NASA TM X=55956

MATHEMATICAL RELATIONSHIPS OF THE MFOD ANTENNA AXES

NASA GODDARD SPACE FLIGHT CENTER greenbelt, maryland

MATHEMATICAL RELATIONSHIPS
 OF THE MFOD ANTENNA AXES

Prepared by $\begin{aligned} & \text { I. П. Sal hen } \\ & \\ & \\ & \\ & \text { Head, Advanced Teehniques Office } \\ & \text { Manned Flight Engineering Branch }\end{aligned}$

Released by obele N. Oall
D. Call

Head, Manned Flight Engineering Branch

PrRECEDING PAGE BLANK NOT FILMED.
 CONTENTS

Section Page

1. Introduction 1
2. Definitions and Formulae 5
3. Summary of Equations 9
LIST OF FIGURES AND TABLES
Figure Page1BDA FPS-16 and FPQ-6 AZIMUTH - ELEVATION Antennae2
2
BDA 30-foot USB X-Y Antenna 2
3 Goldstone Apollo 85-foot USB X-Y Antenna 2
4 JPL Pioneer 85-foot DSIF HOUR ANGLE - DECLINATION Antenna 2
5
Coverage Areas for Different Coordinate Systems 4
6 Arbitrary E, N, V Coordinate System 6
7 Collins Conversion Graph AZ-EL to $X_{30}-Y_{30}$ 10
8 Collins Conversion Graph AZ-EL to $X_{85}-Y_{85}$ 11
9 Conversion Graph $X_{85}-Y_{85}$ to Hour Angle - Declination, $\phi=35^{\circ} 20^{\prime}$ 12
10 Conversion Graph $X_{85}-Y_{85}$ to Hour Angle - Declination $\phi=-35^{\circ} \quad 20^{\prime}$ 13
11 Conversion Graph $X_{85}-Y_{85}$ to Hour Angle - Declination, $\phi=40^{\circ} \quad 27^{\prime}$ 14
Table Page
4. Summary of Antennae Mount Characteristics 3

1. INTRODUCTION

There are three different primary coordinate systems used for tracking equipment in this country: Azimuth-Elevation (figure 1); X-Y (figures 2 and 3); Hour AngleDeclination (figure 4). To complete a space fix, the third orthogonal coordinate is slant range when used.

Each of these coordinate systems have particular advantages and disadvantages when used for tracking orbital and translunar vehicles. For convenience these have been tabulated in table 1.

At many of the remote Manned Space Flight Network Tracking Sites, equipment utilizing two different coordinate systems has been installed in relatively close proximity. To use pointing data in one coordinate system on equipment utilizing another coordinate system requires a transformation of the data from one coordinate system to the other. The purpose of this report is to develop all of the equations required to interrelate position data of the three above mentioned coordinate systems.

Figure 1. BDA FPS-16 and FPQ-6 Azimuth - Elevation Antenna

"ifure 3. Goldstone Apollo 85-Foot USB X-Y Antenna

Figure 2. BDA 30-Foot USB X-Y Antenna

Figure 4. JPL Pioneer 85-Foot DSIF Hour Angle-Declination Antenma

Table 1. Summary of Antennae Mount Characteristics

Type of Antenna		
Coordinate		
System	Disadvantages	Advantages
AZ, EL	Maximum AZ rate occurs at $E L=90^{\circ}$ which causes loss of track on overhead passes. Azimuth is not defined at EL $=90^{\circ}$	Since all points of azimuth can be covered at EL $=0^{\circ}$, there are no horizon acquisition problems.
X, Y	Mechanical design constraints require a small vertical separation between the X and Y axes and a limited Y axis movement. For the 30 - and 85 -foot USB antennas this prevents tracking in a small area (keyhole) about the horizon as shown in figure 5. This causes some horizon acquisition problem about the northsouth axis for 30 -foot antennas and east-west axis for 85 -foot antennae.	Complete tracking capability through the zenith. Maximum X and Y tracking rates occur in the area of the keyhole and therefore place no additional restriction on the antennae.
HR, DEC	Maximum HR occurs at DEC $=$ $\pm 90^{\circ}$ which causes loss of track on pass which go through $\mathrm{AZ}=0$ and an $\mathrm{EL}=90-\phi$. Hour angle is not defined at $\mathrm{DEC}=90^{\circ}$. For the same reason as in the X and Y mounts discussed above, a keyhole exists in the two northern quadrants as shown in figure 5 for this type of mount.	Tracking a fixed point in space becomes a matter of merely driving the Hour Angle at the counterspeed of the earth's rotational rate after setting Declination.

$$
\begin{gathered}
x-Y ~ 85 \text { FOOT } \\
\text { COVERAGE }
\end{gathered}
$$

AZ-EL COVERAGE

HR-DEC COVERAGE $\phi=35^{\circ}$

Figure 5. Coverage Area For Different Coordinate Systems

2. DEFINITIONS AND FORMULAE

Site latitude ($($) is positive northward
Hour angle (HR) is positive westward

$$
0^{\circ} \leq \mathrm{HR}<360^{\circ}
$$

Declination (DEC) is ϕ at zenith
Angle $X_{8 j}$ is positive southward

$$
|\phi| \leq 90^{\circ}
$$

$$
\left|X_{85}\right| \leq 90^{\circ}
$$

Angle $Y_{B 5}$ is positive eastward
Angle X_{30} is positive eastward
Angle Y_{30} is positive northward

$$
\mid \text { DEC }-\phi \mid \leq 90^{\circ}
$$

$\left|Y_{85}\right| \leq 90^{\circ}$
$\left|X_{30}\right| \leq 90^{\circ}$

Azimuth (AZ) is positive clockwise
Elevation (EL) is 90° at zenith
Slant Range (r)
$\left|\mathrm{Y}_{30}\right| \leq 90^{\circ}$
$0^{\circ} \leq \mathrm{AZ}<360^{\circ}$
$0^{\circ} \leq \mathrm{EL} \leq 90^{\circ}$ or $180^{\circ} *$
$0 \leq r$

Referring to Figure 6
$-\mathrm{X}_{85}$ is angle AOF
Y_{85} is angle FOR
X_{30} is angle AOB
Y_{30} is angle BOR
AZ is angle EOD
EL is angle ROD
-HR is angle AOB when $\phi=0^{\circ}$
DEC is angle BOR when $\phi=0^{\circ}$
*Dependent upon encoder readout
E, N, V are components of the range vector and can be defined in terms of the various coordinate angles by trigonometry. This is shown in matrix equation 1.

$$
\left[\begin{array}{l}
\mathbf{E}_{\mathbf{r}} \tag{1}\\
\mathrm{N}_{\mathbf{r}} \\
\mathrm{V}_{\mathbf{r}}
\end{array}\right]=\mathbf{r}\left[\begin{array}{c}
\cos \mathrm{EL} \sin \mathrm{AZ} \\
\cos \mathrm{EL} \cos \mathrm{AZ} \\
\sin \mathrm{EL}
\end{array}\right]=\mathbf{r}\left[\begin{array}{c}
\cos \mathrm{Y}_{30} \sin \mathrm{X}_{30} \\
\sin \mathrm{Y}_{30} \\
\cos \mathrm{Y}_{30} \cos \mathrm{X}_{30}
\end{array}\right]=\mathbf{r}\left[\begin{array}{c}
\sin \mathrm{Y}_{85} \\
\cos \mathrm{Y}_{85} \sin \mathrm{X}_{85} \\
\cos \mathrm{Y}_{85} \cos \mathrm{X}_{85}
\end{array}\right]
$$

Figure 6. Arbitrary E, N, V Coordinate System

To describe Hour angle and Declination for all latitudes requires a coordinate system which maintains one axis parallel to the north-south axis of the earth. Thus, if the E, N, V coordinate system of Figure 6 were to be rotated counterclockwise about the E axis (when looking toward the origin), an amount, \varnothing, the resulting coordinate system $\mathrm{E}^{\prime}, \mathrm{N}^{\prime}, \mathrm{V}^{\mathbf{\prime}}$ would allow Hour angle and Declination to be described.

That is:

$$
\left[\begin{array}{l}
E^{\prime} \\
N^{\prime} \\
V^{\prime}
\end{array}\right]=R_{E_{\mathbf{C C W}}}(\phi)\left[\begin{array}{l}
E \\
N \\
V
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right.
$$

From the definitions of the angles we have derived equations 1,2 and 3 which are all that are required to develop any of the particular equations relating one coordinate system to another.

For example, to determine the equations which define Hour angle and Declination in terms of X_{30}, Y_{30}, we proceed as follows:
utilizing equation 2 , we have,

$$
\left.\left\lvert\, \begin{array}{c}
\mathrm{E}_{\mathrm{r}}^{\prime} \\
\mathrm{N}_{\mathbf{r}}^{\prime} \\
\mathrm{V}_{\mathrm{r}}^{\prime}
\end{array}\right.\right]=\mathrm{r}\left[\begin{array}{ccc}
\cos \mathrm{Y}_{30} & \sin \mathrm{X}_{30} \\
\sin \mathrm{Y}_{30} & \cos \phi+\cos \mathrm{Y}_{30} & \cos \mathrm{X}_{30} \\
\sin \phi \\
-\sin \mathrm{Y}_{30} & \sin \phi+\cos \mathrm{Y}_{30} & \cos \mathrm{X}_{30}
\end{array} \cos \phi\right]=r\left[\begin{array}{c}
-\cos \mathrm{DEC} \sin \mathrm{HR} \\
\sin \mathrm{DEC} \\
\cos \mathrm{DEC} \cos \mathrm{HR}
\end{array}\right]
$$

constructing the ratio of $\frac{\mathrm{E}_{\mathbf{r}}^{\prime}}{\mathrm{V}_{\mathbf{r}}^{\prime}}$ and setting the $\mathrm{N}_{\mathbf{r}}^{\prime}$ vectors equal we have,

$$
\tan H R=\frac{\cos Y_{30} \sin X_{30}}{\cos Y_{30} \cos X_{30} \cos \phi-\sin Y_{30} \sin \phi}
$$

$\sin \mathrm{DEC}=\sin \mathrm{Y}_{30} \cos \phi+\cos \mathrm{Y}_{30} \cos \mathrm{X}_{30} \sin \phi$

For a second example the relation defining X_{30} and Y_{30} as a function of X_{85}, Y_{85} is derived as follows:
utilizing equation 1, form the ratio $\frac{E_{r}}{V_{r}}$ and equate N_{r} vectors to obtain:

$$
\begin{equation*}
\tan X_{30}=\frac{\tan Y_{85}}{\cos X_{85}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sin Y_{30}=-\cos Y_{B_{5}} \sin X_{85} \tag{7}
\end{equation*}
$$

Any of the remaining 44 equations can be easily derived in a similar manner.

3. SUMMARY OF EQUATIONS

Due to the location of manned space flight tracking equipment there is a particular interest in the several sets of equations listed below:

$$
\begin{align*}
& \mathrm{AZ}, \mathrm{EL} \longleftrightarrow \mathrm{X}_{30}, \mathrm{Y}_{30} \\
& \sin Y_{30}=\cos E L \cos A Z \tag{8}\\
& \tan X_{30}=\cot E L \sin A Z \tag{9}\\
& \sin E L=\cos Y_{30} \cos X_{30} \tag{10}\\
& \tan A Z=\cot Y_{30} \sin X_{30} \tag{11}\\
& \mathrm{AZ}, \mathrm{EL} \longleftrightarrow \mathrm{X}_{85}, \mathrm{Y}_{85} \\
& \sin Y_{85}=\cos E L \sin A Z \tag{12}\\
& \tan X_{8_{5}}=-\cot E L \cos A Z \tag{13}\\
& \sin \mathrm{EL}=\cos \mathrm{Y}_{85} \cos \mathrm{X}_{85} \tag{14}\\
& \tan A Z=\frac{-\tan Y_{85}}{\sin X_{85}} \tag{15}\\
& \mathrm{X}_{85}, \mathrm{Y}_{85}<\longrightarrow \mathrm{HR}, \text { DEC } \\
& \sin \mathrm{DEC}=\cos \mathrm{Y}_{85} \sin \left(\phi-\mathrm{X}_{85}\right) \tag{16}\\
& \tan \mathrm{HR}=\frac{-\sin Y_{85}}{\cos \mathrm{Y}_{85} \cos \left(\phi-\mathrm{X}_{85}\right)} \tag{17}\\
& \sin \mathrm{Y}_{85}=-\cos \mathrm{DEC} \sin \mathrm{HR} \\
& \tan \mathrm{X}_{85}=\frac{\sin \phi \cos \mathrm{DEC} \cos \mathrm{HR}-\cos \phi \sin \mathrm{DEC}}{\cos \phi \cos \mathrm{DEC} \cos \mathrm{HR}+\sin \phi \sin \mathrm{DEC}} \tag{19}
\end{align*}
$$

Collins Radio Corp. has developed charts, Figures 7 and 8, to help in the quick visual conversion of equations 8 thru 11 and 12 thru 15 , respectively.

Somewhat similar graphs have been derived by ATO from equations 16 thru 19. Since equations 16 thru 19 are functions of latitude it was necessary to make separate charts, Figures 9, 10 and 11, to cover Goldstone, Tidbinbilla and Madrid, respectively. These figures are approximations ($\pm 2^{\circ}$) since the antennas are not located next to each other and approximate latitudes have been used.

30 FOOT ANTENNA SYSTEMS RELATIONSHIP OF X-Y TO AZ-EL COORDINATES

Figure 7. Collins Conversion Graph AZ-EL to $\mathrm{X}_{30}-\mathrm{Y}_{30}$

85 FOOT ANTENNA SYSTEMS
RELATIONSHIP OF $X-Y$ TO AZ-EL COORDINATES

Figure 8. Collins Conversion Graph AZ-EL to $X_{85}-Y_{85}$

85 FOOT ANTENNA SYSTEMS
RELATIONSHIP OF $X-Y$ TO HR-DEC COORDINATES LATITUDE $=35^{\circ} 20^{\prime}$

Figure 9. Conversion Graph $\mathrm{X}_{85}-\mathrm{Y}_{85}$ to Hour Angle-Declination, $\phi=35^{\circ} 20^{\prime}$

85 FOOT ANTENNA SYSTEMS
 RELATIONSHIP OF X-Y TO HR-DEC COORDINATES LATITUDE $=-35^{\circ} 20^{\prime}$

Figure 10. Conversion Graph $X_{85}-Y_{85}$ to Hour Angle-Declination $\phi=35^{\circ} 20^{\prime}$

85 FOOT ANTENNA SYSTEM
RELATIONSHIP OF $X-Y$ TO HR-DEC COORDINATES LATITUDE $=40^{\circ} 27^{\circ}$

Figure 11. Conversion Graph $X_{85}-Y_{85}$ to Hour Angle-Declination $\phi=40^{\circ} 27^{\prime}$

