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TRANSIENT HEAT CONDUCTION IN FINITE SLABS WITH 

PO S IT10 N - DEPEN DENT HEAT GENE RAT ION 

by Roy W. M i l l e r  

Lewis Research Cen te r  

SUMMARY 

Transient heat conduction in a slab of finite thickness is analyzed so as to include the 
effect of position-dependent heat generation. One face of the slab is a convecting surface, 
and the other is considered to be insulated. Temperature distributions are obtained for 
the cases  of constant, linear, exponential, and cosinusoidal heat-production rates. The 
solutions a r e  obtained by the integral transform method and are in t e r m s  of Fourier se- 
r ies .  Numerical values of these se r i e s  were calculated and are presented graphically, 
in dimensionless form, so that specific cases can be easily computed. The method of 
solution is outlined in detail so that temperature distributions can be obtained for other 
position-dependent heat- generation rates.  

INTRODUCTION 

Heat generation in solids occurs in the fields of electrical, chemical, and nuclear 
engineering. Closed-form analytical solutions for the resulting conduction temperature 
distributions are generally limited to simple- shaped bodies with constant heat- production 
rates. 

Transient heat conduction in a slab with one insulated surface and constant heat pro- 
duction is treated in references 1 to  3. Solutions, with numerical results,  are given in 
references 1 and 3 for the case of a slab initially at zero  temperature with the uninsu- 
lated surface maintained at zero  temperature. The solution to  the same problem except 
for a slab with a constant initial temperature is given in reference 2. Also in refer-  
ence 3, charts are presented for the surface temperature variations when the uninsulated 
surface is convecting and the slab is initially at the temperature of the surrounding me- 
dium. 

The conduction problem in the slab initially at zero  temperature, with one insulated 



and one zero-temperature surface, is developed formally in reference 1 for an arbi t rary 
position-dependent heat-generation rate. The resulting temperature distribution is in the 
form of an integral, and specific generation functions a r e  not treated. 

stant but is a function of position relative to the reactor core  (refs. 4 and 5). The de- 
tailed form of the generation-rate function depends on factors such as the core configura- 
tion. The variation is often cosinusoidal or exponential, and in some cases  it can be ap- 
proximated by a linear variation. 

Consideration is given herein to  transient heat conduction with position-dependent 
heat generation in a finite slab that has one insulated and one convecting surface. The 
slab is initially at a constant temperature. The problem is developed for heat generation 
with an unspecified variation in the direction of the slab thickness. The cases  of constant, 
linear, exponential, and cosinusoidal heat-production variations are considered in detail. 

In the field of nuclear engineering, the heat-generation function is usually not a con- 

ANALY S IS 

Formula t ion  of Problem 

Consider the transient conduction of heat in a homogeneous finite slab with constant 
(Symbols a r e  defined in appendix A . )  Initially the slab 

Convec- 

properties k, p, and c (fig. 1). 
is at the constant temperature Ti. For t > 0, heat is generated in the slab at a rate 
G@), which depends on position in the direction normal to  the bounding planes. 
tion heat transfer occurs at the face X = 0 between the body and the surrounding medium, 
which is at the constant bulk temperature Tb. The convective heat-transfer coefficient 
is considered constant, and the plane X = L is thermally insulated. Then the governing 
equation, the initial condition, and the surface conditions a r e  the following (ref. 1): 

T = Ti t = 0 for all X 

- -  a T - 0  at X = L ,  t > ~  
ax 
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Sol ut ions 

The problem defined by equations (1) to (4) can be solved by the method of integral 
transform. A modified Fourier cosine transform is applied to the space variable. This 
procedure yields an ordinary differential equation in t ime and an initial condition for the 
transformed temperature. Let 

x = L - x  

Then equations (1) to (4) can be rewritten as follows: 

e = T~ - T,, = ei t = 0 for all x ( 2 4  

- -  a'- - -  h e  
ax k 

at x = ~ , t > ~  

-- a e - ~  at x = o ,  t > ~  
ax 

Applying the modified Fourier cosine transform (see appendix B) to equations (la) and 
(2a) and noting that C1 = C2 = 0 give 

dt L2 p c  

(6 1 
" e = ei t = O  

where 

Lei gi =lL ei cos - A*x dx = - sin A, 
'n L 

(7) 
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= lL G(x) cos - 'nx dx 
L 

and An are  the roots of 

An tan An = Bi 

The solution to equation (5) with the initial condition (eq. (6)) is 

2 

Inverting equation (9) gives 
where Fo = a t / L  is the Fourier number. 

which in terms of the original variables is 

(1 Ti - Tb 

n 

2 
(An + sin A, cos A ~ )  

Thus, for a specific position-dependent heat- generation rate, the transform of the gen- 
eration function can be evaluated using equation (8). The transient temperature distribu- 
tion is then given by equation (loa). The cases of constant, linear, exponential, and co- 
sinusoidal heat-generation rates are treated herein. 

Constant heat-generation rate.  - For a constant heat-generation ra te  (fig. 2), 

4 



Then, from equation (8), 

GOL s in  An =lL Go COS - 'nX dx = - 
'n L 

Substituting equation (12) in equation (loa) gives the following temperature distribution 
for constant heat production: 

The position- and time-dependent functions ql and q2, herein referred to as the tran- 
sient temperature and uniform temperature functions, respectively, in equation (13) are 

n n L - AnFo sin An cos [k - :)Ad 
e 2 

il.); (An + s in  An cos An) 

n 

-AnFo 2 

sin An cos [f - (15) 2 1 - e  
(An + sin An cos An) 2 

'n 
n 

2 where Fo = @t/L 
values of An in equations (14) and (15) are the roots of equation (B3), namely, 

is the Fourier number and Bi = hL/k is the Biot number. The 

An tan An = Bi 033) 

Linearly varying heat-generation rate.  - When the heat-generation rate var ies  lin- 
early (fig. 3), the following equation results:  
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where m is the constant (positive or negative) slope of the generation rate. The t rans-  
formed generation function (eq. (8)) for  this  case is 

2 
s in  An + - (1 - cos An) (17) 

m L  
2 

E = lL [(Go + mL) - mxlcos - 'nX dx = - GOL 

'n An 
L 

and the temperature distribution (eq. (loa)) becomes 

The linear temperature function q3 (eq. (18)) is defined as 

J / ,  = 7- 2 
(An + sin An cos An) 

(19) 

Exponentially varying heat-generation rate. - The heat-generation function for ex- 
ponential variation (fig. 4) is 

where p is a constant attenuation coefficient (positive or negative). Substituting equa- 
tion (20) in equation (8) gives 

Then, from equation (loa), the temperature distribution is 
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where 

is the exponential temperature function, and An a r e  the roots of equation (B3). 

r a t e s  indicated in figure 5 a r e  
Cosinusoidally varying heat- generation rate. - The cosinusoidal heat-generation 

The positive or negative 6 in equation (24) is the displacement of the convecting surface 
from the plane of maximum heat production. 

With cosinusoidal heat generation, the transformed generation function is given by 

2D L 

Evaluating the integral gives 

- 

(2 5 4  N GML 2 2  G =  [d sin(d + A) - d s in  A cos An - An cos A sin An] when An # d 
2 d2 - An 

and 

- GML 2 2  G = -  [d cos(d + A) + cos A sin d] when An = d 
2d 



where 

Then the temperature distribution with cosinusoidal heat generation is 

The cosinusoidal temperature function q5 in equation (26) is 

- d sin A cos An - An cos A sin An]cos (27) 

and 

(28) d cos(d + A) + sin d cos A ( - e-d Fo )COS [(1 - when An = d $5 = 
2 d (d + sin d cos d) 

RESULTS AND DISCUSSION 

Numerical values of the dimensionless time- and position-dependent + functions 
were calculated according to equations (14), (15), (19), (23), and (27). The first six 
roots of the transcendental equation (eq. (B3)) were used for all calculations. These 
roots were taken from reference 1. The results are presented graphically in figures 6 
to 10. 

Individual charts are given for values of dimensionless position X/L from 0 to  1. 0 
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Btu/(hr) (ft2) eR) 

96 
48 
48 

466 
1400 
7 00 
7 00 

in increments of 0.2. The range of Fourier numbers covered is 0 to  1. 4. The Biot num- 
bers included are 0, 0.2, 0. 5, 1.0, 2. 0, 4.0, 10. 0, and a. A Biot number of 0 corre- 
sponds to an  insulated surface. Similarly, the infinite Biot number resul ts  apply for the 
case of a prescribed constant surface temperature Tb’ 

The transient temperature function *l is given in figure 6. This function is the di- 
mensionless transient temperature distribution with no heat production that is commonly 
presented in the l i terature (e. g . ,  refs. 1 and 6 to 9). The uniform temperature function 
q2 is given in figure 7. The charts given in reference 3, namely, the temperature- 
distribution chart for the slab with prescribed surface temperature and the surface- 
temperature chart  for the slab with a convecting surface, a r e  special cases  of figure ?. 
The numerical resul ts  a r e  in agreement throughout the range of Fourier number (0 to  0. 2) 
presented in reference 3. 
These resul ts  apply for positive or negative heat-production-rate slopes. The exponential 
temperature function Q4 depends on the attenuation coefficient 1-1 as well as on X/L, 
Fo, and Bi. Values of q4 are given in figure 9 for 1-1 values of 0. 5, 1. 0, 2. 0, 4. 0, 
-0. 5, -1. 0, -2. 0, and -4. 0. Similar to the preceding case, the cosinusoidal temperature 
function q5 depends on two additional parameters, d and A. Values of $b5 for the rel- 
ative slab thickness d = n/6 and the displacement of the uninsulated face A = -n/3, 
-n/6,  0, and n/6 are given in figure 10. 

For small  slab thicknesses, the Fourier number is large even for moderate values of 
time. Also, for small  L, the Biot number will be low except for large values of the con- 
vective coefficient. 
ation with position will be small, and uniform production can be  assumed. 
transient temperature function 
Fourier numbers (0 to 5.0) and small  Biot numbers (0 to  4. 0) are given in figures 11 
and 12, respectively. 

materials and s lab thicknesses: 

The linear temperature function G 3  is presented in figure 8. 

For cases  of small  thickness, however, the variation of heat gener- 
Values of the 

and the uniform temperature function q2 for large 

The range of the values presented is indicated in the following table for a few specific 

J / h ) ( m 2 )  (OK) 

1.96x106 
. 9 8  
. 98 

9 . 4  x106 
28. 6 
14. 3 
14. 3 

function 

Stainless steel 

Aluminum 

4 
2 
2 

12 
4 
2 
2 

30. 5 
10. 2 

I I 

Maximurr 
time, 
min 

62 
55 
55 

25 
3 
2. 5 
2. 5 

Minimum convective 
heat-transfer coefficient, 

h, for steady state 
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Figures 6 to 12 should be adequate for most engineering calculations. For values of the 
parameters not included in these figures, the temperature functions can be computed di- 
rectly from the ser ies  forms presented herein. 

As a n  example of the effect of heat-generation position dependence on the conduction 
temperature distributions, consider the case of an aluminum rod 1 foot (0.305 m) long 
under the following conditions: 

h = 240 Btu/(hr) (ft2) fR); 4. 9X106 J/(hr) (m2) e K )  

Ti = 200' R; IllOK 

Go = 200 000 Btu/(hr)(ft3); 7 4 . 6 ~ 1 0 ~  J/(hr)(m3) 

k = 120 Btu/(hr)(ft)('R); 0. 746X106 J/(hr)(m)eK) 

2 2 
a! = 3.33 ft /hr; 0.310 m /hr 

Then, Bi = hL/k = 2.0 and Fo = &/La = 0.0555 t, where t is in minutes. 
The case of exponential heat generation with p = 1.0  is compared with the case of 

uniform heat generation with a constant value of Go. From equations (22) and (13), 

G ~ L ~  
T=Tb+- q4 = 200 + 1670 q4 (OR); 111 + 927 q4 fK) for the exponential case 

k 

G ~ L ~  
T = Tb +- Q2 = 200 + 1670 q2 (OR); 111 + 927 q2 (OK) for the uniform case 

k 

The values of IJJ~ and q2 are obtained from figures 9 and 7, respectively. 
The time-temperature history at the insulated end of the rod is shown in figure 13. 

The calculated temperatures are considerably higher under the condition of uniform gen- 
eration. Also, the t ime predicted to reach a specified temperature (say 860' R o r  478OK) 
is much less for the uniform-generation case. 
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The temperature distributions at t = 15 minutes are shown in figure 14. At all posi- 
tions in the rod, the predicted temperature values with uniform generation are higher 
than values calculated for exponential heat production. Figure 14 also shows that temper- 
a ture  gradients under the condition of uniform generation are larger  than with exponential 
heat generation. 

CONCLUDING REMARKS 

The transient conduction of heat in a solid bounded by two parallel planes was ana- 
lyzed so as to  include the effect of position-dependent heat production. It was assumed 
that the solid is homoegeneous with constant physical properties and constant initial tem- 
perature. The slab with one convecting surface and one insulated surface was considered. 
Heat-production rates varying constantly, linearly, exponentially, and cosinusoidally in 
the direction normal to the bounding planes were treated in detail. 

The solutions in t e r m s  of Fourier se r ies  were obtained by the integral transform 
method. The temperature distributions depend on position, t ime (Fourier number), con- 
vection coefficient (Biot number), and parameters that reflect the specific form of the 
heat-generation rate. Numerical values of the temperature-distribution series were cal- 
culated and are presented graphically in dimensionless form. The range of variables 
was so selected that specific cases  can be easily computed. 

The solution procedure is presented for a heat-generation ra te  with an  unspecified 
variation in the direction of the slab thickness. Thus, by following the outlined proce- 
dure, transient temperature distributions can be determined for specific position- 
dependent heat-generation ra tes  other than those treated in detail in this report. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 20, 1967. 
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APPENDIX A 

SYMBOLS 

Bi Biot number, hL/k 

C1, C, constants 

C 

D 

d 

e 

Fo 

f 
N 

G 

h 

k 

L 

m 

T 

Tb 
t 

X 

X 

Q! 

6 

specific heat 

quarter wavelength for cosine 
generation 

dim ens ionless slab thickness, 

( n / 2 )  (L/D) 

exponential base 

Fourier number, a t /L  

modified Fourier cosine trans- 

2 

form defined by eq. (Bl) 

volumetric heat-generation rate  

convective heat-transfer coeffi- 
cient 

thermal conductivity 

slab thickness 

slope of linearly varying heat- 
generation ra te  

temperature 

bulk temperature of surroundings 

time 

coordinate in direction of slab 
thickness 

coordinate L-X 

thermal diffusivity, k/pc 

12 

A 

6 

8 

'n 
P 

P 

*l 

*2 

+3 

*4 

*5 

dim ens ionless displacement, 
(4) (6/D) 

displacement of convecting face 
for cosinusoidal heat generation 

temperature difference, T - Tb 

roots of eq. (B3) 

attentuation coefficient for expo- 
nential heat- generation rate 

density 

transient temperature function 
defined by eq. (14) 

uniform temperature function de- 
fined by eq. (15) 

linear temperature function de- 
fined by eq. (19) 

exponential temperature function 
defined by eq. (23) 

cosinusoidal temperature function 
defined by eqs. (27) and (28) 

Subscripts : 

i initial 

M maximum 

n 1, 2, 3, . . . 
0 value at X = 0 



APPENDIX B 

MODIFIED FOURIER COSINE TRANSFORM 

The modified Fourier cosine transform used to solve the system of equations (la) 
to  (4a) is defined (refs. 10 and 11) as 

'nx f(x)cos - dx 
L 

N 

f(n) = 

where the function f(x) must satisfy the Dirichlet conditions (i. e . ,  bounded with a finite 
number of maxima and minima and a finite number of points of discontinuity). The bound- 
a ry  conditions of the problem a r e  

at x = L  

- =  df c1 a t  x = O  
dx 

df=-hf+c2 
d x k  

In equation (Bl) An are the roots of 

hL 
" k  

An tan X = - = Bi 

The transform of the Laplacian of f turns out to be 

N ' n  

2 A; N 

-- d f -  -- f - c1 + c2 cos A, 
dx2 L2 

The inversion formula is 
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Convecting 
surface 

Insulated 
surface 

Convective heat- 
transfer coef- 

* X  
Coordinate in direction of slab thickness, X 

Figure 1. - Finite slab. 

Coordinate in direction of slab thickness, X 

Figure 2. - Slab w i th  constant heat- 
generation rate. 
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Slope of l inear ly  
heat-generation 

Positive 
Negative 

varying 
rate, m 

0 

Coordinate in direction of slab thickness, X 

Figure 3. - Slab wi th  l inear ly  varying heat-generation rate. 

Attenuation coef- 
f icient for ex- 

ponential heat- 
generation 

rate, p 

Positive 
Negative 

0 
Coordinate in direction of slab thickness, X 

Figure 4. - Slab wi th  exponentially varying heat-generation rate. 

16 



. 

x 

/ / GM? 
/ 
/ 

- c-- L=- 
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m / \  / 
c 

6 ,’ / \ al c 
u / \ c ._ 
I c 

- > v-2: 0 i2 c 

Coordinate in direction of slab thickness, X 

(a) Positive displacement of convecting face. (b) Negative displacement of convecting face. 

Figure 5. - Cosinusoidally varying heat-generation rates where D i s  quarter wavelength for cosine 
generation, GM i s  maximum volumetric heat-generation rate, L i s  slab thickness, and 6 is dis- 
placement of convecting face for cosinusoidal heat generation. 
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1 

. 8  

.6 

. 4  

. 2  

.1 
(a) Dimensionless position, 0. 

(c) Dimensionless position, 0.4. (d) Dimensionless position, 0.6. 

0 . 2  . 4  . 6  . 8  1.0 1.2 
Fourier number, dlL2 

(e) Dimensionless position, 0.8. (f)  Dimensionless position, 1.0. 

Figure 6. - Response of transient temperature function )1 for slab subjected to sudden change i n  environ- 
mental temperature. 



(a) Dimensionless position, 0. 

(c) Dimensionless position, 0.4. 

(b) Dimensionless position, 0.2. 

(d) Dimensionless position, 0.6. 

Fourier number, atlL2 

(e) Dimensionless position, 0.8. (f)  Dimensionless position, 1.0 

Figure 7. - Response of un i form temperature function for slab with un i form internal heat generation. 
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(a) Dimensionless position, 0 (b) Dimensionless position, 0.2. 

. 6  

. 5  

. 4  
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. 2  
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0 

20 

(c) Dimensionless position, 0.4. (d) Dimensionless position, 0.6. 

0 . 2  .4  . 6  .8 1.0 1.2 1.4 0 . 2  . 4  . 6  .8 1.0 1.2 1.4 
Fourier number, a t /Lz  

(e) Dimensionless position, 0.8. (f) Dimensionless position, 1.0. 

Figure 8. - Response of l inear temperature funct ion #3 for slab wi th  heat generation varying l inear ly  in direction of slab 
thickness. 



0 . 2  . 4  . 6  .8 1.0 1.2 1.4 
Fourier number, aVL* 

(a) Attenuation coefficient, 0.5. 

Figure 9. - Response of exponeniial temperature function #4 for slab with heat generation varying exponentially in direction 
of slab thickness. 
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Fourier number, ut/Lz 
(b) Attenuation coefficient, 1.0. 

Figure 9. - Continued. 
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0 . 2  . 4  . 6  . 8  1.0 1.2 1.4 
Fourier nu 

(c) Attenuation ( 

Figure9. - 

U . 2  . 4  .6 . 8  1.0 1.2 1.4 
imber, atlL2 

:oefficient, 2.0. 

Continued. 
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Fourier number, at/L* 

(d) Attenuation coefficient, 4.0. 

Figure 9. -Continued. 
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(e) Attenuation coefficient, -0.5. 

Figure 9. -Continued. 
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Fourier number, d / L 2  

(1) Attenuation coefficient, -1.0. 

Figure 9. - Continued. 
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0 . 2  . 4  . 6  .8 1.0 1.2 1.4 
Fourier number, atlL2 

(gl Attenuation coefficient, -2.0. 

Figure 9. -Continued. 
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(h) Attenuation coefficient, -4.0. 

Figure 9. - Concluded. 
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0 . 2  . 4  .6 . 8  1.2 1.4 1.6 0 . 2  . 4  .6 . 8  1.2 1.4 1.6 
Fourier number, atlL2 

(a) Dimensionless slab thickness, n/6; dimensionless displacement, 4 3 .  

Figure 10. - Response of cosinusoidal temperature function #5 for slab with heat generation varying cosinusoidally in di- 
rection of slab thickness. 
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Fourier number, d/L2 

(b) Dimensionless slab thickness, n/6; dimensionless displacement, -7d6. 

Figure 10. -Continued. 
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0 . 2  . 4  . 6  .8 1.0 1.2 1.4 
Fourier number, atlLz 

(c) Dimensionless slab thickness, a16, dimensionless displacement, 0. 

Figure 10. - Continued. 
I. 
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(d) Dimensionless slab thickness, 7r16; dimensionless displacement, 7716. 

Figure 10. - Concluded. 
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1.0 

(a) Dimensionless position, 0. (b) Dimensionless position, 0.2. 

E 

e 
n 
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c c 
._ 
“l 
c 
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(c) Dimensionless position, 0.4. (d) Dimensionless position, 0.6. 

Fourier number, at/L2 

(e) Dimensionless position, 0.8. ( f )  Dimensionless position, 1.0. 

Figure 11. - Response of transient temperature function 
perature; high Fourier number and low Biot number. 

for slab subjected to sudden change in  environmental tem- 
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(a) Dimensionless position, 0. (b) Dimensionless position, 0.2. 

(c) Dimensionless position, 0.4. (d) Dimensionless position, 0.6. 

Fourier number, d /L2 

(f) Dimensionless position, 1.0. (e) Dimensionless position, 0.8. 

Figure 12. - Response of uniform temperature function )2 for slab with uniform internal heat generation; high 
Fourier number and low Biot number. 
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300 400 i 
Time, m i n  

Figure 13. - Time-temperature h is tory  at insulated end of 
samde rod. 

400 
0 . 2  . 4  .6 . 8  1.0 

Dimensionless position, XIL 

Figure 14. - Temperature distributions after 15 minutes 
of heating t ime for sample rod. 
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