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Recent combustion i n s t a b i l i t y  studies a t  t he  NASA-Lewis Research Center 

Two dissimilar propellant combinations were used and gross d i f -  

Earth- 

were aimed a t  evaluating several  techniques t o  suppress screaming i n  rocket 
combustors. 
ferences in  s t a b i l i t y  charac te r i s t ics  of each were compared. 
reported here w a s  done with the  hydrogen-oxygen ( H  - 0) combination. 
s torab le  propellants (N204-50$ N2H4-50$ UDMH) were compared t o  hydrogen-oxygen 1? 
i n  some instances. S t a b i l i t y  r a t i n g  was done with d i rec t iona l  explosive 
charges f o r  t he  s torable  propellants and varying the  f u e l  in jec t ion  tempera- 
t u r e  f o r  the  H-0 combination. 

Most o f  t he  work 

Combustors were generally t h e  same s i z e  i n  both cases; chamber diameter 
was 10.77 inches, contraction r a t i o  was 1 .9  and L" w a s  normally 42 inches. 
However, s torab le  propellants were rated a t  a nominal chamber pressure o f  100 
psia  and th rus t  of 6700 pounds a s  compared t o  300 and 20,000, respectively,  
f o r  t he  H-0 combination. Variables studied were, (1) tapered chambers with 
concentrated pat tern in jec tors ,  ( 2 )  in jec tor  precent r a d i a l  coverage, (3) con- 
t r a c t i o n  r a t i o ,  (4)  length of chamber sleeve, (5) s p i r a l  stepped sleeves and 
( 6 )  nozzle shape. A l l  experimental data a re  presented i n  Table I. 

DISCUSSION 

Some theo re t i ca l  bas i s  e x i s t s  fo r  changes i n  i n s t a b i l i t y  behavior with 
chamber shape. 
a r e l a t i v e  ve loc i ty  term, which are affected by chamber shape. 
suggests the  use of  a chamber with a contraction r a t i o  less than one t o  in-  
crease t h e  veloci ty  difference between t h e  injected l iqu id  propellant and t h e  
surrounding gas. 
verse modes. 
propellants were designed t o  explore t h i s  poss ib i l i ty .  
i n j ec to r s  were run i n  cy l ind r i ca l  and two d i f f e ren t  half  angle chamber con- 
f igurat ions,  as shown i n  f igure  1. Presented i n  f igure  2 are photos of t h e  
in j ec to r s  used i n  the  two phases o f  the test. The results f o r  H-0 are pre- 
sented i n  f igure 3. 
mixture r a t i o  'and hydrogen in jec t ion  temperature. The temperature l i m i t  
boundary f o r  t he  153 tapered chamber could not be established because of f a c i l -  
i t y  l imitat ion.  
The 303 tapered chamber w a s  unstable a t  140'R. 
t h e  concentrated pat tern in jec tor  w a s  unstable a t  100'R. 
f e c t  of high f l o w  ve loc i ty  seems t o  be destabi l iz ing.  
cent r a d i a l  coverage in j ec to r  with the same number o f  elements w a s  s t ab le  
down t o  temperatures a s  low as 603R. 
t r ea t ed  l a t e r  i n  the  paper. 

F'riem's theory (Ref. 1) includes a burning rate parameter and 
H i s  theory 

This should lead t o  increased s t a b i l i t y  relative t o  t rans-  

Concentrated pat tern 
Experiments using hydrogen-oxygen propellants and ea r th  s torab le  

The hydrogen-oxygen data  are presented as a function of 

However, it w a s  unstable a t  temperatures higher than 2403R. 

Therefore, the  ef- 
A conventional 100 per- 

I n  the  cy l ind r i ca l  chamber, 

This radial  coverage var iable  w i l l  be 
The f a c t  t h a t  the  t e s t  did not follow the  theory 
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may be  explained by the  predominant mode of i n s t a b i l i t y  encountered. 
i n  f igu re  4 a re  typ ica l  amplitude spectral  density graphs for the  three  con- 
f igura t ions  run with hydrogen-oxygen propellants. As can be noted, the  f i r s t  
longi tudinal  mode was predominant i n  a l l  th ree  configurations. The notice- 
ab le  frequency s h i f t  with the  tapered chambers w a s  caused by t h e  acoustic 
shortening phenomena ., 

Shown 

The r e s u l t s  from the  storable tes t  are presented i n  f igure  5. The sta- 
b i l i t y  charac te r i s t ics  a re  presented i n  terms of bomb s i z e  and mixture r a t i o .  
The cy l ind r i ca l  chamber could be bombed unstable a t  high mixture r a t i o  with 
charges varying from 45 down t o  27 grains. The 303 t aper  chamber was spon- 
taneously unstable a t  l o w  mixture ratios from 1.49 t o  1.71.  The 153 taper  
chamber w a s  completely s tab le  over t he  e n t i r e  mixture r a t i o  range from 1.65 
t a  2.26 when bombed with 41 grain charges. The predominant modes observed i n  
s torab le  Configurations were tangential .  
ber  w a s  more s t a5 le  than e i t h e r  t he  30 taper  or cy l ind r i ca l  chamber i s  i n  agree- 
ment with Priem's theory, 

The r e s u l t  t h a t  t h e  153 taper  cham- 
3 

Percent r a d i a l  coverage of t he  inject ion pat tern seemed t o  have a con- 
s iderable  e f f ec t  on s t a b i l i t y  character is t ics ,  s o  a t es t  w a s  devised t o  fur- 
the r  explore t h i s  variable.  
a l s o  had shown an e f f ec t  of face coverage. A t heo re t i ca l  treatment o f  t h i s  
var iab le  has been presented by Reardon, e t  al .  ( R e f .  2 ) .  H i s  method uses dis-  
t r i bu t ion  coeff ic ients  which are ascribed t o  each configuration. Their ef- 
f e c t  on a calculated pressure interact ion index then was interpreted i n  terms 
of s t a b i l i t y .  
j ec to r s  were designed t o  have 60, 72, 85, and 100% r a d i a l  coverage of t he  in -  
j ec t ion  patterns.  
a r e  presented i n  f igure  6. 

Previous work during the  F-l development program 

I n  t h i s  investigation, four 397 concentric tube element in- \ 
The r e s u l t s  of t h i s  t e s t  with hydrogen-oxygen prgpellarits 

It should be noted t h a t  t h e  most  s tab le  in j ec to r  had 100% coverage. 
curve through the  data p i n t s  reaches a maximum (or least s t a b i l i t y )  a t  a 
coverage of about 75% and then decreases again (becomes more s t ab le )  as cov- 
erage decreases. 
ing the  hydrogen temperature ramp. F i r s t  r a d i a l  mode of  i n s t a b i l i t y  w a s  en- 
countered first a t  a hydrogen inject ion temperature of 125'R. 
t u r e  decreased t o  1083R, the  first tangent ia l  mode was t h e  only mode ident i f ied .  
This change of predominant mode t o  r ad ia l  as in jec t ion  pat terns  become con- 
centrated toward the  center has been previously reported by Purdue's J e t  Pro- 
pulsion Laboratory ( R e f  3). 

The 

The 60% configuration exhibited unusual charac te r i s t ics  dur- 

A s  t h e  tempera- 

Another i n j ec to r  configuration of 200 elements w a s  made less s t ab le  by 
simply welding closed the  owbide row of 43 elements t o  decrease t h e  percent 
coverage from 100 t o  75. This resul ted i n  an increase of approximately 503R 
i n  t h e  t r a n s i t i o n  hydrogen in jec t ion  temperature. 
element t r i p l e t  i n j ec to r  used with ear th  s torab les  w a s  t e s t e d  and then mod- 
i f i e d  by welding closed the  outer row o f  68 elements. The s t a b i l i t y  t es t  
r e s u l t s  i n  terms of bomb s i ze  and mixture r a t i o  a r e  presented i n  figure 7. A t  
mixture r a t i o s  above 1.6,  the  s t a b i l i t y  w a s  decreased by decreasing the  per- 
cent coverage from 90 t o  70. These r e su l t s  a r e  consis tent  with the  hydrogen- 
oxygen r e s u l t s  o f  figure 6, but  do not agree with r e s u l t s  obtained elsewhere. 
It i s  postulated t h a t  a strong rec i rcu la t ion  e x i s t s  i n  the  void zone which 
br ings hot gases into the  area where the propellant is introduced and the  

Based on t h i s  resu l t ,  a 400 
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r e s u l t  may then be similar t o  s w i r l  or gas in jec t ion  r a t ing  techniques used 
t o  induce in s t ab i l i t y .  
void zone becomes large enough s3 t ha t  t he  normal d i s t r ibu t ion  theory becomes 
cont ro l l ing  - a t  about 78% r a d i a l  coverage. 

Recirculation could be the  control l ing f ac to r  u n t i l  the  

The next log ica l  s t e p  w a s  t h e  t e s t ing  of the  4 hydrogen-oxygen in jec tors  
used on the  r a d i a l  coverage experiment with f u l l  length spools i n  the  com- 
bustion chamber t o  provide 100% r a d i a l  coverage f o r  varying chamber diameters. 
A t e s t  of t h i s  type with the  chamber pressure and nozzle throat  area held con- 
s t a n t  means a var ia t ion  i n  combustion chamber gas velocity,  as w e l l  as con- 
t r a c t i o n  r a t i o .  The r e s u l t s  are presented i n  figure 8 i n  terms of hydrogen 
t r a n s i t i o n  temperature and csntract ion r a t i o  a t  a mixture r a t i o  of 5.0. The 
t r a n s i t i o n  t o  unstable combustion occurred a t  about 653R f o r  a l l  f o u r  cases. 
All four  experienced f i rs t  tangent ia l  i n s t ab i l i t y .  
varied from 1,l t o  1 . 9  f o r  these data and there  w a s  no e f f e c t  o f  contraction 
r a t i o  a s  long as th rus t  and t o t a l  weight flow were kept constant. 

* 

e 

The contraction r a t i o  

The e f f ec t  o f  varying contraction r a t i o  by changing t h e  nozzle th roa t  
a rea  and keeping the  same in j ec to r  and chamber cross sect ion a r e a s . i s  pre-  
sented i n  figure 9. 
s t a n t  a t  300 psia and the  weight-flow-per-element w a s  allowed t o  vary with 
contraction r a t i o .  The r e s u l t s  indicate t h a t  increasing contraction r a t i o  
from 1.5 t o  4.5 i s  des tab i l iz ing  t o  a tangent ia l  mode procl ivi ty .  For t h i s  
pa r t i cu la r  421 element i n j ec to r  with an 85% r a d i a l  pat tern coverage, t h e  
hydrogen t r a n s i t i o n  temperature w a s  increased from 118'R t o  2423R a t  a mix- 
t u r e  r a t i o  of 5.0. Other tes ts  which varied chamber pressure and kept weight- 
flow-per-element constant did not change t h e  hydrogen temperature a t  ins ta -  
b i l i t y  t r a n s i t i o n  from these r e su l t s .  No attempt w i l l  be made here t o  present 
t h e  theo re t i ca l  treatment o f ' t h e s e  e f f ec t s  of contraction ratig, chamber pres- 
sure  and weight flow. These are explained by Fe i l e r  i n  reference 4 using the  
r e s p n s e  f ac to r  model. 
invest igat ion t h a t  t he  designer can scale t h r u s t  (upwards) by increasing 
th roa t  diameter (decreasing contraction r a t i o )  and flow rate not only without 
a loss i n  s t a b i l i t y  but  with an improvement i n  hydrogen temperature s t a b i l i t y  
margin. 
useful  technique t o  improve t h e  s t a b i l i t y  of an ex i s t ing  marginally s t a b l e  
hydrogen-oxygen engine. 

In  t h i s  t e s t  ser ies ,  t h e  chamber pressure w a s  held con- 

It is evident from t h e  results of t h i s  phase of t h e  

In  fac t ,  increasing t h e  nozzle throa t  diameter may possibly be a 

The 60% r a d i a l  pat tern coverage in jec tor  w a s  t e s t ed  with a series of 
chamber blocks o r  sleeves. 
how shor t  chamber-sleeves could be made and s t i l l  have a s t ab i l i z ing  effect. 
The r e s u l t s  a r e  presented i n  f igure  10, i n  terms of sleeve length and hydro- 
gen in jec t ion  temperature. The effect ive Contraction r a t i o  from t h e  sleeve 
inner diameter t o  t h e  th roa t  w a s  1.14. 
a f u l l  length sleeve i n  i t s  s t ab i l i z ing  e f f ec t ,  with a common t r a n s i t i o n  t e m -  
perature of about 653R. 
t angen t i a l  ins ide  the sleeve o r  f i rs t  r a d i a l  i n  t he  10.6-inch diameter. A s  
t h e  length w a s  decreased below 2 inches, t h e  s t a b i l i z i n g  e f f ec t  w a s  lessened 
rapidly.  The 60% coverage point a t  0 sleeve length w a s  taken from the  pre- 
vious s e r i e s  of coverage tests. 
t r a n s i t i o n  t o  t h e  first r a d i a l  mode which i s  consis tent  with the  60% coverage 
r e s u l t s  presented e a r l i e r  with no sleeves. 
onset of i n s t a b i l i t y  f o r  the  tapered sleeve configuration seems t o  be an 

These t e s t s  were i n i t i a t e d  with a view t o  f inding 

A 4-inch long sleeve was equivalent t o  

The predominant mode o f  i n s t a b i l i t y  was e i t h e r  second 

The t r ans i t i on  temperature indicated is  a 

The dashed l i n e  ind ica t ing  t h e  
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anomaly s ince it ac tua l ly  r e s u l t s  i n  decreased s t a b i l i t y .  

A var ia t ion  o f  the  sleeve configuration i s  the  s p i r a l  stepped s leeve . .  
A sketch of t h i s  sleeve and the  s t a b i l i t y  r e s u l t s  a r e  presented i n  f igure  11. 
The purpose o f  t he  sleeve was t o  in te r fe re  with spinning waves. It w a s  3 
inches long and covered t h e  r a d i a l  pattern o f  t he  in jec tor  from a value o f  
60% t o  100%. 
3-inch long sleeve of about 80% coverage only i f  the  wave interference did 
not work. 
an 80% coverage f u l l  length sleeve. 
inch long sleeve would have a t r ans i t i on  temperature s l i g h t l y  higher than a 
f u l l  length sleeve, the  s p i r a l  sleeve actual ly  contributed more s t a b i l i t y  than 
a 3-inch, 80% sleeve. 
w a s  953R, compared t o  a value o f  about 1333 f o r  a f u l l  length 80% coverage 
sleeve 

It should have yielded s t a b i l i t y  charac te r i s t ics  s imilar  t o  a 

Shown on f igure 11 is a l i ne  indicat ing the  l eve l  of s t a b i l i t y  o f  - 
Keeping i n  mind from f igure  10 t h a t  a 3- 

A t  a mixture r a t i o  of 5.0, t h e  t r a n s i t i o n  temperature 

Analyt ical  e f f ec t  on s t a b i l i t y  of var ia t ions i n  nozzle shape has been 
reported by the  group from Princeton (Ref. 5) .  
w a s  an examination of t he  p s s i b i l i t y  o f  improving tangent ia l  mode s t a b i l i t y  
cha rac t e r i s t i c s  (minimum s tab le  hydrogen temperature) o f  t he  combustor by in- 
creasing acoustic f l o w  losses  through the exhaust nozzle. 
t h a t ,  a t  t h e  hydrogen temperature screech boundary, a s t a t e  e x i s t s  where the  
acoustic energy gains equal t he  acoustic energy losses  o f  the  combustor. An 
increase, therefore,  i n  acoustic energy losses  should r e s u l t  i n  lowering the  
minimum s t ab le  hydrogen temperature. Tests of  several  nozzle configurations 
were made with hydrogen-oxygen propellants. The r e s u l t s  of  t he  t e s t s  a r e  pre- 
sented in  f igure  12. A l l  the  chambers shown on t h e  f igure  experienced tan- 
gen t i a l  mode i n s t a b i l i t y .  No change i n  s t a b i l i t y  charac te r i s t ics  a re  discern- 
ib le ,  although data s c a t t e r  a r e  greater than i s  usual. 

This part o f  t h e  invest igat ion 

It w a s  hypothesized 

Results of reference 6 indicate  tha t  f l o w  dependent losses through a 
vent (nozzle) increase as t h e  vent is  moved toward t h e  pressure antinode. I n  
t h i s  case, t angent ia l  mode i n s t a b i l i t y ,  t he  pressure antinode is a t  the  w a l l s  
of t he  combustor; thus,  f o r  maximum losses, t he  nozzle open area should be 
p s i t i o n e d  a t  the  periphery o f  t h e  combustor. Accordingly, a nozzle w a s  fab- 
r i ca t ed  with an in t e rna l  plug and eight r a d i a l  support spokes (wagon wheel) 
as shown i n  figure 13. The nozzle w a s  evaluated with a 421-element concentric 
tube in jec tor  and a cy l indr ica l  combustion chamber. 

The s t a b i l i t y  charac te r i s t ics  of a combustor with a conventional con- 
vergent-divergent nozzle and the  annular f low (wagon wheel) nozzle are com- 
pared i n  f igure  14. The hydrogen temperature s t ab le  operating l i m i t s  were 
improved about 20'R with the  wagon wheel nozzle compared t o  the  conventional 
configuration. The l imited success of t he  wagon wheel configuration may be 
due t o  i t s  d i s t an t  location from the  region o f  highest  energy re lease  (maxi- 
mun screech amplitude) which normally 3ccurs near the  in j ec to r  (Ref. 7 ) .  The 
general conclusion t o  be drawn from t h i s  phase of t h e  work i s  t h a t  d r a s t i c  
changes i n  nozzle shape appear t o  be of l i t t l e  help i n  improving s t a b i l i t y  o f  
a hydrogen-oxygen chamber. 
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SUMMARY OF RESULTS OF CHAMBER SHAPE EFFECTS 

ON SCREECH CHARACTERISTICS 

1. Concentrating the  combustion process using tapered chambers and a 
concentrated pat tern in j ec to r  had a detrimental e f f e c t  on t h e  longi tudinal  
mode o f  screech, although s t a b i l i t y  was improved when a tangent ia l  instab- 
i l i t y  w a s  t h e  predominant mode. 

2. Concentration o f  t he  elements of an in j ec to r  i n  75% of the  face area 
resu l ted  in  a higher hydrogen temperature t r a n s i t i o n  in to  tangent ia l  instab- 
i l i t h  than e i t h e r  a grea te r  o r  a lesser  r a d i a l  coverage. 

3. Variation i n  contraction r a t i o  from 1.1 t o  1.9 by changing the  cham- 
ber  diameter and keeping the  inject ion pat tern r a d i a l  coverage and nozzle 
th roa t  diameter constant did not a f fec t  t h e  t r a n s i t i o n  temperature o f  t he  tan- 
gent i a l  mode * 

4. Decreasing contraction r a t i o  from 4.5 t o  1.5 by increasing exhaust 
nozzle a rea  had a s t a b i l i z i n g  e f f e c t  on tangent ia l  mode i n s t a b i l i t y .  

5. A p a r t i a l  length (4") chamber sleeve had the  same e f fec t  as a f u l l  
length s leeve on s t a b i l i t y .  Shorter lengths contributed l e s s  s t ab i l i za t ion  
and the  e f f e c t  became t h e  same as the r ad ia l  coverage e f f ec t  when t h e  sleeve 
length approached zero. 

6. A s p i r a l  sleeve (3 "  long) contributed some s t a b i l i t y  t o  t h e  system. 

7 .  The admittance o r  sharp o r i f i ce  nozzle had e s sen t i a l ly  no e f f ec t  on 
s t a b i l i t y  when compared t o  a conventional smooth t r a n s i t i o n  nozzle. 

8. The plug o r  wagon wheel nozzle provided a s l i g h t  improvement on tan- 
g e n t i a l  mode s t a b i l i t y .  * 
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Figure 1. - Chamber shape variations. 
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Figure 2. - Injectors used in injection concentration studies. 
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F igu re  3. - Chamber shape results. Hydrogen-oxygen propel- 
lants, P, = 300 psia; t h r u s t  = 20 K. 
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Figure 4. - Chamber shape spectral densi ty traces, concentrated 
pattern in jector.  Hydrogen-oxygen propellants, Pc = uxl psi. 
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F igu re5 .  - Chamber shape results. Earth stor-  
able propellants, Pc = 100 psia; t h r u s t  = 6.7 K. 
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Figure 6. - Effect of in ject ion pattern radial coverage. Hydrogen- 

oxygen propellants, Pc = 300 psia; OIF = 5.0; 397 element 
injectors. 
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Figure 7. - Effect of in ject ion pattern radial 
coverage. Storable propellants, Pc = 100 psia. 
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Pc - 300 psi; O F  = 5.0. 
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Figure 10. - Effect of chamber sleeve length. Hydrogen-oxygen propellants, 
Pc = NO psia; OIF = 5.0; A = 1.9 w i thou t  sleeves. 
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Figure  11. - Effect of sp i ra l  steppod sleeve. Hydrogen-oxygen propel- 

lants, Pc = 300 psia. 
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f i g u r e  13. - Photo of "Wagon" wheel nozzle. 

1 6 0 r  S T A B L E  

H Y D R O G E N  
I N J E C T I O N  

T E M P ,  
OR 

::I 100 

N O Z Z  LE-, 

' -PLUG N O Z Z L E  

f i g u r e  14. - Effect of nozz le shape. 
Hydrogen-oxygen propellants, Pc - 
300 psia. 
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