending Mode by Passive Filters (Case 3)
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K.R = 0.333

KI = 0.40

We will examine four cases:

A. t = 72 sec Rate Gyro @ SN966

T = 0.0265 sec
1

1.2 ffi 0

B. t = 152 sec Rate Gyro @ SN966

I" ffi 0.0265 sec
1

1.2 = 0

C. t = 72 sec

D. t = 152 sec

Rate Gyro @ SN400

I" : 0.04sec
1

1.2 = 0.04 sec

Rate Gyro @ SN400

I" = 0.04 BOO
1

1.2 = 0.04 sec
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The respectiveroot loci are shownin Figs. 29-32. With the rate gyro lo-

cated near the aft end of the vehicle, the mode slope at the gyro location is negative.

This implies a stable condition. Thus Fig. 29 corresponds in form to Case 1 of Fig.

21. At a later time of flight, t = 152 sec, the fundamental bending-mode frequency has

increased to 41, 1 rad/sec, with the result that the departure angle of the bending pole

is into the right-half plane (Fig. 30). This illustrates the basic limitation of the simple

stability criterion stated in Sec. 3.3.1.4; namely, the bending mode is stable if aG(i)
is negative. The frequency range in which this criterion is applicable must be deter-

mined beforehand. This can always be done once the open-loop poles and zeros are

specified, using a diagram of the form of Fig. 25.

It will be noted that Cases A and B employ a simple lag filter whose effect is

to deteriorate both the rigid-body and the bending-mode responses. This has been in-

cluded because many autopilots will have some lag introduced into the lower-frequency

modes from filters intended to shape the intermediate or higher bending-mode loci.

Obviously, Case B is unsatisfactory, and some remedy must be employed. The sim-

plest solution is to introduce some phase lead in the vicinity of 30-50 rad/sec. This

is sometimes done by switching in a filter that is active only in a prescribed flight
interval.

Cases C and D illustrate the condition of a gyro location near the nose of the

vehicle (_c(i) positive). Stability considerations require that a double lag filter be

used in order to stabilize the bending mode. The gain margin in the system is severely

compromised but may be assumed adequate.* The phase margin in Fig. 31 is about

37 degrees; in Fig. 32, it is about 85 degrees.

In all the above cases, only one bending mode at a time was considered.

Usually, a gyro location that is favorable for one mode is unfavorable for others. Pre-

liminary selection of filters of and sensor location must therefore be validated by a

complete computer simulation that includes all significant coupling and nonlinear ef-

fects. The factors that influence these final design values are discussed next.

3.3.2.2 Sensor Location

When establishing preliminary shaping-filter values and sensor location, one

focuses primary attention on the fundamental bending mode. To assure that the in-

fluence of nonlinearities and coupling with other modes does not vitiate the selected

gains, locations, etc., the complete system dynamics must be studied via computer.

Such a simulation must include all significant bending modes (generally a maximum

of five), higher-order engine inertia effects as well as oil and mount compliances,

flow nonlinearities, etc. Aerodynamics, sloshing, and instrumentation dynamics must
also be included.

*With K A = 1.8, the gain margin is on the order of 6 db.
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The inclusion of aerodynamics usually leads to an effective reduction of the

bending-mode frequencies and some damping. Instrumentation and actuator dynamics

are often in the bandpass of the intermediate and higher bending modes and therefore

have a significant effect on their stability properties. Coupling of the slosh modes

with the fundamental bending mode is often severe at certain times of flight.

Experience has shown that the most important nonlinearities in the system

are:

a. The hydraulic pressure-flow relationship in the servo valve.

b. Engine gimbal bearing coulomb friction.

c. Valve dead zone.

Saturation effects in engine deflection and instrumentation are important to

a lesser degree.

An unstable condition manifests itself in the form of a limit cycle rather than

a divergent oscillation. Stability may therefore be viewed as a condition whereby the

system either returns to a quiescent state or exhibits a limit cycle whose amplitude

and frequency are not objectionable.

One valid criterion for judging the merit of a particular sensor location is the

gain margin obtained. As used here, "gain margin" is not a precise term, since we

are dealing with a nonlinear system. Instead, it is taken to mean the ratio of open-

loop gain that produces an unacceptable limit cycle to the nominal value of this gain.

Values of open loop-gain and sensor location are determined as follows. For

any given sensor location, determine the loop gain, KA KR, that results in an unac-
ceptable limit cycle. Do this for a series of locations along the vehicle. The results

may be plotted in the manner shown in Fig. 33. This figure shews the stability

boundaries for three times of flight, superimposed on one plot. It is now possible to

select a location and an open-loop gain that is satisfactory throughout flight. As a

rule, the preliminary choices will be modified only slightly, since the broad features

of the system derived by simplified analyses do not alter radically when higher-order

dynamic effects are included.

Neither the simplified analytical or empirical approach is valid by itself for

a complex system typified by the launch vehicle autopilot. However, a judicious blend

of both in the manner noted above represents an efficient design procedure.

3.3.3 Influence of Nonlinearities

In the discussions thus far, it has been assumed that the vehicle autopilot dy-

namics could be represented by a linear, constant-coefficient system at any given
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instant of flight time. The state variables, in this context, represent small deviations

from some prescribed reference condition. Two questions arise. Is this so-called

"time-slice" approximation valid; and how serious is the neglect of various non-

linearities in the system ?

In the first place, the implicit assumption in the "time-slice" approximation

is that the vehicle mass and inertial properties vary "slowly" over a small time in-

terval and therefore may be represented by average (constant) values in this interval.

If the resulting linear stationary system is found to be stable, then it is presumed that

the nonstationary (time-varying) system is stable. However, counter examples show

that this presumption is not always true. For a launch vehicle autopilot of the type

shown in Fig. 10 and having negligible actuator phase lag, sufficient conditions for

stability of the nonstationary system are given by(18)

-KA e

2 KA KR De > (KA btc - _tX)
(lo7)

K Abt c-bt0_ > 0 (108)
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Eq. (108) is the condition derived in the usual time-slice case. Inequality

(107) displays the destabilizing influence of a rapidly increasing/_cz in quantitative

form. Time histories of/_c and _¢_ for a typical Atlas vehicle are shown in Figs. 34

and 35. Positive values of _cz vary from about 0.007 sec -3 to 0.078 sec -3 near max q.

It is readily found that in this case, inequality (107) is satisfied with ample margin.

Thus, at least in the case of large booster vehicles, the stability of the nonstationary

system is not a major concern (as has been verified by extensive flight tests).

Nonlinearities in the system are derived from various sources:

a. Flow nonlinearities of the servovalve.

b. Engine gimbal coulomb friction.

c. Saturation and dead-zone effect in sensors.

d. Displacement and rate limits for engine deflection angles.

Sources c and d are not usually significant in launch vehicle autopilots because high-

quality gyro instrumentation is employed and sufficient control capability must be

provided in the rocket engines to prevent prescribed limits from being exceeded. How-

ever, nonlinearities a and b do have a significant influence on the control system re-

sponse, especially insofar as bending-mode limit cycles are concerned.

Taking account of these nonlinear effects means that the engine dynamics

described by Eq. (33) are no longer valid, since this system is not linear. By taking

a describing function point of view, we may still represent the actuator by a transfer

function identical in form to Eq. (33). However, Kc, coc, and _c are no longer con-
stant but are actually functions of the amplitude and frequency of the applied signal

(assumed sinusoidal).

The method of analysis is due to Backus (10) and is described in detail in

another monograph in this series. * The transfer function for the "equivalent linear"

system (describing function) is given by

:)_cn cocn cn cs + o0 s+K co 5

1 (s+K0) TL= Kc co25cc -
(109)

*Vol. III, part 11, "Component Dynamics."
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Definitions and typical values for the servo system parameters may be found

in Appendix A. Having the system parameters, the quantities O_cn, _en' and K 0 axe

then functions of 5, the output amplitude, and the frequency, _¢.

In the low-frequency range, Eq. (109) may be simplified by letting W c -_ _.

The result is

K S

5 c

5 s+K'
C C

(110)
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where

K _ = K
c c

A typical

I_ A 2 cl1 -I

Cf L + _ KK
+ m

A 2 R 2

)lot of K_ vs. 5 is shown in Fig. 36 for several values of co.

The use of the "equivalent linear" transfer functions, (109) or (110), in deter-

mining the (possible) existence of stable or unstable limit cycles will now be described.

It should be pointed out, first of all, that the usual describing function is expressed by

j corather than s. Thus Eq. (109) or (110) is, strictly speaking, true only for s = j co.

However, if we use s = a + j co whenever o" is sufficiently small, * the results obtained

will be reasonably accurate.

Assume now that a linear analysis of the autopilot shown in Fig. 20 indicates

a potentially unstable bending mode, the root locus of which has the form shown in Fig.

23. Obviously, for sufficiently high open-loop gain, KA, there will exist a divergent
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oscillation at the bending mode frequency. It will be shown that by taking account of

the actuator nonlinearities, one can predict the amplitude and frequency of a limit

cycle rather than a divergent oscillation (a condition verified by computer simulation).

To do this we assume a value for the steady-state engine angle, 5, and a fre-

quency _ = _i (i. e., the bending-mode frequency). This then yields values for the

parameters of the equivalent linear transfer function, Eq. (110). * One obtains these

either by direct calculation or from a curve of the type shown in Fig. 36. Having this,

we may then calculate the closed-loop poles for the system. This is done for a range

of values of 8. Fig. 37 shows the closed-loop bending poles obtained in this fashion.

Here the bending mode frequency _i _ 28 rad/sec; a constant value of KA = 1.5 was
used throughout. Fig. 37 contains all the necessary information relative to the exist-

ence of stable or unstable limit cycles and their respective amplitudes and frequency.

To show this, we proceed as follows. Suppose that some disturbance produces an

engine oscillation of amplitude 5 = 0.05 deg. This results in a closed-loop pole labeled
5 = 0.05 in Fig. 37. Since this pole is in the left-half plane, the engine amplitudes will

damp out, such that successively smaller values of 8 are produced, eventually leading

to a quiescent state, 5 = 0. However, if some disturbance causes an engine oscillation

of amplitude 5 = 0.10 deg, it yields a closed-loop pole in the right-half plane, with the

result that the engine amplitudes increase and the closed-loop poles approach point B.

If 5 increases still further, the closed-loop poles enter the left-half plane, meaning that

the oscillation amplitudes tend to damp out. Thus it is apparent that point B is a point

of stable equilibrium and corresponds, in fact, to the amplitude and frequency of a

stable limit cycle; in the present case, these have the values 5 -- 0.37 deg and _ = 28.15

rad/sec. Similarly, we find that point A corresponds to an unstable limit cycle. It

may be concluded, therefore, that any disturbance that produces an engine amplitude

< 0. 075 deg will ultimately return to a quiescent state 5 = 0, while any disturbance

that causes a larger engine amplitude will lead to a stable limit cycle with amplitude

and frequency as noted above.

Instead of the one locus shown in Fig. 37 for one value of open-loop gain, one

may form a series of loci for different values of open-loop gain as shown in Fig. 38.

An examination of these loci shows that when K A _ 1.30, the system returns to the

quiescent state, whatever the magnitude of the engine amplitude caused by a disturb-

ance. It is apparent that an identical approach may be used to determine slosh limit

cycles.

In applying the technique herein described, the use of a digital computer is

virtually mandatory. However in certain simplified situations, it is possible to modify
the above approach such that conventional root-locus techniques may be used. (19)

Consider, for example, the autopilot shown in Fig. 39, in which the equivalent linear

transfer function of Eq. (110) is used. Via some elementary operations, this may be

transformed to the form shown in Fig. 40, in which parameter K c appears as an "open-

loop gain" in the transfer function.

*Or, equivalently, Eq. (109), whichever is used.
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eE + G: (s)G2 (s)G 3 (s)}

(111)

For convenience, we have defined

8 M = e+-(i) q(i)° G
(::2)

in Figs. 39 and 40, which is useful when only one bending mode is considered.

We then take

G 1 (s) = K A

G 2 (s)

btcA(i) (s2+2_k _kS+Wk 2)

(s2-bta) (s2+2_i _is+a)i 2)
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G 3 (s) = K R s + 1

The expression for G 2 (s) is obtained from Eq. (97) after neglecting engine

inertia effects. Substituting these relations in Eq. (111), we find

2)e F / \ s s -li01 +2_. W.s+c_ i
---- 1 1

(s )4+als +a2s +a3s+a 4

(113)

where

a 1 = 2_i w.i + B(i)

2

a 2 o_.1 - tZot + B(i) (2 _k ¢°k

a 3 = - 2 _i W.11.L0_+ B(i) (0.":

= W 2 + B (i)
a4 - D_ i

2_k _k_

B(i) = KA KR Dc A(i)

We may apply the conventional root-locus technique to the open-loop transfer

function, Eq. (113). The "variable" open-loop gain is now 1/K c instead of KA as in

the usual caseJ

Using the data for a typical launch vehicle, * the pole-zero configuration for

Eq. (113) would appear as shown in Fig. 41. Note that for this case, the aerodynamic

and bending-mode effects appear as open-loop zeros rather than open-loop poles.

(Compare with Figs. 21-24.) The complex pole pair of lower frequency in Fig. 41 is

associated with the rigid-body mode, while three possible locations are shown for the

complex pole pair due to bending. Three different loci are thus possible, depending

on whether the bending pole in Fig. 41 is above or below the bending zero, or whether

*See Appendix A.
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it is in the right-half plane. The location, in fact, directly depends on the value of A (i)

and roughly corresponds to the three conditions discussed on page We seek to

determine the (possible) existence of limit cycles for this system.

Consider first the pole location, Pl" The bending-mode locus for this case is

shown in Fig. 42 in enlarged form. Suppose a disturbance applied to the system pro-
I

duces an engine amplitude, 5. This corresponds to a certain value of Kc and, in turn,

to a definite value for 1/K c. The closed-loop pole is then always in the left-half plane,

which means that 5 decreases so that 1/K c always increases. In other words, what-
ever the size of 5 induced by the disturbance, the syster_ will always return to a

quiescent state.

A somewhat different

situation prevails in Fig. 43.

If a disturbance produces a
value of 5 such that the corres-

!

ponding Kc results in a gain,
!

1/K c, located at point B, 5 de-
creases since this closed-loop

pole is stable. Then 1/K c in-
creases and the zero is approach-

ed, which means that a quiescent

condition is reached. However,

a larger disturbance will pro-

duce a 1/K c located at point C,
which means that 5 will in-

crease and that 1/K_ will de-

crease. The closed-loop pole

will move to the right, toward

the open-loop pole; this, in turn,

implies that the oscillaUon in-

creases without bound (explosive

instability). Point A is there-

fore an unstable limit cycle.

It is a straightforward

matter to calculate the engine

amplitude angle, 5, correspond-

ing to the unstable limit cycle.

One merely calculates the gain,

1

Increasing K---r"
C

Figure 42. Root Locus for Pole Position Pl

Im

1/K c. at point A by conventional root-locus methods. Then, using the relations for
I

K c, Cf, and CL, defined after Eqs. (109) and (110), one solves for 5, using the given
system parameters with w = _..

1

_°
1
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Finally for the pole location shown in

Fig. 44, one finds, using the same reasoning

as above, that point B is a stable limit cycle,

while point A is an unstable limit cycle. In

other words, if a disturbance causes an

engine amplitude 5 such that 1/KIc is located
at point C, the motion will die out. A larger

disturbance will result in a limit cycle whose

amplitude and frequency are determined by

point B.

The above methods have been re-

markably successful in predicting bending

and slosh mode limit cycles for launch ve-

hicle autopilots. They are an indispensable

supplement to the linear methods of analysis
for this class of vehicle.

3.3.4 Approximations

Im

1

P2

The analytical methods considered Figure 43. Root Locus for Pole

thus far have been based on various approxi- Position P2
mations of the system dynamics. These have

been necessary so that the salient features of the stability and response of the system

could be highlighted. In the preliminary stages of analysis it is neither necessary nor

desirable to perform a complete computer simulation, for two reasons. First, such

a procedure is highly uneconomical in terms of time and money; and second, no rational

basis is provided whereby certain response features are related to specific parameter

values. The use of a simplified mathematical model does provide a foundation for

analyzing and predicting performance qualities of the system. It is necessary, how-

ever, to justify the use of a particular model, either by complete computer simulation

or by some analytical means.

In this section, we will consider various methods of evaluating the errors in-

troduced by the simplifications employed throughout this monograph.

3.3.4.1 Aerodynamic Damping

The rigid-body pitching motion is given by Eqs. (21) and (26), the latter of

which contains all the coupling terms with other modes. Assuming for the moment

that the pitching motion is excited only by engine angle deflection, and including the

effect of aerodynamic damping, we have
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e _c

where

1 _ eL _ CN (_)

/.t_ = _-pU 0A2] 5
J0

x (_a-_)d£ (115)

and having assumed that ot _ O.

Eq. (114) differs from the

transfer function, (55), by the pre-

sence of the _ term, which arises

from aerodynamic damping. For launch

vehicles having no appreciable aero-

dynamic surfaces, this damping term

is very small. Its effect is illustrated

in Fig. 45, which represents the root

locus for the simplified autopilot. With

no aerodynamic damping, the pitching-

mode poles are located symmetrically

about the imaginary axis. Inclusion of

the damping term merely shifts these

poles slightly to the left. The percent-

Im

A

Figure 44. Root Locus for Pole Position P3

age error introduced by neglecting this damping is generally less than the percentage

error in other aerodynamic parameters. Its omission, then, is clearly justified.

While the aerodynamic damping has a negligible effect on the rigid-body re-

sponse, it may have a significant effect on the bending-mode response. To see this,

we write Eq. (29) as follows.*

(s 2 :) 1 [ 5 +_(i)_(i)] (116)+2_i ¢C. S + W q(i) = Tc
1 M(i)

*Mode shapes have been normalized at the engine gimbal point, which means that

(#(i)(_T) = 1.
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Figure 45. Effect of Aerodynamic Damping on Pitching Mode

where

_(i) 1 _0 L _CN (_)-- oA (p(i)($) d$ (117)

Thus, the effective relative damping factor is given by

_.(i)

_Y = g.+ q (zzs)

1 1 20_ i M (i)

_:i represents the structural damping, which is very small (on the order of

0.02). However, the second term on the right-hand side of the above equation is often
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of the same order of magnitude as l: i. It has the effect of shifting the bending pole-

zero pair to the left as shown in Fig. 46. Since the higher bending modes are gener-

ally gain-stabilized, this term can have a crucial effect on bending stability. How-

ever, it acts only during the time when aerodynamic effects are appreciable. Con-

sequently, omitting this term leads to a conservative analysis.

3.3.4.2 Modal Coupling

Coupling occurs either between orthogonal modes (q(i) to q(J)) or nonorthogonal

modes (slosh or plunging with pitching mode). Coupling between bending modes usually

results from the aerodynamic and thrust terms, the latter of which are the more im-

portant. Consider, for example, *

(s 2)q(i) _ 1 [ 5 " O'(J)q (j)] (119)2 +2E i W.ls + W i M(i) Tc - iT T

where

(s 2) q(j) _ 1 [ 6_TT_(i) )] (120)2 +2/_j ¢0.j s + 0_j M (j) Tc UT q(i

Substituting q(J) from Eq. (120) into Eq. (119) yields

G TT O'T(j)"
q(i) _ T c j (s) + M(j)

i (s) Gj (s) - M(i) M(j) j

(121)

2 2
G.(s) = s +2_. w.s+ W.

1 1 1 1

2 2
G.(s) = s +2_. W. s+ W.
] J J ]

In the absence of coupling between the two modes, we would have merely

q(i) T_ = _ c 1

5 M(i) G i (s)
(122)

*We use the abbreviation (_T(j) -= 0_j) (£T).

87



Im

Including _,_

Aerodynamic

Damping

Neglecting

Aerodynamic

Damping

-K
C

Figure 46. Effect of Aerodynamic Damping on Bending Mode
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It is apparent that for

TT aT(J) 2

M(J) l

aT(i) (_T(J)T2 4 ¢0.2 2

M(i) M(j) I o_j

(123)

the transfer functions, (121) and (122), are essentially the same. To examine a

specific situation quantitatively, consider the first and second bending modes at t =

152 sec, the basic data of which are given in Appendix A. Substituting numerical

values in Eqs. (121) and (122) we find*

T T 0"T(1)

M (1)
- 50.0

T T {YT(2)

M (2)
= -71.1

2
Wl = 1689

2 2
_1 o)2 = 8. 975 × 106

It is easily verified that conditions (123) are indeed satisfied and that the

coupling between bending modes is quite negligible.

The analysis of coupling between nonorthogonal modes follows a similar

pattern. The influence of sloshing on the rigid-body mode, for example, may be as-

certained from the root-locus plot of Fig. 47, which shows the case for two slosh pen-

dulums. When the sloshing mode pole-zero pair are very close together (as is gen-

erally the case), the contribution in phase and gain to the control mode closed-loop

pole is completely negligible. When such is not the case, plotting the open-loop poles

and zeros, with a quick sketch of the resulting locus, ** will make this fact obvious.

*The engine swivel point, £T' is located at Station Number (SN) 1212,
**Detailed methode of performance analysis via pole-zero configurations are contained

in Ref. 20.
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3.3.4.3 Load Torque Feedback to Actuator

For purposes of preliminary analysis, the load torque feedback term, T L,
in the equation of actuator dynamics, (33), is generally neglected. As shown in Eq.

(34), this term contains the acceleration feedbacks from the pitching, plunging, and

bending modes. That due to pitching is usually the most significant. Let us take,

therefore, *

TL = mRS2 e'c +mRLclJ00

Assuming negligible aerodynamic effects, the 0/5 c block diagram would appear

as shown in Fig. 48. A simple manipulation yields the form shown in Fig. 49, which

permits the analysis of the 8/8 c transfer function more directly. We then have

5 - K co s3 2 2 DcmR£R

C C/ _ _--C C C 0_:

2c c 2_cOJc/_cmR2 _R _ 2_1
+ c (124)

Kwc C

assuming that 1)0/$ c < 0¢c.

For most launch vehicles,

2

2
K U) IRC c

2

c

2
o_ DcmR £2_c c R c

2

C c

2
K c_

C c

Therefore, the transfer function, (124), is essentially equivalent to (33), with

T L set equal to zero.

*We neglect IR in comparison with mR £:.
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3.3.4.4 Higher-Order Dynamic Effects

In studying the dynamic response properties of various modes, many well-

known simplifications have been used. The most common has been to eliminate from

consideration those modes that are far removed in frequency from the one being

studied. Thus, for example, gyro dynamics are neglected when the essential features

of the rigid-body mode are analyzed, since _R is much greater than the undamped

natural frequency of 8. These factors are discussed in detail in another monograph. (20)

3.3.5 Complete Simulation

Using the techniques outlined thus far, one may, with a high level of confidence

in satisfactory performance, formulate a fairly complete autopilot design. Since actual

flight tests for design refinement are highly uneconomical, it is logical to simulate

"flight" via computer. The simulation should include time-slice studies with all modes

and nonlinearities accounted for, so that the stability properties of the system, espe-

cially the higher bending modes, can be validated. Such a simulation, with all higher-

order actuator and instrumentation dynamic effects included, will then yield the proper

gain and phase relationships, which are not easy to obain in a simplified analysis. A

lack of agreement between the theoretical and computer results should be carefully

examined. Dismissing obvious numerical or computing program errors, this would

indicate that certain parameters were more critical than supposed, or that particular

analytical simplifications were not permissible.

Complete time-varying analog simulations should also be performed, espe-

cially for analyzing response to winds. Bending deflections should be included, since

these have a significant effect in the induced bending loads.

Finally, actual flight traces, when compared with computer results, pinpoint

problem areas. A good simulation serves to locate a possible malfunction and is an

invaluable tool in providing a "fix."
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APPENDIX A

BASIC DATA FOR A TYPICAL

LAUNCH VEHICLE

A. 1 RIGID-BODY PARAMETERS

UNITS 0.5 SEC 72 SEC 152 SEC

m 0 slugs 8225 5058 1670

I slug ft 2 3.25 x 106 2.42 × 106 1.50 × 106
YY

1] 0 ft/sec 2 40.5 66.3 215.2

T c lb 308,000 342,000 356,000

L lb/rad 0 198,000 9,000

_c ft 33.9 32.3 46.8

£ ft - 34.1 18.6
o_

U 0 ft/sec - - _

-2
/_c sec 3.21 4.56 11.10

-2
D_ sec 0 2.80 .19

T T lb 366,100 418,900 436,400

A. 2 SLOSH PARAMETERS

UNITS 0.5 SEC 72 SEC 152 SEC

mp1 slugs 113 388 239

mp2 slugs 200 280 128

Lp1 ft 1.79 2.73 4.81

Lp2 ft 2.43 2.75 4.61

£PI ft 21.12 5.56 -18.52

£P2 ft -13.71 -20.62 -39.08

_PI sec -2 O.0297 O.0591 -0. 6352

DP2 sec -2 -0. 0342 -0. 1582 -0.7178
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A. 3 BENDING PARAMETERS

UNITS 0.5 SEC 72 SEC 152 SEC

M (1) slugs 2540 1590 1200

M (2) slugs 2470 9550 2260

M (3) slugs 4400 1840 1420

Wl rad/sec 16.5 18.9 41.1

a_2 rad/sec 41.6 60.7 72.9

_3 rad/sec 67.4 87.1 238.0

_(1), SN400 rad/ft 0.0384 0.0044 0.0623

(2), SN400 rad/ft 0.00192 -0.0276 0.0309

a (3) , SN400 rad/ft -0.0770 -0. 0813 -0.2902

a(1), SN966 rad/ft -0.0702 -0. 0543 -0. 1475

(2), SN966 rad/ft 0. 1037 0.5672 0.2182

_(3), SN966 rad/ft -0.3281 -0. 0951 -0. 0290

A(1), SN400 N.D. -0.45 0. 793 -0. 665

A (2), SN400 N.D. 0.925 1.217 0. 562

A (3), SN400 N.D. 2.68 4.31 7.55

A (1) , SN966 N.D. 3.65 3.56 4.94

A (2), SN966 N.D. -3.03 -3.45 -2.10

A (3), SN966 N.D. 8.16 4.88 1.65

a (1), SN1212 rad/ft -0.0550 -0.0648 -0. 1375

_(2), SN1212 rad/ft -0. 1218 -0. 1710 -0.3680

ff (3), SN1212 rad/ft -0.2720 0. 5650 0. 3400

The engine swivel point is located at SN1212
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A.4

A

ft 2

B

Ib/_t2

%

CL (ft3 /see) /f _-2

CV

lb ft/(rad/see)

/R Slug ft 2

K
a

rna/rad
K

in
lb /ft

K

v (ftS/sec)/rna

q
ft

rnR slugs

P

s ib/ft2

P2 _bl_2
2

ft

VT
ftS

The engine servo System

the following meaning: e°_igUration is shown in Figure A1.

2.47 × i0-2

3.89 × 107

565

4.78 × 10-6

3.60 × 103

377

340

i. 12 × 106

7. 125 × 10-6

2.52

30.8

4.32 × 105

7.2 × 103

1.77

7.6 × 10 -3

The Symbols have

99



Magnet

P
s

P2

Figure AI.

K
mp

_£

Schematic of Engine Servo System

A

B =

C B :

C L =

C V ::

IR =

K -
cy

K :
m

effective area of piston

bulk modulus of hydraulic fluid

coulomb friction coefficient of engine swivel point

discharge coefficient for valve orifice

viscous friction coefficient of engine swivel point

moment of inertia of engine about swivel point

servo valve transducer gain

effective spring constant of engine mount
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V

m R =

P =
s

R =

valve flow gain constant

distance from mass center of engine to swivel point

mass of rocket engine

valve supply pressure

reservoir pressure

moment arm

V T = total volume of hydraulic fluid under compression

Constant K a is a combination of servo valve and transducer gain, which relates the
valve current to the error signal in radians as follows.

i = K
v a

i = valve current, ma
v

PL = pressure differential across actuator piston

The flow through the valve is given by

Q = K i P_"
V V V V

where P is the pressure differential across the valve orifice. Constant K v is

usually Vbtained from the Qv - iv curves for several values of Pv" These are gen-

erally supplied by the valve manufacturer.

The effective mount compliance, Km, is given by

1 1 1

K K K
m mc mp

where Kmp and Kmc are the piston rod and mount spring constants respectively.
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APPENDIX B

MECHANICAL ANALOGY FOR LIQUID

SLOSHING IN A CYLINDRICAL TANK

NOMENCLATURE

a = radius of tank

F = force

g = gravity acceleration

h = height of liquid in tank

J ( ) = Bessel function of first kind of order m
m

k- = unit vector in positive z direction (see Fig. B1)

1 = length parameter (see Fig. B1)

= distance from point of force application to pendulum hinge point (see Fig. B3)
I

= distance from point of force application to center of mass (see Fig. B3)
0

L :: length of pendulum
P

m 0 = mass of rigid body (see Fig. B3)

m = mass of pendulum
i

M = total mass of fluid

p = pressure

q = velocity of fluid particle

s = Laplace operator

t = time

x = displacement of tank (see Fig. B1)

Y ( ) = Bessel function of second kind of order m
m

z = longitudinal parameter

rl = wave length of liquid measured from level surface

_i = roots of Eq. (B55)

P : density of fluid
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r, _ = cylindrical coordinates

= velocity potential function

t_ = force potential function

V = gradient operator

d

_)= vector

• B = scalar product of A and B

x B = vector product of A and B

104



B. 1 INTRODUCTION

We consider here the problem of determining the forces and moments pro-

duced by the sloshing of a liquid in a cylindrical tank. Only the translational motion of

the tank is considered, and the applied forces are assumed arbitrary. It is shown that

the forces and moments produced by the liquid sloshing may be duplicated by an analo-

gous mechanical configuration in which the sloshing liquid is replaced by a rigid mass

and a series of pendulums. Only the simplest case is considered- that of a cylindrical

tank subject to translation only. (13) The case of combined translation and rotation has

been analyzed by Sehmitt, (15, 16) while tanks of arbitrary shape have been considered

by Lomen. (14)

The development that follows proceeds from first principles in the theory of

hydrodynamic s.

B.2 METHOD OF SOLUTION

From the equation of continuity

5-La+ v. = 0 (B1)
5t

Assuming an incompressible fluid and irrotational flow, we obtain Laplace's equation

_72¢ = 0

which in cylindrical coordinates is expressed as

52¢ + 1 _¢ + 1 52¢ + 2¢ = 0

5r 2 r _r r 2 _2 _z 2

In addition, we have the equation of motion

-- 1

dt p

Now since

dt 5t

(B2)

(B3)

(B4)

(B5)
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we have, on substituting (B5) in (B4),

a_
_-+_.V_ : F-Ivp

P

Using the rule for the gradient of a scalar product, viz.,

vX._ = X.v§+_,.vX+Xx(vx_)+§x(vxX)

and observing thatfor irrotationalmotion

vx_ = 0

we find

IV_"q 1
/ \

Putting this in Eq. (B6) and using the fact that

F = -VG

we obtain

aq 1

Or, since

we find

= -re

_ lvp
= -V_ P

V(_¢ 1 / _1 1
P

Forming the scalar product of both sides of this equation by d_ gives

which, on integration, becomes

+ _+_ at

1
- d_ ---alp

P

B(t)

106

036)

(B7)

(B8)

(B9)

(BIO)

(BII)

(B12)

0313)

(BI4)

(BI5)



where B(t), in general, is a function of time, since the integration was performed with

respect to the spatial coordinates only.

If the fluid is incompressible, p -- a constant and Eq. (B15) becomes

I-_ l q2+ B(t) 1 (B16)p = o ao-n-- 

We note, incidentally, that if the motion is steady, _ does not depend on time,
and we obtain Bernoulli's equation

1 q2P + _ + = a constant 0317)

The equation for static pressure may be obtained from Eq. (B6) with q = 0; i.e.,

(B18)pF = Vps

The only body force is gravity acting in the negative Z direction.

so that

(See Fig. B1.)

(BI9)

Vp s = -pkg (B20)

Taking the scalar product of both sides by d_, we have

dps = - f_gdz (B21)

or

Ps = -Pgz + P0 (B22)

where we have used the fact that Ps = P0 st z = 0.

To obtain an expression for the dynamic pressure only, we neglect F in Eq.

(B6), obtaining in place of (B16)

8_ 1 2
PO = O{'_"-_q + B(t)] (B23)
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1 2
If the velocity is small, the _ q term may be neglected. Assuming steady-

state initial conditions at t = 0, Eq. 0323) reduces to

P0 = P 8._.¢ (B24)
_t

The problem now reduces to solving the Laplace equation for prescribed

boundary conditions and then determining P0 at the tank walls from Eq. (B24).

Now at the surface of the fluid we must have

dp
- 0 (B25)

dt

1
Taking Eq. (B16), neglecting the_q 2 term, and writing +gz for _ (since

gravity is the only extraneous force), we obtain, on differentiating with respect to time,

dp [ _2 ¢ d.z] (B26)

d"_" = P[-_t 2 g

under the aforementioned initial conditions.

2¢ + g_zz = 0 at z = 71
_t 2

By virtue of (B25), we have, therefore,

(B27)

where we have put

_¢ dz

8z dr
(B2 8)

If rl is small compared to h, we have

2¢ + gm = 0 at z = 0
3t 2 8z

(B29)

The boundary condition at the bottom of the tank is

5--_¢ = 0 at z = -h
8z

(B30)
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If the velocity of the cylinder in the horizontal direction is _, then the boundary

condition at the tank walls must be

_--_-_= - _ cos _0 at r = a (]331)
_r

To recapitulate, we must first solve the equation

_2_ + I_0 + 1 _2_ + _2_ =

_r 2 r _r r 2 _2 _z 2

o  B32)

where the boundary conditions are as follows

At the walls

_ = - _cos
_r

At the bottom

atr=a

_¢ = 0 at z = -h
_z

At the surface

32@ + g_¢ = 0 at z = 0

_t 2 _z

Assume a solution of the form

where

= R(r). _(_). Z(z)

R(r) is a function of r only

@(cp) is a function of _ only

Z (z) is a function of z only

Substituting (B36) in (]332) gives

1 d2Z 1 d2R ._1 dR __ft.1

Z dz 2 R dr 2 Rr dr r2_ d_2

(B33)

(B34)

(B35)

(B36)

(B37)
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Since the right-hand side of this equation does not vary with z, it follows that

1 d2Z
- K 2 (B38)

Z dz 2

where K is

so that

a constant. Substituting this back in Eq.

r 2 d2R +----r dR + K2r 2 = 1 d2_

R dr2 R dr _ dcp2

where m is a constant. Combining (B39) and (B40) gives

(B37) results in

dR

+ r_r + (K2r 2 - m 2) = 0
r 2 d2___R

dr 2

The solution of Eq. (B38) is

Z = clsinh (Kz) + c2cosh (Kz)

Z = c3z + c 4 for K= 0

Solving Eq. (B40) gives

_= c5cos m_p + c6sin mop

for K_ 0

Eq. (B41) can be reduced to the standard form of Bessel's equation.

R = C7Jm(Kr) + csYm(Kr ) for K _ 0

R = c9 rm + cl0r-m for K = 0

(B39)

(B40)

(B4D

(B42)

(B43)

(B44)

Its solution is

(B45)

(B46)

If the solution is single-valued, then _ in Eq. (B44) must not change when _p is

increased by 2y. Hence m must be an integer; the solution of Eq. (B41) must therefore

involve the Bessel function of the second kind as indicated in (B45).
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There are two solutions for _, depending on whether or not K equals zero; i.e.,

_0 = (c9 rm + cl0r-m)(c5cos m_ + c6sin m_)(c3z + c4) (B47)

_K = [C7Jm(Kr) + csYm(Kr)] (CsCOS m_ + c6sin m_)[clsinh (Kz)

+ c2cosh (Kz) ]

A more general solution is given by a superposition of both.

(B48)

¢ ffi#0 +¢K (B49)

The constants in the general solution can be determined by utilizing the

boundary conditions.

The boundary conditions at the cylinder wall can be fulfilled by

m

_r - kcos _ 0350)

at r=a

_OK
-- = 0 (B51)
_r

From (B47)and (B50),

(c9ma m-1 - cl0ma-m-1)(c5 cos m¢_ + c6sin m@)(c3Z + c4)=-xcos _ 0352)

from which it follows that

c = c 6 = clO =

m = 1

c9c5c4 = -

Therefore,

= - kr cos 0353)
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Now YI(0) = _ at r = 0. Since this is not compatible with the physical prob-

lem involved, it follows that c 8 = 0. Combining the resulting Eq. (B48) with Eq. (BS1),
wer have

o7c5J _(Ka)oos (Pielsinh (Kz) + c2oosh (Kz)] = 0 (B54)

where the prime denotes derivative with respect to r. Eq. (B54) requires that

J_(Ka) = 0 (B55)

An infinite number of positive real roots satisfy Eq. (B55). Denote these by

_1' _2' ....... _n" With each _k, a corresponding solution can be associated. We have,
therefore,

-_rcos (p + _ CnJ1 (_n _) cos (p[Onlsinh (_n _)

n=l

z

where for J '(_n) --0

_1 = 1. 840

_2 = 5.335

_3 = s.535

_4 = 11. 705

_5 = 14. s50

_k _ _k-1 + y
for n > 5

and where the constants are written with the subscript to emphasize their dependence

Oil n.

To fulfill the boundary conditions at the bottom of the tank, Eq. (B34), we

must have

n=l

co

CnJ 1 (_nr)cos _O[CnlCOSh (_nh) - Cn2Sinh (_Ilh)] _-_ = 0 (B57)

This requires that the expression inside the brackets vanish, or

On1 = Cn2 cosh(_nh )

(B58)
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Substituting this in (B56) and writing _n for CnCn2, we obtain

nl  n  co h( n )Co h (B59)

_n may be determined by satisfying the boundary condition at the surface,

Eq. (B35).

From (B35) and (B59), we have

_t 2
= -s3x(s)rcos _ +

n=l
z=0

where

_ _n_l(_n co_
Z=0 n=l

2 g____tanh (_nh)Wn = a

or

-s3x(s)rc°s¢_ + _. J1 (£nr) (s2+ a_)_n(S)C°S_° ffi 0 (B60)
n=l

where we have used the Laplace operational notation, since aH initial conditions are

zero.

/

Multiplying both sides of Eq. (B60) by rJ 1 .(£m a) dr and integrating between
the limits of 0 and a, we have

a

0

a r

+ E (s2 + _)_n(S'C°S_° frJl(_m_)Jl(_nr) dr'°
n=l 0

(B61)
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with

By virtue of the orthogonality properties of the Bessel functions*

a

f rJl(¢m--_)Jl(_n_tdr
0

= 0 for n# m

#

Jl(_n) = J_(¢m ) = 0

When n = m, we have*

a 2 r a 2

/rJ1 (_n_) dr= J --_" l(8_n)Jl(_n )

0

n

We may evaluate Jl(£n) interms of Jl(£n)as follows.

Since {primes now denoting derivativeswith respect to y)

j,_. d j,
Y 1(5') = _yy[Y 1(y)] - J]_(y)

= -_d[Jl(y) - yJ2fy)] - J_(y)
dy

d

= J_(y) - _yy[YJ2 (y)_ - Jl{y)

l y2j2(y)

1 d

y -

1 2jl(y )= __y + J2(y)Y

2j.Y 1(3 ' )= _ y2Jl(y ) + yJ2(y) = _ y2Jl(y) + Jl(y) - yJ_(y)

(B62)

(B63)

(B64)

* Ref. 17, p. 319.

115



Replacingy by _n gives

. 1 1 j_(£n)

Jl(_n) = -Jl((n) + _n2 Jl(_n) - _n

The lasttermin the above equation vanishes by virtue of (B63).

therefore,

We have,

Putting this in Eq. (]364) yields

a

f rJ12 (¢nr) dr
0

a 2 _n -1 2

= T J1 (F'n)

We may summarize the previous results as follows.

a

f ral(_nr)al(_mr) dr
0 I O for m @ n

for m = n

The first integral in Eq. (B61) remains to be evaluated. We have

a a 3 a[£nr_2 r

fr2Jl(_nr) dr= _ 0J _-_-)J1 (_na)(_ dr)
0

(B65)

(B66)

where

The integral on the right is of the form

fy2j (y)dy

r

Y = (na

_n
= -- drdy

a
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Since

d
_y [y2J2(Y)] = y2Jl(y )

it follows that

a a 3 [ r 2 }11 a3/r2j1(_nr)dro ='_ (-_') z2(_nr = _°2(gn)

By virtue of the relation

j'yJ2(y ) = Jl(y ) - y 1(3')

we obtain, replacing y with _n'

J2(_n ) = _nJl(_n ) - Jl(_n)

and since the last term vanishes by virtue of (B63), we obtain, finally,

a a3

fr2j1 (¢n_)dr --"_J,(¢n)0

Then, using (B66) and (B67), Eq. (B61) becomes

3
a

sax(s)Jl(_n )c°s ¢p

_n
+ n

\ tn

oo

where the n=_ is implied for all terms with the subscript n.

(B67)

(B68)

Solving for _n(S), we have

2a sax(s)
• (B69)

fin(S) = (_2- 1)Jl(_n) (s 2 + a_n2)

Substituting this back in Eq. (B59) gives the complete solution for the velocity

potential.
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@(s) = -ax(s)reos _o+ _ 0370)

B. 2.1 Dynamic Pressure at the Boundaries

Having the expression for ¢, the dynamic pressure at the walls of the tank

may be calculated from Eq. (/324) with _ evaluated at r = a; viz.,

[_--_¢] (B71)
PD = PL_t Jr=a

The force in the x direction exerted by the fluid on the tank wall is

(PDCOS _)(dzad_) (B72)

B. 2.2 Forces in the x Direction

The force exerted by the tank walls on the fluid is equal, but opposite in sign,

to expression (B72). Integrating over the whole tank, we have

p -- acos _ Ans4X(S)

Fx = _fh0f_ I_tJr= a _od_dz = +Ms2x(s) - Mn=l (s2+a_) (B73)

where

M = _a2h = total mass of fluid

A n

2atanh (_n--ha)

3.2.3 Moment Due to Dynamic Pressure

The dynamic pressure produces a moment about some axis A-A passing through

the z axis at a distance _ from the origin and perpendicular to the x-z plane. This

moment (clockwise) is given by

= -pD(z - _)a2cos _odzd_o - PDr2cos _odrd_o
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Integrating over the whole tank, we have

0 2_ _ a2_ 5g

0 r=a 0 0 z=-h

B2Ms4x(s)

= -B1Ms2x(s) +
(s 2 + _)

0374)

where

B 1 =_-_-

12a - cosh_ na/ a _ na/|

and where the following expressions were used in establishing the result.

cosh --_ (z + h)

. _" s4x(s) 2acos_ a

r=a

5@ ] = -s2x(s)rcos _0 +-g-
z---h

s4x(s) 2aJ1 (_nr) cos

E _s2 U_)(_2 1)Jl(_n)COSh(_n h)n=l +

Equations 0373) and (B74) converge very rapidly. The terms with subscript

n = 2 or higher may be dropped, therefore, without appreciable error. There results

F
X

MAXs4x(s) (B75)
= Ms2x(s)-

(s 2 + 4)

B2M4x(s) (B76)

= -B1Ms2x(s) +
(S2 + 2)
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A 1

a2 (_+h)B1 = 4-_-

_i =-7 tanh ¢i

B. 3 MECHANICAL ANALOGY

Consider the system shown in Fig. B2.

horizontally. The origin of coordinates is at 0.

Hence

Point P is constrained to move

The displacement of the c.g. of mass m 0 is given by

x 0 = x- _0sine

Y0 = -£0 c°s 0

The kinetic energy of mass m 0 is therefore

1,1002I • $0_cos 0)2 $2 _2sin2 0]T O = -_mor(:x - + +

1 i0_2_--_mO(xl.2 + Z0%2_ 2Lo_COSO)+-_

(B77)
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Figure B2. Analogous Mechanical System; Rotational Degree of Freedom Included
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Thus

The displacement of mass m I is given by

x I = x - _isln8 + Lpsin_0

Yl = - _1c°s 8 - LpCOS _0

Xl = _ - _'1_)c°s 8 + Lp_COS (p

_'1 = £1 _ sin 8 + Lp_O sin (p

The kinetic energy is given by

= 1
T 1 -_ml[({(- _18cos e + Lp6COS(p) 2 + (_l_)sin e + Lp_o sincp)2 ]

1miEn2 + £12{)2 + L 2:2 + 2_(Lp_OCOS <p- £18cos 8)= "_ p_P

2_lLp{)_cos_ (O - (p) ]

Hence the total kinetic energy is

with

T = T O +T 1

+ lm1[12 + _1282+ Lp2_2

- 2_1Lp8 _ cos (8 - _0)]

The moment corresponding to coordinate 8 is given by

d/ST

1
•2  02b2 e) 2=--m°t*2"" + - +

+ 2_(Lp_COS _ - _l{)COS 8)

a8 = m°L0(g0b - _cos 8) + I08 + mlgl[g18 - _cos 8 - cos (8- _o)]

_T
j

_8
[mo_o_sin O + mlLiE_stn O + Lp_stn (O- (P)]]{)
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Putting 0 = 8 = 0 (i. e., no rotation about point P), we obtain the expression for the

static moment (clockwise) about P; viz.,

_m0 _ 0
m1_1)_Ill.= + - ml_iI_@

where _0 has been assumed small.

For 8 = 0, the configuration is as shown in Fig. B3. In this case, the

expression for kinetic energy with the assumption of small _o reduces to

1 .2 I .2 --
T = Tm0x +Zml(x + Lp(p2 + 2L_x(p)p"-

8T
_X = mo_¢ + ml_ + mlLp _

and

(B79)

(B80)

_T

= mlLp(Lp_ + _)

_T _T

_x B(p

Therefor e , the equations of motion are

(m0 + ml)_ + mlLp_ = F

+ =

Expressing Eqs. (]381) and (B82) in operational notation and eliminating _o

between them, we obtain

ml s4

F(s) = (m 0 + ml)s2x(s) 2 x(s)

(s 2 + O_p)

(BSi)

(B82)

(B83)

where

2 g
_Op -

Lp
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Figure B3. Analogous Mechanical System; Translational Degree of Freedom Only
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SubstitutingEq. 0382)in (B79)gives the expression for the static moment
about P; i. e.,

ml _1
= _ (m0_ 0 + mlL1)s2x(s) + s4x(s)

(s 2 + 0_2)

Equations (B75) and (B76) are equivalent in form to equations (B83) and (B84)

The correspondence of parameters may be set up as shown in Table B1.

(B84)

a

b

C

d

e

Table B1. Correspondence of Parameters

HYDRAULIC MECHANICAL

M

MA 1

B1M

(m 0 + ml)

m 1

m0_ 0 + ml£ 1

B2M

2

ml £1

g__

Lp

From a and b of Table B1, we find

m I = MA 1

m 0 = M(1 - A1)

Also, from c and d,

B 2

(B85)

(BS6)

0387)

B1 - B 2
_0 -

1 - A 1
0388)
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and from e,

g
Lp- 2

(B89)

Equations (B85) - (B89) represent the complete mechanical analogy of the

hydrodynamic system herein discussed,
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