1922-X WI VSV (ACCESSION NUMBER) (ACCESSION NUMBER) (ACCESSION NUMBER) (CODE) (CODE) (CODE) (CODE) (CATEGORY) (CATEGORY)

TECHNICAL

MEMORANDUM

NASA

NASA TM X-52361

CHAMBER SHAPE EFFECTS ON COMBUSTION INSTABILITY

by Harry E. Bloomer, John P. Wanhainen, and David W. Vincent

Lewis Research Center Cleveland, Ohio

TECHNICAL PAPER presented at Fourth Combustion Conference sponsored by the Interagency Chemical Rocket Propulsion Group Menlo Park, California, October 2-13, 1967

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION · WASHINGTON, D.C. · /1967

CHAMBER SHAPE EFFECTS ON COMBUSTION INSTABILITY

by Harry E. Bloomer, John P. Wanhainen, and David W. Vincent

Lewis Research Center Cleveland, Ohio

· A :

TECHNICAL PAPER presented at

Fourth Combustion Conference sponsored by the Interagency Chemical Rocket Propulsion Group Menlo Park, California, October 2-13, 1967

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CHAMBER SHAPE EFFECTS ON COMBUSTION INSTABILITY

By Harry E. Bloomer, John P. Wanhainen, and David W. Vincent

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio

INTRODUCTION

Recent combustion instability studies at the NASA-Lewis Research Center were aimed at evaluating several techniques to suppress screaming in rocket combustors. Two dissimilar propellant combinations were used and gross differences in stability characteristics of each were compared. Most of the work reported here was done with the hydrogen-oxygen (H - 0) combination. Earthstorable propellants (N_2O_4 -50% N2H4-50% UDMH) were compared to hydrogen-oxygen n in some instances. Stability rating was done with directional explosive charges for the storable propellants and varying the fuel injection temperature for the H-O combination.

Combustors were generally the same size in both cases; chamber diameter was 10.77 inches, contraction ratio was 1.9 and L^* was normally 42 inches. However, storable propellants were rated at a nominal chamber pressure of 100 psia and thrust of 6700 pounds as compared to 300 and 20,000, respectively, for the H-O combination. Variables studied were, (1) tapered chambers with concentrated pattern injectors, (2) injector precent radial coverage, (3) contraction ratio, (4) length of chamber sleeve, (5) spiral stepped sleeves and (6) nozzle shape. All experimental data are presented in Table I.

DISCUSSION

Some theoretical basis exists for changes in instability behavior with chamber shape. Priem's theory (Ref. 1) includes a burning rate parameter and a relative velocity term, which are affected by chamber shape. His theory suggests the use of a chamber with a contraction ratio less than one to increase the velocity difference between the injected liquid propellant and the surrounding gas. This should lead to increased stability relative to transverse modes. Experiments using hydrogen-oxygen propellants and earth storable propellants were designed to explore this possibility. Concentrated pattern injectors were run in cylindrical and two different half angle chamber configurations, as shown in figure 1. Presented in figure 2 are photos of the injectors used in the two phases of the test. The results for H-O are presented in figure 3. The hydrogen-oxygen data are presented as a function of mixture ratio and hydrogen injection temperature. The temperature limit boundary for the 15° tapered chamber could not be established because of facility limitation. However, it was unstable at temperatures higher than 240°R. The 30° tapered chamber was unstable at 140°R. In the cylindrical chamber, the concentrated pattern injector was unstable at 100°R. Therefore, the effect of high flow velocity seems to be destabilizing. A conventional 100 percent radial coverage injector with the same number of elements was stable down to temperatures as low as 60°R. This radial coverage variable will be treated later in the paper. The fact that the test did not follow the theory

E-4208

may be explained by the predominant mode of instability encountered. Shown in figure 4 are typical amplitude spectral density graphs for the three configurations run with hydrogen-oxygen propellants. As can be noted, the first longitudinal mode was predominant in all three configurations. The noticeable frequency shift with the tapered chambers was caused by the acoustic shortening phenomena.

The results from the storable test are presented in figure 5. The stability characteristics are presented in terms of bomb size and mixture ratio. The cylindrical chamber could be bombed unstable at high mixture ratio with charges varying from 45 down to 27 grains. The 30° taper chamber was spontaneously unstable at low mixture ratios from 1.49 to 1.71. The 15° taper chamber was completely stable over the entire mixture ratio range from 1.65 to 2.26 when bombed with 41 grain charges. The predominant modes observed in storable configurations were tangential. The result that the 15° taper chamber was more stable than either the 30° taper or cylindrical chamber is in agreement with Priem's theory.

Percent radial coverage of the injection pattern seemed to have a considerable effect on stability characteristics, so a test was devised to further explore this variable. Previous work during the F-1 development program also had shown an effect of face coverage. A theoretical treatment of this variable has been presented by Reardon, et al. (Ref. 2). His method uses distribution coefficients which are ascribed to each configuration. Their effect on a calculated pressure interaction index then was interpreted in terms of stability. In this investigation, four 397 concentric tube element injectors were designed to have 60, 72, 85, and 100% radial coverage of the injection patterns. The results of this test with hydrogen-oxygen propellants are presented in figure 6.

It should be noted that the most stable injector had 100% coverage. The curve through the data points reaches a maximum (or least stability) at a coverage of about 75% and then decreases again (becomes more stable) as coverage decreases. The 60% configuration exhibited unusual characteristics during the hydrogen temperature ramp. First radial mode of instability was encountered first at a hydrogen injection temperature of 125°R. As the temperature decreased to 108°R, the first tangential mode was the only mode identified. This change of predominant mode to radial as injection patterns become concentrated toward the center has been previously reported by Purdue's Jet Propulsion Laboratory (Ref. 3).

Another injector configuration of 200 elements was made less stable by simply welding closed the outside row of 43 elements to decrease the percent coverage from 100 to 75. This resulted in an increase of approximately 50° R in the transition hydrogen injection temperature. Based on this result, a 400 element triplet injector used with earth storables was tested and then modified by welding closed the outer row of 68 elements. The stability test results in terms of bomb size and mixture ratio are presented in figure 7. At mixture ratios above 1.6, the stability was decreased by decreasing the percent coverage from 90 to 70. These results are consistent with the hydrogenoxygen results of figure 6, but do not agree with results obtained elsewhere. It is postulated that a strong recirculation exists in the void zone which brings hot gases into the area where the propellant is introduced and the

result may then be similar to swirl or gas injection rating techniques used to induce instability. Recirculation could be the controlling factor until the void zone becomes large enough so that the normal distribution theory becomes controlling - at about 78% radial coverage.

The next logical step was the testing of the 4 hydrogen-oxygen injectors used on the radial coverage experiment with full length spools in the combustion chamber to provide 100% radial coverage for varying chamber diameters. A test of this type with the chamber pressure and nozzle throat area held constant means a variation in combustion chamber gas velocity, as well as contraction ratio. The results are presented in figure 8 in terms of hydrogen transition temperature and contraction ratio at a mixture ratio of 5.0. The transition to unstable combustion occurred at about 65°R for all four cases. All four experienced first tangential instability. The contraction ratio varied from 1.1 to 1.9 for these data and there was no effect of contraction ratio as long as thrust and total weight flow were kept constant.

The effect of varying contraction ratio by changing the nozzle throat area and keeping the same injector and chamber cross section areas is presented in figure 9. In this test series, the chamber pressure was held constant at 300 psia and the weight-flow-per-element was allowed to vary with contraction ratio. The results indicate that increasing contraction ratio from 1.5 to 4.5 is destabilizing to a tangential mode proclivity. For this particular 421 element injector with an 85% radial pattern coverage. the hydrogen transition temperature was increased from 118°R to 242°R at a mixture ratio of 5.0. Other tests which varied chamber pressure and kept weightflow-per-element constant did not change the hydrogen temperature at instability transition from these results. No attempt will be made here to present the theoretical treatment of these effects of contraction ratio, chamber pressure and weight flow. These are explained by Feiler in reference 4 using the response factor model. It is evident from the results of this phase of the investigation that the designer can scale thrust (upwards) by increasing throat diameter (decreasing contraction ratio) and flow rate not only without a loss in stability but with an improvement in hydrogen temperature stability margin. In fact, increasing the nozzle throat diameter may possibly be a useful technique to improve the stability of an existing marginally stable hydrogen-oxygen engine.

The 60% radial pattern coverage injector was tested with a series of chamber blocks or sleeves. These tests were initiated with a view to finding how short chamber-sleeves could be made and still have a stabilizing effect. The results are presented in figure 10, in terms of sleeve length and hydrogen injection temperature. The effective contraction ratio from the sleeve inner diameter to the throat was 1.14. A 4-inch long sleeve was equivalent to a full length sleeve in its stabilizing effect, with a common transition temperature of about 65°R. The predominant mode of instability was either second tangential inside the sleeve or first radial in the 10.8-inch diameter. As the length was decreased below 2 inches, the stabilizing effect was lessened rapidly. The 60% coverage point at 0 sleeve length was taken from the previous series of coverage tests. The transition temperature indicated is a transition to the first radial mode which is consistent with the 60% coverage results presented earlier with no sleeves. The dashed line indicating the onset of instability for the tapered sleeve configuration seems to be an

anomaly since it actually results in decreased stability.

A variation of the sleeve configuration is the spiral stepped sleeve. A sketch of this sleeve and the stability results are presented in figure 11. The purpose of the sleeve was to interfere with spinning waves. It was 3 inches long and covered the radial pattern of the injector from a value of 60% to 100%. It should have yielded stability characteristics similar to a 3-inch long sleeve of about 80% coverage only if the wave interference did not work. Shown on figure 11 is a line indicating the level of stability of an 80% coverage full length sleeve. Keeping in mind from figure 10 that a 3inch long sleeve would have a transition temperature slightly higher than a full length sleeve. At a mixture ratio of 5.0, the transition temperature was 95° R, compared to a value of about 133° for a full length 80% coverage sleeve.

Analytical effect on stability of variations in nozzle shape has been reported by the group from Princeton (Ref. 5). This part of the investigation was an examination of the possibility of improving tangential mode stability characteristics (minimum stable hydrogen temperature) of the combustor by increasing acoustic flow losses through the exhaust nozzle. It was hypothesized that, at the hydrogen temperature screech boundary, a state exists where the acoustic energy gains equal the acoustic energy losses of the combustor. An increase, therefore, in acoustic energy losses should result in lowering the minimum stable hydrogen temperature. Tests of several nozzle configurations were made with hydrogen-oxygen propellants. The results of the tests are presented in figure 12. All the chambers shown on the figure experienced tangential mode instability. No change in stability characteristics are discernible, although data scatter are greater than is usual.

Results of reference 6 indicate that flow dependent losses through a vent (nozzle) increase as the vent is moved toward the pressure antinode. In this case, tangential mode instability, the pressure antinode is at the walls of the combustor; thus, for maximum losses, the nozzle open area should be positioned at the periphery of the combustor. Accordingly, a nozzle was fabricated with an internal plug and eight radial support spokes (wagon wheel) as shown in figure 13. The nozzle was evaluated with a 421-element concentric tube injector and a cylindrical combustion chamber.

The stability characteristics of a combustor with a conventional convergent-divergent nozzle and the annular flow (wagon wheel) nozzle are compared in figure 14. The hydrogen temperature stable operating limits were improved about 20° R with the wagon wheel nozzle compared to the conventional configuration. The limited success of the wagon wheel configuration may be due to its distant location from the region of highest energy release (maximum screech amplitude) which normally occurs near the injector (Ref. 7). The general conclusion to be drawn from this phase of the work is that drastic changes in nozzle shape appear to be of little help in improving stability of a hydrogen-oxygen chamber.

SUMMARY OF RESULTS OF CHAMBER SHAPE EFFECTS

ON SCREECH CHARACTERISTICS

1. Concentrating the combustion process using tapered chambers and a concentrated pattern injector had a detrimental effect on the longitudinal mode of screech, although stability was improved when a tangential instability was the predominant mode.

2. Concentration of the elements of an injector in 75% of the face area resulted in a higher hydrogen temperature transition into tangential instabilith than either a greater or a lesser radial coverage.

3. Variation in contraction ratio from 1.1 to 1.9 by changing the chamber diameter and keeping the injection pattern radial coverage and nozzle throat diameter constant did not affect the transition temperature of the tangential mode.

4. Decreasing contraction ratio from 4.5 to 1.5 by increasing exhaust nozzle area had a stabilizing effect on tangential mode instability.

5. A partial length (4") chamber sleeve had the same effect as a full length sleeve on stability. Shorter lengths contributed less stabilization and the effect became the same as the radial coverage effect when the sleeve length approached zero.

6. A spiral sleeve (3" long) contributed some stability to the system.

7. The admittance or sharp orifice nozzle had essentially no effect on stability when compared to a conventional smooth transition nozzle.

8. The plug or wagon wheel nozzle provided a slight improvement on tangential mode stability.

REFERENCES

- Priem, Richard J.; and Guentert, Donald C.: Combustion Instability Limits Determined by a Nonlinear Theory and a One-Dimensional Model. NASA TN D-1409, 1962.
- Reardon, F. H.; McBride, J. M.; and Smith, A. L., Jr.: Effect of Injection Distribution on Combustion Stability. AIAA J., vol. 4, no. 3, Mar. 1966, pp. 506-512.
- Zucrow, M. J.; Osborn, J. R.; and Bonnell, J. M.: High Frequency Combustion Pressure Oscillations in Motors Burning Gaseous Propellants. Rep. No. JPC-409, TM-65-5, Purdue University, Aug. 1965.
- 4. Feiler, Charles E.: Effect of Combustor Parameters on the Stability of a Gaseous Hydrogen - Liquid Oxygen Engine. Paper presented at Fourth Combustion Conference, Interagency Chemical Rocket Propulsion Group, Oct. 2-13, 1967.
- 5. Crocco, L.; Harrje, D. I.; and Sirignano, W. A.: Nonlinear Aspects of Combustion Instability in Liquid Propellant Rocket Motors. Second Combustion Conference, Interagency Chemical Rocket Propulsion Group, Vol. 1. CPIA Publ. No. 105, Applied Physics Lab., Johns Hopkins Univ., May 1966, pp. 63-105.
- Gordon, Colin; and Smith, P. W., Jr.: Acoustic Losses of a Resonator with Steady Gas Flow. J. Acoust. Soc. Am., vol. 37, no. 2, Feb. 1965, pp. 257-267.
- Clayton, R. M.; and Rogero, R. S.: Experimental Measurements on a Rotating Detonation-like Wave Observed During Liquid Rocket Resonant Combustion. Tech. Rep. 32-788 (NASA CR-67259), Jet Propulsion Lab., California Inst. Tech., Aug. 15, 1965.

t	ਸ			<u></u>													
	Chamber taper half angle, deg		300000 11000000000000000000000000000000	30 Gg1tn- drical													
	Stability classifi- cation cation		Transition														
	Bomb size required to drive, grains			Damp Damp Damp Sponta- Damp Damp Damp Pamp Pamp Pamp Pamp 1.63 1.63 27.79 Pamp 27.79 Pamp 27.79 Pamp 27.79 Pamp 27.79 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- 1.63 Sponta- Damp Damp Damp Damp Damp Damp Damp Damp	Sponta- Sponta- Sponta- neously neously												
	Fuel 1n- Jection tempera- ture, oR	chamber studies			99 97 106 131 238 249 249	542 542 542 545 545 545 545 55 55 55 55 55 55 55 55	528.3										
	Eff- ciency of char- acteris- tic ex- haust haust velogity, pergént							96.13 96.34 96.34 96.34 99.24 99.24 99.29 99.26	96. 5 2 97.93								
	Oxidant- fuel ratio, 0/F			4.31 4.15 4.15 5.20 5.20 4.31 5.18	0.001 11 19111101011 1 0.10110110011 0.002 11 11 11010110 1 1 0.101101100110 0.002 11 11 1101010 1 1 0.101101100110 0.002 11 11 11010110 1 1 0.101101010000000000	2.34 1.60											
L DATA	Oxidant weight flow, Woc lb/Séc		56.1 56.1 50.4 50.4 45.5 52.1 52.1 52.1 52.5 52.5 52.5 52.5 5		20.57 18.38												
- EXPERIMENTAL DATA	Fuel flow, flow, lb/sec		11.3 12.1 12.1 10.9 10.5 10.5	9 9	8.78 11.50												
	Static pres- sure at in- jector, psia		+ 398 418 663	108:33 108:33 108:33 108:33 113:25 11	102												
TABLE I	Number of in- jection ele- ments		Tap	Tap	Tap	Taper	Tap	Tape	Tap	Tap	Tap	00T	°β 3β	33 2 332			
	(H2 - 02) storables							H ₂ - 0 ₂	Storables								
	Contrac- tion ratio, A															1.9 1.9 0.257	ი
	Percent cover- age of injec- tion ele- ments						12 85		70								
	Throat diam- eter- in.		7.82														
	Largest chamber dlam- eter, ln.						10.78										
	Chamber diam- eter at injec- tor, in.						-		10.78 10.78 3.97 5.97	10.78							
	Test		722 723 724 719 720 720 721	865 666 667 667 667 667 667 667 667 667 6	^a 215 ^a 216												
	Fig- ure num- ber		50 ···	4													

.

TARIR T – RYPERTMENTAL DATA

^R Runs also used for fig. 7. - Effect on injection pattern radial coverage.

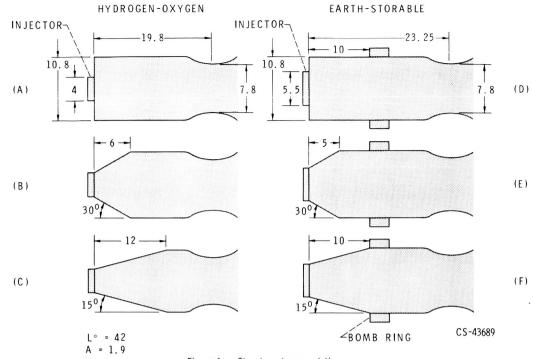
2

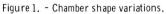
م تواد ا

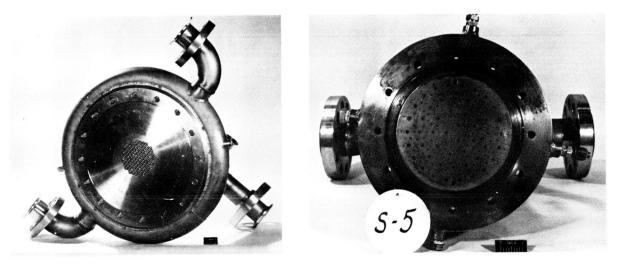
,	[e							_																				_																													
	Chamber taper half angle, deg																																																								
	Stability classifi cation	Injection pattern radial coverage	pattern radial	pattern radial	pattern radial	pattern radial	pattern radial	pattern radial	pattern radial	pattern radial												Stable	Transition						Transition		Stable	TTANSICION	,		Stable	Transition				Transition	Unstable	Trans1tion	Stable	Transition	Stable	Stable Stable											
	Bomb size required to drive, grains																-											8	 	8	 								1 1																		
	Fuel in- jection tempera- ture, oR															114	63.3	03.4 9.0 9.0	122	105 181	1991	151	129 118		105	1111	145	148	136	121	153	127		64.3	68.2	62.5	59.6	65.5 71 0	58.5	58.0 57.6																	
	Eff1 ciency of char- acteris- tic ex- haust velocity, percent																				102.0	97.3	96.1 1.90	92.9	94.1	100.0	99.4	98.5 99.0	8 1 1 1	98.5 00	99.3 5.99	98.4	6.78 6.76	109.2	97.2	97.4	96.3 96.7		98.2 1001	91.8	100.9	99°9	88.U 90.64	87.70	89.21 88.7												
DATA	Oxidant- fuel ratio, O/F																4.85	4.84	5.67	5.16	4.09 6.82	6.86	€.16 6.16	5.29 5.03		•	*.01 6.51		4. bi 6.26	3.82		5.89	4.30 5.66		4.47 5.43	5.73	5.98	3.62	5.62 4.71	5.55	4.70 3.67																
EXPERIMENTAL DATA	Oxidant weight flow, Wo' lb/Sec										48.92	55.90	58.29 58.29	51.33	46.98 55.25	55.31	54.23	50.88 48.28									49.83 54.58								49.96 47.04																						
- EXPE	Fuel weight flow, We, 1b/sec										pattern radial	pattern radial	pattern radial	pattern radial	10.09	11.56	10.28	9.94 9.94	11.44 8.10	8.06	; œ	9.62 .9.60		13.63	8.57	8.90	10.21 8.35	12.25	12.20	9.32	11.59 9.64	on ratio	10.93	9.24	8.71	12.45	10.11	9.64	10.62 12.81																		
Continued.	Static pres- sure at in- jector, psia														pattern	pattern	pattern	pattern	pattern	pattern			317	346	328 338 475	236 296	301 314	310	314	303 299		306	316	297	296 296	319	311	317	315 317	Contraction rati	•						315 318										
- 1	Number of in- jection ele- ments																				397			•				· · · · ·						-				Ð	397		-																
TABLE	(H ₂ - O ₂) or storables																		H2 - 0 ₂											•							^H 2 - 02			•																	
	Contrac- tion ratio, A																															1.9																		1.61			ואבר	•			
	Fercent cover- age of 1njec- tion ele- ments																											100	4		60			-	85					+	72					100											
	Throat diam- eter, in.																							7.83		•																7.82															
	Largest chamber diam- eter, in.		10.78			10.78				1 0.78	<u> </u>				_	10.78		•	-		10.78				•																																
	Chamber diam- eter at injec- tor, in.		10.764	,		8.341				9.924					-	9.138	•				9 [.] 90				•	-																															
	Test		⁸ 292	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	b547	548 549	0350 0351	b352	358	359	360	362	363	365	546	54.A	549	550 551		372	774	775	776	370	371	372 373																														
	Fig- urre ber		9												•						æ			-																																	

T = f c m + 1 m c d = EV DED TMENUM

8

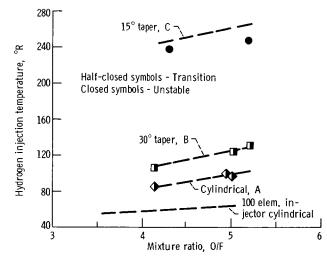

inte Par ^a Runs also used for fig. 8. - Effect of contraction ratio. ^b Runs also used for fig. 10. - Effect of chamber sleeve length.

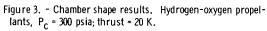

	Chamber taper half angle, deg																					
	Stability classifi- cation	Contraction ratio - Continued				Transition		Stable Transition Stable Transition	Stable Musual ton		Transition Stable Transition											
	Bomb size size to drive, grains																					
	Fuel in- jection tempera- ture, oR						64.7 64.7 62.3 62.3 62.5	196 133 244 167 233 233	124 164 351 270 230 174	191 2554 115 126 120 122 112 122 155 152 152 152 152 152 152	136	103 1295 1200 1010 122 81 74 61.5 61.5 67 67 67 67 83.1										
	Eff1- clency of char- acteris- tic ex- haust velogity, percent				101.5 98.2 95.8 95.3 91.7 95.2 95.2			99.5 110 99.3 101 99.4 99.6 99.6 99.6 99.6 102 102 100.5 100.5 100.5														
, DATA	OVE OVE OVE OVE			4 10 10 4 10	0 0 0 0 0 0 0 0 0	N400044	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>ی</u>	4.73 5.79 5.70 5.79 4.77 5.18 5.18 5.29 5.29 5.29 5.19 5.19 5.28 5.33 5.39 5.39 5.39 5.39 5.39 5.39 5.39													
EXPERIMENTAL DATA	Oxidant weight flow, Wo, lb/sec		51.89 46.97 53.34 50.97 54.46	30.94 28.09 33.45 31.22 31.22 31.32 32.57 29.38	29.22 31.55 34.51 24.51 25.20 23.40 23.40 21.30	222.90 222.90 228.10 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 66.20 60.20 70 70 70 70 70 70 70 70 70 70 70 70 70	53.98 h	50.76 45.19 545.19 47.101 51.99 48.08 48.08 48.91 48.50 48.91 48.50 51.84 48.50 51.84														
- EXPEI	Fuel weight flow, Wf, lb/sec		L I	10.39 11.96 9.65 11.74 9.55	5.93 7.24 5.79 7.13 6.72 5.31 7.99	8.37 6.56 6.52 6.52 1.01 1.01 1.01 1.01	• 5.22 • 5.22 • 5.32 • 5.33 • 1.25 • 1.25	10.41 ve length	10.74 110.74 11.922 11.053 110.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 12.54 12.54 12.54 12.554													
Continued.	Static pres- sure at in- jector, psia			ontraction rati	ontraction rati	ontraction rati	ontraction rati	ontraction rati	ontraction rati	ontraction rati	ontraction rati	ontraction rati	ion rati	ion rati	307 304 311 319 318	278 287 288 310 301 271 275	320 307 316 316 315 315 315 315	516 316 316 3546 3554 3551 3558 3558 3558 3558 3558 3558 3558	340 l ber sleeve	319 319 318 318 318 318 318 318 318 319 325 325 325 325 325 325 325 325 325 325		
- Т	Number of in- jection ele- ments												397	421			Chamber	397				
TABLE	(H ₂ - 0 ₂) storables		H ₂ - 0 ₂				•	H2 - 02														
	Contrac- tion ratio, A																1.367	о		<u>ه</u> . با	•	б >
	Percent cover- age of injec- tion ele- ments								100	82 			-	°9								
	Throat diam- eter, in.		7.82				-	7.82														
	Largest chamber diam- eter, in.			10.78			-	10.78														
	Chamber diam- eter at injec- tor, in.				9.138	9.935				8.35												
	Test		552 553 554 555 555	255 256 258 258 259 291 291	200 200 200 200 200 200 200 200 200 200	235 235 235 235 235 235 235 235 235 235	337	4441 4445 4445 4445 4445 4445 4445 4445														
	F1g- num- ber		ω	ი	•			10														

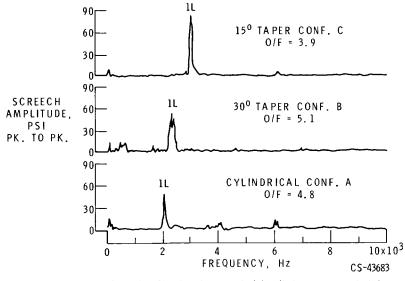

Chamber taper half angle, deg Stable Transition Stable Stable Transition Unstable Transition **Transition** Transition Trans1tion Stability classifi-cation Stable required to drive, grains Bomb size 1 -Fuel 1n-Jection tempera-ture, 58.9 77 682.8 68.1 65.6 65.4 77 77 70 70 70 70 100 106 105 103 103 119 90 1120 1051 ciency of char-acteristic ex-haust velogity, hc, percent 107.6 104.3 104.5 104.5 102.5 102.5 102.5 99.5 89.25 99.27 101.7 99.1 99.1 99.1 91.6 91.2 88.9 88.8 88.8 88.8 88.8 88.8 97.8 99.4 97.5 97.4 95.9 90.9 94.4 87.7 95.2 91.7 Effi. Ox1dantfuel ratio, 0/F **5.28 5.28 5.28 5.295.29 5.295.29 5.29 5.29 5.295.295.29 5.2955555555555** 5.22 5.22 5.22 5.22 55.23 55.23 55.080 5.17 4.09 5.96 5.36 5.36 Oxidant (weight flow, Wo, 1D/sec 44.73 51.373 51.373 44.48 44.48 44.48 44.48 44.48 44.48 45.84 49.40 55.43 55.98 55.98 **47.87 44.70** 51.43 46.31 50.14 50.14 331.64 331.98 331.23 33.16 332.14 332.14 332.14 35.01 35.01 35.01 35.12 35.12 35.12 Continued 51.6 54.9 55.9 53.4 aleeve Fuel (weight r flow, Wfs lb/sec : effect 13.53 1.64 10.18 11.73 9.16 9.71 9.71 9.71 9.71 9.71 10.66 nozzle 10.09 11.73 8.93 9.61 9.62 5.84 6.26 6.51 6.51 6.51 6.51 6.51 6.72 6.73 6.73 5.74 5.74 9.9 9.2 9.2 9.9 ł stepped sleeve length Nozzle shape sure at in-jector, psia wheel pres-Static 277 289 271 298 286 304 302 302 302 302 302 302 Wagon Spiral Number S of 1n-jection ele-ments 397 397 421 421 Chamber TABLE I °2) storables 8 ő å ð (H_{2 -} -1 I. ı ı. H_2 H2 HZ ۳ ۳ Contracti**on** ratio, A 1.9 1.9 3.0 1.9 Percent cover age of injec-tion ele-ments 60 00 85 58 Throat eter, in. 7.82 7.82 diam-7.82 7.82 Largest chamber diam-eter, in. 10.78 10.78 10.78 10.78 dlam-eter at injec-tor, in. Chamber 9.935 8.341 9.935 8.35 Teat 427 428 383 385 385 385 423 4436 4436 4436 4433 440 392 393 394 395 395 395 33210 Fig-ure num-ber 2 Ц 12 14

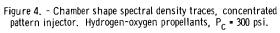
- EXPERIMENTAL DATA - Concluded.

ទ

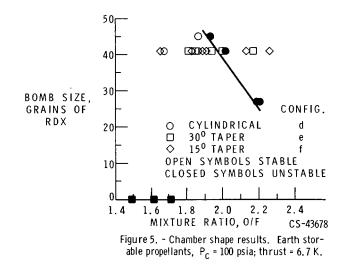


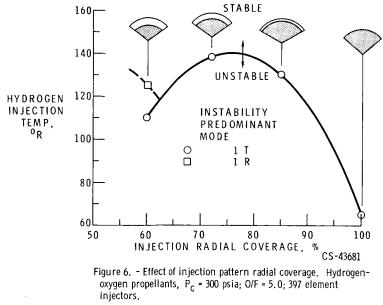





(A) HYDROGEN-OXYGEN INJECTOR (100 ELEMENTS).
(B) STORABLE INJECTOR (50 ELEMENTS).
CS-43691
CS-43691

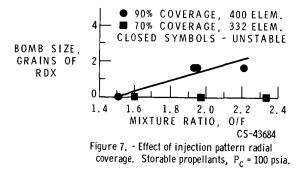
1.1

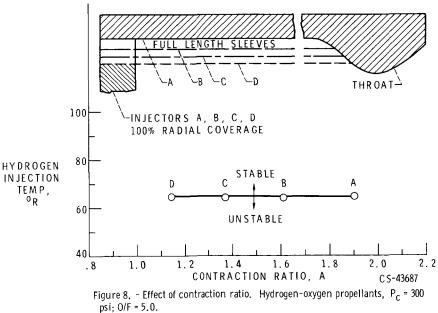


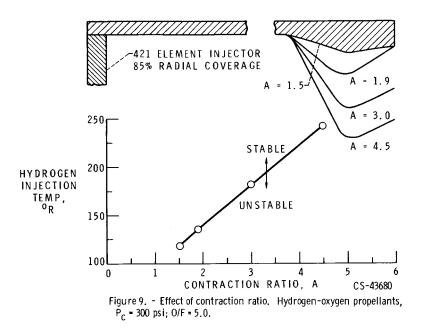


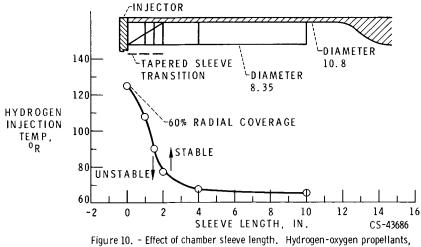
E-4208

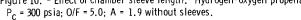
٠

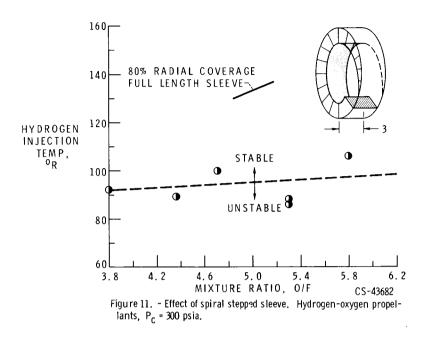

.






E-4208





E-4208

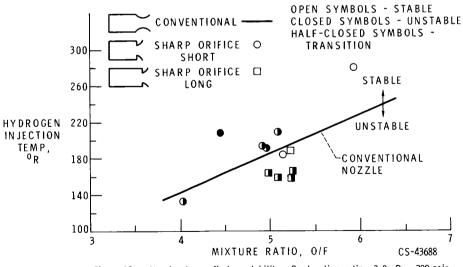


Figure 12. - Nozzle shape effect on stability. Contraction ratio = 3.0, P_c = 300 psia.

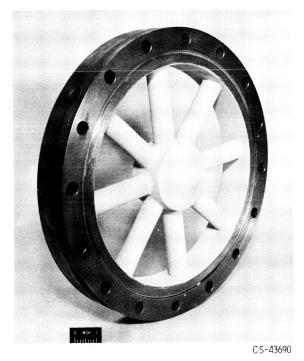
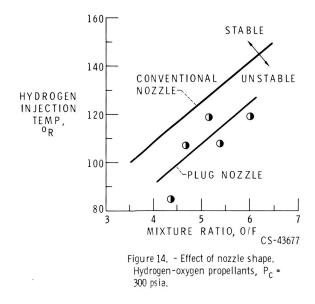



Figure 13. - Photo of "Wagon" wheel nozzle.

NASA-CLEVELAND, OHIO E-4208