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FOREWORD

This report is a summary of the management techniques employed in the development, systems

test, and launching of the Gemini Launch Vehicle, Gemini Agena Target Vehicle and the Atlas, SLV-3

in support of the NASA Gemini Program. The period covered is from January 1962 through

December 196b. Although the document was prepared in large part by Aerospace Corporation, sig-

nificant contributions were made by the Space Systems Division, Air Force Systems Command and the

major contractors involved (The Martin Company, Baltimore; General Electric, Syracuse; Burroughs

Corporation, Paoli; Aerojet General, Sacramento; Lockheed, Sunnyvale; General Dynamics Convair,

San Diego).

Each section in the report contains its own reference list. These are called out in the text by

superscript numerals but are listed at the end of the section. A list of definitions is also appended

to each section.
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I.    SUMMARY 

A.        SCOPE 

The Gemini Launch System* Final Report contain* accounts of three vehicle* involved in the 
ascent phases of the Gemini program:   the Gemini launch vehicle, the Gemini Agena target vehicle, 

and the Atlas standard launch vehicle.    Since the first two were not originally developed for the tasks 

specifically called for in a manned program, the emphasis will be on these vehicles; Atlas (SLV-3) 

required little or no modification for this program. 

The report is somewhat historical in nature, in that it will attempt to trace the conversion of the 
Titan 11 and standard Agena into vehicles that would satisfy, respectively, the objectives of orbiting 

the spacecraft and providing a suitable vehicle for rendezvous and orbital maneuvers.    Emphasis has been 
placed on techniques,  controls,  and management approach. 

As can be seen in Table I. A-l,  the flight program was highly successful in meeting all objectives 

while remaining comparatively free of anomalies.    For example,  the Gemini Launch Vehicle reliability 

record speaks for itself:    12 successful missions for 12 launches; 99. 9% data recovery; 84 countdown hours - 

two holds; t 1/2 hours lost,   and 2 shutdowns; all vehicles delivered on schedule and below target cost; and a 

75% reduction in test time from GLV-1 to GLV-12.    The Agena Target Vehicle achieved four successful 

orbits out of six flights.    Throughout the four flights the specially designed command and communication 
(C&C) subsystem performed to near perfection, receiving and executing successfully over 10,000 real 

time,  stored program, and spacecraft commands.    Discussions of the reasons for the excellent perfor- 

mance of these vehicles begin with a description of the quality and organization of management, which 

contributed in large measure to the efficiency and high motivation of the n,ogram. 

Two significant GLV firsts were,   60-day launch centers and the simultaneous countdown of two 

vehicles.    The evaluation and subsequent modification of test philosophy and procedures,  both at the 

factory and the Eastern Test Range (ETR), made these pioneer effort* possible and this subject is 
discussed. 

Problems specific to man-rating the Titan II ballistic missile are dealt with at some length. 

Techniques developed for the acquisition of trouble-free hardware included not only the exercise of 

extraordinary reliability assurance, but also the relentless pursuit of problem solutions in the form of 
continuous technical reviews and these will be described. 

Significant firsts associated with the target vehicle were:   the first docking of two vehicles in space, 
first use of non-spacecraft propulsion system for space maneuvering,  and a manned altitude record of 
741 n mi. 

There is a short description of the configuration of the launch vehicles and target vehicle, sub- 

systems, and modifications, as well as of specialized hardware problems.    One of these problems 
concerned the refurbishment of CATV 5001, originally the first flight article, which underwent testing at 
ETR, remained there as a backup to 5002 and was returned to Sunnyvale after the flight of that vehicle. 

Special study efforts dealing with other problem* re*ulting from systems test, flight anomalies, and 
general problems of all the vehicles are also included. 

The history of each vehicle, from fabrication through launch and flight evaluation, has been 

summarized followed by an account of the significant trend* that became evident as the program 
progressed. 

Finally, the practical lessons learned from experience on the Gemini Program are briefly stated 
in the conclusions (Section V), 

I. A-l 
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Toblt 1-1   GEMINI FLIGHT SUMMARY 

k 

Mission GLV & Target 
No. Perigee and Launch Mission GLV Vehicle Flight Launch 

t Sequence Type Mission Date Astronauts Azimuth Apogee Window Duration Objectives Results CD Aborts CD Holds 

1 Milal iApdlM nxt'cn 87 n mi and 3 5 hi 425 Stmctuias. «ml heating ( Successlul  All «one None 
UnMmd 161 n mi Ortiita guidance qualificalion objeclives 
ttoS/C achieved and S/C 
SmMm 

tolerance 
requirements 

2 Billiilic 
UMHMWI 

19J«i65 105»(T) I7niinitliaai 3 51» 1.848 n mi 
Impact 

Separation. Suhsyslem, 
«lalilicition 

Successlul  All 
obiectives 
achieved and S/C 
inserted «thin 
loleiance 
lequuements 

1-shutdown belore 
L/O due to hydraulic 
SWltCtHIW tO 
secondary system 
[12'9.64) 

None 

3 OtHllI 23 to 65 V Grinon 720 MT) I7iiniand 3.51» Tlirae «tilts Perfoiirance in meeting Successlul  All ttone 24 minute hold 
matt J Youi| 130 n n insertion requirements objectives due to ondizer 
3oit)iti achieved and i'C 

inserted «ilhin 
tolerance 
requiiements 

leak Stage! 
ducting 

IV 85". 3 Jim CS J NcDiyltt H.01T) 87 n ni and 2.51» lon( duiatiofl Performance in meeting Successful  All None 76 minute hold; 
Harnd E Riit« 161 n m 4-day5 insertion lequnements obiectives achievei due to erector 

lowenng probt« and S/C inserted 
within tolerance 
lequuements 

V OrbiUI 21 Aii|(S G. Coop« ;2 0»(T) 87 n ni nd 3 51» long duialion Peifonwice to S C Successful. All IS Cpioblems None 
Mnwd CConrm 190 n mi 8-days insertion; Joint GT obiectives 19 Aug 1965 
Itali GAATV CD 

compatibility 
ISLD1 

achieved and S C 
inserted mithin 
tolerance 
lequuements 

VI (Mi III 25 Oct 6S « Schim VHllbll 87 n mi aid 3 51» 2-days Meet insertion requiie- GT Mission aboitad l-GT-6 due to loss None-GT-6 CD 
Mmnd T SMtont N°to l«nmi ments: Joint GT GAATV pnor to launch ol Agena terminated at 

RndKvnn 105MT) CD following loss of 25 Oct 1965 T-42 minutes 

«Bi G«TV GATV altei PPS 
ignition 

VII Ofbitil «DecSS F Boriain B3.S'(T1 87 n mi and 2t» long duialion Meet insertion require- Successlul. All None None 
mm» i Lntll 183ii mi 14-days ments obiectives 

u-*m achieved an) SC 
inserted within 
loleiance 
lequuements 

VM OrtilH ISO«» 1 Scbirn Vtfilblf B7nmiaiid 21» Iday Meet insertion Successful  All None 

ntmtm- r SMIord 80° to 10S° Mn mi ie«iireiiients and ibieclives L'Odueto 
DKkmi (T)(«1.40 rendezvous launch achieved launch 
RMMIVOUS Actual) requirements window limitation Pad Oiscomact 

»in GT-; s/c lequuements met 
and SC inserted 
within tolerance 
requiiements 

3 01M GGondizer 
nlet blockage also 
presenL (dust cap) 
12 Dec 1965 

VIII MiUI UMMU 1. Arntionf VKIAI« 87n«iind 2 51» 3 days Meet insertion Same comment as None None 

mmt ) Scott 80" to 10S» l«niai laquiiemants Complete fwVI-Aplus 
(T)(W90 Joint GT-8 Target Agena success- 

ariDoctMi AcUl) Vehicle launch CO fully placed in 
wlhCATV lenoezvous 

docking orbit 

IX Ortitil WlhyU T Stmord VariMolO* 17 it mi and 2 51» 3 days Meet insertion GTMinion 1-Due to lose None 
MM* ECornon to 105* (T) 14(111* requirements and aboitad pnor to 

launch following 
of GAATV duni« GT-9 CO 

RMOtZVOUS GT GAATV boost phase leriiinalad 
Ooekiinwft randeznus loss ol GAATV 17 May (6 at T-85 min 
GATV. EVA docking m=3): 

loint launch 
dunng boost 
phase due to 
engine hardovei 

IX-A Ofbitil 3JimK T SWford Viriibll ao* 87 n mi and 2 51» 3 days Meet insertion GLVobiective 1-Mallunction None 
mmt E Ctraoo to 105* (T) IMS ami requiiements successtully in S C computei 
RnMuvou («M0 andGT'GAATDA Khievad No 
OodumwHi AcM, Randtzycus ATDA docku«: 
AT0A,EVA dockin|(ll=3). 

joint launch 
lequiiMMts 

shioudlailuie 

X 0*tll llJUltt J t. »out VirilDIt 87 a n md 151» 3 days Meet inseitm All GLV None None           ! 
Mmt 1.   Collim «•to INnmi (Sin|la-pana objectives 
CATVXS/C 105'(T) d«a) GT GAATV successtully 
IMII«M4 (MM 2.5l»(T»o rendezvous- achieved: 
OKkmi, Achall pnadayi) dockin|IM=4l: Rendezvous and 
GATV VIII- joint launch and docking 

s/c lequiieinents accomplished 

RMluvni 
EVA 

XI Ortwtil 12 S»« C Conrri Mrittlt «7'««lad ISIXSiailo. 3 days MM inser- All GLV obiec- 1-Attas round 11 m. hold 
mm* P. (MM «•tolOS-      151 n« mirfio 

tion leqiwamants tives successfully probte« at T-97 sac 
Rnduvoii (T)(»V and GT GAATV achieved: nndez 9/10/K ofcombiMd 
Deckiain» Actual) paotdava) landaznus vous 1 dockini CO due to 
GATV, EVA docking (»li: 

jotnl launch 
raquirements 

accomplishad iC hatch 

XII Ortitil 11*0»« J Lowll VariaMf 17 a mi aad 151» 4 days Meet inaeilion AIIGLVotieeti« »   NOM New 
VMM« E AMrm «' to 105'    151« M (Siaila- successlul ly 
m*mm (TI(lM.f sax GT/GAATV achieved; lendez 
Oockii««!» AclMl) rmduwus vous and daching 
GATV. EVA trntofi) Mtin|(M=3t 

loiat launch 
nquiraaaots 

with Agena GAT 
PPS chamber 

appro« T» 140 aa ! 
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I   CgMIHI FLICHT SUMMARY 
GLV t Targe! 
Vehicle Flight 

Results CD Aborts 
Launch 

CD Holds 
Significant GLV 
Flight Anomalies 

Resolution of GLV 
Flight Anomalies 

SUCCBSIUI  All 

tdiinMlamllC 
iiMft«! »iftin 
Wüioct 

NOM Nmt 1   Fuel sins« f«cowiin| 
2. POGOpolenti(Mel«millunclion 
3. Post'SECOoscillitlon 
4. ¥m velocity en« it imtrtm 

1.  HoodidiciMndtsiiMd to collect midutsiodpwKBimcoKefiniol 

SWIMH optics 
i        2.   Tt«>iduc«ttdtsi»ied,iMltlliliMilltcti»e,GLV-3(ECPI»-307)i 

3. CiMiieolBltOMuts'ptoetdwtstoS/CttiMiitiwdnitiiliiitioiiol 

DAMS iMe cotliol deltyed 2 stconds.) 
4. Guidtncet(|uilioM»o*li«<'»»"oipicttobiiioolellectsefej Unit. 

Sucnsslül. All 
ob|Kti«is 
•diitMd ml S/C 
InttfM «itbin 
toltin« 

L/Oduetohydnulic 
stritdMvn to 
Mcondaiy syslM 
12/9/64) 

1 NOM 1.   Hub St« 1 Umist nd ISP 
2   Sti|e 1 M'lulic piessuie decey il entiM stwl 

1.   Enoiricilditi horn Til» II «d GLV lliibtsbeini compiled lot »ore 
eccorile pertamnce prediction. 

1   Gatss Ml« testini ol ibt bydtwlic pump compontnts prior to lawcb. 
1.  SM GLV-1 iNolutan rtenrli. 

Succtsslul  All 
otjKtivn 
■cliitnd ml IC 

tolmKi 
nquimwits 

NOM 24 minute bold 
di« to oudini 
luliSliiel 
ductmi 

1   Hi|b« tbin piedicled Sti|e 1 pHformmce 1.   Empiricil diU horn Titan II md GLV lli|Ms to be utilind 1« more 
iccurite prediction ol tn|iM pertwmince. 

Succtsslul   All 
ktclivts Kliimd 
MS/Cinstitid 
Lriniin lolttince 
ftquiniMfltJ 

Nan 76 minute bold 
dwtonecloi 
lOMimi pioMem 

1.   Roll ttmimt«L/Oduelofuel toppinf ditconnecl 
b»|up 

2   Hi|b Stue II fuel onlice inlet tmpwitura 

1. Hinw it diKonntctdw to dust plu|Sto«i|e«iyebicle position           1 
Dust plmnsmblies »ill be removed pri« to liltoll                           1 

2. Leek in bot m cool«. ECP prepind Iw inslillHion U intimil bypiss 
cooltt. 

Succtsslul. All 
mtclives 
Khintd m t'C 
ins«» «ittin 
tolttince 
|ll«littMlltS 

1S/C pioDlew 
19 Au| 1965 

None 1   POGO«curredifcnn|tliep«iodolT+117loTtl33SM«ids 1.  Oiidiz«stindpipes»«euncb»|edilliltoll. Pnceduril cbM|ts midt 

GTMitsmUmW 
MUX to Iwidi 
bllmiiit loss of 
CATV lit« PPS 
ipition 

l-GT-6duetoloss 
OlA|tM 
2S del 1965 

NoneGT-e CO 
leimiuled il 
T-42 mmules 

No Gl 1 Fli|bl - See Fli|bt ResulU raluiw 

Successful. All 
niectins 
Khir/MMIC 
imtiM anlliin 
toUwct 
nquiiiMnts 

NOM Nom 1   Tbe "Ikke" ol OPP swlcb iltei ipilion »is «ilbin 
«ecs but SIOMI lb» deslied 

1   The presureonlice dime)« »as reduced l«VI-A «id subsequent llifbls. 

Succtsskil  All 
obitclnts 
Mint» laundi 
mmm iMitHioi 
WWirtMnts Ml 
ml i/C inttfW 
«ittin toltiMCi 
nguiiMwits 

L'OdMto 
piemtuie diopout of 
PedDisconwct 
3 DIM GGoiidiz« 
inlet bleckiieilso 
pnsenKdutcipl 
12 Dec 1965 

NOM 1.   TUsiiMlitieflitbiKapdminSUitllflipl 
1« wbeeduenl lli|b!s 

IMKCOMWIU 
IwVI-Aplui 
lim success- 
hllypltcedin 
iMdentus 
dockiiif at»! 

NOM NOM 1 RGS Pilchdom (11%) MMumitL/Gi 330 lecends 1    LowlrMuency noise in GE Mod III ridii Hit» 
Attributed lo bopoipMriC condition. 

GTHssieii 
«MM Mi« to 
iMdihlkwim 
InsolGAATV 
dutinibonl 
ptatAitto 
«fiM tantom 

1 due to loss 
olGAATVdunni 
boost ptase 
17 in» 86 

NOM 
GT-9 CD 
tennnHed 
it T-B5 mm 

No GLV Flifbt - SM Fli|bt ResulU cslum 

GLV*nclive 
Mcctsshll» 

i tCntfllM  NO 
ATDAdockini: 

shraud luluie 

1-Hillunction 
mS/Ceonpulw 
«Me loop 

Nom 1   lt)dllliid«plil«iliMeclwMldnnilT4 3l5MC 1.   AttribuM to ttcp«ipb«ic condition 
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Superscripts signify references which are listed at the end of each section. 

I. A-5 

B. GEMINI PROGRAM OBJECTIVES 

The primary objectives of the Gemini Program, which were established after it became evident 

to NASA that an intermediate step between Mercury and Apollo was required, were as follows: 

• Long duration flights in excess of the requirements of the lunar-landing mission. 

• Rendezvous and docking of two vehicles in earth orbit. 

• The development of operational proficiency of both flight and ground crews. 

• The conduct of experiments in space. 

• The active control of re-entry flight path to achieve a precise landing point. 

C. SSD/AEROSPACE ROLE - Gemini Launch Vehicle, Gemini Agena Target Vehicle, and SLV-3 (Atlas) 

In 1961, during the proposal stage of the Gemini program, the Air Force Titan II ballistic missile 

was chosen as the launch vehicle for the Gemini spacecraft.      It was agreed that the vehicle could be 

used for this purpose with only minor modifications. 
At this time, a document (Operational and Management Plan for the Gemini Program ) was drawn 

that, in general terms, delineated the responsibilities and division of effort required for the conduct of 

the program.    To summarize, this document assigns the responsibility for development and procurement 
of the launch vehicle, launch complex, and launch operations to the Air Force under the over-all manage- 

ment of the NASA Program Manager. 

More specifically, the Space Systems Division (USAF) was delegated the responsibility for Gemini 
launch vehicle development and procurement; Atlas procurement; GATV development and procurement; 

Atlas/Agena system integration; technical supervision for the launch of the GLV and Atlas/Agena 

vehicles; and range support as required by NASA. 

Aerospace Corporation, a not-for-profit organization under contract to SSD, was given the responsi- 

bility for general systems engineering and technical direction of the GLV and technical surveillance of 
the Agena target vehicle and SLV-3.    Aerospace was also responsible for the development and implemen- 

tation of the GLV guidance equations. 

In January 1962, a purchase request was issued to the Space Systems Division of the Air Force 

Systems Command for the development and procurement of a sufficient number of vehicles to satisfy 
the needs of the Gemini Program. 
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SECTION I. A 

DEFINITIONS 

ATDA Augmented Target Docking Adapter 

CD Countdown 

EVA Extra Vehicluar Activity 

GAATDA Gemini Atlas Augmented Target Docking Adapter 

GAATV Gemini Atlas Agena Target Vehicle 

GAT Gemini Agena Target 

GATV Gemini Agena Target Vehicle 

GG Gas Generator 

GT Gemini Titan - (Mission) 

M = Orbit Designation; i.e. , M = 1,  First Revolution (Spacecraft Term) 

NASA National Aeronautics and Space Administration 

OPP Oxidizer Pressurant Pressurization Switch 

PPS Primary Propulsion System 

RGS Radio Guidance System 

S/C Spacecraft 

SECO Sustainer Engine Cut-off 

SSD Space Systems Division 

SLV Standard Launch Vehicle 

T/M Telemetry 

T/V Target Vehicle 

VD Valve Drive 
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II.    GEMINI LAUNCH VEHICLE 

A.       INTRODUCTION 

I.        PROGRAM MANAGEMENT 

Figure II. A-1 presents the contractor and government organizations involved in the launch vehicle 

effort.    It shows that 2 major government agencies,  5 major industrial contractors, and 43 industrial 

subcontractors participated in the Gemini launch vehicle development program.    The major government 

agencies involved in the program were the two NASA centers (the Kennedy Space Center and the Manned 

Spacecraft Center) and the Air Force Systems Command (AFSC).    Within the Air Force,   the Gemini 

launch vehicle program was managed through the Space Systems Division Program Office,   which was 

supported strongly by the Aerospace Corporation providing systems engineering and technical direction for 

.■•ie over-all Gemini launch ve  icle program. 

The airframe contractor was the Martin Company,   Baltimore,   with 38 major subcontractors. 

The Aerojet-General Corporation,   Sacramento,   supplied the engine system; The General Electric 

Company,   Syracuse,  produced the airborne guidance system components; and the Burroughs Company, 

Paoli,   supplied the ground computer and implemented the guidance equations.    The Space Systems Division's 

6555th Aerospace Test Wing at Patrick Air Force Base,   Florida,  was assigned the responsibility for pre- 

flight checkout of the launch vehicle at Cape Kennedy and for the launch operations. 

The spacecraft contractor,  the McDonnell Aircraft Corporation,   is also shown in the figure 

because interface relationships were maintained with this contractor,   especially in the areas of the 

malfunction detection system and backup guidance. 

a.        Space Systems Division (SSD) 

The Gemini Launch Vehicle System Program Office (SPO) was originally established within the 

Deputy for Launch Vehicles,   Space Systems Division,   as a Directorate.    However,   from the beginning 

the Directorate was generally organized in accordance with the 375 Series of Air Force regulations. 

(See Figure II. A-2.)   This organization started with a Director and Deputy Director,  a Plans and Pro- 

grams Office,  a Configuration Control and Quality Assurance Office,   and then the normal Engineering, 

Operations,   and Contracts Divisions.    When the SPO was created on 13 April 1965,  the functions and 

organization were not changed.    At that time the organization had a Director and Deputy Director with 

a Program Control Division and Configuration Management Division, Deputy Director for Engineering, 

Deputy Director for Procurement and Production,   and Deputy Director for Test Operations (Figure 

II. A-3),    Even though the organization was generally as stated in the 375 Series,   the System Program 

Office obtained approval '-.om Headquarters,   Systems Command to change some of the minor functions. 

A major function wa.   changed in the GLV SPO,  the Reliability and Quality Assurance being main- 

tained in the Configuration Management Division.    This was done since reliability is very closely allied 

with Configuration Management and was one of the prime considerations in incentive contracting,  the 

desire being that it approach 100 percent on a manned program. 

It was believed that in a program using a mature vehicle with a demonstrated high degree of 

reliability,   all Engineering Change Proposals should be carefully analyzed concerning their effect upon 

this reliability.    Furthermore,   in order to maintain maximum configuration control,  the Chairman of 

the Configuration Control Board was the Director or Deputy Director rather than the Chief of the Con- 

figuration Management Division.    On the Gemini Program this authority was never delegated. 

II. A-1 
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The function of the Deputy Director for Test Operations differed somewhat from the 375 Series 

in that no deployment function existed on this program and therefore this Deputy Director was respon- 

sible only for the vehicle checkout and launch operation.    The function of the Deputy Director for 

Engineering was much the same as in the 375 Series,   except that reliability and quality assurance had 

been placed in the Configuration Management Division,   as previously indicated. 

In the duties of the Deputy Director for Engineering and Test Operation,  a series of checks and 

balances were incorporated.    The engineering staff was responsible for the development and in-plant 

testing of the vehicle prior to acceptance by the Air Force.    However,  at the time of vehicle acceptance, 

the Deputy Director for Test Operations was the Co-chairman of the Vehicle Acceptance Team along 

with the Aerospace Corporation personnel.    In this manner the Deputy Director for Engineering had to 

sell his vehicle to the Deputy Director for Test Operations.    Likewise,  after the vehicle had been 

moved to the launch site,   any change or modification had to have recommendation for approval from 

the Deputy Director for Engineering before it could be made. 

The functions of the Gemini Launch Vehicle System Program Office were as follows: 

1) 

2) 

3) 

4) 

5) 

6) 

Director and Deputy Director.   Managed and directed the development,  procurement,  and 
test activities for the Gemini Launch Vehicle. 

Kept NASA Manned Spacecraft Center,   Gemini Program Office (GPO),  fully informed on 
activities concerning the Gemini Launch Vehicle. 

Configuration Management 
identification,   control and 

Division.   Managed the Gemini Launch Vehicle configuration 
accounting system. 

Managed the reliability and quality program for the launch vehicle. 

Supervised contractor efforts in formulation,   execution,   and discipline of configuration 
control systems. 

Maintained records of approval configuration and actual configuration. 

Maintained reliability records and monitored qualification test program. 

Deputy Director for Engineering,   Responsible for over-all design,  development,   fabrica- 
tion,  assembly,  and all in-plant testing through factory acceptance of the propulsion sub- 
systems and the complete GLV to meet required technical and operational parameters. 

Approved technical content of specification definition and provided technical support on all 
matters pertaining to this equipment with the exception of the instrumentation and range 
safety subsystem. 

Coordinated engineering effort with the GPO. 

Deputy Director for Procurement and Production.   Managed and coordinated the procurement 
and production effort. 

Acted as principal contracting officer for contracts under GLV jurisdiction. 

Served as focal point on all procurement matters; negotiated contracts and Contract Change 
Notifications. 

Deputy Director for Test Operations.   Responsible for managing and coordinating all functions 
involved from the point of GLV factory acceptance through launch operations. 

Responsible for technical performance and support for the instrumentation and range safety 
subsystem,  launch facilities,  abort, trajectory,  AGE, and astronaut safety aspects. 

Monitored installation of AGE,  incorporation of changes thereto and of GLV changes after 
factory acceptance. 

Coordinated operations with the GPO. 

Program Control Division.   Responsible for managing and coordinating the following functions: 
Program evaluation and analysis from Program Evaluation Review Techniques (PERT), con- 
tractors,  Aerospace,  and Program Office reports. 

Prepared and maintained Development Plan,  Management Review,  and briefings for Comman- 
der and GPO. 
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Determined,  defined,  acquired,  and controlled financial data to asii'.e timely availability and 
efficient use Of fund*. 

b.        Aerospace Corporation 

Aerospace Corporation placed the responsibility for the Systems Engineering and Technical 

Direction of the Gemini Launch Vehicle within the Manned Systems Division of the El Segundo Opera- 
tions (Figure II. A-4). 

Specifically,  the Gemini Launch Systems Directorate was formed as the focal point (Program 
Office) of all Gemini activities.    The Directorate was organized in three parts:   Systems and Guidance 

Analysis, Airborne Systems Engineering,  and Systems Test Operations (F'gure II. A-5). 

(1) Systems and Guidance Analysis Office 

The Systems and Guidance Analysis Office was responsible for the guidance,  performance,  and 

flight test evaluation of the Gemini Launch Vehicle.    The guidance function included responsibility for 

the design,  implementation,  and validation of the GLV guidance equations,  and for the guidance program 
as wired into the Burroughs A-l guidance computer at the Mod III radar site at ETR.    The analysis of 

guidance performance on each flight,   reflecting numerous NASA-directed mission changes,   and incor- 

poration of computer hardware changes were also supervised by this office.    The Performance Analy- 

sis Section was responsible for generating payload capability predictions for the GLV and continuously 

analyzing flight test results to improve prediction techniques.    Extensive studies were also conducted 
in the area of performance improvemeirs.    The Flight Test Evaluation Section within this office was 

responsible for all post-flight analysis, including generation of quick-look and final flight test reports 

and chairing post-flight evaluation meetings with the associate contractors. 

(2) Airborne Systems Engineering Office 

The Airborne Systems Engineering Office within the Gemini Launch Systems Directorate was 

primarily responsible for all airborne systems for both the GLV and the Gemini Agena Target Vehicle 
(GATV),  i.e.,  both entire vehicles.    Additionally,   in conjunction with the Systems Test Operations 

Office, this group shared responsibility for the AGE associated with the airborne systems.    The systems 
total responsibility covered all aspects of program office technical management and included interfacing 
with the Air Force,  the contractors,  and NASA,  as well as with internal Aerospace Corporation 

support units. 

The responsibilities within the group were divided according to functional subsystem areas,  i.e., 

aeromechanical systems,  flight mechanics, propulsion systems,  etc..    To cover both the GLV and 

the GAT/ with the minimum number of personnel,  the same functional system areas of both vehicles 

were under the supervision of a single Manager with subsystem engineers assigned to the various 

subsystems of each vehicle reporting to him.    The Airborne Systems Engineering Director,  in turn, 

had two Assistant Directors,  one for the GLV and one for the GATV. 

The airborne systems subsystem engineers were totally responsible for their assigned sub- 

systems.   As such,  they were responsible for following their systems' development effort; approving 
specifications,  ECP's,  and test procedures; participating as members of vehicle acceptance teams; 

assuring that their respective subsystems were ready for flight; reviewing post-flight data; and evalu- 

ating and documenting the flight performances of their respective subsystems. 
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(3) Systems Test Operations Office

The fundamental objective of the Systems Test Operations Office was to provide program control

mechanisms that could be used by the systems engineers and management to properly define the tech-

nical acceptability and the operational readiness of Gemini hardware.

In support of this objective, all significant testing was defined down to a level of detail sufficient

to assure continuity and control. An uncompromising reliability effort was developed to identify and

dispose of any hardware weaknesses. A highly objective configuration control system was established

and administered in such a way as to assure maximum discipline in this area by all agencies. An

aggressive hardware acceptance program was also established to assure maximum product integrity.

Each of these areas encompassed responsibilities for both the Gemini Launch Vehicle and the Agena

Target Vehicle, and the utilization of manpower was left to first-level supervision. In order to pro-

vide effective liaison with the contractors, this office maintained permanent field representatives at

Martin-Baltimore and Lockheed Missile and Space Company (LMSC).

The Gemini Directorate was staffed with specialists in all disciplines required to perform the

general systems engineering effort and maintain the every-day contact with SSD and the associate

contractors. However, when problems arose that required a more concentrated effort or specific

technical or scientific skills, the Directorate was augmented with personnel from the engineering sub-

divisions (Electronics Division and Applied Mechanics Division) of the El Segundo Operations. These

divisions were also called upon to supply manpower to staff special task teams, which had to be estab-

lished from time to time.

(4) Guidance Equations

Aerospace Corporation also was responsible for the development and implementation of the

Gemini guidance equations. The prime responsibility in this area rested with the Guidance Project

Engineer in the Systems and Guidance Analysis group of the Program Office. Procedures were devel-

oped for the direction by the Program Office of groups within the Aerospace Electronics Division

designing the guidance equations and validating the guidance program. Procedures of strict formality

persisted throughout the program in the area of guidance equations verification, guidance program

validation, and equations and program certification. Prior to each flight, the Gemini Launch Systems

Directorate certified in a letter to SSD that the specific computer program and equations were satis-

factory for guiding the vehicle into the prescribed orbit.

(5) ETR

The Aerospace organization at ETR is under the jurisdiction of El Segundo Operations. The

Gemini activities were headed by a Project Manager who was technically responsible to the E1 Segundo

Gemini Directorate. He, in turn, drew his local support for systems engineering from the ETR tech-

nical and operational staff. The members of this staff maintained constant contact with their West

Coast counterparts, the subsystems engineers of the Gemini Launch Systems Directorate.

c. Contractors

(I) Martin Company

Development and production of the Gemini Launch Vehicle (GLV) occurred during a time when

the Martin Denver plant was deeply involved in Titan II and III development and production. The nature

of the Gemini Program required that the GLV be fabricated in a separate assembly line. To meet

this requirement in Denver, it would have been necessary to combine two of the Titan assembly lines

in order to make a separate line for the GLV. The concurrent vertical testing of the GLV and the Titan

Ivehicles at the Denver facility would have resulted in delays to both the Gemini and Titan Programs.

H.A-9



Therewasadequatespacefor aseparateassemblylinein theBaltimoreplantwheretheengineeringcadre
for Gemini,whichhadworkedthereontheDYNASOARProgram,waslocated.Asaresultofthese
factors,it wasdeterminedthatwiththeexceptionoftankfabrication,theGLVProgramshouldbelocated
attheMartinBaltimorefacility. Thisdecisionprovidedfor optimumutilizationofpersonnel,tools,and
facilitieswithintheMartinMariettaCorporation.

Martinutilizestheprogram(line)andfunctional(staff)systemthroughoutits plantsanddivi-
sions.Theprogramdirector(line)wasresponsiblefor thenow,when,where,andbudgetarycontrols
requiredto achievetheprogramobjectives.Thefunctionaldirectors(staff)wereresponsiblefor sup-
plyingtalentandexperience(people),andforthetechnicalexcellenceofthework. Almostall program
personnelweregatheredtogetherphysicallyontheprogram,althoughonlytheassistantprogrammana-

gers were administered by the program director.

The Gemini Launch Vehicle program at Martin was organized on a project team basis, as are

all major programs, with the major functional specialties being represented on the program managers'

team (Figure II.A-6). The assistant program manager at this phase of the program applied his

resources primarily in support of the activation of Complex 19 at Cape Kennedy (then Cape Canaveral).

ESPD Operations represented Martin's Electronic Systems Products Division prior to its incorpora-

tion into the Bunker-Ramo Company. Organizational changes at the program level were kept to a

minimum throughout the program, although there were some made primarily to keep abreast of the

changing character of the work being performed, from design and development on through production

and launch. They included the establishment for several years of a business manager when the volume

of matters in the area increased.

The significant, organizationally unique characteristics of this program were at the subprogram

level (i.e., within the functional organizations) and primarily in the Quality Assurance and the Engi-

neering Departments. Very early, the Quality Assurance Department established a Failure Analysis

and Corrective Action organization, which worked in very well-coordinated activities with the Engi-

neering Reliability organization; these groups were located together.

There were two important philosophies established early in this program that required some

special organizational features within the Engineering Department: The final acceptance testing of the

launch vehicles was assigned to Engineering; and it was determined that al___lflight hardware would be

;ully qualified in its final configuration before delivery of the first-flight article to the Cape. To meet

these responsibilities, Engineering established an Assistant Technical Director for Test and Relia-

bility and, within that organization, a Manager of Acceptance Testing and a Manager of Component

and Qualification Testing. The position of Acceptance Test Manager remained for the entire program,

while that of Component and Qualification Test was abolished after that testing was completed.

It is the policy of Martin to keep organizations flexible and responsive both to program phases

and needs as well as to personnel strengths; i.e., organizations are arranged to meet immediate

program objectives as well as to augment and utilize an individual's capabilities. An example of the

latter organizational activity was the change in technical directors in mid-1963 to provide for the

changing character of the program, from design and development to production and flight.

GLV was a multidivisional program Within Martin. The vehicle tanks were built in Denver; the

remaining structure and assembly were built and the acceptance testing was done in Baltimore; and

the checkout and launch took place within the Canaveral Division at The Cape. The program was

managed and controlled from the Baltimore Division. The Denver and Canaveral Divisions had
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autonomous organizations within their divisions responsible through their own managers to the program

director in Baltimore, and both divisions maintained a representative full time at the home plant for

coordination and communication responsibilities (Figure II.A-7). In this organization chart, the

divisional managers appear similar to those in any other functional area of responsibility.

Unique among programs of this nature, Martin established the position of Vehicle Chaperone.

He was a man who lived and worked with an individual vehicle from the beginning of tank fabrication at

Denver, through assembly and test in Baltimore, and checkout and launch at Canaveral. This chap-

erone constituted an excellent point of historical continuity, as well as adding significantly to the

quality of the documentation at each buyoff point during the vehicle progress.

In general, special needs and unique objectives were serviced by special task teams or personnel

assigned to ensure coordination across lines of functional responsibilities.

(2) Aerojet General Corporation

The Aerojet General Corporation (AGC) Gemini Program organization was structured to obtain

the maximum autonomy, insofar as program requirements, controls, and management were concerned

(Figure II.A-8). Attention was focused on direct-line reporting, not only on the primary Program

Office functions (e.g., Contracts, Reliability, Pilot Safety, Program Controls, and Engineering), but

also on the support organizations (e.g., Test, Quality Control, Product Support, Manufacturing, and

Purchasing). Each of the support organizations appointed a Functional Program Manager who reported

directly to the respective Division Manager, as well as to the Gemini Program Manager. These

representatives were single-point contacts with full Gemini responsibility for their divisions. The

AGC Field Managers at Baltimore and the Eastern Test Range also had direct communication with,

and authority from, the Gemini Program Manager and the Product Support Division. On technical

items, direction to the field was afforded by the Program Office.

The organizational structure described also closely paralleled that of the Air Force Program

Office. As such, each AGC Program Office department manager was provided an Air Force counter-

part, thus enabling them to discuss the program elements, as required. Again, single-point inter-

face was the rule rather than the exception.

Development programs, such as the Gemini Stability Improvement Program (GEMSIP) and the

Augmented Engine Improvement Program (AEIP), which were conceived for the benefit of Gemini,

were directly under the cognizance of the Gemini Program Manager.

(3) General Electric Company

The General Manager of the Special Information Products Department reported directly to the

General Manager of the Defense Electronics Division, which in the corporate structure of the General

Electric Company is a part of the Aerospace and Defense Group. The Department, with headquarters

at Syracuse, New York, has the basic organizational elements of engineering, manufacturing, market-

ing, finance, and employee relations and only those germane to the Gemini Program are described.

The Manager of Radio Guidance and Support Operations (RGO), who reported directly to the

General Manager, assigned specific management responsibilities for defined program areas to a Pro-

gram Manager. The Gemini Program Manager, who reported administratively to and received pro-

gram direction from the Manager of Radio Guidance and Support Operations was responsible for all

Gemini Program functions. The structure of the Gemini Program Management is illustrated in

Figure II.A-9. Individual contributors were assigned from components within the Department to
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receive technical direction from the Gemini Program Manager, while doing administrative reporting

to their respective managers. This allowed program requirements to be met within the framework of

the departments' policies, instructions, and procedures, but created the flexibility necessary to meet

the problems arising from changes in functional scope.

In addition, a Materials subsection was established in the RGO Aerospace Equipment Section to

provide for purchasing, receiving, stocking, and kitting of material, and the shipping of finished

products. Most of these services had been furnished by the Light Military Electronics Division of G.E..

The Quality Control organization was completed and staffed. It was composed of MOD Ill/Gemini

quality assurance, vendor assurance, quality control engineering, and quality systems.

(4) Burroughs Corporation

For the Gemini Program, the Burroughs Corporation maintained its home office at Paoli, Pa.,

to which its ETR operations were responsible (see Figure II.A-10). Both field and home offices were

separated into hardware and software functions.

The guidance program was written in Paoli and the system interface check programs at ETR.

New equipment was manufactured in Paoli, then delivered to the field where it was tested and accepted.

The procedures established in the Burroughs Mercury contract for pilot safety were continued

for Gemini. A key concept, contributing to the success of the program, was making all tests resemble

the standard countdown and thus implying repeated launch rehearsal. Another important factor was

the following mandatory documentation:

(a) Maintenance Records. In which were noted the equipment identification, specified inter-

vals between maintenance checks, and the dates and results of the tests.

(b) Failure Reports. The results of all critical component failure analyses performed in

Paoli were reported. Failure trends or the need for mass replacement were discerned

and acted upon. Weekly failure reports were presented at the Mod III Working Group

Meetings at ETR, and a bound report was published monthly.

At the end of the Gemini program in November 1966, Burroughs was able to report that there

had been no critical failure since 26 October 1964.

d. 6555th Aerospace Test Win@

The mission of the Gemini Launch Vehicle division, 6555th Aerospace Test Wing was to tech-

nically direct and supervise the checkout, data evaluation, problem resolution, and launch of the

Gemini launch vehicle at Cape Kennedy. In addition, the division provided management control of the

launch vehicle associate contractors, integrated contractor and government efforts, and assured

proper range support and data during the checkout and launch sequence.

The Gemini division established procedures and techniques that resulted in a close-knit opera-

tional team. This team was composed of The Martin Company for airframe and electrical systems;

Aerojet General for engines; General Electric for guidance; Burroughs for the guidance computer;

Air Force for quality-inspection; Aerospace for technical direction; and Pan American Airlines and

Radio Corporation of America for range facilities and instrumentation. Daily planning and testing

required the same teamwork with NASA, and Mc Donnell, the spacecraft contractor.
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Tointegratetesting,meetschedules,andprovideefficiencyandmaximumlaunchvehiclerelia-
bility andastronautsafety,thedivisionwasorganizedintotwobranches,flighttestoperationsand
crewsafety(seeFigureII.A-11). Theoperationsbranchwasresponsiblefor testschedules and the

technical adequacy of all work at Complex 19. The pilot safety branch provided a second level of

technical review of all work accomplished and acceptance of launch site problem investigations and

corrective action.

Gemini division personnel reviewed in detail all schedules, test procedures, hardware modifi-

cations, test results, and technical readiness of the launch vehicle systems for launch. All work done

on the launch vehicle required prior approval in work authorization documentation. All checkout pro-

cedures were reviewed, approved, and signed before being run. Data derived from these procedures

were checked from both an in-line operation point of view and a redundant review by specialized pilot

safety working teams. All changeouts of a critical component had to be approved by a representative

of the Gemini Launch Vehicle Division. Any component that failed had to undergo a thorough failure

analysis and corrective action had to be established prior to subsequent flights.

The scheduling with the range of all Complex 19 Gemini tests, both launch vehicle and space-

craft, was performed by the Gemini division. By the consolidation of this function in one organization,

testing requirements and schedules of spacecraft and launch vehicle testing were efficiently submitted

to the range.

The Gemini Launch Vehicle Division was the agency that reviewed, approved, and levied all GLV

data requirements on the range. Prior to each Gemini launch, a detailed review of all GLV data

requirements was made to insure that all agencies received adequate data in time for post-launch

evaluation. By this action, the range was able to reduce the amount of data being provided for each

launch and to supply required data much earlier.

2. SSD/AEROSPACE / CONTRAC TOR /NASA INTERFACE

a. General

Obviously, with such a large, diverse, and farflung group of organizations participating in the

Gemini Program, the two major management problems were adequate and timely communications,

and proper control and coordination of the activities of the separate participants. When these problems

were further considered in the light of the relatively short time allowed for development and procure-

ment of the launch vehicle, both NASA and the Air Force recognized early in the program that a system

of cooperative program direction and problem reporting would be beneficial.

Time simply was not available for the conventional chain-of-command operation. Consequently,

a launch vehicle coordinating organization was formed, headed by a Chairman from the NASA Gemini

Program Office and an Associate Chairman from the Space Systems Division Program Office. The

group was composed of representatives of all the government and industrial organizations that partici-

pated directly in the launch vehicle program, plus representatives of all government or industrial

groups that had an interface with the launch vehicle program. The organization of this group went

through a number of changes and eventually arrived at the form shown in Figure II.A-12. This panel-

type organization had the advantage of grouping people of like specialties and resulted in smaller

discussion groups, which allowed more detailed treatment of problems.

A normal coordination meeting lasted two days, the first of which was devoted to panel meetings.

On the second day, reports from the panel chairmen were presented to the assembled committee, and
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recommendations for courses of action were proposed. This was followed by a government session

devoted to discussions of action items and financial matters. Meetings were originally held at intervals

of two weeks, later increased to three weeks, and then monthly. Halfway through the program, one

meeting was scheduled before each mission. The product of this coordination group was a series of

action items composed and approved by the group. Authority for the execution of these action items

was provided by the NASA Gemini Program Manager to SSD.

In operation, the coordination group provided the status monitoring required to properly assess the

progress of the launch vehicle program. It also made possible the rapid identification of problem areas

in hardware development and, more importantly, it brought to bear the talents o£ a large group of knowl-

edgeable people on these problems. The effects of proposed solutions on other facets of the total program

were evaluated quickly, and knowledge of changes was disseminated rapidly. A short description of how

some of these panels functioned follows.

b. Interface Control Panel

This panel was established early inthe program to effectively control the interface between the

launch vehicle and the spacecraft and to issue joint drawingn _nd reports vx-t*l-_,*_-_,,_=_,=_-".... _--^ area. _" ..... 1.... z" .....

did not make policy decisions and referred policy problems to NASA GP0 and SSD/Aerospace for resolu-

tion.

The panel was given the responsibility of generating the Gemini Spacecraft/Launch Vehicle Inter-

face Specification and Control Document {ISCD-1), that formally established and maintained the launch

vehicle�spacecraft compatibility. It contained requirements {text and drawings) covering the mechanical,

electrical, and AGE interfaces, and the associated testing necessary to validate interface integrity. It

also specified in detail the procedures to be foIlowed in proposing changes to the specification.

Throughout the Gemini program, IargeIy due to the efforts of the Interface Control Panel, no serious

interface problems were encountered.

c. Systems Panel

The GLV Systems Panel was one of the most important and widely used of all the GLV panels. Its

membership represented NASA, SSD, Aerospace, Martin, Aerojet, and McDonnell. It was an instrument

whereby the major program participants could review both their individual and mutual program systems

problems, which permitted better understanding of the problems and their program impact. Dissemina-

tion of this type of information to aI1 parties involved was very beneficial, preventing a large impact on

the program from probiems due to lack of knowledge of their existence. Problems affecting hardware

that were brought forth in other panels, such as Abort and Interface, were also referred to the Systems

Panel for necessary action. Conversely, hardware problems affecting procedures, pilot safety, etc,

were referred to the cognizant panels by the Interface PaneI.

d. Abort PaneI

The Gemini Abort Panel was chartered to define, study, and report on problems associated wi_h

crew escape in the event of a Iaunch vehicle failure during powered flight. It consisted of NASA mem-

hers from the Astronaut Office, Crew Training, Flight Operations, and Gemini Program Office; industry

members from McDonnell, Martin Baltimore, Martin Cape, Aerojet, and Aerospace; and USAF members

from SSD and the Test Wing. The paneI provided a means for coordinating study efforts requiring sup-

porting data from various member groups and permitted immediate review and dissemination of the

results.
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e. Interfaces - Software

Coordination in the mission planning, launch guidance, and performance areas was effected through

the creation of three panels by NASA. There were the Mission Planning and Guidance Panel, the Launch

Guidance and Control Panel, and the Trajectory and Orbits Panel. The Mission Planning and Guidance

Panel coordinated input from the other two, assigned action items, and resolved areas of disagreement.

The Launch Guidance and Control Panel interpreted the mission plans in terms of requirements for

guidance hardware and software. The Trajectory and Orbits Panel established requirements for trajec-

tory simulation, assigned studies on the feasibility of various mission plans, and evaluated the effects of

these on the GLV payload capability.

Their meetings were attendedby spacecraft and target vehicle contractors, as well as SSD/Aero-

space and GLV associate contractors. As mission plans were finalized, it was no longer necessary to

continue the Mission Planning and Guidance Panel, so it was dissolved and its remaining functions were

taken over by the GLV Coordination Panel. All action items requiring response from the GLV associate

contractors were implemented by Aerospace through the various technical direction meetings held with

these contractors.

Since the relation between the spacecraft design weight and the GLV payload capability was a crit-

ical one throughout the program, it was handled as a separate topic in the GLV coordination meetings.

Data on the predictions of GLV performance capability was transmitted to NASA through a formal

monthly performance report published by Aerospace Corporation, which became the official data source

used by NASA/GPO in publishing their own performance report for NASA Headquarters. This report

also contained summaries of various payload improvement studies and other analytical investigations,

and was further expanded to include flight test results when this phase of the program was initiated.

f. Data Panel

The Data Panel resolved problems associated with data acquisition, processing, and delivery sched-

ules. The end product of its meetings was a thorough working knowledge on the part of all the GLV con-

tractors and NASA as to the source of the best data, its availability, and the types of data received by

each contractor.

Following the Aerospace Post-flight Evaluation Meeting (L + 15 days), the Aerospace and SSD mem-

bers of the NASA Mission Evaluation Team contributed to and coordinated on the GLV section of the

NASA Mission Report.

3. CONTRACTS

The contracts for the Gemini Launch Vehicle and its engines were some of the first to have been

completed in the U.S. Air Force implementation of the multiple-incentive fee feature. The incentives

in these contracts were based on cost, delivery, countdown performance, and flight performance.

On the whole, the incentive fee was a very effective contracting tool in the program. It certainly

helped to keep the importance of the key events (cost, delivery, countdown and flight performances)

constantly in the minds of the contractors.
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The Cost Incentive feature on the Martin and Aerojet contracts differed in one respect. The Martin

contract employed a +3 percent dead-band feature, whereas the Aerojet contract started the cost sharing

as soon as the target cost was underrun; both contractors were on a 90/10 sharing arrangement. It is

concluded that a dead band is not desirable; moreover, it is also possible that a greater sharing arrange-

ment (e.g., 80/20) would provide an even greater incentive for cost underruns.

The negative incentive fee for delivery delays worked exceptionally well. If the original delivery

schedule included in a contract proves to be the realistic throughout the program, the contractor should

certainly be penalized for failure to meet those dates.

The countdown incentive likewise proved to be a valuable tool. It is particularly so when there are

short launch windows and/or rendezvous flights. It was mandatory that the contractors make every pos-

sible effort to assure an on-time launch. (It is believed that the amount of countdown incentive fee could

vary depending on the type of mission, with the maximum countdown incentive fee given for very short

launch windows necessary for rendezvous flight. )

Needless to say, the maximum incentive fee must be given for flight performance, which naturally

determines the success of the mission. Withthe extremely high cost of each mission, all possible efforts

to assure success were necessary. Flight performance incentives were one of the most effective ways

to insure this success.

During the course of the Gemini contract, there was only one area that caused much concern. When

the incentive fees were negotiated, the parties involved had no idea of the evolution the Gemini flight plans

would undergo. Each launch was assumed to have large launch windows; however, as the launch windows

evolved from some eight hours to only a few seconds, it was difficult to negotiate the countdown incentives

with the contractors. (It is realized that any program will change considerably. However, when the

incentive fee portion of a contract is negotiated, a clause should be included allowing for the evolution

that aprogram will most certainly undergo. This, of course, is true only for countdown incentives;

delivery and flight performance are basically fixed throughout the program. )

4. PROGRAM DOCUMENTATION

Throughout the Gemini IJrogram heavy emphasis was placed on thorough and complete documenta-

tion. The following significant Gemini documents are deemed unique in being beyond the limits of stand-

ard program documentation in scope and/or application.

TOR-469 (5126-81)-3, SSVL Exhibit 65-1, Gemini Launch Vehicle Acceptance Specification estab-

lished and defined the role of the GLV Acceptance Team and outlined procedures to be followed by the

Contractor and the VAT at MM-B in connection with formal AF vehicle acceptance.

TOR-169(3126)-19, Gemini Launch Vehicle Pilot Safety Program - AMR described a contractual

task for ali associate contractors and agencies supporting the GLV program at AMR (later changed to

ETR). The prime objective was to assure astronaut safety by achieving the flight readiness of a GLV

incorporating the maximum inherent design reliability, assuring adequacy of the GLV MDS, and providing

assurance for accomplishing mission objectives.

TOR-169(3126)-6, Complex 19, Demonstration Criteria for the Gemini Launch Vehicle set forth

the basic requirements to be satisfied in the demonstration to the Air Force of the readiness of Launch

Complex 19, AMR, and its associated AGE to support the GLV Program mission.

H. A-23



TOR-269(4126)-17,Gemini Launch Vehicle Engine Acceptance Requirements defined and established

the acceptance procedures to assure that all Gemini engines (both Stages I and II) and applicable spares/

ECP modification lists conformed to the specified Gemini pilot safety standard and were satisfactory for

use on the GLV.

424-1020002, Launch Vehicle Acceptance Test Specification. This Martin document was the engi-

neering test specification for combined system tests used for acceptance. The fact that all changes to it

had to be approved by SSD/Aerospace provided excellent control of the launch vehicle testing activities.

424- 1430002, Launch Vehicle System Tests, VTF/ETR. This Martin document identified checkout

and tests performed on the launch vehicle at VTF and ETR in preparation for launch. It was controlled

by SSD/Aerospace as was 424-1020002.
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SECTION 11.A

DEFINITIONS

AEIP

AFSC

AGC

AGE

AMR

ECP

ESPD

ETR

GATV

GEMSIP

GLV

GPO

ISCD

LMSC

MDS

MM-B

PERT

RGO

SPO

SSD

VAT

Augmented Engine Improvement Program

Air Force Systems Command

Aerojet General Corporation

Aerospace Ground Equipment

Atlantic Missile Range

Engineering Change Proposal

Electronic Systems Products Division

Eastern Test Range

Gemini Agena Target Vehicle

Gemini Stability Improvement Program

Gemini Launch Vehicle

Gemini Program Office

Interface Specification and Control Document

Lockheed Missiles and Space Corporation

Malfunction Detection System

Martin Marietta Baltimore

Program Evaluation Review Technique

Radio Guidance Operations

System Program Office

Space Systems Division

Vehicle Acceptance Team
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B. PILOT SAFETY PROGRAM DESCRIPTION (METHODS OF OPERATION)

i. PHILOSOPHY AND HISTORY

The concept of "Pilot Safety" as it applies to man-carrying launch vehicles was developed during

the Mercury Program from concerns expressed by the Air Force in 1959, as to the safety of the astro-

nauts. At that time, the Atlas weapon system booster was intended to be a launch vehicle for this

nation's first man-in-space venture. A program for pilot safety was then proposed by the STL Mercury

Program Office and received enthusiastic acceptance by NASA and Air Force. A special NASA, Air

Force, Aerospace, Contractor task team was formed to study and implement this approach. I

It was apparent that there was a difference between the vehicle's demonstrated reliability and the

obvious goal of maximum crew safety, and it would have to be resolved by the following approaches:

i) Maximize vehicle reliability by design change in components or throug h redundancy in

selected systems.

Z) Establish a management-supported extra-effort program encompassing all aspects of

manufacture and test to insure end product excellence or product integrity.

3) Provide a malfu**utiun detection and abort system fundamentally designed for crew safety.

Although step 3) above would not directly influence vehicle reliability, the procedures and tech-

niques used in developing the Gemini Malfunction Detection System, the slow drift malfunction operation,

and abort criteria reflect all of the disciplines developed in steps i) and Z). This facet of Pilot Safety

is d_scnssed in greater depth in Section If. C.

Since in terms of translation of a weapon system into a reliable manned launch vehicle, the

Gemini Program faced the same conceptual problems as Mercury, the NASA-DOD agreement Z directed

that a Pilot Safety Plan be established for Gemini similar to that used on Mercury.

Gemini involved many new contractors, but a significant measure of continuity existed, because

many of the NASA and Aerospace Corporation personnel were transferred to the new program. This

allowed an extensive expansion of ideas and concepts, as the transition took place prior to final contract

negotiations with the new supplier. Reliability testing, receiving inspection practices, critical compo-

nent control, and configuration management are examples of the areas influenced heavily by the

Mercury Program.

SSD/Aerospace implemented this requirement through meetings, briefings, and contractual

negotiated documents. 3,4,5 Each of the three approaches greatly expanded those used on Mercury and

again the fundamentals of the total Pilot Safety Program were very successfully applied during the

Gemini Program.

a. Desisn Improvements

The design improvement area was thoroughly investigated by design reviews and a systematic

and continuous failure-mode and effects analysis to identify weaknesses that could be corrected by

component improvement or redundancy. The extent of this effort is described in Section II. C.

Examples of design changes identified and adopted for the Gemini launch vehicle are as follows:

l)

z)

3)

4)

A redundant flight control and guidance system, which could be automatically or manually

commanded to take over and safely complete the launch phase in the event of a primary

system failure.

A redundant Stage I hydraulic system to support the flight control system.

Two completely independent electrical power busses and associated inflight sequencing.

Redundant shutdown capability for the Stage II engine.
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b. Product Inte _r it3(

Product integrity in itself is a very elusive term and proper interpretation is difficult. The

Gemini agencies, by working together, were able to contribute ideas and techniques to this aspect of

the Pilot Safety Program. This resulted in a management-supported pattern of rigorous technical

monitoring and control of all phases of design, development, engineering change, production, inspection,

testing, handling, acceptance of hardware at all levels, and launch operations. The foundation for these

concepts was a dynamic management effort by all agencies to achieve pride of workmanship and moti-

vation of personnel.

Special detailed mechanisms were established to insure an effective failure analysis and cor-

rective action system, a computerized and highly accurate configuration control system of hardware

and test procedures, and an effective hardware acceptance program specifically designed to insure

delivery of flight-ready vehicles to the launch site. Many of the techniques and controls of Product

Integrity are expanded in this se.ction of the report. Pilot Safety tends to emerge from Gemini as a

general attitude of teamwork at all levels with the common objective of finding, discussing, and re-

solving problems.

The reliability improvements achieved by this massive effort toward product integrity are un-

fortunately not quantitative, but the confidence achieved through this unified control of detail made

possible such milestones as a launch schedule encompassing 10 manned missions in Z0 months, the

record-breaking 7/6 rendezvous mission, and the 6-week recovery of GLV-Z from an on-the-pad

shutdown through analysis, redesign of a major component, retest, and launch.

Z. CONFIGURATION CONTROL - REVIEW

The configuration management and control requirements for the GLV were in general agreement

with AFSCM 375-1 and ANA Bulletin Number 445 (see Figure II.B-i). The broad requirements of these

documents were applied specifically through the contractual imposition of a series of CCB Instructions,

which provided detailed guidelines and standards for contractors to follow in discharging their manage-

ment requirements. These instructions included detailed work in such areas as:

• Configuration Control Requirements

• Preparation and Use of ECP's

• Facility Change Procedure

• Associate Contractor CCB Support

• Gemini Configuration Index Procedures

• Specification Change Procedures

• Interface Documentation Maintenance

Significant, amplifying attachments to the CCB Instructions included "Serialization, " FACI- First

Article Configuration Inspection, " and "BOI-Break of Inspection for Experiment and Test. "

In September 1963 the FACI on Gemini Launch Vehicle No. 1 was held at Martin-Baltimore. This

was a milestone in that it represented the first instance in which the first launch vehicle on a given pro-

gram was baselined prior to delivery. FACI's of AGE and facility items occurred as they became

available and acceptance testing was completed.

After establishment of the hardware baseline, all engineering changes were processed through the

Gemini Configuration Control Board. Changes prepared by Associate Contractors were forwarded
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simultaneouslytoSSDandAerospace. Following their internal distribution to responsible system

engineers, informal coordination between Aerospace and SSD was, in most cases, achieved. The

formal Gemini Configuration Control Board was chaired by the SSD Program Director. Members

included Air Force representatives from engineering, operations, contracts, and budget; and repre-

sentative{s) from Aerospace Corporation. NASA and Associate Contractor representatives were also

usually in attendance.

When all aspects of a change had been considered in open forum, the chairman made his de-

cision. The intent always was to achieve the best technical product and performance within the dollar,

schedule, and other limitations imposed. Approved changes were made as directives to the con-

tractor(s) by appropriate contractual action.

Contractor in-house configuration management techniques permitted an almost real-time capability

to identify differences between equipments and insure compatibility with supporting/interfacing equip-

ment, documentation, and spares.

The Martin Company, as integrating launch vehicle contractor, published the Gemini Configuration

Index {GCI) monthly. This index, machine produced, included all associate contractor equipment and

presented the status in the following five basic classifications:

I. End item configuration index

11. Approved ECP/End item index

III. End item requirements schedule

IVA. End item modification status

IVB. Chassis/Spares modification status.

In addition to the GCI, which was a management document, Martin also produced a number of

tab runs, typical examples being:

Airborne vs AGE Compatibility

Vehicle-to-Vehicle Comparison Status

Open Item Status - Both Airborne and AGE

Procedure Changes vs Vehicle Configuration

Individual Vehicle- Complete Identification

The system was "closed loop" and insured that all changes in an item were scheduled and given

appropriate status, that open items were continually identifiable, and that nonauthorized work did not

exist.

Prior to finalacceptance of each engine at Sacramento, and each GLV in Baltimore, representa-

tives from SSD/Aerospace conducted a configuration review of the item to he accepted. In the case of

the GLV, the review accorded with the requirements of SSVL Exhibit 65-I, Gemini Launch Vehicle

Specification, and insured the accuracy of configuration documentation and specification compliance.

A similar review was made at ETR to verify that actions to be taken after DD-250 and shipment

were properly identified and accomplished. This highly accurate procedure did much to enhance total

confidence in each vehicle. Complete assurance could be given to Pilot Safety review teams that intended

modifications resulting from corrective action or design were incorporated as required.

The entire GLV configuration activity was characterized by a methodical approach, attention to

detail, and an uncompromising attitude by management toward making the system one of high usefulness

and integrity and, therefore, of wide utilization. It was considerably refined and represented a
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significant improvement over any previous configuration management system, and it has received a

great deal of attention from USAF and NASA officials in terms of setting the example and standards

for programs to follow.

The relatively new concept of value engineering was contractually negotiated between the Air

Force and each of the major Gemini hardware contractors.

As it was managed on Gemini, the program yielded an average dollar return of 6: 1. On a program

like Gemini, where production runs were small and astronaut safety was of prime c_cern, it was

apparent that the advantages of Value Engineering as an economy measure were considerably minimized.

Many Value Engineering change proposals were rejected after careful consideration by management of

the cost savings vs the potential reliability degradation.

As the program matured and hardware reliability was established, it became practical to eliminate

several contingency efforts and effect a savings in this manner. As a result, the Value Engineering

aspect of the Gemini program was concentrated effectively in the areas of ground equipment, software,

and checkout; but the impact on flight hardware was kept to a minimum in the interest of high reiiability.

3. REL!ABn!L!TY / QIIALITY ASSURANCE

a. History and Implementation

The primary objective of the Gemini Launch Vehicle Reliability/Quality Assurance (R/Q. A. )

Program was to assure maximum safety of the astronauts. To support this objective, disciplines were

established early to (a) ensure realistic and enforceable reliability and quality requirements during

the design and qualification test phases of the program; (b) maintain, or improve, the high reliability

and quality standards established during the design into the manufacture, production testing, subsystem

and system testing, and flight; and (c) develop a closed loop failure analysis/corrective action system

second to none.

Each associate contractor had a well-defined R/Q. A. program at the start of his work on the

GLV, but it was soon discovered that the disciplines suitable for the needs of other programs were not

adequate for a man-rated endeavour. The methods of operation described in this section evolved during

the life of the program into a well-integrated, management-oriented function through the combined

efforts of the contractors, SSD, and Aerospace.

The original concept of the GLV program was to make use of flight-proven hardware. A modified

version of the Air Force Titan II was selected, based on its payload capability, and on the fact that it

promised to be an inherently reliable vehicle, because of the use of hypergolic propellants and the

simplified mechanical and electrical systems. More than 30 Titan II flights were scheduled for prior

to the launch of the first GLV and, as a result of these flights, a high level of confidence could be

established in the hardware that would also be used on the GLV. Another bonus was obtained from five

of the Titan II flights - a "piggyback program" provided for flying a complete malfunction detection

system (the only completely new subsystem), as well as several other Gemini-peculiar components

monitored by telemetry but not functionally a part of the Titan II system. All data obtained from these

and subsequent Titan II and III flights was carefully analyzed for its effect, if any, on the GLV.

II. B-5



b. Quality Control-Problem Reportin_

The success (or failure) of any missile program often depends upon the effectiveness of the Fail-

ure Analysis/Corrective Action {F.A. /C.A.) system used by the contractors. The best F.A. /C.A.

system will fail if not supported completely by top management. This program was never without such

support from NASA, SSD, Aerospace, and each contractor, including financial backing when required.

The procedures given describe Martin and Aerojet activities only. Those of General Electric were

similar but at a much lower level of effort due to the limited number of components involved. The G. E.

R/Q. A. effort was effective and it is not intended to minimize their contribution to the program.

(it Martin Company Gemini Problem Investigation Status (GPIS), Automatic Reporting System (MARS).

The Martin F. A. /C. A. system is described by both the block diagram in Figure II. B-Z and as

follows:

(a) M/B-Generated MARS Tags and MDR's. These tags and Malfunction-Discrepancy Reports were

picked up daily by Quality Engineering (Q. E. ) from reporting areas, including Quality Test, Reliability

Test, Special Engineering Test, Receiving Inspection, Fabrication, Assembly. the Vertical Test

Facility and Associate Contractor. While in the pick-up area, reports were reviewed by O.E. and

were closed when: the corrective action applied only to the local area; conclusive and immediate

action could be taken to prevent recurrence; and previously-fabricated similar items did

not contain the reported deficiency. The cause and corrective action were entered on the report.

Closed reports were reviewed with the resident (Baltimore) Aerospace representative for concurrence.

(b) MARS and MDR's Not Closed in Local Area. These were analyzed in detail by Q.E. and Relia-

bility Engineering (R. E.). A preliminary investigation was made of each report to determine the

cause of the malfunction and the required corrective action. When investigation proved that either

no bona fide discrepancy existed or that a straightforward and simple corrective action was required,

the report was closed by noting the cause and corrective action on the MARS or MDR. Again, the

closed reports were reviewed with the Aerospace representative for concurrence.

(c) MARS and MDR's Neither Closed in Local Area or After Prefunctory Investigation. These were

investigated in depth by Q.E. and R.E., with assistance from other parties and agencies. Q.E. was

responsible for leading the investigation of apparent non-design problems and R.E. for apparent de-

sign problems. As soon as the need for detailed investigation was apparent, a Gemini Problem Inves-

tigation Status (GPIS) was created. Investigation and GPIS control are discussed later. NOTE: If a

failed-part analysis was needed to define the condition, a GPIS was initiated. Cases were even docu-

mented by GPIS where corrective action was underway or recently completed, provided that the action

was not simple, obvious, and straightforward. This ground rule was intended to prevent waiting to

open a GPIS in the hopes that the problem could be handled by MARS only.

(d) Martin/Canaveral-Generated MARS. These were also picked up daily from all reporting areas

by the M/C Q.E. If a malfunction occurred during other than normal working hours, and the area

Q.E. representative felt that an immediate failed-parts analysis or investigation was required, the

cognizant system Q.E. was called to initiate appropriate action. As at M/B, each MARS was analyzed

in detail and treated in the same manner.
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(e) Martin/Denver-Generated MARS. These too were picked up daily by the local Q.E. and relayed

by telecon to the M/B Q. E. , and then a copy was mailed to them. At the time of the phone report, the

M]B Q.E. and R.E. evaluated the problem in the same manner as if it had been found at M/B. M/D

engineering assisted in the evaluation and investigation directed by M/B.

(f) Vendor-Generated MARS. These or their equivalent were reported to M/B Q.E. by telecon or

TWX within Z4 hours after the malfunction. They were generated from the point in the production

cycle where the vendor declared the equipment ready for Acceptance Testing. The telecon or TWX

was followed by a formal report to M/B. As before, each problem was treated as though it had oc-

curred at M/B, except that vendor personnel assisted in the evaluation and investigation when requested

by Martin,

(g) Additional Review of Reports. In addition to the review of individual reports previously described,

which, of course, included trouble report tabulations to determine failure history, O.E. and R. E.

examined the system and part tabulations indicating the total failure experience, to be sure that the

individual report evaluation had not overlooked a failure trend. Malfunctions that recurred, but were

not under investigation (and covered by a GPIS), were selected for additional investigation. If, as a

result, it appeared that a condition could exist requiring corrective action, a GPIS was created and

investigated in the usual manner.

(h) MARS Prepared at M/B and ETR on Associate Contractor Equipment. These were reviewed by

Q.E. and R.E. at M/B and M/C for information and status. A separate report was written by the

Associate Contractor and given to Martin for information only, when possible. Corrective-action

information received from the Associate Contractor was entered in the MARS. A GPIS was auto-

matically opened for an Associate Contractor problem that occurred during a countdown or launch.

GPIS's were also opened on Associate Contractor problems when Martin judged that the action taken by

the Associate was either inadequate or not moving rapidly enough to a conclusion. In every case,

closing a GPIS written against an Associate Contractor problem was by SSD/Aerospace direction and

final.

(i) M/C and M/B R.E. and Q. E . Postlaunch Evaluations. R.E. and Q.E. from MIC and MIB

evaluated the launch preparations, countdown, and flight performance of each vehicle immediately after

launch and selected problems for investigation. The M/C Q.E. had the prime responsibility for

evaluation of the launchpreparation results, and the M/B R.E. and Q. E. for the countdown and flight

data. Evaluation included the investigation of each anomaly or marginal condition reported at the

Quick Look meeting and subsequent data reviews. A GPIS was originated for each condition that re-

quired extensive investigation or even remotely appeared to have an impact on future tests or flights.

(j) Titan Il and III Problems Affecting the GLV. Problems originating on the Titan LI or Titan Ill

programs were immediately investigated for impact on the GLV. Problems from other programs

reported by SSD, BSD, NASA or Aerospace, were also analyzed in detail for possible effect on Gemi_fi.

Although piece-part traceability was not funded or planned in this program, in some instances it was

performed by the contractors and proved invaluable when searching for suspect parts.

(k) Special Mana[[ement Tool. One special management tool was created at M/B to expedite testing

at the VTF and yet preserve evidence at the source of the problem. When a malfunction occurred at
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VTF and the causes were not obvious, the test conductor immediately stopped the test and convened the

Malfunction Disposition Group for the failed system. This group, composed of the engineering test

manager or test conductor, a reliability engineer, a quality engineer, and a design group engineer,

defined in detail the circumstances at the time of failure, prescribed additional tests in an attempt to

isolate the problem prior to hardware removal, and formulated a problem investigation plan. The

group was on call Z4 hours a day, 365 days a year, and had to meet prior to continuing the testing. The

primary value of such a group was to keep good hardware from being pulled from a vehicle in a random

fashion, in order to meet schedules.

(1) Number of MARS Issued per GLV. A trend chart of the number of MARS issued per GLV is shown

in Figure II.B-3.

(Z) Aerojet General Corporation (AGC) Inspection Report (IR)

The failure reporting and corrective action system for the Gemini program was based on the

Inspection Report (IR).

The IR was initiated by Aerojet Quality Control inspectors in the receiving, inspection, fabrica-

assembly or during a specific operation.

Prior to acceptance of each engine by the Space Systems Division, the Gemini Reliability and

Pilot Safety Group, including contractor and Aerospace personnel, reviewed all component data and

appropriate IR's.

(a) Factory Operations. Application of the IR reporting system to the three major areas of interest

{receiving inspection, manufacturing, and test area operations) is summarized as follows for factory

operations:

I. Receivin_ Inspection. Discrepancies or failures noted during visual inspection or acceptance

testing of vendor components were recorded in an IR by a Quality Control inspector. Inspec-

tion supervision and/or Quality Engineering made an initial action decision to rework, or to

submit to the Material Review Board (MRB). Parts requiring MRB decision needed disposi-

tion approval by signature of Quality Control, Design Engineering, and AFQA representatives.

After Quality Control disposition, the buyer of the Material Division determined whether parts

would be repaired or reworked at the AGC plant, or returned to vendor.

2. Manufacturing Operations. Discrepancies discovered during the fabrication or assembly pro-

cess that could not be remedied without using formal procedure were documented in an IR

by a Q.C. inspector. Inspection supervision and/or Quality Engineering made an initial action

decision to rework, reject, or to submit to Material Review Board/Engineering Review Board

(MRB/ERB). The actions referred to MRB required AFQC concurrence and certification.

3. Test Area. Discrepancies discovered during visual inspection, functional checkout, and

testing that could not be resolved without formal procedures, were documented in an IR by

a Quality Control inspector. A Quality Control Engineer then reviewed the items to deter-

mine initial disposition. Those actions referred to MRB required AFQC concurrence with

disposition, cause, and corrective action by signature.

(b) Field Operations. Discrepancies discovered during visual inspection, functional checkout, or static

testing at field sites were documented by Martin-Marietta Corporation (MMC) QC personnel on Martin

Automatic Reporting System (MARS) forms. Verified discrepancies were transferred to an IR Master

{referencing the initial MMC failure report) by Aeroject Field QC personnel. An Aerojet QC repre-

sentative participated in the Martin MRB actions regarding Aerojet hardware. The results of these

actions were documented by an Aerojet representative on IR masters, and the cognizant AFQA repre-

sentative at the field site signed the master to verify hardware disposition.
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The IR's initiated in the field were forwarded to AGC/Sacramento for completion of the disposition,

cause, and corrective-action portions of the form, or for information purposes in cases where the cause

and corrective action had been entered on the form at the field site, or where no cause and corrective

action were required. Telephone communications and TWX were also used to provide immediate infor-

haation on items requiring action by AGC/Sacramento. This information alerted personnel involved to

collect the necessary data to support the failure analysis prior to the receipt of discrepant hardware.

Application of the IR system to the field operations follows.

I. Routin_ of IR's After Initial Actions. Following the initiation of the IR and the actions

described, the IR was either routed to Q.E. or, with the hardware, to the Discrepancy

Analysis Area (DAA) or Air Force Bonded Stores (AFBS). In either case, Q.E. had

over-all responsibility for completion of the IR. Exception to the routing described was

made in some cases with respect to discrepancies reported on vendor-supplied hardware.

2. Procedures for Completing IR's When the Discrepancy Could Be Readily Identified As a

Quality Control or En_ineerln_ Problem. When an IR was initiated for a problem readily

identified as one of Q. C. requiring no failure analysis, Q.E. completed the action on the

IR without referring to Design Engineering or Reliability.

When a problem was readily identified by Q.E. as an engineering problem not requiring

•_1,_ _1_r_ f]_ TW _xT_ referred to C, ernini Design En_ineerin_ for determination

of cause and corrective action. Upon its receipt, Design Engineering was responsible for

coordinating \vith Gemini Reliability for any case history or other reliability information

that might contribute toward solution of the problem. Following determination of cause

and corrective action, Design Engineering coordinated, as required, with Reliability, with

reference to impact of the corrective action on the reliability of the engine system. De-

sign Engineering then forwarded the completed action to Q.E. for closeout of the IR and

submittal to Aerospace for approval.

3. Procedures for Completing IR's When the Discrepancy Could Not Be Readily Identified

As a Quality Control or Englneermg Problem. When the type of discrepancy could not

be readily identified as a Q. C. or englneerlng problem, an investigation of the discrepant

hardware was initiated in the DAA (in-house discrepancies) or AFBS (field discrepancies).

With reference to in-house discrepancies not requiring failure analysis, Q.E. proceeded

unilaterally With the determination of cause and corrective action. If, during the initial

Q.E. investigation, it was determined that an engineering problem existed and no failure

analysis was required, Design Engineering was notified. Design Engineering then deter-

mined cause and corrective action. In cases where a failure analysis was determined to

be in order, the failure analysis proceeded as described in Section II.B. 3. d, which follows.

c. Problem Investisation/Failure Analysis System

(i) Martin Company

A detailed investigation was conducted on all problems, unless, as discussed in Section II. B. 3. a,

proper corrective action could be immediately implemented or was not required. As stated before,

when a detailed investigation was initiated, a GPIS was created. This was a means of formally logging

each investigation; it did not necessarily mean that a problem or condition that required correction

existed, but only that an investigation had begun, was under corrective action cognizance, and that the

results would be fully documented. It was just as important to log investigations that resulted in no

corrective action, as those requiring remedial action. Creation of a GPIS also resulted in the crea-

tion of a problem folder, where it and other pertinent documents were stored for convenience during the

investigation, for follow-up of corrective action, and for rapid retrieval if required for future use in

the program.

II. B-ii



A GPIS could be initiated by a request from anyone on the Gemini Program, each was assigned a

number and coded to identify the subsystem affected. R.E. and Q.E. at M/C and M/B were directly

responsible for conducting the investigation, but could request assistance from any department or agency

needed to complete the task.

The purpose of the problem investigation was to define the cause of the problem; its extent, such

as all units or only certain lots or pieces; the effect of the condition on production operations, test, count-

down, and flight; the cost and schedule impact of "living with the problem, " or of corrective action; and

to define the action that must be taken to prevent recurrence of the condition. The methods used to inves -

tigate and the personnel involved were determined by the nature of the problem, but the personnel were

usually drawn from R.E., Q.E., and the design engineers at M/B and M/C. The quality engineers were

responsible for leading the investigations of apparent non-design problems, and the reliability engineers

for those of apparent design problems. The results of the investigation were documented or referenced

in the GPIS as the investigation proceeded and all appropriate documents were placed in the problem

folder. This had the specific advantage of preventing notes being kept on nonrecoverable pieces of paper

in engineers' desks.

The first objective of an investigation was to find the cause of the problem. When this could be done

by other means, a failed-parts analysis was not made. Such an analysis was conducted when required

and authorized by M/B Q.E., whether at M/B, M/C, or at the vendor's facility. The decision as to where

to conduct a failed-parts analysis depended on the urgency (including the spares balance), facilities, past

failed-parts analysis performance by the vendor, and past experience with the hardware. It was usually

desirable to perform an analysis at the vendor's plant, but with a witness present from M/B who was

responsible for assuring its adequacy and feeding this information to all interested parties. A failed-

parts analysis of a vendor item performed at M/B or M/C was witnessed by a representative of the

vendor, when possible. The basic program philosophy was that every failed-parts analysis should be

continued until the cause was determined or, if this were not possible, until all reasonable efforts had

been made. If the cause could not be found, the problem was thoroughly reviewed by Q.E., R.E., and

the appropriate design group engineers before terminating an analysis. If necessary, additional units

of the hardware were obtained and further tests and analysis conducted on these units.

Frequently, problems occurred during the last stages of test at the launch site and time did not

permit the normal step-by-step procedure. In that case, the failed parts were returned to the nearest

facility best equipped to do the failure analysis. The parts were flown to the facility and, in many cases,

by Air Force jets to expedite the analysis. Every means available (overtime, weekends, etc.) was used

to complete the analysis, establish the mode and cause of failure, and then evaluate the flight hazard with

respect to this known condition. Occasionally, it was possible to take short-term corrective action on

the vehicle installed on the launch pad. That might have been a one-time inspection of that vehicle, an

abbreviated test of one particular condition, or that the probability of occurrence was so low that the

risk was considered acceptable. When final action was impossible for a particular vehicle, the problem

was brought to the attention of management at the level where the decision to launch could be made.

A GPIS trend chart is shown in Figure II-B-4.

(2) Aerojet General Corporation

(a) In-house IR Customer Interface. IR's written in Receiving Inspection and Manufacturing on

components reviewedby the Pilot Safety Review Team inaccordaneewithAerospace GLV Engine Acceptance
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Requirements 6 were presented to Aerospace Corporation by AGC Pilot Safety Group. This was

done prior to engine assembly of the respective components against which the IR's were written. Aero-

space signed off each component package to verify that all IR's therein were satisfactory and closed,

except as noted on the certification signoff sheet. In cases of exceptions, the unresolved discrepancies

were documented on an AGC IR form and submitted to AGC Q.C. by Air Force Quality Assurance{AFQA)

for resolution.

IR's generated during engine buildup and test were presented by QC to the Sacramento Aerospace

Office on an incremental basis. IR's requiring MRB action were processed through AFQAbefore pres-

entation to Aerospace. The signature of the Aerospace representative on the IR constituted final closeout.

Any unresolved discrepancies noted by Aerospace or AFQAwere documented on an AGC IR form and

submitted by AFQAto AGC QC for resolution; upon resolution, an IR was resubmitted to the Sacramento

Aerospace Office for signature approval.

Prior to the formal acceptance-panel meetings conducted for each engine, there was a pre-panel

discussion of IR's by representatives of AGC and Aerospace. QE represented AGC and was supported

by Reliability and Design Engineering with respect to engineering problems.

The engine log book contained an IR summary sheet, which listed the IR number and status for all

those written against the engine assembly and components that remain on the engine. The IR status was

certified by signature of AGC, AFQA, and Aerospace on the summary sheet.

(b) Field IR Customer Interface. The cognizant AFQA representative at the field site signed the IR

to verify hardware disposition and, in those cases where cause and corrective action were completed in

the field, to indicate concurrence with the corrective-action statements. IR masters were then returned

to AGC, Sacramento. Copies of IR's originating at M/B were distributed by AGC Field QC to Aerospace,

AFQA, and M/B, and to Aerospace and AFQA at Sacramento. Distribution of ETR IR's included Aerospace,

Patrick Test Site Office (PTSO), Martin at ETR, and Aerospace and AFQA at Sacramento.

With reference to IR's where cause and corrective action had been entered in the field, QE-Sacramento

reviewed the field action and submitted the closed IR to Aerospace and AFQA at Sacramento for signature

approval.

IR's returned to Sacramento for determination of cause and corrective action were completed and

presented with necessary backup documentation by QE to the Sacramento Aerospace Office for review.

In the case of IR's originating at ETR, Aerospace coordinated with Aerospace/6555th ATW prior to

approval. Signature approval of the close-out action was made on the IR master by Aerospace and AFQA

at Sacramento. Any deficiency noted in the action was documented by AFQA on an AGC IR form and

presented to QE-Sacramento for action as required.

Quality Control at Sacramento forwarded completed copies of the IR's with Aerospace/AFQA approval

signatures and the necessary backup documentation to the cognizant AGC field sites; these went to repre-

sentatives of the customer, for the initial field distribution. Backup documentation consisted of reports

such as failure analysis and quality engineering, but did not include blueprints, engineering test directives,

shop orders, and similar documents, unless specifically required.

AGC field QC presented closed-out ETR IR's to the Pilot Safety Working Team at ETR for review.

If the close-out action was not acceptable to the team, the 6555th/ATW/Aerospace-ETR notified the

AFQA/Sacramento of additional action required. AFQA/Sacramento documented the deficiency and

requirements on an AGC IR form and presented it to QE for action and reprocessing of the IR questioned

by the ATW.
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Toreduceresponsetimefor IRclose-out,pertinentinformationfromIR's initiatedafterflight
minus30days(F-30days)wastransmittedbyAGCFieldQCatETRto FieldQCatSacramentobyTWX.
Immediatelyfollowingdeterminationofcauseandcorrectiveaction,FieldQC/Sacramentotransmitted
this informationto FieldQC/ETRbyTWX. Distributionwasmadeexpeditiouslyby Field QC/ETR.

These actions did not negate the requirement for processing the IR in the normal manner.

All IR's initiated after F-30 days were reviewed and acted upon from the standpoint of flight safety

only. Final close-out action not affecting flight safety was taken in a timely manner, but with lower

priority.

Problem areas identified by the Martin Company that possibly required AGC action were brought

to the attention of Aerospace/SSD by means of a Martin Gemini Problem Investigation Status (GPIS) form,

with a copy to the field AGC representative. AGC action was in accordance with SSD direction, and AGC

response was to the customer.

(c) Problems Requirin_ Long-range Corrective Action. AGC's Gemini reliability group maintained

a system for identifying, resolving, and providing status for problems of a continuing nature, or that

required an extended period uf tinge to rcsolve. The_e problems wove designated as Gemini reliability

problems. The group was responsible for determining the problems to be included in the system from

one or more of the following sources:

• Transfer of a problem from one or more IR's when extended investigation or customer
approval of an ECP is required.

• Selection from existing problem folders.

• Selection from problems experienced in the Titan II or Ill programs.

• Identification from historical records of malfunctions or discrepancies.

• Evaluation of recommendations from other departments.

In cases where a problem was transferred from an IR to the Gemini reliability problem category,

the IR was normally closed by a statement in the corrective-action block of the IR to the effect that action

had been transferred to the Gemini reliability problem list (designated by the appropriate problem number),

and the IR was closed. QE or Design Engineering could request the transfer of a problem from an IR

to the reliability problem file.

Each Gemini reliability problem was assigned an identifying number, and a folder containing pertinent

information was maintained for each. A Gemini reliability problem report describing the problem and

indicating its corrective-action status was maintained for each. In addition to providing over-all status,

this form indicated the status of implementation of interim and final corrective action with respect to

each Gemini engine. Copies of all active Gemini reliability problem reports were included in the Monthly

Summary and Summary Data Report, which was distributed to SSD/Aerospace and within AGC. Copies of

newly-opened Gemini reliability problem reports were provided on an incremental basis to the Sacramento

Aerospace office as well as to Gemini Engineering and QE.

The Gemini reliability group assigned action to other departments for the resolution of problems,

assisted in problem solutions, and provided follow-up to assure timely completion of necessary actions.

When the necessary information had been developed to resolve a problem, the group closed out theproblem

by updating the reliability problem report form. The completed report summarized the problem, described

the corrective action taken to prevent recurrence, and referenced pertinent backup documentation. Fol-

lowing close-out of a problem, the file of information pertinent to it was maintained intact to provide a

historical record for future reference.
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(d) Reliability Monitorin[. The Quality Control Division sent copies of IR's to the Gemini reliability

group as soon as practicable after completion. The Gemini reliability team reviewed them for reli-

ability implications and provided Gemini Design Engineering with copies, as appropriate. In any case

where the review of an LR's malfunction or failure history, or other information, indicated a possible

reliability degradation of the rocket engine, the Gemini reliability group investigated the potential prob-

lem area. If this investigation indicated that the close- out action of an LR had not provided adequate

resolution of the discrepancy, the reliability group informed QE of the unresolved discrepancies and

requested that the IR be reopened. QE then reopened the IR and completed the corrective action. If

QE did not agree with reliability group on the requirement for reopening the IR, the AGC Gemini Program

Manager determined the action to be taken.

(e) Reliability-Problem Customer Interface. The status of the Gemini reliability problems requiring

long-range corrective action was included in the Monthly Summary and Summary Data Report distributed

to the customer. Copies of newly-activated Gemini Reliability Problem Reports were provided to the

Aerospace Sacramento office on an incremental basis. When a Gemini reliability problem had been closed,

the Reliability Problem Report on that problem was submitted to the Aerospace Sacramento office for

approval of the close-out action. Aerospace indicated approval by signature on the report. Any excep-

tions to the action taken were documented by Aerospace on an AGC IR, which was presented to the Gemini

reliability group for additional action, as required. The group was the customer interface regarding all

aspects of the Gemini Reliability Problem System.

(f) Failure Analysis. A failure analysis was made with respect to each IR written against a Gemini

critical component and also for LR's written against non-critical components as appropriate. Responsi-

bilities and procedures for the failure analyses were as follows:

• For in-house discrepancies, the requirements for failure analysis were determined by QE.

When this involved a part or assembly that had been determined (through initial QE investi-

gation or otherwise) to have failed or malfunctioned during any functional acceptance test,
the failure analysis plan was prepared jointly by QE, Gemini Design Engineering, and the

Gemini reliability group. The planning document was signed by representatives of these

organizations. Design Engineering and Reliability designated the steps in the failure analysis
where they would participate or review results. The failure analysis was made by QE with

Design Engineering and Reliability participating to the extent specified in the failure analysis

plan, and representatives of these organizations signed the IR master to indicate concurrence
with the statements of cause and corrective action entered thereon.

• For field discrepancies, the requirements for failure analysis were determined jointly by QE,
Gemini Design Engineering, and Gemini reliability group. Procedures for failure-analysis

planning, failure analysis, and signoff of documentation with reference to field discrepancies
were identical to those for investigation of in-house discrepancies involving hardware that

failed or malfunctioned during functional acceptance test.

• For discrepancies involving vendor-supplie'd items, failure analysis was sometimes made by

AGC in the Sacramento plant on vendor-supplied items that had failed or malfunctioned. In
these cases, the procedures were the same as those described in the preceding paragraph.

In certain cases, the failure analysis was made by the vendor and representatives of QE,

Design Engineering, or Reliability participated, as appropriate.

(3) Examples of Failure Analysis During Gemini Program

The following brief examples of the Gemini failure analysis in action demonstrate the importance

of identifying the physics of failure. This is the critical step that allows management to weigh the risk

the problem presents against the economy of a positive fix.
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(a) Relay Problem. In September 1964 a relay in the switchover module of the autopifot adapter

assembly operated intermittently when energized. The relay was removed and opened for failure analy-

sis. Solder particles were discovered inside the contact chamber, one adhering to the normally closed

movable contact of one set of contacts, while other particles were imbedded on the plunger shift. It was

concluded that the solder particles intermittently jammed between the plunger and the plunger guide and

caused the malfunction.

A survey team, composed of engineers from Aerospace/SSD and Martin Company, conducted a

rigorous audit at the vendor's facility and found (in part) that:

• There appeared to be a complete lack of quality and contamination control during assembly,

with no special precautions taken to eliminate foreign particles from the relays during assembly

• The relays were not assembled in a clean room

• No extra precautions were taken to ensure that solder and flux were not introduced during final

sealing operations.

The same survey team then visited other relay manufacturers, compared and evaluated their

facilities and products, and then recommended that the relays in question be replaced with those manu-

factured by another vendor. This was accornpilsh_d un both _irbornc equip_.ent and AG V, (_¢_e_ the

search of all relays manufactured by this vendor revealed that the AGE also contained his product).

Months later in the program it was found that the Gemini Agena Target Vehicle had relays produced

by this vendor and had also experienced some trouble with them. With the overwhelming evidence col-

lected on the GLV problem, it was a simple matter for Aerospace to convince Lockheed to remove this

vendor from the approved list for the program.

(b) Transistor Problem. During a routine functional preproduction monitoring test (PMT) of an auto-

pilot adapter assembly, intermittent output readings were noted. After the electrical connectors were

cleaned, the intermittent condition persisted. The adapter package was returned to the clean room where

the trouble was isolated in a module assembly. During further troubleshooting the erratic readings

changed to a "no- output" condition.

The above incident and several others reported against the same component for improper module

circuit voltages and failures were attributed to piece-part performance in the circuit design. The failed

modules were put into failure analysis and tests were developed and made to determine the cause and

physics of failure. Nondestructive tests were performed initially and then carefully-planned destructive

piece-part examination followed.

In all instances, the module failures were attributed to those of U.S. Army Type ZN328A transistors.

The modes of failures were the following:

• Residual acid within the transistor acted on the junction areas, resulting in either emitter

or collector detachment. Due to the acid attack, the condition was progressive and could

not be determined until the failure occurred. This was the principal mode of failure.

• An emitter detachment was the result of an overetched and, therefore, weakened junction.

The conclusion was that the basic cause of failure was due to inadequate rinse of the acid etching

solution during transistor manufacture. The deterioration was gradual, and the effects thereof were

eventually precipitated by the heat of current actuation.

Identical transistors were removed from stock and inspected. After careful removal of the caps,

it was found that two units had already failed with open leads and that all units had various stages of

acid deterioration.
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Resolution o¢ the problem to support program requirements was authorized as follows:

• All modules containing the ZN3Z8Atransistors were scrapped. These were replaced by new

modules containing only JAN type 2N328A transistors. For GLV-2 (the next vehicle flown),

the autopilot adapter assembly had an assembly dash number change, which indicated the

transistor change.

• For GLV-3 and follow-on, the autopilot adapter assembly had still another dash number

change, because specially procured JAN type transistors with more stringent receiving

inspection and test were incorporated.

d Vendor Control

Control of suppliers who furnished hardware for the GLV was accomplished by analyzing the suppliers'

qualifications; by explicit contractual control, including acceptance testing, special Gemini critical-

component handling, and special motivational programs for vendor personnel; and by special quality

and reliability audits.

Each associate contractor used approximately the same method in obtaining assurance, initially,

that a vendor could produce hardware that would meet the Gemini reliability requirements. A prospec-

tive vendor's qualifications were thoroughly reviewed through an evaluation and rating program; he was

analyzed primarily on his capability to deliver consistently a high-quality product on the production

schedule required for the GLV program. Each associate contractor used approximately the same rigid

The following list contains only a small sample of the requirements

They included stipulations that the vendor shall provide for contractor

contractual controls on his vendors.

that were imposed on each vendor.

approval of:

Quality assurance system

Design evaluation data

Drawings--assembly, schematic, detail, etc.

Weight prediction and final report

Stress analysis

Qualification test procedures and reports

Acceptance test procedures and reports

• Reliability-prediction, test demonstration, etc.

• Functional test reports

• X-ray quality requirements

• Shelf-life materials identification

• Weld procedures

• Critical part time/cycle reporting

• Process approval

• Inspectors--vendor, customer, government

• Traceability

• Spares parts list

Vendors that survived the initial screening and were agreeable to all the special Gemini requirements

imposed on them were the best available at that time and, for the most part, performed excellently.

During the early production phase, major suppliers were invited to attend meetings conducted by

representatives from the Gemini Program Management Office, Procurement, Receiving Inspection,

Quality, and Reliability. The prime objective of these meetings was to generate a program of worker

motivation within the vendor's facility.
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The techniques and procedures used by AGC were made authoritative by their incorporation in

Corporate or Sacramento Plant Standard Practice Manuals, Quality Control Instructions, Procurement

Procedures, and Gemini Project Directives.

The reliability program at M/B included reliability audits of critical-component vendors on a

semiannual basis. This was done to supplement normal quality surveillance and to ensure vendor adher-

ence to definite reliability 7, procurement 8, and critical component 9 specifications.

The intent of the audits was not to direct suppliers in the running of their operations, but to advise

them how existing controls and records could be modified to provide the performance required for Gemini.

The audits fulfilled the following specific needs:

• Assurance of adherence to engineering requirements

• General vendor liaison

• More accurate interpretation of what was expected by the contractor

• Better understanding of vendor capabilities, consideration, and problems

• Expected corrective action of vendors

• General vendor motivation

Motivation was achieved by: the presence of an audit function; presentation of program material,

such as models, posters, pennants, and films; appraisal of strong and weak points; and, in rare cases,

visits with astronauts. The appraisal of strong and weak points was very effective since vendors were

generally interested in being part of the Gemini image and desirous of taking advantage of disciplines

associated with man-rating for attracting future business.

The audits were of considerable value to the program. Literally dozens of discrepancies, even

though generally of minor impact, were noted and corrected. The audits were comprehensive, being

subjected to the checklist shown in Figure II.B-5. Its use, together with a small selected audit team,

afforded a common basis for comparing vendors and determining what could be expected from them

(particularly small vendors) in the manufacture and test of man-rated hardware. It additionally yielded

maximum information without placing an undue burden on the vendor.

An audit report was prepared after each inspection, with copies provided to the quality source

control, Procurement, and Design Engineering. The suppliers were apprised of their evaluation by

Quality after preparation of audit reports, although preliminary critiques were generally made immedi-

ately after the audits. In almost all cases, three to five working days of notice were given vendors prior

to an audit. This was a short enough time to preclude any major clean-up, and still allow an accurate

observation of the conditions at the vendor's facility. Nearly all of the vendors were cooperative and

welcomed the audits.

In summary, the audit program was highly successful, resulted in numerous corrective actions,

enhanced the intelligence of all parties, was economical, and promoted better hardware and supporting

documentation. The results are graphically shown on Figure If. B -6.

e Reliability/Quality Assurance Recommendations

It is difficult to assess the total contribution of the Reliability/Quality Assurance programs on the

GLV, but following is a summary of the procedures found effective and that are recommended for future

programs --manned or unmanned:
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COMPANY

CATEGORY

TRACEABILITY

I. To Critical Dart level

2, Below Critical Part level

3. Incoming parts or lots

RELIABILITY

I. Specific personnel

Z. Failure-flagging system

3. Data collection system

4. Analysis and prediction capability

5. Records of discrepancies below Critical Part level

FAILURE ANALYSIS

i. Analyses documented

2. In-house capability

3. Implementation capability

4. Effort and records below the TWRT level

ENGINEERING

I. Specific personnel

2. Drawing change approval

3. Unsolicited design changes

4. Packaging design

5. Latest Martin drawing

DESIGN REVIEW

I. Scheduled

Z. Documented

PRODUCT IMPROVEMENT

I. Not considered

i, Submitted

3. Incorporated without Nlartin approval

CRITICAL PARTS

I. Storage areas

Z. Handling considerations

3. Decals, posters and tagging

4. Personnel indoctrination

5, Knowledge of part_s GLV function

6. Critical Parts list approved

MANUFACTURING

1. Receiving inspection

Z. Area access control

3. Clean room certification and/or operation

4. Personnel certification

5. Reference drawing or model identification

6. Discrepancy reporting

7. Cleanliness

8. Test tool calibration

9. Assembly inspections

I0. Subassembly design changes

TEST

I.

g.

3.

4,

Test tool calibration schedule

Acceptance test procedure approved by Martin

Calibration procedures

Calibration facility ambient environment

RE-CYCLING

1. Operating time records

2. Re-work records

CONTROLS

1. MB-1053, 1054 and 1055

Z. In-house procedures

3. In-house processes

4. Supplier specification drawings

5. In-house and suppliers communication

6. Calibration records

7. Martin source inspector

8. Supplier surveys

9. Supplier certification

IO. Martin communication

Figure LI. B-5.

COMMENT - If discrepancy noted.

Vendor Audit Check List
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1) Establish a closed loop corrective action system. This forces a review and positive close-

out of each problem.

2) Assign corrective-action engineers to each individual system. This provides an expert for

failure analysis and corrective action.

3) Create a strong field C.A. organization to handle problems and C.A. at the source.

4) Maintain close coordination between Quality and Reliability Engineering to provide complete

coverage of all aspects of any problem area.

5) Develop a Malfunction Disposition Group to prevent the loss of failure data. This is an

excellent method of attacking problems and for preventing further degradation of vehicle

systems through additional testing.

6) Insist on a trend data review. This forces a review of questionable system parameters
before failure.

7) Reject hardware that exhibits a transient or unexplained malfunction. Most causes of transient
malfunctions can be found if properly analyzed. Use of hardware for which the failure cause

has not been determined invites substandard failure analysis and permits hardware having an

unknown failure probability to fly.

8) If possible, analyze all available flight test information from other programs (i.e., Titan II),
if similar hardware is used.

9) Develop a GPIS system. The GPIS was one of the most effective management tools used on

the GLV program. It has been called a "super" MARS, IR, trouble report, etc.; but it was

a means of sorting through the thousands of problems to ascertain the significant ones and of

presenting them concisely and explicitly to all levels of management for action. Top man-
agement does not take (or have) the time to review all of the problems on a program; but with

this system all of the significant problems were brought to its attention, especially since the

customer was in the closure approval loop. A total of 1413 GPIS were written during the

program, 1010 airborne and 403 AGE. This is exclusive of between 300 and 400 more that

were called "Problem MARS" and opened at ETR prior to the start of the GPIS system at
ETR (GLV-2).

10) Establish a method of vendor control that is explicit contractually. The instructions imposed

initially upon a vendor can often mean the difference between "acceptable" and "hi-rel"

hardware, with very little additional cost (if any).

1 I) Conduct reliability audits at the facilities of vendors of critical components. Impress on

them that this is being done to help them produce better hardware.

12) Maintain interest and a desire for success at all levels by keeping all personnel informed

of the national importance of what they were doing. Perhaps a manned program has an

advantage in this respect that other programs do not have. Personal motivation, however ,

on this program was thought to be directly proportional to management enthusiasm and con-

tact - and the same would probably be true for all programs.

f. Surveillance -- Titan Family Flights

An extremely important consideration in the total effort to assure man-rating of the Gemini launch

vehicle was the impact of the Titan I/ and II_ flight test programs. One of the fundamental concepts of

the launch vehicle pilot safety program on Gemini was a rigorous review of flight test results and an

assessment of the problems experienced. Aerospace conducted these reviews as a continuing effort

throughout the Gemini program.

The early history of the Titan II program shows ten flight failures out of twenty. These were basic

design and operational weaknesses, which have been correctly identified and eliminated in both the opera-

tional vehicle and the Gemini launch system. Repetitive gross deficiencies such as Stage II gas generator

contamination and POGO have been highlighted and extensive corrective action taken to eliminate these

problems from the Gemini launch vehicles.

Although the follow-on flight tests, in terms of numbers and percentages, were much more suc-

cessful than the preceding twenty, the data yielded indications of incipient weaknesses, such as anomalous

propulsion operation in terms of slower-than-normal thrust buildup, slight out-of-tolerance steady-state

performance, and other Similar problems. These were continually assessed for Gemini and corrective
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actionwastaken. ThisprocessofconstantrefinementoftheGeminivehicleprovidedincrementsof
reliabilityimprovement.

InDecember1965,withthelaunchesofGT-6AandGT-7markingthehalfwaypointoftheGemini

Program, a decision was made by SSD/Management to review and evaluate again, prior to the launch of

GT-8, all past flight anomalies and problems pertaining to the entire family of Titan vehicles. A brief

description of this effort is contained in Section II. E.

Total surveillance of Titan family flights included the following efforts in chronological sequence:

1) Titan II -- R & D Flights -- 32 Total. Attending quick-look and post-flight reviews at

STL/San Bernardino and/or Martin/Denver, and coordination of anomalies affecting
the Gemini Launch Vehicle with these contractor personnel.

Z) Titan II -- DASO (Demonstration and Shakedown Operational) Flights - Transition Between
R & D and Operational -- 5 Total. Attendance at post-flight reviews held by STL and BSD

with SAC participation; coordination with these agencies.

3) Titan II -- Operational Flights -- 23 Total. Followed launches at VAFB and attended post-
flight reviews when they were held at VAFB and Martin/Denver; coordinated with these

agencies, as well as OOAMA on post-flight data and anomalies.

4) Titan III -- 1Z Total. Kept abreast of all Titan III launches and anomalies; coordinated

same with Aerospace and Martin/Denver and attended post-flight reviews.

5) All Titan II Flight Test Data and Reports. These were analyzed for impact on the Gemini
Launch Vehicle.

4. THE ASSETS PROGRAM

Two-thirds of the way through the Program, the Martin Company established an Assets Team whose

job it was to assure an adequate supply of components and parts to carry through the testing at VTF and

ETR and the launches of GLV 9 through lZ. Similar efforts were undertaken by the Aerojet General

Corporation to insure an adequate logistics posture from the standpoint of the rocket engines. The

Martin team was chaired by Logistics and composed of representatives from Engineering, Quality,

Contracts, Planning, and the launehsite personnel. Appropriate authority and priority for effective

control were established. While economy constrained oversupply and program completion prohibited

undersupply, the overriding team guideline was that there be no compromise in hardware reliability.

The task was divided into the following two parts:

Inventory and Reliability Status Determination

Procurement and Assets Control

Status determination required an inventory of all parts, components, and assemblies by serial

number and an immediate identification of critical and marginal items from a logistic and a flight

worthiness standpoint. Engineering and Quality evaluated or reevaluated specific component histories

when required, and performed or updated statistical analyses on component failures for prediction of

asset requirements and for comparison with established quantities.

Procurement and assets control involved consideration of changing lead-time situations as Gemini-

peculiar parts assemblies phased out or where vendors had ceased production of piece parts and com-

ponents that had become obsolete. The Assets Team therefore established status and decision-making

controls for continuous use, intended for quick and effective reaction to any potential shortage, or to

any new or changing failure mode that would affect the statistical failure predictions mentioned.

Initially, four items were identified for priority action: the PCM Encoder, TARS, Signal Conditioners,

and Destruct Initiators. Actions included reorders, rework, failure analyses and firm agreements on

turnaround time and maintenance of reliability standards. In some cases these agreements were made

through Air Force and Martin visits to the supplier's facility. It is felt that the emphasis given to a

normal logistics function by the formation of a special team and tying it closely to reliability is an
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effectivetoolinmaintainingproductintegrity. Prelaunch testing component replacements on GLV-12

and the flawless performance of these later vehicles bear this out.

5. ACCEPTANCE

A major portion of the effort in the Pilot Safety Program assuring maximum product integrity, was

the means used by SSD/Aerospace Corporation to accept contractor hardware for the program. End

product acceptance versus incremental acceptance of hardware has remained controversial throughout

the Gemini program. Although the engines, tanks, and finished vehicle were formally accepted separately,

this should not be misinterpreted as sequential or incremental acceptance, since these articles repre-

sented final end items manufactured at separate facilities. From a contractor's standpoint, incremental

buyoff by the customer agencies as the product completes functional milestones in test and manufacture

within the same facility is desirable. This minimizes the risk of identifying high impact problems late

in the production cycle and thus aids in scheduling. SSD/Aerospace insisted that in the case of vehicle

production, surveillance by local customer representation and proper technical and quality control by the

contractor should minimize any schedule effects of end product acceptance and that a formal concentrated

review by a proficient acceptance team would have a competitive influence on all personnel to do a good

job. They also insisted that this acceptance be given top management attention by the contractor. End

product acceptance provides the contractor with flexibility in manufacture and test such that top level

management is more likely to be involved in these activities and thus more interested in hardware

acceptance.

Incremental acceptance, however, limits this flexibility and eventually hardware acceptance may

have a tendency to be managed at lower levels with lesser impact, professional incentive, and manage-

ment attention to problems. As it happened, both approaches were taken to some extent. Regulations

and criteria for hardware acceptance agreed upon by the contractors and SSD/Aerospace were highly

disciplined and contractually binding. The Gemini engines justified a form of incremental acceptance,

since repeat of the static firing cycles would have considerable impact on delivery. The engines were

very carefully examined before the static firings to minimize the necessity of a retest.

The tanks and launch vehicles were accepted as end products quite successfully. The Vehicle

Acceptance Team found it extremely difficult to find significant problems, since the contractor took this

formal acceptance exercise as a challenge.

The acceptance activity began with the propellant tank assembly performed by Martin/Denver.

After satisfactory integrity testing, a formal review and rollout inspection was made by SSD/Aerospace

and, upon official acceptance, the tanks were shipped to Martin's assembly plant in Baltimore for splicing

and final assembly.

The Stage I and II rocket engine systems were manufactured and tested at Aerojet General Corpora-

tion's plant in Sacramento, California. These systems also underwent official review and acceptance by

SSD/Aerospace and, if satisfactory, were airlifted to Baltimore.

The launch vehicle guidance equipment was manufactured and tested by General Electric in Syracuse,

New York. Although formal acceptance was not conducted manufacturing was reviewed very carefully

(II.B-30).

Gemini launch vehicle final assembly checkout and acceptance was conducted at Martin's Space

Systems Division, Middie River, Maryland.
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a. Launch Vehicle Tanks

The tank rollout inspections were held at M/D in two phases. During Phase I, the production history,

test history, and all weld defects and the associated stress analyses were reviewed, with the appropriate

M/D personnel, by M/B engineers and quality assurance personnel. There was a requirement for a

written stress analysis showing positive margins of safety for all weld defect areas. This analysis was

checked and, where necessary, rewritten by M/B structures engineers. During the Phase 11 portion of

the rollout, the same material, in corrected form, was reviewed by SSD and Aerospace personnel. In

addition to the above documentation, pre- and post-hydro x-rays of all defects were reviewed by Aerospace

metallurgists to verify the nature and disposition of all weld defects. 10

All peculiar problem areas, such as patches on the tanks, lock-bolt repairs of leaks, and any not

specifically covered in the weld acceptance criteria were reviewed in advance of the rollout by M/B, SSD,

AFQC, and Aerospace, and a resolution was agreed upon.

b.

The design principle for Stage I and II Titan II engines was reliability through simplicity. Hypergolic,

noncryogenic propellants are used that can be stored separetLely i_I Lh= ballistic --=--:'^_,_==_.=,,_,--=_v= -̂^*,,v_require

special checkout procedures during the countdown. Both the Stage 1 and II engines were qualified according

to the applicable Air Force specifications and exhibits. The Gemini launch vehicle requirements, however,

necessitated numerous engine-design and operational changes in the engines of the Titan II Weapon System.

These evolved from crew safety requirements, and were for astronaut warning in case of incipient failures,

and increased reliability of component operation.

The Gemini Pilot Safety Program was initiated as a tool to attain more stringent controls in the

fabrication, handling, testing, and accepting of components and engines for the Gemini launch vehicle.

Its main objective was the attainment of the quality and reliability necessary to ensure the success of

a man-rated launch vehicle propulsion system.

Engine acceptance procedures, followed by personnel on the Gemini Program, are documented in

the applicable Aerospacelland Aerojet 6 reports. The acceptance procedures were designed to ensure

that all Gemini engines and applicable spares/ECP modification kits conformed to the specified Gemini

pilot safety standards and were satisfactory for use on the Gemini launch vehicle. Engine acceptance

required the following sequence of events:

• A detailed subsystem/component review was conducted by AGC and by the Pilot Safety Review

Team of SSD/Aerospace/AFPRO prior to the start of engine build. All critical components
were required to have the approval of the Review Team prior to initiation of engine assembly.

• Prior to acceptance firing of the assembled engine, a detailed system review was conducted
by the Pilot Safety Review Team in the course of which the team examined the final engine

assembly records and decided upon the acceptability of the engine for acceptance testing.

• A pre-acceptance test meeting was held. At this time, the Review Team formally announced

the acceptability of the engine for testing or detailed the action required to put it in an accept-

able condition.

• The acceptance test series was designed to be accomplished in a minimum of two steps_ in

accordance with the requirements set forth in the Engine Acceptance Test Specification, in

an attempt to demonstrate the acceptability of the engine as defined in the Model Specification.

• Following completion of the acceptance test firing, performance and post-test hardware reviews
were conducted to ensure that the engine and its components still met the Gemini standards.

• A formal acceptance meeting was held whenever an engine was deemed acceptable to the

Review Team.
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c. Launch Vehicle

Complete assembly of each stage was accomplished with the stage in a horizontal position. After

final assembly, a series of integrity tests were made consisting of airborne wiring-continuity tests,

engine-vehicle interface leakage tests, and hydraulic system functional tests. Upon their completion

and after the application of a specified paint pattern, the vehicle was erected and mated into the vertical

test cell at Martin/Baltimore.

The whole vehicle was then subjected to a detailed visual inspection and, following this, to an

extensive series of subsystem functional verification tests. This test phase ended with the successful

completion of a combined system acceptance test (CSAT).

The CSAT trial runs were informal until the history of testing indicated that the formal CSAT

could be efficiently performed immediately following the subsystem functional verification test. The

purpose of the trial runs was to verify the capability of the launch vehicle and the AGE systems to operate

together as required during the CSAT. During these tests, there was troubleshooting and minor adjust-

ments and modifications were made in preparation for the formal acceptance test. Systems that had been

modified were reverified, using applicable subsystem functional verification test procedures to achieve

readiness for the CSAT.

The final phase of vertical testing consisted of the CSAT, which embodied one countdown and two

simulated flights to demonstrate the primary and secondary guidance-flight control-hydraulics system

and other redundant features of the launch vehicle. During the first run, all subsystems performed as

in a normal flight. During the second run, a malfunction was simulated in order to switch to the redun-

dant system. The CSAT was a formal demonstration of the capabilities of all launch-vehicle and AGE

systems to function together as required at the vertical test fixture.

The demonstration of total vehicle system operation represented by the CSAT exercise established

a production milestone, which then became the foundation of all subsequent prelaunch testing. It was

upon successful completion of this test and the Vehicle Acceptance Team review of the test data that

permission was given by the VAT to de-erect the launch vehicle.

(1) Vehicle Acceptance ream

The role of the Gemini Launch Vehicle Acceptance Team (VAT) was originally outlined in TOR-

169(3126)-161Z, covering GLV-1 through GLV-4, and was superseded by SSVL Exhibit 65-14 for GLV-5

and subsequent. These documents established and outlined the acceptance procedures to be followed by

the contractor and the VAT at the contractor's facilities to assure, prior to formal vehicle acceptance

by the Air Force, that:

All applicable factory acceptance tests and inspection procedures were completed

satisfactorily.

The GLV configuration was complete and up to date, as authorized.

The GLV documentation, as required was complete.

Contractor and AFPRO review teams reviewed test data and made hardware inspections independ-

ent of the VAT throughout the acceptance program. Test data, hardware documentation, and final vehi-

cle inspections were accomplished in sequence by (1) the Contractor, (Z) the AFPRO team, and (3) the

VAT, to insure that each established its position independently. The Certificate of Completion was

initiated for all significant phases of acceptance and indicated the documentation and data reviewed,

including open items requiring completion prior to final acceptance. The completed Certificates of

Completion became a part of the Launch Vehicle History and were signed by the Contractor and the
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local AFPRO. A consolidated customer position was presented to the Contractor at the Vehicle Accept-

ance Meeting. Discrepancy reports were prepared at each step. Associate Contractors (AGC and GE)

were invited to participate during Contractor reviews, as necessary.

The VAT was composed of system engineering specialists from Aerospace, SSD, and AFPRO who

monitored their particular systems throughout the assembly and testing period in Baltimore and were

on call for support of prelaunch activities at ETR. Their responsibilities are identified in Figure II. B-7,

which illustrates the management, technical, and support assignments used for GLV-IZ and is repre-

sentative of all previous VAT's.

Technical evaluations were made by members of VAT in the general categories of production,

reliability/quality assurance, test, and hardware status of the specific specialty area in the Systems

and Support Groups.

(Z) VAT Activities

The VAT was allotted five days for an independent data and documentation evaluation after the Air

Force Quality Control Office certified satisfactory completion of Combined Systems Acceptance Test

(CSAT) procedures.

To fulfill the requirements established for VAT, six major areas were established to evaluate the

acceptability of the launch vehicle (the seventh item (g) is a description of the ROPA system). They

were as follows:

a)

b)

c)

d)

Subs[stem Data Review. All the system engineering specialists reviewed their system's

performance in all aspects of vehicle testing (subsystem, retesting, and CSAT). During

review of the test data, every action of every system was perused in detail. Anomalies

were annotated with satisfactory reasoning, or the components involved were replaced and

the test rerun. Upon conclusion of system tests and during data review, the vehicle was

held in a bonded condition. No access to the vehicle either by customer or by contractor

personnel was possible vJithout the written permission of the Air Force plant representative.

This control was necessary to make sure that if an investigative retest was required the

vehicle would be in the identical configuration as it was when the test data was generated.

Configuration Check. VAT members conducted detailed reviews of the GLV configuration

(i) prior to power-on, (Z) just before Combined Systems Acceptance Test, and (3) just

prior to acceptance recommendation by VAT.

Critical Component Data Packages. VAT specialists reviewed the data packages of the

installed critical components in their respective systems for discrepancies and any out of

specification performance.

A requirement was established, beginning with GLV-2, that on vehicle acceptance,

complete data packages would be made available containing pertinent data on all critical

components installed on the launch vehicle. The data package contents for each critical

component were specified in Aerospace Corporation document 1972. 7-48, "Data Package

Requirements for Martin GLV Critical Components, " (Z July 1964. ) Data packages were

maintained for a total of 178 individual critical components covering 56 types. Contents of

the data packages varied with the individual types of components, but in general consisted

of the following:

• Check sheet of package contents

• Chronological history and accrued time

• Specified data covering all tests on the component

• Specified data covering failures and corrective action.

Gemini Problem Investigation Status (GPIS) Reviews. As a part of the VAT activities, a

GPIS revlew was made under the chairmanship of the Aerospace Gemini Reliability Group.

The GPIS for each subsystem was reviewed by a special group composed of one reliability

engineer, one quality engineer, and one subsystem engineer from Martin Baltimore; one

quality engineer from Martin ETR; one reliability engineer and one subsystem engineer
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e)

from SSD; one subsystem engineer and one reliability engineer from the 6555th ATW; one

reliability engineer from Aerospace, ETR; and one subsystem engineer from Aerospace,

Los Angeles.

All GPIS's, open and closed, were presented for review by Martin Co. The status of the

open GPIS's was thoroughly reviewed and pressure brought to bear on the organization(s)

responsible for completing whatever was required to close the problem. This open status

could include an incomplete failure analysis, the need for formal documentation of a failure

analysis, a pending ECP, an interface problem, etc. The closed GPIS's were completely

evaluated to determine if the action taken was adequate to assure no recurrence of the prob-

lem; or, at most, if no action was possible that the top management of each group repre-

sented and NASA had been made aware of the risks involved. (It should be noted that a

GPIS was formally closed only when a unanimous decision was reached by the reviewing

team, with one exception - a GPIS could be closed by the unilateral action of the customer

when it was believed that the cost to correct the problem far outweighed the risk involved.

This action was taken less than ten times during the life of the program). Only when a

problem was closed by mutual consent, or in rare cases by the customer, was it officially

removed from the books.

An average of 75 GPIS's were reviewed at vehicle acceptance.

Documentation Review. Data and documentation requirements for VAT reviews were out-

lined in detail in the reference contractual documents. This material enabled VAT members

to make a thorough evalu_iul, of the vehicle in the fo!!cv.ing -_-_ajor c_tegories.

• Launch Vehicle Acceptance Certification and History

• Contractual Specifications

• Test Specifications and Procedures

• Test Data and Reports

• Quality Certification

• Trouble Reporting and Corrective Action

• Support Documentation

Physical Inspection. VAT members made a physical inspection of the total vehicle during

the acceptance period. Aided by flashlights and other inspection equipment (mirrors,

magnifying glasses, etc. ), they determined the general condition of the vehicle. Inspections

covered the following areas:

• Tanks, domes, ducts, and tubing assemblies

• Installation of components

• Integrity of electrical wire and plug installations

• Structural assemblies and verification of proper torques

• Engine installations

• Adequate clearances.

The discrepancies found were written up by Air Force Quality Control personnel, who had

the contractor accomplish correction. Over the span of the program there was an average

of 10 to 15 discrepancies per vehicle.

Time allotted to VAT for this activity averaged three hours. This, together with the fact

that certain portions of the vehicle were not accessible, limited the detail scope of the

inspection. However, inspection of those portions of the vehicle that were accessible and

viewable, represented a good baseline of the vehicle's condition for the final walkdown

inspection conducted prior to flight by members of management.

The program benefited from this exercise, in that the people performing the work and

inspections accepted the VAT inspections as a challenge. Manufacturing and Quality per-

sonnel made check sheets of earlier VAT discrepancies and ran extra inspections prior to

VAT of a new vehicle. It was apparent that the contractor personnel were taking pride in

the performance of their work, because as the program progressed it became more and

more difficult to discover discrepancies.
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In conjunction with the above inspections, onboard component audits were made and verified

against the configuration tab-run for the particular vehicle. Component part numbers and
serial numbers were taken by the VAT members and the contractor was asked to verify

these units as legal parts according to his published contracting documents. An average of
35 items was checked in this exercise. Results of this check indicated that controls and

documentation were effective since no improper components were present.

g) Resolution of Problem Area (ROPA). On finding a discrepancy or problem area in any of
_'%-vehicle acceptance acti'vqi_-es_t could not be readily resolved with their contractor
counterparts, VAT members would initiate a Resolution of Problem Area (ROPA) form.

The issuance of a ROPA was a flag to the contractor and VAT management indicating that

an item was in question. The ROPA served its purpose well and was a dynamic tool for

resolving problems affecting the acceptability of the vehicle.

The ROPA system was beneficial to the program in two ways:

It provided an orderly and documentary means of resolving a discrepancy; and
contractor personnel backed up the presentation of possibly questionable items
with additional data and documentation to substantiate their technical position

just to preclude the issuance of a ROPA.

(3) Contractor Critique and Post-VAT Activity

Recommendation for GLV acceptance rested with the VAT chairman, if the VAT recom-

mended rejection, the chairman formally advised the AFPRO and the Contractor of the reasons for

rejection and requirements for hardware replacement, further tests, and/or documentation, if

additional testing was required, a plan to correct the deficiency was proposed by the Contractor and

approved by the AFPRO and VAT Chairman after evaluation. The contractor was advised of any con-

tingency tasks (open work items) to be performed prior to shipment and formal acceptance on Form

DD 2-50 by AFPRO. These tasks, together with itemized lists of hardware and documentation to be

shipped to ETR with the vehicle, were included in the Acceptance Summary Report with Form DD Z50.

A Certificate of Completion and attached Acceptance Summary Report listed all contingency tasks (open

work items) and the recovery plan prior to the official signing of Form DD Z50, which was signed and

approved upon successful completion of packing for shipment.

d. General Electric MOD IIIG Task Team

In May 1962, a design review of the MOD IIIG transponder system revealed serious deficiencies

in the manufacture and test processes. Further reviews during the next twelve months emphasized this

point and the need for a requalification program because of the large number of significant design changes

incorporated in the two years since these units were flight qualified. As a stopgap measure, acceptance

vibration testing was raised from a level of 3-1/Z to 6-1/Zg. However, the results of 6-1/2g testing

pointed up a serious quality control problem, in that the MOD IIIG was designed for a 6g rms random

flight environment, whereas the expected Gemini environment was 1Zg rms random.

An AF/Aerospace/GE NASA Gemini Task Team was established in June 1963 to review the Gemini

MOD IIIG missileborne equipment quality and reliability, to review GE's plans and recommendations for

improvements, and to establish joint action plans for further improving quality and reliability. The task

team existed for one year and agreed upon a number of actions in the areas of management, design, manu-

facturing, quality control, and reliability.

(1) Management

To give top attention to the Gemini program, the GE Gemini program managers were realigned to

report directly to the General Manager of the Radio Guidance Operation (RGO).

II B-30



(Z) Design
Sincetheexpectedflightenvironmentwasdoublethatfor whichtheequipmenthadbeendesigned,

theGErecommendationtoincorporateisolatedbaseplatesin theunitswasaccepted.Thesuccessof
thisdesigncanbestbemeasuredbythecompletionofqualificationtesting,includingZ0grmsrandom
vibration,withoutfailure, andthesuccessoftheGLV-1flight.

(3) Manufacturing

A producibility design review was held in conjunction with Design, Reliability, and Quality Control

organizations. Specific changes were incorporated in drawings, sequence assembly instructions, and

tooling to eliminate possible shorts and to improve producibility, solderability, cleaning, and spot-potting.

(4) Quality Control

A Corrective Action and Repair (CARE) procedure was instituted to assure managerial review of

corrective action on all potted module failures on the Gemini program. In addition, the repair action

was reviewed to make sure that the problem had been eliminated.

All parts still in stock and not assembled as of the beginning of June 1963 and parts received after

that date for the Gemini program were 100 percent electrically tested. An extensive review was made of

all major procurement items and rf components to determine what environment could cause failures and

if prior testing could eliminate the problem. As a result of the review, the Gemini klystrons were tested

for temperature, the power monitors and local oscillators for vibration and temperature, and the rate

beacon rf assemblies for vibration.

(5) Reliability

Inputs to the Gemini Task Team from Reliability were derived from the results of a Qualification

and Evaluation test program on laminated (as distinct from isolated) baseplate equipment. The Phase I

changes incorporated in the Gemini units built later were a result of this program and included several

piece-part changes, new bracketry, and encapsulation to prevent wire breakage.

A "Top Ten" reliability problem was generated to highlight particular problems and assign responsi-

bility for corrective action.

(6) Conclusions

These efforts resulted in the production of 8 isolated baseplate systems (-i00 contract) with Phase I

changes incorporated; completion of qualification testing of the isolated baseplate system without failure;

and reduction of failures in acceptance vibration testing on Gemini by a factor of 7 on the last ii systems.

6. SPECIAL GEMINI PROGRAM REVIEWS

As a means of insuring hardware integrity, the management of the major organizations used

Special Gemini Program Review groups or teams. These teams would evaluate their readiness to sup-

port major tests, hardware acceptances, technical reviews, and launches. Listed by organization are

the significant review teams with brief descriptions of their activities.
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a. Aero_et General Corporation

(I) Gemini Design Review

The decision to use the Titan II engines as the propulsion system for the Gemini launch vehicle

instigated a specific requirement for an engineering technical review whereby all aspects of the design

disclosures were evaluated by engineers of Design, Development, Quality, and Reliability. This

detailed review of each critical component and assembly was made to determine the changes required

to attain the degree of confidence necessary to certify the engine as man-rated. Special design changes

were evaluated, demonstrated, and qualified for incorporation into the engine system to add to the safety

of the astronauts.

(_) Pilot Safety Team Technical Review

To ensure fabrication compliance with design and Aerojet General specifications, the Pilot

Safety Team reviewed in technical detail each engine system, serialized spare, ECP kit, and end item.

Discrepancy reports on each critical part were evaluated and the rework for correcting the deficiency

was carefully analyzed for adequate action. Components with performance data deviating from nominal

were required to have special inspections to verify the integrity of the hardware. In many instances,

components were disapproved for use on a Gemini engine if an anomaly could not be satisfactorily

explained or verified through a retest.

The engine assembly was reviewed before acceptance testing; and special handling and inspections

took place in the test area.

After engine acceptance, the Pilot Safety Team made a detailed review of all rework, inspections,

and assembly operations to insure that the engine system delivered to the Air Force was acceptable for

flight.

(3) Reliability Problem Reviews

Reliability, Quality Control, Design, and Project Engineers conducted detailed technical reviews

of each Gemini reliability problem. Failures and discrepancies that occurred on any of the Titan engines

were analyzed and evaluated as a possible Gemini reliability problem. Three specific categories were

established: (1) problems relating to test failures or having a significant impact on the engine system;

(Z) problems of a continuing nature; and (3) problems requiring extended periods to resolve. The inves-

tigation, analysis, and evaluation of the corrective action of each problem was reviewed continually

until resolved. In many instances, the corrective action involved the processing of Engineering Change

Proposals or Engineering Test Directives. This required additional technical reviews to qualify, dem-

onstrate, and validate the ECP or ETD, as applicable.

(4) Gemini Preflight Review Committee

Engineering established a flight operations function to maintain continuous monitoring of the

engines in the field to insure that any work or problems were reviewed by the cognizant design engi-

neers. One important function of Gemini flight operations was the control and management of the pre-

flight of each engine system scheduled for the launch of a Gemini vehicle. A documentary file was

established for each GLV, which encompassed the history, configuration, and actions required to attain

the status of launch readiness and certification for flight.
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The authority for insuring that each Gemini engine was acceptable for launch was vested in the

Preflight Review Committee. Its purpose was to: (i) maintain continuous monitoring of problems on

all Titan engines; (Z) take corrective action to increase pilot safety, reliability, and quality assurance;

(3) predict the probability of success if no further corrective action were possible; and (4) release the

engine propulsion system for flight. The primary responsibility for the preflight function was assigned

to the flight operations of Engineering and Reliability. All functional support managers participated

actively in decisions involving corrective action and certification. A minimum of three preflight reviews

were held for each GLV system.

(5) Launch Readiness Review

The status of each engine system scheduled for the launch of a Gemini vehicle was reviewed for

top management after the final Preflight Review Committee meeting. The technical details of all relia-

bility problems, the failure analyses of all current Titan family problems, and a history of the engine

systems were presented by Reliability and Engineering managers. Each problem area was discussed

as to cause, corrective action, and impact on the vehicle scheduled for flight. Human error problems

connected with Titan family engines were analyzed by Reliability for: the most probable success ratio,

precautions taken on the Gemini engine, verification inspections, pilot safety documentation, and for

their impact on successful flight. The history of flight anomalies was reviewed for the most probable

causes and the actions required for the vehicle scheduled for launch.

The Launch Readiness Review was concluded by the Program Manager's verbal confirmation that

the cognizant design engineering and functional managers considered the engine systems acceptable for

flight from the technical analysis.

b. Martin/Baltimore

(I) Qualification Test Task Team

A team concept was employed for the basic organization of the GL¥ qualification test program.

The team included selected specialists from engineering (test, design, and reliability), procurement,

quality, manufacturing, and planning. Engineering had the basic responsibility with over -all direction

coming from the Program Director. The task team directed the efforts of the individual subsystem

group that had the responsibility for implementing and expediting all qualification test requirements for

a group of components.

Coordination of vendor activities was the responsibility of individual team members.

Preliminary documentation, expediting, and on-the-spot approval at the vendor test site were accom-

plished, and technical assistance was provided for the setup and start of testing. The objectives were

to help the vendor perform on a technical level comparable to the Martin system, and to expedite all

aspects of the program. In all cases, quality and reliability were not to be compromised.

(2) Assets Task Team

An Assets Task Team was created after the GLV-8 flight with the responsibility for insuring that

serviceable program assets, both production and spare units, together with all required paperwork,

were available when needed to accomplish the production, testing, and launch of GLV-9 through -12.

A description of the team's members, purpose, and control is given in Section If. B. 4.
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(3) MalfunctionDispositionGroup
In theeventof anequipmentmalfunctionat theVerticalTestFacility(VTF),if thefailurewas

associatedwithairborneandAGEhardwareandits causeswerenotobvious,thetestconductorcon-
venedaMalfunctionDispositionGroup.Thisgroupdidthefollowing:

• Madeanon-the-spotinvestigationandestablishedthefailurecircumstances.
• PlannedadditionalVTFtestsnecessaryto diagnoseor isolatetheproblem.
• Decidedon disposition of the failed components.

• Assigned follow-up responsibility for failure analysis.

A similar procedure was followed at Cape Kennedy

The VTF Malfunctions Disposition Group held over 200 meetings and greatly aided in producing

a highly reliable launch vehicle.

(4) Data Analysis Team

The Data Analysis Team reviewed items to insure component and system integrity for each GLV.

Any discrepancies were resolved through review meetings attended by the design, reliability, quality,

and test personnel. The team reviewed the following:

• Data packages on the GLV critical components to confirm that the components installed on

the launch vehicle were within allowable specification limits. (The data packages contained

the acceptance data and any other significant test data associated with that component prior

to its installation in the GLV. )

• All test procedure accomplishments and the data obtained during the VTF and ETR subsystem

and system tests.

• All telemetry data obtained from the various GLV tests, including the launch countdown and

flight, and analyzed for problems that might indicate a component anomaly.

(5) Engineering Inspection Team

Prior to the Combined Systems Acceptance Test in the Vertical Test Facility, there was an

engineering inspection of each GLV participated in by a representative of each airborne system. The

inspection was intended to reveal engineering items of installation and fabrication that were marginal

or unsatisfactory, and any comments pertaining to the inspection were entered in a log book. At the

conclusion of the inspection, discussions were held with the quality representatives and the necessary

corrective action was taken.

(6) Technical Reviews

Reviews of airborne (A/B) hardware were made early in the design phases, and on a continuing

basis throughout the program. The responsibility for conducting the design reviews was assigned to

the airborne systems engineering groups and personnel from various areas of the program supported

them. The purpose of the reviews was to discuss in depth the capability of the hardware to satisfy pro-

gram requirements, to examine the design for factors of safety, fail-safe conditions, possible defi-

ciencies and modes of failure, and to evaluate design improvements. In addition and after the GLV

baseline configuration, all changes in the AGE and airborne hardware and circuits were reviewed at

the technical director level.

The frequency of, and customer participation in, design reviews are best illustrated by the follow-

ing example: The airborne circuit change (in GLV-9 and follow-on) consisting of using malfunction-

detection thrust-chamber pressure switches in lieu of thrust-chamber pressure switches for the launch
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sequence and staging functions, was reviewed by Martin on five occasions over a period of twelve

months; and with NASA, Aerospace, and Aerojet on three other occasions over a period of nine months.

Thus, eight design reviews were held in a twelve-month period from initial design to launch vehicle

test at VTF.

A total of 127 documented design reviews for all subsystems were conducted during the program.

(7) Launch Integrity Team

Three to four weeks before each launch, Martin convened a Launch Integrity Team (LIT) meeting

for the purpose of insuring launch vehicle readiness. Each subsystem of the vehicle was reviewed by

the LIT team, which was composed of top-level technical managers from the various Martin divisions

(Baltimore, Denver and Cape Kennedy). Representatives from Aerojet General, General Electric,

Burroughs, and McDonnell assisted in this review.

At the meetings, Martin design engineers and associate or subcontractor representatives were

required to make presentations on the following:

• Action items from the previous LIT review

• Changes resulting from the previous flight

• Differences from the previous flight

• History of system and test results

• Summary of problems

• System flight test objectives and associated instrumentation

• Action required before launch.

• System checkout requirements (holds and shutdowns).

The LIT meeting was not confined to hardware topics; performance and analysis areas were also

reviewed. A LIT list of items and recommendations was generated for action prior to launch. The

customer did not attend these meetings, but did receive a copy of the LIT recommendations.

(8) Launch Support Team

Several days prior to each GLV launch, a team of specialists from Martin-Baltimore went to

Cape Kennedy to assist the launch team in handling expeditiously any matters that might have had an

effect on the GLV and associated AGE integrity.

C.

(1)

General Electric

Factory CARE Board

The purpose of the CARE (Corrective Action and Repair Evaluation) Board was to establish the

procedures and controls for corrective action, repair, or scrap of defective potted assemblies. All

potted modules that failed and all failures occurring in missileborne units after assembly were pre-

sented to the CARE Board. It consisted of a unit manager from Quality Control engineering, Reliability

engineering, Design engineering, and Manufacturing engineering.

(Z) Depot CARE Board

A Corrective Action and Repair Evaluation program similar to the one at the factory was con-

ducted at the depot. The principal distinction was that in addition to factory representatives from
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Reliability and Design, this board included representatives from the Depot Repair and Maintenance

Section. Its administrator was appointed by, and reported administratively to, the manager of the

depot, while receiving technical direction in the performance of his duties from the Reliability Program

Manager.

The Depot CARE Board program was applied to all missileborne equipment and to subassembly

failures that occurred at field sites or internally at the depot.

(3) Gemini Flight Readiness Board (GFRB)

The GFRB was organized to provide the Gemini Program Manager with a recommendation on the

Go-No-Go capability of the Radio Guidance System prior to a scheduled Gemini launch.

This board was chaired by the Gemini Program Manager and composed of representatives from

Reliability, Systems and Design Engineering, Aerospace Equipment Engineering, and System Test and

Evaluation. It was responsible for the status review of missileborne, AGE, and ground equipment

assigned to support the scheduled Gemini launch, of systems functions, and of related equipment and

other functions.

(4) Missileborne Equipment Review

The Missileborne Equipment Review was an assigned activity of the Depot CARE Board. The board

evaluated the history of each piece of missileborne equipment and recommended a classification for it

(e.g., flightworthy, non-flight qualified, or recommend for ground test only (GTO)).

The goals of this activity were to review the history and status of equipment before assigning it to

a missile for launch, and to detect units with potential unresolved problems; the latter were denied

flightworthy classification until the problems were resolved. This activity provided the customer and

General Electric with high preflight confidence that the equipment would meet the objective of 100-percent

mission success.

d. Burroughs

The procedures established in the Burroughs Mercury contract for pilot safety were continued for

Gemini. A key concept contributing to the success of the program was the writing of all tests to resem-

ble the standard countdown, thus implying repeated launch rehearsal. Another important factor was the

following mandatory documentation:

• Maintenance records in which were noted the equipment identification, the specified intervals

between maintenance checks, and the dates and results of the tests.

• Failure reports containing the results of all critical component failure analyses performed in

Paoli. Failure trends or the need of mass replacement were discerned and acted upon.

Weekly failure reports were presented at the Mod III Working Group Meetings at ETC, and a

bound report was published monthly.

At the end of the Gemini Program in November 1966, Burroughs was able to report that there

had been no critical failure since Z6 October 1964.
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e. Aerospace Corporation

(1) Launch Readiness Reviews (Scrubdowns)

Prior to the launch of a GLV, the Aerospace Program Office held a review meeting with the GLV

associate contractors. Its main purpose was to ensure that each contractor and the Aerospace Corp-

oration mutually agreed on the technical status of the vehicle and the identification of existing or poten-

tial problems that required corrective action prior to launch.

The agenda for these reviews covered contractor status reports on the following items:

• Interface testing

• Testing status of system(s)

• Open documentation

• Time-sensitive and critical components

• Countdown procedures

• Open tasks remaining

• Problems and corrective actions

(Z) Technical Direction (T. D. ) Meetings

During the early phases of the program (196Z to 1964), a number of Propulsion system oriented

T.D. meetings were held with Aerospace/SSD/AGC, and M/B participating. They were not T.D. meet-

ings in the strict sense, but rather were utilized as status review and coordination sessions between the

agencies mentioned. At the beginning of the program, there were many problems that required detailed

interface coordination between engine and the vehicle manufacture. These problems could be categorized

as both hardware- and paper-type (specifications, performance, operating characteristics, etc).

By holding meetings bimonthly, it was possible to reduce the amount of time required for coordina-

tion, as the one briefing was given to all interested parties and followed by discussion and recommenda-

tions for problem resolution. These meetings also provided a convenient place for documentation and

the assignment of action items and their answers/resolutions. Further, the meetings insured that all

parties were cognizant in writing of propulsion problems, thereby reducing the possibility of any spe-

cific item "falling through the crack" and not receiving adequate review and coordination.

When problems requiring this type of coordination were reduced to a number that could be handled

on an individual basis, the meetings were discontinued.

(3) Engine Design Review

In August 1963, SSD/NASA/Aerospace, and AGC agreed that it was desirable to make a detailed

design and engineering review of the Gemini engine systems to determine their adequacy for use on a

manned program. This review was held in two phases. Phase I basically covered hardware and per-

formance, and looking for any areas/components that were weak or marginal and would require either

redesign or special testing/handling. Phase II covered specifications and procedures, including a
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review of basic engineering drawings and field procedures (ETD's) utlized for component replacement

and final checkout of launch.

The review took place at both AGC and Aerospace and continued at a substantial level of effort

through Novecnber. The review, its results, and recommendations have been documented by both

Aerospace and Aerojet. 13, 14 There were no items considered to be constraints on the launch that

were not under active evaluation; however, there were many areas determined to be weak and to require

additional evaluation and possible component redesign. A number of the items were included under the

AEIP.

With respect to specification and procedure adequacy, the design review effort revealed that AGC

did not have adequate procedures and specifications to sufficiently control manufacturing, inspection,

and testing of Gemini-class hardware. It was mutually agreed that corrective action in the documenta-

tion area be handled as a portion of the AGC Critical Parts Program. It can be concluded that both

phases of the basic design review did uncover areas of weakness that required active resolution to

assure the adequacy of the engines for manned application.

f. All Agencies

(i) Launch Vehicle Technical Reviews

Approximately three weeks before the flight of a Gemini Launch Vehicle, a presentation was given

to the NASA Gemini Program Office. It was presented by SSD/Aerospace personnel and covered perform-

ance estimates, vehicle test status, problems, and corrective actions. An update of this review meet-

ing was conducted at Cape Kennedy five to seven days prior to launch.

(Z) Design Review Board

Prior to the first manned launch utilizing a Gemini Launch Vehicle, a Design Certification Review was

conducted by a special NASA Board, chaired by the NASA Associate Administrator for Manned Space Flight.

SSD, Aerospace, NASA and contractor personnel presented details of all subsystem design, function, com-

ponent testing, and status to support the GT-3 mission.

(3) Coordination Meetings (ll A. Z)

The management and technical coordination meetings between the Air Force/Aerospace, NASA,

Martin, and the associated contractors provided a satisfactory means for each manager to keep current

with the program philosophy, objectives, goals, requirements, and problems. As such, each agency

or company was able £o associate and identify with its respective responsibilities, and to work objec-

tively and cooperatively with the others in the accomplishment of tasks.

At these meetings, the full cooperation of all concerned was evident. The GLV-Z shutdown

incident is an example of the importance of the coordination meetings. This action could not have been

accomplished in six weeks without the full cooperation and coordination of the entire team.

7. ETR SURVEILLANCE

The same methodical approach to testing, data analysis, documentation, and failure investigation

used in support of product integrity was vigorously pursued by all Eastern Test Range (ETR) Gemini

agencies. The complexities of multiple interfaces and mutliple countdowns added emphasis to the
5

extreme need for close coordination and attention to detail. The concepts of the Pilot Safety Program
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wereincludedin thenormalorganizationalstructureandgivensupportbyall agencies.A seriesof
PilotSafetyWorkingTeamswereestablished,by system,withthefundamentalpurposeofassuring
thatall aspectsofproductassuranceweremaintained(FigureII. B-8). Theseteamsreportedregu-
larly to managementgroupsandtheir inputs were integrated into the Gemini Launch Vehicle Working

Group.

The Gemini Launch Vehicle Working Group (GLVWG) was the governing body in the administration

of the program at ETR. Its executive chairman was the Chief, Gemini Launch Division, 6555th Aero-

space Test Wing. The technical chairman was the Head of Operations, Aerospace/ETRO. Other Gov-

ernment agencies in the GLVWG were NASA and the Patrick Test Site Office (Air Force Quality

Assurance). The members included technical representatives of the integrating contractor (Martin)

and all the associate contractors (Aerojet, G.E., Burroughs, and Pan American).

The GLVWG convened weekly. It issued the Launch Test Directive (LTD), which controlled and

specified the Gemini test program in Florida. In addition, the GLVWG issued the milestone schedule

and was responsible for resolving interface or coordination problems between contractors or agencies.

The GLVWG also coordinated milestone range support and maintained current information on the pro-

gress of the launch checkout, the problems during checkout, and logistics.

The GLVWG had two working groups, which reported on a weekly basis: the Facilities Working

Group (FWG) and Pilot Safety Active Review Team (ART). In major problem areas requiring action,

the FWG and ART referred matters to the GLVWG for resolution and direction.

The GLVWG also acted as the Pilot Safety Status Review Team on F-I Day. The Active Review

Team made a formal report of launch vehicle readiness on F-I Day. The Status Review Team

determined the readiness to launch and presented their recommendations and status to the Flight

Safety Review Board.

8. FLIGHT SAFETY REVIEW BOARD

The Flight Safety Review Board was a concept adopted by Air Force/Aerospace Corporation

management during the Mercury Program and carried into the Gemini Program specifically to deter-

mine flight readiness of the hardware to support a manned mission.

This board constituted the final focal point activity of the Pilot Safety Program and convened

purposely as close to launch day as practical (usually one day before). This was done so that routine

prelaunch activity, during which troubles could develop, was minimized. The board had to satisfy

itself as to the status of the launch complex AGE and airborne hardware from detailed technical brief-

ings by Aerospace Corporation and USAF 6555th Aerospace Test Wing personnel and make the ultimate

decision as to whether the USAF would commit the vehicle to launch in support of the NASA mission. These

briefings were a summary of an independent technical evaluation of the vehicle by Aerospace Corporation

and a comprehensive review of the checkout history and launch readiness status conducted by the 6555th

ATW. All participating contractors were present during this board meeting for special questioning and

final commitment for manned flight.

This discipline acted as a powerful and effective management tool in terms of motivation for all

agencies. The role of each launch team participant was significantly magnified as this final review

approached. Problems experienced between launches relating to each agency were reviewed for proper

resolution and the associated risks assessed for the final time. It would have been extremely difficult

for a problem of significance to have escaped the intensive reviews that were necessary to prepare for

this final status report.

The structure and basic scope of the Flight Safety Review Board is presented in Figure II. B-9.
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Figure II.B-8. Pilot Safety Working Teams
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FLIGHT SAFETY REVIEW BOARD

BOARD MEMBERS

• AIR FORCE/SSD COMMANDER (CHAIRMAN)

• AIR FORCE/SSD DEPUTY FOR LAUNCH VEHICLES

• AEROSPACE CORPORATION, CORPORATE OFFICE

• AIR FORCE TEST WING

• AEROSPACE CORPORATION, EASTERN TEST RANGE

• NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (OBSERVERS)

THE CULMINATION OF ALL PREVIOUS EFFORTS r r_u,v,A_"_" o, o,-,,,oeVeTCK_="le-L,,,,,,_nEEPINP-,,,,, _

EVALUATION OF SUCH THINGS AS:

• PREVIOUS TITAN FAMILY FLIGHT HISTORY (T-II, T-Ill, GEMINI)

• FABRICATION AND TEST HISTORY (FACTORY AND FIELD)

• GUIDANCE EQUATIONS AND RELATED SOFTWARE

F-1 DAY FINAL PRESENTATION FOR LAUNCH VEHICLE FROM PERFORMANCE

AND RELIABILITY STANDPOINT TO COMMIT FOR MANNED FLIGHT

• PREVIOUS PROBLEMS - CORRECTIVE ACTIONS CONSIDERED AND TAKEN

• OPEN PROBLEMS - POTENTIAL EFFECTS ON MANNED FLIGHT AND

ASSOCIATED RISKS

Figure II. B-9. Flight Safety Review
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9. FLIGHT EVALUATION

Early in the program, meetings were held among SSD, Aerospace, and Associate Contractors to

determine data requirements, schedules, and the types of reports required for flight evaluation. The

final plan is outlined in Figure If. B-10. The data received by each Associate Contractor is shown in

Figure I/. B-11.

The Martin-Marietta/Baltimore Company, Aerojet General Corporation, General Electric

Company, and Burroughs Corporation used individual comprehensive data reduction and analysis pro-

grams to provide data for subsystem analysis. These data were reviewed independently by the respec-

tive contractor systems engineer and by Aerospace, first to look for major anomalies to be presented

and discussed at the Post-flight Evaluation Meeting following each launch, and then to be extensively

presented in a final 45-day report.

The Aerospace Corporation developed its own programs parallel to those of the Contractors,

which encompassed all data and reports (Figure II.B-IZ). This permitted an individual analysis to be

made of each system and revealed any problems that may have occurred. There were three main data

programs: the telemetry data book, BEEP (Best Estimate of Engine Parameters), and PFRP (Post-

flight Reconstruction Program). The telemetry data book consisted of 250 pages in which one telemetry

function was presented per page. The presentation was in engineering units vs time with expanded time

scales at critical flight times or in problem areas. Copies of these data books were sent to NASA as an

aid to their Mission Evaluation Team. Through the BEEP flow rates, thrust, Isp, mixture ratios, etc.

were determined. This program combined telemetry and tracking data for the determination of these

parameters. The PFRP utilized the telemetry and tracking data to determine flight-control parameter

drifts. The data was then analytically evaluated by the system personnel, reviewed for major anomalies

for the Quick Look report, and then in detail for presentation in the Aerospace 60-day Post-flight report.

The Gemini Launch Vehicle Working Group, described in Section II. B-7, published its post-flight

report 15 days after launch.

Under a special provision, four M/B systems specialists were assigned to NASA/MSC as working

members of the NASA Mission Evaluation Team. These four assisted in the preparation of the NASA

Gemini Mission Reports and were assigned to MSC/Houston from launch + 5 to launch + Z0 days. Infor-

mation obtained from the Aerospace and GLVWG reports, the Aerospace Post-flight Evaluation Meeting,

and Contractor inputs was used to prepare and coordinate the GLV Section of the NASA Mission Reports.
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SECTIONII-B

DEFINITIONS

AEIP

AFBS

AFPRO

AFQA

AFQC

AGC

AGE

AMK

ART

ATW

BEEP

BOI

BSD

CARE

CCB

CSAT

DAA

DASO

DOD

ECP

ELT

ERB

ETD

ETR

FA/CA

FACI

FMT

FWG

GATV

Augmented Engine Improvement Program

Air Force Bonded Stores

Air Force Plant Representative Office

Air Force Quality Assurance

Air Force Quality Control

Aerojet General Corporation

Aerospace Ground Equipment

ALl_**tlc :_issilc Range

Active Review Team

Aerospace Test Wing

Best Estimate Engine Performance

Break of Inspection

Ballistic Systems Division

Corrective Action an¢l Repair Evaluation

Configuration Control Board

Combined Systems Acceptance Test

Discrepancy Analysis Area

Demonstration and Shakedown Operation

Department of Defense

Engineering Change Proposal

Environmental Life Testing

Engineering Review Board

Engineering Test Directive

Eastern Test Range

Failure Analysis/Corrective Action

First Article Configuration Inspection

Failure Mode Testing

Facilities Working Group

Gemini Agena Target Vehicle
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DEFINITIONS (Continued)

GCI

GE

GFRB

GLV

GLVWG

GPIS

GT

GTO

IR

LIT

LTD

LMSC

MARS

M/B

M/C

M/D

MDR

MMC

MRB

MSC

NASA

OOAN_A

PCM

PFRP

PMT

POGO

PTSO

QE

QRR

R&D

Gemini Configuration Index

General Electric

Gemini Flight Readiness Board

Gemini Launch Vehicle

Gemini Launch Vehicle Working Group

Gemini Problem Investigation Status

Gemini Titan

Ground Test Only

Inspection Report

Launch Integrity Team

Launch Test Directive

Lockheed Missiles & Space Company

Martin Automatic Reporting System

Martin Baltimore

Martin Cape

Martin Denver

Malfunction Discrepancy Reports

Martin-Marietta Gorporation

Material Review Board

Manned Spacecraft Center

National Aeronautics & Space Administration

Ogden Air Material Area

Pulse Code Modulation

Post Flight Reconstruction Program

Production Monitoring Test

Colloquialism - Defining longitudinal oscillation

Patrick Test Site Office

Quality Engineering

Quality Reliability Report

Research & Development
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DEFINITIONS (Continued)

RE

RGO

ROPA

R/QA

SSD

STL

TARS

TD

USAF

VAFB

VAT

VTF

Reliability Engineering

Radio Guidance Operation

Resolution of Problem Area

Re liability/Quality Assurance

Space Systems Division, United States Air Force

Space Technology Laboratory

Three-Axis Reference System

United States Air Force

Vandenberg Air Force Base

Vehicle Acceptance Team

Vertical Test Facility
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C. LAUNCH VEHICLE DEVELOPMENT AND CONFIGURATION

i. GENERAL

At the beginning of the Gemini program, the Titan II ballist{c missile was chosen as the launch

vehicle to be used in conjunction with the Gemini spacecraft. The decision was made at that time to

use the Titan II "as is" with only those modifications required to enable the Titan II to perform the

launch vehicle function for a manned system. The general arrangement and configuration of the Gemini

Launch Vehicle are shown in Figures II.C-i and If.C-Z. Modifications are shown in Figure H. C-3. Modi-

fications were approved only if they added to the system reliability or to pilot safety. The principal modi-

fications were:

tical

1) Addition of a Malfunction Detectiom System (MDS), designed to sense problems in any of the

vital booster systems and transmit this information to the astronauts.

Z) Addition of a propulsion system Prelaunch Malfunction Detection System (PMDS) to assure

satisfactory operation of the Stage I autogenous propellant tank pressurization system prior

to vehicle release.

3%, Addition of a redundant flight control system which could take over the functions of the pri-

mary system, should the primary system fail in flight.

4) Addition of redundancy in the electrical syste:n and sequencing functions with necessary

changes to provide power for such added launch vehicle equipment as the MDS.

5) Substitution of a radio guidance system, similar to that used on Mercury, for the inertial

guidance system used on the Titan II ICBM, to provide weight reduction and a more respon-

sive system during critical orbital injection and variable launch azimuth capability.

6) Elimination of retro-rockets and vernier rockets since their functions were not required

for the Gemini launch vehicle mission.

7) Modification of the equipment truss in the vehicle second stage to hold much of the new

flight control, MDS, and guidance equipment.

8) Addition of a new Stage H oxidizer tank forward skirt assembly to mate the launch vehicle

to the spacecraft.

9) Addition of redundancy in the hydraulic system, where required for pilot safety.

I0) Addition of equipment in the Stage I propellant feed lines to suppress the vehicle longitudinal

oscillation (POGO) during first stage flight.

11%, Replacement of the AVCO tube type range safety receivers by solid state Advance Communi-

cations, Inc. , units, to allow weight savings and incorporate airborne time delays for astro-

naut escape in the event destruct command was transmitted.

It) Substitution of a high level telemetry encoder (0 to 5 v) for the Titan II system (0 to 40 my)

to increase signal-to-noise ratio, expecially from transducers distant from the signal con-

ditioner.

13) Addition of the necessary logic and equipment to utilize the spacecraft inertial guidance sys-

tem as the launch vehicle secondary guidance source.

Section II-B of this report described the Pilot Safety Program in terms of both philosophy and prac-

implementation, pointing out that the program was comprised essentially of three primary efforts:

i)

z)

3)

From

i)

z)

Design improvements

Product integrity

Malfunction Detection and Abort capability

a very generalized standpoint, it was meant to accomplish three basic features:

Through systems trade-off studies, arrive at the best practical compromise that would

provide a vehicle with an acceptable "inherent" design reliability.

Assure that the vehicle, once designed, was manufactured and tested such that the inherent

design reliability could be realized.
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3) Recognizing that no system is ever 100% reliable, provide monitoring capability in real

time that would permit malfunctions to be recognized and subsequent actions to be taken
to I) provide additional capability for mission success or Z) provide safe pilot abort.

The thirteen items outlined above represented the initial design improvements made to the vehicle.

Other improvements were subsequently incorporated as the program progressed. These improvements

will all be discussed under their respectiv_e subsystems in the following subsections. The addition of a

slow malfunction monitoring capability and the safe-abort measures taken will also be discussed.

The Gemini Launch Vehicle was composed of the following primary subsystems:

Airframe /Str uctur e s

Engines

Vehicle Propulsion

Flight Controls

Electrical

Malfunction Detection System

Flight Termination

Instrumentation

Guidance

In addition, the GLV was supported by the following:

Ground Guidance Computer System

Guidance Equations

Each of these areas will be generally discussed in the following sections in terms of:

System Title

System Description and Design Concept

Configuration

Component History, including development, qualification testing, production history and

final system status.
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Z. A/RFRAME/STRUCTURES

a. System Description and Design Concept

The GLV structural configuration was the same as the Titan II ICBM with the exception of changes

necessary to meet the Gemini mission requirements. The basic construction was a semi-monocoque

configuration with short sections of monocoque structure in transitional areas between propellant tank

tangency and skirts.

The structure was designed to withstand ultimate load without failure at maximum anticipated

temperature. Ultimate load is defined as limit, or maximum anticipated load, times the design factor

of safety (I. 25 for all loads except relieving pressure loads where it is I. 0). In addition, the criteria

of no excessive deformations, which would restrict the launch vehicle from meetingperformance require-

ments at limit loads, existed.

The numbers below

b. Configuration

The major airframe differences between GLV and Titan II are listed below.

in paranthesis refer to locations on Figure II. C-4.

1)

C.

(1)

The initial failure was in the region of the waffle section at the skirt to tank juncture.

Forward Oxidizer Tank Skirt - The skirt was an integrally stiffened cylinder, replacing the

Titan II monocoque cone frustum, whose diameter was ! Z0 inches and whose length was ZZ. 55

inches. The spacecraft adapter was attached to the forward oxidizer skirt by twenty (Z0)

external lugs and bolts.

Z) To accommodate pre-launch firing of the spacecraft's OAMS rockets, two scuppers were

located diametrically opposed to each other. Each scupper assembly consisted of an ablative-

lined, fabricated aluminum body incorporating a flexible seal at one end and a mounting

flange at the other. The seal-equipped end (inlet) mated with the OA/VIS rocket thruster face

while the flanged (outlet) end was secured around an exhaust port in the forward skirt.

3) On GLV's -i, -Z, and -3, the forward oxidizer skirt was coated with thermal insulating

material (MMS K-438) to protect the structure from protuberance heating caused by the

external lugs at the spacecraft launch vehicle interface. Analysis of temperature measure-

ments taken on GLV-I in flight resulted in (1) a reduction in insulation to half thickness

on GLV-Z and GLV-3 and (2) elimination of the insulation entirely on GLV-4 and up. This

was due to the fact that the above measurements showed that initial thermal design calcu-

lations were excessively conservative.

4) An interface s6al was provided for the attachment of the spacecraft adapter to the booster

forward oxidizer tank skirt in order to maintain pressure in the spacecraft adapter.

5) The Stage I/ equipment trusses were redesigned to (I) accommodate the MDS, RGS and other

Gemini peculiar components and (Z) to reduce the truss weight from Titan II (70 ibs).

6) Titan II peculiar retro-rockets and vernier engines, together with the structural provisions

for these units were deleted.

7) One of the two external conduits on Stage II was deleted, since all wiring could be routed

through the remaining external conduit.

8) The bolts used in the manufacturing splice at station 923 were changed on GLV-9 from AN

bolts to high strength N/kS bolts in order to improve the tension capability of the manufac-

turing splice. By improving the tension capability of station 9Z3, breakup would have been

forced at the interstage in the event of a ride-it-out abort during Stage I flight.

Development I-listor_

Development Testing

During development testing of Titan II, a structural failure occurred between the tanks of Stage I.

This waffle

II. C-8
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section was redesigned and the structure was successfully tested to design conditions. The redesigned

waffle configuration, which was flown on all but 10 Titan II's, was used on the GLV successfullv.

(a) Static Test. The calculated loads for the Gemini Launch Vehicle were equal to or less than the

tested loads of the Titan II weapon system. Structural tests performed on the Titan lI program satisfied

the test requirements of the Gemini program for the structural elements which were identical. A com-

parison of tested and design loads is shown in Figure IT. C-5. The Gemini peculiar structure was suc-

cessfully tested for the GLV design loads, and a detailed stress analysis was conducted.

(b) Wind Induced Oscillation. A 7.5 percent scale model of the GLV, the Complete Vehicle Erector

and the umbilical towers in the pre-launch configuration was tested at NASA Langley Research Centerts

Dynamic Tunnel to obtain air vehicle and erector bending moments due to steady ground winds. The

GLV was dynamically scaled. The Complete Vehicle Erector was frequency and geometrically scaled,

while the umbilical towers were geometrically scaled only. The results of the wind tunnel testing veri-

fied the adequacy of the pre-launch design loads for the launch vehicle, In addition, the data was used

to establish wind restrictions for the Complete Vehicle Erector.

(c) Wind Tunnel Static Force and Pressure Tests. A 6.0 percent model of the complete Gemini

Vehicle was tested in the NASA Ames Research Center Unitary Facility to determine the aerodynamic

force coefficients and static pressure distribution of Mach numbers up to M=3.5. The results of these

tests were incorporated into the Gemini design loads.

(d) Buffet Load Tests. Wind tunnel tests were performed to determine the effects of fluctuating

pressures in the transonic flight regime. McDonnell Aircraft Corporation wind tunnel data defined the

magnitude of local fluctuating pressures. Additional tests were performed in the NASA Ames Research

Center Facility on a 8. 5 percent model of the spacecraft and forward portion of the launch vehicle to

determine the overall vehicle bending loads induced by transonic buffet fluctuating pressures. The

results of these tests were incorporated into the Gemini design loads.

(Z) Special Structural Analysis

(a) Interface Structural Analysis. TOR-Z69(4126-60)-Z 1, dated 19 August 1964, was a detailed redun-

dant analysis of the GLV forward skirt and aft end of spacecraft adapter. Results showed excellent cor-

relation with strain gage results from interface structural tests.

(b) Structural Response of the Gemini Launch Vehicle Forward Skirt and Spacecraft Adapter to

Fluctuating Buffet Pressures. TOR-269(41Z6-60)-3 z dated 15 August 1964. This analysis showed high

ring stresses due to buffeting pressures. Subsequent MAC analysis verified the basic contentions of

the Aerospace analysis but the final MAC strength analysis showed adequate margins of safety when the

loads were combined.

(c) A Gemini Malfunction Transients and Loads Study was conducted by Martin and Aerospace. This

study, plus additional effort, demonstrated that excessively high loads coulcl result from switchover.

This analysis formed the basis for the change in rate switch settings and fader lag times that were incor-

porated on the GLV.
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(d) GLV Detail Stress Analysis. In this effort, Martin performed a detailed stress analysis for the

entire Gemini Launch Vehicle, including a re-analysis in more detail of Titan II designed structure as

well as Gemini peculiar structure. Positive margins were shown for all structural elements as a

result of the study.

d. Production History

(I) Evaluation of Defective Conduit Welds

Prior to the flight of GLV-Z minute transverse cracks were found in the longitudinal welds by x-ray

and visual inspection on a Stage H fuel tank internal conduit detail after subassembly. Further inspection

of other parts uncovered similar defects on all other Stage II conduits in stock and some cracked welds

in Stage I conduit details.

An environmental life test program was initiated to investigate the structural adequacy of the defec-

tive welds. The test program consisted of a 450 cycle pressurization test and a 7.5 minute vibration

test at 11.5 g's rms. After completion of the test program, the specimen was cut up and microscopically

examined. These examinations, plus visual e_amination, x-ray examination, dye penetrant check and

helium vapor emission testing, showed no evidence of crack propagation. The environmental life test

program demonstrated that the conduits with these minute transverse cracks in the welds were struc-

turally adequate. Although no problems were encountered in flight, GLV-9 and subs had improved

conduits as an added factor of safety.

(2) Stage I Oxidizer Tank Contamination

To prevent the dome from reversing under pressures from Stage II Engine Start, a truss structure

was installed internal to the Stage I oxidizer tank. An inspection of this truss structure during a GLV-5

tank cleaning operation revealed burrs lodged between the bolted assemblies. It was determined that

this structure, which was installed internal to the tank, was not deburred after mating and drilling.

Analysis of the particle sizes revealed a significant out-of-specification contamination. The corrective

action decided upon was to enter the Stage I oxidizer tank of GLV-Z (at Complex 19) and perform a de-

burring and cleaning operation on each truss detail with subsequent cleaning of the complete tank.

Identical operations were performed at Martin-Baltimore on the GLV-3 tank and subsequent assembled

tanks. Furthermore, the manufacturing process plan was revised to specifically include deburring and

cleaning of each detail before assembly.

(3) Acceptance Testing

Acceptance testing was performed at the individual propellant tank level and on tank conduits and

feedlines. Acceptance tests for these structural components are described in the following paragraphs.

(a) Propellant Tanks

I) A low pressure helium vapor emission test was conducted prior to hydrostatic tests on

GLV-I through GLV-7. It was found to be unnecessary and was eliminated on GLV-8 and

sub sequent.

Z) Hydrostatic test; four cycles at maximum operating pressure and two cycles at proof (1. 1 x

Maximum operating) levels.

3) A high pressure helium vapor emission test was conducted after hydro tests GLV-4 and
GLV-5, and was replaced by a low pressure helium vapor emission test on GLV-6 and

subsequent.

II.C-12



During hydrostatic test of the initial GLV-3 Stage I fuel tank, the tank failed at 95 percent of proof

pressure. The failure analysis indicated that the start of tank burst was in an area where the skin gage

was less than 50 percent of design thickness. This thinned-out area was due to excessive hand finishing

by the vendor. Corrective action was taken to prohibit hand finishing by the vendor without Martin Com-

pany Engineering approval. Also, special tooling was developed to inspect the skin thickness of aU

Gemini fabricated tanks where standard inspection was not possible. All GLV tanks had this skin

thickness inspection.

X-rays were taken of aU welds before and after hydrostatic testing. Recycling of Steps Z and 3

were required if weld repairs were accomplished after Steps Z and 3.

(b) Conduit Assemblies

1) Five cycles of internal pressure.

Z) Helium vapor emission test.

After installation of the conduits in the fuel tanks they were subjected to the tank hydrostatic tests

and helium vapor emission tests.

_c) Feedlines

1) Hydrostatic test; five cycles at maximum operating pressure and one cycle at proof ( 1.5 x
Maximum operating) level

Z) Helium vapor emission test.

3) X-rays of all welds were taken before and after hydrostatic test.

(d) RoUout Inspection. At tank rollout, all defective welds were reviewed and a detail stress analysis

documented, when applicable. Positive margins of safety at ultimate loads had to exist for all defective

weld areas.

(e) VT]_ and ETa. The airframe activities at VTF and ETR consisted essentially of maintenance of

a +10°F inner tank dew point and external corrosion inspection. Moderate corrosion occurred on GLV-I

and GLV-Z at ETR. The corrosion was predominantly on the side of the vehicle facing north. The

weather curtains on the north side of the erector had to be left open because of umbilical lines, air con-

ditioning lines, etc. , running into these areas. This condition was corrected by modifying the curtains

such that they could be dosed and the lines fed through them.

Corrosion inspection of the vehicle during the time it was on the launch pad was conducted period-

ically.

(f) Fli__. There were no flight failures or airborne propellant leaks associated with the airframe

during the Titan H and GLV flight history. One small oxidizer leak at a spotweld on GLV-I1 was satis-

factorily repaired prior to flight.

Early in the Titan II program, it was observed that the transportation section disintegrated after

staging due to the Stage II Engine Start-up environment. Airborne cameras and added instrumentation

were installed on five vehicles to record the event. Exhaustive studies of the motion of the debris

revealed that no particles had trajectories that could impinge on Stage H, i.e. , all debris moved away

from the sustained stage. It was concluded that this occurrence did not present a problem.

On GLV- I0 and GLV- 12 a review of film coverage of the flights indicated that the Stage I oxidizer

tank was venting (i.e., N204 vapor emission). On GLV- Ig the fuel tank on Stage 1 also seemed to vent.

A thorough study was conducted by Martin and Aerospace to attempt to ascertain the cause of the

II.C-13



tank ventings. The fuel tank venting is felt to be caused by debris from the oxidizer tank; however, this

is only conjecture. The most probable causes were found to be: debris impingement from transporta-

tion section; cracking of the ablative coating on the dome and subsequent failure due to weakening of the

dome by excessive heat; and tilting of Stage I resulting in burn through of the tank side wall. It was

ascertained that regardless of the cause, this venting proved no hazard to Stage II and thus had no detri-

mental effect on either mission success or astronaut safety.

Several minor, anomalies occurred during the program such as the post SECO bursts of accel-

eration, occurrences of "green man," etc. Analysis of these anomalies was rendered almost impos-

sible by the removal of lateral accelerometers after GLV-4 and strain gages after GLV-3.

The GLV-5 Stage Ioxidizer tank, minus the aft dome, was recovered (Figures II.C-6 and II.C-7)

after the GT-5 mission. The tank was in remarkably good condition, considering the reentry environ-

ment it has been subjected to. An extensive study of the tank was conducted byMB at Air Force direction

and the results are summarized in Martin's Report LV 407 "Engineering Evaluation of GT-5 Recovered

Stage I Oxidizer Tank. ,,3
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3. ENGINES 4

Propulsion for the GLV system was provided by the Aerojet-General Corporation manufactured

YLRg7-A3-7 Stage I and YLRgl-AJ-7 Stage II engines. These engines were modified Titan II engines

which, in accordance with letter AFBSD to AGC on 3 December t964, were certified to have met quali-

fication requirements.

The basic Gemini engine system and those major features which were unique to the Gemini system

are described below, (See Figures II. C-8 and II. C-9 for reference.)

a. Stase I Engine

(i) System Description

The YLR87-AJ-7 rocket engine assembly was a storable liquid bi-propellant, turbopump fed, dry-

jacket-start engine rated for sea level operation. The engine was composed of two independently opera-

ting subassemblies which operated simultaneously, mounted on a single thrust takeout structure (frame}.

Each subassembly contained a thrust chamber assembly, turbopump assemblyp gas generator assembly,

starter cartridge, propellant plu_roh_ng _nd _lectrlcal controls harness. In addition, subassembly two

(S/A Z) provided the energy source for tank pressurization. The major components of each subassembly

were identical except for the pressurization system.

The design concept of this engine system was to achieve reliability through simplicity. This goal was

achieved by use of hypergolic storable propellants which eliminated the need for bleed down, heaters and

ignition systems. The engine required no functions during countdown beyond admission of propellant to the

engine from the tankage. Thrust level was preset by sized cavitating venturis which were located in the gas

generator propellant feed circuits. Cavitating venturis controlled flow to the gas generator which controlled

turbine power by hydraulic equilibrium, thereby eliminating all servo thrust control mechanisms.

Descriptions of the major components follow.

(a) Thrust Chamber Assembly. The thrust chamber assembly consisted of a regeneratively fuel cooled

tubular construction combustion chamber, injector, injector dome, fuel thrust chamber valve assembly,

oxidizer thrust chamber valve assembly, gimbal assembly, thrust chamber pressure switch, and oxidizer

and fuel propellant lines. The above components were packaged as an integral assembly.

The thrust chamber fuel valve consisted of a four inch gate butterfly valve with attached hydraulic

actuator. The actuator was spring loaded in the closed position. The actuator shaft was mechanically linked

to the fuel valve shaft. The fuel valve shaft in turn had a clevis for linkage to the oxidizer thrust chamber

valve.

Control of the thrust chamber fuel valve actuator was achieved by use of a direct mounted pressure

sequence valve. The pressure sequence valve (PSV) mechanically sensed fuel system supply pressure and

opened at a level which allowed fuel pressure to overcome the spring force of the thrust chamber fuel valve

actuator and open the fuel and oxidizer valve by mechanical linkage. Closure of the thrust chamber valve

was achieved by an electrical solenoid which overrode the pressure sensing _lement causing the PSV to

neutralize and admit fuel pressure to the closing side of the thrust chamber actuator to assist spring closure

of the thrust chamber valve.

(b) Gas Generator Assembly. Each gas generator system consisted of an integral gas generator chamber

and injector, fuel check valve, oxidizer check valve, gas generator feed lines, cavitating venturis and pro-

pellant strainers. The gas generators were mounted directly to the inlet of the turbine pump assembly turbine

drive manifold.

II.C-17



P;_ECEDING PAGE B_.Ar_K blOT FIIJVIED.

OXIDIZ
VALVE

TURBINE

RESERV(_
START

CARTRIDGE LUBE OIL
HEAT

EXCHANGER

LAUNCH VE}'/ICLE
INTGRFACE _-

ENGINE

GAS '
COOLER

HEAT

TURBINE
SPEED

START

XIDIZER
VALVE

THRUST
CHAMBER
PRESSURE

SWITCH

MDSTCPS

(SECONDARY)

MDSTCPS

(PRIMARY) SEQUENCING

.'!::,' SIANO.I .;..:,
• .... : :'_.. ,

., ..... .. :. '.::!.:.:::.:: ::.'

OVERBOARD DRAIN

MDSTCPS - MALFUNCTION DETECTION SYSTEM

THRUST CHAMBER PRESSURE SWITCH

OPPS - OXIDIZER PRESSURANT PRESSURE SWITCH

FPDPS - FUEL PRESSUBANT DIFFERENTIAL
PRESSURE SWITCH

LTCV - POSITION lttRUST CHAMBER VALVE
lOT - POTENTli)METER

_ ORIF'CE I _ CAVITATING VENTUR[

 RSTO,APHRAGMF,LTER

=KD,SCONNECT:I:

FUEL

FUEL PRESSURANT

OXIDIZER

OXIDIZER PRESSURANT

HOT GAS

I LUBE OIL

PRESSURE
SEQUENCING

OVERBOARDDRAIN

THRUST

CHAMBER
PRESSURE
SWITCH

MDSTCPS

(SECONDARY)

Figure H, C-8. Engine Stage I II. C-19



(c) Turbopump Assembly. The turbopump assembly consisted of a fuel pump subassembly, oxidizer

pump subassembly, two-stage turbine drive assembly and a gearbox assembly. The gearbox contained

an integral oil pump, reservoir filtration system and lube oil cooler. These components were integrated

into an assembly on the basic gearbox structure. The Gemini gearbox incorporated redesigned gears of

9310 alloy and SKF bearings exclusively.

(d) Solid Start Cartridge. The solid start cartridge was comprised of a steel combustion chamber which

housed two concentric cylinders of ammonium nitrate propellant (AMR Z506). An ignition train assembly

was mounted at the head end of the cartridge. Burning rate of the cartridge was controlled by a presized

flow control nozzle, as well as by stringent maintenance of start cartridge temperature, through the use

of cartridge thermocouples and temperature controlled air supplied to the external surfaces of the cart-

ridge. A teflon burst diaphragm over the nozzle hermetically sealed the cartridge assembly. A pyro-

technic squib was installed in the cartridge and electrically fired to initiate the ignition train.

(e) High Pressure Propellant Lines. The high pressure fuel and oxidizer lines consisted of bolt

flanges, tubing and three (3) 2-axis articulate flex joints. The flex couplings were arranged to allow

for a_cmbly tolerance_ and to allow _hrust chamber flight control flexure obviating the need of rotary

seals to achieve thrust chamber motion. All thrust chamber gimbal motion was taken between the

chamber assembly and turbopump assembly. The turbopump assemblies were stationary to the frame

and did not move during gimbal operation.

(1") Low Pressure Propellant Plumbin$. The fuel and oxidizer lines connecting the turbopump to the

tank outlets consisted of low pressure bellows assemblies, modified by POGO gear, from tank outlet to

pump inlet. The bellows assemblies were for the purpose of absorbing relative deflections and to allow

small misalignment of assemblies.

(g) Subassembl_r Two (S/A-Z) Oxidizer Pressurization Super Heater Assembly. The super heater

assembly was a cross flow tube-type heat exchanger located in the turbine exhaust in the subassembly

two turbopump. Energy in the turbine drive exhaust gases was used to vaporize and disassociate liquid

nitrogen tetroxide. The amount of pressurant gas was controlled by a cavitating venturi into the liquid

side of the circuit. Energy in the gas was controlled by a back pressure nozzle in the gaseous side of

the circuit. The oxidizer pressurant system included the associated plumbing.

(h) Subassembly Two (S/A-Z) Fuel Tank Pressurant Heat Exchanger. The gas cooler assembly con-

sisted of a bundle of U-shaped tubes enclosed in a cylindrical shell. Fuel was circulated on the interior

side of the tubes as a heat exchange medium. Hot gas passed through the external passages around the

tubing to the fuel autogenous system. The hot gas flow rate was controlled by a sonic nozzle in the

plumbing circuit.

(2) Sequence of Operation

At a minimum of 30 seconds prior to engine start, propellant valves at the tank outlets were

opened allowing propellant into the engines up to the thrust chamber valves (TCV's). The engines were

self-bleeding by gravity head.

Each Stage I subassembly start was initiated by providing a Z8-vdc signal to a redundant bridge

wire squib in the solid start cartridge initiator. The initiator fired the ignition train which started

burning of the solid propellant grain. Energy from the solid propellant caused acceleration of the

turbopump assembly. As the turbopump assembly generated fuel pressure head, the pressure sequence

If.C-21



valve shuttled at a pre-set pressure causing the thrust chamber fuel valve to be actuated open by fuel

system pressure. The oxidizer valve was opened by mechanical linkage to the thrust chamber fuel valve.

Propellant flow from the turbopump filled the volume in the thrust chamber assembly and ignition occurred

upon contact of the propellants in the combustion chamber. As a result of thrust chamber combustion

backpressure, propellant was supplied through gas generator feed lines downstream of the thrust chamber

valve initiating the regenerative (bootstrap) cycle. As a result of the initiation of bootstrapping, the

engine achieved rated thrust. Energy of the start cartridge was controlled to burn out immediately after

the start of the bootstrap operation as the engine approached steady state operation. The thrust level was

controlled by tuning presized cavitating venturis to achieve hydraulic equilibrium. No electrical power

whatever was required by the engine during steady state operation.

During these initial moments of life of the engine, two Pilot Safety systems were monitored for engine

parameters/characteristics in order to detect any abnormal operation. The first was known as the Pre-

launch Malfunction Detection System and was operative until the vehicle was airborne. The second,

known as the Malfunction Detection System, continued operation and surveillance throughout Stage I

flight (see section II. C- 1 I).

The PMDS was designed to monitor the Stage I autogenous system operation prior to release of

the launch vehicle and to furnish go/no-go signals to launch control equipment in response to the condi-

tions sensed in the fuel and oxidizer autogenous systems.

The ]VIDS was a warning system that provided a visual cue to the astronauts in the spacecraft in

the event of a launch vehicle subsystem malfunction which could possibly result in the failure of the flight

mission. The Malfunction Detection Thrust Chamber Pressure Switch (MDTCPS), a part of the MDS

package, also provided a signal to launch control equipment verifying attainment of proper thrust prior to

vehicle release, as well as serving to initiate the controlled shutdown sequence whenever a pre-determined

decay in thrust chamber pressure had occurred.

Engine shutdown was accomplished by either oxidizer exhaustion or fuel depletion. Although neither

type of shutdown caused problems on the Gemini engines, the oxidizer exhaustion was more desirable from

a hardware integrity standpoint and shall be used to further describe the shutdown sequence. As oxidizer

was depleted the MDTCPS sensed a decay in thrust chamber pressure; the switch opened, causing a 28 vdc

signal to be sent to the override solenoid of the PSV. The PSV override shuttled the PSV, causing fuel

system pressure to be vented from the opening side and applied to the closing side of the actuator. As

the thrust chamber valves closed, the propellant supply to the gas generator was terminated with a re-

sulting thrust decay of each subassembly.

(3) Major Changes

As previously noted, the GLV engine configuration (-7 model) used the basic Titan II (-5 model) as

a building block. Certain changes were made in the basic Titan II engine to adapt it to the critical uses

of the Gemini Program. The changes were prompted by the need to man-rate the Titan II, and/or by

experience gained in the early Gemini flights. Although many changes were incorporated during the

Gemini Program, certain major changes warrant sufficient attention to be singled out for special mention.

(a) StaGe I Gearbox. Failure of the idler gear which resulted in catastrophic failure of the turbopump was

encountered. A detailed account may be found in Section If. E-4; however, let it suffice to relate that
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strengthened gears were incorporated on aU Stage I gearboxes for GLV-2 through 12. A second

failure mode which required resolution prior to manned flight centered around failure of the _6 bearing.

Gemini's solution prescribed use of SKF bearings only _nd redesign of the turbine interchange

labyrinth seal

(b} Stage I Engine Frame. The Stage I Engine frame was qualified by similarity to the Titan H engine

frame. However, because of certain, though minimal, modifications the capability of the Gemini engine

frame under the conditions of firing and gimballing was verified during the Propulsion System Test

Program.

(c) Flexible Lube Oil Cooler Coolant Lines. The fuel return line {from the oil cooler} fractured

approximately 30 seconds after the start of a hot-fire test on Gemini Engine GLV-1011. The failure

was attributed to excessive loads due to vibration and assembly distortion. A change to flexible

inlet and outlet lines (for the fuel coolant) was incorporated to preclude further occurrences of this

nature.

(d) Start Cartridges. Two problems were encountered which were resolved by incorporating

non-interchangeable (between Stage i and Stage H) diaphragms and temperattt_e conditioning of the

cartridge itself. See Section If. E-4 for details.

(e) Propulsion System Test Program. 5 In Section II. E-4 the specific items under PSTP are discussed.

This program was promoted to evaluate/demonstrate the satisfactory operation of Gemini unique

components and requirements for the Stage I and Stage H propulsion systems,

(f) 0-5 Volt Instrumentation System. The Gemini Program utilized a 5 volt full scale telemetry

system, whereas Titan II had used a 40 inv. full scale telemetry system. The higher output voltages

from remote transducers on the Gemini system improved the overall signal-to-noise ratio and

reduced the complexity of the multiplex/encoder. Details will be found in the Instrumentation Section

of the report {reference If. C-8. ).

(g) TCV Stress Corrosion. Failure of a Thrust Chamber Fuel Valve body prior to liftoff on one

of the Titan H vehicles was attributed to stress corrosion. Investigation resulted in a change of heat

treat from T-6 to T-73 on Gemini.

b. Stase H Engine

{I) System Description

The Stage II Engine System was in general identical in design concept to that of the Stage I

Engine System. Figure LI. C-9 is a block diagram schematic of the Stage II engine control system

and Figure 11. C-10 is a block diagram of the fuel pressurization system. The distinguishing

features which differentiate the Stage II engine from the Stage I engine were the following:

I)

z)

3)

4)

Stage II engine components were a reduced thrust version of a Stage I subassembly.

Rated for altitude start and operation with a baffled injector.

The high expansion ratio chamber {49.2:1) was achieved by use of an ablative extension
from 13:1 to 47.2:i.

Turbine exhaust gases were ducted through a swiveled nozzle assembly to provide roll

control during Stage H powered flight.
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s)

6)

7)

8)

9)

Pressurization was required only on the fuel tank of the Stage II vehicle. Oxidizer tank

pressurization was supplied by precharge and boiloff only.

The Stage II cartridge incorporated the same design features as the Stage I except that the

propellant was a single, longer cylindrical section. It also included a conditioning system

similar to Stage I.

Stage Ilhad no thrust chamber pressure switch, TCPS.

Stage II incorporated a redundant shutdown system, the RESS, which is described later in

this report.

Stage II did not have a PMI)S system and the MDS switch monitored fuel injection pressure
(M_DFJPS) not chamber pressure as on Stage I. The MDFJPS was not a part of the shutdown

circuitry as the Stage I MDTCPS.

(g) System Operation

The Stage II engine sequence was identical to the Stage I engine subassembly. The same signal

which shut down the first stage, signaled the second stage ignition. Staging was accomplished by the

"fire-in-the-hole" concept. Stage II thrust buildup caused separation of the vehicle stages. As will be

noted further on, Gemini had a unique feature of redundant shutdown capability on the Stage II engine.

This redundant shutdown capability was achieved by firing a squib actuated valve in the gas generator

oxidizer feed circuit simultaneous with the signal to the thrust chamber valve.

(3) Major Changes

This section reports on major components or systems which were unique to the GLV Stage II

engine compared to the Titan II Stage II engine. They were also unique to GLV Stage II compared to

GLV Stage I unless otherwise noted. These systems were developed and incorporated due to Gemini

program requirements or as the result of problem solutions.

(a) Redundant Engine Shutdown System (RESS). A redundant engine shutdown capability was added

to minimize the possibility of spacecraft overspeed due to a failure of the basic Thrust Chamber

Valve/Pressure Sequence Valve. This redundant system was developed under the Augmented Engine

Improvement Program and consisted of a squib actuated valve in the oxidizer bootstrap line which was

activated by the same signal sent to the PSV. This system was incorporated on GLV-3 and subsequent

vehicles.

(b) Fuel Injection Pressure Switch. The Malfunction Detection System pressure switch initially

monitored chamber pressure as on the Stage I engine. However, the initial Titan III Stage II engine

which utilized a similar configuration switch encountered combustion instabilities on two acceptance

tests. The analysis indicated the most probable triggering mechanism was detonation in the sensing

tube, and the magnitude a function of line volume. As GLV corrective action, the MDS switch was

re-located to sense fuel injection pressure, which reduced sensing tube volume to a minimum with

only a chamber pressure transducer on the combustion chamber. This action was taken because the

standard Titan family injector (which had a higher susceptibility to instabilities) was on the first

seven GLV's. The relocation was effective on GLV-Z.

(c) GEMSIP In_ector. A dynamically stable injector was developed to increase the combustion

stability margin. The new injector, GEMSIP, was incorporated on GLV-8 and subsequent vehicles.

A comparison of the Titan II and GEMSIP baffle configuration is shown on Figure II. C-ll. The

details of the Gemini Stability Improvement Program are delineated in the final report for that
6

program.
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{d) Start Cartridge Temperature Conditioning. As previously describedj a solid start cartridge

conditioning system was also incorporated on the Stage II engine system.

(e) 0-5 Volt Instrumentation System. The 5 volt flight instrumentation system was also incorporated

on the Stage II engine system.

The same configuration ablative skirt was utilized of the GLV engine but due to longer burn dura-

tions a program was conducted to demonstrate the capability to withstand these durations. 7 To insure that

the incorporation of the GEMSIP injector was also compatible with these long durations, additional testing
8

was conducted.
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4. VEHICLE PROPULSION SYSTEM

a. System Description and Design Concept

The propulsion system of the GLV was a direct adaptation of the Titan II propulsion system.

Some deviations or additions were made to meet specific Gemini requirements. The launch vehicle

utilized the Aerojet-General YLR 87-AJ-7 liquid propellant rocket engine for Stage I and the

YLR 91-AJ-7 liquid propellant rocket engine for Stage II respectively. These engines burned storable

hypergolic propellants, nitrogen tetroxide and UD_J[H-hydrazine blend. The propulsion systems in-

cluded a propellant feed system and a tank pressurization system. The propellant feed systems for first

and second stages contained the tanks, feedlines and associated valving necessary to store propellants

in the vehicle and supply these propellants to the rocket engines. The first stage propellant system also

contained hydraulic oscillation suppression devices necessary to eliminate longitudinal oscillation

instabilities (POGO) caused by closed loop coupling between the structural resonances and the propulsion

system. The tank pressurization system was used to provide proper propellant pressure to the engines

during start and flight.

b. Component Configuration

The propellant feed systems, transferring propellants from the propellant tanks to the engine,

were designed to produce a minimum pressure loss at the design flow rates. The Stage I and Stage II

propellants were stored in ten-foot diameter aluminum tanks which also formed the primary launch

vehicle structure. Oxidizer was fed to the engine turbopump inlets by an aluminum feedline, passing

through a conduit in the fuel tank. For Stage I, the oxidizer feedline was divided in the engine compart-

ment to feed each engine subassembly. The fuel tank outlets were located immediately above the engine

pump inlets.

The propellant tanks had anti-vortex and anti-slosh baffles. In addition, the oxidizer tank out-

lets were designed to prevent loss of energy in discharging the propellant from the tanks.

Propellant prevalves were utilized in the propellant feed system in a manner similar to

T-II. The prevalves enabled holding propellants above the engine pumps and thrust chamber valves

until opening was necessary for terminal countdown 45 seconds prior to Stage I engine start for

fuel and 60 minutes prior for oxidizer to enable the charging of the POGO oxidizer standpipe. The

launch vehicle was filled and drained of propellants through manual disconnects located at the

prevalve s.

Liquid level sensors were installed in the fuel and oxidizer tanks to facilitate propellant flow

rate and outage measurement for performance calculation. The level sensors were initially redundant

to assure adequate performance data. The redundant high position sensors were removed on GLV-5

and subsequent vehicles as a weight saving item. GLV's 9, I0, II and IZ were flown without redundant

outage sensors for the same reason.

Propellant temperature probes were provided in all propellant tanks to ensure that propellant

temperature at liftoff did not exceed the allowable limit under the existing engine operational limits

and vehicle performance margins for each mission.

A propellant fill and drain system was used to transfer propellants fromthe AGE to the vehicle

tanks. The ground system included transfer pumps, and instrumentation to assure that propellants

were transferred to the vehicle at proper temperatures and in the proper quantities. A schematic of
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the propulsion feed systems is shown in Figure II.C-12 and IT.C-13. A secondary propellant condition-

ing, storage and transfer system was developed for GLV-6 and subsequent launches in an effort to

reduce vehicle recycle time in the event of a launch scrub (See Section II.C. 19, PTPS).

From the initial lock-up condition prior to launch until engine shutdown at burnout, the pressuri-

zation system was designed to provide adequate propellant tank ullage pressure to satisfy Ca) minimum

NPSH requirements for the engine driven propellant pumps and Cb) minimum launch and inflight struc-

tural requirements of the tanks. Simultaneously, the pressurization system was not supposed to

exceed pressures as defined by structural limitations.

Initial pressurization of all propellant tanks was achieved with a charge of nitrogen gas regulated

to a predetermined level. In flight, tank pressurization was provided to both fuel tanks by utilizing

cooled rocket engine turbine exhaust gases. The Stage I oxidizer tank was pressurized by vaporized

oxidizer from the engine. The Stage II oxidizer tank was pressurized in flight by the initial nitrogen

lockup pressure and supplemented by vaporization of the tanked oxidizer. Burst discs were installed

in each tank pressurization line to facilitate prelaunch checkout of the vehicle tankage and propulsion

system.

The inflight pressurization subsystem for Gemini was essentially the same as that used in Titan

II. Exceptions were as follows: Ca) The pressurant flow to the Stage I fuel tank was increased by a

change in the engine flow control orifice size. Cb) Stage I oxidizer pressurant flow rate was increased

through an orifice change and the tank "lockup" pressure was increased.

A revised tank pressure control system known as the tank pressure topping system was designed

for the GLV. This system incorporated a pressure supply and vent line which was in parallel with the

main pressure supply line available to each tank. When the main lines were disconnected, pressure

control was retained through the smaller pressure topping lines which remained connected until liftoff.

Lanyard operated pull away couplings were used to separate the GLV from the AGE and effect a seal at

the vehicle skin line. An airborne, solenoid-operated, normally open valve was located upstream of

the disconnect coupling on the GLV. This valve provided seal redundancy in flight and a method for

leak testing during the prelaunch countdown. The tank topping system is shown in Figure If. C- 14.

One of the big differences between Titan II and the GLV in the propulsion system was the use of

suppression devices to control the longitudinal oscillation that occurs during first stage flight. The

POGO suppression devices Cdiscussed further in the next section) consisted of tuned resonators inserted

into the engine feed lines just upstream of the first stage pumps. These devices were tuned to pro-

vide attenuation of pressure oscillations in the frequency band of the structural first longitudinal mode.

In the oxidizer lines the resonator was a standpipe, while in the fuel lines a tuned mechanical accumu-

lator was used. CFigure II.C-15)

The oxidizer standpipe worked onthe principle of using an entrapped gas bubble to provide a

soft spring for the oxidizer mass in the standpipe to act upon. The energy due to pressure oscillations

could be transferred to this spring mass system at the desired frequency by proper choice of the

volume of the entrapped gas bubble. The fuel surge chamber or accumulator used a helical spring and

piston to perform the same job. The spring together with the piston and fuel mass in the accumulator

acted to provide the desired resonance.
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c. Component History

(I) Development History

The Gemini development of the propulsion system was conducted in the Propulsion System Test

Program (PSTP) at Aerojet-General, Sacramentro, Z8 January 1963 to 2 March 1964. The purpose

of the test program was to check and verify the operation of that portion of the Titan K/Gemini propul-

sion system peculiar to the GLV.

The PSTP results demonstrated the ability of the Gemini propulsion system to meet its design

requirements. Tests were run to determine whether reduced fuel and oxidizer tank ullage volumes

had adverse effects on engine starting characteristics. Results demonstrated that reduced ullages

did not cause violation of engine net positive suction head requirements. Validity of the analytical

technique to predict pressurization system performance was also satisfactorily demonstrated. The

effects and calibration of engine performance with cold propellants were also demonstrated in these

tests.

Because of the performance requirements imposed on the launch vehicle, level sensor perform-

ance and reiiabili£y b_caL-_e significant factors. The flight test failures on Titan II _nd the problems

encountered in attempting to qualify the sensors resulted in a decision to change from the Titan II

level sensor to a Bendix unit for Gemini.

"Piggy Back Testing" was used to fly GLV hardware on Titan II R&D vehicles. Nineteen Bendix

level sensors were flown on Titan II flights N3A and N33. Flight uncovering times were compared with

readings from the Titan II level sensors in equivalent tank locations. The agreement between all pairs

of sensors was within tolerance. On these flights the first indications of fuel sensor uncovery and

subsequent recovery were noticed. This condition was verified on GT-1, and subsequent corrective

action shielded the fuel sensors from pressurization gas condensation.

Development history problem areas were primarily concerned with the propellant shutoff valves

(prevalves), POGO hardware and modified tank pressurization hose assemblies.

Titan II experienced prevalve opening problems which prompted changes in the prevalves used

for the GLV. The valve shear disc (hermetic seal) was eliminated, the butterfly release pin was

shortened and modified to remove the ramp opening action and the release pin material changed.

The valve butterfly seal material was changed to make it compatible with GLV storage requirements.

Titan II also experienced several prevalve position indicator switch failures. However, studies

showed the GLV switch to be more reliable than the Titan II switch due to different installation and

checkout techniques.

Several Titan II configuration flex hoses were modified for GLV for use in the tank pressuriza-

tion system. During evaluation testing of these hoses, cracks were found in the weld between the vent

line boss and the hose. Gussets were added between the boss and the line to strengthen the weld area.

The first Titan II flights showed a very high "g" level of oscillation in the first longitudinal mode

in the time period preceding booster engine cutoff. The "g" levels were too high for the equipment

aboard the Titan I/, much less a pilot. Titan II pursued the problem and found that an adequate reduc-

tion in level for a weapon system could be achieved by simply increasing fuel tank flight pressures.

The reduced levels of oscillation resulting from this change were not, however, compatible with a

manned requirement. A special program was established to evolve a fix that would reduce the levels

to the i .25 g requirement for a manned vehicle. The proposed fixes of detuning the feed system, the
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standpipe and fuel accumulator, plus providing an attenuation of pressure oscillation frequencies in

the structural band, were tested and demonstrated successfully in three Titan H flights, N-Z5, N-Z9

and N-31. These flights verified the major portion of the initial Gemini redesign of the Titan 1I

experimental hardware. The N-31 flight (flown with reduced fuel tank pressure) also verified that

the hardware was effective at a reduced fuel tank pressure level, which was shown to be a strong

parameter in controlling the levels of oscillation without the fixes.

Considerable effort was directed toward the development of a remote charging system (AGE)

which was used to tune the launch vehicle oxidizer standpipes_ The system was developed to provide

greater flexibility in mission planning. The original manual charging technique involved opening

prevalves and dropping propellant relatively early in the countdown thus exposing the engine to oxidizer.

This exposure necessitated a greater recycle time in the event of a launch scrub after prevalve open-

ing. The concept of the remote charging system provided increased safety in the charging operation

and greater flexibility when the charging operation was performed because it was controlled from

the blockhouse. It was proven through development test and subsequent flight test experience that

the remote charge system provided a more consistent charge than the manual system.

d. Qualification History

Components in the GLV which were like Titan items were qualified by similarity to their respec-

tive Titan II counterpart. Qualification problem areas existed with the POGO fuel accumulator posi-

tion potentiometer, the tank topping system vent disconnect, the tank topping system solenoid valve,

POGO airborne ball valve (shutoff valve) and the propellant tank level sensor.

The basic POGO hardware, oxidizer standpipe and fuel accumulator, were qualified by success-

ful flight test on Titan II flights N-Z5, Z9 and 31. During component vibration testing of the POGO

fuel accumulator rotary potentiometer, the potentiometer mounting screws loosened and the negator

spring which connects the potentiometer to the accumulator piston slipped off the rim of its potentiome-

ter attach wheel. Gorrective action was taken to strengthen the potentiometer mounting provisions

and these failure modes were eliminated. The potentiometer failed the propellant compatibility test

due to penetration of oxidizer through the front bearing of the pot. Corrective action consisted of

installing an O-ring seal external to the bearing area.

Problems were encountered with the remote operated airborne ball valve in that the ball rotated

to a slightly open position under vibration environment. The problem was solved by incorporating a

spring detent mechanism to positively lock the ball in the fully closed position.

Excessive connecting load problems were encountered with the tank topping system disconnect

during qualification temperature testing. Corrective action included additional lubrication and tighten-

ing of valve and seal cleaning requirements. Sand and dust tests resulted in entry of contamination

into the disconnect valve. Corrective action added seals to the open areas.

The tank topping system solenoid valve failed to pass qualification vibration tests by exhibiting

sporadic leakage. Corrective action consisted of changing the valve design from a normally closed

to a normally open valve.

The Bendix level sensors were subjected to a complete qualification test program. No signifi-

cant problems were encountered with the component during this program.
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e. Production History

The production history of the GLV propulsion system documents problem areas in the following

components: POGO fuel accumulator position potentiometer, pressurization system pressure trans-

ducer ' pressurization system pressure switch, the fill and drain disconnect, prevalves, the liquid

level sensors, andtank topping system disconnects. Many of these problems were instrumentation

type and thus did not affect the man- rating of the vehicle propulsion system.

(I) Fuel Accumulator

During development, the POGO fuel accumulator rotary potentiometer experienced problems

with broken lead wires. Heavier gage wire and better support was provided for these lead wires and

the lead wire connection to the potentiometer internal wiring was relocated inside the potentiometer

housing. Improvements were made in the accumulator piston seal and in a bushing material to sub-

stantially reduce the friction involved in piston cycling. The piston shaft was hardcoated to prevent

wear on the shaft from generating particles within the accumulator. During the flight of GT-Z, a

loss of potentiometer output was in evidence after approximately 90 seconds of flight. The problem

yeas found to be ca19sed hy the recirculation temperature environment. A protective shield was pro-

vided around the potentiometer and the end of the fuel accumulator. The shield reduced the tempera-

ture environment at the potentiometer to acceptable levels and also improved the dynamic operation

of the accumulator piston.

(Z) Tank Pressure Transducer

Installation problems were discovered with the tank pressurization system pressure transducer

on early launch vehicles. Damage resulted to the transducer due to improper torquing of the unit.

Corrective action consisted of adding notes to installation drawings and procedures to flag the proper

wrench flats for torquing the transducer.

(3) Tank Pressure Switches

The pressurization system pressure switches exhibited drift following exposure to propellants

and long storage. The problem was observed beginning with GLV-5. Corrective action consisted of

removing the switches from the launch vehicle subsequent to subsystems test at ETR to verify proper

operation. All old switches in the field were checked for proper calibration and operating switch

points.

(4) Fill and Drain Disconnect

The propellant fill and drain disconnect experienced many early production problems such as

poppet leakage and connecting thread galling. These problems did not present a flight problem, but

could have resulted in countdown delays. Corrective action included thread lubricant changes, thread

plating process changes, polarizing ring material change, thread protector modifications, improved

contamination control, and poppet design changes. Late in the program, allowable vapor leakage

rates were established at levels which could be sealed by installation of the disconnect cap thus allevi-

ating the persistent problem of small vapor leaks past the poppets.

(5) Prevalves

Prevalve butterfly seal leakage was reported on GLV-1 and Z tanking tests. These leaks were

found to be minor and caused by permeation of vapors through the seal upon initial loading. Inoperable
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(dummy) prevalves were installed on GLV-3 and subsequent vehicles for tanking tests. Late in the

program several flight prevalves failed their gas leak checks after installation in the launch vehicle.

These problems were due to deformed butterfly seals and no corrective action was taken because a

sufficient number of acceptable prevalves remained to complete the program.

Many flight prevalves were found to have beer, delivered in 1965 to ETR with contamination evi-

dent in the valve after unpacking. As a result improved packaging and unpacking procedures were

instituted for both the vendor and ETR personnel to eliminate the possibility of introducing contamina-

tion in these operations and all suspect valves were returned to the vendor for recleaning.

During flight preparations at ETR for GLV's 1 t and 1 Z, problems with the "dummy" prevalves

(used for shipment) were encountered. The problem was brought to light by the discovery of aluminum

chips in the turbopump feed lines. Handling and installation procedures were improved for

the dummy prevalves.

(6) Level Sensors

At various times in the program, the level sensors experienced electrical and mechanical

problems due to defective solder connections, defective resistors, plating imperfections andpin

corrosion. The problem areas were of a quality nature and appropriate measures were taken to

tighten the vendor's quality controland to improve test procedures. Connector pins were gold plated.

The GLV-I flight exhibited fuel level sensor recover and uncover characteristics similar to the level

sensors installed on Titan II piggy back flights. Shields were added to the fuel sensors on GLV-2 and

the problem was eliminated with the exception of the one sensor at the Stage II fuel tank high level

position. This location continued to show recover characteristics on severalflights, however, ade-

quate performance data was continuously obtained. The engine shutdown capability by means of level

sensors was eliminated and the sansors were used only as instrumentation on all flights.

The presence of minute cracks was discovered in the ceramic which bonded an optical prism to

the sensor housing. Because of the possiblity that the ceramic would fail and pieces be a11owed to

enter the propellant, a teflon retainer was designed to retain anyloose particles of bond material.

There was no loss of structural integrity as a result of the cracks.

(7) Pressurization System Disconnect

Problems were encountered during GT-4 and GT-I0 launches with pressurization system dis-

connect separation. The GT-4 anomaly resulted in the disconnect halves being ripped apart while

the GT-I0 anomaly resulted in tearing the pressurization line loose from the umbilical tower and a11

parts flying with the vehicle. The disconnect lanyards were broken in both cases and both anomalies

resulted in slight vehicle rolldisturbances. The first occurrence was thought to have been caused by

a jammed ground-half disconnect collar and corrective action resulted in removing the dust cap and

other interfering cables that could cause jamming from the unit, prior to launch. The latter anomaly

was considered to have been a lanyard rigging problem and this condition was remedied by improved

rigging and handling procedures.

(8) Oxidizer Standpipe Charging System

During GT-5 flight, longitudinal oscillations (POGO) in excess of the 0. Z5 g zero to peak allow-

able occurred late in Stage I flight. The spectral analysis of oxidizer suction and standpipe pressure

fluctuations revealed that the standpipes were charged approximately 10 percent at vehicle liftoff. The

observed flight disturbances correlated with analytical stability analysis for a vehicle without
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standpipes,whichshowsthatPOGOeffectsofthecharacterof anunmodifiedvehicleoccurs,butwith
reducedseverity. Studiesandtestsindicatedthelackof capacityofthemanualchargingtool,which
wasusedto chargetheGT-5standpipes.Themanualtool,whichwasusedasabackupto theremote
chargingsystem,wasredesignedtoprovidemorethansufficientchargingcapacity.Operationalpro-
ceduresfor boththemanualandremotechargingunitswererevisedto assureadequatechargingtime
andregulatedpressureunderanyoperatingcondition.Subsequentvehiclestandpipeswerecharged
withtheremoteunitwithnoindicationofproblem.
f. Conclusions

Most problems concerned with the vehicle propulsion system were in the nature of handling,

quality, and reliability. There was a significant downward trend in number of problems as the pro-

gram progressed. GLV flight test results indicated satisfactory hardware operation with measured

performance being very close to predicted.
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5. HYDRAULIC SYSTEM

a. System Description and Design Concept

The launch vehicle Stage I engine had two thrust chambers, each chamber being gimballed

through two degrees of freedom. Both chambers could be moved simultaneously for control. Thrust

chamber motion was controlledbyelectrohydraulic servo-actuators responding to electrical commands

from the flight control system. Each thrust chamber was controlled by two actuators, one in the

pitch plane and one in the yaw plane. Figure II. C- 16 illustrates a schematic of the Stage I hydraulic

system which consisted of two independent power subsystems designated "primary" and "secondary. "

The four first stage control actuators were constructed as independent tandem cylinder units with a

primary servo-actuator section and a secondary servo-actuator section. Independent primary and

secondary power systems supplied fluid to their respective servo-actuator sections. The independent,

redundant first stage hydraulic systems were designed specifically for the Gemini Launch Vehicle.

The launch vehicle Stage II rocket engine had a single thrust chamber, gimballed to provide con-

trol in the pitch and yaw planes. Roll control was provided by an auxiliary nozzle which utilized the

hot turbine exhaust gases. This nozzle was placed off-center in relation to the vehicle center line and

was swiveled about an axis perpendicular to the vehicle center line. As on Stage I, thrust chamber

and roll nozzle motion were produced by electro-hydraulic servo-actuators controlled by signals from

the flight control system. Figure II. C- 17 shows a schematic of the Stage II hydraulic system.

b. Component Configuration

(1) Stage I System Components

The airborne power sources for the primary and secondary hydraulic subsystems were provided

by two identical pressure-compensated, variable volume pumps which maintained a supply pressure of

3050 psi. The pumps were driven from accessory drive pads on the Aerojet engine. The primary

pump was driven by subassembly two, the secondary by subassembly one. The output of each pump

was supplemented by a piston-type gas accumulator to permit servo-actuator response to transient

demands which exceeded the pump outlet flow capacity. The reservoir which supplied the system

utilized "bootstrapping" for pressurization. Pump discharge pressure was applied to a small piston

which was mechanically connected to the reservoir piston, and thus pressurized the pump supply.

As indicated on the schematic (Figure II. C- 16), the reservoir and accumulator of each subsystem

was combined into a single package along with instrumentation necessary for subsystem checkout and

performance evaluation. The pumps and accumulator were procured to Gemini drawings with tighter

contamination requirements than Titan H.

The hydraulic ground service disconnect on each subsystem was designed as a dual unit incorpo-

rating both pressure and return disconnects in a coaxial arrangement. This feature positively pre-

vented application of ground hydraulic power through the pressure line unless the return line was also

connected. The disconnects were the same as T-H, but procured to Gemini drawings and standards.

The primary and secondary subsystems were designed to be completely serviced, tested, and

sealed in operational readiness early in the countdown preceding engine start. To enable pre-launch

flight control and hydraulic system tests, an electric motor-pump was provided with a selector valve

for operating either the primary or secondary system. Both the pump and selector valve were opera-

ted from the AGE. In addition to its use for ground checkout, the motor-pump was used to pressurize
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the primary hydraulic subsystem during the engine start sequence, providing stabilization and control

of the engine thrust chambers. The system selector valve was unique for Gemini.

Each of the primary and secondary sections of the Gemini-designed tandem servo-actuator were

complete integral electro-hydraulic servo systems whose position output was proportional to their

respective electrical inputs from the flight control system. Only one of the redundant subsystems

on Stage I was used to control the engine thrust chambers at any given time. Each actuator contained

a two-position transfer or "switch-over" valve located between the servo-valves and their respective

cylinders, which selected the mode of operation. The switchover valve permitted free flow across the

piston of one system and allowed the servo-valve to control the other. The switchover valve was spring-

loaded toward the secondary position; however, the primary pressure was used to override the spring to

maintain the valve in the primary position prior to engine ignition. With loss of primary system

pressure or a signal from the MDS, the valve switched over, putting the secondary system in control.

A pressure switch sensed the switchover and sent a signal back to the MDS indicating the switchover

and ensuring the switchover of the rest of the actuators to the secondary system. To ensure that a

valve o_ _,_,,_a-1.... _ .......1_4g_1 failure subsequent_ to switchover would not result in an actuator switching

back to the primary system, the pressure in the secondary system was used to lock the valve in the

secondary position. The primary servo-actuator section also contained a snubbing and cylinder

pressure-limiting device to absorb end-of-stroke dynamic forces and to relieve the actuator of exces-

sive externally applied loads. Flow limiters were used to limit maximum actuator rate of travel in

both primary and secondary portions for vehicle flight control stability and load control.

(Z} Stage H Components

The Stage II system was similar in design and operation to the primary or secondary system,

but was not redundant. The Stage II hardware was identical, except for the use of 15 micron actuator

assembly filters, to that used on Titan H, but procured under Gemini drawings with some upgraded

quality control requirements.

Table II. C- 1 lists the GLV hydraulic system components and their similarity to Titan II hardware.

c. Component History

(1) Development History

(a) ASFTS Testing. The redundant system concept was verifiedinthe Airborne Systems Functional

Test Stand (ASFTS). Further discussion of ASFTS appears in the next section and under Section II. C- 16.

All the systems components and interconnecting plumbing were installed as they would be in the vehicle

with the exception of the engine driven pumps which were mounted on Varidrives. Frequency response,

switchover performance, thermal rise rates, pressure response, the flight controls and MDS inter-

faces and other pertinent factors were evaluated on the hydraulic system. The ASFTS was also useful

in developing proper servicing techniques and solving test equipment and procedural problems.

The tandem actuator was installed on the Gemini test engines at Aerojet during the final series

of Stage I development tests. Only the actuators were installed with the hydraulic supply system

simulated by test stand equipment. The purpose of the testing on the engine was to gain experience

under realistic vibration conditions, to demonstrate the switchover capability under firing loads and

to verify the adequacy of the force limiters at engine start. No problems were experienced with the

actuators during the engine runs. The actuators showed similar behavior to the T-II actuators during

engine start and performed their switchover function properly.
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One of the facets explored during development of the Gemini hydraulic system was the control

of built-in contamination in component parts. Contamination requirements were more stringent than

for Titan H or general system requirements. In the vendor's facilities, special procedures and tooling

were instituted to achieve these requirements. The achievement of cleanliness within the system gave

a large improvement in its reliability.

Only two components in the GLV hydraulic system were developed exclusively for the Gemini

program. These were the Stage I tandem actuator and Stage I test-selector valve. The development

history of "like Titan II" hardware showed no problem areas of special concern to the GLV. Tighter

Gemini cleaning procedures were instituted on all Titan II qualified components.

The system test-selector valve was designed and manufactured without engineering evaluation

testing. The qualification testing, which was designed to include evaluation tests, produced no major

failure modes or performance discrepancies.

Several tandem actuator failure modes were demonstrated during component development. The

actuator assembly force limiters exhibited oscillation and subsequent structural failure. The force

limiter was redesigned from a spring-loaded ball valve to a sliding sleeve poppet design. The second-

ary system pressure switch showed premature life failures due to bellows failures. Subsequent

changes were made to reduce pressure surges to the bellows and obtain a better bellows material.

Changes were made in the actuator piston velocity requirements which resulted in modifications in the

flow limiters. The actuator initially exhibited poor dynamic characteristics in the form of excessive

phase lag. The gain of the second stage valve was increased by softening the spool centering springs,

and this corrected the dynamic characteristics. The position switch used for ground checkout of the

flight control system exhibited premature wearout. This was caused by self-generated contaminant

in the switch case. Corrective action consisted of installing Pyrex beads in the air gaps between active

and inactive switch elements and revisions in the acceptance test methods.

(Z) Qualification History

Qualification tests were performed on the GLV tandem actuators and test-selector valve. The

"like Titan 11" components were qualified by similarity to the Titan H hardware.

The test selector valve had a modification made in the gasket material during qualification testing,

but experienced no design failure.

During qualification tests, the tandem actuator experienced a major problem. The actuator for-

ward body cracked a£ its mounting flange where it mates with the main actuator assembly housing. The

forward body flange was strengthened and the seal between the forward body and the actuator assembly

housing was modified to eliminate this problem. The life tests were successfully completed. The actu-

ator position switch experienced vibration failures which were corrected by strengthening the switch

radius guide-way. Final testing of the modified position switch was successfully completed during

the fourth trial of the qualification test program. The final force limiter configuration was qualified

during trial Ill of the program. This configuration contained a teflon "O" ring cap onthe"O" ring,

separating cylinder pressure from return pressure and inserting a damping orifice to eliminate the

oscillation problem. Non-linearities in the flow limiter were experienced with the actuator under

loaded conditions. Small bleed holes were added in the valve to modify regulation characteristics

and thus improve the linearity.
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An impulse load test was added to the tandem actuator qualification test program subsequent

to the actuator problem associated with the GT-Z launch attempt. Test criteria were set up using

Titan II engine start transient loads. The modified actuator successfully completed the impulse tests

and was flown successfully on GLV-Z, and subsequent GLV flights.

(3) Production History

Production problems were encountered on the tandem actuator, sustainer and roll actuators,

reservoir-accumulator, Stage I engine driven pump, the electric motor-pump, the disconnect and

system test selector valve.

(a) Stage I Tandem Actuators. The initial launch attempt of GLV-Z resulted in a tandem actuator

failure. The primary servo-valve body separated from the actuator housing when the servo mounting

lug fractured during the engine start-up. The GLV-Z launch attempt actuator failure was simulated

in the laboratory using an impulse shock test rig. Data was obtained on the resulting behavior of com-

ponents and on the internally generated pressures with impact loads. A thorough investigation of T-If

and GLV flight data revealed that the actuator loads seen during these engine starts were greater than

those measured in static firings at Aerojet early in the T-I/ program. This new data was used to es-

tablish design requirements. Analysis of all facts revealed some marginal design conditions, and with

the predicted loads from flight data, confirmed that such a failure could be experienced, particularly

in the case where the valve body material was marginal, as was the case in the GT-Z launch attempt.

Modifications were made in the servo-actuator design to strengthen the servo valve body and mounting

lugs, and to reduce resulting internal pressure loading on the valve. The results, as verified by com-

parative tests on the impulse shock machine, showed the modified GLV actuator to be more compliant

(able to absorb more energy) than either the Titan II or the original GLV tandem actuator.

Tandem actuator quality problems such as lead wire breakage, switch noise, and transducer drift

were corrected by improved inspection and process control procedures at the vendor.

Minor actuator overshoot-oscillation problems were experienced on GLV-Z. This problem was

found to be caused by an overcharged torque motor which created valve overshoot-oscillation response

characteristics to step input signals. The problem was corrected by improvements in the valve setup

procedures at the vendor. Actuators in the field were subjected to special step input response tests

after installation in a launch vehicle while new actuators were given similar tests during their accept-

ance testing.

Tandem actuator position transducer failures prior to GT-3 launch and during the GT -6A launch,

and discrepancies in transducer outputs during GT-I I flight resldted in electronic component changes

and special component checks to assure flightworthy hardware. GLV-6 and subsequent vehicles

incorporated higher reliability transistors in the position transducer and all electronic pieceparts in

the unit were subjected to more stringent acceptance tests. Component checks designed to show trans-

ducer degradation in the field were incorporated.

(b) Stage II Sustainer and Roll Actuator. Minor quality problems such as bvoken lead wires and

damaged seals existed with the Stage II actuators. These problems were corrected by improved

handling and inspection procedures at the vendor.

(c) Reservoir - Accumulator. Rigid acceptance tests were introduced for acceptance of accumulator-

reservoir "O" ring seals. Tests were designed to eliminate seals with internal voids which tended to

allow permeation of N Z from the accumulator into the hydraulic fluid in the reservoir.
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Excessive contamination was found to exist in the accumulator =reservoir fluid chambers prior

to the launch of GLV-5. This condition was found during a failure analysis which was attempting to iso-

late the source of fluid in the gas chamber of the accumulator. The fluid was found to be residual hy-

draulic fluid which was used to proof test the accumulator chamber during acceptance test. Concerning

the contamination, it was discovered that the vendor was not adhering to acceptance test requirements

in the method used to check the cleanliness of the unit. The vendorfs facilities were not designed to

provide a high enough fluid flow to flush the accumulator-reservoir chambers free of contaminants.

All units in the field in addition to new components were cycled through the Martin-Baltimore laboratory

for recleaning to GLV requirements.

During GLV-7 checkout at ETR, a reservoir was overpressurized causing the endcaps to separate

from the main body of the reservoir-accumulator. The overpressurization was caused by two violations

of procedural steps in bringing up pressure in the Stage I hydraulic system. Further clarification of

procedural steps and cautioning of personnel to closely follow established procedures was undertaken

in an effort to reduce human errors of this type.

(d) Engine =Driven P-_-np. The engine-driven p.mp compensators on Stage I were changed from a

"short-differential" to a "standard-differential" compensator to eliminate the excessive secondary

pressure overshoot experienced on GT-1 at engine start. The standard-differential compensator was

also incorporated to eliminate the long period of pressure oscillations subsequent to engine start in

both the primary and secondary systems.

GT-Z flight data indicated an abnormal primary pressure dip at engine start. This pressure

level approached that required to cause switch-over from the primary to secondary system. When it

occurred, the pressure rise characteristic was as expected for a normal pump. Subsequent perform-

ance in the flight was satisfactory. The cause of the anomaly appeared to be a momentary pump corn-

pensator hangup in the no-flow position. It was felt that the compensator hangup was caused either by

burrs, shaft distortion, contamination or a phenomenon termed hydraulic lock. All engine driven pumps

were completely disassembled at the manufacturerts plant, were subsequently cleaned with particular

attention to the elimination of any contamination and were then carefully reassembled. All pumps for

GLV-3 and up were installed after the major portion of the vehicle checkout had been completed. De-

layed pump installation allowed a minimum exposure to test conditions and to possible contamination

buildup. A gauss meter check was devised to record compensator stem motion per a given pressure

drop. This check was conducted after pump installation and during launch vehicle countdown to assure

that the compensator was free to move. No subsequent problems were encountered with the pump

compensator,

On later launch vehicles many pumps showed evidence of intergranular corrosion on compensator

caps and pump bodies. All suspect units were cycled through the vendor for replacement of affected

parts.

(e} Disconnect. The disconnect housing weldment fabrication techniques were improved early in the

program to eliminate cracking in the welds which was discovered on early launch vehicles. Disconnect

mating surface scoring was eliminated by improved component inspection, through the vehicle testing

sequence, and the relocation of the AGE fluid filter away from the disconnect end of the ground servicing

hose.
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(f} Electric Motor-Pump. A cracking problem in the motor case of the electric motor-pump was

discovered on Titan II operational vehicles. The problem occurred due to tolerance buildup causing

an excessive press fit between the motor housing and internal parts. Component tolerances were re-

vised to eliminate the problem and new pumps purchased. Since the pump was not operated during

flight, minute cracks were allowed in nonload bearing areas of the pump case for existing units in the

field.

A check valve was installed in the Stage I pump discharge line for GLV-6 and subsequent vehicles

to reduce the pump case pressure trapped in the motor-pump circuit after operation in parallel with a

second pressure source, either ground power or engine driven pump. The trapped pressure in the com-

mon lines resulted in high pump case pressures which distorted seals and made external leakage paths.

This source of leakage problems was discovered as a result of a failure analysis investigating the

cause of hydraulic fluid seepage at the motor-pump interface. The condition had been observed on

pumps installed on GLV's 5, 6, and 7 thus initiating the detailed investigation.

(g) System Test Selector Valve. The system test selector valve showed a tendency to hangup in the

secondary position during switchback from secondary to primary systems during pre-countdown testing

for GT-8, 9, and I0.

Failure analysis indicated the possibility of misalignment of the stacked elements in the selector

valve pilot valve assembly. It was felt that the misalignment allowed cocking of the pilot valve solenoid

creating high friction forces during solenoid operation. To correct the situation shims were added be-

hind the forward valve seat to eliminate adverse tolerance conditions. This modification was made for

GLV -9.

In an effort to further understand the selector valve problem, tests were run in the Martin-

Baltimore ASFTS area to look at valve internal pressure conditions during operation. It was found that

the driving pressure fell off rapidly with valve operation due to a drop in the electric motor-pump dis-

charge pressure. The drop in pressure was caused by a pump starvation condition due to return flow

path restrictions in the selector valve. As corrective action, the main valve spool return land was cut

down to open up the return flow path to the pump. The change was incorporated for GLV's i0, II, and IZ.

d. Conclusions

Problem trends showed a slight negative slope throughout the program with early design problems

being replaced later in the program with quality and reliability problems. The ASFTS test program,

qualification test program, T-II flight test program and Gemini flight test program demonstrated the

high performance level and the basic reliability of the hydraulic system.
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6. FLIGHT CONTROL SYSTEM (Primary and Secondary)

a. System Description and Desisn Concept

The flight control system was made up of two independent subsystems, the primary and the sec-

ondary system. The purpose of each of these systems was to provide: (]) open loop trajectory and

vehicle stability control during Stage I flight, (Z) ground control (radio guidance) in Stage II flight in

the case of the primary subsystem, and (3) inertial guidance control in the event of switchover to the

secondary subsystem'during Stage II flight. Both of these subsystems were conventional attitude and

rate feedback control systems utilizing gain switching. The control moment was produced by engine

thrust vector control which was provided by hydraulic actuators attached to the thrust chamber assembly

gimbals. The secondary subsystem was used as a backup in case of serious primary system malfunctions.

(I) Primary Flight Control Subsystem

This subsystem was composed of a three axis reference system (TARS), a Stage I rate gyro

package, an autopilot control package, and an adapter package. Pitch, roll, and yaw attitude stabiliza-

......_u_, _M**_,_:---'-were originated by +_.............._ aDq =,,_ trans_._itted by %he _d_nterz nacka_e, o to the autopilot control

package. Steering control was accomplished by precessing the TARS attitude gyros. During Stage I

flight, the trajectory was controlled by programmed attitude changes in roll and pitch developed in the

TARS package. During Stage II flight, the TARS pitch and yaw attitude gyros were torqued according

to input commands from the radio guidance system.

(Z) Secondary Flight Control Subsystem

This subsystem differed from the primary flight control subsystem in that an inertial guidance

system (IGS), located in the spacecraft, was used for attitude reference providing open-loop program-

ming of Stage I flight and closed-loop guidance commands in Stage II flight. The secondary system was

redundant to the primary system through the tandem actuators in Stage I flight and redundant to the

primary system except for actuators in Stage II flight. The IGS sent attitude and guidance commands

through the control system at all times. When a switchover was commanded, hydraulic pressure was

applied to the secondary actuators for Stage I flight, while the secondary control signals were simply

switched to the actuators for Stage II. Simultaneously, the switchover signal was sent to the IGS. Upon

receipt of a switchover signal, the IGS reduced its output close to zero and then restored the attitude

error signal to the system according to an exponential law. For GT-3 and subsequent flights, the capa-

bility was provided for switching back to the primary system during the Stage II flight so that the radio

guidance could be used if the failure requiring switchover was in the Stage I hydraulic system. A block

diagram for the flight control system is presented in Figure IT. C-18 and for the switchover mechaniza-

tion in Figure ]3[.C- 19.

b. Component Configuration

(I) Three Axis Reference System (TARS)

The three axis reference system contained three strapped-down integrating rate gyros (pitch,

yaw, and roll) and a digital solid state timer for programmed gyro torquing in pitch and roll during

Stage I flight. The programmer also provided discrete signals for other vehicle functions, e.g. ,

arm Stage I shutdown sensor, Stage I gain change, arm Stage ]if shutdown, and guidance initiate.
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The TARS received signals from the MOD III radio guidance decoder during Stage II flight. The basic

TARS package was used on the Titan I Program. The major change that was incorporated for the Gemini

Program was the reactivation of the roll programmer.

(2} Stage I and Stage II Rate Gyro Packages

These packages contained pitch, yaw, and roll rate gyros for sensing vehicle angular rates. Both

of these packages were previously used on Titan II. The Stage II rate gyros were contained within the

autopilot package and the Stage I rate gyros were in a separate package.

(3) Adapter Package

The adapter package contained signal conditioning electronics for the TARS attitude signals.

The attitude signals were amplified and demodulated so as to he compatible with the input requirements

of the autopilot control package. The switching relays for the switchover circuitry were located in this

package. Included in the adapter were the gyro spin motor rotation detectors for ground testing. This

adapter assembly was unique to the Gemini Program.

(4) Autopilot Control Package

This package contained electronic (transistor and magnetic amplifier) circuitry that amplified and

provided dynamic modification of the signals controlling electro-hydraulic actuator position. The con-

trolling signals to the actuators were inititated by the inputs of the Stage I and Stage II rate gyro signals

and the TARS attitude signals. During Stage i flight, inputs from both rate gyros were used. The pack-

age also contained an 800 cycle static inverter power supply and the Stage II rate gyro package.

The autopilot assembly was previously used on the Titan II Program. Rate and attitude signal

filters and loop gains in the autopilot were changed, where required, to provide adequate margins for

GLV flight stability.

c. Component History

(1) Development History

Basic Titan I and Titan II flight cor_ro! sy_te_., components ,_,_rp _pted to the Gemini flight

control system with minimum changes. Complete systems development and compatibility testing was

accomplished in the Airborne Systems Functional Test Stand (ASFTS) at Martin-Baltimore. This

special facility included a complete set of vehicle systems hardware; all flight controls components,

a complete hydraulic system, dummy engines, analog computer-simulated vehicle dynamics, a space-

craft simulator, and standard vehicle test AGE. The ASFTS testing evaluated component compatibility

and closed-loop system performance for a wide range of flight conditions. It also proved to be ex-

tremely valuable for problem resolutions and design change evaluations. The ASFTS proved to be

especially useful for the resolution of hardware problems throughout the program. Several AGE prob-

lems at ETR were resolved through the use of this facility. TARS temperature malfunction indications

at Complex 19 were resolved during many of the prelaunch sequences by sending the AGE chasses to

Baltimore for functional analysis in the ASFTS setup. ASFTS is described further in Section II. C-16.

The secondary flight control system problems on GLV-12, the Stage I and Stage II Spin Motor

Rotation Detection (SMRD) "no-go" indications along with the 26 VAC malfunction indication, were

successfully isolated in ASFTS. The rapid isolation of the problem to the static inverter in the auto-

pilot cleared the flight hardware in the launch vehicle for what proved to be a successful final flight.
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The Three Axis Reference System (TARS), which incorporated a solid state electronic timer, had

been modified since its initial development for Titan L A significant change was the reactivation of the

roll programmer so the TARS would be compatible with the MOD III guidance system, which did not
9

transmit roll program information from the ground.

A bigger temperature compensation bellows was incorporated in the HIG-4 gyros, effective

GLV-I and up, to prevent a negative pressure from developing in a cold gyro, causing bubble formation

in the flotation fluid. The overall radio guidance gain was corrected by changing some TARS gain re-

sistors, effective GLV-1 and up.

The Stage I and StaTe II Rate Packages were manufactured by the Giannini Controls Corporation.

The Stage I rate package was a subassembly for the Stage II autopilot package. Because these units

were used "as-is" from Titan H, no special Gemini development effort was applied.

The Autopilot Adapter Package was designed by Martin-Marietta Baltimore specifically for use

in the GLV primary flight control system. Its function was to change the TARS output signals from

modulated 400 cps to d. c. signals suitable for inputs to the Titan II Autopilot Package. There were no

significant changes incorporated in this unit as a result of the development period.

(Z) Qualification History

In general, the qualification requirements for Gemini were the same as for Titan II. However,

the temperature requirements were more stringent for the Gemini Program. All of the components,

except the adapter, were originally qualified for either Titan I or Titan If. In the case of the adapter,

development and qualification were performed exclusively for Gemini.

TARS - Since this unit was basically the same as that used on Titan If, it was tested only for the

Gemini temperature requirements and passed.

Autopilot Adapter Package - Vibration problems were encountered during initial testing. A

vibration damping rubber pad was installed between the modules and case to eliminate noise in the

SMRD circuits. The case cover was also stiffened to prevent bulging at altitude. Design changes were

made and the unit met the test requirements. This unit failed to meet the specification on electrical

interference requirements, but evaluation showed that a deviation was acceptable.

Rate Gyros - The gyro packages were qualified for Titan II usage. Due to Gemini unique environ-

ment conditions, the unit was retested for a wider temperature band and passed with no problems.

(3) Production History

A review of the production history of each of the flight control components for significant problems,

failures, and corrective action is presented below:

TARS - Throughout the production and testing history, only one design deficiency was found, and it

was not an airborne problem. At ETR, on GLV-Z, it was found that under certain conditions, the timer

roll intervalometer in the TARS (S/N FI5) could malfunction. This was found to be a result of a Schmitt

Trigger generating extra pulses, and could be traced to a marginal transistor selection within the TARS.

The corrective action consisted of a special test to screen all units prior to use.

Due to the predicted performance characteristics of GLV's 6, 7 and IZ, stability considerations

required that the Stage I gain change time be revised to LO + ii0.0 seconds from LO-+ 104.96 seconds.

Parallel time delay relays were added in series with the TARS gain change discrete to accomplish

this modification.
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A series of failures (4) involving the Gyro Spin Motor Rotation Detector (SMRD) coils occurred

in mid 1965. The defect was screenable and had no inflight effect since they were only used for

ground checkout. The problem was found to involve manufacturing methods and test techniques. Cor-

rective action was implemented by Minneapolis Honeywell.

Diodes manufactured by the gold paste process were found to be defective in that gold flakes which

formed during manufacturing had caused diode malfunctions. It was decided to replace the suspect

diodes in the affected TARS assemblies. This change was effective for GLV-3 and up.

Due to higher than expected failure rates and life limitations on existing units, it was decided

to build five additional TARS units. Additional process and piece-part controls were included in the

new build based on the failure history at that time. Resistors, relays, capacitors and transistors

were x-rayed for defects where schedule and cost implications were not limiting factors. The use of

existing subassemblies was reviewed based on their particular data histories.

A slight shift in resistance in a TCA (Temperature Control Amplifier) precision resistor resulted

in an out-of-spec condition for gyro gain in one of the TARS packages at M/B. The extensive investiga-

tion that resulted from this failure revealed that the failed resistor did not include in its construction

a nickel slug used in the welding process for the attachment of leads. A large sample of this type of

resistor was dissected and none had the nickel slug missing. It was decided that no changeout would

be attempted in existing units because of the uniqueness of the failure and the possible degradation due

to changeout. The new build packages did include an x-ray examination of these particular piece parts

for this type of defect.

The failure history of a resistor used in the TARS guidance amplifiers was found to be unaccept-

able. The problem involved an incomplete cure process for the protective coating of the resistor and

the presence of aluminum traces on the ceramic resistor body. Extensive investigation determined that

the defect was isolated to specific sizes and particular build times. A special directive was issued whereby

all subassemb'lies would be physically inspected for the presence of this resistor. All other possible

applications of this resistor on Gemini were reviewed and corrective action taken where necessary.

There was one failure at ETR concerning a ...._ a,.o.v.t.....,.._. in the T.a_=[S heater circuitry. The

•"._nit;;'asbeing used as a test tool to check out the te_t set when it was found that the airborne heaters

were inoperative. Failure analysis revealed that the primary winding was burned out and that the

failure was probably caused by shorted windings. The cause was not determined, but thorough investi-

gation indicated that the problem was most probably caused by a necked-down or nicked wire in the

primary winding, or the misapplication of an over-voltage. Review of the failure history did not re-

veal any similar failures or problems with this component. It was decided that there was no effective

corrective action that could be taken for the flight of .GLV-IZ and that the probability of another failure

was remote.

Autopilot - Most of the problems involved with this package concerned the internal rate gyro

package. These problems are covered in the rate gyro section.

As the result of production test failures and subsequent failure analysis, it was determined that

diodes containing loose gold flakes were installed in the autopilot assemblies. These were the same

kind of diodes that were found in the TARS assembly. Since a malfunction of these diodes could cause

an unsuccessful countdown or loss of vehicle stability control during flight, it was decided to replace

these diodes. Effectivity was GLV-3 and up.
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Adapter- Afailureoccurred at ETR in the adapter attitude signal conditioner pitch preamplifier

module on GLV-I. Failure analysis and investigation of the module and components used indicated

an inferior transistor, USA 2N328A (manufactured with an alloy junction and acid etch process) which

was susceptible to thermal shock and vibration after aging. Corrective action dictated removal of all

electronic modules manufactured with this type transistor and replacement with units using transistors

selected under strict controlled requirements. Part of the new requirements included using JAN

specification parts. Although the new transistors eliminated the original deficiency, the 100% x-ray

inspection imposed did detect metallic contaminants in the JAN ZN328A units. No problems had been

experienced with the JAN units, and it was determined that the silicon oxide passivation and the transis-

tor physical construction were such that it was highly unlikely that the contaminant could cause a tran-

sistor failure.

The adapter switchover relay module was redesigned because of a failure during manufacturing

module tests, in which a relay plunger bound up. New relays were procured to specifications which

controlled cleanliness, required component logs, and instituted _ife cycling of samples. The module

with the new relays was subjected to qualification level vibration tests. During the vibration testing,

it was found that the levels were being amplified by the mounting bracket and causing contact chatter.
tO

This was solved by the addition of vibration isolators.

Rate Gyro - The following significant problems were encountered at the vendor's plant and in the

field, and resulted in several major production changes. Due to a gimbal hang-up failure which oc-

curred on GLV-1 at VTF and to the failure analysis which followed, extensive changes were made to

upgrade process controls and acceptance criteria for manufacturing clean rate gyros. Contamination

control was incorporated.

Several failures due to open torquer coils occurred at Martin/Baltimore. The torquer function

was used for ground checkout only and not during flight. Process changes were implemented early in

the program to better control the manufacturing and handling of the torquer coils.

Early in the program one of the most significant failure modes of the gyros in the field was the

failure of motors to run up to synchronous speed within the specified time. This requirement was a

carry-over from Titan I and Titan II performance restrictions and provided a measure of motor bearing

quality on Gemini. Special tests were incorporated (effective GLV-Z) to find the marginal units. Fail-

ure analysis of failed gyros revealed serious bearing degradation and lack of lubricant. It was deter-

mined that bearing preload level and control were contributing to these failures and new process control

methods were incorporated for gyro subsystems effective GLV-6 and up. No further failures of this

type were encountered for the remainder of the program.

It should be noted that the reduced preload did appear to cause an increase in gyro output noise.

ASlrTS evaluation determined that system performance was not adversely affected by this characteristic

noise.

It was originally expounded that once a rate gyro reached synchronous speed it would not run sub-

synchronously. There was a unique case in which a gyro did run subsynchronously intermittently. Sub-

sequent failure analysis was inconclusive. On GLV-12 at the launch complex, AGE indicated that a

secondary rate gyro ran subsynchronously intermittently. The gyro was removed and the failure did not

repeat during extensive testing at Baltimore. Therefore, there was only one substantiated case of a

gyro which did run subsynchronously.

Another significant failure mode of the gyros involved insulation resistance. Several failures

occurred with a high impedance path appearing from an insulated standoff to the gyro stationary top
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bearingplate(bothinternalto the gyro). Extensive evaluation, including special ASFTS tests, de-

termined that the failure mode would not affect the gyro or flight control system performance. Pro-

duction was already terminated at the time the problem was isolated, so no corrective action was imp-

lemented concerning production processes. Special tests were incorporated in the field to screen out

the defective units. These tests were also run as close to launch time as possible to provide maximum

confidence in the flight hardware.

As in the case of the TARS, there were several instances of recycling of gyro units because of

test equipment malfunctions. Differences in test procedures and techniques also contributed to rejec-

tion and subsequent recycling of good flight hardware.

There were several gyro null failures in the field. The inherent temperature sensitivity charac-

teristics of the gyro resulted in null shifts as the gyros were temperature-cycled. In most of the

cases, the gyros were stabilized by recycling through the vendor's facility and readjusting the null.

(4) Flight Test History

The flight control system performed satisfactorily in GLV's 1 through 1Z. The secondary system

was never used in flight; however, telemetry data revealed no significant abnormalities. Some items

were found which are considered important and are mentioned below for historical purposes. They

should not be considered as significant problems.

1) The roll liftoff transient was large and resulted from thrust and rigging misalignments.

The Stage I roll actuator rigging was biased to compensate for this on GLV-9 and up.
Subsequent liftoff transients were significantly reduced.

Z) Slosh modes were excited in Stage I and Stage II as expected and were of small amplitude.

3) Staging transients were large and were caused byengine thrust decay characteristics in

conjunction with staging gain changes.

4) Post-SECOtransients were evident on every flight. The cause of this phenomenon {Green

Man) was never determined; however, its effect on performance was not significant.

5) A small bias was noted in the TARS timer performance subsequent to BEGO. Exact cause

was not determined; however, it had no significant effect on performance.

d. Conclusions

The flight controls component development was based on flight-proven hardware for three of its

four components. The design changes required for the system were minimal. The fact that there

were no in-flight failures throughout the program has demonstrated that the controls that were imposed

and the corrective procedures that were incorporated were sufficient to ensure satisfactory perform-

ance of the flight control system.
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7. ELECTRICAL SYSTEM

a. System Description

The Gemini Launch Vehicle electrical system consisted of the power distribution systenl and

electrical sequencing system.

The power distribution system was composed of the accessory power system (APS) and the in-

strumentation power system (IPS). The accessory power system consisted of the APS Battery, AIDS

Inverter and distribution circuitry, and supplied the power required by the primary guidance and flight

control systems, the electrical sequencing system and AIDS Range Safety System.

Similarly, the instrumentation power system consisted of the IPS battery and supplied the power

required by the secondary guidance and flight control systems, the redundant electrical sequencing

system, and the IPS range safety system. Ablock diagram of the electrical power distribution system

is shown in Figure If. C-20.

b. System Operation

The electrical sequencing system consisted of relay and motor-driven switch logic to provide

discrete signals to the vehicle system. Figure II.C-Zl presents a block diagram of the electrical

sequencing system and the manner in which it is integrated with the vehicle. As the vehicle lifted off

from the launch pad, disconnect plugs removed a ground from program initiate relays 1 and Z. This

action energized the three axis reference system (TARS) timer and 145-second time delay relay. After

approximately 145 seconds the time delay relay and TARS timer armed the Staging Control Relays 1

and 2 by applying +28 vdc to their coils. Upon depletion of Stage I propellant, Stage I chamber pressure

switches sensed the decaying pressure, closed and provided the required ground to operate the staging

switches. Operation of either staging switch was sufficient to effect staging, (Stage I/I/ separation).

As shown in Figure If. C-21 operation of either staging switch provided autopilot gain changes, shut

down the Stage I engined started the Stage II engine and armed the Stage II shutdown. Explosive nuts

on each side of the bolts joining Stages I and II were activated to effect separation. It was only neces-

sary for either Stage I or Stage II side nuts to operate. The normal mode of Stage II engine shutdown

was via the radio guidance system, however, the spacecraft inertial guidance system would command

Stage II shutdown when the vehicle was under inertial guidance system control. Therefore, the elec-

trical sequencing system was fully redundant.

c. Configuration

The basic difference between Gemini and other Titan electrical systems was the use of a com-

pletely redundant electrical system to support the secondary guidance system on the GLV. This was

accomplished by reworking what was solely an instrumentation power system.

The Gemini electrical system was designed and integrated with the other launch vehicle systems

in such a way that a single inflight electrical failure would not cause a catastrophic failure or prevent

completion of the mission.

The Titan II APS and IPS batteries were silver zinc, nonrechargeable, and remotely activated

while in the booster. To achieve higher reliability on Gemini, rechargeable silver zinc batteries were

used and were identical in size and capacity. For a Gemini launch mission, the batteries were activated

discharged and charged prior to installation in the launch vehicle.

U. C-60



The 750 va 400 cycle static inverter was a new development for Gemini since Titan II does not use

a central a-e power system. The inverter supplied a-c power for the TARS package which was not used

on Titan If. The 25 vdc power supply also supplied power to the Gemini TARS system and therefore was

not on Titan II; however, this power supply was flown successfully on Titan I.

As a result of a test procedure error in the VTF it was apparent that a short or a very low voltage

of the APS bus could provide a ground path to the staging initiate circuit. To eliminate this possibility,

the APS power feed to the TCPS was looped through an umbilical connector so that this path would be

eliminated in flight. This change was effective on GLV-Z. (Reference ECP 37Z. )

Special fire protection was provided in the Gemini Titan II Stage I engine area wiring by wrapping

the wire bundles with insulation and aluminum glass tapes. So protected, the wire could withstand a

3640°F flame for I04 seconds. This change was effective on GLV-3. (Reference ECP 373.)

To insure positive cutoff of the Stage II engine at optimum time to place the spacecraft in correct

orbit, and enable safe return of the astronauts, a redundant shutdown system was incorporated in the

GLV for all manned flights. The redundant engine shutdown system used a squib operated shutoff valve

in the gas generator oxidizer feed line of the Stage II engine. This valve was initiated from the same

signals that operate the shutdown solenoid in the fuel line of the Stage II engine. (Reference ECP 382. )

The Thrust Chamber Pressure Switches (TCPS) Monitoring Circuit was also revised prior to the first

manned flight. The change made was to use an existing spare set of prevalve switch contacts to lock out

the operation of AGE TCPS monitor relays in the event of a TARS malfunction. This was incorporated to

eliminate the possibility of a failure in the TARS package applying +28 vdc to the staging control relays.

This single failure could cause staging on the pad during the time interval of T-34 seconds and T-0.

(Reference ECP 470. )

Figure II. C-ZZ represents the configuration of the electrical sequencing system effective on

vehicles 9 through 12. The essential difference between this system and the previous electrical sequenc-

ing system was the deletion of the Stage I engines thrust chamber pressure switches (TCPS) and incor-

poration of their function into the malfunction detection thrust chamber pressure switches (MDTCPS).

This change led to the revision of the staging control circuitry in order to protect the MDS system.

Electrical wiring changes were made so that one side of the s_ging uu_trol i-clay coils ! and 2 wev_ per-

manently connected to ground and the energizing voltage to these relays was now supplied through MDTCPS

contacts. The function of the Program Initiate Relays 1 and 2, the (TARS) timer and the 145-second time

delay relay were unchanged. Thus the sequence remained the same; upon depletion of Stage I propellant

and loss of thrust chamber pressure, closure of either MDTCPS shutdown sensor would supply APS/IPS

voltage to energize the staging control relays. The remainder of the electrical sequencing system was

unchanged. This modification overcame the deficiencies in the system which were corrected by the

ECP's 37Z and 470 and, in addition, increased reliability in that the redundant switch feature of the

MDTCPS system added redundant APS/IPS power for the Stage I AGE engine function. (Reference ECP 526. )

d. Major Problems

(I) Motor-Driven Switches

During Combined Systems Acceptance Test (CSAT) for GLV-Z, out-of-tolerance conditions were

observed for the APS and IPS 8-pole staging switches. A failure analysis performed on these compon-

ents revealed mechanical defects in one and electrical defects in the other. These defects, however,

did not prevent the switches from functioning, but resulted in erratic out-of-tolerance conditions.
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As a result, a special confidence test was performed on each switch in receiving inspection. During

checkout test on GLV-5 at the Cape a 6-pole motor driven switch used as a telemetry power switch

(TPS) failed to give a normal opening. Further tests indicated erratic motor current and long opera-

ting times. Failure analysis performed by the vendor revealed trouble caused by improper cleaning

of wax off the commutator following operation for potting of the armature. All suspected units were

identified with a manufacturing lot of 17 units. Each unit was located or accounted for, subjected to

special retest, returned to stock or scrapped. Manufacturing procedures were changed to eliminate

using wax to protect the commutator during potting of the armature.

(Z) Time Delay Relays

One production problem arose from the process of solder-sealing the case. Sufficient manu-

facturing checks were added to ascertain that no damage occurred from the sealing process.

Other problems encountered include potentiometer adjustment difficulties due to galled lead

screw threads (a Z5-cycle screening test was instituted), and relay chatter (relay position was op-

timized to reduce shock). A vibration screening was also set up at the relay vendor's facility to catch

inferior units.

Subsequent to resolving these problems, a time delay relay timed out erratically in a M/B re-

ceiving inspection test. At first, the problem was attributed to solder flux contamination and weld

spatter contamination in the switching relay. New time delay relays were built with the new improved

=_,_, more closely cu,._Lru_leu __i .... m_,-_ _-,I=,,_ timed out erratically in vibration and failed the

qualification test. Further failure analysis revealed the vendor of the tantalum (timing) capacitor had

recently made a process change. The problem was resolved by having a special lot of capacitors made

to the old manufacturing process with close quality control inspection. The newly built timers with new

lot capacitors, and improved switching relays successfully completed requalification tests. These

re-identified time delay relays were used on GLV-4 and subsequent vehicles with no further problems.

(3) Microfuses

Numerous microfuses evidenced fractured glass caps after prolonged storage periods in VTF and

ETR. The fractures were the result of difterent coefficienLs of _xpansion bctv;een the glass c_p an4 epoxy.

used. The microfuse was redesigned with a metallic cap and the post redesigned to accornrnodate the new

microfuse. (Reference ECP 4i9)

(4) Disconnect Plugs

During the launch attempt of GLV 6A, a sequencer shutdown was sent at approximately I. 5 sec-

onds after Stage I engine start. Investigation revealed that umbilical 3DIM inadvertently released prior

to llftoff. Visual inspection of both the airborne and ground half showed nothing abnormal. Pull tests

were performed, using both old and new ground half disconnects. All pull tests were within specifi-

cation. Vibration tests were also performed and were within specification. It was concluded that

most probable cause was improper installation of the plug. Contributing to the cause was a vehicle

fairing covering the receptacle which made it difficult to mate the connectors and visually observe

the connectlon. Corrective action was taken to provide safety wiring to help keep connectors mated

until pulled by the lanyard, to provide inspection cutouts in the receptacle support bracket, and add

keying and alignment markings on the plug, receptacle and installation area. (Reference ECP's 560

and 560RI)
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8. INSTRUMENTATION SYSTEM

a. System Description and Design Concept

The purpose of the instrumentation system was the collection and transmission of data to ground-

based receiving stations. Evaluation of the vehicle and subsystems' performance was made from data

measuring points properly selected. The first four vehicles were heavily instrumented to provide

environmental data for correlation with predicted performance. Vehicles Z and 3 carried protuber-

ance heating sensors to evaluate maximum temperature and heat transfer rates. High frequency

vibration measurements were also acquired on these vehicles to determine environment experienced

by the G.E. guidance packages. Additionally, high frequency response measurements, as well as

numerous engine performance measurements, verified design criteria, and having done so, were elimi-

nated from the GLV-5 and subsequent vehicles.

The instrumentation system consisted of two frequency modulated r-f links, one of these pulse

code modulated, and one employing frequency modulated subcarriers, signal conditioners, transducers,

magnetic tape recorder/reproducer and necessary power supplies for transducers.

Figure II. C-Z3 shows the significant elements in the airborne instrumentation system. All

major components were located on a truss in the compartment between the Stage II tanks. The antenna

system also was installed in this area. Harnessing, independentofthe electrical wiring, was utilized

for all instrumentation functions. The PCM/FM telemetry was a time-multiplexed data system and

theprimary data transmitter. The major unit consisted of a multiplexer/encoder with a capability of

196 analog channels and 48 bi-level channels. The encoder output for each channel was an 8-bit binary

code providing a resolution of 0.4 percent. The encoder output modulated an FM transmitter with a

minimum power output of Z5 watts. The overall accuracy, from transducer through data printout, was

within ± 4 percent.

The FMpFM telemeter link transmitted seven channels of continuous high frequency data during

first stage flight. Additionally, the tape recorder collected data during a portion of first stage flight

and during the interval of radio frequency blackout at staging. The recorded data was reproduced and

transmitted over the FM/FM link after first stage separation.

The FM/FM telemeter, the tape recorder, and the associated wiring and control circuitry were

removed on vehicle GLV-5 and subsequent vehicles. These are shown within the dotted portion of

Figure II. C-23. Wiring kits were provided and hardware was available to utilize the subcarrier sys-

tem should it have been necessary for problem resolution. However, such a need was not evident for

the remainder of the program.

b. Configuration

The basic difference between GLV and Titan II instrumentation was the change from the 40 my

full scale telemetry system on Titan II to a 5-volt full scale telemetry system on GLV. Higher output

voltages from remote transducers improved the overall signal-to-noise ratio and reduced the complex-

ity of the multiplexer/encoder. As a result of the higher level system, it was necessary to develop a

new line of transducers such as accelerometers, pressure indicators, temperature bridges, etc.

Although the basic encoder circuitry from the Titan II was retained with the exception of the low level

amplifiers, a new package was developed by the same vendor and was fully qualified. Also, the trans-

ducer power supplies and temperature bridges were all of new design and were qualified to GLV

environments.
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The transmitters used for both the PCM and FM systems were nearly identical to those used on

Titan II with the exception of an input modification to accept the higher level signals. Minor output

circuit components were replaced and a ruggedized tube was substituted in the power amplifier. The

transmitter frequencies were changed in accordance with GLV requirements.

The antenna configuration of two elements, displaced 180 ° , was used on GLV-2 and subsequent

units rather than the four element system used on Titan II and GLV-1. This modification resulted in a

weight reduction and a simplification of the coupling network.

800 cps modulators were used in the signal conditioner for rate gyro functions which were not used

on Titan II. The junction box was modified to add signal conditioners for the TARS, the redundant flight

control system and the MDS.

The plug-in patch board, permitting the reassignment of functions to different encoder channels,

was removed for three reasons: elimination ofunsoldered contacts, assurance that field changes would

not affect configuration shown on the measurement schedules, and weight savings. Measurement changes,

as required from time to time, were accomplished by means of solder splices in Compartment Z. These

were authorized and identified only by ECP action.

Three items were classified "critical components." These were the telemeter (r-f package), signal

conditioner, and multiplexer]encoder. Complete histories of these packages from production monitoring

tests through the vehicle acceptance test were presented and reviewed prior to vehicle acceptance. Ques-

tionable hardware, from a standpoint of excessive repairs, or recurrent type failures would have been

identified at this point and replaced on the vehicle.

c. Performance

No system flight failures occurred during the entire flight test program and fewer than six measure-

ments were not completely recovered. Of these, two were intermittent transducers.

However, pressure transducers had a rather high failure rate during vehicle tests with either the

application or removal of power. Examination of the failed units proved conclusively that they were

somehow subjected to over-voltage transients although in nearly all instances the voltage monitors and

alarm circuits detected no such over-voltage condition. It is believed that age and the number of cycles

had an effect in reducing the over-voltage capability since each unit was tested at 40 volts during factory

tests. New units could withstand the 40 volt level for hours without degradation.

No other item in the telemetry system had a failure pattern and the data recovered from the flights

was in excess of 99.5 percent.
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9. RADIO GUIDANCE SYSTEM

a. System Description

The General Electric radio guidance system was chosen as the primary guidance system for the Gemini

Launch Vehicle. The Mod III-G missileborne guidance set operated in conjunction with the the Mod III-A

ground system and the Mod III (A-l) guidance computer (supplied and operated by Burroughs Corp. ). A block

diagram of the Mod III-G system is shown in Figure II. C-24.

The Mod III-A ground system consisted of the rate measuring subsystem, the position measuring sub-

system, and the flight data recording subsystem. The Gemini Mod III-G missileborne setconsistedofapulse

beacon, rate beacon, decoder, primary antenna, secondary antenna, and interconnecting microwave com-

ponents. The des4gn of the Mod III ground system was completed early in 1957 and the first guidance mission

from ETR was performed in December 1958. The transistorized version of the missileborne guidance set

(Mod III-G) which was designed in 1960 has successfully supported all the Gemini missions.

b. System Operation

The position measuring subsystem tracked the missileborne pulse beacon extracting 81ant range and

angle (azimuth and elevation) information. The rate measuring subsystem, locked in frequency to the

missileborne rate beacon, measured doppler frequency shift. The doppler shift at the central rate receiver

is a measure of range rate, and the difference in doppler of the two outlying rate receivers from the central

receivers is a measure of range rate differences called P-dot and Q-dot. These six measured parameters

were used in the computer for the computation of pitch and yaw steering commands which were transmitted on

thepositionmeasuringsubsystemdata link to the missile. The commands were receivedby thepulse beacon,

decoded by the decoder, and transmitted to the flight controls system. Discrete commands could be gener-

ated in the computer and transmitted over the data link. One discrete command was used on the Gemini

Launch Vehicle to initiate SECO. Pertinent performance data was recorded during operation of the guidance

system for post-flight analysis by the flight data recording subsystem.

c. System Configuration

The Mod !!!-G r_..issi!eborne equip_,_._entw_s *h_ gu_nc_ ,,_s_on of the Mod !!!-F instru____entation

system. The basic difference was the addition of the decoder. The Mod LII-F beacons supporting the Titan

program were an earlier version of the equipment which did not include the vibration isolated baseplate

modification, diodes screened I00 percent for internal foreign particles, and "Phase I" reliability improve-

ments. The secondary antenna used on Gemini vehicles was flown successfully on the Titan N-series missiles.

Three Mod III-G decoders (without isolated baseplates) were flown successfully on three N-series missiles

as part of the Gemini "Piggyback" program.

The interface between the Mod III-G missileborne equipment and the Martin autopilot, shutdown cir-

cuits, and instrumentation systems was defined inSSD Exhibit 62-194 Revision B. Vehicle installation,

power requirements, signal levels and applicable specifications were defined by the Martin Company

and General Electric and approved by SSD/Aerospace.

There were no system configuration changes after the GLV-2 flight. The differences in configura-

tion which occurred between GLV-I and GLV-2 were as a result of GE ECP-019 and ECP-022. In

March 1964, ECP-019 was approved deleting the intermediate mount from the missileborne configura-

tion as a weight saving measure as shown in Figure II.C-25. The ECP required modification of the

microwave components only, and those components were qualification tested by ffuly 1964. In ffuly 1964
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a reliability improvement consisting of a change in vendors for capacitors and relays in the decoder

(ECP-0ZZ) resulted in a group number change of the decoder. ECP-019 and ECP--022 were incorpor-

ated and flown on GLV-Z through GLV-1Z.

d. Major Problems

During the vibration phase of qualification tests (1963) of the first equipment produced under the

AF04(695)-100 production contract, several problems were encountered such as broken wires and

broken component leads. During this period, problems with "gold flaking" diodes were experienced

in the factory and field. In July 1963, it was determined that the missileborne equipment, which was

originally designed for the Atlas Weapon System vibration environment of 6 g's should be modified to

perform in the Titan II vibration environment of 1Z g's. ECP-01Z was incorporated to correct these

problems by adding vibration isolated baseplates, screened diodes, and the "Phase I" reliability

improvements as outlined under the Task Force effort (Section II-B. 5. d). This change was flown on all

Gemini launches.

In July 1964, a reliability improvement consisting of a change in vendors for capacitors with poor

failure history and the replacement of contaminated relays with a more reliable type was implemented.

These changes were incorporated in all Gemini decoders under ECP-0Z?- and flown on GLV-Z and all

subsequent vehicles.

ECP-036 purged the decoders of silicon-controlled rectifiers which had a history of contamina-

tion. An improvad silicon controlled rectifier was incorporated and was flown on GLV-7 and subse-

quent vehicles.

The mica insulator in the Rate Beacon was changed to a kapton insulator as a result of failure

history and altitude tests. This was incorporated by ECP-038 for GLV-8 and subsequent vehicles.

e. Special Studies

As a result of special studies, the GLV primary antenna was redesigned from a 6-inch to a

4-inch slotted configuration, and the guidance system noise model was extended to 2 degrees in ele-

vation angle. These studies are explained further in Section II. E-3.
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10. RANGE SAFETY SYSTEM

a. System Description

The Gemini Launch Vehicle Range Safety System was designed to meet the range safety require-

ments established by Air Force Eastern Test Range regulations. These requirements were met by use

of a combination electronic and ordnance system consisting of command control, tracking and impact

prediction, and destruct subsystems

The range safety system provided the emergency means of confining the airborne launch vehicle

within predetermined boundaries of the Eastern Test Range. To accomplish this control, an airborne

system was provided to operate in conjunction with the ground-based range safety system. These

systems operating together had the capability of (1) determining real-time track and impact prediction

data, (Z) accepting and acting on the Range Safety Officerfs (RSO) command to terminate launch vehicle

thrust, and (3) accepting and executing the Range Safety Officer's command to destroy the Launch Ve-

hicle. In case of an abort, the Gemini Program incorporated a 3.5 second time delay between thrust

termination and destruct that would have allowed the Astronauts time to escape from the launch vehicle.

In addition, a destruct system was provided which would automatically terminate thrust and destruct

Stage I should it inadvertently have separated from Stage II during the boost phase. A 5.5 second delay

between separation and destruct was provided to allow time for Astronaut escape. The Range Safety

System is shown in Figure II. C-26.

The command control receivers were located in the second stage of the GLV and were used in

conjunction with the ground based FRW-Z transmitters and associated equipment that made up the

command control system. Two command receivers were used to increase reliability, and were both

connected to four antennas through a six-port junction. Each antenna was placed 90 ° apart around the

circumference of the vehicle to give a full 360 ° coverage. This system provided the Range Safety Of-

ricer means of issuing flight termination commands. The receivers would decode these commands from

the FRW-Z transmitter and produce signals which would enable the appropriate vehicle circuitry to ac-

complish transmitted commands such as thrust termination, destruct and Stage II shutdown (ASCO).

The MISTRA/%4 System was the primary system for providing real-time tracking and impact pre-

diction data. A MiSTRAM transponder and antenna system were installed in Stage i-i of Lhe launch

vehicle and this airborne system functioned with the ground stations at Valkaria and Eleuthera. lk41S-

TRAM operated independently of other range systems to acquire the launched vehicle, track its flight,

and continuously measure and record its position and velocity. Simultaneously, the system transmitted

real-time trajectory data to external computer facilities for Range Safety and Instantaneous Impact Pre-

diction purposes. Secondary tracking data for back-up information to the MISTRAR/[ system was obtained

from the C-band beacon in the spacecraft functioning with the ground based Radar tracking network and

the MOD Iil-G radio guidance system.

b. Configuration

Range safety requirements for destruct system arming before launch, coupled with Pilot Safety

requirements, resulted in the design of a new destruct initiator that would provide independent action

for both the arming of electrical firing circuits and the moving of the destruct explosives in-line.

On GLV-I, a Gemini modified Titan II type destruct initiator was used with no resulting prob-

lems. On GLV-Z, the new three position Gemini-developed destruct initiator was employed and no

problems were experienced (Reference ECP 70).
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Except for the destruct initiators used in GLV-Z and subsequent, the ordnance destruct system

design concept was identical £o the one used on Titan II. Adjacent tank domes in each stage were

ruptured by hi-directional charges to obtain propellant intermixing. The destruct initiators, destruct

charges and associated prin_acord harness and boosters, were mounted in or adjacent to the between

It
tank areas of each vehicle stage. The Gemini Ordnance installation was evaluated and tested in ac-

cordance with the "General Range Safety Plan AFMTCP 80-Z, Volume I, Appendix A. "

The Titan II AVCO Mark Ill Command Destruct Receivers were flown on GLV-I. The command

destruct receivers, Model 4Z3A, developed by Advance Communications, Inc. , were included in the

system primarily for weight reduction, and were flown on GLV-Z and subsequent (Reference ECP IZZ).

Effective for GLV-Z and subsequent vehicles the T + 40 second time delay lockout of spacecraft

initiation of GLV engine shutdown was removed from the launch vehicle circuitry. Incorporation of this

change removed a failure mode that could lock out spacecraft engine shutdown through the flight region

(Reference ECP 393).

On GLV-Z, the Stage I destruct initiator was moved from an external fuel tank conduit to a

location inside Compartment IV (between the Stage I tanks). This relocatfon provided a more sheltered

location for the Stage I destruct initiator to increase protection against Stage H engine exhaust environ-

ment after stage separation. The change was a result of an investigation of Stage I destruct incidents

that occurred on the Titan II Program (Reference ECP 282). For the first manned flight of Gemini,
%

additional steps were taken to prevent possible actuation of the Stage I destruct system by the Stage

i/ engine exhaust. The Stage i destruct initiator, tlne pri_acord icads, the primacord conduits and the

two destruct charges were wrapped with thermal protecting silicone and aluminum glass tapes (Refer-

ence ECP Z87).

Effective on GLV-3 current limiting resistors were installed in the abort warning circuit to the

spacecraft to prevent possible damage to the command receivers. During a shutdown/abort sequence,

the ZS-vdc abort signal to the spacecraft could be shorted by the spacecraft guillotine. This could have

short circuited the outputs of the receivers and prevented the initiation of the destruct system. The

addition of current limiting resistors in the abort warning circuits was designed to keep the current

w_thin safe limits (Reference ECP 479).

c. Major Problems

The Gemini Program's newly developed destruct initiator was a three position unit (Safe-Shortoff-

Arm) and had to be qualified after the development program. During qualification vibration testing,

the destruct initiator was found to be deficient in the motor brake area. The vendor modified the brake

disc anchor by replacing wedge cutouts in the disc with vertical cutouts. The brake air gap area was

also decreased. Four modified destruct initiators subsequently passed qualification tests satisfactorily.

As a result of these delays in this development program, a modified Titan II destruct initiator had to be

used on GLV-I.

Four destruct initiators of the second production lot of the new design failed to pass acceptance

tests at the vendor's plant due to excessive current demand and switch hang-up in the safe position. The

difficulty was isolated to the motor operation. Corrective action was to provide additional motor support

£o prevent loosening under vibration. Tolerances were tightened on the disc in the motor brake area and

improved quality source inspection procedures were implemented. In addition, all of the odd serial num-

ber units in the second production lot incorporated motors that were built from hand selected parts, had
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special burn-in tests and oscillograph pictures taken of armature currentwhile cycling from one posi-

tion to another. Later, one of the even numbered initiators from this lot failed because of excessive

cycling time in a subsystem test at ETR. The three remaining even numbered destruct initiators from

the second lot were returned to the vendor to be rebuilt with screened motors.

There were other problems with the initiators, such as, incorrect adjustment of micro-switches

and incorrect positioning of the status wafer switch, but these were relatively minor in nature. The

other major problem with initiators was found as a result of the failure of serial number 5B to pass a

preinstaUation test at ETR. In this test the unit failed to cycle out of the safe position to the shortoff

position. At first it was suspected to be a microswitch adjustment problem. Further tests at the

vendor's facility revealed that insufficient friction in the rocker arm assembly was the cause of failure.

Relaxation of pressure between the rocker arm and the microswitch actuating plunger allowed the

microswitch to open and thus prevented the initiator from cycling out of the safe position. Rework of

the destruct initiators was authorized by ECP 577, effective for GLV-10 and subsequent. In this rework

the pivot pin and bearing disc of the rocker arm friction mechanism were machined to a finer finish.

Two studies concerned with range safety ordnance are worth noting. Assessment IZ was made of

the r-f hazards to such devices and stray voltage susceptibility was evaluated. 13
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II. MALFUNCTION DETECTION SYSTF.M 14' i5, 16, 17, 18

a. System Description and Design Concept

The Malfunction Detection System encompassed the major inflight launch vehicle malfunction

sensing and warning provisions available for crew safety. The function of the MDS was to monitor

critical parameters indicative of launch vehicle subsystems performance and, in turn, to supply signals

to the spacecraft to energize warning displays and initiate switchover to the redundant flight control

system if required.

The launch vehicle functions displayed to the astronauts were:

Launch vehicle overrate (pitch, yaw, and roll)

Stage I engine thrust chamber underpressure (SA-I and SA-Z separately)

Stage II engine fuel injection underpressure

Stage I propellant tank pressures

Stage II propellant tank pressures

Switchover to the secondary flight control system

The crew had three manual switching functions associated with the MDS. These were: switch-

over to the secondary flight control system, switchback to the primary flight control system, and

launch vehicle shutdown (abort arm).

The implementation of the MDS in the launch vehicle required redundancy of sensors and circuits

and independent installation of redundant elements. To further minimize Lhe pu_iblity of a single

failure disabling the system, probable failure modes were considered in component design and selec-

tion, and circuit connection to provide the MDS with a greater reliability than that of the launch vehicle

subsystems being monitored. The MDS was operational throughout the boost phase of flight. The

launch vehicle malfunction sensing and warning provisions and their interrelationships are shown on

Figure H. C-27.

b. Functional Description

The makeup of the MDS is shown by the block diagram, Figure If. C-28. The MDS was a com-

posite of signal circuits originating in monitoring sensors, routed through the launch vehicle and the

interface, and terminating in the spacecraft warning -abort system. For redundancy, the electrical

power for MDS operation was derived from the launch vehicle accessory power supply (APS) bus,

400 cycle bus and the instrumentation power supply (IPS) bus.

The Stage I MDS engine thrust chamber pressure sensors, supplied with the Gemini Launch Ve-

hicle engines, were provided in redundant pairs for each engine subassembly. The warning signal

circuits were connected to individual Stage I engine warning lights (red) in the spacecraft. Upon de-

crease or loss of thrust chamber pressure, the redundant sensor switches closed and initiated a 28-

volt d-e warning signal. A similar circuit was provided for the Stage II engine MDS monitoring fuel

injection pressure. Performance of the Stage I engine was monitored through the MDS to prevent

launch with a low thrust subassembly.

All MDS propellant tank pressure sensors and signal circuits were identical with the exception

of the pressure operating range. A redundant pair of sensors was provided for each propellant tank.

Each sensor of the pair supplied an analog output signal, proportional to the sensed pressure, through

(individual) signal circuits to (individual) pressure indicating meters in the spacecraft.
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APrelaunch Malfunction Detection System (PMDS) was associated with the Stage I engine's

propellant tank pressurization system to monitor autogenous system performance during the engine

start period. Performance of both fuel and oxidizer tank pressurant gas supplies was monitored

so as to prevent liftoff in the event of an autogenous system malfunction.

Launch vehicle turning rates about all three axes were monitored by the MDS. In the event of

excessive turning rate (overrate), a red warning light in the spacecraft was energized. Simultaneously,

a signal was provided to initiate switchover to the secondary flight control system. Six such gyros

were used - a redundant pair for each of the vehicle body axes (pitch, yaw and roll). Two rate levels

of switch actuations were provided: a low rate level for Stage I boost flight, and a high rate level for

Stage IX flight. In the MDS circuits, the redundant (rate) switches were series-connected (low to low;

high to high). This required closure of both switches in the redundant chain to initiate switchover. The

low rate switch circuits were disabled at staging. Since the predominant failure mode of the rate switch

gyro was failure of the gyro spin motor, a failed gyro bypass circuit (spin motor rate detector, (SMftD))

was associated with each gyro to permit continued MDS rate sensing and overrate signalling using the

redundant (operable) rate switch gyro.

The dual switchover power amplifiers were self-latching, solid state switching modules used to

initiate a switchover from the primary to the secondary guidance and flight control system. On the in-

put side, signals were supplied from the MDS overrate circuits, the Stage I hydraulic actuators (low

pressure or hardover) or from the astronaut in the event of a malfunction. An unlatching capability

was provided for the switchover power amplifiers to permit switchback from the secondary to the pri-

mary guidance and flight control system during Stage IX boost flight.

Launch vehicle shutdown could be manually initiated by the astronauts in the event of a determined

or recommended mission abort or escape requirement.

c. ConfiGuration

(I) Launch Vehicle MDS Components

The Gemini Launch Vehicle MDS contained the following major components:

Rate switch package - (overrate sensor)

Malfunction detection package - (SMRD monitor, switchover and switchback circuits)

Fuel tank pressure sensors (Stage I and IX)

Oxidizer tank pressure sensors (Stage I and II)

Engine thrust chamber pressure sensors (chamber pressure for Stage I and fuel

injection pressure for Stage IX engines)

Stage I and II separation disconnects

All of the above MDS components were necessarily peculiar to the Gemini Launch Vehicle. The

particular designs or modifications to existing Titan IX designs were explicitly chosen for the MDS on

the basis of functional characteristics, simplicity, reliability, failure modes, and survival in the GLV

flight environments. Location of the MDS components in the GLV is shown on Figure IX. C-_9.

(Z) Comparison to Titan II

The MDS was peculiar to the Gemini Launch Vehicle and was designed and insta_lled as a subsys-

tem for crew safety - a consideration not applicable to the Titan IX booster. As an additional subsystem

to the booster, the entire MDS was identified as a Titan II deviation. There were no like components

between the Gemini Launch Vehicle MDS and the standard Titan IX boosters. However, the component

experience from Titan was applied to the selection and design of the MDS components.
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d. Component History

(I) Evaluation and Pre-Qualification

All major system components were subjected to extensive engineering evaluation tests prior to

selection and preparatory to qualification attempts. For example, a SMRD module relay was replaced

with a part designed to withstand higher levels of vibration. This procedure permitted selection of the

best available components and thereby minimized qualification problems.

(Z) Airborne Systems Functional Test Stand (ASFTS) Testing

ASFTS testing was directed toward integration of the MDS with the other vehicle systems and

evaluation of their performance and compatibility. These tests revealed problems with the rate switch

package (RSP) such as variation of setting with time and electrical interference with other systems.

These situations were corrected by design changes to the RSP. No problems of any consequence were

uncovered with the rest of the MDS components during this test phase

(3) Qualification

The rate switch package experienced the greatest difficulty during qualification testing. The

most severe problems were those of rate switch contact resistance, gyro rotor slowdown, SMRD volt-

age drift and variation of rate switch set point. Considerable redesign effort was involved in solving

all of these problems. For example, elimination of gyro rotor slowdown required the addition ef vibra-

tion isolation "O" rings within the gyro housing. The upgrading of quality control and inspection, im-

provement of assembly and test procedures and introduction of stringent cleanliness control also

contributed toward resolution of these problems permitting rate switch qualification.

Conditions like noisy signal output during vibration and excessive calibration drift over the oper-

ating temperature range were corrected during qualification test of the propellant tank pressure trans-

ducers. Units incorporating all of the corrective actions subsequently completed all qualification

tests successfully.

Problems of minor significance were resolved during qualification of the malfunction detection

package and other MDS components. Timely solution of all these problems resulted in the entire

Malfunction Detection System being qualified for manned flight.

(4) Piggyback Flight Tests

The Malfunction Detection System components were "piggyback" flight tested on five Titan II

missiles. This permitted early performance evaluation of the system in the actual flight environment.

These tests satisfactorily demonstrated the component operational configuration.

(5) Vendor Acceptance Testing

Numerous failures, particularly of the rate switch package have occurred during component

acceptance test. All such failures were reported and reviewed in detail during periodic reliability

reviews for impact on existing hardware and corrective action was implemented. Typical of this type

of failure was a problem uncovered with the MDP during PMT vibration testing. A power amplifier

transistor exhibited intermittent shorting due to internal contamination by loose weld flash particles.

A recurrence of this failure was minimized by procurement control of the transistor. The controlled

part was incorporated in all flight malfunction detection packages. The reliability reporting and cor-

rective action system was effective in maintaining a high level of component integrity.
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(6) VTF and ETR Testing

VTF and ETR testing was accomplished without major difficulty on the MDS for GLV's I through

1Z. Minor launch vehicle problems like electrical interference of the rate switches with the telemetry

system were discovered and resolved in VTF. A compatibility problem between the MDS engine sensor

circuit and the MDS test set (AGE) was also discovered in VTF and the test set modified prior to GLV-Z

launch.

Three engine MDS under-pressure sensor switches failed due to current overload during test of

GLV-1 and -Z. Investigation revealed that the failures were associated with inadvertent interconnection

of the launch vehicle MDS circuits and the (AGE) engine test set while electrical power was applied to

the launch vehicle. A similar situation occurred on GLV-5 when 4 MDS switches received a current

overload as a result of work being performed in the spacecraft with vehicle power on. Caution notes

were added to the test procedures to preclude recurrence of the situation. Test personnel were cau-

tioned to follow the applicable checkout procedures precisely as written.

A number of MDS engine pressure switches and tank pressure transducers were removed from

GLV during the course of checkout testing at VTF and ETR. Most of the failures were associated with

long term corrosion or an increase in contact resistance from contamination or due to switch inactivity.

Although no positive corrective action was taken, the checkout testing was effective in eliminating

questionable hardware so that no component failures were incurred in flight.

(7) Reliability-Testing

Failure mode testing was conducted on the propellant tank pressure transducers, MDP, RSP and

MDS stage separation disconnects. In addition, an extended life test program was conducted on the

RSP and MDP. As a result of the extended life test program, the allowable operating time on the rate

switch package was increased from 500 hours to 1000 hours effective GLV-7 and subsequent.

(8) Battleship Tank Tests

This program included 135 successful propellant tank pressure sensor cycles in the propellant

environment under actual engine operating conditions.

No problems were encountered during I01 Engine Under Pressure Sensor actuations.

Twenty-one satisfactory tests were run on the PMDS

(9) Flight Testing

No major MDS problems or failures were incurred in flight; however, review of the flight data

from GLV-I through -5 revealed a potential PMDS problem with the oxidizer pressurant pressure

switch (OPPS) resulting from a previous design change made in the Titan II autogenous pressurization

system. The GLV flight data indicated that the OPPS set point limits were not compatible with engine

pressure climbout characteristics and could result in an on the pad shutdown. A change was made in

the pressure oxidizer pressurant orifice inlet (POPOI) back pressure orifice to correct the condition

for GLV-6 and subsequent.

As a result of a completely successful flight program, operation of the MDS warning and switch-

over capability were never demonstrated during powered flight. A review of flight data from each flight,

however, confirmed that the MDS systems were in proper operating condition. During many flights,

excessive vehicle turning rates after spacecraft separation indicated that the RSP was functioning

within design tolerances.
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e. Crew Safety Systems

In addition to the GLV Malfunction Detection System, the following functions were integrated into

a comprehensive operational plan designed to optimize crew safety during prelaunch activity and pow-

ered flight. These functions supplement the MDS by providing early detection and warning of any unusual

condition.

(1) Pad Egress

GLV test conductor procedures were established to facilitate astronaut egress or seat ejection

in the event of a preliftoff incident necessitating evacuation from the spacecraft. A voice communica-

tion link was maintained with the astronauts to keep them informed of the situation and its status. This

capability was demonstrated by the securing operation following the GLV-6 on-pad shutdown.

(2) Test Conductor Abort

Visual monitoring was established to detect any anomaly occurring during the early portion of

powered flight. The astronauts would have been advised accordingly by voice communication and

spacecraft abort light illumination in the event of an impending catastrophe.

(3) Slow Malfunction Monitoring

Slow malfunction (guidance) monitors continually monitored trajectory, guidance and flight con-

trol information using displays and real time recordings. This function was effective throughout

powered flight to preclude an abort or mission anomaly by recommending switchover to the redundant

guidance and flight control system.

(4) Booster System Monitoring

Various booster parameters (e. g. , propulsion functions, tank pressures, voltages, etc. )

were monitored on real time displays to anticipate the requirement for a possible abort. Voice

communication was maintained with the spacecraft to advise of booster status.

f. Conclusions

Of significant importance were the five MDS piggyback flights which provided early information

of MDS behavior under actual flight conditions. The minor anomalies which were encountered were

investigated and corrected and the fixes tested during subsequent flights.

MDS performance duping all flights indicated a progression toward attaining a faultless MDS

installation through stringent qualification and reliability testing and numerous checkout tests at

VTF and ETR.

The MDS, though never utilized in a catastrophic flight environment, achieved a 100% flight

reliability record for component performance with every indication that the total system was satis-

factory for the assigned crew safety function during powered flight.

As a result of the problems encountered during component and system development combined with

the close attention given the examination and evaluation of the involved areas, a first hand and inti-

mate knowledge of the MDS was gained by its designers. This relationship to the actual components

and installation provided the highest degree of assurance that the MDS would function as intended.

Since the MDS was designed primarily as a warning system for use in conjunction with the man-

ual abort technique, its effectiveness depended largely on the training and conditioning of the crew. The

excellent and thorough crew training prior to each flight was demonstrated during the initial launch
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attempt of GT -6A when a false liftoff signal was generated by inadvertent disconnect of a rail-plug con-

nector. Engine start and shutdown was evident on the MDS display panel in the cockpit. An unneces-

sary and potentially dangerous Mode Iabort was avoided by the command pilot's "seat of the pants"

realization that liftoff had not occurred.

The entire MDS was visual in nature, utilizing gauges and lights to indicate a system's proper

function or impending failure. It was therefore critical to solve the POGO problem in order for the

displays to be clearly visible. The POGO levels of vibration were reduced to an acceptable level by

the use of propellant feed system damping devices.

The PMDS (Pre-Launch Malfunction Detection System) was limited in effectiveness by the nature

of the design placement of sensors. The sensors for determining sufficient autogenous gas flow to the

propellant tanks were placed at the engine interface. As a result of this, a line failure downstream

of the engine interface might not have been detected.
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12. CREW SAFETY

a. Slow Malfunction Detection

The redundant guidance and flight control systems within the Gemini Launch Vehicle presented a

unique crew safety problem. Many failure modes in the primary launch vehicle systems were detected

by the airborne Malfunction Detection System which would initiate an automatic switchover to the re-

dundant system. However, for some failure modes and during specific times of flight, the resulting

vehicle disturbance would have been insufficient to initiate a switchover. Failure mode analysis indicated

that approximately 15% of all launch vehicle failures would cause a slow malfunction, resulting in a

departure from a nominal trajectory, t9'20'Zl To effectively retain the benefits of systems redundancy

for this type of malfunction, provisions for an astronaut-initiated manual switchover capability were in-

corporated. As an aid to making the manual switchover decision, a mission control slow malfunction

detection monitoring function which would analyze real time telemetry and trajectory data was estab-

lished. To attain this objective, the launch vehicle contractor was directed to perform studies to

identify the causes and effects of slow malfunctions with respect to mission objectives, perform analyses

to establish a monitoring capability, aid in the establishment of a monitoring facility, establish a training

facility for training monitors and provide suitably trained monitor personnel for simulations and launch

operations. 22

The analysis of slow malfunction causes and effects in relation to hardware and performance

limitations led to constraint identification. 23 Constraints could be classified into two categories -

mission-related and hardware-related constraints. A minimum orbital abort requirement of an inertial

velocity equal to that required for 1-1/2 orbits less 100 fps was used to establish the mission-related

performance constraints. For the rendezvous missions, wedge angle and out-of-plane velocity also

became considerations for mission-related constraints. Range safety corridors likewise were defined

as trajectory constraining factors. Hardware limitations such as structural, thermal, radar look
24

angles, spacecraft aerodynamics abort limitations developed into hardware-related constraints.

Slow malfunction computer simulations were used extensively in the actual construction of the

wedge angle and performance constraint lines. In these cases, by simulating a specific type of slow

malfunction, switching over and evaluating the SECO +20 sec (insertion) conditions, a locus of switch-

over points having the same SECO +20 sec conditions was obtained for different switchover times.

This locus then became a constraint line bounding the nominal unbiased trajectory. In order to create

a continuous envelope of constraints, procedure lines were constructed between the various constraint

segments. This precluded cases where a diverging trajectory would miss a specific constraint, but

might violate another constraint at a later time. Thus a network of multi-dimensional constraint

requirements was resolved with respect to the same parameters for ease of operational handling and

to facilitate display. Figures Ii. C-30 and II. C-31 typify recent constraint displays for Stages I and II

in the pitch (V-F) and lateral planes.

Performance-oriented constraints were developed about the nominal predicted launch vehicle

trajectory for each mission. This trajectory was then biased using launch wind predictions, pitch

programmer characteristics, and Stage I engine thrust data. This biased trajectory was provided to

the slow malfunction detection monitors as the launch reference trajectory. Corresponding wind-biased

analog traces of monitored telemetered functions were also provided for reference.
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In addition to the actual trajectory on the constraints display, real time display of discretes

and telemetered parameters were made available to the monitors via two strip chart recorders, digital

displays and flag indicators located on the monitors f consoles (see Figure II.C-32). The telemetry and

Burroughs quantities monitored are listed below:

Real-Time Telemetry Readouts -- Guidance Monitor Console (MCC)

Stage I pitch deflection (primary)

Stage I yaw deflection (primary)

Stage I yaw deflection (secondary)
Stage I pitch deflection (secondary)

Stage n yaw deflection
Stage n pitch deflection

Stage n roll deflection

TARS guidance initiate

Primary gain change

Primary pitch rate program

Primary roll rate program

IGS pitch error output

IGS yaw error output

IGS roll error output

Real-Time RGS Ground Computer Readouts --

Radar position tracking flag

Radar range rate flag

Radar lateral rate flag

Liftoff (LO) (First motion)

Guidance initiate steering

SECO transmit

Radar quality flag

Magnitude of inertial velocity of

missile, extrapolated linearly
0.789 seconds ahead in time

Sine of inertial flight path angle

multiplied by 57.3 h extrape!ated

linearly O. 789 seconds ahead in
time

Sine of inertial flight path angle

multiplied by 57.3

Magnitude of inertial velocity

of missile, extrapolated linearly

O. 789 seconds ahead in time

Decoder pitch rate output
Decoder yaw rate output

Adapter pitch-error output

Adapter yaw error output
Adapter roll error output

Secondary yaw autopilot output

Secondary pitch autopilot output

Secondary pitch autopilot output

Secondary yaw autopilot output
Secondary gain change

Stage I-II separation
MDS amp "A" switchover

MDS amp "B" switchover

TCVPSV Stage II shutdown

Guidance Monitor Console (MCC)

Inertial velocity normal to an

inertial plane containing the launch

point vertical and headed along the
launch _zLntuth Liiii-lUS the salqlc

velocity prior to LO

Component of inertial velocity

normal to target plane plus a bias

to compensate for lateral cg

effect on Stage lI guidance

inac curacies

Total pitch torquing rate being

transmitted from ground to missile

Injection altitude component of WpN

Pitch attitude error conloonent

of WpN

Total yaw torquing rate being trans-
mitted from ground to missile

Elapsed time after LO

Time-to-go to SECO

These functions were denoted as either mandatory or highly desirable for launch operations in the

Systems Test Objectives document and NASA Mission Rules.

(1) Constraint Validation

Prior to the finalization of mission constraints, an independent validation procedure was initiated

by Aerospace Corporation to assure constraint validity. Using the contractor-prepared constraints with

Aerospace's computer routine, updated for the current secondary system ascent trajectory program,

slow malfunctions were injected, switchover performed and resultant insertion conditions compared with

the contractor's. This validation procedure continued as required for each mission.
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(2) Switchback
Effectiveonthefirst mannedflight(GT-3),amodificationto theflightcontrolsystemwasinitiated

whichprovidedthespacecraftcrewwiththecapabilityof switchingbackto thelaunchvehicle'sprimary
guidanceandcontrolsystemafterstaging,prior toRGSclosedloopguidanceinitiate. It wasagreedthat
switchbackwouldbeattemptedonlyif theswitchoverwereduetoafailureof StageI primaryhydraulics.
Thisinnovationfurtherenhancedmissionsuccessin theeventof thismalfunctionmode.

(3) Monitors

Theslowmalfunctiondetectionmonitors(GuidanceMonitors)observedselecteddiscreteandanalog
parametersthatdescribedtheoperatingandperformancecharacteristicsof theprimaryandsecondary
guidancesystemduringpoweredflight. Theyanalyzedrealtimetelemetry,trajectoriesandgroundcom-
putersignals;informedotherMissionControlFlightControllersandtheFlightDirectorofguidanceand
flightcontrolsystems'status;recommendedguidanceswitchoveror switchbackwhenwarranted;andacted
asrequiredto maximizemissionsuccess.

25,26,27(4) MonitorTraining
M/Bprovidedtrainedmonitorpersonnelfor activeparticipationduringall Geminilaunches.To

thisend,amonitortrainingprogramandtrainingfacility, completewithconstraintplotboardsandre-
corderssimilartotheMissionControlGuidanceMonitor'sconsole,wereestablishedatBaltimore.
Training tapes simulating telemetry and radar data of norn_ai and abnur:L:al a.acant trajector_os, were

developed to provide inputs to this console. Contractor personnel were trained utilizing this simulator

as were Aerospace and NASA monitors. This training was supplemented by active participation in all

exercises at Mission Control Center - Houston. The utility of the Martin Mission Simulator cannot be

overemphasized. It provided, within the contractor's facility, a practical means of confirming monitor

proficiency and constraint practicality.

(5) Allied Monitored Functions

In addition to the slow malfunction detectio_n monitoring activity, two additional monitoring activi-

ties relating to booster systems were operationally implemented at Mission Control. These functions

(booster systems engineer and tank pressure monitor)were staffed by NASA FOD personnel and tech-

nicalIy supported by the Martin Company.

The booster systems engineer and tank pressure monitor provided real time evaluation during

powered flight of the primary and secondary d-c power sources, primary and secondary hydraulic

systems pressure, engine(s) thrust chamber pressure and propellant tank pressure as well as other

telemetered functions relative to launch vehicle operation. Predicated upon evaluation of these booster

systems performance, the monitors would communicate to the Flight Director, other controllers, and

to the astornauts via Capsule Communicator information relating to an abort condition, hydraulic switch-

over, a "no-go" switchover condition or engine malfunction.

Abort criteria, vehicle irfformation, and recommendations relating to these monitored functions

were prepared by the Martin Company evolving from Abort Panel and Guidance Constraint Meetings.

Specific abort criteria was established and approved procedures delineated in and controlled by Martin's

LV 376 Part B, Booster Abort Criteria, 24 and NASA's FOD Mission Rules. Telemetry requirements

for support of these functions were defined and priority controlled by the STO and Mission Rules.

Specific launch information relative to these functions such as predicted engine thrust character-

istics and predicted wind influenced tank pressure curves were provided to the monitors prior to each

launch.
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(b) Conclusions and Recommendations

Since, throughout the course of the Gemini Program, no malfunction occurred which necessitated

or precipitated an in flight switchover or abort, it is extremely difficult to evaluate the net worth of the

slow malfunction detection monitoring effort. However, even as theprogram progressed and the prob-

ability of a malfunction occurring decreased, the possibility still remained. Operator training was

never relaxed. The system and techniques were constantly improved and refined. In the event a mal-

function had occurred, the system and personnel would have detected the condition, evaluated it, and

initiated appropriate action to insure the astronauts' safety and mission success.

In retrospect, there are several areas which could have been explored and evaluated in simplify-

ing the slow malfunction detection effort. It would have been beneficial to define the slow malfunction

detection requirements early in the program and influence the "on board" instrumentation and telemetry.

Displays also were evolved around available range data sources.

Secondly, the monitors were required to observe several events simultaneously during powered

flight to evaluate slow malfunction conditions. It would have been desirable to engineer the system so

that the information displayed was reduced, better grouped and simplified for evaluation purposes.
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13. TECHNICAL INTERFACE MANAGEMENT

This subject is discussed in general terms from the Management standpoint in Section II.A-Z.

The discussion which follows provides a more detailed description of the'functioning of the Interface

Groups and recommendations for future implementation of such groups.

Through the establishment of the Interface Panels and Working Groups, a common technical

ground was created to develop the Interface Specifications used in the Gemini Program. Appropriate

responsible representation by the contractors and the managing agencies provided a method for initially

defining interface parameters. Each contractor was assigned the task of defining his technical inter-

faces and outlining the requirements for technical information required from other contractors. Fre-

quently this data would emanate from other subsystem panel or working group areas, such as Structures,

Electrical, AGE, Guidance. Rough draft specifications were prepared incorporating technical infor-

mation on mechanical, electrical, software and events timing. Interface drawings were prepared and

procedures established for interface control purposes. In addition to defining all airborne and AGE

interfaces, the specification established the requirement for and control of simulation equipment and

specialized tooling each contractor was to provide.

Draft interface specifications were reviewed, corrected, re-reviewed, negotiated, arbitrated

and in sorne cases contractors were directed to comply with provisions of the' draft. This effcmt ulti-

mately resulted in contractually and technically acceptable documents. Once this had been accomplished,

formal interface specification and drawin_ control was implemented and any changes required config-

uration management processing and specification control.

Interface verification and integrity testing was accomplished as an integral part of vehicle and

acceptance testing in VTF. Test data as applicable to the interface was reviewed extensively prior to

vehicle acceptance. In addition to actual test data, interface simulators and test tooling configurations

were reviewed to assure specification compliance. Since interface functions cross numerous sub-

system areas, close coordination was maintained with other cognizant personnel to ensure compliance

with specification requirements.

After vehicle acceptance and delivery to the Cape, further interface verifications were performed

during subsystem and system test prior to spacecraft mate.

Early comprehensive technical definition and effective coordination precluded major interface

problems impacting the program. Minor problems did occur but these were identified early during

interface verification, negotiated and resolved. The Gemini interface specifications were well-

organized and comprehensive. The program demonstrated the necessity of having three major

items affecting interface compatibility complete and well defined. Those three areas are

I) controlled tooling for mechanical interface verification, 2) interface electrical schematics

delineating all circuit elements described in the specifications, and 3) negotiated and contractually

controlled test procedures for verifying both sides of the interface and the interrelated functional

compatibility. Limiting any of these areas reduces interface effectiveness.
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14. AEROSPACE GROUND EQUIPMENT

a. Martin Baltimore and ETR

The general requirements for checkout of the GLV at the contractors Vertical Test Facility (VTF)

and at ETR were predicated on the following:

l) The launch vehicle shall be a modified version with essentially the same performance spec-

ifications as the present Titan II ICBM, retaining the general aerodynamic shape and basic

systems and propulsion concepts (AFSSD Exhibit No. 62-12, Statement of Work). Changes to

the launch vehicle shall include:

(a) Addition of new systems or modification to present systems as required to assure

pilot safety during the countdown, launch, and operation through powered flight.

(b) Changes which will improve the probability of mission success.

Z) Presently-developed Titan II launch vehicle auxiliary equipment shall be used to the maxi-

mum extent possible.

3) AGE for prelaunch, launch control and checkout shall use presently designed or developed

hardware to the extent of availability and adequacy. However, this does not preclude the

development of new equipment where cost and/or time advantages may be realized without

degradation of the over-all program reliability of schedules. New AGE shall be developed

to fulfill uniqde requirements of the Gemini Launch Vehicle. Special attention shall be

devoted to new AGE required to reduce launch checkout and countdown times.

4) All equipment, including the AGE checkout and launch equipment, shall be built to approved

specifications as described in the documentation paragraph (AFSSD Exhibit 6Z-lZ, Para-

graph 5.1.2).

5) Integrate the Government-furnished equipment (GFE) into the auxiliary equipment (SSD

Exhibit 62-1Z, Paragraph 5.1.9).

The major test objectives to be accomplished were:

I) VTF (Figure II. C- 33)

(a) Verify the functional operation and integrity of the GLV subsystems (Subsystem Func-

tional Verification Tests).

(b) Verify the functional operation and compatibility of the GLV subsystem during a simu-

lated countdown (Combined Systems Acceptance Test-trial runs).

(c) Demonstrate to the customer the functional operation and colnpatibility of the GLV

subsystems during a simulated countdown, launch and flight (Combined Systems Accept-

ance Test).

Z) ETR

(a) The GLV shall be checked out and launched from Complex 19, ETR. This complex

was modified, as required, to serve both the launch vehicle and the spacecraft (Ref-

erence AFSSD Exhibit 62-12, Paragraph 4.5, g7 December 1961).

Details of the AGE utilized on the Gemini Program can be found in Martin Documents LV-33,

"AGE Plan-Checkout and Launch Control (ETR)"; LV-34, "AGE Plan-Checkout and Launch Control

(VTF)"; LV-38, "AGE Plan-Erector and Umbilical Tower Operating Ground Equipment"; and LV-30,

"AGE Plan-Ground Instrumentation Equipment (VTF and ETR)."

Basically, the Gemini checkout philosophy called for a decentralized approach; i.e., an equiva-

lent equipment was provided to check the corresponding airborne system. This relationship of the

various airborne systems and the checkout equipment is illustrated in Figure II. C-34.

Each checkout set could operate on its equivalent airborne system virtually independent of other

equipment. The only time that the checkout equipment used automatic operation was during critical

events or time periods; consequently, the system was essentially a manually operated one. However,

during the countdown phase, all operations performed by the checkout equipment were coordinated by the

launch control equipment.
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Launch control was obtained through the use of the Master Operations Control System (MOCS) and

other related equipment, including closed circuit television and a community time display board. The

MOCS coordinated the time sequence for checkout of the launch vehicle, provided remote control of

facilities such as the water supply system and erector, and displayed the state of readiness of the

entire complex activity as the various time check points were reached. Through the use of hold-fire

and shutdown circuits, the system was used to permit or inhibit launch. Since actual launch functions

were not required at the contractor' s facility, the MOCS was peculiar to ETR.

b. Support Areas

(1) Airborne Systems Functional Test Stand (ASFTS)

This facility was located at Baltimore in the VTF and is described in Section II. C-16.

(2) Gyro Test Facilities

Acceptance testing of gyro components, i.e., TARS and rate gyros, was accomplished in Balti-

more in what was designated the Gyro Laboratory. Test equipment was provided for static and dynamic

testing under ambient conditions. Commercially developed test equipment (e. g., rate tables, measure-

ment devices, power supplies) was used in conjunction with Martin developed control panels and read-

outs which were rack mounted.

A duplicate facility was provided at ETR for the checkout of flight hardware after shipment from

Baltimore. Identical test procedures and test set verification procedures were alsu used at _TR.

(3) General

In addition to the above, certain basic support areas were provided at both the contractor s facil-

ity and at ETR. These included a battery laboratory, clean room, receiving inspection test areas,

controlled storages, etc.

c. Facilities Modifications

Complex 19, (Figure I/. C-35) prior to assignment as the Gemini Launch Gomplex, was a Titan I

site. Considerable modification was therefore required to convert the facility. The major changes

were associated with the different propellants used by the GLV, and changes associated with the spacecraft

and its operational safety. The following paragraphs s ummarizein more detail the modification program.

(I) Erector

Considerable modification was required to the Complete Vehicle Erector to accommodate the new

vehicle. First, a protective enclosure for the spacecraft was required, and an additional elevator for

access to it. Changes in work platforms were necessary, and modifications to the structure itself and

the actuation system due to the added weight on the erector.

(Z) Propellant Handling

New holding facilities, transfer, and distribution facilities were required for the Gemini vehicle.

The Titan I fuel facility was removed, and the existing oxygen facility converted for spacecraft liquid

and gaseous oxygen requirements.
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A new holding area was added for spacecraft liquid hydrogen requirements. The gaseous nitrogen

supply was increased by converting existing helium facilities. Additional nitrogen was required for

propellant handling, tank pressurization, water control, and spacecraft needs.

(3) Water Systems

Because of the highly toxic propellants, water flow requirements were increased. This required

enlarging and leak-proofing the flume and skimming basin. Additional spray and washdown facilities

were required to service the spacecraft, the propellant holding and distribution areas, and washdown of

any area where propellants might be spilled. In addition, a man-rated water spray systemwas added

which encompassed the immediate area around the launch stand. This system was to provide the astro-

nauts protection from fire and propellants in case of an on-the-pad abort.

(4) Decontamination

A facility was required for personnel decontamination when working with propellants. In addition,

emergency showers were provided throughout work areas in case of accidental exposure to propellants

without adequate protective clothing.

(5) Air Conditioning

An additional air conditioning facility was required to provide cooling to the spacecraft enclosure.

Modifications were also required to the _Lis£i£..g launch vchic!e air conditioner°

(6) Other Changes

Many other changes were required to service the different configuration of the vehicle, but which

provided essentially the same function as for the Titan I. This included such items as electrical facili-

ities, umbilical configuration, control cables, and personnel accommodations.
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15. RELIABILITY TEST PROGRAM

A Reliability Test Program was contractually required of the Martin Co. on selected items in order

to provide adequate assurance that the reliability goals would be achieved. This test program consis-

ted of Environmental Life Testing (ELT) and/or Failure Mode Testing (FMT) on ten (I0) Gemini

peculiar airborne components.

ELT involved testing the selected components at simulated flight environment, vibration and/or

temperature, equivalent to 100% of the qualification levels or Production Monitoring Test (PMT) levels

as defined by the individual test speciffcations until a predetermined number of failures or hours of

operation had occurred. In the event that no failures had occurred at the end of the test period, the

environment stress was, in some cases, increased until failure occurred. A failure analysis was con-

ducted after each failure.

FMT was conducted by increasing the selected failure producing stress, vibration and/or temper-

ature, (and in two cases an Electro-Interference Test) until an out-of -tolerance condition was reached.

The stress level was then backed off to determine if the component returned to within specification

requirements. Failure to return was considered a catastrophic failure. Once a failure mode of a

component had been established, any additional testing on that component was directed toward other

modes of failure. No attempt was made to determine any statistical significance of a failure mode on

either a time base or a margin of safety base.

The reliability test program gave some additional confidence that the selected components were

mature enough to be used on a man-rated program, although each component had previously passed a very

extensive qualification test program, and most of the failure modes were found then. One significant

failure occurred that affected the entire program. The static inverter failed in vibration in the second axis

tested, and this failure occurred at qualification level of test (a test that qualification units had passed

successfully). Failure analysis showed that the vendor had made an unauthorized change in the internal

wiring on the production line (the wires were not supported as they had been), and they failed under

vibration. Because of this failure, the vendor and all others were warned that if any changes were to

be made to the hardware after it had passed qualification testing, requalifying would be necessary.

This policy was maintained throughout the program with few known exceptions. In two different

cases, changes were made to components without notifying the contractor. In one case, two subvendors

made "cost saving" improvement changes to piece parts used in a time delay relay without notifying

the vendor, and both of the changed parts failed during later testing. In the other case, a vendor made

changes to a spring in a connector without notifying the contractor, and the connector failed to discon-

nect properly.

It is believed that a more efficient means of determining reliability by test would be to extend the

qualification test program on selected items (and selected environments), in order to actually determine

the margin of safety on these items. The qualification requirement that no failures are accepted

means that after completing testing, the basic integrity of the component is still unknown (qualification

testing is a test to _ not a test to failure). All testing is expensive, therefore, the maximum amount

of information should be obtained from every piece of hardware designated for component testing.
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16. AIRBORNE SYSTEMS FUNCTIONAL TEST SET-UP (ASFTS) 28

a. B a ckg round

The Gemini ASFTS program was initiated in January i96Z at Martin Baltimore to functionally test

the airborne system of the Gemini Launch Vehicle. While particular emphasis was given to the greatly

modified flight control and the all new malfunction detection systems, ASFTS was a functional bench

layout of the total vehicle. The defined system configuration at the initiation of the program was non-

redundant with the malfunction detection system being fully automatic. During the period January

through May of 1962, engineering, procurement, documentation and manufacturing installation were

completed in preparation for the test program scheduled to start June I, 1962. At this time, direction

was received from the procuring agency to redesign the airborne system to a redundant configuration

with the malfunction detection system to become basically a manual system. During the several months

required for system redesign and procurement on the redundant configuration, a limited test program

was conducted on the completed non-redundant configuration.

After redesign and modification, the major test effort took place between November 1962 and

August 1963. ASFTS continued to serve the Gemini program for modification (ECP) design proofing,

failure analyses and other investigations as listed in paragraph {c) below.

b. Description

ASFTS can be described as a functional block diagram of the Gemini Launch Vehicle and associ-

ated AGE. The various subsystems were bench, rack, platform and board-mounted. This allowed

complete accessibility of test points to facilitate engineering development and failure mode analysis.

Its subsystem could be either functionally isolated or integrated with other subsystems.

The ASFTS facility was located on the ground floor of the Baltimore Vertical Test Facility in a

laboratory environment complete with AGE, test equipment, and simulation equipment.

c. Use

ASFTS was used for thc following purposes:

i) Progressive component: subsystem, system and integrated sysLems dev_iupm_nt and design

clean-up.

2) AGE/Airborne system development and design clean-up.

3) Engineering change evaluation.

4) Spacecraft interface confirmation.

5) Systems logic - redundancy and MDS statusing.

6) Parametric variation effects.

7) Procedures development.

8) Flight control stability - utilizing an analog computer for airframe in-flight simulation.

9) Failure mode investigations in support of test and flight anomalies and failures.

d. Advantages of ASFTS

When compared to a complete vehicle functional mockup as used in many programs, the ASFTS

approach represented two major advantages, (I) cost and (Z) test accessibility.

A cost comparison study performed during the program showed conservatively that a full mockup

would have cost over twice as much as the cost of ASFTS.
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The laboratory-type environment with bench and board layout provided a far handier and accessi-

ble situation for engineering design testing and problem solving than a full mockup.

In addition to its use throughout the program for evaluating design changes, it was also invaluable

in trouble-shooting vehicle problems encountered at ETR. In several cases including GLV-1Z, hard-

ware was sent to ASFTS and successful duplication of malfunctions there pin-pointed the cause of the

problem.

The flexibility and quick reaction capability associated with the use of ASFTS in eupport of the

flight phase was of untold value to the success of the program. In any list of items to be recommended

for consideration by other program efforts, an ASFTS-type of approach would certainly be at the top of

the list.

II. C-102



17. QUALIFICATIONTESTPROGRAM

a. Component Control and Definition of Qualification Testing

The evolution and control of a component (black box, actuator, etc.) is quite complex, as shown

in Figure II. C-36. The qualification test portion of this evolution is equally complex and should encom-

pass more than environmental testing. In order to reduce the chance of failure during qualification

testing, it is advantageous to perform engineering development tests early in the program. In addition,

a production monitoring test is recommended to uncover latent fabrication defects and preclude such

failures during qualification. The definition of these tests is as follows:

1) Development tests are environmental tests to certify the design concept and to determine

optimum compatibility with design criteria. Independent of test specification requirements

are the specified tests conducted during the design phase to develop hardware, evaluate

operating limits, establish safety margins over and above design levels and aid in selecting
the best of several candidate components. If the development tests are properly selected

and thorough and the production hardware does not change significantly, the qualification

test program becomes a mere formality.

2) Production Monitoring Testing (PMT) is discussed in a separate section(II.C-18). It is
defined as acceptance testing of production hardware in environments of sufficient severity

to uncover latent defects, but not high enough to cause any significant damage to the com-

ponent. Latent defects are those which are not visible or apparent with normal inspection

techniques. A reduced level of vibration relative to qualification level was used on each
selected component in the Gemini Program. Production components normally went through

PMT prior to operational usage. This philosophy was employed for the qualification test

program (components undergoing qualification testing had prior usage comparable to the

flight article).

3) Qualification tests are a series of functional tests performed under simulated environments,

which have a factor of safety above mission requirements. The test article used is identical

with the production equipment. The purpose of these tests was to demonstrate, prior to

operational usage, that the equipment would function satisfactorily in the anticipated environ-

ment.

Using the Titan I and Titan I/ environmental criteria as a base, qualification tests were conducted

on components which were new, which underwent a change in design or usage, or which experienced a

more severe GLV environment.

The test program required ......_ _u_,_,_o'__,_4-;.... :_^ _v_,,._,,_._._....... *_^_ ....a11.._;_........................... _,_

and Quality Control assured compliance to approved specifications, so that qualification testing became

a formal program.

Failures played a major role in qualification testing. They were classified as out-of-tolerance

measurements, changes in configuration, ruptures, internal rearrangement and corrosion. Each fail-

ure was examined and corrected individually. Here, important decisions were made relative to retest

direction. If a major failure occurred and the fix required new or additional parts, the component was

restored to new hardware status and the entire test cycle rerun. This has a serious effect on any sched-

ule. It normally takes six weeks to conduct the required environmental qualification tests; failures may

prolong this to six months. In this event, the vendor's evaluation test program would seem to be weak

or nonexistent. Minor failures may only require rerunning the environment, which may effect the fix

(i.e. , usually vibration). In general, no failure was permitted to pass without some retesting . The

test hardware used was selected from the initial production units. Vendor "hand-built" qualification

units may pass the required tests, but the production hardware may not be able to pass the acceptance

tests, much less qualification test levels.
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The environmental test requirements for each component was specified in the contract. All test

results in the form of formal reports were submitted to SSD/Aerospace for review and approval.

The test cycle presented many unique problems and unknowns. It was necessary to review all

these problems with the proper supervisory people, in order to keep them up to date with the program.

The vendors were made to feel that technical assistance was available from the contractor. Personnel

at the directors' level visited vendors' plants to assist them during the peak of the qualification test pro-

gram. The inhouse qualification testing was easier to control; however, the testing was conducted to

the same rigid standards as imposed on the vendors. The Martin Company qualified fifty four (54)

Gemini peculiar components (plus forty-eight (48) components previously qualified on Titan II to the

same or more stringent requirements), Aerojet General qualified twelve (12) components, General

Electric qualified eight (8) components, and Advanced Communications Inc. qualified one (1) component.

It should be noted that three (3) (in most instances) units of each component were required to pass all

of the tests without failure, and that all components were clualified prior to the first manned launch.

b. Conclusions

The lessons learned from the Gemini Qualification Test Program were many and should be invalu-

able to a new program. -The significant areas are described below.

It is important to separate the evaluation/development testing from formal qualification testing.

The evaluation tests should start with prototype hardware, as soon as the level of the critical environ-

m_nts are established.

Failures are an integral part of the test program but no qualification test schedule has ever been

permitted a "failure pad", because this would be admitting that an inadequate evaluation test program

has been conducted, or the design group had serious doubts as to the integrity of the components being

tested. When a failure occurs during qualification testing, perserverance and technical judgment are

the only tools available. The vendor is in a position to lose money, because his production line does

not move and the hardware usually undergoes changes. In some cases, the vendor's technical capability

becomes stretched to the point where he does nothing. He may refuse assistance, citing proprietary

rights. A failure usually results in some retesting and may require reverting to the start of the test

program. In some cases, it is desirable to continue testing who, a_ _,u_-,_,-_,_, .................... ,

in order to subject that part of the hardware to other tests that may have an effect on the part. It is

then possible that one fix could correct several defects at the same time and gain valuable test time.

Vibration was the cause of 30% of the qualification test failures, and this was probably to be expected,

but electro-interference, seal, temperature, and salt fog accounted for 8-10% each (see Figure II.C-37)

and this appears to be high for nondynamic environmental type failures. The designers must be made

aware of the environments and levels early. Failures due to most environments are inexcusable and

are rare, if the designer is given all of the facts regarding the component and its intended usage at the

start of his design effort. No flight failures were recorded on GLV hardware throughout the program,

but one significant failure occurred after engine ignition that caused a shutdown on the pad. This failure

(a tandem actuator) probably could have been prevented by a better design review or a better, more

extensive, qualification program. No dynamic impulse test, probably the only test that could have found
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the problem, was included nor evencontemplateduntil after the failure. It is impossible to put too much

time into the study of all of the environmental effects on a component during its design phase.

It is extremely important that any contract with a vendor that includes qualification testing should

specify that the units used for qualification must be identical to production hardware. The vendor

should select approved materials and parts at random and avoid hand selection and fitting. It is possible

for a unit to "pass" qualification and yet "similar" units fail to pass acceptance testing, because the

vendor has made changes or not exercised the same control with the production units. A well defined

contract can save many future headaches on both sides. It is just as important to contractually control

the vendor's production hardware to assure no changes are made without customer knowledge and con-

currence.

The environmental criteria evolved from Titan I and Titan II data. The levels were deliberately

conservative for each environment, but only the levels specified for vibration were of such magnitude

as to be controversial, and this was because the levels were specified for the various compartments,

rather than for the individual components. During captive firings and flights of the Titan I vehicles,

numerous accelerometer measurements were taken and reduced for the response spectrums. A review

of several hundred spectrums showed a great variation in shape and amplitude. Even when sorted by

compartments,the spectrums still showed variations between locations and between firings for the same

location. General practicality and technical judgment then dictated an overall specification for each com-

partment, rather than an individual spectrum for each piece of equipment. Titan II levels of vibration

were prcdicted before first flight by extr_-polating the Titan I levels and using techniques tb_atprovided

for the inclusion of structural effects, as well as the influential vibration sources.

The amount of conservatism obtained by this method of developing the criteria depends on what

29
company or agency made the comparison between flight data and test criteria. A BB & N report

states that the " .... existing Titan IT specifications are quite representative of the missile vibration

measurements ---. " Martin and G. E. have stated that they believe the environments for the individual

components are conservative, varying from "slightly" in some areas to "several hundred percent" in

other areas .30

The deciding factor in usin_ the identical vibration criteria for GLV that was used on Titan II was

that it appeared inconceivable to test a GLV component to a level different (lower) than a T-If compo-

nent was tested and yet have it located adjacent to the T-II qualified unit in the vehicle.
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18. PRODUCTIONMONITORING/ACCEPTANCETESTING
ProductionMonitoringTesting(PMT) 31 is the application of an environment (usually vibration) to

each component of a production run as part of the component acceptance technique. The environmental

level chosen was sufficiently severe to uncover latent defects, but not high enough to accumulate signi-

ficant fatigue or other damage to the parts. Latent defects are those hidden from conventional inspec-

tion techniques and may be divided into two general types:

1) Gross defects - cold soldered joints are a classic example of this type of defect.

Z) Defects which are a function of environment - this type is more difficult to define and find,

but an example might be the mechanical interference of electrical parts resulting in a short.

Corollary benefits of PMT during the initial production runs included the identification of defects

undetected by immature quality control processes, and identification of design problems not uncovered

during the development and qualification processes. Later in the program, PMT aided in the discovery

of unauthorized changes to components by vendors.

Acceptance testing that has included vibration has been looked at with jaundice eye by some mem-

bers of the industry. It is felt that it is possible to stress components to the point that they may fail

the next time they are vibrated - during flight. A great deal of study went into the levels of vibration
31

used on the Gemini components during PMT and evolved from the Titan I and Titan II programs. It

is worth noting that no component failures were recorded during flight during the entire Gemini Program,

and over 700 components received PMT.

Figure II. C-38 shows the PMT failures by type of malfunction.
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i9. PROPELLANT TRANSFER AND PRESSURIZATION SYSTEM (PTPS)

a. Background

Selection o£ the method and equipment for performing propellant loading to meet the requirements

of the Gemini Launch Vehicle test and launch operations was made after detailed evaluation of four pos-

sible methods. These were:

1) Baldwin-Lima-Hamilton Digital Weighting System

Z) Launch Vehicle Tank High Level Point Sensors

3) Calibrated Storage Vessels

4) Positive Displacement Flowmeters

Method 4 was selected as the primary means of measuring loads. This system was capable of indi-

cating the quantity of propellant loaded in each GLV tank to an accuracy of + 0.35% by weight. The high

level sensors and BLH Digital Weighing System were used as secondary checking systems. The high

level point sensors were installed and calibrated in each GLV tank at VTF.

The propellants utilized were

Fuel Blend of liquid chemicals, hydrazine (NzH4) and unsymmetrical

dimethylhydrazine, { NzH z (CH3) 2 }

Oxidizer Nitrogen tetroxide (N204).

b. Description

Schematics of the fuel and oxidizer PTPS's are shown on Figure II. C-39 and Figure II. C-40.

These show the systems in the final configuration beginning with GLV-6 and used thereafter.

c. Significant Modifications

(1) Tandem Flowrneters (ECP 47Z)

Redundant propellant system tandem flowmeters were incorporated prior to the GT-6 mission to

provide increased confidence in loading accuracy and accommodate "in line" spares. With this con-

figuration, a single loading was used to verify each tank high level sensor location. This change placed

an additional flowmeter in tandem with each of the existing flowmeters and piping modifications were

made to permit flowing all four flowmeters (Stage I and Stage LI) in the forward direction during

prechill, to allow a check of the calibration of all four meters.

(2) Redundant Propellant Holding Area (ECP 440)

Redundant capability of the PTPS was provided to improve reliability and recycle time to support

rendezvous launch windows and to prevent a launch postponement due to failure of a single system. This

effort required the modification of the original propellant transfer and pressurization system to accept

redundant Ready Storage Vessel (RSV), Temperature Control Unit (TCU), and heat exchange circulating

units. Components and equipment were provided from Complex 16 and were modified and refurbished

to suit the Complex 19 requirements. Interconnecting piping was incorporated to provide redundant

crossover from either RSVto either TCV by any of four (4) pumps. This was accomplished prior to

the launch of GT-6.
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(3) Flowmeter Modifications

During the early phase of the program two significant problems were experienced with the flow-

meters. They were Automatic Temperature Compensation (ATC) and leakage at the counterbase plate

seal assembly.

ECP 543 was implemented to improve the reliability of the flowmeters and loading accuracy.

This effort involved the removing of the ATC and gear changer, adding a stack extension and redesign-

ing the counterbase plate seal assembly.

The stack extension wa_ designed to support the shroud assembly and to permit purging over the

counterbase assembly. A new dynamic type seal was incorporated for the counterbase plate shaft take-

off. This modification also changed the read-out of the flowmeter from pounds to gallons of propellant.

Loading procedures were revised.

To support this significant change, extensive evaluation and life tests were conducted in laboratory

and flow facilities. Modified flowmeters for Pad i9 were incorporated to support the GT-8 and sub-

sequent operations.
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12. Assessment of the RF Hazards to the Electroexplosive Devices of the Gemini Launch Vehicle,
F-B2262, The Franklin Institute, November 1964.

13. Final Summary Report, Stray Voltage Susceptibility Evaluations of Gemini Ordnance, LV-366,

Martin Company, October 1964.

14. Malfunction Detection System Configuration Report, LV-196 Rev. B., Martin Company Baltimore,

December 1965.

15. Friction and Damping Effects of MDS Rate Switch, LV-257, Martin Company Baltimore,

July I963.

16. Function Control and Holdfire Requirements, LV-17 Rev. B. , Martin Company Baltimore,
November 1964.

17. Reliability and Extended Life Test Report Rate Switch Package, ER-13663, Martin Company

Baltimore, November 1965.

18. Gemini Launch Vehicle Maximum Allowable Operating Time Cycle and Shelf Life for Airborne

Components, LV-182 Ref. F. Martin Company Baltimore, June 1966.

19. Results of Slow Drift Malfunction Studies, WGX 74, Martin Company, May 1963.

20. Flight Control Malfunction Management for the Gemini Launch Vehicle, SSD-TDR-63-122,

Aerospace Corporation, July 1963.

21. Causes of Slow Malfunctions in the Gemini Launch Vehicle, TOR-269(4126-40)-6, Aerospace

Corporation, July-1964.
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ZZ. Gemini Launch Vehicle Slow Malfunction Detection Effort, TOR-Z69(41Z6)-3, Reissue B,

Aerospace Corporation, August 1964.

23. Procedures for Slow Malfunction Detection, TOR-Z69(4126-40)-Z, Aerospace Corporation,

May 1964.

Z4. Guidance Monitor Operations, LV-376, Martin Company, September 1966 (C).

Z5. Trainin_ Plan - Slow Malfunction Monitors, LV-305, Revision A, Martin Company, February 1964.

26. Training Data for Real Time Monitors of Slow G & C Malfunction, LV-308, Martin Company,

lune i 964.

27. Trainin_ Results of Real Time Monitors of Slow G & C Malfunction, LV-309, Martin Company,

August 1964.

Z8. Airborne Systems Functional Test Program (ASFTS) Phase II and III Prosram Summary LV-Z39

Volume I, Martin Company, 5 December 1963.

Z9. The Acoustic & Vibration Environment of the Titan II Vehicle, Bolt, Beranek and Newman Report

No. 999 and BSD-TDR-63-189, September 1963.

30. Gemini Launch Vehicle Acoustic and Vibration Environment, ER-IZ414, Martin Company,

December 1963.

31. Production Monitorin_ Testin_ Program, Lv-gz, Martin Baltimore, 31 July 1962.
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SECTION II-C

D E FINIT ION S

AFBSD

AGC

AGE

APS

ASCO

ASFTS

ATC

AVCO

BECO

Cap Corn

cg

CSAT

d-c

ECP

ELT

ETR

FM

FMT

FOD

fps

G&C

GE

GEMSIP

G LV

GT

ICBM

IGS

IPS

LO

M/B

MCC

MDFJPS

MDP

MDS

IViDTCPS

MISTRAM

MOCS

NASA

NPSH

OAMS

Air Force Ballistic Systems Division

Aerojet General Corporation

Aerospace Ground Equipment

Accessory Power System

Auxiliary Sustainer Cut-off

Airborne Systems Test Stand

Automatic Temperature Compensator

Advanced Communications Corporation

Booster Engine Cutoff

Capsule Communicator

Center of Gravity

Gombined Systems Acceptance Test

Direct Current

Engineering Change Proposal

Environmental Life Testing

Eastern Test Range

Frequency Modulation

Failure Mode Testing

Flight Operation Division

Feet per Second

Guidance and Control

General Electric

Gemini Stability Improvement Program

Gemini Launch Vehicle

Gemini Titan

Intercontinental Ballistic Missile

Inertial Guidance System

Instrumentation Power System

Liftoff

Martin Baltimore

Mission Control Center (NASA) Houston

Malfunction Detection Fuel Pressure Switch

Malfunction Detection Package

Malfunction Detection System

Malfunction Detection Thrust Chamber Pressure Switch

Missile Tracking and Measurement System

Master Operations Control System

National Aeronautics and Space Administration

Net Positive Suction Head

Orbital Attitude and Maneuvering System
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OPPS

PCM

PMDS

PMT

POGO

POPOI

PSTP

PSV

PTPS

R&D

RESS

r-f

RGS

RSO

RSP

RSV

SIA l, S/A 2

SE CO

SMRD

SSD

STO

TARS

TCA

TCPS

TCU

TCV

T CV PSV

TPS

UDMH

(V -r)

VTF

WpN

Oxidizer Pressurant Pressure Switch

Pulse Code Modulation

Prelaunch Malfunction Detection System

Production Monitoring Test

Vehicle Longitudinal In stability Problem

Pressure Oxidizer Pressurant Orifice Inlet

Propulsion System Test Program

Pressure Sequencing Valve

Propellant Transfer and Pressurization System

Research and Development

Redundant Engine Shutdown System

Radio Frequency

Radio Guidance System

Range Safety Officer

Rate Switch Package

Ready Storage Vessel

Subassembly 1, 2

Sustainer Engine Cutoff

Spin Motor Rate Detection

Space Systems Division, United States Air Force

Systems Test Objectives

Three Axis Reference System

Temperature Control Amplifier

Thrust Chamber Pressure Switches

Temperature Control Unit

Temperature Control Valve, Thrust Chamber Valve

Thrust Chamber Valve Pressure Sequencing Valve

Telemetry Power Switch

Unsymmetrical Dimethylhydrazine

V - Velocity, 1_- inertial flight path angle

Vertical Test Facility

RGS Yaw Steering Command
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D. GUIDANCE EQUATIONS AND PERFORMANCE ANALYSIS

I. GUIDANCE EQUATIONS AND GUIDANCE PROGRAM

a. Design and Implementation

Early in the Gemini Program it was decided by the Air Force and NASA that the guidance equations

would be formulated by the Aerospace Corporation. Members of the Electronics Division of Aerospace

designed the equations from which the Burroughs Corporation coded the guidance program to be wired into

the trays of the Burroughs A-l computer at the Mod llI radar site. The computer program, before wiring,

was formally validated by Aerospace. Before each mission, the Gemini Launch Systems Directorate certi-

fied to the Air Force that the guidance equations and the guidance program were ready for man*,ed flight.

For all launches that involved equation changes requiring computer rewiring, the equations verification

and program validation were repeated by Aerospace.

The Gemini guidance equations in essence evolved from the Mercury equations, which were origi-

nally developed for the early Atlas Weapon System. A set of explicit radar guidance equations was designed

to insert the payload into a free flight orbit at a specified altitude, velocity, and flight path angle. For the

fixed launch azimuth or for the non-rendezvous case, the orbit plane was such that the capsule would pass

over a pre-selected point on the surface of the earth. The Gemini Program was the first to require a

variable launch azimuth capability that would maneuver the GLV parallel to the target plane.

Many Gemini-unique requirements were placed upon the GLV guidance equations, but before these

are considered, the improvements encompassed in the portions of the equations kindred to its predecessors

must be mentioned. The primary functions of earlier guidance equations were to compute pitch and yaw

steering commands to achieve the proper altitude and flight path angle at insertion, and to send the cutoff

signal (SECO) when the required velocity was reached. A block diagram displaying the radio guidance sys-

tem with the radar signal inputs into the computer and the steering commands and cutoff signal issuing from

the computer is shown in Figure II. D-I. The Gemini equations, performing these functions, incorporated

more extensive and elaborate filtering than had been used previously. In particular, the computation of

the altitude turning rate, the predicted attitude at cutoff, and the initial pitch and yaw velocities were all

filtered. In other words, the components which formed the attitude errors as well as the errors them-

selves were smoothed. Unlike its predecessor, the time-to-go equation for Gemini employed distinct

velocity and rate of velocity filters. The filter time constants were designed as a compromise among re-

sponse to random radar noise, systematic radar biases, and vehicle perturbations. The radar model used

was based on information provided by GE in Memo 57, dated 1 January 1963, and the vehicle characteristics

were supplied by Martin.

For guidance initiate, which occurred at a predetermined time after liftoff, a velocity gate was

designed to detect large discrepancies from nominal due to perturbed flights. This "glitch" test discrimi-

nated between large bias errors and random noise. Using radar data preedited by the equations and identi-

fied by quality flags, this test could provide for data rejection and]or data replacement.

An innovation of the Gemini equations was their ability to target in real-time. The achieved orbit of

the target vehicle was defined to the computer by ephemeris data at twenty minutes before GL% r liftoff.

Upon receipt of the T-3 minutes signal from the blockhouse, the equations computed a roll program based

on an analytical scheme that biased the launch azimuth to reduce the error between present position and

the target at insertion. During the first stage, the velocity vector determined by this variable launch

azimuth was directed into the target plane. During second stage the steering technique maneuvered

the yaw velocity vector to be parallel to the target plane at SECO. Yaw position steering was not

II. D-I
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used on Gemini. The objective was to null the yaw velocity error at insertion. Additional targeting options

were introduced into the equations at later dates in the Gemini program; these are described in Section

II. D-i-b. Range Safety constraints limited the span of allowable launch azimuth, and a manual

constant in the computer was designed to limit the maximum amount of wedge angle removal for payload

considerations.

Another unique feature in the G3mini equations was its computation of parameters to be used by the

backup inertial guidance system (IGS) in the spacecraft. Four targeting quantities were transmitted to

the IGS at T-3 minutes. At 100 and 140 seconds, an updating value of Z [velocity in the inertial IGS coordi-

nate system analogous to Vy in the radio guidance system (RGS)]was transmitted to the IGS. This updating

was used to correct platform misalignment. The RGS value transmitted at 100 sec had a 3-sigma accuracy

of 2. 19 fps and the 140 sec correction was accurate to 3.03 fps.

The importance of precision timing in a rendezvous launch is obvious. The nominal time origin for

the equations was the GLV liftoff pulse. However, if the computer failed to receive the liftoff pulse, a

scrub could be avoided by a provision in the equations to use an elapsed time commencing from the plat-

form release signal, and, in the event of that failure, a prediction could be made from the T-3 minutes

signal.

As sections or "figures" of the guidance equations were completed, they were sent to the Burroughs

Corporation for programming. Each figure contained a function of the equations, such as Targeting,

Steering Commands, Cutoff, etc. Upon receipt of the equations from Aerospace, the Burroughs Gemini

Project Engineer assigned a staff of programmers to begin coding for the Mod III guidance computer. The

program was broken into subassemblies corresponding to the figures of the equations. A direct language

program of the guidance equations to be used on a Burroughs general purpose computer was also written

for the purpose of comparison with the interpretive guidance program. When all errors were traced and

removed by this comparative method, the total assembled program was transmitted to Aerospace for vali-

dation. Figure II.D-2 illustrates the order of Burroughs programming procedures.

In addition to the implementation of the guidance program, an answer package was generated consist-

ing of input simulation tape, master intermediate tape, master output tape, and plots. These, too, were

validated by Aerospace.

Upon program acceptance by Aerospace, computer trays were wired in Paoli under strict quality

control supervision. Two sets of trays, for redundancy, were then shipped to ETR where theywere

checked out using the answer package and countdown routines.

For launch-to-launch program revisions, rewiring was accomplished at ETR from wiring list instruc-

tions sent from Paoli, based on Aerospace equations changes. Each revision required a new answer

package.

The special features of the Gemini guidance equations mentioned above imply many interfaces. The

Burroughs computer utilized seven paths for receipt or transmission of data. A block diagram of compu-

ter interfaces and information flow is shown in Figure II. D-3. The ancillary functions provided by the

equations and computer were the following:

1.

2.

3.

4.

5.

6.

7.

Automatic receipt and verification of target ephemeris data from MCC-Houston.

Synchronization to Greenwich mean time at T-6 minutes.

Synchronization to countdown time at T-3 minutes.

Transmission of the roll angle to the blockhouse and receipt of verification.

Transmission of the targeting data to the IGS buffer and receipt of verification.

Receipt of platform release and liftoff signals from the blockhouse.

Remoting to MCC-Houston of real-time position and velocity data for plotboard displays.

II.D-3



w

L

LLI C.__o_ __-_oI
T "-'5_ I

-f- .
0_
n,- L,j
n.- .-r
W(.._

T

i

_ _o ,
n,- c_l

¢.9_ (.9 TM I

_ _ I

_ _',

T

T
!

w
_L'_ 1.1.1Z

r_

0

O

_4

II. D-4



cn •
(z: o
i_1 , rr-

Z t- bL.
0 W "I-

E

'_ _1 >-
0 _ I-- cn

0 F- M.I

ill >" X U-

_...J _.1 Q-

_=1 -el I

LLI _' ..I )

J _

i!"
< ;

- _ _l _§

.N

__i__ _- _2z _x
_ _-"_ _

0

II. D-5



8.

9.

10.

Remoting guidance parameters to MCC-Houston.

Remoting guidance parameters to Goddard Space Flight Center (GSFC), Maryland.

Transmission of the IGS updates to the IGS buffer at 100 and 140 seconds and receipt
verification.

The Burroughs A-1 computer had been designed for Atlas Weapons Systems guidance and, by use of

the Pilot Safety Program, was man-rated for use on Mercury. Some of the ancillary functions listed above

required the design of special equipment to augment the capabilities of the existing computer. By the time

the Gemini-unique equipment was required, the state of the art had advanced to a point where the Data

Exchange Unit (DEU) and Test Conductors' Console had been manufactured with components of a reliability

exceeding that of the computer main frame. Design experience had progressed allowing the specifications

and acceptance tests to be more stringent in the Gemini-unique equipment than on the A- 1 main frame.

Design ground rules for the new equipment required that interface lines between the existing computer

and the DEU be isolated to inhibit malfunction feedback from the DEU. No programming of any existing

guidance programs or interpretive routines and no rewriting of existing field procedures or countdowns

were required.

At the time the original guidance program was completed by Burroughs, the phase of program

validation DyAerospace began. The card decks were assembled and a listing of the program was made.

A step-by-step check ascertained that the program was equivalent to the statements of the guidance equations.

An interpretive routine run made on the 7094 computer at Aerospace caused the IBM computer to perform

exactly like the Burroughs guidance computer at the launch site. Each program step for each computer

cycle was then calculated on a manual desk computer and the results compared with the interpretive run

print-out. All decision logic paths were checked in the same manner. It was mandatory for validation

that the coding produced results within the accuracy quoted in the equations specification and that the pro-

gram had correctly coded the equations intent.

The second half of the program validation was then initiated. This effort was integral with the equa-

tions verification, in that the program was proven operative in the complete guidance system. It was dem-

onstrated that the equations and program correctly performed their task of fulfilling mission requirements.

Many interpretive runs with various radar and vehicle perturbations were reviewed. The quantization,

scaling, countdown errors, and inherent delays in the guidance computer were all scrutinized to prove that

computer time restrictions were not violated and that the equations were not degraded.

In addition to the varied interpretive runs, the equations verification included examination of trajec-

tories made with a scientific simulation. These nominal and anomalous cases were used to ascertain the

range and extent to which the equations would produce their intended results under different conditions.

The entire validation procedure followed documentation in a formal test plan which specified a series

of trajectories in which the RGS equations and the Burroughs program were tested to establish a level of

confidence in their adequacy. The series of simulations with normal and marginal performance in the

vehicle subsystems and radar demonstrated that the guidance equations/program would operate satisfac-

torily with normal vehicle operation and that they would not in themselves cause a mission failure. A

report was prepared by the Electronics Division of Aerospace summarizing the results of the tests, listing

the values of pertinent quantities for each case, and including computer listings and plots.

After completion of the validation, the equations and program were certified to be flight ready.

As a time and cost saving measure, many of the computer scientific (non-interpretive) simulations

that were run for the guidance equations validation were utilized in the guidance accuracy study. The

purpose of the study was to determine an estimate of the rms errors of relevant parameters at the defined

insertion point (SECO +20 sec).
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The effects of vehicle perturbations, radar random errors, and radar systematic errors were com-

puted separately and then root-sum-squared (rss) to obtain the overall effect. A typical summary of

results is shown in Table II. D-1

To determine the effects of radar random errors only, a sample of 40 runs subjected to a random

noise generator was taken, and the results root-mean-squared to provide the one sigma error on velocity,

flight path angle, etc. In order to evaluate the error attributable to systematic radar biases, the one

sigma bias error was added to each of the radar input quantities separately, R, A, E, R, p, q, then root-

sum-squared for the effect on each insertion parameter. The error caused by various vehicle perturba-

tions on each insertion variable was evaluated by individual simulations. The final rss combination, then,

was as described above.

Table II. D-Z shows the predicted insertion accuracies for flights GT-1 through GT-12. The predic-

tions were altered three times in the Gemini Program, first because a drift compensator incorporated into

the equations for GT-Z greatly improved yaw velocity accuracies, and later because new knowledge was

acquired about the Mod III radar through flight test results. The changes are discussed in more detail in

Section II. D-1-b. Table II. D-Z shows the close correlation between the actual insertion errors throughout

the Gemini Program and those predicted.

b. Guidance Equations Fli_ht History

The guidance system performed satisfactorily on all Gemini launches with insertion results always

within 3-sigma predictions. The four insertion parameters achieved on all flights are compared with

their estimates in Table II. D-Z. Modifications of the equations for flights GT-2 through GT-IZ are sum-

marized on Table II. D-3 and described in more detail in the text that follows.

Vehicle c enter of gravity shifts and thrust misalignment that had not been simulated in the dynamics

model were apparent in the GT-I flight results. The relatively noiseless flight showed that the equations

responded sluggishly to the effective drift. The insertion errors in Table II. D-Z, although less than the

predicted 3 sigma values, indicated a need to eliminate the drift problem in order to improve insertion

accuracies. Since time constraints precluded hardware redesign, the vehicle simulation was made more

realistic and compatible changes were incorporated into the guidance equations. They were as follows:

1 A drift compensator was added to sense the attitude steady state error in pitch and yaw.

2 A manual constant was added to bias the insertion yaw velocity. This effectively eliminated

the residual drift error not removed by the drift compensator.

3 The time-to-go bias for SECO was adjusted for more realistic consideration of thrust variations.

4 Filter gains and time constants were modified to achieve a compromise between corrective

response to drift and radar noise smoothing.

5 Wave guide and transit delay biases in the p and 4 lateral rates were added to make the radar

correct at SECO.

These equation changes had significant effects upon the 3 sigma accuracy estimates for GT-Z, as

shown in Table If. D-2. Also shown are the accuracies achieved on GT-Z using the revised equations.

From a guidance point of view, the flight was very successful.

The equations, which were originally designed to switch to the track-only mode at Z40 seconds after

liftoff, were modified for GT-3 to eliminate this mode. This was based on the fact that after the GT-Z

flight, GE revised the model of biases on lateral rates, p and q. An analysis of the equations using this

new information showed that a combination of rate and track input signals at low elevation angles produced

better insertion results than the use of track data alone.

If. D-7



Table II-D-1.

Variable

V

U

V'
7

r

Pe rtu rbation s

5.34

.021

7.77

521

Typical Insertion Accuracy Estimates

Random Errors

7.75

• 034

3.10

286

Svstematic Errors

2.10

.016

1.14

372

R.S.S. Total

9.7

• 043

8.44

701

where

V

F

V'

Y

inertial velocity (ft/sec}

inertial pitch flight flight path angle (deg)

yaw velocity with respect to the target

reference plane (ft/sec)

geocentric radius (ft)
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Table II-D-3. GLV Guidance E, uations Modifications

Vehicle Effectivity Major Equation Changes Reasons for Change

GT-Z Drift compensator added.

GT-3

GT-6

GT-8

GT-IO

Manual constant to remove

yaw bias.

Revised filter gains and

time constants.

Switchover to track only

mode at Z40 seconds

eliminated.

Maximum payload rendez-

vous mode included.

Automatic switching to

non-rendezvous mode

provided.

Provision to accept the

required final velocity (Vf)
transmitted from MCCH

by equations in non-

rendezvous mode.

A biased mode rendezvous

launch was provided for

partial wedge angle

removal.

Correction of lateral rate

and ct biases to eliminate
data error at SECO.

Revision of predicted

insertion accuracies.

C G shifts and thrust misalignment

not simulated in model caused large

errors on GT-1.

Compensator left residual error,

removed by constant.

To make equations more

responsive to drift.

Receipt of updated GE information

on lateral rates, _ and q.

Payload considerations.

Range Safety and payload constraints.

To be used if logic switched auto-

matically to non-rendezvous at 105"

launch azimuth.

If the launch azimuth reached 105"

and payload permitted, the GLV

could steer out some of the wedge

angle.

On GT-3, Mod III data showed an

increasingly negative flight path

angle accompanied by increasing

altitude.

Low frequency oscillation in

lateral rate observed in GT-8 and

GT-9.

GT-11 Revision of predicted For same reason as GT-10, but

insertion accuracies, values arrived at in a more

rigorous manner.
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Asa resultoftheslowmalfunctionmonitors'experienceonGT-2,scalingoftheremoteddatadis-
playedontheirplotboardswaschanged.AnothercorrectionincorporatedintotheGT-3equationswasthe
removalofthetransittimebiasandwaveguidedelayonp andqafterSECO.Becausetheseaccelera-
tion-dependentbiasesweremadetobecorrectat SECOin theGT-2equations,anerrorhadbeenintro-
ducedintothedataduringfreeflight. For GT-3,thedatadisplayedontheplotboardsafterSECOwas
correct. ModificationsimprovingthetargetingandtheIGSupdatelogicwerealsoimplementedin the
GT-3equations.

OnGT-3,theGE/BurroughsflightdatabetweenSECOandSECO+20secshowedanincreasingly
negativeflightpathangleaccompaniedbyanincreasingaltitude. Thisinconsistencydidnotappearin
NASAdata,whichcorrectlyindicatedapositiveflightpathangle.GEinitiateda studyofModIII radar
datato determinethereasonfor thisdiscrepancy.A solutionoftheproblem,however,wasnotavailable
untilGT-8,sothatnocorrectionswereincludedin theGT-4equations.Theequationrevisionsfor GT-4
incorporateddifferentialnodalregressioneffectsin thetargetinglogicandnewinitializationconstants.

TheGT-4flight resultedinaccuracieswellwithin3sigmalimits, andtheflightpathangle/altitude
discrepancyseenonGT-3wasnotapparent.Therandomnoiselevellatein flightwasapproximatelyone-
thirdthevalueestimatedfromtheGEnoisemodel.Sincethenoisehadbeenconsistentlylowthroughall
Gemini flights, GE was requested at this time to update the noise model for possible re-optimization of

guidance filters and a re-evaluation of accuracy estimates. For GT-5, the equations remained essentially

the same as for GT-4, except for minor revisions.

Flight data from GT-5, however, showed the largest magnitude of random noise during the latter

part of flight ever experienced using the GE radar as the tracking medium. Although the steering com-

mands reflected the increase in noise level, the achieved guidance accuracies at insertion were the best

to date.

Because GT-5 represented an increase in noise level of approximately ten times the magnitude

of noise seen on flights GT-1 through GT-4, Aerospace decided not to alter the equations' filters on

the basis of the revised GE model delivered after GT-5. Accuracy estimates for the remaining Gemini

launches continued to be based on the original conservative noise model.

GT-6 was to be the first rendezvous launch of the Gemini program, with the Agena orbit data and the

time of GLV liftoff determining the actual flight trajectory. For this and all subsequent rendezvous mis-

sions, however, a nominal set of Agena ephemeris data and specific insertion conditions was initially

specified in order to provide a nominal setting of the computer manual constants and a value for the coef-

ficients at guidance initiate. (After each launch, actual ephemeris data was used with a nominal vehicle

and noiseless radar to obtain a post-flight reference trajectory. ) Trajectory studies were made for the

five possible days of launch, indicating the yaw velocity bias (in the form of a computer manual switch

setting) for each day. A curve was generated from a series of trajectories for varying times of launch

which enabled an adjustment of this bias 20 minutes before liftoff in accordance with real time conditions.

This is shown in Figure II. D-4. This method of adjusting the yaw velocity bias was used for all rendez-

vous launches.

During the months preceding GT-6, NASA mission plans and payload considerations made it evident

that the equations would have to incorporate features in addition to the real-time calculation of launch

azimuth. To avoid the possibility of human error, a fairly extensive revision of the targeting logic pro-

vided the automatic capabilities described below and indicated on the launch azimuth curve of Figure II. D-5.
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1. Decision logic was added so that a manual switch setting would cause the equations to specify

a maximum payload launch azimuth when the calculated biased-launch azimuth of 105 degrees
was reached. At this point, GLV biased-azimuth yaw steering was stopped and a minimum

payload-loss launch azimuth was computed.

2. With the targeting computations in this maximum payload mode, logic was added to provide an
automatic switch to the non-rendezvous mode when a launch azimuth of 105 degrees was reached
the second time.

3. The equations were changed so that the final velocity transmitted from Mission Control Center]

Houston (MCCH) at L-18 minutes would be used as the required velocity in the non-rendezvous
mode as well as for rendezvous. This alteration was compatible with the automatic switch to
non-rendezvous described in (2) above.

These GT-6 equations, after verification and validation by Aerospace, were wired into the computer

trays by Burroughs. Because of the failure of the GT-6 Agena target vehicle on 25 October 1965, the GT-7

(fourteen-day mission) was launched six weeks later and guided into orbit by these same GT-6 equations,

switched to the non-rendezvous mode. Eleven days later the same trays, with different manual switch

settings, were used to calculate the 81.4 ° launch azimuth, and to bias steer the GLV-6A to rendezvous

with the Gemini 7 capsule. The guidance system performed excellently on both flights.

While the GT-6 equations were being implemented for use in the first rendezvous launch, Aerospace

recognized that the 13 unused words remaining in the computer would be insufficient for future equations

changes. A major program cleanup was undertaken by Burroughs which obtained 56 additional free cells.

This permitted the inclusion of post-SECO plotting on the displays in the Mod HI computer room to be used

for an immediate indication of insertion parameters. Further targeting modifications requested by MSC

were incorporated into the GT-8 equations, providing a new capability--a choice between a new biased mode

launch and the parallel mode, controlled by a manual decision switch. The new mode, providing partial

wedge angle removal, is shown in Figure II. D-6 at 105 ° launch azimuth between approximately 130 rain and

185 rain from opening of the plane window. The launch mode would have been selected on the basis of real-

time payload calculations, with the choice indicated to the Burroughs test conductor from Houston over the

Missile Operation System {MOPS)

At this time in the Gemini Program a great deal of effort was spent on determining and coordinating

procedures between the guidance officer at MCCHand the Burroughs test conductor. Eight pieces of infor-

mation pertinent to the final setting of manual switches in the Burroughs computer were to be transmitted

verbally over the MOPS system at T-60 rain. They were as follows:

1. Predicted GLV Greenwich Mean Time of Liftoff

2. Agena inclination angle.

3. Data source of (2).

4. Wedge angle limit (determined on the basis of real-time performance data).

5. 36d_' - The decision logic for parallel or biased steering at 105 ° launch azimuth.

6. GAATV Greenwich Mean Time of Liftoff.

7. Time of Window Opening - (used with Figure II. D-4 to determine the yaw velocity bias set-in. )

8. Time the second 105 ° launch azimuth would be reached.

This procedure was used successfully on GT-8 and all subsequent launches. It was during the pre-

paration of the GT-8 equations that the results of a study by Aerospace and GE on the flight path angle]

altitude discrepancy observed on GT-3 became available. Lateral rate refraction biases perturbed the

Mod III radar, causing an indication of velocity underspeed and positive flight path angle and altitude

errors. Corrected values of lateral rate biases were incorporated into the GT-8 equations in order to

remove insertion parameter errors at SECO.
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When all modifications were made to the guidance equations for GT-8, only three unused program

steps remained in the computer. This condition was unchanged through the final launch.

An anomaly occurred on GT-8 at 7. 5 sec before SECO, when the RGS called for an abnormal

pitchdown maneuver. An abrupt negative increase in the slope of the I_ data curve was seen at this time,

causing a 69-fps pitch velocity error 3 sec later. This I_ anomaly caused pitchdown commands to

reach 18 percent of full scale as shown on Figure II. D-7. Study by Aerospace and extensive effort by GE

in which comparisons were made between Mod III and Mistram data indicated a low frequency noise on p,

not only in GT-8 data but, to a lesser degree, on past flights as well. The effect, appearing in the p chan-

nel predominantly and varying inversely as the baseline of the rate leg, was attributed to tropospheric

conditions. A simulation made by Aerospace to determine the contribution of the p error on insertion

accuracy produced the results shown below. The table also shows the contribution of equivalent drifts

evaluated by the Martin Company after the flight of GT-8. These can be compared with the insertion con-

ditions in Table II. D-Z.

Insertion Parameter

_Velocity, AV, fps

AFlight Path Angle, _ N, deg

_Yaw Velocity, _ Vy, fps

Z_Geocentric Radius, A r, ft

Lateral Rate Revised Pitch

Error (Mod III- and Yaw Drift

100K Mistram) Rates Totals

8.0 0.1 8.1

-0. 0045 -0. 0081 -0. 0126

0 -13.4 -13.4

55 -188 -133

For GT-9, revised pitch and yaw drift rate prediction techniques were developed by Martin for use

in determining yaw velocity bias manual constants. Since the p phenomenon was considered by GE to be a

random effect not predictable in advance of flight and since it resulted in only one sigma velocity and

flight path angle errors on GT-8, no changes were made in the guidance equations.

On GT-9, the Mod III radar again showed a significant low frequency in the p lateral rate channel.

This drift began at an elevation angle of approximately 10 degrees and caused disturbances in steering

before SECO. Aerospace simulations of a p low frequency superimposed in the nominal post-flight refer-

ence trajectory produced results at insertion closely matching those of the NASA tracking network. Since

the anomalous radar performance was caused by tropospheric disturbances, no fix could be incorporated

into the GT-10 equations. However, since the simulation showed that the effect could degrade insertion

conditions in pitch to approximately a 3-sigma level, it was necessary to reflect this degradation in future

insertion accuracy predictions.

For GT-10, the insertion estimates changed considerably as shown on Table II. D-Z. Since a GE

noise model including these p phenomena was not available, flight data with gross assumptions were used

for the analysis. Only slight changes were made to the Gemini guidance equations to include a high inclin-

ation launch capability.

The guidance equations performed satisfactorily on GT-10. The level of the p low frequency oscilla-

tion was low and did not noticeably degrade insertion. High frequency random noise was at about the same

3 sigma level as was seen on GT-5.

No changes were made to the guidance equations after GT-10. The predicted insertion parameters,

however, were again modified for GT-11. These, shown on Table II. D-Z differed only slightly from the

GT-10 estimates, but were obtained by using a more rigorous technique for calculating the effects of the

lateral rate anomaly. The p errors, as determined from Gemini Mod III/Mistram/IGS comparisons,

were combined statistically with other radar and vehicle dispersions.
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Noguidanceanomalieswerepresent on either GT-11 or GT-IZ, both flown with the GT-t0 guidance

equations.

It should be mentioned that when a set of equations was used without wired change for another

flight, guidance initialization constants were not updated to reflect the new nominal. The velocity

was therefore not centered in the ±220 fps velocity _ate. This offset, combined with non-nominal

vehicle thrust, caused the gate or "glitch test" to be failed on GT-10 and -11. The logic then shifted

to the data extrapolation mode for a few seconds, after which normal steering was begun. No degrada-

tion of insertion was ever caused by this discrepancy.

In reviewing the overall insertion accuracies of Table II. D-2 which were achieved by the GLV, it

should be observed that the flight test dispersions in all cases were close to but somewhat less than the

theoretical dispersions. All mean errors were quite small, except for velocity. When the contribution

due to RESS tailoff is removed, however, and the insertion velocities of the first seven flights are adj-

usted to be compatible with the p and q bias adjustments made in the equations prior to GT-8, the true

guidance velocity mean error is reduced to -Z. 5 fps and the flight test 3-sigma dispersion is reduced

to 26.4 fps (compared to 34.2 fps unnormalized}.

2. PERFORMANCE ANALYSIS

a. Development of Payload Capability and Trajectory Prediction Techniques

(1} Simulation Models and Inputs

(a} Simulation Model. Throughout the Gemini Program, Aerospace Corporation trajectories were

prepared with the Aerospace "N-Stage Simulation". This was a high speed, six-degree-of-freedom

digital computer simulation. In the simulation, the ellipsoidal earth was simulated by means of the

Fischer Ellipsoid. The Patrick Reference Atmosphere (Annual} was utilized up to 150,000 ft, while

the nominal 1959 ARDC Model Atmosphere was utilized above 150,000 ft. The gravitational potential

function utilized powers through 4 of geocentric radius, as well as powers through 4 of the sine of geo-

centric latitude. Launch and radar site locations were furnished in Fischer coordinates by NASA and

the General Electric Company

The launch vehicle simulation itself was highly detailed, and included a complex, tlme-varying engine

model. The capability was provided to calculate and print, at any desired frequency, over 400 trajectory,

engine performance, and guidance parameters. A complete simulation of Gemini Launch Vehicle guid-

ance equations was employed to simulate Stage II guidance.

During the early phases of the Gemini Program, use was made of Titan II weapon system data

wherever possible. These included vehicle weight, engine performance, and drag characteristics.

Later, specific launch vehicle data supplanted the Titan II data. Wind tunnel tests were run to obtain

improved estimates of drag, lift, and moment coefficients.

Approximately three thousand N-Stage Simulation trajectory runs were made by the Aerospace

Corporation throughout the Gemini Program. Many of these were based upon nominal parameter
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valueswhichappliedto all twelveGeminiLaunchVehicles.However,prior to eachflight, specific
parametersrelatingtoparticularlaunchvehicleswereincorporatedto preparebestpreflightestimates
ofthelaunchvehicletrajectory. Thesebestpreflightestimatesofthenominallaunchtrajectorieswere
publishedin theSystemsTestObjectivesdocumentsissuedbyAerospaceCorporationprior to each
flight.
(b) Incorporation of Specific Vehicle Parameters. At the beginning of the Gemini Program, all tra-

jectory and payload performance predictions were based upon nominal values for all parameters.

Therefore, all launch vehicles had the same payload capability except for variations due to mission

differences. As vehicle parameters became available they were incorporated into predictions. Fre-

quently, incorporation of the specific values created substantial changes in predicted payload

capability.

For example, when the actual engines planned for GLV-10 were incorporated in payload capability

predictions, payload capability changes due to performance differences from nominal were -47 lb for

Stage I specific impulse and -75 lb for Stage II specific impulse. When actual propellant tank volumes

were utilized in predictions for GLV-4, the payload capability changes were +2 lb due to Stage I volume

differences and +12 lb due to Stage II volume differences from nominal. When the actual pitch program-

mer and power supply to be used onGLV-8 were measured, the payload capability change from the pre-

viously assumed nominal value was -48 lb. When actual propellant tank weights had been measured for

vehicles 1 through 6, it was determined that, on the average, the tank weights were lighter than the pre-

viously used predictions. Consequently, the weight estimates were reduced, with a corresponding +lllb

change in payload capability due to Stage I tank weights and +50 lb due to Stage II tank weights. These

changes were applied to vehicles 7 through 12. Then, when the actual tank weights for these latter vehi-

cles were measured, the payload capability effects of the measurements were incorporated in predictions.

Other examples of significant payload capability changes due to incorporation of measured vehicle

parameter values are available. Each change was incorporated as soon as it became known in order to

have available the most up-to-date prediction possible. This was desired to keep NASA continually in-

formed regarding the payload capability margin for each of the vehicles, and provide them with suffi-

cient information so that mission changes could be made to improve payload capability or take advantage

of excess capability. It was also desired to show the desirability (or necessity) or making performance

improvement changes to the Gemini Launch Vehicle. A number of performance improvements were

considered for the Gemini Launch Vehicle during the early and mid-phases of the program. These are

discussed in other sections of this report.

Figure II. D-8 illustrates the changes in predicted GLV minimum payload capabilities versus

time and changes in Gemini Spacecraft weights, without experiments, versus time. Since the experi-

ments averaged about 160 lb for SIc 3-12, the actual margins between predicted capabilities and space-

craft weights were less than those depicted in Figure II. D-8.

(Z) Constraints

As with any launch vehicle, the Gemini Launch Vehicle was constrained to remain within specified

limits throughout its flight envelope. In particular, the GLV was constrained by aerodynamic heating,
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aerodynamic loads, axial acceleration, guidance radar look angles, guidance radar elevation angle,

dynamic pressure and angle of attack at staging, Stage lhydraulic actuator hinge moment, and space-

craft abort criteria.

Studies were concluded early in the Gemini Program which quantitatively established limits

in these constraint areas. Maximum or limiting values of some parameters were selected for nominal

trajectories such that, if the nominal trajectory remained within these bounds, dispersed trajectories

would remain within the true launch vehicle and guidance system capabilitles. A brief description of

each of the constraints utilized throughout the Gemini Program is provided below.

I. Aerodynamic Heating - The maximum allowable heating for the GLV was based upon the

difference between allowable and actual stresses, and included heating effects due to

angle of attack and effects of combined heating and loads. All analyses indicated that,

even with maximux_ dispersions, the GLV remained within its allowable stress limits.

g. Aerodynamic Loads - The maximum dynamic pressure acceptable for the nominal trajec-

tory was 780 psf. The maximum longitudinal acceleration for the normal trajectory was

5.75 g for Stage I and 7.54 g for Stage If. If the nominal trajectory remained within these

bounds, dispersed trajectories would remain within the launch vehicle aerodynamic heating

and loads capabilities.

3. Flight Controls and Guidance -

(a) Stage I - TARS Pitch Program - Trajectory shaping during Stage I flight was chosen

to optimize payload, subject to the constraints of heating and loads discussed above.

Checks were made on the altitude and flight path angle at BECO to ensure that look

angle constraints in subsequent Stage II flight were not violated.

(b) Stage II - Mod III Guidance - Pitch look angl_ constraints for the Gemini Launch
Vehicle were defined in an Aerospace report _ as functions of yaw look angle limits.

Analysis indicated that Gemini flights limited to s0.55 ° of wedge angle removal

by launch azimuth biasing and Stage II yaw steering would remain within the ±20 °

yaw look angle boundary used throughout the Gemini Program.

A possible constraint, occurring at the end of guidance, was the tracking elevation

angle. An exact limit on this was not determined, but it was believed that angles
lower than 6.5 ° could have caused excessive radar noise, primarily in the rate

system, which could have degraded guidance accuracy.

4. Staging - Maximum q at staging was constrained to less than or equal to 50 psf, while

angle of attack was maintained less than or equal to 3 °.

5. Hinge Moment - The hydraulic actuators used to position the Stage 1 engine thrust chambers

had to have the capability of withstanding not only inertial forces but also the external

torques produced by aerodynamic forces on the thrust chambers. The GLV Stage I actua-

tor torque capability was 16,500 ft-lb.

The load torques (hinge moments) on the actuators of the two Stage I thrust chambers were

calculated for the most severe combination of loads following a malfunction and switchover

in the vicinity of maximum dynamic pressure. The total load torque did not exceed

14,500 ft-lb, which was well within the Stage I actuator torque capability.

6. Abort Criteria - The velocity and flight path angle for the dispersed launch vehicle trajec-

tory could not exceed the boundaries required for safe spacecraft abort. Abort boundaries

were defined by NASA for each mission.

(3) Dispersion and Probability Analyses

While the nominal payload capability for each Gemini Launch Vehicle was of considerable impor-

tance, of even greater importance was the predicted minimum payload capability. The minimum pay-

load capability was that weight of spacecraft that could be put into the desired orbit even under the

"most disadvantageous" launch vehicle performance. "Most disadvantageous" was defined for the

Gemini Launch Vehicle as being the minus 3-sigma payload capability, otherwise described as being

that payload capability which would be equalled or exceeded 99. 870/o of the time. This percentage was

shifted to 99.4% in the latter part of the Gemini Program, as will be discussed below.
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GeminiLaunchVehicledispersion analyses were initially carried out by determining the payload

capability effects of dispersions in a large number of key vehicle parameters. The parameter disper-

sions that were used were the 3-sigma dispersions, which were based upon test data and theoretical

analyses. The Martin Company provided dispersion analyses (LV-274 report series) for all 12 vehicles.

Besides showing payload capability variations due to parameter dispersions, this series of reports

also showed root-sum-square dispersions of trajectory parameters versus time from liftoff. Among

these dispersions were Mach number, dynamic pressure, and heating parameter. From time to time,

Aerospace Corporation ran a series of trajectories to check the Martin Company results in particu-

larly significant areas.

Throughout the Gemini Program, attention was given to refining estimates of 3-sigma para_neter

dispersions. Particular attention was given to those parameters which had the most significant effects

upon trajectory and payload capability performance. Thus, Aerospace, the Martin Company, and

Aerojet-General Corporation were continually monitoring engine thrust, specific impulse, and mixture

ratio performance to determine 3-sigma dispersion estimates based upon flight test results. This

monitoring of engine performance resulted in dispersion changes during the Gemini Program. Like-

wise, pitch programmer performance was studied by the Martin Company and Aerospace to better

define the nominal and dispersed performances. The individual pitch programmer bias from actual

preflight tests on the hardware was used in performance predictions for GLV 5 through 12.

Each of the individual parameter dispersions was assumed to be independent of all other disper-

sions in dispersion analyses performed early in the Gemini Program. Each dispersion, too, was

assumed to be normally distributed about the mean. These assumptions permitted root-sum-squaring

of the individual payload capability effects to produce an overall 3-sigma payload capability dispersion.

It was clear from the beginning of the Gemini Program that a very good estimate of the overall 3-sigma

dispersion could be determined by considering the variations of a limited number of key parameters.

These parameters were those which most affected the shape of the vehicle trajectory in the pitch plane.

The parameters which were selected by Aerospace early in the program and used throughout for sim-

plicity and continuity are as follows:

Thrust Thrust

Specific Impulse Specific Impulse

Outage Outage

Dry Weight Dry Weight

Usable Propellant Weight Usable Propellant Weight

Pitch Programmer Error

Pitch Gyro Drift
Winds

Atmospheric Density

Engine Thrust Misalignment in Pitch

Since the distribution of outage is non-Gaussian, the 9990 probability level of outage was used in

the root-sum-square process. Since outage was such a dominant factor in determining the predicted

payload capability dispersion, the resulting overall root-sum-square was actually some probability

level between 99. 8790 and 9990.
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To provide an example of the relative sizes of the individual parameter dispersions and corres-

ponding payload capability dispersions, the predicted GLV-12 dispersions are provided in Table II.D-4.

It will be observed in this table that two different outage dispersions ar _ -ovided for each launch

vehicle stage. It was determined after the launch of GT-1 and prior to the launch of GT-Z that u_e of

outage dispersio_,s with the assumption of nominal predicted propellant temperatures was not conserva-

tive. Experience with GT-1 had shown that the propellant temperature conditioning equipment at ETR

and the uncertainties in 1 t inch weather made the likelihood of achieving predicted propellant tempera-

tures in all tanks at liftoff exceedingly small. Since other propellant temperature conditions would

result in different outage dispersions, it was necessary to reevaluate outage dispersions based upon

estimated temperature dispersions. It was eventually concluded that the effects of the estimated tem-

perature dispersions could be approximated by employing the effects due to dispersions in oxidizer

alone of ±2 deg Fahrenheit. This explains the inclusion of the outage dispersions in Table II. D-4 for

the ±2 deg F propellant temperature tolerance. It also explains the change in nominal and minimum

payload capability that occurs in going from the nominal temperature case to the -2°F temperature case.

For GLV's 9 through 12, a more sophisticated approach was taken to determine the probabilities

associated with the predicted payload capability dispersions. In particular, the outage dispersions were

treated as non-Gaussian. The root-sum-square of the other payload capability dispersions was combined

through a double convolution process with the non-normal Stage I and Stage II outage dispersions to result

in a cumulative probability function. This function expressed the probability that achieved payload capability

would be equal to or greater than a given level. As a result of this improved probability analysis, the prob-

ability level associated with the overall payload capability dispersion predicted for these GLV's ranged from

99.4 to 99.3%.

These cumulative probability functions were computed for both the nominal propellant temperature

case and the -2 deg F propellant temperature tolerance case. The -2 deg was chosen in preference to

the +2 deg case because it represented the more pessimistic payload capability at the planned launch time.

An example of the predicted probabilities is shown in Figure II.D-9. This is the figure that was used to

predict probabilities of nominal insertion for GLV-I1 and GLV-1Z. It is assumed in the figure that the

probability of desired insertion is identical to the probability of achieving the indicated payload capability

level. Desired insertion is defined, in this case, as one involving a nominal GLV Stage II shutdown and

tailoff, followed by a nominal spacecraft injection into orbit.

Also shown in Figure II.D-9 are the achieved payload margin differences from nominal. The nor-

malized differences from nominal are compatible with the assumptions used in drawing the curves. The

normalizing factors are also listed in Section II.D-2-C(5). It will be seen that the normalized achieved

payload margin differences from nominal agree well with the prediction curves, thereby attesting to the

validity of the predictions.

{4) Performance Reporting and Updating

Gemini Launch Vehicle payload capabilities were computed by both Martin-Baltimore and The

Aerospace Corporation, and reported in a variety of ways. The Martin Company issued a series of

monthly reports (LV-ZZ-) in which loadings, weights, tank volumes, and outages were specified for

each launch vehicle. Dispersions and payload capabilities were computed and presented as functions

of launch time and launch day. In addition, Martin issued a specification change notice prior to each

flight and updated the payload capability predictions for that flight. This was further refined at F-2

Days to include effects of predicted weather at ETR. Real-time prediction techniques were used

during the loading and countdown phases of each launch.
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TableII. D-4. GLV-12 Dispersions

Stage

II

Parameter Maximum Dispersion (3¢r) Effect on
Payload, lb

Thrust, %

Specific Impulse, sec

1 ] Predicted Propellant

/ Temperatures

Outage, lb
!

Z iZ°F Propellant Tempera-
ture Tolerance

Dry Weight, lb

Usable Propellant Weight, lb

Pitch Programmer Error, %

Pitch Gyro Drift, deg/hr

Winds

Density

Engine Thrust Misalignment, Pitch, deg

Thrust, %

Specific Impulse, sec

1 ! Predicted Propellant
! Temperatures

Outage, lb

2 iZ'F Propellant Tempera-
ture Tolerance

Dry Weight, lb

Usable Propellant Weight, lb

Root-Sum-Square

2.4

t.7

t, 703

1, 672

21

876

1.87

39.2

Directional Modified

Synthetic i% Avidyne

Extreme PAFB Profile

O. 3t4

3.2

2.3

413

406

13

197

L ' Predicted Propellant

Temperatures

iZ'F Propellant

Temperature
Tolerance

106

118

279

Z74

3

36

105

108

i08

24

89

19

t9Z

449

441

13

17

622

6t4

Reduction in both nominal and minimum payload capability for -2 ° propellant -56

temperature case

OVERALL ALLOWANCE FOR NON-NOMINAL 1 Predicted Propellant 6Z2

PERFORMANCE (including related probability} Temperatures (99.4%)

2 -2 ° Propellant 670
Temperature Case (99.3%)
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The Aerospace Corporation presented payload capability estimates to NASA/MSC via a series of

monthly performance reports. The GPO panel meetings at Houston were.also used to present payload

capabilities and discuss potential improvements or degradations. Detailed performance versus proba-

bility predictions were given to NASA at the Technical Review which preceded each flight and these were

updated at the Flight Safety Review Board briefings at ETR to reflect last r/linute changes. During the

countdown phase, Aerospace reviewed the Martin real-time computerized payload calculations and per-

formed manual backup calculations using measured propellant temperature data.

The Aerospace monthly performance reports contained a thorough review" of the performance

capability for each mission and discussed performance changes in great detail. The summary charts

included both nominal and minimum payload capabilities as well as data on spacecraft current and pre-

dicted weights, experiment weights, and predicted launch margins. Some of the typical reported

changes which affected overall payload capability included variations in thrust and specific impulse,

propellant loads, pitch program biases, burnout weights, target ephemeris data, and trajectory simu-

lation. A running account of spacecraft weight growth and GLV payload capability was presented as

shown in Figure II. D-8. Bar charts such as that of Figure II. D-f0 were included to show achieved

versus predicted capabilities. Probability curves were also included to show the effect of weight

or capability changes on mission success. A table of exchange ratios and curves of payload versus

launch azimuth and launch window were developed to indicate how these factors affected payload

capability. Finally, all current studies which might have had a potential effect on payload capability

were rev'_ewed and discussed in detail.

(5) Propellant Temperature Prediction, Control, and Monitoring

Propellant temperatures had to remain within certain limits because of engine operating require-

ments, maintenance of minimum ullage volumes, and achievement of a propellant consumption mixture

ratio close to the value upon which the propellant loading and payload capability were based. The impor-

tance of this area was emphasized at T-5 hours during prelaunch operations on GT-! when the predicted

"oxidizer equivalent temperatures"* for T-0 were too high (by over 5 ° for Stage I and over l0 ° for

Stage II), resulting in a calculated payload capability of approximately 700 lb lower than that expected.

This would have resulted in a minimum payload capability of over 400 lb less than the spacecraft

weight. Actual temperature rise rates lower than predicted by the computer program, along with ma-

nipulation of erector curtains and polyethylene wrap, resulted in barely acceptable temperatures by

launch time.

After the GT-1 flight, considerable effort was expended to obtain desired propellant tempera-

tures. Improvements were made in propellant temperature instrumentation in the AGE, loading proce-

dures, erector curtain control, weather predictions, propellant heating prediction computer program,

real-time calculation of payload capability and ullage limits, and dissemination of infQrmation to

launch operations personnel. Updating of some items such as the Martin propellant heating prediction

program continued after each launch.

Tight tolerance goals of ±2 ° oxidizer equivalent temperatures for both stages were set. By

maintaining these tolerances, the predicted minimum payload capability for a 3.5 hour launch window,

with mixture ratio optimized for the middle of the window, could be held within a range of 120 lb.

Oxidizer equivalent temperature is defined as the difference between the oxidizer temperature

predicted and the oxidizer temperature desired for the fuel temperature predicted.
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Satisfactory propellant temperatures were obtained on GT-B through GT-1Z, since actual flight

propellant temperatures were generally within the desired constraints.

b. Performance Improvement Program

(I) Spacecraft Weight Growth and Mission Requirements

Since the inception of the Gemini Program, a vigorous program of payload capability improve-

ment was pursued to meet the ever-increasing requirements in this area. Initially, it was estimated

that the total weight of the spacecraft, including experiments, would run about 7000 ib for the long

duration missions and 7250 Ib for the rendezvous missions. It quickly became apparent that these

would be exceeded. The early spacecraft weight growth rate was approximately 35 to 40 Ib per month,

and it was not until deletion of the paraglider configuration that some relief was obtained. Increase in

the size of the spacecraft OAMS tanks provided another spur in the search for higher GLV payload

capability. Ultimately the spacecraft weights grew to the point where predicted GLV performance

margins relative to the minimum (99.4% probability) payload capability were consistently negative.

Comparison between actual spacecraft weights and achieved payload capabilities is shown in

Figure II. D-10.

In addition to spacecraft weight increases, changes in mission requirements had a significant

effect on GLV payload capability. On early flights a five-hour launch window requirement was imposed,

necessitating large ullage volumes in the propellant tanks to allow for propellant temperature increases.

This in turn meant less propellants loaded and a reduced GLV payload capability. Optimizing the mix-

ture ratio for the worst case in the window under dispersed propellant temperature conditions also

resulted in performance decreases. For certain missions the requirements for high initial apogees

and for launch azimuths considerably less or greater than 90 deg degraded the GLV payload capability.

Finally, the requirement to have the launch vehicle steer out as much as 0.55 deg of wedge angle to

increase availability of OAMS propellant in the spacecraft, reduced the GLV probability of achieving

the desired insertion conditions.

(2) Preflight Improvements

(a) Colder Propellants - Propellant temperature conditioning equipment was included in the AGE so

that propellants could be chilled to 20°F for oxidizer and 26°F for fuel before loading. This would

allow greater propellant masses to be loaded in the fixed GLV tank volumes and thus increase payload

capability.

The payload capability advantage in going to chilled propellants was reported in 1964 as +190 Ib

due to reducing ullage limit temperatures from 65°F to 50°F {+225 Ib) and re-oriflcing engines to

obtain target mixture ratios at 40°F rather than 65°F (-35 lb).

A new factor of temperature effect on propellant enthalpy has been introduced, which was not in

the original engine model or analyses. If the enthalpy effects are correct* Ithere is a question since

the Stage II value used is about twice as large as the theoretical I, the 190 lb gain would drop to 100 lb.

Enthalpy effects on I presently being used are:
sp

+0. 0255 sec Isp )
+l°F propellant temp Stage I

and
+0.05 sec Isp p)
+l°F propellant tern Stage II
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Table II. D-5 contains updated payload capability increases based on reviewing the problem under

the recent GLV mission requirements, actual GLV and Titan III propellant temperature experience,

and present temperature influences on payload capability. As indicated, actual payload capability

gained was from approximately 250 Ib to 40 Ib, depending upon the validity of the enthalpy effects.

Also shown is the payload capability advantage that would have accrued in going to constant tem-

perature propellants under recent mission requirements. This information may be of value to the

Titan III program since consideration is being given to conditioning propellants on some of the missions

without reorificing the engines. It appears that if the enthalpy effects for Stage II are correct, there

is a slight loss in performance capability for Stage II in going to colder propellants (determined from

Case 3: item 4 plus item 6 for Stage If).

(b) Weight Reduction. Another of the steps taken to increase GLV payload capability was the initia-

tion in 1962 of a formal weight reduction program. The Martin Compare/ reviewed each subsystem

and listed those areas in which some weight reduction could be effected. This list was reviewed by

SSD/Aerospace in terms of costs, effectivity, and technical feasibility. Some items were deleted,

and the remainder was presented as a proposal for formal evaluation. Recommendations were then

made to NASA/MSC and direction was received to implement some of these items. Table If. D-6 lists

the improvements proposed, gain in terms of payload improvement, and whether or not these were

implemented. A total of 122 lb of payload capability was gained from this effort.

A fortuitous gain in performance resulted from the weighing of Stage II at the factory. It was

observed that this portion of the vehicle was approximately 65 ib lighter than the design weights.

Since this was consistently observed in the first six vehicles, the nominal weights for the remaining

vehicles were adjusted accordingly, resulting in a net payload capability increase of 65 lb.

{c) Reduced Minimum U11ages. In 1962, attention was given to the performance gain available by

reducing the minimum ullages* in the propellant tanks from the values used on the Titan II weapon

system. Structural studies were conducted by Martin and engine start tests at reducedullages were

incorporated in the AGC Gemini Propulsion System Test Program. Minimum u11ages were reduced,

effective for GLV-I, as indicated below.

GLV Payload
Tank Minimum Ullage, ft 3 Capability Gain

Titan II

Stage I:

Oxidizer

Fuel

Stage H:

Oxidizer

Fuel

GLV

97 48 (-50%)

79 39 (-50%)

83 63 (-24%)

20 16 (-ZO%)

+270 Ib

+ 60 Ib

This change yielded the largest single GLV performance gain in the Gemini Program.

*Minimum ullage is defined as the minimum gas space required in a propellant tank at engine ignition

to ensure adequate tank pressurization and engine inlet pressures.
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(d) Shutdown Level Sensor Removal. Early in 1963 Martin proposed that the feasibility of removing

the low level propellant shutdown sensors from the shutdown circuits on both stages of the GLV be

studied. This would eliminate the large possibility of premature shutdowns due to faulty level sensor

operation and would also increase payload capability by reducing the amount of trapped propellants.

Data from exhaustion shutdowns on the test stand and on Titan II R and D flights indicated that such

shutdowns did not noticeably jeopardize mission success. The shutdown function of the sensors was

eliminated although they were retained for instrumentation purposes and for closed loop operation if

later found desirable. Payload capability gains due to this change were 27 ib for Stage I and 136 lb for

Stage II.

(e) Stage I Mixture Ratio Reorificing. Changing the Titan II engine target mixture ratios on accep-

tance test from 1.93 for Stage I and 1.80 for Stage II to approximately 1.95 and 1.84 would have allowed

complete filling of both oxidizer and fuel tanks to ullage limits when the engines were operated in the

anticipated GLV flight environment. However, as mixture ratio increased, specific impulse decreased

for both stages. The net effect on payload was

= +32 lb payload and =0 lb payload

+0.01 AMR I +0.01 _ MRII

Some of the other areas investigated were engine effects such as heat transfer and combustion

stability, possible mission changes, and the impact of other potential performance improvement items

such as further reduced minimum utlages and constant temperature propellants. As a result of these

studies, the Stage II engine mixture ratio change was eliminated because there was no payload advan-

tage, and the Stage I engine target mixture ratio was changed to 1. 945, effective for GLV 4. This

resulted in a payload improvement of 50 lb.

(3) Flight Improvements

(a) Flight Test Propulsion Performance Biases. Titan II and GLV engine performance data were

monitored throughout the Gemini Program. By May of 1965, sufficient data had been accumulated to

indicate that significant changes in the form of biases were likely to occur between acceptance test

and flight. This analysis included the results of I0 Stage I flights and 16 Stage II flights. For GT-4

through GT-10, the biases indicated by the analysis were included in preflight trajectory and per-

formance predictions. The biases were +8, ZOO lb Stage I thrust, +1.7 sec Stage I specific impulse,

and +900 lb Stage II thrust. A Stage II specific impulse bias was not indicated by the statistical

analysis. The l_yload capability gain for these biases was approximately +93 lb.

(b) Reoptimization of Pitch Program. When the Stage I thrust bias of 8,200 lb and specific impulse

bias of i. 7 sec discussed above were incorporated into GLV-4 preflight predictions, the added

efficiency of Stage I resulted in over-lofting of the Stage I trajectory. This was disadvantageous

for two reasons. First, high-dispersed trajectories could result in pitch look-angles which

exceeded the existing allowable limits. Second, over-lofting was inefficient from the standpoint of

causing excessive gravity losses and Stage II pitch maneuvering. Because of these considerations, a

new pitch program was developed for GLV-4. Use of the new pitch program, which eliminated the

over-lofting resulted in an improvement in GLV-4 payload capability amounting to +55 lb.

II. D-35



The new pitch program developed for GLV-4 was later used for all succeeding launch vehicles.

This was because the same or similar engine performance biases were expected for the succeeding

vehicles. Therefore, the payload capability of GLV-5 through 12 was also increased by approximately

55 Ib through adoption of the new pitch program. Variations in the actual commanded vehicle pitching

rates were caused only by variations due to launch vehicle hardware; that is, to TARS package and

power supply variations.

(4) Non-implemented Improvement Studies

Although considerable performance improvements were adopted for the GLV, a number of studies

were made during the course of the program which initially appeared attractive, but were later elimi-

nated for technical or high-cost reasons. The most promising are summarized in Table II.D-7 and are

discussed in the paragraphs below.

The use of a lower insertion altitude was studied in some detail, since this offered a tradeoff of

25 pounds of payload capability for every nautical mile decrease in insertion altitude. Studies by both the

Martin Company and Aerospace Corporation indicated that the technique was feasible, but would

require a depressed Stage I trajectory which approached the aerodynamic heating constraints of the

GLV. At the lower insertion altitudes, there was a degradation in spacecraft insertion accuracy (due

to more atmospheric noise at the lower elevation angles at guidance cutoff), as well as a requirement

for the spacecraft to use its OAMS to make up the difference in perigee altitude in achieving rendez-

vous. The net effect was a payload improvement of 185 pounds for a reduction in insertion altitude

from 87 n mi to 80 n mi. The technique was disapproved by NASA in October 1965, since at that time

the payload margins relative to the predicted spacecraft weights were all positive and the decrease in

insertion accuracies was deemed undesirable.

Another technique which the Martin Company investigated was the use of air-conditioned blankets

around the Stage I and Stage II propellant tanks to maintain the propellants at a constant cold tempera-

ture (37°). Since a 5-hour launch window was considered in the loading criteria, this would gain

approximately 200 pounds of payload over the existing propellant conditioning and loading techniques.

This proposal was rejected on the basis of feasibility, since a detailed design layout and release

mechanism for the blankets had not been established, and the development time was such that only the

last few vehicles in the program could benefit from such a scheme. There was also some question as

to the adequacy of the thermal heat transfer in the blanket/air-conditioning system. As it turned out,

NASA's redirection of the launch window to 1.5 hours reduced the relative payload gain for the con-

stant temperature technique, and the inclusion of reduced enthalpy in the specific impulse calculations

of engine performance at low temperatures made the constant temperature propellant scheme appear

even less attractive.

A third technique for achieving additional payload margin was to reduce holddown time prior to

GLV liftoff. The analysis indicated that a reduction of 0.7 second would result in a payload gain of 45

pounds. Although this gave sufficient time to detect engine start transient failures, analysis of the

GLV structure indicated that vibrations from the engine start were possibly not sufficiently damped,

and the proposal was rejected on this basis.

Reduced minimum ullages were adopted early in the program, and studies were later funded to

consider still further ullage reductions to the following values: Stage I oxidizer 17 ft3; Stage I fuel 15 ft3;

Stage II oxidizer 32 ft3; and Stage II fuel 13 ft 3. These could have yielded an additional 180 pounds of
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payload capability (140 ib for Stage I, 40 Ib for Stage II). Limited engine start tests would have been

required. Structural analysis showed that there were no problems as far as the vehicle itself was con-

cerned under normal operation, but a major redesign of MDS systems would be required to prevent

tank failure on the launch stand in the event of autogeneous pressurization failures on Stage I before

liftoff. These technical problems were sufficient to cause rejection of this improvement item.

A number of other performance improvement techniques were considered, such as increasing

the length of the Stage II tanks and increasing the expansion ratio of the Stage I engine nozzle. Although

these could yield payload improvements on the order of 400 pounds, they entailed considerable redesign,

test, and costs, and would only be available near the end of the program. Thus the cost per pound of

payload improvement was extremely high, and these proposals were rejected on that basis.

(5) Mission-Dependent Performance Changes

In addition to keeping very close track of all launch vehicle parameters to correctly predict tra-

jectory and payload capability, it was also necessary to take into account performance changes due to

the Gemini mission differences and mission changes. For example, if the apogee were changed for

a specific Gemini mission, it was necessary to adjust the predicted GLV payload capability in accord-

ance with the apogee change. Similarly, if the launch azimuth and]or yaw steering were changed, the

payload capability effects were computed and incorporated in the predicted launch vehicle capability.

Table II. D-8 summarizes several of the parameters which varied throughout the Gemini Program

and which had to be taken into account in predicting trajectory and payload capability performance.

The length of the launch window helped to determine the amount of propellants which could be loaded.

The amount of these propellants, in turn, had a direct bearing upon launch vehicle payload capability.

As the ullage limit window was decreased, the payload capability increased at rates as high as 40 lb/hr.

Payload capability variation with launch azimuth was considerably more complex. Illustrated in

Figure II.D-11 is this variation as it was predicted for GLV-12. Also included in the figure is the

payload capability variation due to GLV yaw steering. Yaw steering was required to permit insertion

of the Gemini spacecraft into the target plane for rendezvous missions.

For all orbital Gemini missions (except GT-2), the required insertion velocity resulted in an

apogee that ranged between 130 and 190 n mi. The GLV payload capability varied at the rate of

+2.7 lb/-1 nmi; thus, payload capability could vary over a wide range, depending upon the apogee

selected. Likewise the amount of spacecraft separation velocity increment also had a direct effect

upon launch vehicle payload capability. If the separation velocity increment imparted by the space-

craft were increased, the GLV payload capability would correspondingly increase at the rate of

i.5 lb for every 1 fps less required of the GLV, assuming a constant orbit apogee.

In addition to these changes for a given Gemini mission, it was also necessary for each of the

rendezvous missions to determine payload capabilities for alternate missions defined by NASA. The

alternate missions were those which would be attempted if the primary mission could not be completed_

Aerospace Corporation and associate contractors were provided information regarding the planned

alternate mission or missions. Based upon this information, payload capability estimates were

developed for the nominal launch time and for succeeding launch times which would occur in the event

of a launch delay. As it turned out, there were two alternate missions flown in the Gemini Program.

They were GT-6A and GT-9A. These are discussed elsewhere in this report.
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Gemini

Mission

GT-1

Description

Unmanned Orbital,

No Recovery, No
Spacecraft

Separation

GT -2 Unmanned

Ballistic, Maximum

Heating Rate

GT-3 Manned, 3 -Orbit,

Battery Power

GT-4 Manned, 4-Day,

Battery Power

GT-5 Manned, 8-Day,

Active REP

Exercise, Fuel
Cells

VII Manned, 14- Day,
Fuel Cells

VI-A Manned, 1-Day,
Non-Docking Ren-
dezvous with GT-7

S/C, Battery Power

VIII Manned, 3-Day,
ATDA Rendezvous,

Fuel Cells

IX-A Manned, 3-Day,

Agena Rendezvous,
Fuel Cells

X Manned, 3- Day,
Agena Rendezvous,
Fuel Cells

XI Manned, 3- Day,

Agena Rendezvous,
Fuel Cells

XlI Manned, 4-Day,

Agena Rendezvous,
Fuel Cells

Launch Requirements*

Launch Or bit

Launch Azimuth Inclination
Window

hr deg deg

3.5 72 32.54

3.5 105 - -

3.5 7Z 32.54

72 32. 54

72 32. 54

83. 6 28. 87

2.5

3.5

2.0

ullage

2. 0 Variable 28. 87

payloac 80 to 105 nominal,

2 5 81 4 28. 89
uhage

actual actual

2.5 Variable, 28.87

payloacl 80 to 105, nominal,
4. 5 99.9 28.87

ullage actual actual

2. 5 Variable 28. 87

payloads;80 to 105, nominal,
4. 5 87.4 Z8.87
ullage actualactual

0.0
Variable, 28.87

payloa_ 80 to 105 aominal,
1. 5 98. 8 28. 86
ullage actual _ctual

0. 0 Variable, 28. 87
payload 80 to 105 nominal,
1.5

99. 9 28.85
ullage actual actual

I

0. 0 I Variable 28. 87

_ayload, 80 to 105 nominal

U'llage

_: The values identified as "nominal" are the valu,

upon the achieved target orbit. Achieved GLV h

** After addition of spacecraft separation AV.



fable II.D-8. Mission Requirements

I

Insertion Requirements*

Perigee / Apoge*e _

n mi

87/161

87/15t

nominal

Geocentric

Radius

int ft

21,438,500

=87 n mi

Ine r ti al

Velocity

ft/se¢

25,766

Inertial Flight

Path Angle

deg

0.00

GLV Objectives

Structures, Exit Heating,

Guidance Qualification

GLV

Results

Successful

87 apogee Same 25,736 -2.28 Separation Subsystem Successful

at spacecraft Qualification

release

87/130 Same 25,699 0.00 Performance in Meeting Successful

Insertion Requirements

87/158 Same 25,756 Same Performance in Meeting Successful

Insertion Requirements

87/190 Same 25,807 Same !Performance to Space-

craft Insertion, Joint Successful
GT/GAATV Countdown

Compatibility

87/183 Same 25,804 Same Meet Insertion Successful

Requirements

87/146 Same 25,730 Same Meet Insertion and Successful

nominal nominal, Rendezvous Launch Re-

25,730 quirements
actual

Z5, 730

87 / 146 Same nominal, Same Meet Insertion Require - Successful

nominal 25, 728 ments, Joint GT/GAATV

actual Countdown

87/146 Same 25,725 Same Meet Insertion Require-

nominal nominal, ments, Joint GT/GAATDA Successful
25.723
actual Countdown

87/146 Same 25,720 Same Meet Insertion Require-
nominal nominal,

g5,719 ments, Joint GT/GAATV Successful

actual Countdown

87/151 Same 25, 72 0 Same Meet Insertion Require-

nominal nominal, ments, Joint GT/GAATV Successful

25,714 Countdown

actual "

Same Same25,730

nominal
Meet Insertion Require-

ments, Joint GT/GAATV

Countdown

Successful

_s used prior to target insertion. The "actual" values shown are the required values based

_unch and insertion parameters are not shown in this table.
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c. GLV Fli_ht Test Performance

(I) Propulsion Performance

Extreme attention was devoted throughout the Gemini Program by Martin, Aerospace, and AGC

to obtaining accurate preflight predictions and post-flight analyses of vehicle propulsion perform-

ance. This area was of great importance because the GLV payload capability and trajectory perform-

ance were highly dependent on the propulsion parameters of mixture ratio (the major contributor to

propellant outage), specific impulse and thrust for both stages.

Before the flight of GT-I, two propulsion performance computer programs were developed at

Aerospace. Both were similar to programs used by TRW on the Titan II and Atlas programs. The

first was a non-linear influence coefficient model that predicted propulsion parameters as functions

of propellant pressures and temperatures, axial acceleration, and ambient pressure. This program

operated closed loop in the N-Stage trajectory program. The second was a post-flight reconstruction

program (used in conjunction with the N-Stage simulation) that calculated propulsion values that best

matched flight data, such as acceleration (internal and external sources) and propellant consumption,

on a "least-squares" basis. The program was identifed as the "Best Estimate of Engine Performance"

(BEEP). Outputs were (I) flight integrated average propulsion parameters and (Z) engine operation at

"Standard Inlet Conditions". From this information differences in engine operation from predicted

operation could be charged to changes in inlet conditions, to the engine operating differently than it did

during acceptance ground tests, and/or to unknown sources.

To add confidence and continuity to the use of these programs, a contract was given to TRW

Systems to perform propulsion analysis activities before the flight of GT-I and preflight predictions

and post-fllght propulsion reconstructions on GT-1 and GT-2.

Before each flight, Martin, AGC, and Aerospace made independent propulsion performance

predictions. These were compared and differences resolved. The major item analyzed was engine

mixture ratio prediction since there was no closed loop propellant utilization system on board the

GLV to correct for propellant consumption errors.

Anticipated engine performance dispersions were developed fromTitan H engine acceptance test

data. These were adjusted and biases incorporated as new analyses, statistical techniques, and flight

results were applied.

Table II. D-9 contains the Aerospace BEEP summary of propulsion performance results for the

12 GLV's. The same set of biases was used in all the preflight predictions. Brief comments on the

results are as follows:

Stage I thrust averaged approximately 0.5% below predicted, indicating that the bias should be

reduced from +8200 lb to +6000 lb. Dispersions were tighter than theoretical.

Sta_e I specific impulse averaged slightly more than 0. 1% above predicted. This was satisfac-

tory and supported the +1.7 seconds bias that was added to the acceptance test value before making

preflight predictions. Dispersions were a small amount larger than the theoretical allowance; how-

ever, no individual flight specific impulse fell outside the theoretical tolerance level.

There was an interesting relationship concerning specific impulse results on both stages that

could be applied to improve predictions for future Titan II and Titan III family launches. It was noted

by Aerospace (after GT-10 flew) that the specific impulse flight results on a stage tended to be close

to a constant value, regardless of the acceptance test reported level. Thus, specific impulse flight

biases and dispersions were smaller if the average of flight-derived specific impulses from previous

flights were used for the next flight specific impulse prediction rather than the biased acceptance

test level.
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Table II.D-9. GLV Propulsion Performance Summary (1)

Flight Difference from Predicted, %(2)

Thrust

M
L_
<

u_

Vehicle

GT- 1

2

3

4

5

6

7

8

9

10

11

12

Avg.
3S
3_, 75%
confidence

Theoretical

GT- 1

2

3

4

5

6
L3
< 7

u_ 8

9

10

11

12

Avg
3S

3_, 75%
confidence

S.I.C.(3) Fit.
Avg.

-1.30 -1.49

-0.23 -0.55

-0.51 0.35

-0.61 -0.25

0.0Z -0. 18

-0.96 -0.68

-0. 12 -0. 18

-l.01 -0.97

-0.02 -0.26

-0.55 -0.46

-0.37 -0.72

-0.36 -0.68

-0.50 -0.48

±1.24 ±1.49
±1.55 ±1.86

-- 0+2.4

-1.42 -2.04

0.83 0.46

0.75 0.73

0.92 0.23

1.53 1.57

-0.42 -0.82

0.60 0.26

-0.15 -0.38

-0.47 -0.17

-0.08 -0.04

-0.04 0.12

-1.77 -1.35

+0.02 -0.1Z

±2.91 ±2.87

±3.63 +3.58

Theoretical -- 0+3.2

NOTES: (I) Data from Aeros

(2)

Specific

Impulse

S.I.C.

-0.25

-0.09

-0.01

0.24

-0.11

0.02

0.31

-0.24

0.63

0.25

0.27

0.43

+0.12

±0.83
+1.04

Mixture
Ratio

Fit. S.I.C.
Avg.

-0.25 0.66

0.09 0.29

0.21 -0.44

0.35 -I.13

-0. 12 i. 09

0. 13 I. 12

0.43 -0.58

-0. 16 -0.58

0.59 -1.91

0.30 -1.92

0.25 -1.46

-0. ii -1.41

+0. 14 -0.52

+0.78 +3.29

±0.97 ±4.12

Flt.

Avg.

0.39

-0.69

-0.38

0.16

0. 14

0.50

0.39

-0.07

-0.35

-0.38

0.04

0.14

0.65

-0.23

0.09

+0.09

±0.96

+1.20

-1.20

0.79

0.69

-0.60

-0.79

-1.37

-1.85

-1.56

-0.49

-0.59

.+.2.58

+3.22

i_8: Avg +0.05 -0.22
3S +_2.56 +--2.24

0+0.61 0+l. 3@ TM

0.31 0.92

0.19 -I.71

0.52 -0.49

0.35 -0.79

-0.08 -0.31

-0.30 0.51

-0.45 -0.26

-0.04 -0.28

0.09 -1.60

0.64 -1.54

-0.26 - 1.32

O.40 -1.95

+0. 11 -0.74

+1.03 +2.73
±1.29 +3.42

Avg -0.30 -0.27
1 _ 8: 3S _+2.38 +Z. 36

0+1.5_ 5)

-0.19

-2.09

-0.35

-0.39

0.04

0.19

0.28

0.35

-1.33

-1.60

-I.17

-1.20

-0.62

+2.46

+3.07

Oxidizer
Flowrate

Flt.
S.I.C.

Avg.

-0.83 -i. I0

-0.04 -0.88

-0.61 -0.08

-- 0±0.73 0±2.28 0±2.52

,ace BEEP final reconstructions.

-i.23 -I.00

0.50 0.23

-0.61 -0.60

-0.62 -0.46

-0.96 -1.07

-1.29 -1.30

-1.46 -1.36

-I. 12 -1.49

-1.26 -0.73

-0.80 -0.82

_1.71 ±1.56

_+.2.13 ±1.95

-1.26 -2.60

0.07 -0.43

0.06 0.09

0.24 0.60

1.49 1.66

0. Ii -0.45

0.89 0.81

-0.29 -O.2Z

-1.18 -0.74

-1.27 -1.24

-0.29 -0.45

-2.54 -2.18

-0.33 -0.40

13.26 !3.61

i4.07 +4.51

Fuel
Flowrate

Fit.

S. I.C. Avg.

Biases added to acceptance test thrust, specific impulse, and mixture ratio were
+8200 lb, +1.7 sec, and 0 for Stage I; and +900 lb, 0 sec, and 0 for Stage II.

(3) Standard Inlet Conditions (S.I.C.)

{4} Value changed to _+.2.43% for GT-11 and GT-12.
(5) Value changed to +2.52% for GT- 11 and GT- 12.

-1.48 -1.49

-0.32 -0.20

-0.21 0.54

-0. 10 0.20

-0.59 -0.56

-1.70 -l. Z8

-0.04 0. 15

-0.39 -0.28

0.63 0.08

0.47 0.51

0.34 0.07

0.15 -0.27

-0.27 -0.21

+2.15 +1.91

_+_2.68 zf.2.38

-2. 15 -2.42

1.81 1.64

0. 56 0.44

I.04 0.95

I.8O I. 63

-0.40 -0.64

1.15 0.52

-0.01 -0.57

0.43 0.60

0.28 0.37

1.04 i. 14

-0.61 -0.99

+0.41 +0.22

±3.35 !3.56

±4.18 ±4.44
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Sta_e I mixture ratio on the first eight flights revealed less than a +0. 1% bias at Standard Inlet

Conditions. This was quite satisfactory. Dispersions at Standard Inlet Conditions were much larger

than theoretical--approximately ±Z. 5% (3S) versus the acceptance test repeatability of _=1.38%. Titan II

R & D flights had a repeatability of +0. 1 -_2. Z% so the GLV was compatible with previous experience.

However, it was expected that the R & D results would be an outer bound, tt must be pointed out that

the BEEP flight mixture ratio repeatability encompasses not only engine hardware repeatability but also

any unknown effects such as cavitation and simulation model inaccuracies. T}_e negative mixture ratio

shifts encountered on the last four flights averaged approximately -1.7%. After the occurrence of large

negative shifts in mixture ratio on both stages of GLV's 9 and 10 with no cause identified, the Stage I

mixture ratio (and unknown) repeatability value was increased from ± 1.38% to ±2.43% in performance

capability and propellant loading calculations for GLV-11. This gave propellant outage dispersions that

were compatible with those encountered on the first 10 flights. After both stages on GLV-11 experienced

the negative shifts, it was decided to also incorporate a -0.5% bias in flight mixture ratio in the preflight

propellant loading calculations for GLV-12 to better optimize payload capability in the event of some neg-

ative shift. The shifts occurred again on GLV-lZ. See Section II. E. 3. h for details on the analysis of

causes for the shifts.

Stage H mixture ratio had a -0.3% bias from predicted on GLV's 1 through 8, but dispersions at

Standard Inlet Conditions were compatible with theoretical tolerances--approximately _-2.4% versus the

acceptance test repeatability of _2.28%. As on Stage I, the BEEP flight mixture ratio repeatability

encompasses unknown effects in addition to hardware repeatability. For information, the Titan H R & D

flights had a repeatability of -0.4 _-2.5%. Thus, there were no surprises and prediction techniques were

considered adequate. No action was taken to remove the -0.3% bias since it contributed to smaller than

nominal outages and, correspondingly, to above nominal payload capability. The negative mixture ratio

shifts encountered on the last four flights averaged approximately -I. 6%. After the shifts on GLV's 9

and I0, no action was taken to eliminate or partially compensate for an occurrence on OLV-II since the

outages that occurred were still smaller than nominal. After the shift on GLV-II, M/B completed a

study of flight engine pressure data which indicated that the engine simulation model influence curves

for the effect of oxidizer pump inlet pressure on mixture ratio should be changed. The change would

eliminate approximately a -0.4% bias in mixture ratio on all flights. AGC concurred with the M/B

analysis and a bias of -0.4% was incorporated in the propellant loading for GLV-12.

Stage II thrust averaged very close to predicted and verified the +900 Ib bias added to acceptance

test. Dispersions were within the theoretical allowance.

Stage II specific impulse averaged about 0. 1% above predicted and thus was quite satisfactory.

Dispersions were slightly larger than theoretical, but, as on Stage I, no individual flight specific

impulse fell outside the theoretical tolerance band.

Stage I and Stage II propellant flowrates results are provided since they are the major parameters

that are analyzed when searching for causes of shifts in thrust, specific impulse, and mixture ratio.

(Z) Propellant Outage Analysis

Propellant outages# for Stage I and Stage II were the two largest factors in payload capability dis-

persion allowances (see Table II.D-13). Table II.D-10 provides a summary of the outage results on

Outage in the amount of usable fuel (or oxidizer) that could not be properly consumed because all

the usable oxidizer (or fuel) was exhausted.
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Table II-D-10. GLV Normalized (l Flight Outages, Lb. Fuel

Mission Stage I (2) Stage II (z)

GT-I

2

3

4

5

6

7

8

9

I0

II

12

1--_ 12:

1799

1163

644

3

1379

1545

725

189

88 (75 ox)

- 55Z (90l ox)

- 612 (1007 ox)

- 319 (486 ox)

49

18 (32 ox)

274

184

230

320

302

328

24

Z4

117

- 69 (122 ox)

AVERAGE

3S

3@, 75% Conf.

1_8 WITHOUT

MR BIAS:

AVERAGE

3S

THEORETICAL:

AVERAGE

3_

489 (MEAN 8Z6)

IZ5Zl (3S x = ±2.87%)

• 3075 (3ffh = ±3.50%)

488 (MEAN 729)

±1938 (3S h = ±2.21%)

580 (3) (MEAN 850, MAX (99%) 2600)

±ZZ85 (3c;X(4) = ±2.6%)

147 (MEAN 167)

±430 (3S x = ±1.95%)

±537 (3a A = ±2.44%)

IZZ (MEAN 17Z)

±389 (3S A = ±1.77%)

136 (3) (MEAN Z09, MAX (99%) 622)

±570 (3a A = ±2.59%)

NOTES: (1) Actual outages were adjusted by normalizing for

a. Present engine model

b. Mixture ratio optimized for T-O

c. On-time liftoff

d. Present capability for controlling and predicting propellant temperatures

e. 3aA =*2.6% for Stage Iand±2.59% for Stage II
f. Incorporation in Stage Iof a zero outage region along with increased aV

during.'shutdown for fuel exhaustion

g. Mixture ratio biases to acceptance test of -0.5% for Stage I and

-0.4% for Stage II

(2) The "trapped plus shutdown" propellants used in the outage calculations were

as follows:

Simultaneous or Command Shutdown

Ox Exhaustion Fuel Exhaustion with RESS

(3)

(4)

Ox, Ib 1Z8 128 96

F, lb 507 464 74

Fuel bias

3a A (three sigma lambda) is the measure of overall dispersion in outage.

The theoretical values include the RSS of 1.38% for Stage I and 2.Z8% for

Stage II for engine mixture ratio repeatability. Because of the mixture

ratio shift problems on GLV's 9 and 10, an additional repeatability factor

of 2.0% was RSS'd into Stage Ito increase 3a)_to the flight-observed
value at that time of approximately Z.6%.
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theGLVflightscomparedtotheoreticalallowances.For acorrectcomparisonof outagesontheflights,
theseoutagesall havebeennormalizedto thevaluesthatwouldhaveresultedif thepreflight-predicted
andpost-flight-achievedgroundrulesandcalculationshadbeenthesame.Theconfigurationfor GLV-I2
wasused.Commentsonbiasesanddispersionsfor bothstagesareasfollows:

Stage I: Outage dispersions are seen to be worse than theoretical when all flights are included in

the sample. These results were strongly influenced by the negative mixture ratio shifts experienced on

the last four flights. The mixture ratio bias of -0.5 percent that was incorporated in the GLV-I2 pre-

flight predictions reduced oxidizer outages by 847 lb or increased fuel outages by 443 lb. This bias was

not necessary nor desirable for GLV's 1 through 8 and was too small for GLV's 9 through 12. This is

shown by the results for 1 through 8 alone in Table II. D-10. Thus, if the mixture ratio shift problem

could be eliminated, much better outage bias and dispersion performance would result on Stage I.

Outage dispersions were better than theoretical, even though a negative mixture ratio

shift problem was also experienced on this stage of GLV's 9 through 12. Dispersion allowances

should not be reduced, however, since the major contributor--engine (and unknown) mixture ratio

repeatability--was not smaller than the theoretical value of +Z. Z8 percent. From Table II. D-9, the

Standard Inlet Condition mixture ratio results were -0.3% :f.Z. 4% 3S, for GLV's 1 through 8; and -0.7%

:f.Z. 7% 3S, for GLV's 1 through 12. As for biases, if the mixture shift problem were eliminated, the

need for a -0.3% bias (reduction of oxidizer outage by 115 lb and increase of fuel outage by 65 lb) is seen.

This is justified from outage as well as mixture ratio results once a correction for being 1.2 ° too low in

oxidizer equivalent temperature on the average on GLV's 1 through 8 is incorporated in the outages.

(3) Development of Post-Flight Reconstruction Program

Early in the Gemini Program it became clear that there was a need for a new computer program

that would help in post-flight analysis. The need was to reconstruct the achieved trajectory by varying

vehicle parameters to determine in the process the vehicle perturbations experienced in flight. These

perturbations would be useful in explaining the trajectory and payload capability performance of the

launch vehicle, and they would be useful in estimating performance dispersions for future launch vehi-

cles. In June of 1964, Aerospace Corporation embarked upon an effort to develop a suitable trajectory

and vehicle parameter reconstruction program. This was called the Post-Flight Reconstruction

Program (PFRP).

The fundamental idea of the PFRP was to make a weighted least-squares-fit to the available tra-

jectory and vehicle performance data. The former consisted of tracking data, such as Mod HI and

MISTRAM radar data, while the latter consisted of chamber pressure data, inertial guidance system

data, etc. Since the mathematical models utilized in the reconstruction process were in many instances

non-linear, it was necessary to iterate upon the desired vehicle parameters to obtain the weighted

least-squares-fit. The weighting factors were based upon the a priori dispersions attributed to each of

the parameters. A finite difference method was used for obtaining the approximate partial derivatives

which were necessary in the iterative solution.

The Post-Flight Reconstruction Program was combined with a detailed vehicle simulation known

as the Modular Vehicle Simulation (MVS), plus a data processor. The relationships among these three

components are shown in Figure II. D-1Z.

Development of PFRP progressed to the point where it could be used for post-flight analysis in

time for GT-5. PFRP was used for all subsequent vehicles, with improvements in models being incor-

porated as soon as they were made.
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PFRP was used extensively in the Gemini Program to determine vehicle parameters such as pitch

programmer error, pitch gyro drift, engine pitch misalignment, pitch stand misalignment, and several

other parameters useful in explaining the achieved trajectory and payload capability performance. An

important area in which PFRP was useful was in the determination of engine performance parameters

such as thrust, specific impulse, and mixture ratio. The engine performance parameters derived by

PFRP were always compared with those derived by the Aerospace BEEP program. Comparison would

occasionally result in improvements to either or both of the engine performance analyses.

PFRP results were also used extensively to define achieved trajectory parameters to make possible

a quantitative comparison with the predicted nominal trajectory.

(4) Non-Normalized Performance Summary

Table II. D- 1 1 contains the GLV nominal and minimum payload capability margins that were pre-

dicted by Aerospace on F-I Day or in the Post-Flight Reference Trajectory and the margins between

achieved payload capabilities and spacecraft weights. A summary of the achieved Stage II burning time

margins is also provided in Table IX. D-IZ. The achieved payload capability margins and burning time

margins are of interest because they represent the actual margins that were available for each of the

Gemini launches. The achieved payload capability margins are all adjusted to be compatible with the

desired inertial velocity at Stage I/engine cutoff, SECO. The adjustments for SECO velocity were made

at the rate of +1.5 lb payload for each I fps less required of the GLV. The maximum adjustment used

in the table is +26 lb for GT-t. The intent of this adjustment is to permit a direct comparison between

the predicted and achieved payload margins.

It will be observed in Table II. D-11 that the achieved payload capability margins during the Gemini

Program ranged from a minimum of 374 Ib (GT-5) to a maximum of I, 396 Ib (GT-3). These margins

correspond to burning time margins of i. 08 sec and 3.93 sec, respectively.

Although the statistical distribution of GLV payload capabilities is not normal, due to the non-

normal nature of one of the dominant determining factors--outage, it is interesting to handle the achieved

differences in Table II. D- 11 as though they were normal. The mean payload capability difference from

nominal is 88 lb. The standard deviation for the twelve Gemini flights is 135 lb. At a 75% confidence

level, the estimate of the 3-sigma dispersion is 49___7lb. At 90% and 95% confidence levels, the estimates

of 3-sigma dispersion are 584 and 648 lb, respectively. These statistical parameters can be compared

with those included in the paragraph below in which a normalized payload performance summary is

discussed.

(5) Normalized Performance Summary

Table II. D- 13 is a normalized performance summary for all of the Gemini Launch Vehicles.

Both the predicted and achieved payload capability margins have been normalized to he compatible

with payload capability prediction methods developed throughout the Gemini Program and utilized for

performance predictions for GLV-1Z. The intent of the normalization is to show comparisons between

predicted and achieved payload capability margins when both of these are derived using t-he most

accurate methods known.

The predicted payload margins in Table II. D-13 are normalized so that all are based upon the

following:

1. Stage I and Stage II engine thrust biases added to acceptance test thrusts to match least-

squares-fits to GLV flight thrust histories (different from vehicle to vehicle)

Z- Stage I and Stage H specific impulse biases added to match least-squares-fits to GLV flight

specific impulse histories (different from vehicle to vehicle)
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3. Predicted pitch program bias effects included (different from vehicle to vehicle)

4. 42 lb Stage II skirt ablation effects included rather than the effects due to the 20 lb ablation
used prior to GT-8

5. Payload contribution due to nominal seasonal winds included (different from vehicle to
vehicle)

6. The values of Redundant Engine Shutdown System propellant consumption and total impulse

used for GT-8 through OT-12 rather than the interim values used for GT-3 through GT-7.

7. Final values of Stage I tailoff and Stage II ignition propellant consumption and total impulse
rather than the values previously used (for vehicles flown after deletion of shutdown level

sensor operation)

8. Mixture ratio optimization at the beginning of the launch window rather than the times
previously used

9. Stage I and Stage II mixture ratio biases included to match the GLV flight mixture ratio
and outage history

10. Stage I outage indicator increased to the 2.6% value currently used

11. Propellant temperature control and monitoring capability results for GT-1 and GT-2
adjusted to be compatible with those for subsequent missions

12. Incorporation of a zero outage region on Stage I

13. Incorporation of increased Stage I velocity gain, from shutdown to separation, for fuel
exhaustion compared to the velocity gain for the normal oxidizer exhaustion shutdown.

The achieved payload capability margins are all based upon attaining the desired SECO velocity

rather than the actual SECO velocity, and upon usage of items 6) through 13) above.

The normalized predicted and achieved payload margins, as well as the spacecraft launch

weights, are shown in Figure H. D-10.

The normalized achieved payload margin differences from nominal are plotted against probability

in Figure II. D-9. As may be seen in the figure, the normalized points compare well with the predic-

tion curves. The prediction curves are those which were developed for use with GLV-11 and GLV-12.

It may be seen in Table H. D-13 that the normalized achieved payload margin differences from nominal

ranged from -355 lb (GT-5) to +380 lb (GT-9A). This spread may be compared with the predicted dis-

persion from mean (53% probability) to minimum (99.4% probability) for GLV-12 of -670 lb. It may also

be observed that, of the twelve missions, payload margin surpluses were achieved in seven, while

payload margin deficits (below predicted nominal) occurred in five.

The list of normalizing factors provided above is not exhaustive of the normalizing factors which

are possible. For example, further normalization could be achieved by using consistent engine model

simulations for all launch vehicles. However, the overall effects of the other normalizing factors are

believed to be relatively small and would not materially change the results shown in this section.

If the payload margin differences from nominal in Table II. D-13 are handled as though their dis-

tribution were Gaussian, an interesting comparison can be made with the statistical data for the non-

normalized payload margin data in the preceding section of this report. The mean payload margin

difference from nominal is +10 lb. The standard deviation for the twelve Gemini flights is 237 lb. At

the 7590 confidence level, the estimated 3-sigma (99. 8790 probability) dispersion assuming Gaussian

distribution, is 867 lb. At the 9090 and 9590 confidence levels, the estimated 3-sigma dispersions are

1020 and ll3i lb, respectively. These data are significantly different from the data developed from the

non-normalized payload margin summary. The normalized data agree better with the predicted

distribution curves shown in Figure II.D-9, as would be expected. From these curves, the disperson

from the nominal capability (5390 probability) for the nominal propellant temperature case to the 99. 8790

probability minimum point on the -2 deg propellant temperature case is: 840 lb.

II. D-53



(6) Trajectory Analysis

Post-flight analysis of each Gemini Launch Vehicle trajectory was conducted to define the

reasons for deviations from nominal and to determine thereby what changes should be made in predic-

tions for subsequent vehicles. Trajectory analysis in one form or another was carried out by the

Martin Company, Aerojet-General Corporation, General Electric Company, as well as Aerospace

Corporation and NASA.

The Aerospace effort was accomplished largely by the Post-Flight Reconstruction Program

{PFRP) which is described elsewhere in this report. This reconstruction program not only recon-

structed the shape of the achieved launch vehicle trajectory, but also determined the vehicle parameter

values which accounted for the shape of the trajectory. The PFRP results were compared with the

nominal trajectory to determine deviations from the nomina].

Actually, there were 3 "nominal" trajectory sources to be considered. There was first the

Aerospace Corporation STO trajectory for non-rendezvous missions and the Post-Flight Reference

Trajectory {PFRT} for each rendezvous mission. This latter trajectory was run utilizing the guidance

constants actually set into the guidance computer for the flight. The Post-Flight Reference Trajectory,

therefore, was based upon the actual final velocity, launch azimuth, and Stage II yaw steering required

of the launch vehicle, rather than upon preflight nominal values. Occasionally, slight changes were

also made to vehicle parameters to improve the trajectory prediction.

The second source of "nominal" trajectory data was the Range Safety trajectories. These were

prepared prior to the flight by the Martin Company and were always somewhat different from the Post-

Flight Reference Trajectory. However, they were the trajectories which were used in real time by

Range Safety personnel at ETR to determine whether the launch vehicle trajectory was deviating signi-

ficantly from the nominal so as to be a hazard to human life along the projected flight path. The third

source of nominal trajectory data, differing from both the PFRT and Range Safety trajectories, was the

Slow Malfunction Detection trajectories. These, prepared by the Martin Company prior to each flight,

were used in real time to determine if vehicle malfunctions were occurring which would endanger the

crew. For post-flight analysis, gross trajectory information was obtained by comparing the achieved

trajectory with the Range Safety and Slow Malfunction Detection charts, while detailed comparisons

were made between the Post-Flight Reference Trajectory and the trajectory determined by the Post-

Flight Reconstruction Program.

The trajectory analysis for each vehicle showed that each achieved trajectory was relatively

close to the predicted nominal. There were few times when Range Safety and Slow Malfunction Detection

chart monitors had cause for alarm. There were no instances of imminent destructs by Range Safety

or aborts by Slow Malfunction Detection personnel. Each launch vehicle trajectory satisfactorily per-

mitted attainment of launch vehicle flight test objectives. There were no instances of trajectory para-

meters at significant times in the trajectory being outside of their predicted 3-sigma limits. The

significant times in the trajectories referred to are maximum dynamic pressure, BECO, SECO, and

SECO +20 sec.

A table comparing significant parameters at liftoff and each of the significant points in the tra-

jectory was provided in each Aerospace final post-flight report. Some of the achieved differences

from nominal are provided in this report in Table II.D-14. Qualitative explanations for the trajectory

time history differences from nominal were also provided in terms of deviations due to vehicle and

environmental parameters. Specifically, the effects of winds, engine thrust, loaded propellant

weights, pitch program bias, pitch gyro drift, and other parameters were commonly included in the

discussion.
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Time in

Trajectory

Max q

BECO

SECO

SECO

+20 sec

(Nominal

Insertion

Time)

Parameter

Time from Liftoff, sec

Dynamic Pressure, psf
Mach Number

Altitude, ft

Angle of Attack, deg

Relative Velocity, ft/sec

Time from Liftoff, sec

Inertial Velocity, ft/sec

Inertial Flight l°ath

Angle, deg

Geocentric Range, ft

Yaw Velocity, ft/sec

Out-of-Plane Distance, ft

Radar Range, ft

Radar Elevation

Angle, deg

Ground Range, n mi

Time from Liftoff, sec

Inertial Velocity, ft/sec

Inertial Flight Path

Angle, deg

Geocentric Range, ft

Yaw Velocity, ft/sec

Out-of-Plane Distance, ft

Radar Range, ft

Radar Elevation

Angle, deg

Ground Range, n mi

GT-1

+4

+49

+0.15

+0.77

-58

-0.42

-580

-12.0

Table II. D

+3.44

GT-2

-7

-62

-0.26

-5206

-1.82

+154

+1.24

+12,742

-56.1

+11,370

+1.11

+1.4

-4.34

+5

0.00

+75

+0. 1

-28, 120

+0.15

-4.0

Time from Liftoff, sec +3.44 -4.34

Inertial Velocity, ft/sec +18.5 +7.5

Inertial Flight Path

Angle, deg -0.125 -0.01

Geocentric Range, ft -2424 -1104

Yaw Velocity, ft/sec -79.5 -4.5

Out-of-Plane Distance, ft

Radar Range, ft -28, 162

Radar Elevation

Angle, deg +0.12

Ground Range, n mi -4.0

NOTES:

GT-3

0

-40

+0.08

+3267

-I .70

+95

+i. 73

+14, 63

-109.5

+8218

+1.84

+1.9

-4.68

-9

-0.01

-309

-5.7

-47, 727

+0.25

-7.9

-4.68

-16.9

+0.04

+376

-4.5

-48, 110

+0.21

-6.9

1. The paramete

obtained usin I

different. Hc

2. The 3-sigma

Program and

v -fS



-14. Flight Test Trajectory Parameters Dispersion

Observed Parameter Difference from Predicted Nominals

GT -4

-i

-24

-0.04

-56

-0.98

-33

-0.94

-78

+I.Ii

+6413

-48.2

-3050

+1.41

-1.1

-2.07

-12

+0.08

+195

-1.7

-40,526

+0.20

-7.1

-2.07

-13.0

+0. 065

+1252

0.0

-40, 694

+0.25

-6.5

GT-5

+2

+18

+0.19

+4823

+0.03

+144

-1.29

-153

+0.90

+5159

-111.0

-5070

+1.44

-1.7

-3.65

-3

0.00

-447

+1.1

-62,962

+0.32

-9.6

-3.65

-2. I

-0.01

-583

+3.4

-63, 190

+0.25

-9.6

GT-6A

+5

-15

+0.19

+4629

+0.36

+143

+0.83

-6

-0.39

-3322

-I89.3

-5328

+4747

-0.99

+1.2

+2. 11

-9

+0.02

+232

-1.2

-24,690

+24,821

-0.12

+3.8

+2.11

-11.6

+0.05

+4 76

-6.7

-24,841

+24,650

-0.10

+3.4

GT-7 GT-8 GT-9A GT-10 GT-II GT-12

-4 +5 -I +3 +I +I

-51 -66 _ -36 +10 0 -19

-0.22 +0.16 -0.07 +0.15 +0.04 -0.03

-4213 +5547 -643 +3706 +1498 +303

-2.28 +0.67 -2.26 +0.06 -0.26 -0.27

-199 +143 -71 +115 +25 -26

+0.25 +0 91 _ +0.84 -0.01 +0.40 +1.37

+112 -39 -27 -131 -129 +8

-0.13 -0.13 +0.05 -0.43 +0.11 -0.26

+1832 -2089 +1704 -4303 -165 -913

-49.0 -114.1 -6.1 -38.9 -17.0 -21.1

-1533 -5608 -844 -224 -2978 -971

+9914 +4955 +3828 -4024 -I074 +5382

-0.62 -0.89 -0.09 -0.38 +0.14 -0.72

+1.6 +i.i +0.5 -0.3 -0.Z +I.i

-1.60 +1.95 +0.80 +0.83 +0.62 +3.78

-5 +9 -14 -3 -4 -Ii

+0.06 -0.03[ -0.13 +0.01 -0.01 0.00

-384 -314 -364 -1470 -59 -672

-14.6 -9.4 -15.3 -2.6 +5.1 +1.1

-5029 -16,994 +406 -4004 +2044 -2676

+19,177 +24,658 +3983 +819 -15,778 +43,160

-0.09 -0.13 -0.03 -0.04 +0.07 -0.23

+3.1 +3.8 . +0.3 -0.1 -2.9 +6.9

-1.60 +1.95: +0.80 +0.83 +0.62 +3.78

-11.0 +9.0 _ -16.0 -7.0 -8.3 -15.0

+0.05 -0.04 -0.11 +0.008 +0.008 +0.0002

+758 -264 ' -2127 +61 -202 -894

-12.9 -11.4 +0.5 -6.0 +5.1 +4.1

-5020 -17,266 +333 -3519 +2087 -1647

+19,169 +25,019 +4371 +1933 -15,973 +43,009

-0.07 -0.II +0.04 +0.04 +0.06 -0.18

+3.1 +3.8 +0.3 -0.1 -3.0 +6.7

Sample Mean
+3a

+i _14

-20 _129

+0.03 ±0.58

+1241 ±13,742

-0.55,4.26

+27 _475

-0.03 .4.18

-21 ±373

+0.28 ±2.83

+2593 _22,752

-64.4 ±207.7

-2498 ±9124

+3200 ±21,703

+0.20 ±4.00

+0.5 ±4.5

-0.23 ±11.10

-5 ±27

-0.01 ±0.20

-320 ±1809

-3.9 ±25.2

-7278 ±40,765

-7136 ±130,856

+0.03 _0.68

-1.2 _20.8

-0.23 _11.10

See Section

II.D.l.b regarding

these four param-

eters.

-7125 _41,604

-7089 ±131,394

+0.05 +0.57

-1.2±19.9

: differences are not normalized in any manner, if all of the predicted parameter values had been

a consistent trajectory prediction technique, many of the earlier predicted values would have been

vever, as noted elsewhere in this report, prediction techniques evolved throughout the Gemini Program.

,alues are evaluated at the 75% confidence level. They apply to predictions for the entire Gemini

do not apply to a single launch.
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AGE

BEEP

DEU

GAATV

GE

GLV

GT

IBM

IGS

M/B

MCCH

MOPS

MR

MVS

NASA

PAF B

PFRP

PFRT

RandD

RESS

RGS

RSS

SECO

TARS

SECTION II. D

DEFINITIONS

Aerojet-Gene ral Corporation

Best Estimate of Engine Performance

Data Exchange Unit

Gemini Atlas Agena Target Vehicle

General Electric

Gemini Launch Vehicle

Gemini Titan (Launch Vehicle Mission)

International Business Machines

Inertial Guidance System

Martin Baltimore

Mission Control Center - Houston

Missile Operation System

Mixture Ratio

Modular Vehicle Simulation

National Aeronautics and Space Administration

Patrick Air Force Base

Post Flight Reconstruction Program

Post Flight Reference Trajectory

Research and Development

Redundant Engine Shutdown System

Radio Guidance System

Root Sum Squared

Sustainer Engine Cut-Off

Three-Axis Reference System
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E. SPECIAL STUDY EFFORTS

1. GENERAL

In every program, a time comes when the design must be frozen to the point of committing to

"cut" hardware. The design at that point represents an acceptable compromise of a configuration that

is adequate to do the required job. It therefore represents an acceptable starting point. History has

shown, however, that no design is ever truly frozen. New requirements arise, unknown design defi-

ciencies manifest themselves, and improvement areas are discovered. All of these potentially or

actually effect design.modifications. Unfortunately, they are the areas that can neither be accurately

forecast nor conveniently scheduled, and they represent an expenditure of considerable effort which

takes place during the actual flight program.

Although some of the special study items have been previously mentioned under their respective

subsystem descriptions, a number of the more significant ones that occurred during the program are

presented in this section. Those covered are by no means all that were evaluated, but they do repre-

sent the ones most worthy of note from a magnitude or program impact standpoint.

These special studies have been divided into three rather general categories: those that could

have influenced flight safety; those that resulted in performance improvement; and those which come

under the category of system development.
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Z. SAFETY OF FLIGHT

a. Escape Environment

In order to assess flight crew hazard, in the event that ejection seat abort was followed by launch

vehicle breakup and explosion, an investigation of the resulting environment was undertaken. The antic-

ipated environment was modeled in terms of the four principal hazards: heat, overpressure, fragmen-

tation, and toxicity. Due to the entirely uncontrolled conditions and the limited data available from

real occurrences, a controlled test program was funded by NASA and implemented by Aerojet-General

Corporation (AGC), Downey. These tests were also undertaken to establish a relationship between the

conditions resulting fronl cryogenic and hypergolic explosions. This technique permitted utilization of

Titan II half-scale test data, as well as actual data from Vanguard, Navaho, Thor, and Atlas failures

to establish the boundary conditions of the escape environment I.

b. Switchover / Switchback Studies

With the incorporation of a redundant flight control system, a detailed system evaluation was

conducted to re-assess the vehicle airframe, switchover logic, and sensor limits. The evaluation

indicated that the initial selection of sensor limits, structural safety factor, and switchover logic did

not result in optimum switchover capability. The concept and evaluations that were conducted are

described in references at the end of this section. 2, 3,4

It became apparent that a switchover during Stage I flight from a loss of hydraulic pressure would

result in flying on the backup flight control system throughout Stage II flight. This could have resulted

_n discarding a good, reliable primary flight control system during Stage _/ flight. To alleviate this

situation, the capability of switching back to the primary system was incorpor%ted. It was planned that

switchback would only be actuated in the event the switchover was initiated by loss of hydraulic pressure

and would be activated between staging and guidance enable.

The switchover flight loads during the high maximum dynamic pressure region were found to be

in excess of the structural design criteria. Consequently, the concept was optimized by selecting the

sensor limits that maximized crew safety. A corresponding hardware change was made to reduce the

angular rate switch settings. The structural load carrying capability was re-evaluated in the light of

probability considerations which resulted in a reduced factor of safety for switchover from I. Z5 to I. I0.

c. Rate Switch Setting Change

The Gemini rate switch settings were constrained on the high side by vehicle strength considera-

tions and on the low side by normal nonmalfunction rate excursions during flight. The higher the

switch setting, the greater the chance of vehicle breakup prior to switchover. The lower the switch

setting, the greater the chance of inadvertent switchover from normally incurred vehicle turning rates.

The choice of settings for the malfunction detection system (MDS) rate switches was originally

made at a time when the structural strength capabilities and malfunction switchover loads were not

completely defined. Also, over-conservative estimates of the maximum normal vehicle rates and

actuator excursions were used since there was only limited Titan II flight test data to give confidence

in the selected settings.

The additional accumulation of statistical data from the Titan II flight program permitted a reduc-

tion in the low rate pitch and yaw switch settings prior to the first manned flight, which increased

crew safety protection by decreasing the time to sensing a malfunction condition.

d. Redundant Engine Shutdown System (RESS)

A redundant method of shutting down the Stage II engine was a crew safety requirement of the

Gemini program to minimize the possibility of capsule overspeed caused by malfunction of the primary

shutdown system. The RESS was developed under the Augmented Engine Improvement Program. The
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RESS was a squib-actuated valve located in the oxidizer bootstrap line, which upon actuation terminated

oxidizer flow to the gas generator. This system was operated simultaneously with the thrust-chamber

valve/pressure sequencing valve over-ride (TCV/PSVOR) utilizing the same command. The system

was ground-tested, formally qualified and successfully used on all the manned flights.

Some of the salient design objectives achieved by this backup system were:

1, Both cutoff systems were actuated by any cutoff command.

Z. Failure of either cutoff system would not disable the other.

3. A component failure in the redundant system would not result in engine cutoff.

4. The backup system was isolated from the primary system to assure complete redundancy.

5. Operation of the backup system did not result in engine damage.

6. Tailoff characteristics were repeatable.

Compartment Five (Sta_e I Engine) Protection

The AGC review for the Abort Panel of engine incidents, such as hot gas leaks and fuel leaks

e.

resulting in engine compartment fires, indicated a requirement for study of fire detection and/or pro-

tection techniques. AGC accepted the task of modeling a Compartment 5 thermal environment com-

parable to that experienced during the flight of Missile N-Z0 when the entire first-stage engine com-
5

partment was afire. Martin Company, Baltimore (M-B) investigated pre-liftoff and inflight fire detec-

tion techniques and insulating materials. 6, 7 The study concluded that detection techniques were too

expensive and complex; however, adequate insulating materials were available. To minimize the

weight penalty, the addition of insulation was recommended only for those Compartment 5 components

where proper operation was required for successful abort. 8 Effectivity of this modification was

GLV-3 and subsequent vehicles per ECP GLV AJ 149R and ECP GLV-MM 373R1. (See Section VII. )

f. Re-Evaluation of Mode I Abort (Seat E_ection) 9, 10

Because of the unsatisfactory results obtained from seat-ejection tests performed at velocities

in excess of Mach 1, NASA directed the launch vehicle contractor team to develop alternate abort

techniques in the time region between 50 and 100 seconds of flight. The primary failure modes

requiring abort were determined to be single-engine thrust failure or partial thrust failure. By limit-

ing the investigation to the primary failure modes, it was possible to determine the relative perform-

ance of the various escape techniques proposed. Because of the large aerodynamic loads during the

50-to 100-second period, immediate ModeII abort (retro abort) was not feasible.

The various techniques investigated were as follows:

• Feasibility of controlled flight on one engine only

• Low altitude staging

• Delayed Mode II Abort

Single-engine flight control was eliminated after the study showed that even to obtain a short

period of vehicle stability, a significant autopilot redesign was necessary. Low-altitude staging was

eliminated since the second-stage autopilot was unable to control the large initial rates resulting from

first-stage thrust failure.

The technique that finally evolved from this study was called the Delayed Mode II Abort Proce-

dure. This procedure was to "shut down the GLV when failure was recognized Con engine failure

events, shut down immediately after overrate light illuminates). Delay for short Z-second count after

overrate light and retro salvo off the GLV. " To further enhance the safety of this technique, high

strength NAS bolts were installed in the manufacturing splice at Station 9Z3 in place of the existing AN
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bolts in GLV-9 and subsequent vehicles, to force the potential structural breakup to occur between

stages rather than between the first-stage fuel and oxidizer tanks.

g. Hold and Shutdown Parameters

The master operations control system (MOCS) at Complex 19, ETR, used the Radio Corporation

of America/MILGO Mod Ill sequencer. This sequencer had the capability of activating automatic hold-

fire circuits ON and OFF for any period between T-35 minutes (start of automatic countdown) and T+I0

minutes. Circuits activated prior to T-0 were called "holds" and the detection of any malfunction

resulted in stopping the countdown until the malfunction was corrected and the count resumed by the

test conductor. Circuits activated after T-0 and prior to 0. Z seconds before liftoff were called shut-

downs and the detection of any malfunction resulted in stopping the launch and sending a shutdown sig-

nal to both Stage I and Stage II engines. The hold-down time span was nominally 3. Z seconds for all

vehicles.

Hold parameters consisted of those pressure, level, and position parameters required to ensure

that all GLV systems were operating correctly and that the engines could be started for launch. Cer-

tain parameters that would have required complicated automatic monitoring devices were monitored

by launch personnel with manual switch hold capabilities.

Shutdown parameters were a minimum number of critical system monitors that had to be opera-

ting correctly to allow a successful launch. A shutdown signal aborted the launch. Since these para-

meters were extremely critical, the following criteria were used to develop the parameters:

i. Primary and secondary systems were operating properly at liftoff.

Z. Pilot safety requirements were provided.

3. The possibility of a catastrophic failure during the first stage flight was minimized.

4. Maximum assurance of mission success existed at liftoff.

A study effort was initiated to determine what parameters would be used for holds and for shut-

downs and implemented for the launch of GLV-I. Sonne Z9 shutdown parameters were ultimately used.

After the launch of GLV-I, the shutdown parameters were re-evaluated and some deleted. Sub-

sequent re-evaluations and studies resulted in selecting 9 shutdown parameters that were used for

GLV-4 and the remainder of the program. These are documented in M-B specification 4Z4-1430-00Z.

This method of automatic system monitoring with the capability of automatically shutting the

engines down operated successfully on two vehicles. GLV-2 was shut down as a result of a primary

system hydraulic failure and GLV-6 was shut down when an electrical plug disconnected pren_aturely.

Both malfunctions occurred after engine ignition and prior to 0. Z seconds before liftoff.

h. POGO at Low Fuel Tank Pressure

In order for the vehicle structure to support steady state acceleration loads at booster engine

cutoff (BECO), the Stage I fuel tank pressure abort limit was set at 8 psia for the period from 105

seconds to BECO. As the onset of POGO during this time period was quite likely at low fuel tank

pressure, the 8 psia criteria was questionable from a crew safety standpoint. It therefore became

necessary to evaluate the effect POGO oscillations might have on the vehicle structure and crew while

the pressure was decaying to the 8 psi abort limit.

Considerable effort was expended in defining a workable approach for attaining a more realistic

abort constraint; however, because of the lack of POGO data for the time period and condition in ques-

tion, the Martin and Aerospace analytical models were not sufficiently complete to yield reliable data.

Since positive definition of a serious problem was not possible, the Abort Panel was reluctant to reconl-

mend revision of the abort procedures. All agencies were therefore informed of the flight risk and the

effort was terminated.
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i. Titan II Anomalies

At mid-point in the Gemini flight Program a re-examination of Titan II, Titan III, and GLV
11

anomalies was conducted to determine whether there was a trend or commonality in the problems.

As a normal procedure, each Titan flight had been examined in detail during the program for any

impact on the Gemini hardware. This special task team effort of re-examination was conducted jointly

by SSD, Aerospace Corporation, Martin-Marietta Corporation, and Aeroject-General Corporation, to

ensure, in light of additional knowledge and experience accumulated subsequent to the flights, that the

original problem resolutions were still valid. Additionally, it assured the program that some problem

or trend had not been overlooked which would degrade the confidence in the Gemini Launch Vehicle.

The investigation was initiated by each contractor and customer task team forming a separate

list of anomalies by flight. This list was obtained from contractor post-flight reports, raw and cal

comp data, and flight working group reports. The flight results of the operational training

missions were obtained from the Air Force Logistics Command, Norton Air Force Base, Ogden

Air Materiel Area reports, Strategic Air Command reports, and raw data. The listings were then

compared to develop an assimilated single list. The final list of approximately 300 anomalies were

then categorized and assigned to the respective vehicle subsystems for system review.

The study indicated that the Titan Family problem review had been very thorough. There were

no trends; however, there _vere some problems occurring randomly such as Stage II engine skirt

break-up, post-Stage I venting, minor engine leaks, and Stage II engine "green man". These were

nuisance items and did not appear to be flight safety items. There were a few unexplained engine

flight problems that were investigated in detail. The conclusion from these special investigations

indicated that no hardware changes were required.

j. Sta$in_ Event (Tank Ventin$)

High-speed long-range camera coverage of GLV-10 indicated an apparent anomaly consisting of

a large orange-red cloud appearing from Stage I shortly after staging. A detailed review of the films

revealed that the oxidizer tank vented approximately i. 2 seconds after Stage II ignition. A study of

Stage II telemetry data revealed no indication of this event. Stage 1 telemetry was inoperative at this

time having been disabled 0.7 seconds earlier. A thorough study of all possible causes of the tank

rupture was conducted by Martin and Aerospace. This study isolated the three most probable causes

of tank rupture (and tank venting). These were: I) Stage I turning after separation and resulting in

the Stage II engine subassembly exhaust impingement and burn-through of oxidizer tank barrel, Z)

Breaking of the ablative coating on the oxidizer tank dome, due to dome flexing caused by high local

pressures at Stage II engine start, resulting in dome overheating and subsequent structural failure,

and 3) Dome or tank barrel penetration by transportation section debris.

A review of the staging films on Titan II flights revealed similar occurrences on seven Titan II

flights. The same anomaly occurred on GT-IZ; however, this occurrence was followed by the apparent

rupture of the Stage I fuel tank and the breakup of Stage I just forward of the Martin/Aerojet interface.

The results of the study and a review of all available Titan II and GLV flight data showed no

detrimental effect on mission success or crew safety due to this event.
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3. PERFORMANCE IMPROVEMENT

a. Improved Gemini Launch Vehicle

Early in the program, a review of the Mercury Spacecraft weight growth history indicated that

if the Gemini Spacecraft followed the same trend, it would exceed the performance capability of the

Titan Ilballistic missile as the launch vehicle. As a result, the Martin Company conducted a study
12

concerned with Gemini Launch Vehicle performance improvement. The study proposed various

techniques, some of which were major hardware changes to the propellant tanks and the Stage I engine.

The items considered were decreased hold-down time, further reduced Stage I and II tank ullage

volumes, change to a lightweight telemetry system, redesign of Stage II engine support cone, removal

of 15-percent repair factor criteria for Stage IItanks, reshaping of Stage I trajectory, a lower inser-

tion altitude, Stage II tank stretch, and the increase of Stage I engine expansion ration to 12/I. These

items were studied to a level sufficient to make cost estimates, availability schedules, and magnitude

of payload gains. Because of the magnitude of change associated with each of the above, these items

were not selected for incorporation. Instead, the program selected other means, such as shorter

launch windows, increased engine specific impulse based on flight data, and NASA's choice of launch-

ing with less than 3 sigma payload margin, depending on S/C propulsion for insertion if necessary.

At the time of this study there were in process, however, many changes to the basic Titan II to

gain payload performance capability. These were weight reduction by eliminating unused hardware,

Stage I shutdown by propellant depletion, optimizing of the engine mixture ratio, use of cold propel-

lants, reshaping of the trajectory by allowing a negative guidance look angle, and Stage I and II reduced

ullage volumes.

b. GE Radio Guidance Negative Look-An_les

13
Performance improvement studies by Aerospace and M-B indicated that a reshaping of Stage I

trajectory would increase the payload capability by 60 ibs. The GLV Stage I trajectory was lofted

above the optimal ascent trajectory to avoid the Stage II pitch zero look-angle constraint imposed by

the Mod III airborne antenna. Aerospace and General Electric {GE) prepared an antenna test program

to measure antenna patterns in the negative pitch look-angle regime. This was implemented by Tech-

nical Directive GE 2140-8 dated 3 November 1964. The pattern test data was measured at the GE
14

Pittsfield, Massachusetts antenna range using a full-scale mock-up and analyzed by Aerospace to
15, 16

determine trajectory design and loss of lock constraints.

c. Primary Antenna Redesign

The GLV primary antenna was redesigned from a 6-inch to a 4-inch slotted configuration to

change the antenna pattern for better look-angle coverage. The antenna requirements study was

accomplished in 1963 and documented by GE.17 The prototype units were built and tested by GE

utilizing a full-scale half-shell mock-up. The 4-inch antenna was flown on all Gemini launches.

d. Low Altitude Insertion

A low altitude insertion study indicated that it was desirable to extend the present Mod III Radio

Guidance System noise model to lower than 5 degrees in elevation angle. Discussions with GE indi-

cated that they had more available flight data that could be included which was not in the current model,

and that the model could be extended to 2 degrees in elevation angle. This was accomplished in

October 1965 and an updated report issued. 18

e. Deletion of Propellant Level Sensors for Shutdown

A new propellant level sensor design was selected for GLV in place of the Titan II sensor and,

for that reason, qualification and flight testing were required prior to usage in a close-loop circuit

for engine shutdown.
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Since the required flight testing on the new design sensors had not been accomplished prior to the

GLV-1 flight, studies were conducted with respect to propellant depletion shutdown in lieu of level

sensor shutdown to support the first flight. The studies indicated that there were no adverse staging

or spacecraft separation problems evident from a propellant depletion shutdown. Engine combustion

chamber damage from a fuel depletion shutdown was not deemed detrimental to mission success.

After the GLV-1 flight, sufficient flight experience was available to utilize the level sensors for

engine shutdown with confidence; however, the additional payload margin available from propellant

depletion made this a more attractive mode of shutdown. In addition, the risk of an early shutdown

from level sensor failure outweighed the risk of a hazardous engine propellant depletion shutdown from

a crew safety/mission success standpoint.

The Gemini propellant level sensors were used for instrumentation purposes only.

f. Cold Propellants 19'
20

In order to increase vehicle performance, it was deemed desirable to load the vehicle with

relatively cold propellants, i. e., from 35 ° to 40°F. Before implementing this procedure into the

Gemini program, it was necessary to investigate engine durability and operation using the low temper-

ature propellants. A series of hot-fire engine tests were conducted at AGC utilizing propellants con-

ditioned to a temperature of from 35 ° to 40°F. Analysis of the data from these tests failed to reveal

any significant departure from the nominal start transients or system performance associated with

propellants at ambient temperatures. It was therefore concluded that utilization of the colder propel-

lants would produce no deleterious effects upon engine performance, including the performance of the

autogenous system.

Zl
g. Reduced Ullage

Early in the Gemini Program, it became evident that projected payloads would probably require

more efficient utilization of the available propellant tank volumes. The primary objective of the mini-

mum-ullage * test program was to determine if reduced fuel and oxidizer tank ullages would have any

adverse effects on engine performance. Secondly, it was of interest to note whether the engine start-

ing characteristics differed significantly from those of Titan LI, and if so, to determine the conse-

quences of the differences. The "minimum ullages" were:

1. Stage I Oxidizer 48 cuft

2. Stage I Fuel 59 cuft

3. Stage II Oxidizer 63 cuft **

4. Stage II Fuel 16 cu ft

The Martin Company analyzed the effects of reduced ullage on the pressurization system (pro-

pellant tank pressure) and the ability of the pressurization system to provide sufficient pressure,

during the start sequence and under steady-state conditions, to satisfy the minimum net positive

suction head (NPSH) requirements of the first-stage engines. In addition, the effects of reduced

ullage upon the response characteristics/time of the pad malfunction detection system (PMDS) were

also scrutinized. Although the major effect was that of reducing the warning time to failure, this

reduction in margin was not sufficient to cause concern from a pilot safety standpoint. AGC, through

its test program, substantiated the Martin findings.

i

*This is a misnomer since the actual minimum tank ullage was not evaluated.

**AGC test = 65 cuft
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Early in 1965, additional payload capability was sought through a further reduction in ullage,

particularly Stage I ullage. An evaluation of a proposal to utilize maximum tank volume by reducing

the ullage to the physical minima of 15 cu ft in the fuel tank and 17 cu ft in the oxidizer tank was under-

taken. After considerable investigation by Martin and Aerospace it became evident that any further

significant reduction in Stage I propellant tank would result in a high probability of tank implosion

prior to the time that the PMDS could sense the impending catastrophic condition and initiate engine

shutdown in the event of an autogenous system failure. Besides the fact that a certain number of

engine tests would have been required to demonstrate satisfactory engine operation under the more

severe conditions of true minimum ullage, the aforementioned risks to the safety of the crew created

problems and uncertainties that necessitated rejecting this method for increasing payload capability.

h. StaTe I and II Mixture Ratio Evaluation

Launch vehicle postflight evaluation indicated that on vehicles 9-1Z there had been greater than

predicted oxidizer outages. Data evaluation verified that both Stage I and II average mixture ratios

were lower than predicted by a considerable amount. On Stage I, in particular, the magnitude of the

mixture ratio shift exceeded the log-to-launch three-sigma value being utilized for trajectory analysis/

payload capability dispersion. Even though the oxidizer outages were other than predicted, the over-

all launch vehicle capability had not been lowered.

A task team consisting of Aerospace Corporation, SSD, AGC, and M-B was established following

the launch of GLV-9, the primary objective being to study this particular phenomenon and, if possible,

make recommendations towards either correcting the cause or better predicting the anticipated effect

on payload dispersion. A detailed investigation was conducted into the following general areas:

i. Vehicle propellant loading accuracies

Z. Performance determination and trajectory evaluation

3. All facets of engine acceptance and data evaluation

4. Propellant characteristics

Results of the investigation of the first three items indicated the mixture ratio shift did exist

and it was not the result of problems associated with propellant loading, performance determination,

or basic engine calibration. A review of the flights of GLV 1-10 indicated a distinct difference in mix-

ture ratio dispersion/outage on GLV groups I-8 and 9-10. The first group did not indicate a definite

bias and had dispersions within expected tolerances, while the second group indicated a definite bias

with dispersions greater than those anticipated. As an expediency, the log-to-launch mixture ratio

tolerances were increased for the flight of GLV-II to better determine minimum payload capability.

Because the problem appeared to be common to both Stage I and II engines, the investigation

centered about the propellants being used. This investigation initially indicated that the oxidizer (NTO)

used for GLV's I-8 differed in its age and vendor procurement from that utilized on the later series of

flights. Computer evaluations indicated that the most probable cause of the mixture-ratio shift was

some peculiarity in the oxidizer which manifested itself in a hi-phase flow, or reduced density of the

oxidizer passing through the engine pump. Although no conclusions evolved from the detailed investi-

gation into the oxidizer characteristics (including dissolved gases), the problem appeared to be associ-

ated with increased cavitation of the oxidizer pumps resulting in a lowered mixture ratio. This

increased cavitation most probably resulted from dissolved gases coming out of solution at the pump

inlet. This would result from a combination of gas content in the oxidizer and of suction conditions.

Both the Stage I and 11 engines were acceptance-tested (balanced) at a considerably higher suction pres-

sure than normal during flight. It was expected that this problem would concern the Titan L1 Weapon

System and the first liquid stage of the Titan IIIB vehicles. The Titan IIIC vehicle has an additional
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augmented oxidizer tank pressurization system which apparently alleviates the problem. The final

summary (including all generated data) results of the entire mixture ratio anomaly, as studied by the

Gemini Directorate, was turned over to Titan H/Titan III for their review and action as required.
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4. SYSTEM DEVELOPMENT

a. Interface Dynamic and Structural Analysis

The structural integrity of both Martin and McDonnell structure in the Spacecraft/Launch Vehicle

interface area, under the influence of fluctuating local pressures caused by transonic buffeting, was a

matter of concern because of lack of knowledge of the behavior of the higher frequency ring modes

when excited by fluctuating pressures, and the catastrophic nature of failures in this area. Aerospace

conducted an analysis ZZ which indicated that substantial local stresses did result from local buffeting

pressures. These values resulted in positive margins of safety on the M-B forward oxidizer tank

skirt, but on the adapter, when coupled with the early McDonnell analysis, negative margins resulted.

A more refined structural analysis run by McDonnel incorporating better phasing of internal pressure

loads and airload body bending loads, as well as the results of a better dynamic analysis patterned

after the Aerospace analysis, showed the necessary positive margins of safety.

b. Structural Integrity Program

On GT-2 and GT-3, special structural instrumentation was carried to assess the validity of the

design loads used in structural design. The instrumentation consisted of four strain gages and a tem-

perature sensor in compartment Z, two strain gages and a temperature sensor in the interstage struc-

ture, and four strain gages and a temperature sensor in compartment 5. All gages were mounted on

continuous stringers. Data was successfully recovered from all sensors.

M-B, using conventional reduction techniques, was unable to obtain correlation because of the

inability to define effective cross-sectional areas of the somewhat complex semimonocoque structure

at the instrumentation stations. Aerospace, by using a calibration procedure with the known loads at

pre-ignition and pre-BECO, was able to establish good correlation with pre-launch predictions and

post-flight reconstructions, except for certain portions of the GT-3 flight where the wind data was

uncertain (i. e. , wind conditions were changing rapidly and the exact conditions during ascent are not

known). The two gages in the interstage area proved to be useless, since a minimum of three gages

per station were found to be required. Static and dynamic analysis of the resulting data fully validated

Z3

the design loads and pre-launch prediction techniques used on the GLV.

c. Evaluation of Defective Conduit Welds

Prior to the flight of GLV-2, visual inspection (later confirmed by x-ray evaluation) disclosed

minute transverse cracks in the longitudinal conduit seam welds on a Stage II conduit. Inspection of

other conduit assemblies revealed similar defects. Metallurgical examination of the defective welds

revealed that the cracks were on the edge of the weld on the inner surface of the conduit, and did not

go through to the opposite surface. Investigation of the manufacturing processes revealed that the

cracks were caused by poor welding procedures during fabrication, prior to convoluting the conduit.

An environmental life test program was initiated to investigate the structural adequacy of the

defective conduits, since they were installed in all vehicles up to and including GLV-8. The test pro-

gram consisted of a 450-cycle pressurization test and a 7. 5-minute random viSration test at ii. 5 g's

rms. After completion of the test program, the specimen was cut up and microscopically examined.

These examinations, plus visual examination, x-ray examination, dye penetrant check, and helium

vapor emission testing, showed no evidence of crack propagation. The environmental life testing

program demonstrated the structural adequacy of the defective conduits then installed in vehicles

GLV-I through -8. The defective conduits were flown satisfactorily. New conduits, built under more

stringent quality control and with improved weld procedures at the vendor level, were procured for

GLV-9 through -IZ.
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d. Malfunction Detection Thrust Chamber Pressure Switch (MDTCPS) Task Team

This team was organized by Aerospace Corporation during September 1964 to investigate pres-

sure-switch diaphragm corrosion, repetitive switch failures due to current overload, and relocation of

Stage II MDS switches from the hot gas to the fuel system. The team was composed of technical repre-

sentatives from Martin-Baltimore and -Cape, Aerojet-Sacramento, SSD, and Aerospace. In the

course of these meetings, other areas such as switch hot-fire requirements, MDTCPS shutdown cir-

cuitry, and the M-B/AGC interface specification 6Z-190A were also reviewed.

The MDTCPS task team was formally dissolved in June 1965 with the following concrete achieve-

ments to its credit:

1. Development of test methods and criteria for detection of diaphragm corrosion.

2. Determination of causes for MDTCPS current overload and revision of procedures to

prevent recurrence.

3. Definition and review of testing necessary to approve Stage II pressure switch relocation.
Z4

4. Re-definition of pressure switch hot-fire requirements.

5. Agreements for revision of Interface Specification 6Z-190A.

6. Definition of system requirements for the MDTCPS shutdown monitoring circuit.

e. Stage I Shutdown Oscillations

A review of GLV-9 flight data revealed vehicle oscillitory motions during Stage I shutdown in the

frequency range from 16 to 50 cycles per second. While the condition had been noted on previous

flights, it was more pronounced on GT-9 and was of sufficient magnitude, as recorded off vehicle rate

gyro outputs, to initiate switchover.

Using frequency response data furnished by M-B on the Titan II rate gyros and Gemini rate

switch package, special filters were constructed in the Aerospace laboratory to simulate the damping

characteristics of the rate switch package (RSP). The rate gyro output data from GLV-9 was then

played through the special filters and it was shown that the high amplitude, high frequency oscillations

were damped to 50% of the nominal RSP switchover setting.

The special filter data was made a part of the normal Gemini flight data analysis for subsequent

flight s.

f. MDS Hold-Kill Parameters and Slow Malfunction

Considerable effort was directed toward establishing meaningful criteria for the parameters

monitored after engine ignition, to assure proper vehicle systems status before liftoff. Primary and

secondary hydraulic system pressures were used as one of the hold-kill parameters and the functions

were monitored with pressure switches.

To establish pressure levels at which a malfunction could be assumed at the optimum parameter

sampling time, a hydraulic-system malfunction analysis was made of all applicable Titan II and GLV

flights, summarizing startup data under flight conditions. Tests were also run in the Martin-Balti-

more airborne systems functional test stand (ASFTS) test area to look at engine pump pressure

characteristics under simulated engine start conditions.

A philosophy was established that all secondary (backup) systems must be operable at vehicle

liftoff. On this basis, it was decided to monitor only the secondary hydraulic-system pressure as a

kill parameter after engine start, while both system pressures were monitored as hold parameters

during countdown prior to engine start. If failure occurred after engine start, some primary system

failure modes would result in a switchover from primary to secondary systems. This would auto-

matically initiate engine shutdown, provided the launch vehicle holddown bolts had not been blown.

The pressure-switch activation point for vehicle shutdown was set at 2500 ± 50 psia, well below pres-

sure dips experienced on Titan family vehicles, and predicted by ASFTS test.
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Hydraulic-system pressures were monitored as slow malfunction parameters by NASA personnel

acting as booster monitors at the Mission Control Center in Houston. Pressure level envelopes for

various stages of flight were supplied to NASA for use as guides in evaluating real-time data of booster

performance. As a backup to the pressure data, it was recommended that system reservoir fluid

level be monitored. Correlation data between pressure and reservoir levels along with expected

reservoir levels at various stages of flight were supplied.

g. Range Safety Command Control Receivers

Early in the Gemini development program there was a concerted effort for weight saving. The

development of a new light-weight solid-state range safety command receiver was a natural area for

consideration, but funding was limited for this type of development. Concurrently, Titan III was in

the process of developing a new "man-rated" range-safety receiver, primarily because the standard

government-furnished equipment (GFE) vacuum-tube type receiver did not meet the environmental

requirements.

An additional requirement imposed on the receiver was the intent to standardize and simplify

the flight termination system for other SSD programs, with attendant savings in hardware, testing,

and logistics. This new receiver development was made to order for Gemini, and subsequently the

Gemini Program was able to utilize this development program. Gemini was able to participate in the

bid and evaluation program of vendors' proposals for a new receiver, which was finally awarded to

Advanced Communication Incorporated (ACI). The Gemini/Titan III receiver was basically a Model

R-4Z0 ACI Receiver which was developed for the White Sands Missile Range (WSMR) and built to their

rigorous specifications. This receiver had already had an impressive record of performance on sev-

eral programs at WSMR.

The development of a new command control receiver resulted in several benefits to the Gemini

Program. The n_ost significant was the incorporation of a time-delay circuit between the engine shut-

down and the destruct commands. This was to assure the astronauts sufficient time to escape from the

launch vehicle, if necessary. By means of connector coding, the delay circuit could be by-passed for

unmanned flights.

The dual ACI receiver installation in Gemini saved about Z0 pounds per vehicle over the old

receiver installation which was used only on GLV-I. The Z8-vdc power consumption was decreased by

about I00 watts per vehicle. The new receiver employed a unique command tone detector which

demonstrated a higher degree of protection against response to spurious signals. This added protec-

tion was especially important on Gemini, since the range safety command receivers had to share the

same rf link with the Spacecraft Digital Command System. There were no significant problems in

the development of the R-4Z3A receiver for the Gemini/Titan Ill programs.

h. Electrical and Electronic Interference (EEl) Compatibility Testin$

The EEl compatibility testing was accomplished by means of a comprehensive program involving

the vertical test facility (VTF) at Baltimore and Complex 19 at ETR. Tests were first performed on

the aerospace ground equipment (AGE) at both installations and then on the complete vehicle, during

combined systems tests at VTF and Complex 19. A spacecraft simulator was utilized to effect the

interface from the GLV to the space capsule.

Performance of all tests was planned for the first three vehicles. However, due to the achieve-

ment of an interference-free system after wiring and circuit corrections on GLV-I and -Z, further

testing on GLV-3 was considered unnecessary. The equipment for EEl evaluation was maintained in

operating condition, should extensive system and/or wiring changes be required. Such was not the

case.
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GLV-I underwent tests at VTF covering all aspects of countdown and simulated flight in both primary

and secondary modes, including switchover. As each out-of-tolerance condition appeared, it was corrected

and the pertinent test repeated. Six tests were required to verify that interference levels were in tolerance,

or caused no transients derogatory to systems operations. 58 points were monitored: 48 were launch vehi-
25

cle circuits, 10 were AGE circuits. A summary of test results appears in LV-335-3.

Similar tests were performed at Complex 19, using the AGE and similar E]EI monitors. Measurements

were taken for most points through breakout boxes and/or cables on the umbilical tower. The 57 monitor

points comprised the following: 38 launch vehicle circuits, 8 spacecraft interface circuits, 3 AGE circuits,

8 power bus circuits.

The results of the EEI tests at ETR were considered to have met the requirements of MIL-F.-6051 C

as interpreted by the EEI Control Plan. 26 In particular, the GLV had a safety factor of 6 db or better above

the level which would cause system degradation or malfunction.

Concern arose over the existence of high frequency transients having energy in the spectrum to 5 MHz.

Such transients, appearing on the lines from the spacecraft inertial guidance system, could possibly affect

the spacecraft computer operation or memory circuit. A series of tests were performed on GLV-1 at VTF,

wherein magnetic tape recordings were made with a frequency response up to 1 MHz, in addition to the con-

ventional lower frequency oscillograph system. The results were presented to NASA for evaluation since

no specification existed for conducted EEI in this frequency range. Report LV 335-4a provides details of
27

these tests.

GLV-2 underwent essentially the same tests as those performed for GLV-1. However, procedures

were changed somewhat and partial testing was performed to verify correction of several o_t-of-specification

conditions. The testing at ETa was performed with the permanent type equipment installations which con-

sisted of much of the original EEI amplifiers, oscillographs, cables, etc., in a thoroughly integrated system.

The results, after necessary corrections and retests, satisfied the vehicle system requirements. The find-

ings are reported in LV-335-6. Z8

In addition to the initially scheduled test aforementioned, post-mate EEI tests between the GLV and

spacecraft were performed on GLV-2 and GLV-3 by McDonnell Aircraft personnel. As a result of the thor-

ough testing of the launch vehicle, the post mate interface testing was accomplished with a minimum of dif-

ficulty. Some changes were incorporated in the spacecraft due to the evaluation of test results and no

further action was required after GLV-3.

i. Complex i9 - Electromagnetic Incident Investigation

During the functional testing of GLV-2 at ETa, there was an occurrence which has been called alter-

nately the "Electromagnetic Incident" or the "Lightning Strike Incident". A thunderstorm in the area had

interrupted launch vehicle testing on the evening of 17 August 1964. Several observers reported that light-

ning struck on or near Complex 19, although no actual strike could be proved.

The vehicle was connected to the AGE through the regular urnbilicals. The AGE power monitor sys-

tem received out-of-tolerance alarm indications from three a-c monitoring points; no d-c monitoring point

indicated over-voltage. The flight control system of the launch vehicle had been undergoing tests prior to

the cessation caused by the approach of the storm.

The vehicle was thoroughly inspected and systems were tested. No physical markings of any kind were

uncovered on the vehicle. However, there were failed components in the vehicle. Seven of eight malfunction

detection system (MDS) pressure transducers showed calibration shift; the eighth had zero output. Also, the

voltage regulator within the adapter package failed, thereby applying excessive current through transistors

on six spin motor rotation detector (SMRD) circuit boards. 29 The failure in the adapter package was respon-

sible for failure of solid state devices in AGE units CP ?-858, CP 2859, CP 2631, and CP 2632. Other AGE

units affected were a seven-inch drag sphere which had erratic output, and five open galvanometers in

30
CP 0400.
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Thenatureofthefailureindicatedinducedvoltage in excess of 50 volts, but actual magnitude

could not be determined, except indirectly by comparison with items that were not affected. There-

fore, it became necessary to develop a hardware replacement and retest plan.

The salient features of the plan prescribed the replacement of all packages containing semi-

conductor elements and complete visual inspection of the vehicle for physical damage as well as the

engines for corrosion. Alltests were to be repeated as though the vehicle had just arrived at ETR.

New calibrations were established for telemetry measurements. Special telemetry data acquisition

runs were performed on each subsystem for comparison with data acquired during VTF testing.

Similarly, the comb'ined systems acceptance test results were compared with the CSAT data from

VTF. Any data point falling within the last 20 percent of the tolerance band was to be questioned by

M-C engineering representatives and resolved before proceeding to subsequent tests.

The actual test plan was rewritten as a Cape Test Operation, 31 and was successfully accom-

plished. The electrical harnessing, probably the most critical area, was subjected to special high

voltage breakdown testing and passed all tests. The vehicle then underwent post-mate testing and was

judged to be ready for manned spacecraft launch.

The details of schedules, retest sequences, and prior and post incident vehicle history are
32

covered in a separate report.

j. Recovery of Telemetry Data Durin_ Stagin_ Blackout

Telemetry reception from the GLV was lost momentarily during booster staging as a result of

the second-stage engine flame pattern. The blackout was caused by the highly ionized gases traveling

forward and surrounding the telemeter antenna located in the area between the propellant' tanks. The

blackout generally occurred at approximately 0.95 seconds after second-stage ignition (91 FS1) and

its duration was in the range of from 0.30 to 0.45 seconds. Several parameters were in the peak

transient phase during this time interval. The significant parameters lost were the thrust-chamber

pressure and hydraulic actuator position measurements, highly desirable data.

These functions were recovered by means of an on-board magnetic tape recorder, which record-

ed the data and reproduced it over a separate telemeter r-f link on launch vehicle-1 through -4. The

auxiliary system was removed as a weight-saving measure, inasmuch as the systems operation was

to have been thoroughly evaluated by the time four flight tests were accomplished. However, there

still remained the question of whether, on any individual vehicle, the structural loads generated by

the engine and/or hydraulic system transients would affect the trajectory and whether, in case of

structural failure, the cause could be identified.

On-board equipment changes to add the storage capability were considered but abandoned

because of their extensive weight and the time required for requalification of the system. However,

it had been observed that the signal from the spacecraft telemeter was attenuated very little during

booster staging, and it was reasoned that the flame attenuation was less at the forward end of the

vehicle. Therefore, it was postulated that a receiving station ahead of the vehicle would have a better

chance of data recovery. The basis of the supposition was the fact that sometimes the station at

Grand Bahama Island (GBI) had a shorter blackout period than the Tel-2 station at ETR, even though

GBI was but slightly forward and off to the right of the normal trajectory at time of staging.

In comparing an airborne telemetry receiving station with a shipboard station capability, it was

apparent that the ship antenna would have ten times the antenna power gain. With an aircraft at

roughly 25,000 feet altitude and the staging altitude of Z09,000 feet, the slant range would be little

different between the aircraft and ship location, and a shipboard downrange station was recommended.
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Actually,bothstationswereutilizedin attemptsto recoverdata;aircraftonlywasusedon
GLV-9,andbothaircraftandinstrumentationshipwereusedonGLV-10.Bothtrialswereunsuc-
cessfulandnofurthereffortwasexpended.
k. GS0 Test Set Investigation

The G80 test set was manufactured by AGC for use in checkout of the landline and telemetry

instrumentation system transducers with associated wiring• It was utilized at AGC, M-B, and Com-

plex 19 ETR during propulsion subsystem testing.

During the course of vehicle testing, particularly at VTF, failed pressure transducers presented

a major problem in the instrumentation system• None of the failures occurred during operation of the

test; they happened either with the application or removal of power and were attributed to over-voltage

transients. On one occasion three transducers were inoperative after power application; on another,

four transducers were inoperative. Moreover, both vehicle stages were affected.

The AGC engine system tests were performed concurrently with other vehicle tests. Because

no indication of excessive voltage was uncovered on the vehicle power bus monitoring oscillographs,

nor was the over-voltage alarm tripped, the GS0 became suspect as the cause of destructive transients.

The functions of the G80 were selected by means of crossbar switching. Measurements made

included hy-pot at 50 volts, continuity, zero, and 50 percent stimulus checks and frequency checks for

the frequency-to-d-c converters. Possibility existed that the 50 volts might somehow have been im-

pressed on the Z8 volt supply line.

Considerable effort was expended reviewing the circuitry of the GS0, its various cables and

interlocking devices in the crossbar switching. Tests were made using the GS0 on a test engine at

AGC, Sacramento, wherein the test procedures were deliberately performed in random sequences.

Cables to the vehicle were connected in various combinations and the hy-pot test again performed and

compared with initial values. Grounding of the test set to various positions on the engine frame was

attempted. There was no deterioration of any of the transducers or wiring as a result of these tests.

The cables from the test set to the engine junction boxes are so configured that when excitation

power is obtained from the test set, vehicle power cannot be applied to the same junction box and

associated transducers. The aforementioned tests were performed primarily to detect sneak circuits

or possible ground loops. None was detected and the G80 test set was absolved as the problem source.

h Augmented En$ine Improvement Program (AEIP) 33, 34

This program, originally initiated and managed by the Titan II Program Office of the Ballistic

Systems Division under the purview of the Gemini Directorate of Space Systems Division, consisted

of component redesign/development of marginal areas and the basic Titan II engine system. The

objectives included minimizing the amount of post-fire disassembly, rework, and replacement of

various engine components/subsystems, thereby increasing the inherent reliability of the overall

system. The planners of the program envisioned improvements in the engine static and dynamic seals,

hot gas lines and fittings, TCV lipseals, lubricating/cooling oil, PSV, thrust chamber pressure sensor

(TCPS), solid start cartridge, gas generator valves, ands variety of selected turbopump assembly (TPA)

modifications. Also, the Gemini RESS, for Stage II, was an AEIP development item. To complement

the basic program, and to comply with the available time constraint, the following go no-go program

ground rule was established:
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If a particular design approach failed to meet its pre-established requirements during an evalua-

tion cycle, no redesign or new designs would be initiated, which, of themselves, would require another

evaluation sequence. The only exception to this would be when failures occurred early enough in the

design/evaluation cycle so that sufficient time and funds {within the overall time planning of the pro-

gram) existed to make such a recycle worthwhile. The major improvement desired from the AEIP

were the TPA tasks, which, in the case of Stage I, were cancelled in November 1964 because of lack

of adequate development success in the new lubrication and seal material areas. Stage II TPA tests

showed significant irriprovements in lubrication capability and bearing temperature control, but the

results of this effort did not show a promise of probable elimination of the teardown and inspection

of the Stage II TPA.

Although some items in the program exhibited satisfactory results, a decision to withhold incor-

porating these "improvements" was necessitated by, and predicated upon, the failure of other key

improvement tasks to be satisfactory (go no-go criteria) as well as by the decisions to delete GLV's

13-15 from the Gemini Program and to incorporate additional procedures to allow completion of pro-

gram objectives without the need for major hardware changes. Certain select Engineering Change

Proposals (ECP's) resulting from the AEIP development, as well as some baseline ECP's, were in-

corporated. The RESS development under this program was incorporated in GLV-3 and subsequent

vehicles. Subsequently, much of the experience accumulated on the AEIP has been/will be incorporated

on Titan III.

m. StaGe I Gearbox Failures 33

During Titan II development, the Stage I gearbox encountered two problems of major significance.

The first and most critical was the failure of the idler gear rim, which resulted in catastrophic failure

of the turbopump assembly. The cause of the failure was found to be a gear-rim resonance at oper-

ating speed, which resulted in fatigue failure at the rim/web radius. One problem solution was dem-

onstrated to be a design improvement, which thickened the gear rim and web areas, improved metal-

lurgical properties {9310 vacuum melt alloy vs. 4620 alloy), shot peened surface treatment to improve

resistance to stress risers, and improved gear-tooth profile. Similar design improvement features

were also incorporated into the fuel and oxidizer gears. Only GLV-1, of the 12 Gemini vehicles, was

launched with gearboxes without the modification.

The second problem of major significance was incipient failure of the turbine shaft high speed

bearing. This problem was originally isolated to a bearing design unique to one manufacturer. Reso-

lution of the problem at that time was to restrict bearing usage in this application to a single manu-

facturer whose product had a substantially higher load-carrying capability. However, during

Acceptance Testing of a Stage I Gemini engine in July 1964, failure of the No. 6 bearing caused pre-

mature termination of the test when an abrupt dropin the performance of SA-Z was noted. This mal-

function precipitated a major analysis to find the cause of the failure. The catastrophic results of

this failure mode of the engine system dictated that the problem be defined, a solution generated, and

appropriate corrective action implemented prior to any manned flight on the Gemini program.

The subsequent failure analysis revealed many areas where redesign would be desirable. One

item, however, was selected as the most probable cause of the failure. It was hypothesized that

initial failure of the turbine phosphor bronze interstage labyrinth seal had precipitated the events
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leading to the bearing failure. Acceptance of this hypothesis led to the incorporation of a new free-

floating stainless steel labyrinth seal. Furthermore, the history of failures indicated that if a No. 6

bearing were going to fail, the probability of failure on the first acceptance firing after gearbox assem-

bly was very high. Since Gemini was using only selected bearings in this application, and since all

Gemini turbopumps were required to be hot fired, it was concluded that the probability of having a faulty

condition was low and that the probability of detecting a faulty bearing by virtue of the hot-fire require-

ment was high.

n. Gemini Stability Improvement Program (GEMSIP)

One of the major concerns in man-rating the Titan II Stage II engine was the possibility of com-

bustion instability during the Stage II start transient. The original Stage II engine utilizing the pro-

duction quadlet injector was classified as statistically stable but dynamically unstable. 35 This meant

that the quadlet injector had a demonstrated instability incident rate of about Z percent during ground

tests. Even though this incident rate appears low, the resultant effect of an instability during flight

could be quite severe. Instabilities to date have occurred during ground tests; none during flight.

The demonstrated marginal stability of the quadlet injector in conjunction with the Gemini pro-

gram philosophy resulted in the DOD/NASA decision to develop a dynamically stable Stage II injector.

(Capable of accepting limited pulsing without instability. ) The development of the GEMSIP injector

consisted of analytical/design evaluation of several injector types, which were screened by thrust-

chamber assembly tests. The injector screening tests, as conducted, consisted primarily of newly

developed bomb/pulsing techniques derived to establish instability triggering thresholds. * The se-

lected prototype injectors were then tested at the engine level for system compatibility. A final

candidate injector then underwent a modified qualification test program. This program was integrated

into the AEIP modification verification test series. To give further assurance as to the adequacy of

this injector for manned flight, it was flight tested by a Titan IIIC vehicle.

The significant differences between the Titan production quadlet and the GEMSIP were: GEMSIP

had seven radial baffles, while the Titan quadlet had a center hub and six radial baffles; GEMSIP baf-

fles were approximately I-I/2 inches shorter than the Titan quadlet, and the GEMSIP thrust per ele-

ment was 200 ibs, while the Titan quadlet was 100 Ibs.

The GEMSIP injector was incorporated into Gemini on GLV-8. Gemini was the only program to

utilize this injector; however, the Titan IIIM program does plan on incorporation.

o. Ablative Skirt Demonstration Tests

The predicted maximum 3_ GLV Stage II burn durations exceeded the qualification duration of

the Titan II ablative skirt. Therefore, a test program consisting of seven firings was conducted to

demonstrate the adequacy of the skirt design for the GLV durations. 36 This program was established

with a go no-go success criteria, namely that all skirts complete the planned durations intact. The

criteria was successfully accomplished with all seven skirts enduring durations ranging from 198 to

Z15 seconds. All skirts also underwent detailed post-test examinations. The conclusion derived from

this test series was that the basic Titan II ablative skirt, as controlled by GLV fabrication and inspec-

tion procedures, was satisfactory for the Gemini missions.

*Contract No. AF04(695)-517.
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An additional program of two tests was conducted to verify that the GEMSIP injector with its

resultant higher heat load would not degrade skirt life. 37 The skirts of this program also had incor-

porated special instrumentation to measure honeycomb pressure, to provide data for the Green Man/

Brown Man studies. (Reported later in this Section.) These tests were also completely successful.

p. Engine Frames 38

Early in the Gemini program it was discovered that discrepant tubing may have been used in the

fabrication of several Stage II Gemini engines, as well as on other Titan family frames. The cracks

were first detected on the turbopump horizontal fuel-side support during a routine radiographic in-

spection. The results of the ensuing investigation were as follows:

The cracks originated during tubing manufacture. They propagated when the tubing was sub-

jected to the severe stresses of welding and heat treatment during subsequent processing, as well as

to the stresses of the static load test of the frame after assembly.

The problem occurred during a certain period of time within the manufacturer's history, and

records indicated that all the defective material was isolated to a single heat of raw stock. AGC was

able to document those frames which had utilized this particular raw stock.

Finally, it was concluded that none of the discrepant tubing had been used on the early (GLV-1

and GLV-2) Stage II engine frames.

Although no Gemini frames had been affected, it was concluded that this incident indicated a

possibility that minute material imperfections could pass the manufacturer's inspection procedures,

and result in propagation of cracks during subsequent frame assembly and checkout prbcedures.

Therefore, it was decided that, in addition to the radiographic inspection of welds and the magnaflux

inspection of tubing, ultrasonic and magnaflux inspection of all fabricated Gemini engine frames would

be required after the static load test had been performed.

It should be noted that, through the Pilot Safety Program, an Aerospace metallurgical expert

was also required to review engine frame x-rays before acceptability of the hardware could be

determined.

Titan II experience had revealed that the Stage I engine compartment was subject to base heat-

ing, i. e. , a high temperature environment due to convective heating. Titan II had insulated various

components for this reason. Because of some minor differences in design between the 87-7 frame

and the 87-5 {Titan II) frame, and the Gemini philosophy of requiring a greater knowledge of margin-

ality than that for the weapon system, both thermal and structural analyses were performed on the

Stage I engine frame. 39 As a direct consequence of this review, steps were taken to require that

insulation protection be provided for the frame and Specific MDS components. 40' 4t, 42

q. Start Cartridge Conditioning

Early in the Gemini program, it became apparent that there was a problem associated with the

reliability/adequacy of the Stage I and II start cartridges utilized for the flight test program. The

basic problem centered about the variability in burning characteristics of the grain being used. This

variability was further accentuated by the effects of temperature and aging. For example, under the

possible operating temperature range of from 35 ° to 100°F, a cartridge could drive the engine un-

stable through the mechanism of a low-step chamber pressure, or fail to start the engine because of

shortened burning time resultant from the shape of the burning curve. A reasonably extensive
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analyticalstudybackedupbylimitedempericaldataonlyservedto verifytheoveralllackof under-
standingwithrespecttograincomposition,temperatureaffects,andagingaffects.Becauseofthe
amountoftimeandcostthatwouldberequiredtodevelopa cartridgegrainlesssensitivetotheabove
problems,it wasdecidedtodesignflight-typethermoconditioningequipmentthatwouldmaintainthe
grainwithinnarrowtemperaturelimits therebyprovidinga reasonableassuranceasto theexpected
cartridgeoperationduringflight. Ineffect,thiswasavoidingtherealproblemofvariabilitybyelimi-
natingthemajoritemcontributingtothisvariability. Theairbornestartcartridgeconditioners,along
withthegroundSUl_portequipment,weredesigned,developed,andusedquitesatisfactorilyonGLV's
2-1Z.

r. Dust Cap 43'
44

The first attempt to launch GLV-6 on 1Z December 1965 was automatically aborted after ignition

when an electrical tail plug accidentally became disengaged. Subsequent routine investigation of the

engine-generated data revealed that the thrust (Pc} of one subassembly was decaying prior to the com-

manded shutdown. The problem was diagnosed as a restriction in the gas generator circuit of SA-Z,

which would probably have caused an engine shutdown at 87FS1 + 2. Z seconds. Subsequent disassembly

of the system revealed a protective dust cover in the gas generator oxidizer injector inlet port. (See

Figure II. E-1.)

A complete review was made of all engine associated rework procedures, as well as a review of

the rework history of all engines. Evaluation was made of a proposal to redesign dust caps, as well

as standardizing the type of protective cover to be used for particular components in each work area

(such as AGC, Sacramento, M-B, and the ETR}.

The situation was resolved by the institution of a procedure whereby a complete accounting of

the number of closures installed and subsequently removed from a system was required. As far as

physically inspecting other Gemini engines for the same discrepant condition, the historical review

indicated the one engine that had suffered the dust cap episode was unique; no other Gemini engine had

been subjected to that particular procedure in the field.

s. Oxidizer Pressurant Pressure Switch (OPBPO) (PoPoi Auto_enous S_,stem Orifice)

A part of the prelaunch Malfunction Detection System logic requires that the OPPS register a

"pressure up" condition (>445 psia) at 87FS1 + Z. Z seconds, in order that a "go" condition exist for

liftoff. Review of data from early Gemini flights revealed that the attained pressure had been marginal

at the interrogation point (87FS1 +Z. Z seconds) on three flights, i. e. , an abort was narrowly averted

on GT-4, 5, and 7 even though the engine (the autogen0us system in particular) was operating

satisfactorily.

Investigations revealed a disparity in pressure levels between Acceptance Test values and flight

values, with the flight values being lower and resulting in the marginal condition. It was further dis-

covered that the configuration used by AGC during the Acceptance Test series to simulate the pressure

drop in the flight system had a higher resistance than the actual flight system, and therefore produced

higher values in pressure during the Acceptance Test than would be attained on the subsequent flight.
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A detailed review of T-II/Gemini data, utilizing different orifice diameters, was conducted. In

order to correct the problem, it was decided that an orifice (PoPoi) of 0. 460-inch diameter should be

installed on all Gemini flight engines. This size was calculated to produce a pressure great enough

(445 psia) to give a "go" cue to the PMDS at the interrogation point, while maintaining the maximum

pressure below that level (600 psia), which would put the line in danger of distortion, with the auto-

genous system functioning properly.

t. Engine Driven Pump Compensator Chan_e

At the inception of hydraulic-system redundancy on GLV, a review of Titan II experience indicated

a possible problem area associated with the "soft start" of the secondary system engine dri zen pump.

It was suspected that, with the hydraulic system initially at zero pressure and the engine pump compen-

sator at full flow position, a rapid pump startup would result in a high pressure spike, due to pump

overshoot, before the compensator could reduce flow to the normal steady state value. Titan II solved

this anticipated problem by setting the electric motor pump discharge pressure at 3200 psi and operat-

ing the pump throughout Stage I engine start-up. This resulted in the engine pump compensator remain-

ing in a fully feathered position during the rapid acceleration startup, and thus no high pressure excur-

sions were experienced.

With the use of two hydraulic systems on Stage I of GLV, it was necessary to start the secondary

system engine pump with zero system pressure. Therefore, a test was devised and conducted during

Phase I of the ASFTS program to determine if a pressure overshoot problem existed. This test was

considered to be more severe than the actual Stage I rocket engine startup. The test led to the con-

clusion that the system proof pressure of 4500 psi would not be exceeded.

However, during SCF on GLV-I the secondary system pressure peaked at approximately 475 psi

during engine start. This level of pressure transient exceeded the proof pressure limit of the

hydraulic system, thus jeopardizing the integrity of the system and affecting the Safety of the

launch vehicle crew. The pressure dip, which occurred after the peak, dropped to values below

the pressure switch setting utilized in the hold-kill circuits for vehicle shutdown. As a result, the

switch was locked out of these circuits for GLV's 1 and 2.

At that time, a method of improving pump compensator response was given prime consideration.

It was decided to change the pump configuration from a short differential design to a standard differen:

tial design, in an effort to reduce the pressure transient to acceptable levels.

The short-differential compensator used a small control orifice and a tapered plunger while the

standard differential used a larger control orifice and nontapered compensator plunger. The short-

differential compensator, with the necessarily smaller control orifice, had relatively poor transient

response characteristics as compared to the standard differential. Thus, the standard differential

could maintain more constant levels of system pressure during transient flow demands of the actuators.

The standard-differential compensator pump was successfully flown on the Stage I secondary

systems of GT-II and subsequent missions. No excessive pressure overshoots were observed and the

subsequent pressure dips did not approach the final pressure switch setting of 2500 psia, which was

used to detect a system malfunction prior to liftoff. Pressure transients settled out to a steady state

at least 1.5 seconds before vehicle liftoff in all cas.es.
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u. Propellant Discharge Lines

A Titan II propellant line was discovered with a dislocated knuckle in a tripod/bellows assembly.

Although the exact cause was not determined, it was probably handling damage (i. e. , dropped or

shifted loads). The possibility existed that this discrepancy could result in a catastrophic failure of

the line prior to liftoff due to starting loads, or in flight due to gimballing loads. The requirement

was established to inspect, by X-ray, all GLV propellant discharge lines after erection of the vehicle

on Complex 19. This inspection was conducted and several discrepant lines were discovered. No re-

design was conducted to eliminate this problem for Gemini; however, it is probable that redesign may

be conducted for other programs, as this is a Titan family problem.

v. Propellant Tank Level Sensor

Because of the development and reliability problems encountered with the Titan II level sensor

and the criticality of the level sensor in the GLV application as a performance-measurement tool, a

study was undertaken to find a reliable replacement for the Titan II unit in the GLV application. The

study resulted in the selection of a new design level sensor, due to its inherent accuracy which con-

formed to the stringent GLV performance requirements. The Titan II sensor utilized optics to sense

the presence of fluid. An internally generated light source was either reflected or not reflected to a

solar cell, depending upon the presence of liquid on the sensor prism. The component history

throughout the Gemini program showed many quality control problems, but few functional design

problems.

A sensor chattering and recover characteristics was observed with fuel level sensors during

Titan II piggyback flights and early GLV flights. The problem was defined as autogenous gas con-

densation on the sensor prism, which caused a false covered signal. The problem was solved

by providing a shield for the sensor prism to eliminate the collection of condensate on the prism. The

problem was not discovered until the flight test phase of the program. This was due to the fact that

the engine firings at AGC, Sacramento utilized cold-gas tank pressurization rather than autogeneous

hot gas when the level sensor evaluation tests were made.

Further problems were encountered on GLV-3 with cracking and crazing of the bond between the

sensor's aluminum housing and the prism. To prevent introducing contamination into the propellant

and loss of structural integrity of the bond, an aluminum retainer disc was bonded over the area of

suspect cracking.

A problem of loose sensor shields under vibration environment was remedied by improvements

in the roll pin design and installation used in connecting the shield to the sensor housing.

The level sensor engine shutdown capability was removed from the Gemini Vehicle, after a long

study to verify flight safety with propellant exhaustion shutdowns so that the additional performance

potential could be achieved.

Redundant level sensor capability was removed from the high sensor positions for GLV-5 and

subsequent vehicles, and from the outage sensor positions for GLV's-9, -10, -11 and -12 as a weight-

saving item.

Detailed information concerning level sensor development and data may be found in M-B,
45

LV-234.
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w. GLV-2 Tandem Actuator Problem Investigation

The first GT-IIlaunch attempt was scrubbed on 9 December 1964 when the primary servo valve

body on actuator 21 failed during the engine start transient. Subsequent loss of primary hydraulic

pressure resulted in an automatic switchover to the secondary systems, which in turn initiated the

automatic shutdown and cancellation of the launch attempt. (See Figure 17. E-2. )

The efforts to correct the problem with the actuator were initially undertaken in two directions.

The first step, based on initial observations, was the decision to strengthen the servo valve body lugs

to the point that they would take the higher pressure loads that must be occurring during engine start.

This action was implemented immediately on a priority basis. It was thought that, if the investigation

showed this to be the only modification necessary, fixed actuators would be ready to fly with a mini-

mum of program delay. The second step was an investigation into the cause and level of forces re-

sulting in the failure. This entailed a metallurgical and stress analysis of the failed part, and an

extensive impulse-test program on the GLV and Titan II booster actuators. Later, an analog study,

an intensive review of existing flight and ground engine start-test data, and a complete review of the

actuator design were added.

The metallurgical analysis of the failed servo body revealed a relatively coarse grain structure

for a small die forging and a marginal heat treat, as evidenced by the presence of eutectic melting

along the grain boundaries. However, the strength properties were high enough that a failure of the

type experienced should not have occurred with internal loads predicted at the time. Therefore,

further investigation to identify all the internal actuator conditions under impulse loads became a

r equir ement.

In an attempt to reproduce the actuator failure and to study the actuator response to impulse

loads, an impulse test setup was devised in the Martin-Baltimore facility. A high impact shock

machine was modified for the test program, such that either tension or compression axial impulse

loads might be applied to the actuator. The concept of the impulse test program was to allow free

fall of a pendulum, imparting Kinetic energy to its weight, which represented equivalent gimballed

engine weight reflected through a striker arm into the actuator. The spring rate of the fixture was

designed to represent vehicle backup structure. The fixture induced strain, plus damping on the

actuator, produced an impulse of 0. 030-second duration during rise and a return to zero within ap-

proximately 0. 050 second at medium-impulse levels, closely simulating the observed conditions

under actual engine start conditions.

In laboratory tests, the exact GLV-Z failure mode was reproduced twice with Gemini actuators,

failures occurring at 42,250 and 35,900 pounds actuator load under 11,200, and 8,070 in. -lb. of im-

pulse energy, respectively. It was estimated that the GLV-2 failure occurred at an actuator load of

34,700 pounds. Two Titan II booster actuators were also tested to destruction to provide a comparison

with the tandem actuator. Throughout the T-II history, there had been no e.vidence of damage to the

actuators, and thus their failure point was of prime interest. One unit, at a load of 49,500 pounds or

impulse energy of 16,200 in. -lb. , suffered a burst flapper flexure tube and yielded bearing straps,

while the other unit exhibited a buckled piston rod at a load of 47,500 pounds or impulse energy of

12,200 in. -lb. The impulse failure levels of the GLV-Z specimens were below the failure levels of
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the Titan II specimens, because the tandem actuator was less compliant and the servo valve housing

was weakened by miniaturization for repacking, and by variations in material process control which

allowed the pressure generated loads to cause failure.

Actuators installed during early engine start tests at AGC recorded maximum loads of 14,500

pounds, well below the computed GLV actuator failure load.

Examination of the tandem actuator failure load in terms of the early T-II test data showed the

need for a re-evaluation of engine start loads. From flight data Titan II and GLV-1 and 2 start tran-

sient loads were recalculated using piston position telemetry measurements, which were converted

into loads and impulse magnitudes by utilizing the load versus velocity information generated on the

respective actuators by the impulse testing. The calculated GLV-2 actuator impulse loading was

greater than the previously accepted maximum-impulse data derived from early T-II engine test pro-

grams at AGC in Sacramento. The calculated GLV-! and 2 impulses were higher than the Titan II

mean, but were below the maximum Titan II impulse. The probability distributions and maximum

values of the recalculated Titan II tension and compression impulses were used as a basis for evalua-

tion of the modified GLV actuators and their qualification.

A series of impulse tests were made with AGC-supplied stiff links, to provide a comparison of

stiff-link loads to actuator loads for a given impulse. The equivalent stiff-link load at engine start

impulse levels was much greater than anticipated from early AGC engine tests at Sacramento, and

higher than the specification value for design of the tandem actuator.

The analysis of actuator internal pressure data during impulse testing indicated a much higher

than expected pressure level in the return pressure port of the servo valve. The pressure level was

equal to that recorded in the supply ports of the valve. At this point it was evident that more than a

weak servo body section was involved, since the return pressure within the valve was considerably

above values used in the initial stress analysis of the actuator assembly. A detailed design analysis

of the servo actuator indicated several areas for further study. The force limiter discharge was

ported into the return pressure line upstream of the flow limiter; therefore, the back pressure on the

force limiter was a function of flow limiter response. The normal flow limiter response allowed high

back pressure buildup on the force limiter, thus raising its cracking pressure and increasing return

pressure within the actuator. It was felt that the force limiter flow capacity was not great enough to

allow rapid dlssipation of peak internal pressures.

Utilizing the actuator and load information generated through the impulse testing, design and

modification was started with the following constraints. 1) The loads produced by established impulse

requirements must be bounded by inherent strength limits of the actuator, its attachments and backup

structure, 2) modifications must be relatively simple and minor, so that they could be fully developed

and evaluated to minimize delay of the program. The forged housing strengthening program was con-

tinued, as well as enlarging and rerouting actuator internal passages (and increasing the flow capabil-

ity of the force limiter design) to reduce the backpressure on the force limiter.

Strengthening of the 2014-T6 forged housing was accomplished.

Existing fluid passages were enlarged and one new fluid passage added in the primary section of

the main body to permit connection of the discharge side of the force limiter assemblies to the return

manifold downstream of the flow limiter. This change permitted operation of the force limiter to main-

tain cylinder pressures and return pressure at the desired threshold, independent of the back pressure

generated during operation of the flow limiter.
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The main objective of the force limiter design modification was to increase its flew capability,

compatible with actuator rates experienced during the engine start transient. To accomplish this, the

damping orifice in the main flow path was removed to open up the passage. Since previous experience

had shown that deletion of the orifice resulted in valve instability, the control or sensing area was

separated from the main flow path and a damping orifice was inserted in this section.

Two actuators, modified as described in the preceding paragraphs, were impulse tested in the

Martin-Baltimore laboratory. The first failure mode encountered on the modified GLV actuator was

similar to the Titan II tension failure mode, but occurred at a 50-percent greater amount of impulse

energy. At pressure levels above the normal hydraulic-system burst pressure level of 7500 psia,

incipient failures developed in the servo, the first of which was distortion of the flapper flexure tube.

The flexure tube distortion mislocated the flapper, resulting in a servo null shift. An actuator load

of 36,000 Ibs was set as criteria for allowable servo null shift, without running the danger of a switch-

over due to actuator offset. This actuator load level was approximately 30 percent higher than any

observed on GLV or Titan II flights. A complete functional evaluation test series was run on the modi-

fied tandem actuator in the Martin-Baltimore ASFTS test area. The tests were conducted to prove

that the actuator performance characteristics had not been altered by the modifications.

A requalification test series was set up for a third modified actuator using a series of impulse

tests, each test followed by a functional checkout of the unit. Impulse tests were conducted simulating

a flight test mean impulse plus l- and 2-sigma and maximum levels. No problems were encountered

until impulse levels reached a point where actuator null shift appeared.

The modified actuators were successfully flown on GLV-II and subsequent vehicles. '46

Conclusions

The tandem actuator failure on the GLV can be attributed to three primary engineering factors.

First, there was no impulse test included in the qualification program for the tandem actuator. It is

not now clear why, but it was felt by all engineering parties concerned that the snubbing test, which

was part of the qualification requirements, did demonstrate the capability of the force limiters to ab-

sorb an impulse load into the actuators. An impulse load was included in the design specification

which had a considerable margin above the predicted three-sigma stiff-link peak value that had been

observed in the early T-II engine test, but the energy content or the shape of the impulse was not

defined.

The increase in starting loads was the second contributing factor to the actuator failure. It

became apparent in reviewing the history of the first-stage engines that a revision to the injector and

manifolding was responsible for the change in start characteristics of the T-If engine, because of the

correlation with available engine data. A series of tests on the revised engine for start loads or the

evaluation of actuator pressure traces on early T-If flights could have exposed this change in start

load characteristics.

The third consideration revolves around the design and development of the tandem actuator. The

study or the development testing of the actuator for its response to externally applied impulse loads

would have exposed the interaction of various components within the actuator and the fact that they

could limit the effectiveness of the force limiters in relieving reaction loads to forcing inputs. The

T-II actuator operated successfully mainly because it was more compliant due to configuration dif-

ferences fron_ the Gemini actuator.
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x. POGO Suppression Device Development

The first flight of a Titan II vehicle in March of 1962 revealed a longitudinal oscillation problem

that resulted in high acceleration levels at the payload. Accelerometers at the payload recorded 5 g's

peak to peak at a frequency of around ten cycles toward the end of first-stage flight. The observed

oscillation was later established to be a closed-loop instability between the structure, propellant feed

system, and the engines and was dubbed with the title POGO. Ballistic Systems Division (BSD), Space

Technology Laboratories (STL), and the rest of the Titan II contractors establisLed an investigation

program to evaluate and solve the problem. Later in the year a formal committee composed of the

involved contractors was set up to direct, control, and integrate all of their action under BSD. It was

through this committee and its meetings that all information was distributed and technical recommen-

dations for action made.

Two significant parameter effects were noted in the evaluation of the first two flights. One was

the apparent presence of a feed-line resonance of the same frequency as the first longitudinal mode at

the time of oscillation occurrence, and the second was the apparent amplification of the fuel feed line

pressure fluctuations across the fuel pump. The third flight was made with increased fuel tank pres-

sure to force the fuel pump operating point further away from the cavitation point with a resultant im-

provement or reduction in oscillation level. The next significant fix attempted was the incorporation

of a tuned attenuator in the ox-feed lines just above the two Stage I ox-pumps. This attenuator was in

the form of a standpipe tuned to the observed resonance frequency of the feedline. A standpipe fix was

flown early in December of 1962 with effectively disasterous results. The standpipe-fixed vehicle

produced oscillations that reached l0 g's peak to peak at which point the pressure fluctuations in the

engines were great enough to effect their shutdown.

The failure of the standpipe fix resulted in an extensive reevaluation of the problem by the weapon

system contractors and the initiation of efforts by Aerospace and Martin-Baltimore of the Gemini team

to evaluate and understand the problem. The evaluation of the anomalies and previous flights, by the

weapon system contractors and the Gemini contractors working on the problem, did not reveal any

basic errors in the analytical model or hypothesis upon which the standpipe fix had been proposed.

Evaluation of the flight did reveal, however, that the amplification between the suction line fluctuations

and the resulting discharge pressures in the fuel system was much greater than that which had been

used in early analysis, and that these gains when incorporated in the analytical model did predict the

instability with the standpipe fix. It was determined by the interested parties that the only logical

approach to fixing this problem was to institute a series of tests and evaluations that would give par-

ametric data and basic understanding of the dynamic behavior of the propulsion system. The means

for obtaining this data were to be a series of ground tests on a complete engine at Aerojet and a pump

drive assembly (PDA) test at the Martin-Denver cold-flow facilities, with provisions for dynamically

perturbating suction pressures and, in the case of the PDA tests, the discharge pressures. Both test

setups were extensively instrumented. Further evaluation led to the conclusion that active steps had

to he taken in the fuel side of the propellant system, either upstream or downstream of the pumps, to

suppress or attenuate induced pressure oscillations in the frequency range of the problem, as well as

to keep the standpipe fix on the ox feedside. During this evaluation phase, several Titan II flights
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were made with increased fuel tank pressure, but also with a change in the oxidizer feedline from a

stainless steel configuration to an all-aluminum configuration. These vehicles with the aluminum

feedline and the increased fuel-tank pressure showed a significant decrease in oscillation levels.

These levels, which were running around 1 g peak to peak, were well within levels that the weapon

systems payloads could tolerate and it became evident that from a weapon systems point of view there

was no need for further activity or expense in solving this oscillation problem.

The expected levels of 1 g peak to peak were not consistent, however, with requirements of the

manned version of the vehicle which had been established as a maximum of plus or minus 0.25 g's by

NASA. It was at this point that the Gemini team through and with SSD took a more active part in solv-

ing and obtaining fixes for this problem. Because the weapon systems contractors already had the

facilities and were geared up to investigate the problem, the decision was made for these people to

continue their active pursuit of the problem, with the Gemini team providing inputs in steering the

efforts to achieve a satisfactory solution for the Gemini Launch Vehicle. From this point on, the

program effort was basically divided into two categories: l) The active pursuit of an adequate ana-

lytical model, and 2) the development of various attenuator configurations to suppress oscillating

pressures in both the ox and the fuel feed systems.

Active pursuit of an analytical modelwas being undertaken by STL, Martin-Denver, Martin-

Baltimore, and Aerospace. The basic approach being used by all four was similar, but each of the

participants was actively reviewing some of the subtler aspects that they felt might be the key to ob-

taining a good match between recorded data from the flights and the models. The tests of the fuel

pump assembly at Martin-Denver and the full engine at Aerojet were to provide some of the key par-

ameter data necessary for a complete model. The major problem with the analytical model was that

it did not predict the return to stability before BECO that was observed during the flight.

In order to provide backup for the two most favorable fixes for the ox-feed system and the fuel-

feed system, several alternate fixes were picked for further study and some development. In the ox-

feed system a "lossy line" and an acoustic horn were proposed as alternates to the standpipe, in order

that pressure oscillation suppression could be achieved over a broader frequency range than was pos-

sible with the standpipe. In the fuel-feed system, evaluation was made, not only of a simple mechan-

ical spring piston accumulator, but of a number of types of accumulator in both the suction and dis-

charge lines from the pump. A large effort was initiated at Aerojet to redesign the fuel pump for

improved suction characteristics with the constraint of allowing only modifications to the inducer.

Although the analytical model did not predict the cessation of oscillations, a good margin of

stability was predicted with the use of both a standpipe in the ox and a mechanical accumulator in the

fuel suction side. The four contractors making detailed analytical studies agreed on this conclusion

and the decision was made to try the standpipe and accumulators on vehicle N-25 by BSD. Prior to

the flight of N-25, data became available from the transfer function tests on the engine at Aerojet,

which showed and confirmed the presence of a fuel-side resonance with a frequency which would enable

the analytical models to predict not only the onset of oscillation, but the cessation. This information

provided additional confidence that the forthcoming flight of N-25 would indeed prove successful, since

it was this inability to predict the cause of the cessation of oscillation that had caused the greatest

concern as to the accuracy of the analytical model. The flight of N-25 did indeed show that the stand-

pipe and accumulator combination wa_ the key to controlling the POGO oscillations of the Titan II

vehicle.
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Further analytical studies and development tests indicated that some of the alternate approaches

such as the "lossy" ox feed line and a different type of accumulator on the fuel-feed side would be bene-

ficial and provide a better overall solution in controlling this closed-loop problem. The availability of

R & D flights in the terms of development lead time made it impractical to pursue these other approaches,

however, and the continuing success of other test flights with the standpipe and accumulator demonstrated

that the NASA criteria of +0.25 g's couldbe achieved with this hardware, and thus the alternate ap-

proaches were never developed completely or incorporated in the Gemini program. The redesign of the

fuel pump was completed at Aerojet and production-type pumps were developed. The pump development

was continued through to completion and two pumps were scheduled for one of the last T-II R _ D flights.

This was done to provide a backup capability in case the fuel-side accumulator was not sufficient by

itself to suppress fuel-side pressure fluctuations with low fuel tank pressures. This modified fuel pump

did fly on one of the T-II R & D flights, but did not show the performance benefit that was expected.

This occurred, however, after a low fuel-tank pressure flight had been made with both the standpipe

and accumulator, and had demonstrated the adequacy of these two fixes even with the low fuel-tank

pressures, thus obviating the need for the improved pump.

The piston-type fuel accumulator and oxidizer standpipe were successfully flown on all Gemini

Launch Vehicles. Several changes were made to the original accumulator design for the GLV applica-

tion, including changes in seal and bushing material to reduce piston friction, and hardcoating the piston

shaft to reduce wear and the particles generated by wear. Problems with the accumulator piston posi-

tion potentiometer were solved by changing lead wires to a heavier gauge, placing lead wire solder con-

nections inside the potentiometer case, and, beginning with the GLV-4, protecting both the accumulator

and potentiometer from recirculation heating with a shroud.

Only on GLV-5, where a problem was encountered in properly tuning the oxidizer standpipes, was

the +0.25-g limit exceeded. On this flight, the target level was exceeded by a slight amount for a period

of 16 seconds. No adverse flight conditions were experienced. Some oscillation at the end of Stage I

flight was observed on all flights, but they were of the short burst, low amplitude character rather than

the sustained type encountered without the surge chambers.

A detailed study of the POGO problem along with the analytical studies and corrective action will
47-54

be found in the references at the end of this section.

y. Oxidizer Standpipe Remote Charge System

The method for suppressing longitudinal oscillations (POGO) on the Gemini Launch Vehicle made

use of tuned hydraulic resonators, or peak-notch filters, installed in the Stage I propellant feed lines.

The resonators in the oxidizer feedlines were standpipes, which utilized an entrapped gas bubble to

provide a soft spring for the oxidizer mass in the standpipe to act on.

Because of initial trapped gas quantity variations in the standpipe, a charge process was required

during launch countdown to ensure proper sizing of the bubble and thus correct tuning of the standpipe.

The charging process was initially done with manual tools; however, this function proved unsatisfactory

because of safety problems, and because it necessitated early opening of the oxidizer prevalves and

exposure of the engine to oxidizer. Initial propulsion operating constraints resulted in considerable

system servicing if a launch scrub occurred after prevalves were opened, which in turn lengthened the
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recycle time required before another launch could be attempted. To remedy this situation, a remote

charging system was developed which allowed the prevalve opening and standpipe charging operation to

be moved up in the countdown to any convenient time prior to initiation of the automatic count at T-6

minutes.

The system was designed and developed to the following design criteria.

1. The charging syste_n was to be designed so that a minimum of modification would be re-
quired on the airborne side of the interface.

2. The system was to be capable of remotely controlling all operations from the blockhouse.

3. Flight-proven hardware was to be used as applicable.

4. All new hardware was to be subjected to qualification to GLV requirements.

5. Redundancy was to be used in systems design where practical, in an attempt to increase

reliability.

6. The charging system was to provide enough capacity to adequately clear the standpipe of

propellant and then ensure that the system would allow adequate propellant bleedback to
clear the standpipe of excess nitrogen. This also ensured that the correct size gas bubble

was then trapped in the standpipe.

7. The system was to have the capability of sensing an improper charge in the event of a

charging system malfunction.

The c_npohent and systems design was finalized by a series of test runs on the operational con-

figuration. These tests were designed to prove system repeatability, reliability, and the ability of the

system to sense a charging malfunction.

The design criteria were achieved. The airborne hardware was modified only to the extent of

adding some tubing, a ball-type shutoff valve, and a quick disconnect. The AGE design fulfilled the

rest of the objectives. The quick disconnect was the same as that used in the topping system, but the

ball valve was new and required qualification.

The system was successfully used for GT-4 and subsequent launches. The POGO problem on the

flight of GT-5 resulted from a design deficiency in the manual charging system. The remote charging

system could not be used for this flight due to maintenance problems.

Detailed information concerning systems design and development may be found in the reference

at the end of this section. 55

t9, 20
z. Propulsion System Test Program

The purpose of this test program was to check and verify the operation of those portions of the

Titan II/Gemini propulsion system that were peculiar to the Gemini Launch Vehicle. The primary

objectives were:

(I) Vehicle

• Verification of the tankage malfunction detection system

• Demonstration of capability of the spacecraft display

• Verification of pressurization system and ullage reduction

• Verification of the tandem actuator system

• Development of operational history of the prevalve

• Accumulation of operational history on the propellant level sensors
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(2) Engine

• Verification of the malfunction detection system

• Verification of the prelaunch malfunction detection system

• Verification of the Stage I engine frame

• Durability of cold propellants

• Verification of flight instrumentation

• Verification of low/critical NPSH

• Engine starting capability under conditions of reduced ullage

The test results demonstrated the ability of the Gemini propulsion system to meet its design goal.

All vehicle and engine test objectives were satisfactorily achieved.

a'. Side Load Disturbances (Green Man/Brown Man)

Through the course of the Titan If, Titan IIl, and Gemini programs, disturbances of the flight

control system/vehicle were experienced. The disturbances occurring post-sustainer engine cut-off

(SECO) were entitled "Green Man" and were noted in flight control and dynamic parameters, but not

seen on any engine parameters. The frequency of Green Man on GLV and Titan I/was approximately

40 percent. Disturbances were also experienced on Titan II and Titan III during Stage II operation (pre-

SECO). These were entitled "Brown Man" and included two cases of ablative skirt failure; one on each

program.

Prior to the Gemini flight program, the Green Man phenomenon was studied in detail to determine

if this phenomenon could cause recontact of the Gemini capsule and GLV Stage II. No cause was es-

tablished during this study but it was concluded, mainly from flight-test data, that recontact due to

Green Man was remote and the probability was consistent with acceptable Gemini philosophy.

A combination Green Man/Brown Man task team was established subsequent to the Titan IIIC

ablative skirt failure. This task team concluded that both Brown Man and Green Man had the same

cause. The team concluded the most probable cause was excessive pressure buildup in the honeycomb

structure of the ablative skirt. The side forces were then generated by either pressure relief or loss

of a section of ablative material. The pressure buildup was the result of hot gas and/or resin vapor.

The hot gas could migrate to the honeycomb through liner cracks or porosity, the latter resulting from

liner char. The resin vapor was the result of heating of liner or inner laminates.

Other pertinent conclusions of the task team were that the Titan IIIC skirt failure was at least

partially caused by quality problems in addition to the above, and that Green Man/Brown Man did not

endanger crew safety or mission success. Details of the study and conclusions can be found in the
56

reference at the end of this section.

b'. Enlarged Bellows ECP - TARS HIG 4 Gyros

The three-axis reference system (TARS) gyros had been found to acquire air bubbles in their flo-

tation chambers, which could cause unpredictably large and erratic output signals during rotations such

as the pitchover motion of a flight. The fault was traced to an improperly sized expansion bellows in

the individual gyros. Wher_ the gyro was allowed to cool between operations, the bellows would com-

pletely collapse and thus permit the further contraction of the fluid to pull gases out of solution, or

II. E-31



drawair in aroundtheleadsealsfromtheoutside.ExperiencewiththisphenomenonontheMercury
programledtoanevaluationofwhethertherewasanyassociatedflex-leaddamageproblem.Fortun-
ately,theflex-leadproblemonthisgyrohadbeenfoundandsolvedin theoriginaldevelopmentprogram.
TheECPfor enlargedbellowshadbeensubmittedata timewhentheoriginalbaselinecontractwas
beingformulated,TheECPwasreviewedin detail,andfoundtobeadequate.Thealternativeoftum-
bletestinggyrosshortlybeforelaunch,to assurethatexcessivelysizedair bubbleshadnotformed,
provedexpensiveandoperationallyunfeasible.ThedelayedapprovaloftheECPmadeit necessaryto
changeouttheTARSfor GLV-1atETRin ordertofly theimprovedgyros.

e'. Stage II CG Offset Study

The flight of GLV-1 indicated significant and unexpected attitude variation at staging and through-

out Stage II in yaw. A study was initiated to investigate 1) the dispersion of cg misalignment between

the combined Stage II and Gemini spacecraft for each mission, 2) the effect of a cg offset on radio guid-

ance, and 3) the corrective action required to bias the Stage II actuator so that the cg offset would use

up a minimum amount of available actuator motion (controllability). It was found that improved cg data

was needed on the Stage II GLV, and that special data on spacecraft cg was required for each mission.

A nominal yaw actuator bias adjustment was incorporated into the rigging procedure. These changes

satisfactorily resolved this problem.

d'. Rate Gyro Studies

Failure analysis of a frozen rate gyro gimbal was traced to contamination stuck to the gimbal

assembly. Further evaluation of the vendor's facilities and procedures revealed that cleanliness con-

ditions (though considered adequate for making rate gyros for weapon system boosters or aircraft) were

far from satisfactory for gyros manufactured for a manned launch vehicle. A major revision of manu-

facturing and inspection techniques was made, particularly in the final assembly area. The assembly

facilities were reworked completely; the assembly rooms were reconditioned, the air cleaning system

was upgraded, and laminar flow clean air assembly benches were provided. Cleanliness control on the

cleaning solvent used for ultrasonic cleaning was initiated. Additional inspection steps were added with

microscopic examination. The assembly technique and design of the gyros made cleaning of delivered

units impractical. Only gyros of the post-contamination control type were used for Gemini launches.

A study was undertaken as a result of numerous rate gyros which could not meet specifications

on maximum allowable run-up time. Failure analysis of these gyros indicated that in many cases the

bearing lubricant was entirely depleted in the first three-hundred hours of operation. Studies showed

the motor design was far from optimum and therefore the bearings were required to conduct the excess

heat from the motor shaft to the case. Just as alternate source proposals were being considered, it

was discovered that excessive preload forces were being inadvertently applied to the gyro assemblies

because of inadequate preloading techniques. It was further learned that, when the preloadwas properly

adjusted, the bearing life expectancy was up from 500 to 750 hours. Because an incremental coast-

down test had been evolved which would preclude the use of any marginal gyro for manned launch, it

was possible to avoid the expense and schedule difficulties of developing an alternate source, without

compromising pilot safety or mission success probability.
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e'. RGS/TARS Torquing Sensitivity

Guidance system interface discussion following a basic guidance loop gain change, which was

made early in the program, explored the relationship between radio guidance system (RGS) commands

and TARS response. As a result of the exploration, it was decided that the interface was complex and

too difficult to analyze. Therefore, a laboratory study was initiated wherein the effects of known signal

variations in conjunction with actual hardware sampling techniques could be tested. This study revealed

significant nonlinearities in the low-level torquing range, which is the range over which most of the in-
57

flight torquing would occur.

The possibility of a hardware change to improve the linearity of the torquing sensitivity in the

low range was studied. Evaluation of the effect of the increased variations in the torquing gain at iow

levels on the GLV insertion conditions revealed that the hardware change was not necessary.

The data resulting from this study was also used to provide a more accurate model of the guid-

ance system used in the performance trajectory studies.

f'. TARS Attitude Gyro on-Pad Stiction Test Study

The attitude gyros used on the Mercury/Atlas and the Gemini vehicles had a problem from low-

force level gimbal hang-ups, which were called stiction. The close tolerances between the gimbal

float and case make such gyros extremely sensitive to small-sized contaminants in the fluid. Shock

of assembly or handling often causes dimples in the thrust-bearing surfaces which can also cause

irregular low-level restraint. Degraded fluid which separates (stratifies), congeals, granulates, or

becomes charred from overheating will act like contaminated fluid.

The Atlas programs had provided means for running stiction tests in the factory, in the field

laboratory and on the launch pad to screen out bad units. The Titan program initially had only some

intermediate level gyro torquing tests in the factory at approximately five times the test levels re-

quired to find this problem. Martin proposed improved bench test facilities at Baltimore and ETR,

which would perform low-level stiction checks. The long lead lengths and unique design of the launch

pad AGE made on-the-pad stiction tests impractical.

A review of the launch facility also revealed inadequate assurance of proper heater monitoring.

Heater monitors gave visual output (blinking lights) and the operator had to note that lights were no

longer blinking to detect a heater monitor failure. There were incidents where gyros had overheated

because of failure of the heater monitor circuits.

It was decided that the improved bench test capability and a required stiction test after transport

to ETR covered the contaminants, deterioration, and handling areas of concern. An audible overheat

warning was installed in the blockhouse to satisfactorily assure that the gyros being used were not in-

advertently overheated. These steps provided the required confidence in the Gemini gyros.

g'. Dynamic Studies

The Gemini program originally required end-to-end system frequency response test data on only

the first two vehicles for purposes of proving specification compliance and to enable correlation be-

tween preflight predictions and inflight performance. Components were tested for individual frequency

response characteristics during acceptance testing. Because of the schedule coats and the complexity

of the tests, the vehicle tests were to be discontinued after the first two flights.

II. E.33



The benefits accrued in the end-to-end vehicle tests, such as establishing subsystem interactions

and component degradation, made it worthwhile to try and find a means for obtaining this data without

the attendant schedule effects or the complexity.

An approach was established with Martin, after considerable evaluation, whereby transient re-

sponse data would be obtained at VTF and ETR in lieu of the frequency response data. This data was

analyzed by Martin and Aerospace, using computer techniques to determine the equivalent system fre-

quency response. This data was used successfully to predict inflight performance throughout the re-

mainder of the program.

h'. IGS Studies

A validation study was performed at Aerospace on the spacecraft inertial guidance system (IGS) 58

to ascertain the compatibility of the system with the rest of the secondary flight control system and the

launch vehicle performance requirements. This study provided the launch vehicle team with the assur-

ance that all objectives would be achieved in the event that a switchover occurred and the flight com-

pleted utilizing the secondary guidance and control system. As a result of making this study, it was

possible to review the interface requirements and test procedures and ascertain their thoroughness and

completeness.

The validation study helped fill the void in development testing on the secondary flight control sys-

tem that was not present on the primary system. An IGS could not be made available for ASFTS systems

testing such as all primary systems components went through. Testing and flight data were thoroughly

reviewed on the secondary system to screen for any potential interface problems that were not or could

not be caught by the study. Several unexpected performance phenomena were observed, evaluated, and

accepted during the course of the program.

i'. Effect of Launch Drift of the GLV with Respect to Stand Clearance 59

A study was conducted by Aerospace and M-B in 1965 as the result of updated IGS null contribu-

tions to the secondary flight control system (FCS) null and its effect on the null shutdown limits. The

study was made to assure that, in increasing the limits to prevent an inadvertant shutdown, a stand

clearance problem at liftoff would not be created. As the result of this study and a subsequent study

involving the primary FCS nulls, it was determined that Stage I actuator excursions of up to 0, 7 degrees

when combined with all other contributing factors would not cause a flight hazard from contact with the

launch stand. Factors considered were wind velocity toward the launch stand, engine offset due to

actuator length adjustment, electrical system biases, and the launch vehicle's bending modes.

The change to the primary system limits was made necessary by the discovery that normal flight-

control system and actuator adjustment tolerances, when combined with expected null shifts at engine

start, could fall outside the 0.25 degree shutdown criteria. The change was implemented such that any

of the four Stage I actuator position transducers indicating greater than 0.7-degree engine displacement,

and a Stage I actuator not operating in the null land of the position switch, would cause engine shutdown.

The parallel requirement provided protection against a transducer failure and the resultant unnecessary

shutdown.
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j'. Gyro Test Set and AGE Studies

The gyro test set was originally developed as an engineering tool and was not intended for pro-

duction testing. It was meant to be used by engineers and highly skilled technicians. A decision was

made to use this test set in Baltimore as a production test tool, and to construct a duplicate to he used

at ETR for flight hardware checkout. The personnel experience level and the close proximity of the

test facility to the engineering design group resulted in relatively smooth and effective operation of the

Baltimore facility. However, at ETR, there were numerous cases in which TARS units were jeopardized

because of test equipment malfunctions and lack of equipment familiarity and detail design knowledge on

the part of engineers and technicians. As a result of an extensive investigation, many changes were

made to the test procedures and test equipment to try to improve the facilities effectiveness and to

reduce the testing malfunctions.

During this period of uncertainty, there was considerable pressure to delete the ETR test facility

which, of course, would have eliminated any further ETR test equipment problems. This was consid-

ered unsatisfactory from a technical standpoint, since it was felt that the equipment should be checked

out as close to flight as possible to check for component degradation and to screen out marginal

hardware.

Considerable effort was also expended during the program to attempt to upgrade the AGE equip-

ment at the launch complex. AGE malfunctions necessitated the addition of a backup temperature moni-

tor for TARS in case of a no-go indication. AGE relays were found to contain contamination which

caused malfunctions, and new type relays were required with special process control requirements.

Relay changeout maintenance procedures were required and instituted because of life lim{tations. The

ASFTS facility at M-B proved to he very useful in isolating these types of AGE malfunctions and in the

checkout of AGE design changes.

k'. Stase II Thrust Overshoot

During the flight test data review of GT-1, it was noted that the thrust overshoot on the Stage II

engine reached a level of 119 percent of steady state thrust, whereas the engine specifications listed a

maximum overshoot of 112 percent of steady state thrust. Structural analysis conducted at that time

showed essentially a zero margin of safety on the M-B engine cone for this overshoot value, consider-

ing maximum compartment 3A pressure, maximum engine gimbal angle, and minimum tank pressure.

At the time, this value of overshoot was considered an upper bound. Pressure transducer problems

tended to cloud the issue, plus the fact that lower values of overshoot were seen on GT-2, -3 and -4.

After that flight the FM/FM transmitter and tape recorder were removed, and there was no further collec-

tion of data in this area during the Gemini program. Considerably later in the program, just prior to

the flight of GLV-8, AGC presented data gathered from Titan II testing which showed a maximum ex-

pected overshoot of 122 percent of steady state thrust. This value of overshoot, using the above assump-

tions, yielded a negative margin of safety; however, these conditions we re felt to be conservative,

especially since the compartment 3A pressure data used was derived from flights of Titan II's where

the transportation section was beefed up. It was decided at that time to fly the hardware as-is, since

all the hardware had been built; however, had this data been available earlier in the program it is

believed that a redesign of the M-B engine cone would have been desirable, especially since a cone

design of lighter weight, but considerably stronger, was available. As far as can be ascertained from

II.E-35



the limited instrumentation carried on the later GLV flights, this peak value of overshoot was never

reached, and positive structural margins did exist on a11 flights since there is no evidence of cone

failure or deformation.

l'. Development of Range Safety Data Package for Gemini Rendezvous Missions

The rendezvous phase of the Gemini program, beginning with GT-6, contained a number of

peculiarities (i. e., variable launch azimuth, short duration launch windows, ascent flight yaw maneu-

vering, late definition of launch azimuth) which necessitated designing a different data package to satisfy

the ETR regulations and to maintain the data at a minimum. The regulations were subjected to renewed

interpretation to cover a rendezvous type mission never before conducted on the ETR.

A proposal delineating the elements of a rendezvous mission data package 60 was prepared and

submitted in February 1965 for review to the Program Office, Martin-Baltimore, and Aerospace/

ETRO perscmnel. Changes were incorporated before presenting the proposed package to the 6555th

Aerospace Test Wing and to the Range Safety Office. The final version was accepted tentatively by the

Range contingent upon a favorable error analysis and upon examination of the rendezvous mission range

safety package for GT-6. Aerospace provided the requested error analysis in August 1965 and the

Martin-Baltimore prepared data package was submitted to the ETR in September 1965, about one month

prior to the planned launch day.

The AFETR Range Safety Office found the data adequate except for one objection based on a viola-

tion of safety criteria of the 3a right instantaneous impact point dispersion at 140 seconds. The prob-

lem was worked with M-B, resulting ins revised 3aright trajectory perturbed by a reduced wind pro-

file. Although the reduced dispersion was not sufficient to remove the discrepancy, subsequent

negotiation resulted in reshaping the destruct line in the Great Abaco region and subsequent removal

of the objection by AFETR.

The rendezvous mission data package was designed to provide AFETR with range safety data

applicable to all rendezvous missions. Except for mission specific maximum headwind and sidewind

X, Y, Z data and a nominal trajectory prepared for each mission, the basic rendezvous and nonren-

dezvous data packages were adequate throughout the Gemini program.
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Gemini Ride-It-Out Modes, An Exploratory Study, TOR-469(51Z6-Z7)-Z Aerospace Corporation,
10 February 1965.

Re-Evaluation of Mode I Abort, LV 390, Martin Company, Vol I Summary, Z4 August 1965;

Vol II GLV Loads Due to Stage I Single or Double Engine Thrust Malfunction, Z0 August 1965;

Vol III Dome Impact Loads, Z4 August 1965, Vol IV, Breakup Analysis, Z4 August' 1965.

Titan Family Flight Anomalies and Problems, TOR-669(61Z6-801-6), Aerospace Corporation,
6 October 1966.

Gemini Launch Vehicle Performance Improvement Studies, LV-155, Martin Company, Baltimore,

February 1963.

Gemini Launch Vehicle Monthly Performance Report, TOR-469(51Z6-40)- 1, Aerospace
Corporation, 10 November 1964.

Full Scale Pattern Tests of Gemini Missileborne Antenna Systems, General Electric Company,
17 March 1965.

General Electric Mod III Gemini Look-Angle Restraints, TOR-469(51Z6-Z7)-3: Aerospace

Corporation, June 1965.

General Electric Mod III Gemini Look-Angle Restraints Supplement, TOR-669(61Z6-40)-Z,
Aerospace Corporation, December 1965.

Gemini 4-Inch Antenna Requirements Study, 63K360, General Electric Company, Z0 November
1963.

Mod I/I (ETR) Error Model, General Electric Company, GE Technical Memo 13, 1 October 1965.

Gemini Propulsion System Test Plan Final Test Report, Report 89-PSTP-Final, Aerojet-General
Corporation, 30 April 1965.

Gemini Propulsion System Test Program - Final Report, LV-354, Martin Company, October 1964.

Minimum Fuel and Oxidizer Tank Ullages, Gemini Launch Vehicle, 0788-MU-1, Aerojet-General
"Corporation, 5 June 1964.

Structural Response of the Gemini Launch Vehicle Forward Skirt and Spacecraft Adapter to

Fluctuating Buffet Pressures, TOR-Z69(41Z6-60)-3, Aerospace Corporation, 15 August 1964.
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23, Evaluation of Gemini Launch Vehicle Structural Load from Flight Measurements - GT-Z and

GT- 3_.._.__,TOR- 669(61Z 6- 45)- 6, Aerospace Corporation, July 1966.

Z4. Final Report on the Gemini Malfunction Detection System Fuel System Pressure Compatibility,

393-CCNI03-I, Aerojet-General Corporation, 19 February 1965.

Z5. GLV System EEl Compatibility Test Report, GLV-01(GLV 62-12556); Final Report LV-335-3,

Z7 May 1964.

26. EEl ControIPlan and Test Requirements, MMB 424-II17000 m Martin Company, Baltimore.

27. Special EEIGLV/Spacecraft Interface Test at VTF, MMB LV-335-4a, Martin Company,

Baltimore.

28. GLV System EEl Compatibility Test Report, GLV-0Z (GLV 62-12557); Final Report LV-335-6.

29. GPlS 00-I01, Martin Company, Baltimore.

30. GPlS 00-103, Martin Company, Baltimore.

31. CTO: G-70/19 (Rev. A), 20 August 1964.

3Z. History of Gemini/Titan Launch Vehicle-g at ETR, TOR-419(R51g6-10)-4, 19 January 1965

33. Gemini Design Certification Report - GLV Section, TOR-469(51Z6-10)-4, Aerospace Corpora-

tion, 19 February 1965.

34. Titan II - Augmented Engine Improvement Program Final Report, SSD-TR-65-161, Aerojet-

General Corporation, December 1965.

35. GEMSIP Final Report, FR-i, Aerojet-GeneralCorporation, 31 August 1965.

36. Skirt Demonstration Testing Report, GSER-5, Aerojet-General Corporation, 15 March 1966.

37. GEMSIP Skirt Test Program Report, 393-TN66-I, Aerojet-General Corporation, 14 March 1966.

38. Additional Inspection of Stage I and Stage II Engine Frames, Aerospace Letter No. 1972.6-17,

]_. A Hohmann to Col. R. C. Dineen (SSML), Z2 October 1963

39. _Wrapping of GLV-I First Stage Engine Components, Aerospace Letter No. 1972.6.6-13,
B. A. Hohmann to Col. R. C. Dineen, 7 April 1964.

40. Gemini Program Stress Analysis, Aerojet-General Corporation, 30 March i964.

41. Thermal Analysis of the Gemini First Stage Engine Support StructUre, 96Z0:T0025R, Aerojet-

Gene1"al Corporation, 30 March I964.

42. Insulation Wrapping of Instrumentation, Engine Components, and Engine Frame, ETD 2_. t-3. 107,

RCN't92_6, Aerojet-General Corporation, 2_0 March t964.

43. Cap in StaTe I Engine - GT6A, Martin Company.

44. Protective Closure Investigation GT-6A, Aerojet-General Corporation, 20 January 1966.

45. Launch Vehicle System Propellant S_utdown Level Sensor Removal Study, LV-234, J. A.

MacDonald, Martin Company, Baltimore, i May 1963.

46. GLV-2- Tandem Actuator Problem Investigation and Corrective Action, Preliminary Report,

LV-383, Martin Company, Baltimore, 15 January 1965.

47. Titan II Engine Transfer Function Test Results, ATM 65(51Z6-2_I)-3, R. G. Wagner, Aerospace

Corporation, 25 March 1904. (See also Reference 48. )

48. Instability Model of Missile Longitudinal Oscillation Due to Propulsion Feedback, TOR-269(412_6)-Z8,

S. Rubin, Aerospace Corporation, 2i September 1964.
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49. Longitudinal Oscillation Instability Study (POGO), ER t 3374, R. H. Prause and R. L. Goldman,

Martin Company, Baltimore. December 1964.

50. Launch V.ehicle No. t Longitudinal Oscillation (PC)GO) Summary, LV'-353, Martin Company,
Baltimore, June 1964.

5t. Investigation of the Occurrence of POGO Oscillation on GT-5, LV'-395, R. L. Goldman,

Martin-Baltimore, September t965.

52. Investigation of Oxidizer Standpipe Charging on GLV.-5, LV'-396, V'. R. Longheed, October 1965.

53. An Investigation of Low Frequency Longitudinal Vibration of the Titan II Missile During Stage I

Flight, 6438-600t-RO-OOO and OO1, J. H. Walker, R. A. Winje, K. J. McKenna, TRW Space
T_H-fi_ lo gy Laboratories.

54. Dynamic Analysis of Longitudinal Oscillations of SM-68B Stage I (POGO), CR-64-71, by

F. E. Bikle, J. B. Rohrs, Martin Company, Denver, March 1964.

55. Oxidizer Standpipe Remote Charge System Development Test and Design Analysis Report,

LV.-385, W. R. Mechen, Martin Company, Baltimore, April i965.

56. Analysis of Titan Family Stage II Side Load Anomaly, 8t70-25-25-14, Aerojet-General
Corporation.

57. RGS/TARS Torquing Sensitivity Test Report, LV.-375A, Martin Company, 31 December 1964.

58. Gemini IGS Hardware V.alidation Final Report, TOR-469{5126-41)-3, Aerospace Corporation,

t8 January 1965.

59. GLV. Launch Stand Clearances, LV. 319, Martin Company, December i963.

60. A Proposal for Gemini Rendezvous Mission Range Safety Data, TOR-469(5i26-80)-4 (Rev A)

Aerospace Corporation, 3 January 19{)6.
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AEIP
ACI
AGC

AGE
ASFTS

BECO
BSD
CSAT

ECP
EEl

ETD
ETR

FCS
GBI

GE
GEMSIP

GFE

GG

GLV

GPIS

GT

HIG-4

IGS

IR

/AN

LO

LV

MARS

M-B

M-C

SECTION II. E

DEFINITIONS

Augmented Engine Improvement l_rogram

Advanced Communications Incorporated

Aerojet-General Corporation

Aerospace Ground Equipment

Airborne Systems Functional Test Set

Booster Engine Cut-Off

Ballistic Systems Division

Combined Systems Acceptance Test

Engineering Change Proposal

Electrical-Electronlc Interference

Engineering Test Directive

Eastern Test Range

Flight Control System

Grand Bahama Island

General Electric

Gemini Stability Improvement Program

Government Furnished Equipment

Gas Generator

Gemini Launch Vehicle

Gemini Problem Investigation Status

Gemini Titan Mission, (Gemini Launch Vehicle)

Honeywell Integrating Gyro Number Four

Inertial Guidance System

Inspection Report (formerly known as QRR, or Quality/Reliability Report)

Joint Army/Navy

Liftoff

Launch Vehicle

Martin Automatic Reporting System

Martin Company, Baltimore

Martin Company, Canaveral
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MDS

MDTCPS

MHz

MOCS

NPSH

OPBPO

OPPS

PDA

PMDS

POGO

PSVOR

RCA

RESS

RSP

SA

SCF

S/C

SECO

SMRD

S/N

SSD

STL

TARS

TCPS

TCV

TPA

VTF

Malfunction Detection System

Malfunction Detection Thrust Chamber Pressure Switch

Mega Hertz, Megacycles/Second

Master Operations Control System

Net Positive Suction Head

Oxidizer Pressurant (Autogenous) Back Pressure Orifice

Oxidizer Pressurant Pressure Switch

Pump Drive Assembly

Pad Malfunction Detection System

Longitudinal Oscillation Peculiar to Titan H, which gave a Pogo Stick Effect

Pressure Sequencing Valve Over-Ride

Radio Corporation of America

Redundant Engine Shutdown System

Rate Switch Package

Sub-Assembly

Sequential Compatability Firing

Spacecraft

Sustainer Engine Cut-Off

Spin Motor Rotation Detection

Serial Number

Space Systems Division

Space Technology Laboratories

Three-Axis Reference System

Thrust Chamber Pressure Sensor

Thrust Chamber Valve

Turbopump Assembly

Vertical Test Facility
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F. SYSTEMS PRODUCTION AND TEST

I. FACTORY ASSEMBLY AND TEST

a. Final Assembly

Final assembly, systems testing, and acceptance of the GLV took place in the Martin/Baltimore

facilities. The propellant tanks, engines, guidance and range safety command subsystems were

procured as described below.

The propellant tank and skirt assemblies for Stage I andIIwere manufactured, pressure tested,

and calibrated at Martin/Denver and shipped by air or rail to Baltimore after Air Force/Aerospace

review and acceptance.

The engines for Stages I and II were manufactured, hot-fired, and calibrated at Aerojet General,

Sacramento and shipped by air to Baltimore after Air Force/Aerospace review and acceptance.

The guidance range safety command subsystems were also government-procured and delivered

to Baltimore for installation and test in conjunction with the other systems.

Final assembly began with tank splicing and cleaning. Engine installation and buildup of hydraulic

tubing and electrical harnessing followed. Equipment-truss, aerodynamic ducting and fairing and major

component installations then took place. These were the autopilot, telemetry, malfunction detection,

range safety, and guidance subsystems which were mounted on the equipment trusses.

Once fully assembled, and before vertical testing, the vehicle was subjected to tank and propellant

feed system pressure leak checks, hydraulic leak checks, and electrical continuity and high voltage tests

(DITMCO).

b. Vertical Testin_

The vehicle was erected in two operations, Stage I and then Stage II at the Vertical Test Facility.

This facility consisted of two vehicle cells and resembled the launch site test stand insofar as vehicle sta-

tion work platforms and electrical and air-conditioning urnbilicals were concerned. Two test cells were

built because of an early program requirement for structural vibration testing which was later deleted.

Once the vehicle was erected, alignment and propellant sensor position checks were performed.

Following detailed post-erection inspections of each subsystem for physical and mechanical integrity,

power was applied to each subsystem singly through the use of power break-out tools rather than total

vehicle power. This feature minimized the accumulation of power-on time and unnecessary component

aging, and isolated power to the subsystem under test. It further reduced the possibility of widespread

damage in the case of a defective component. The test cell had the capability of testing all vehicle func-

tions short of engine fire-up. Ordnance for staging, liftoff, and range safety were simulated by fuse boxes.

Adjoining the test cell was a simulated vehicle launch control center using the same ground equipment,

personnel functions, and procedures as those at ETR. Some several hundred yards away from the cell was

a telemetry receiving station for r-f transmission through roof antennas and wave guides for instrumentation

system check-out and test data collection.

After the subsystem tests, the total vehicle system was powered up for subsystems compatibility and

performance. Final preparations were then made for the start of the Combined Systems Acceptance Test

(CSAT). This was the final step prior to contractor presentation of the vehicle for Air Force Acceptance,

and the culminating test in the progressive testing philosophy used throughout the program. The test schedule

included an abbreviated launch countdown, engine start, and liftoff simulations, and flight, ending at Stage II
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engine shutdown (spacecraft insertion). Both primary and secondary (back-up) flight-control/guidance

combinations were tested through the performance of two such test runs. Throughout the test, data was

collected by AGE recorders and telemetry. This data was then reviewed by the contractor for vehicle

acceptability. When launch vehicle integrity and perforrr_ance were completely analyzed and assured, the

vehicle was presented for final acceptance by the Air Force/Aerospace Vehicle Acceptance Team {VAT).

After acceptance, the vehicle was de-erected, re-inspected for final integrity, prepared for shipment,

and flown to the Eastern Test Range (ETR).

The acceleration of the Gemini program resulted in the activation of the West Cell for functional test

in order to reduce down-time. This meant that with two vehicles in the vertical position, one could be

inspected and prepared while the other was under test. However, simultaneous testing was not possible

since the two cells used the same power sources, AGE connections, and facility tooling. It was also decided

that the Data Acquisition Test could be eliminated. The collection of instrumentation ambient data was sub-

stituted. Systems parametric variation and linearity analysis were usually accomplished after the CSAT.

Further, acceleration of the program lessened ETR capability to perform engineering modifications

and other tasks which could be accomplished at the factory. Accordingly, modification periods for GLV's-4

through -12 were scheduled in VTF before subsystem tests to assure a finished and tested vehicle for delivery

to ETR.

2. ETR TESTING

All vehicles were transported from Baltimore to the ETR by air. Shock and vibration instrumentation

accompanied the GLV to assure that no environmental limits were exceeded during the flight.

When the vehicle arrived at the Cape, it was taken to a hangar in the industrial area for visual inspec-

tion and storage until preparation of Launch Complex 19 was complete. No functional testing of the vehicle

was performed in the hangar, but certain packages were removed for laboratory tests. In the beginning of

the test program, all packages containing gyro elements were removed; after the test program revision for

GLV-5, only the TARS Package and the Stage II autopilots {rate gyro checks only) were removed for routine

laboratory testing.

Erection of the vehicle was done in two stages, Stage I, first, then Stage If. Launch azimuth reference

calibration and vertical alignment of the vehicle were done at this time.

Vehicle testing philosophy at ETR required first verification of subsystem operation, then the verifica-

tion of all launch vehicle systems, and, finally, verification of all systems including the spacecraft, in a test

simulating as closely as possible the launch and flight sequence of events. In this progressive buildup to

launch configuration, a spacecraft simulator was used to check interface functions prior to actual mating with

the spacecraft.

The test program at ETR started with the conservative approach, in that there was considerable

redundancy of testing. For the last six vehicles, it was possible to simplify the test program resulting

in the following sequence of tests.

• Subsystem Reverification Test {SSRT)

Subsystem tests were performed to verify the readiness of the vehicle to begin

system tests. These tests for the first four vehicles were the same rigorous tests

used at the factory, but experience suggested that full confidence could be established

with simpler reverification at ETR.
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• Pre-Spacecraft Mate CST (PMCST)

This was a Combined System Test, essentially the same as performed in the factory, and consisting

of an abbreviated countdown and plus time simulation of flight events to establish confidence in the
launch vehicle before interconnecting (mating) the launch vehicle and the spacecraft. A simulator

was used to represent the electrical characteristics of the spacecraft.

• Electrical Interface Integrated Validation (EIIV)

The purpose of this test was to confirm interface compatibility between the launch vehicle and

spacecraft and to check out the redundant circuits connecting the interface.

• Joint Guidance and Control Test (JG&CT)

This test established proper functioning of the secondary guidance system, and consisted of the
spacecraft inertial guidance system and the secondary flight control system of the launch vehicle.

• Joint Combined Systems Test (JCST)

This was the first system test using both the launch vehicle and spacecraft, and consisted of an

abbreviated countdown and two plus-time simulations. One simulation exercised the primary

guidance system, the other the secondary system.

• Launch Vehicle Propellant Loading Exercise

In order to calibrate the loading instrumentation and to practice the procedures required to

achieve the desired loading accuracy, a propellant loading exercise was performed. Prior to

GLV-5, this was done as part of a complete countdown practice known as the Wet Mock Simu-
lated Launch (WMSL). This change in the test sequence was made to accommodate the require-

ment for a simultaneous countdown practice with the Agena Target Vehicle.

• Simultaneous Launch Demonstration (SLD)

Beginning with GLV-5, it was necessary to conduct a complete countdown exercise with the

Atlas/Agena, the Range, and Mission Control Center. From the viewpoint of the GLV this was

equivalent to the WMSL, except that it did not include tanking. The compromise of separating

the tanking exercise from the countdown practice was made for the convenience of the program.

• Simulated Flight Test (SFT)

For the launch vehicle this was a repeat of the JCST, but for the spacecraft it was a detailed
mission simulation. This test established final readiness of the vehicle for launch.

• Launch

The launch countdown followed the pattern established by the Titan family of vehicles. Fundamental

to this operation was automatic monitoring of critical vehicle functions for hold and shutdown pur-

poses during the last 35 minutes of the countdown, and the automatic sequencing of all events during
the last three minutes of the count.

On the first two launch vehicles special tests were performed to identify any Electrical/Electronic

Interference (EEI) problems. These were Combined Systems Tests with special instrumentation. After

completion of the tests without evidence of trouble, it was considered that normal instrumentation would be

adequate to identify any malfunction condition that would cause such interference.

GLV-I, as the first vehicle of the series, was subjected to even more special testing with the objective

of validating the functional relationships between the vehicle, AGE equipment, and facilities. This included

a static firing of both the Stage I and Stage II engines, known as a Sequence Compatibility Firing (SCF). For

this test the two stages were mounted side by side. Subsequent to the SCF, the stages were mated in tan-

dem and a Flight Readiness Firing (FRF) was conducted; during this test only the Stage I engines were tired.

One other special test, the Flight Configuration Mode Test (FCMT) was performed on the first six

vehicles. This test was similar to other Combined Systems Tests, except that all umbilicals were dropped.

It was then decided that the objectives of this test could be met by a normal umbilical drop during the pre-

mate CST.

Table II. F-I shows in summary the manner in which the test program evolved as modifications

were made to the content of the various system tests.
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Figure II.F-I showsthe overall operating times, in hours, for each vehicle. The operating times

are more representative for checkout of the vehicle at the VTF than at the ETR since the ETR times include

providing support for the spacecraft when testing was not necessarily required for the GLV.

During the testing of the GLV's at ETR, the flexibility and versatility of the test program were demon-

strated many times. One outstanding example of this capability was the Gemini 7-6 mission.

In accordance with prelaunch plans, the launch of GLV-6 was postponed when the Agena target Vehicle

failed to achieve orbit, and the contingency plan was put into effect. This called for the rendezvous of two

spacecraft and the combination of a long duration mission with an accelerated launch cycle for the second

spacecraft.

Since GLV-6 had been completely checked out on the launch pad, this approach appeared feasible. The

vehicle was removed from the launch pad and put in humidity controlled bonded storage, with the expecta-

tion that revalidation after re-erection could be accomplished with the following tests:

• Subsystem Reverification Testing

• Abbreviated E I I V

• SFT

It was estimated that with an accelerated schedule, this testing could be done in seven days. Since

the GLV-7 mission was planned for 14 days, this allowed a reasonable amount of time.

GLV-7 was erected on 29 October and was launched only 36 days later on 4 December. To achieve

this schedule, the FCMT and WMSL were deleted in accordance with previous recommendations. Since no

dual launch with the Atlas Agena was planned, the SLD was also deleted.

Pad damage after the launch of GLV-7 was minimal, so that GLV-6 could be re-erected on 5 December,

the day following launch of GLV-7. Revalidation testing on GLV-6 progressed according to plan, with the

launch countdown on 12 December. This attempt was aborted due to the premature disconnect of umbilical

3DIM, which caused engine shutdown.

The launch was recycled and successfully accomplished on 15 December. This streamlined operation

was possible because of the flexible approach to mission objectives, permitting constant review and refine-

ment based on test experience, and because of contingency planning of vehicle checkout requirements.

3. MODIFIED TEST PROGRAM

Toward the end of 1 964 a comprehensive review of the test program was started, with the object of

simplifying the program wherever possible. It appeared desirable from a program standpoint to accelerate

the launch rate to 60-day intervals rather than the existing plan of approximately three-month intervals.

Also, factory test experience on four vehicles had been accumulated and it seemed feasible to eliminate

some repetitive testing and make other changes that would ease the test burden of the launch operation.

The target for implementation of the new test program was established as GLV-5, the next vehicle

coming out of the factory for acceptance testing.

Early in the investigation, it became obvious that in order to support the faster launch rate, it

would be necessary to activate the other vertical test cell since the factory sequence of testing and

acceptance exceeded the two-month interval. This was done in such a manner that most of the AGE equipment

could support either cell with only transfer of umbilicals required.

Major changes to the test program made as a result of this study are as follows:

Changes at the Vertical Test Facility in Baltimore:

• Deletion of the Data Acquisition Test (DAT): this test was largely redundant and had

been included originally to insure readiness for formal system test.

II, F-5



o
O

B

DZ
I,--

Q::
I--

_ _ C._, '=_'.,=.,=
I-- B

_ _°

>It

[ l I I I

S_IIIOH 9NliV _13d0

ili!ii_iii',iii',iiil_ _*-_

...,:°:......

E : :1",,,- . It')

I I

iit

0

i

>

II. F-6



• Addition of a staging test to eliminate the requirement for doing it at ETR.

• Perform certain operations before erection into the test cell rather than after removal

from the test cell. These operations were: leak checks, external marking on vehicle,

and moisture proofing.

• Retention of the vehicle after acceptance, in the vertical test cell for purposes of retest
in the event of required modification.

• Combination of the Vehicle Acceptance Review (VAT) and the "Rollout" physical inspection

into a single exercise.

Changes at the ETR Launch Facility:

• Simplification of subsystem testing - Initially, subsystem testings at ETR were essentially

the same as at the VTF. As a result of considerable simplification, the new tests were

designated Subsystem Reverification Tests (SSRT).

• Elimination of electronic interference tests. On the basis of GLV-I interference tests,
it was considered sufficient to monitor other test data for the effects of interference.

• Elimination of the Flight Configuration Mode Test (FCMT). This was a redundant system test

performed to drop umbilicals. After considerable analysis it was considered adequate to per-

form the umbilical drop as part of the pre-mate CST and eliminate the FCMT.

• Removal of components for periodic laboratory testing was reduced.

In addition to the changes made, several operational principles were emphasized as being essential

to success in this acceleration of the program.

• All vehicle modifications should be completed and retest accomplished at the factory.

• All VTF testing should be done using flight hardware.

• All components should be shipped/installed on the launch vehicle.

• VTF test data should accompany the vehicle for reference by the launch operations group.

4. TEST CONSISTENCY

Within the basic concept for the Gemini Program, provisions were made for assuring continuity of

vehicle checkout between the contractor's Vertical Test Facility (VTF) and Complex 19 at the Eastern Test

Range (ETR). Individual items of Aerospace Ground Equipment (AGE) that were provided for the VTF were

functionally identical with items provided at Complex 19 and identified by the same control point number.

The vehicle support and test configuration were identical at both locations.

Launch vehicle integration tests performed at the VTF included performance of subsystem functional

verification tests and combined systems tests similar to those cu_tducted at ETR prior to launch. By dup-

licating the ETR checkout tests as much as possible during in-plant testing, a baseline was established

early in the history of testing and carried throughout the program. Reference to this test baseline pro-

vided a systematic evaluation of testing both at ETR and at the contractor's facility. This approach was

chosen to assure an adequate, unified, and coherent test program.

5. TREND DATA MONITORING

One significant item unique to the Gemini Program which insured consistent test results, was the

use of trend data recorded during testing at the contractor's facility and compared to data gathered at

ETR on a test-to-test and vehicle-to-vehicle basis. Trend data monitoring was the observation of selec-

ted parameters monitored at regular intervals during normal testing. This data was used to (1) express

the normal operating drift and test-to-test characteristics of equipment for establishing realistic operat-

ing behavior and tolerances as a function of time and (2} identify incipient failures or engineering faults

and allow replacement if necessary at a convenient point in the testing cycle.
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A total of 13 hardware items were removed from vehicles due to data trend and, at other times,

special tests were conducted which removed any doubt indicated by the trend. In such cases, the history

of the unit (or parameter), as indicated by all previous testing on earlier vehicles, was researched and

considered prior to package replacement. A typical data trend chart for the electrical system is shown

in Table II. F-2.

The GLV data trend monitoring program has been of particular significance on two occasions:

when GLV-2 was exposed to an electronic phenomenon and after de-erection and re-erection for a hurricane

at Cape Kennedy. After the first occasion, a number of electrical and electronic components in both the

AGE and airborne areas, some of which were known to be damaged and others which were thought to have

been degraded due to over-voltage stress, were replaced. During subsequent retesting, an even more

comprehensive data trend monitoring program was implemented to ensure that the integrity of the launch

vehicle had not been impaired due to the prior events. All test data were reviewed and any peculiar or

abnormal indication, or any data point falling in the last 20 percent of the tolerance band, was cause for

a comprehensive review with hardware troubleshooting as required.

After the GLV-6A storage period at Cape Kennedy and prior to launch, all testing data was reviewed

in a similar manner. Additionally, a digital computer program was used to print out the Simulated Flight

Test (SFT) data points which differed between the pre-storage and post-storage SFT's by more than 60 inv.

All such differences were reviewed and signed off when investigations were completed. Another benefit of

data trend monitoring was the removal of the roll bias for GLV-9 and up. This was based on the data of

the previous eight flights which reflected a slight thrust vector misalignment.

It is believed that the data trend monitoring program added materially to launch confidence by

adding an extra dimension to test data analysis.

6. TEST CONTROLS

The basic method for controlling the testing conducted on the GLV was the contractual documentation

that was implemented early in the program. This documentation encompassed all of the testing require-

ments, test description and definition, test location, sequence of testing, test configuration, interface

requirements and definitions, and retest requirements for components, subsystems, and systems. These

documents and their control were used by management as tools to prevent unauthorized changes to the

test programs at the contractor's facility and at ETR. The following is a list of some significant test

control documents and their contractual application:

• Type I Documentation- Required to be approved by contracting officer and negotiated

as required to a mutual agreement and formally made a part of the contract.

Document

MB-104Z, GLV System Test Specification

ISCD- 1, Gemini/Spacecraft Interface Specification

SSD Exhibit 62-195, GLV Pilot Safety Program

TOR-169(3126)-16, GLV Acceptance Requirements

Prepared By

Contractor

NASA

SSD/Aerospace

Aerospace
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Line
No.

I.

2.

Table II. F-2. Gemini Laux

3.

4.

Meas

No. Pa rarnete r

PS940300011

0800 IPS Battery Volts

0804 IPS Battery Amps

PS940300011

0801 APS Battery Volts

0805 APS Battery Amps

PS946000001

080Z Static Inv Volts

0803 Static Inv Freq

Serial Number

07Z6

CCI 9401AII

PWR Supply 25 VDC

Serial Number

Spec or

Nominal Value

And Tolerance

27 to 31 VDC

Z7 to 31 VDC

113 to 117 VAC

396 to 404 CPS

VIF TESTS

24. 1 to 25.9 VDC

CSAT

Date 6-Z5-65

Test No. 011/012

1 Z

-001 -001

Z9.1 29.8

29.9 26.9

-001 -001

29.7 30.1

34.3 28.0

-007 -007

114.3 114.4

399.4 399.4

R31 R31

-i -i

25.1 25.2

170 170

NOTES: "39Z. 1 - 399.4 Variation--Substitute Access Doors Installed.

**Vehicle Access Doors Not Installed.



:h Vehicle No. 6 Trend Data Monitoring Electrical System

ETR TESTS

Pre-SC Mate

Date 9-16-65

Test No. 5547

I 2_

NICAD NICAD

28 •5 2_8.3

25.9 25.9

NICAD NICAD

28.7 2_8.5

26.9 26.9

-007 -007

113.7 113.7

NO DATA**

R31 R31

-I -I

25.3 25. I

170 170

EIIV (ETR)

Date 9-20-65

Test No. 5750

1

NICAD

2-9.0

2_9.9

NICAD

29.8

25.2

-007

113.9

399.8

R31

-I

25.1

170

/CST

Date 9-23-65

Test No. 5751

1

NICAD

2-8.Z

2_7.9

NICAD

29.0

27.3

-007

113.5

399.4

R31

-I

2-5.1

170

FCMT

Date 10-i-65

Test No. 5901

i

29.0

29.9

29.7

2-7.3

-007

113.5

397.7*

R31

-i

25. I

170

WMSL

Date 10-7-65

Test No. 6000

1

29.0

25.4

2-9.9

2_4.2

-007

113.8

398.8

R31

-I

25. 1

170

SFT

Date 10-2_0-65

Test No. 62_60

i 2

-001 -001

29.0 2_9.0

28.9 29.9

-001 -001

29.9 2-9.7

24.2- 28.3

-007 -007

113.9 113.9

400.7 400.5

R31 R31

-I -i

25.2 2_5.2

170 170

n.F /O



Type IA Documentation- Documentation required to be submitted for unilateral approval
of the procuring agency.

Document Prepared By

424-1715007, GLV AGE Systems Test Contractor
Specification ETR/VTF

424-1020002, Launch Vehicle Acceptance Test Contractor
Specification

424-1430002, GLV Test and Checkout Specification Contractor

(VTF and ETR)

Supporting this effar t were the Factory Working Group at the contractor's facility and the Gemini

Launch Vehicle Working Group at ETR who reviewed all test efforts. In addition, the Vehicle Accept-

ance Team reviewed all of the vehicle test history and results prior to accepting the vehicle for shipment

to ETR.

At ETR, the Pilot Safety Team was responsible for reviewing all test procedures and test procedure

revisions prior to the actual use of the procedure for each test as well as also reviewing test results.

Approximately two to three weeks prior to launch the Aerospace Program Office conducted "Scrubdown"

meetings with all GLV contractors to review all testing, test results, problems, corrective action taken,

and status of open problems and corrective action required. (See Section II.B.6 of this report. )

The final test control effort culminated in an SSD/Aerospace recommendation that the GLV was

ready to launch at the Flight Safety Review Board Meeting. This assured the board that both SSD and

Aerospace were satisfied that the testing and test results were not only successfully completed, but also

were in accordance with the specifications and documentation required.
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SECTION II. F

REFERENCES

None
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AGE

CSAT

DAT

EEI

EIIV

ETR

FCMT

FRF

GLV

JCST

JG and CT

PMCST

SCF

SFT

SLD

SSRT

TARS

VAT

VTF

WMSL

SECTION II. F

DEFINITIONS

Aerospace Ground Equipment

Combined Systems Acceptance Test

Data Acquisition Test

Electrical/Electronic Interference

Electrical Interface Validation

Eastern Test Range

Flight Configuration Mode Test

Flight Readiness Firing

Gemini Launch Vehicle

Joint Combined Systems Test

Joint Guidance and Control Test

Pre- (Spacecraft) Mate Combined Systems Test

Sequence Compatibility Firing

Simulated Flight Test

Simultaneous Launch Demonstration

Subsystem Reverification Tests

Three Axis Reference System

Vehicle Acceptance Team

Vertical Test Facility

Wet Mock Simulated Launch

II.F-13



G. LAUNCH VEHICLE HISTORIES 1, 2, 3

i. GLV-I THROUGH GLV-12 SUMMARY

Figure II-G-1 presents the launch vehicle histories in chart form. Significant events at each

phase in vehicle assembly, test, checkout, and launch are shown. In addition to major hardware and

testing problems, management highlights are presented.

2. SIGNIFICANT ITEMS AND TRENDS - VEHICLE AS A WHOLE

a. Flight Configuration at Combined Systems Acceptance Test (CSAT)

A major objective in the factory test program was a launch vehicle in as complete a fligi_t con-

figuration as possible at time of final system acceptance test. This meant not only engineering modi-

fications (ECP's) but corrective actions {CAD's) resulting from problem resolutions, qualified and

flight-worthy components, minimum "recap" tasks for ETR accomplishment, closed discrepancy re-

ports, failure analyses, and hardware waivers.

The degree of success in attaining this objective can be seen on Figures II.G-2 and II.G-3. In

reviewing Figure II.G-2, however, it should be understood that a number of the hardware modifications

(ECP's) were not known at time of the combined systems acceptance test. The solid curve II.G-3 shows

ECP's accomplished at ETR prior to launch. The dashed curve represents numbers of approved

ECP's at the time of vehicle acceptance. The difference between these curves represents the fact that

the factory schedule was too rapid to allow incorporation of all changes prior to delivery.

The large hump on GLV's 3 and 4inthe dashed curve (Figure II.G-3) indicates a period of

schedule pressures and a reluctant acceptance that ECP's had to be accomplished in the field. It is

significant to note however, the very considerable improvement with GLV-5 and subsequent vehicles

as a result of management attention to this area.

The obvious advantages of a flight configuration at final factory acceptance test are as follows:

1) Reduced manpower levels in field

2) Reduced time for launch preparation and checkout

3) Identification of problems for design engineering resolution at the factory

4) Earlier identification of problems

5) Higher confidence in vehicle reliability

b. Component Failures in Test at Factory and at Launch Site {ETR}

Figures II.G-4 and II.G-5 show numbers of significant components replaced for functional failures

at the factory in Baltimore during testing and at the launch site at ETR during pre-launch checkout.

Failures were defined to include:

( 1} Out-of-Specification Performance

Any indication through telemetry, ground instrumentation, or AGE that a component was out-of-

specification required replacement.

lI. G-1



(2) In-Specification Performance But Degrading

One aspect of the man-rating concepts for Gemini was the recording of certain critical parameters

at the various testing points such as vendor test, receiving test, subsystem and system functional

tests at both VTF (Factory) and ETR (Launch Site). Systems engineers maintained continuous surveil-

lance of these parameters. If there was an indication of degrading performance, the component or

components were removed for failure analysis. Refer to the Trend discussion in Section II-F,5.

(3) Transient Malfunction

This is defined as an apparent or suspected failure or anomaly occurring during system of com-

ponent test which could not be repeated or safely explained and required replacement and failure

analysis at bench level.

(4) Questionable History

Detailed logs were maintained on some eighty critical components. These logs were referred to

as Data Packages and contained total test and calibration histories of each critical component. The

packages were reviewed in considerable detail at several selected points in vehicle assembly, test,

and checkout. When a question arose in these reviews that reflected doubt on component reliability,

the part was replaced and reworked or in some cases scrapped.

With these criteria in mind, and noting that there were no component failures in flight, it can be

concluded that the Gemini test and checkout philosophy contributed significantly to vehicle reliability.

Refer to the discussion of the component Data Packages in Section II-B.
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VEHICLE
NUMBER

GLV-1

GLV-2

GLV-3

DENVER

STG I Ox,dome patched(20 in. x 4 in.) to remove
"oil-canning" resultingfrom weld repairs

STG II Fuel,weld porosity cleared by stress analysis

BALTIMORE DELIVERY: 10 Oct 62
(STG II Ox) : 1 Mar63

STG I Ox,rejected for crack in aft dome.and
inability to x-ray forward dome
STG II Ox, rejected for damaged "Y" chord which
was not repairable
STG II Fuel,rejected for heat treatment cracks, new
tank built

Four add'l tank pressure cycles and 100%x-ray,
new reqt GLVo2 and subs

BALTIMORE DELIVERY: 12 Jul 63

STG I Fuel,originalbuild, aft dome failed uneel
proof pressure, handfinished area 50%of B/P
thickness; new build req'd
STG I Fuel,truss misalignment, tooling, processes
and engineering revised

Tungsten inclusions in welds, industry survey and
stress study
Significant improvementof weld quality over GLV-1
and 2, weld acceptance criteria revised to meet
man-rating reqts

BALTIMORE DELIVERY: 13 Dec 63

HORIZONTAL

STG II Ox ret'd to Denver replaced with

tank; cracks in "Y" plates

DummyEng used for tube and wire run d,

Fit Eng installed inMay 63

Clamps discovered to be damaging to w
replaced by "Thomas" clamps

VERTICAL DELIVERY: 9 June 63

All connectors inspected for contamina
headers

Attenuator pad wire nicking from steel
blocks, teflon inserts were required, 9
External harness ladder fasteners misa

replaced, tooling corrected
Teflon coated wire longitudinal splitti
screenable using hi-pot insulation resi_
Interim STG I engine S/N 1002 installe
serviceable one available

3-dimensional harness assembly proce:

meet configuration updates
Propellant feedline and conduit x-raye
lation, new x-ray reqts were too late f
x-ray

VERTICAL DELIVERY: 22 Jun 64



BALTIMORE
VERTICAL POST-VAT OPENITEMSANDWAIVERS

TEST CSAT/VAT ACTIVITY ETR SHIPMENT

:ontamination in hyd lines, all tubing replaced
ir recleaned

CSAT1 6Sep63_VAT1 11 Sep63
Connector contamination and cracked inserts

Gyro cleanliness standards rigidized

Autopilot SMRDmalfunctions

Pressure xducer torque sensitivity

Attenuator pad wire nicks

Tape recorder noisy

Static inverter vibration integrity

MARSand failure analysis procedures
2ndCSAT directedafterMod incorp

CSAT2 4Oct63_VAT2 8Oct63

Airborne tape recordernoisy
FM/FM subcarrier noise

MISTRAM unlocks

Guidance phase detector out of spec

No significant tasks performed, vehicle
expedited to ETR: schedule pressures

)ntamination into system from AGE,N 2 system

tter Doweramplifier tubeproblem.rework with

to solder flux

tonic Interface Tests resulted in rerouting,
g of leads and components in AGE, SMRD,
GS, MISTRAM, MDS, SecondaryAutopilot,

drop tests run for sequencing

Rerun programseq tests/CSAT calib questionaSle

VAT WALKAROUN D SQUAWKS: 20

EEl date indicated erratic instrumentation J-box

capacitor failure, replaced

Hyd disconnects found nicked by ground half
disconnects, replaced

STG I Eng SN 1002(interim installation) replaced

Shortages:
PCM 'FM xmitter-power amplifier tube rood

FM FM xmitter-power amplifier tube nlOd

RGS airborne components
Landline instrumentation. J-boxes

Waivers:

Ox feedline proof test reqt

Defective components:

3 pressure xducers: calib recheck

corp ECPs 126R1, 127,145,181R1 and 135
rveloped to isolate voltage spike from autopilot,

Jlted in Mods to PCMencoder, AGE grounding I
ated from voltage spikes, new torquer '_
M dropouts

7 Apr b4
ABETS

damagedby Ditmco test

] hrs

_ition tests directed
ures. replaced.

, corrosion pitted

ladwrtently with APS de-energized, ECP fix

_e42 ECPs
d for out-of-tolerance
_eout-of-spec

214 (tbru CSAT 1)
92 (thru CSAT 2)

CSAT 22 ApT64/VAT 27 Apr 64

MDS RSPreplaced, retested during VAT

RFI test on rangesafety system, destruct switch

traces showed spikes

EEl rerun for spacecraft interface

Test personnel changes reviewed: OK

System tolerances reviewed: some changes

Data documentation reviewed: some changes

Airborne tape recorder noisy

16 defective connectors

Unqualified components: 18
Recaptasks to ETRL: 60

GPIS open: 41

ETRDELIVERY: 26 Oct 63

VAT WALKAROUND SQUAWKS: 10

Enginjectorholesplugged

CSAT1 7Aug64. VAT1 17Aug64

Strain gage opencircuited

Airborne tape recorder failed playback

Electric hyd pump"start" data drop-outs

13 phase-sensitive demodulators changed, procedure
error

CSAT 2 30 Sep64/VAT 2 7 Oct 64

Airborne tape recorder failed playback
-Autopilot end-to-end tolerances vs individual component

tolerances studied

Destruct primer simulator failed, loose connector pin in
test tool

"Gold Flake" diodes to be purged

Solder-Ball conlaminated switchover relays to be purged

VAT WALKAROUNDSQUAWKS: 17

by SN ]003

10 Airborne ECPs installed

VAT ROLL-OUT Inspection: 27 Oct 64

Roll nozzle (STG II) replaced, weld defect

Turbine manifold replaced with hot-fired manifold

STG I Ox tank support structure disassembled and

cleaned of metal chips

Coaxial connector problems cleared

16 add'l ECPs incorporated

6 CADs accomplished

RGSairborne components
Waivers:

STG I and II conduit x ray requirements

STG I Ox dome and fuel cone x-ray requirements

Defective Components:

Temp xducer calib questionable

Connector integrity questionable

Unqualified components: 13
Recap tasks to ETR: 41

GPISopen: 24

ETRDELIVERY: II Ju164

Shortages:
MDS(tot ECP Mod'}

8 End components (GG and GC systems)

RGSairborne components
Waivers: None

Defective Components: None

Unqualified Components: 13

Recap tasks to ETR: 29

GPIS open: 22

ETR DELIVERY: 23 Jan 65



ETR

SIGNIFICANT FLIGHT ANOMALIES FLIGHT OBJECTIVES
EVENTS AND RESOLUTIONS AND RESULTS

_tion flaws in teflon electrical wiring, stock purge

torerigid controls

I turbopump assemblies sent to Sacramentofor
gear rework

te turbopump seal leak, improper shim during rework;
,=ebraze cracks found on rotor

_eturbopump, breakaway and running torque high,
manifold

le captive firings; hydraulics showed severe pressure

_sduring engine start

cross-couplingproblem, modified with solid state switches

multiplexer, encoder problems; multiple failures, procurement

ols reviewed and new capacitor switches added

ssive noise on VDA due to 1600 cps signals saturating
np, filtering added

gyro run-uptime excessive, lack of bearing preload controls

_taminatioo; procurement controls reviewed, and pretoad
lois instituted
S late "MAKE" caused by orifice size

thing strike: Resulted in extensive investigation,
_oeentchange out, and systems re-validation

icane "Cieo": De-erected Stage II
icane "Dora": De-erected Stage I & II

11turbine rotor corrosion

e t Ox Tank Entry for metal particle contamination on 20 Oct

on 5 Dec for piece of missing teflon from Stage I ox valve
II Ox Tank Entry for possible nitric acid contamination

,ug
CPS "A" failures due to procedural errors

FM xmitter center frequency problems

ent booster engine movement due to IGS computer problem

!aulic actuator failure causing launch abort-servo-valve body
nting lug failure

:e I Actuator riggingerrors (3 actuators)

dem Actuator 31 position xducer failure

dem Actuator 41null offset and slow response
ine driven hydraulic pumps replaced for all subassemblies

ause of suspected contamination

]e I engine ox prevalve metallic contamination

RSPackage failed sfiction tests

S receivers delayed response to engine shutdown command

Post-SECO Oscillations

Delay of 2 seconds in the initiation of OAMSrate control

OAMSrate controlby change of astronaut's proceduresfo=

S/C separation

Fuel Sensor Recovering

A hoodedscreenwas designedtocollect the residues and

.revent recoveringof the optics

POGU pot malfunction

Xducerwas redesigned
Yaw velocity error at insertion

Aerospacemodified the guidanceequationsto bias out
the effects of vehicle cg shift

Stage I Hyd pressure decay at Eng start. Eng shutdown

Gauss meter testing of hydpumpcompensator stem and

forward spring seat at zero system pressure to assure proper

performance prior to launch.

Higher than predicted thrust and ISP, see GLV-3

Higher than predicted vehicle thrust and ISP

Investigation led to the utilization of empirical data from

Titan I1 and GLV flights to moreaccurately predict engine
performance

Evaluate GLV performance capability and structural integrity.

qualify for mannedflight

GLV-1 Flight was highly successful in placing the Gemini

spacecraft into required orbit, countdownwas completedwith

no holds; all systemsperformedsatisfactorily and the

trajectory was within the predicteddispersions

LAUNCH DATE: 8 Apr 64

Evaluate systems performance; in particular: MDS, structures,

secondary flight controls, and post-SECOmotions

All systemsperformedas planned;trajectory was within

planned dispersions; minoranomaliesoccurred,butdid not

adversely affect the flight

Pad shutdown required redesignof Stage I Hyd actuator primary
servo valve housing

LAUNCH DATE: 19 Jan 65

First manned flightl confirm GLV systems performance requiredto

to place spacecraft into prescribedorbit, confirm performanceof
RESSand MDS

The "Molly Brown"was successfully placed into the desired

orbit, all systems performedsatisfactorily; vehicle thrust and

ISP were slightly larger than desired, butdid not adversely affect

the successful flight

LAUNCH DATE: 23 Mar 65

Figure II. G-I. Gemini Launch Vehicle Histories
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VEHICLE I
NUMBER

GLV-4

GLV-5

GLV-6

GLV-7

GLV-8

DENVER '
HORIZONTAL VERTICAL

TEST

First tanksreceivinghigh-pressure/leak sniff tests
STG I Ox, aft domewye chord erroneously installed
as forward domechord,accepted;howeversmall
weightpenalty
STG I Fuel, 2 weldcracksafter hydrotests, repaired
STGII Ox, crack in forwardand Aft domesafter

hydrotest, repaired

Phycomycetesmold growth on fwd skirt Stage I Fuel,
probably deposited by workman's hand
Eng xducers out-of-calib period, directedto proceed
thru CSAT then calibrate

BALTIMORE DELIVERY: 6 Mar64

STGII Fuel,cracked at cup weld,repaired
STGII Fuel,cracked at fourwelds, repaired
STGII Ox,sensor bkts mislocated, special fix

BALTIMORE DELIVERY: 25 Jun 64

STGII Fuel,2 cracked welds, repaired
STGI Ox,weld defectcaught at roll-out inspection,
repaired

BALTIMORE DELIVERY: 16Aug 64

STO II Fuel,dome/cone replaced for excessive weld
defects and repairs
100%audit performedon STGI Oxwelds and x-rays

STG I Ox,first undernew cleanliness reqts, result of
domesupport metal chips
C-124 aircraft used first timeto Baltimore

BALTIMORE DELIVERY: 25 Feb 65

STGII Ox, 2weld cracks after hydro, repaired

BALTIMORE DELIVERY: 15 Apt 65

STG I Ox tank support structure disassembled
and cleaned of metal chips

VERTICAL DELIVERY: 28 Oct 64

Skin corrosion, STG I outer skin, iridite, and proceaures
reviewed
STG I Ox Fwddome support disassembled and cleaned
of metal burrs
Harnessconfigurauonnot compatible
V-Band clamps general nick problem
Modperiod to incorp 15 ECPs (Pre-VTF)

VERTICAL DELIVERY: 8 Feb 65

STGI dome support brackets disassembled and cleaned
of metal chips
Drain holes relocatedon STGII Ox,drawing error
Tandemactuator serve body heat treat
Autopilot adapter circuit boardwires not crimped

VERTICAL DELIVERY: 15 Apt 65

STG I Ox domesupport structure reworked to obtain
stringer clearance
STG II Ox drain holes relocated, drawing error
STG II Eng turbo-pumpimpeller; pit-corroded
Mod period to incorp 19 ECPs

VERTICAL DELIVERY: 28 Jun 65

VERTICAL DELIVERY: 28 Sep 65

Gold plating on destruct receiver connecto
Coax cable teflon insulation cut thru to sh
MDScable low resistanceproblem
TARS pkg below configuration, directed tc
at ETR

2 Hyd Pump drain plugs "frozen"

POWER-ONTIME: ]33 hrs

VTF procedures and criteria changed to n
at Factory", philosophy
STG II matedwith STG I above normalra

crane controls too insensitive, hyd jack c
Gyro overheat indication attributed to AG
Loose pottin_ in MDTCPSconnectors
Modperiod to incorp 6 ECPs (Pre-CSAT)
4 CSAT attempts 15 Apr - 20 Apt 65
AGE, procedure and operator problems,M
VPRF

POWER-ONTIME: 160 hrs

First vehicle in VTF new WestTest Ce
Ditmco test damaged25v powersupply,
Insert initiator safe-to-shortoff problem
STGI Ox conduit bellows wall thickness

CSAT attempt no. 1 25 Jun 65
MISTRAMfalse locked for 6 rain., replac_

POWER-ONTIME: 170 hrs

MOdperiod:
Zyglo'd.TCV installed in engs
Replace damagedguidance waveguides
Incorp Flashing Beacons, STG II

POWER-ONTIME: 202 hrs

2 ECPs installed
New reqt to calibrate propellant level s(
Eng electricalconnectorspulltest
Several FPDPS switch failures

POWER-ONTIME: 135 hrs



BALTIMORE

CSAT/VAT

rpinsscrapedback
ield
proceedwithreplacement

!eet"FlightConfiguratinn
le damagingaligning pin holes,
sed in future
E

ISTRAMreplaced for increasing

II

:est configuration revised

CSAT 25 Nov 64/VAT 11 Dec 64

Excessive test operations errors reviewed

Accuracy and completeness of critical component data

pkgs reviewed
Spacecraft-to-launch vehicle scupper seal alignment

procedures to bedefinitized

Open ECPs and CADs scheduled post CSAT, criticized

VAT WALKAROUNDSQUAWKS: 11

CSAT 21 Apr 65/VAT 26 Apt 65

IPS overvoltage alarm due to removalof FM/FM system

and lower load

AGE calibration procedures reviewed

Vehicle stability margins requested

Add't testing to confirm tiftoff-lite anomaly

VAT WALKDOWNSQUAWKS: 24

CSAT 25 Jun 65/VAT 7 Jul 65

Baltimore gas and electric power disturbance caused

POST-VAT OPEN ITEMSAND WAIVERS
ACTIVITY ETR SHIPMENT

Coax cableconnector pin problem

Destruct RCVR wrong tuningslug
STG II Hyddisconnect leak, metal sliver, replaced

Pictures taken of eng injector plates
Level sensors removedfor ECP Mods

27 Airborne ECPs installed, 7 CADs accomp

In-configuration !_ro_)ellantlevel sensors installed

In-configurationTARS insta lied

Time delay relay replaced
STG II Ox pressure xducer chgd,loose receptacle

4 Airborne ECPs installed
2 CADsaccomplished

Nickedmarmanclamps replaced

In-configuration level sensors installed

22 level sensors, Mod for shields

RGSairborne components
Waivers:

Fuel accumulator, eng eva[ autogenoos line
snterfacetolerance

Defective components:
4 Marmanclamps, nicked and not fuel compatible

Unqualified components: 3
Recap tasks to ETR: 32

GPIS open: 25

ETR DELIVERY: 23 Mar 65

.Shortages: None
Waivers: None

Defective components:
Marmanclamps nicked

Unqualified components: 2

Recap tasks to ETR: 17
GPISopen: 36

ETR DELIVERY: 18 May65

_: None
Waivers: None

airborne power bus drops

Eng quality condition reviewed
CSAT considered well done

Configuration audit: clean

VAT WALKDOWNSQUAWKS; 10

CSAT 20 Sep 65/VAT 28 Sep 65

Thrust chambervalves replaced

STG l[ Eng lubeoil reservoirdye-penetrant

0 Airborne ECPs installed

1 CADaccomplished

Repaireddamaged autogenous tubes

Defective Components: None
Unqualified components: None

Recap tasks to ETR: 12
GPISopen: 32

ETR DELIVERY: 2 Aug 65

_: None

4 ECPs not affecting CSAT results performedpre-VAT

Delamination of fire protection wrap-tape

Air Conditioning for VTF caused airborne bus power
fluctuations

Vehicle very clean

VAT WALKDOWNSQUAWKS:10

CSAT 8 Nov65/VAT 16 Nov 65

Adapter cane omitted during CSAT

Configuration audit showed good

Vehicle deemedexcellent

WALKDOWNSQUAWKS:10

3 Engconnectors defective, replaced

O Airborne ECPs installed

1 CADaccomplished

Eng Pumpdischarge lines cleaned

Natorqseal faulty, replaced

STGII Eng roll nozzle bearing scored

2 Airborne ECPs installed

2 CADsaccomplished

Waivers:

Hyd Reservoir PMT vibration time

Defective components: None

Unqualified components: None

Recap tasks to ETR: 10

GPISopen: 32

ETR DELIVERY: 19 Oct 65

Shortages: None
Waivers: None

Defective components: None

Unqualified components: None
Recaptasks to ETR: 14

GPIS open: 22

ETR DELIVERY: 6 Jan 65

TARS Packa8

Hydraulic res

FM/FM xmittl

Mist_am xpon_

8 B-nut leaks
S/A-1PSMOI
PTPS Circuil

Flowmeter ac

Review of dal

Erector failur

control systel

MOCSSequen

OPPS Diaphr,

4 Tank press1
TARS Failed

Tandem actu_

switches

Hyd accumul_

Engine ablati
TCV Bolt ch;

Gas generato
Broken stran(

CVE malfunc

Premature se
second launc

Decoder: sel

Erector probl

Signal condil
Double interl

on high powe
instituted
TCV Bolt ch

Oil flush ho,'

Faulty Stage
chambertube
Erector Prol

box contamil

Spacecraft/t

HydrauEicpu
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ETR

SIGNIFICANT FLIGHT ANOMALIES FLIGHT OBJECTIVES
EVENTS AND RESOLUTIONS AND RESULTS

,e problems

ervoirN2 leakage into fluid chamber

,,r frequency stability

:lers, numerousunlocks

in engine
Rfailure

':uracy problems

Roll transient at liftoff due to fuel-topping disconnect hangup

Due to dust plug stowage position: dust plug assemblies will
be removedprior to liftoff

High StageII fuel orifice inlet temperaturesduring flight

Leak in the hot gas cooler, ECP preparedfor installation of an
internal bypass cooler

Evaluate launch countdown time and procedures for applicability

in support of a rendezvous mission

Mission anomalies did not adversely affect the success of the

flight, erector malfunction delayed launch 1:15 rain

LAUNCH DATE: 3 Jun 65

rnagecontrols between S/C and LV

e during special f ght crew egress erector

m refurbtshed, cychng tests instituted

cer encoder failure during FCMT

agmgold plate flaking problems
Jre switches out of tolerance

i solder balls in capacitor

etorsreplaced,suspected defective pressure

dors replaced, possible contamination

ve skirt wrinkle(soft spot), epoxy-filled

_nge: cracked bolts found in T-Ill

rdust cap cover incident
Is on CVE cable, cleared OK

tion during SLD_et Mock, motor contact assembly
_aration of tail plug caused engine shutdown on

attempt (12 December65)

rotation of capacitor plate from ceramic dielectric

em, wiringdiscrepancy in hold-in relay
loner rejected, verdigris contamination

ogation of Pulse Beacon; Mod 111performed radiation test

r during telemetry calibration, procedural controls

;e inadvertently connected to oxidizer cavity port drain
11engine welds between crossover manifold and thrust

_s

dems: fail-safe malfunction during cycling test; switch

iation encounteredduring attempts to erect Stage I
ankdome clearance

mp failures, faulty compensator action due to wrong orifice

POGOoscillations during Stage I flight

Oxidizer standpipes were unchargedat liftotf, procedural changes
were made

Premature disconnection, umbilical 3 D1M,engine shutdown

Suspect improper installation, metal fairing was cut for

inspection, lock wire and index marksadded

Thrust decay on SA-2 prior to engine shutdown

PFaatic dust cover in gas generator injector

T'M signal strength drop, Stage II Flight

Antenna deformation aerodynamicheating, addition of
antenna stiffeners GLV-7 up

Demonstratesatisfactory performanceof GLV to place a manned

spacecraft into a prescribed orbit

All vehicle systems performed as required,

POGOoscillations occurred due to unchargedoxidizer
standpipes prior to liftoff, these oscillations had little effect on

on successful outcome of the flight

LAUNCH DATE: 21 Aug 65

Place spacecraft into orbit for rendezvous with Agena
Agena failed to achieve orbit, GLV-6 launch rescheduled

after GLV-7, rendezvouswith GLV-7 was planned, premature

disconnect of 3-D1M disconnect caused shutdown, GLV-6

rescheduled 3 days later, launch on schedule and

rendezvous with GLV-7 ok

LAUNCH DATE: 15 Dec 65

Later than desired "Make" of OPPS

Due to the low level of oxidizer autogenouspressure and high

actuation pressure of OPPS, orifice diameterwas changed

from 0.500 to 0.460 in. on subsequent vehicles

Demonstratethe satisfactory performanceof GLV to place

spacecraft into the required orbit for 14 day mission

All vehicle systems performedsatisfactorily and GLV
successfully placed the spacecraft into an 87-177 n mi
orbit

LAUNCH DATE: 4 Dec 65

RGSpitch down(18%) maneuverat L/O *330 sec

Low frequency noise in GE Mod III radar data, attributed

to tropospheric condition

Place spacecraft into orbit for rendezvouswith Agena

Rendezvousand docking accomplished

LAUNCH DATE: 16 Mar 66

Figure II. G-1. Gemini Launch Vehicle Histories (Continued)



VEHICLE
NUMBER

GLV-9

GLV-IO

GLV-11

GLV-12

DENVER
HORIZONTAL

STG II Ox feedline shimmed, Fuel tank oversize

VERTICAL DELIVERY: 10 Dec 05

STG I Fuel Fwd dome original build scrapped,
dome chord mismatch

STG II Fuel scrapped, undersize, GLV-10
reallocated to GLV-9

Tank calibration procedures improved

First tanks for rail shipment

BALTIMORE DELIVERY: 16 Aug 65

STG I Ox, mismatch cleared as OK-as-is

STG I10x, weld crack after hydro, repaired
STG I Fuel, oversize truss bolt holes, special bolts

BALTIMORE DELIVERY: 21Sep65

GLV-11 STG II Fuel reassigned from GLV-12
STG I Ox weld crack after hydro, repaired

BALTIMORE DELIVERY: 3 Nov 65

(STO II Fuel) 16 Jan 66 (C-124)

STG II Fuel from GLV 10 reworked to eliminate

acid damaged portions (Aft cone and dome)
STG II Fuel, 4 weld cracks afte[ hydro, repaired

STG II Ox,3 weld cracks after hydro, repaired

BALTIMORE DELIVERY: 20 Jan 66 (C-124)
fSTG II Fuel) 12 Mar66 (C-124)

STG II Fuel rejected, returned to Denver, battery
acid damageduring rail shipment,GLV-]l tank assigned
to GLV-]0

STG I Eng injector dome leak, reworked and welded

STG I Splice bolts sheared, torque reduced
Damaged shielded wire discovered, complete reinspec-
tion all GLVs

STG II Eng pump start and run torques high-sealer
compound

VERTICAL DELIVERY: 9 Mar 66

STG II Eng exit flange weld crack repaired

VERTICAL DELIVERY: 29 Apr 66

STG II Eng roll nozzle cracked at exit flange, replaced

STG II Eng adapter tube welds cracked, repaired
Hyd Test selector valves cycled to vendor for rework

VERTICAL DELIVERY: 22 Jun 66

VERTICAL
TEST

3 Eng xducers failed
Eng thrust chamber valves replaced pre-CSAT
Mod period to incorp 4 ECPs, 5 CADs

16 Cut Shields on twisted wire, repaired

POWER-ON TIME: 169 hrs

Electric hyd pump jammedby Hysol

STG II Eng combustion chamber weld crack insI

Critical component data inspection revealed ro]
out-of-spec and press-switch out-of-ca]ib

Mod period to incorp 5 ECPs and replace TCV I
i

POWER-ONTIME: 140 hrs

Component data pkgs reviewed pre-power-on

Eng pump discharge lines cleaned
Eng thrust chamber valves replaced
PCM Encoder excessive problems
Mod period for 7 ECPs and 2 CADs

POWER-ONTIME: ].43 hrs

Eng pump discharge lines cleaned
Component data review revealed Staging Relay
replaced
Hyd test selector valve caused flow starvation

POWER-ONTIME: 107 hrs

.S u--7



BALTIMORE

CSAT VAT POST-VAT OPEN ITEMS AND WAIVERS
ACTIVITY ETR SHIPMENT

_ection

I actuator

bolts (corroded)

lot cycle-proofed,

CSAT 9 Feb 66!VAT 15 Feb 66

STG II Eng start signal drop-outs, test tool

Gyro noise at null to be studied

Eng quality at acceptance reviewed

Component aging and availability reviewed

VAT WALKDOWN SQUAWKS: 11
Roll-control nozzle gasket leak

CSAT 14 Apr 66/VAT 26 Apr 66

Vehicle in excellent shape, quality and configuration ,

VAT WALKDOWN SQUAWKS: 15

STG II Eng crossover tube rewelded

Roll control nozzle gasket leak

CSAT 9 Jun 66 _VAT 20 Jun 66

Static inverter vs TARS Timing reviewed

Diode assembly log showed low voltage, replaced

Hyd accumulator strap clamp nick problem reviewed

VAT WALKDOWN SQUAWKS: t7

CSAT 29Ju166VAT 9Aug66

ASSETS Program quarantees balance between reliability

and logistics of remaining airborne hardware, GLV-9
and up

VAT WALKDOWN SQUAWKS: 15

4 Airborne ECPs installed

3 CADs accomplished

STG II Eng turbo-torque rechecked

Accomp add'l engineering for staging redundancy

Electric hyd pump leak, replaced

0 Airborne ECPs installed

I CAD accomplished

Eng pump discharge lines x-rayed for cocking

Retest after diode assy replaced

Fuel autogenous line replaced for dents

1 Airborne ECP installed

0 CADs accomplished

0 ECPs installed

0 CADs accomplished

Shortages:
TARS (shipped to Honeywell for rework)

Waivers:

Clevis hole dimensions on eng

Defective components: None
Unqualified components: None

Recaptasks to ETR: 11

GPISopen: 27

ETR DELIVERY 10 Mar 66

Shortages: None

Waivers: None

Defective components: None

Unqualified components: None

t_ecap tasks to ETR: 10
GPIS open: 2

ETR DELIVERY: 20 May66

Shortages: None

Waivers_:

Clevis hole dimensions on Eng

Defective components: None

Unqualified components: None

Recap tasks to ETR: 12

GPISopen: 14

ETR DELIVERY: 12 Jul 66 (Super-Guppy)

Shortages: None
Waivers: None

Defective components: None

Unqualified components: None

Recap tasks to ETR: 11

GPIS open: 2

ETR DELIVERY: 3 Sep 66

Stage II hot ;

Stage II Eng

S A 2 Engin_
S A 2 Fuel

SMRDCircui

of printed cil

Hydraulic te',

Stage II A P
ABETS Puls

Mistram xpor

Ball-joint mi:

Engine comb
CVE Erratic

Crazing of ur
A P failures

Actuator 21

Actuator 31
Hyd selector

MISTRAM xp,
Launch nut c

Destruct init

PSV Drain h(

Metal particl
Oil cooler OL

Stage lox s_

IPS Voltage

Wrench dropp

Ball-joint mi

Extruded tefl

Hydraulic pu

Spurious SEE
decoder

Decoder inve

Autopilot hae

Replacement



ETR

SIGNIFICANT FLIGHT ANOMALIES FLIGHT OBJECTIVES
EVENTS AND RESOLUTIONS AND RESULTS

ts cooler galled nut problem

te combustion chamber seal leaks

crimped raco seal

evalve o-ring imperfection

inoperative due to improper installation
:uit

: selector valve anomalies

)itch gyro failure

modulator problem

er failures

]lignment of engine pumpdischarge lines
_tion chamberweld leak

_verspeedcircuit relay

)ilical 3DIE and 3D2E face plates

bise problems

II land

alve slow actuation

Ider module failure

hie potting defects
tor rocker arm problem

;e leak

contamination in propellant feed system

et lines, teflon liner imperfections

Lweld leak, waterglass epoxy sealed

_nsient, auto pilot replaced

J in Stage I fuel, inspected

_lignment engine pump discharge line. line replaced
_in fuel bootstrap line

) intergranular corrosion problem

signals during J-CSAT attributed to guidance

igation for solder balls

m 800-cycle inverter failure

Jtopilot removed due to apparent drop in sync

Excessive Stage I oxidizer outage

Increase mixture ratio dispersions commensuratewith GLV
and Titan II system histories

Stage II Fuel topping disconnect break at liftoff

Lanyard re-rigged on subsequent flights

"Venting" of Stage I ox tank shortly after staging

Probable causes: dome penetration by transportation section

debris, cracking of ablative coating, or burn through of the tank

side wall; no corrective action required

Excessive Stage I ox outage and eng mixture ratio shift

The mixture ratio for GLV-12 was biased -I 2% to protect

against repeating

Pinhole leak in Stage I ox tank caused by corrosive action of ox

Application of sodium silicate forced into pinhole sealed the
leak

Samemission as GLV-8

Atlas failed to achieve orbit, launch was rescheduled

for rendezvous with ATDA; all GLV systems performed

as expected; trajectory was nominal, enabling
rendezvous to be successfully accomplished

LAUNCH DATE 3Jun66

Samemission as GLV-8

All GLV systems performed as planned, GLV ascent trajectory
was exactly as required to place spacecraft into prescribed

orbit; "Venting" of Stage I ox tank shortly after BECO did

not adversely affect the success of flight

LAUNCH DATE: 18 Jul 66

Samemission as GLV-8

Although an ox leak in GLV tank caused one day slip in launch

schedule. GLV did successfully fulfill all its requirements;

all systems performed as expected; trajectory again was as
requiredfor rendezvous

LAUNCH DATE: 12 Sep 66

204 Ib overload of Stage I ox

Lack of confidence in tank bottom temp probeproved to be

unjustified

Stage II ox pump inlet temp 10 deg high

Caused by mechanical or electrical deformation during ox loading,
one time malfunction

Stage I ox and fuel tanks may have opened (see GLV-10)

Samemission as GLV-8

All GLV systems performed as required, no significant anomalies

occurred and trajectory was exactly as planned, all objectives
achieved

LAUNCH DATE: 11 Nov 66

Figure II. G-1. Gemini Launch Vehicle Histories (Continued)
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1.

SECTION II-G

R EFER ENC ES

Fabrication and Test History for Gemini Launch Vehicle LV-344-1 through 12, Martin Company

2.

3.

History of Gemini/Titan Launch Vehicle (1 through I2) at ETR, Aerospace Corporation.
Volumes 1 through 12

Vehicle Acceptance Report GLV-I through 12, Aerospace Corporation
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SECTION II. G

DEFINITIONS

ABETS

AGE

APS

ASSETS

B/P

CAD

CSAT

Ditmco

ECP

EEI

Eng

ETR

FM

GLV

G PIS

IPS

MARS

MDS

MISTRAM

Mod

PC M

PSV

RCVR

RFI

RGS

RSP

SMRD

Stg I Ox

TARS

TRWT

VAT

Airborne Beacon Test Set

Aerospace Ground Equipment

Accessory Power Supply

Assets program to assure adequate and reliable spares through program end.

Blueprint

Corrective Action Directive

Combined Systems Acceptance Test

Programmed electrical continuity and high voltage tester.

Engineering Change Proposal

Electronic and Electromagnetic Interference

Engine

Eastern Test Range

Frequency Modulation

Gemini Launch Vehicle

Gemini Problem Investigation Summary

Instrumentation Power Supply

Martin Automatic Reporting System (discrepancy report)

Malfunction Detection System

Missile Tracking and Monitoring

Modification

Pulse Code Modulation

Propellant Sequencing Valve

Receiver

Radio Frequency Interference

Radio Guidance System

Rate Switch Package

Spin Motor Rotation Detection (gyros)

Stage I Oxidizer Tank

Three Axis Reference System

Trouble Report Withholding Tag (discrepancy report)

Vehicle Acceptance Tealn

II. G-14



Ill. GEMINI AGENA TARGET VEHICLE

A. INTRODUCTION

i. NASA/SSD/AEROSPACE ROLE

SSD responsibilities for the DOD effort required on the NASA Gemini program were established

by the NASA-DOD Operational and Management Plan for the Gemini Program (29 December 1961). In

the plan, references to the Target Vehicle portion of the over-all Gemini program were quite general

in relation to both management and technical objectives.

In March 196Z, AFSSD was directed by HqAFSC to initiate the Agena Target effort. Also in March

1962, initial funding was received on a NASA-DOD Purchase Request and working contact was established

between the SSD Program Office and NASA Marshall Space Flight Center, program manager for NASA

Manned Spacecraft Center for the Target Vehicle Program.

During January 1963, there was a realignment of responsibilities within NASA. It resulted in the

elimination of Marshall Space Flight Center as a middle management office and the assumption by the

Manned Spacecraft Center, Gemini Program Office ('GPO), of direct responsibility for the Target pro-

gram as a part of the over-all Gemini program management.

Because of the lack of early detailed program and technical objectives, Gemini Target management

relationships and fundamental responsibilities evolved from work and coordination meetings between NASA

GPO and SSD Program Office personnel. As might be expected, final management responsibilities were

characterized by a blending of the philosophies of the NASA Manned Spacecraft Center and the Air Force

Space Systems Division.

Following months of negotiations and coordination, the management responsibilities were finalized,

in March 1965, in a formal document, NASA MSC andAFSSD Management Responsibilities Agreement

for the Gemini Atlas Asena Target Vehicle Systems Program. This agreement clarified and supplemented

the earlier NASA-DOD Operational and Management Plan and resulted in a system of cooperative program

direction and problem reporting.

In the fall of 1964, Aerospace Corporation was put under contract by SSD for Technical Surveil-

lance of the Gemini Agena Target Vehicle. The Aerospace responsibilities included close monitoring of

the vehicles from the beginning of subsystem fabrication, through final vehicle systems test, andpre-

launch and launch operations. Aerospace personnel also became deeply involved in special task-force

efforts and in all coordination meetings with NASA/SSD/contractors. Some aspects (where applicable}

of the Pilot Safety Program, developed by Aerospace for the GLV, were carried over to the GATV pro-

gram.

III. A- i



2. PROGRAMMANAGEMENT

a. Space Systems Division (SSD)

Responsibility for what was to become the Gemini Atlas Agena Target Vehicle System was origi-

nally established within the Program Integration I)zvision of the SLV-3 Directorate under the Deputy for

Engineering. This office was assigned responsibility for Air Force support of all NASA Agena Programs,

which included at that time the Ranger, Mariner, Nimbus, EGO, POGO, FIRE, OAO, ECHO, and Re-

bound programs as well as the Canadian S-27. When Gemini Target was added in March 1962, one project

engineer (a captain) was assigned responsibility for the program.

During the first quarter of 1963, the USAF and NASA Headquarters reviewed their basic support

agreement covering the unmanned NASA programs. This review resultedin the decision to transfer the

Agena-peculiar modification and system integration contracts from SSD to the NASA Lewis Research

Center, with the exception of the Gemini Target program, which would remain at SSD under the over-ai1

program management of NASA/MSC.

As a result of the transfer of responsibilities, additional manpower was made available to the new

Gemini Agena Division under the Agena Directorate (Figure III. A-1). The method of operation was

similar to that used by all Air Force programs within SSD. In particular, the following provisions

were made:

1) The Atlas (SLV-3) launch vehicles and associated launch services would be procured and

managed by the SLV-3 Directorate upon receipt of requirements and funds from the Gemini
Agena Division, as well as the conversion of Launch Complex 14 to an SLV-3 configuration.

(By separate Headquarters agreement, USAF agreed to fund the launch complex conversion

from Mercury Atlas configuration to a standard SLV-3/Agena D configuration. )

2) Guidance and ground computer support would be provided by the Subsystems Directorate upon

receipt of requirements and funds from the Gemini Agena Division.

3} The basic Agena D vehicles and launch services for the final Gemini Agena Target Vehicles
would be procured and managed by the Agena Directorate upon receipt of requirements and

funds from the Gemini Agena Division. In addition, the Agena Directorate would pro-
vide technical consultant and specific subsystem engineering support to the Target Vehicle

program, as for all Air Force space programs using the Agena D vehicle.

It became apparent, however, that the GeminiAgena Division was not only understaffed, but

lacked experienced, ranking personnel. Recognition of this problem led Hq AFSC to authorize a

significant reorganization and realignment of personnel. The new organizational structure (Figure III. A-Z)

was basically in accordance with AFSCM 375-3 with functions as follows:

• Director and Deputy Director. Managed and directed the development, procurement, and test

activities for the Gemini Atlas Agena Target Vehicle System. Kept NASA Manned Spacecraft

Center, Gemini Program Office fully informed of activities concerning the Gemini Atlas Agena
Target Vehicle.

• Program Control and Configuration Management. Because the new Directorate was organized
with minirnum manpower, the Program Control and Configuration Management were not made

separate divisions, but functioned instead as identifiable sub-elements of the Program Director's
office.

• Program Control. Managed the program control functions of preparation and maintenance

of program documentation; acquisition and control of program resources; and management

review, evaluation, and reporting of program progress.

• Confi_.p.2ation Management. Managed the Gemini Agena Target Vehicle (GATV) configura-
tion identification, control, and accounting system. Supervised contractor efforts in

formulation, execution, and discipline of configuration control systems. Maintained

records of approved and actual configuration. Managed the Reliability and Quality Pro-
grams for the GATV.

III. A - 2
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GEMINI TARGET VEHICLE

DIRECTORATE*

DIRECTOR (COLONEL)

DEPUTY DIRECTOR (LT COLONEL)

SECRETARY (GS-5)

r

I
I
I
I__

PROGRAM

CONTROL

I MAJOR

I CAPTAIN

I GS- 3

ENGINEERING

DIVISION

I LT COLONEL

I SQ LDR (RCAF)

3 CAPTAINS

I FLT LT (RCAF)

I LT

I GS-4

PROCUREMENT

AND PRODUCTION
DIVISION

I MAJOR

I GS-13

I GS-12

I GS-4

r 1
CONF,GORAT,ON

I MANAGEMENT I

t i MAJOR I

I I CAPTAIN I

I GS-3
I ]

I
OPERATIONS

DIVISION

I LT COLONEL

4 CAPTAINS

I LT

I GS-4

*DESIGNATED A PROGRAM OFFICE IN APRIL 1965

Figure III.A-2. Organization Chart - Gemini Agena Target Vehicle, SSD
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• Engineering Division. Was responsible for over-all design, development, fabrication, assem-

bly, and in-plant testing through factory acceptance of the GATV (less the NASA-procured Tar-

get Docking Adapter), and associated AGE; and for system integration of the complete Gemini
Atlas Agena Vehicle System. Coordinated engineering effort with GPO.

• Procurement and Production Division. Was responsible for managing and coordinating all
procurement actions for contracts under Gemini Agena Target Vehicle jurisdiction. Served

as the focal point in all procurement matters and negotiated contracts and contract changes.

• Operations Divison. Was responsible for managing and coordinating all functions from Gemini

Agena Target Vehicle and SLV-3 factory acceptance through GAATV launch operations; and for
over-all supervision of operations analysis and support activities, guidance equations, mission

planning coordination, and all associated documentation. Coordinated operations with GPO.

The value of the new organization became evident following the flight failure of the Target Vehicle

during its first launch on Z5 October 1965 - less than four months after the formation of the new Direc-

torate. The failure investigation and top priority recovery test program were accomplished in what

was considered an impossible time period. The success of the recovery program, ahead of schedule,

was attributed to the strong program management, and to the knowledgeable experienced personnel

assigned to the program.

b. Aerospace Corporation

When Aerospace was given the technical surveillance responsibility over the Agena Target Vehicle

in the fall of 1964, it appeared logical that this function should be incorporated in the existing Gemini

Launch Systems Directorate, which performed the systems engineering and had technical direction of

the Gemini Launch Vehicle. This group of systems engineers and operationally-oriented personnel, who

had gained a wealth of experience in manned space programs throughout the Mercury and Gemini pro-

grams, were best suited to take on this additional responsibility.

In order to cover both the GLV and GATV with a minimum number of personnel, the basic structure

of the organization was maintained (Figure III. A-3). The Directors of Airborne Systems and Systems

Test Operations assumed the responsibilities for both vehicles. The same functional systems areas of

both vehicles were placed under the supervision of the single manager, with subsystems engineers

assigned to the particular systems on each vehicle reporting to him.

In addition to best utilizing the available manpower, this organizational structure allowed for a

ready cross-feeding of information between the two vehicle programs. In particular, any failures or

problems occurring in the equipment of one program would automatically be fed into the other program.

The systems manager, cognizant of both vehicles, could then take immediate action to determine the im-

pact and necessary corrective action on both programs.

c. Lockheed Missiles and Space Company (LMSC)

(1) LA4SC Management Structure

The LMSC management philosophy for satellite and space programs has consistently been to estab-

lish a sound technological base in stable line organizations and to assign a program manager to serve as

the "adaption kit" or interface between these organizations and a specific customer with specific mission

or contract requirements. Vital to the success of this approach is the additional Lockheed philosophy

that the Program Manager must appropriately utilize the required skills existing in all of the Lockheed

Aircraft Corporation or its large family of subcontractors and vendors.

In 1962, the Satellite Systems Division in LMSC was the product division designated to handle

satellite programs, primarily for the Air Force. Early in the following year a new Space Programs

III.A-5
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Division was created to concentrate on the NASA-mission-oriented programs, including the newly awarded

RIFT Project (Reactor In-flight Testing) out of the Marshall Space Flight Center. The original Satellite

Systems Division was renamed Space Systems Division, the name it still retains.

In mid-1964, with the partial termination of the RIFT contract, the remaining NASA mission-oriented

programs that involved the Agena were returned to the Space Systems Division, and the Space Program Divi-

sion was dissolved.. Each separate division in LMSC is headed by a Corporate Vice-President and each

division adapts its policies and procedures to the needs of its particular customer. It was evident, there-

fore, that the significant changes in reporting levels and operating modes that occurred during these organ-

izational shifts influenced the structure and performance capability of the program offices oriented to the

fulfillment of NASA missions. Working relationships were further influenced by similar shifts in organi-

zational alignments and assignments of responsibilities in Air Force and NASA agencies during this same

period.

(2) GATV Program Management Evolution

There were three relatively distinct phases of management structure and associated control tech-

niques throughout the history of the GATV Program. They werethe initial intermediate and final phases,

descriptions of which follow.

(a) Initial Phase. At LMSC, the Medium Space Vehicles Programs (MSVP) organization had been

established in the Satellite Systems Division, and was headed by an Assistant General Manager (AGM)

(Figure Ill. A-4). It was responsible for the adapting the Agena to missions for NASA. Within MSVP,

the Gemini Program Office had been set up under a manager, with two subordinate supervisors. One

supervisor was responsible for vehicle development, and the other for ground support equipment and

facilities. The Manager reported through an intermediate level of management (the Programs Manager)

to the MSVP AGM. All correspondence with the customer was signed by the AGM so that he, in effect,

became the primary technical and management interface with customer agencies.

At this time, discussions were taking place between the Air Force and NASA as to the desirability

of transferring all NASA missions to direct NASA contracts, without the intervening Air Force contract

management activity. This was subsequently done on all MSVP programs (transfer to the NASA Lewis

Research Center) with the exception of the GATV Program, which was retained on Air Force contract.

Within MSVP, a Gemini Engineering Department was established to handle GATV structural design

and modifications, electrical circuitry and modifications, and instrumentation and guidance system mod-

ifications. Since the GATV was a peculiarization of the Agena vehicle, this department had an interface

and integration group that worked closely with Agena Engineering at LMSC and with McDonnell Aircraft

Corporation, which was responsible for the Target Docking Adapter. Propulsion systems (both primary

and secondary) and command and communications (C&C) were excluded from the activities of the Gemini

Engineering Department. Propulsion systems engineering, development, and test were done by the Bell

Aerosystems Corp. under subcontract to LMSC; their technical interface was through the central SSD

Propulsion Department with whom they were accustomed to work on the Agena Propulsion Systems.

Since the C&C Subsystem was totally peculiar to Gemini and represented a state of the art advance beyond

the existing one, engineering and development were assigned to the LMSC Research and Development

Division, with budgetary control by the LMSC Gemini Program Manager.
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The basic function of the Gemini Manager in this structure was to interpret customer require-

ments in terms to which supporting internal or subcontractor organizations could respond. The specific

manner of meeting the technical requirements so established was the responsibility of the individual

technical organizations, subject to the cost, schedule, and contract constraints placed by the Gemini

Manager. This arrangement made the Program Office an interpretation and constraints agency, with

the majority of detailed technical planning done and decisions made by the cognizant technical organi-

zation, which also controlled the budget assigned for its technical tasks.

(b) Intermediate Phase. The next phase in the evolution of GATV Program Management began toward

the end of 1962 and was fully implemented early in 1963. The Manager of the Gemini Program was

raised by one management level, now reporting directly to the Director in charge of Medium Space

Vehicle Programs (Figure III.A-5). The Gemini Engineering Department was dissolved as an entity,

and MSVP Engineering was restructured with departments aligned to functional subsystems. In view

of the previous change, the position of Gemini Project Engineer was created in the MSVP engineering

organization, on the Staff of the Engineering Manager, to serve as the direct interface between all

vehicle engineering activities and the Program Office. Because of the state of its development and

the realignment of MSVP Engineering, C&C subsystem responsibility was transferred from the

Research and Development Division to MSVP Engineering

Several distinct objectives had led to the changes delineated. The reporting level increase for the

Gemini Program Manager was intended to, and did, result in improved customer interface communica-

tions, and a formal acknowledgement by LMSC of the increasing importance of and management attention

to, the program. This further enabled the Program Manager to establish working relationships and tech-

nical and budgetary controls with supporting organizations and subcontractors. The functional realign-

ment of the MSVP Engineering organization established a more efficient utilization of available technical

skills. The creation of the Vehicle Project Engineer in that organization further simplified internal

communciations and provided, in effect although not in title, a strong technical assistant to the Program

Manager.

During this period, the Air Force Space Systems Division correspondingly raised the rank level

of its Program Manager. Meanwhile during 1963 when the Manned Spacecraft Center assumed the

role of integrating agency for all elements of the Gemini Program, LMSC was relieved of its contract

responsibilities for Atlas/Agena integration.

LMSC retained and successfully operated within this basic structure through 1963 and well into

1964. This was also the period of major changes in the concept, magnitude, timing, and funding levels

of the program.

(c) Final Phase. First indications of the need for a transition to a new organizational phase were

evident early in 1964 with the partial termination of the RIFT contract. Restructuring took place in

the RIFT portion of the Space Programs Division without corresponding changes in the Medium Space

Vehicles Programs organization. By mid-1964, however, it became apparent that the Space Programs

Division could not be retained as a separate product division, so it was dissolved. The Medium Space

III.A-9
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Vehicles portion of the organization was renamed NASA Programs and moved, without structural

change, back into the Space Systems Division, retaining the same management level of reporting it

had had in Space Programs (Figures III. A-6 and 7).

During 1964, however, Air Force programs using the Agena had been testing various organizational

realignments and program office organizations. The intent was to clarify and strengthen the role of the

program office and to further improve the lines of communication between LMSC and its customer

agencies.

In January 1965, a new Program Manager was assigned. The man selected had an ex-

tensive background in Vehicle Systems Test, Product Assurance, and Test Base operations,

all areas critical in the successful completion of the balance of the program. As part of thls

change, and utilizing the experience gained in other Air Force programs, the entire Gemini

Program office was restructured. Three significant posts were established, namely, the Chief

Systems Engineer, the Assistant Program Manager for Program Controls, and the Configuration

Management Office.

The purpose of these changes was: to permit the program office to augment its technical capabil-

ity for mission success; to channel technical decision-making through the program office to its customer

counter-parts; to increase the level of management concerned with the business management aspects of

the program; and to formalize the implementation of configuration identification and control techniques.

These changes were fully established and operating by the mid41e of 1965, and were retained with no

significant change until the end of the program.

At about the same time, AFSSD established the GATV Directorate and separated it from the Stand-

ard Agena Directorate. Part of the LMSC implementation process included: augmenting the Program

Office staff (it was approximately doubled); incorporating the technical decision-making and system inte-

gration functions into the Prograrr_ Office; changing the mix of technical and management skills within

the Program Office; and implementing new techniques in all support organizations for the definition,

scheduling, and cost control of all program activities. In addition, since the Vehicle Project Engineering

concept had proved itself with the NASA Engineering organization, similar positions were created in all

other Gemini support organizations within LMSC, including: Systems Test, Product Assurance, Manu-

facturing, AGE Engineering, Financial Controls, Contract Administration, and Logistics.

One other characteristic apparent in this final organization phase was the task force approach.

The method by which the Program Office directed and drew upon support organizations had demon-

strated its ability to handle normal activities and their normal problems. Unusual situations,

however, created the need for a different approach that could expedite normal activities, while

fully following required policies and procedures. The GATV Program task forces were used in

these circumstances..

The first major example is the C&C Task Force created in early 1965 to handle the redesign and

qualification of the C&C Subsystem on an extremely compressed schedule. In this approach, carefully

picked individuals were assigned full time to the Task Force, the members were grouped in close physical

proximity, and a task force leader was designated to report directly to the LMSC Gemini Program Manager.

Subsequent examples of this technique, which further demonstrated the tasks that could thus be success-

fully accomplished, were the Surefire Task Force and the later and smaller one that conducted the total

refurbishment of Vehicle 5001. The additional advantage of the Task Force approach Lay in the fact that

management could, and on occasion did, have the task force leader and the program manager report (for

the purposes of the Task Force) directly to a vice president and general manager, or to the company

III. A-I 1
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president himself. This made it possible (as in the case of Surefire) to involve whatever corporate

resources were required to insure the successful completion of the activity. Its relation to the Program

Office, however, still allowed normal program activities to be handled without interference.

If a similar program were to be undertaken today, with today's knowledge of the aerospace environ-

ment, it is believed that a Program Office structure, mode of operation, and relationship to supporting

organizations, as implemented in 1965 on the GATV Program and successfully maintained through the

end of the program, would be a logical manner in which to start.

3. SSD/AEROSPACE/CONTRACTOR / NASA INTERFACE

a. Atlas/Agena Coordination Committee

As in the case of the GLV, the large, diverse, and far-flung group of organizations participating in

the Gemini program created two major management problems: adequate and timely communication, and

proper control and coordination of the activities of the separate participants.

Because of these problems, the Atlas/Agena Coordination Committee was formed. It was headed

by a chairman from the NASA Gemini Program Office and was composed of representatives of all gov-

ernment and industrial organizations that participated directly in the program {NASA, SSD, Aerospace,

LMSC, GD/C, Rocketdyne, MAC.}

The Coordination Committee provided an instrument whereby the major program participants

could review both their individual and mutual program and system problems and assess their program

impact. The key results of the meetings were translated into action items, which were distributed to

all participating agencies. The coordination meetings were followed by a government sessions devoted

to discussions of action items and financial matters.

b. Gemini/A_ena Interface Control Panel

This NASA chaired panel was established to effectively control the interface between the GATV and

the spacecraft in a manner sin_ilar to that of the GLV/Spacecraft Interface Control Panel. Its charter set

forth the following responsibilities and limitations. The panel:

• Consisted of representatives from NASA, LMSC, MAC, and SSD with Aerospace supporting

SSD in an advisory capacity.

• Issued joint drawings and reports, which were subsequently approved by SSD/Aerospace and

and NASA GPO.

• Did not make policy decisions. Policy problems were referred to SSD/Aerospace and NASA

GPO for resolution.

The panel was responsible for generating the Gemini/Agena Interface Specification and Control

Document {ISCD-2}, using the same format as that of the ISCD-I. This formal document established

and maintained Gemini Spacecraft/Agena Vehicle/Target Docking Adapters/Ascent Shroud Interface

requirements and configuration. It contained requirements {both in text and drawing form} covering

the mechanical, electrical, and AGE interfaces and the associated testing necessary to validate inter-

face integrity.

The activities of the Interface Control Panel were summarized at each Atlas/Agena Coordination

Meeting.

c. Trajectory and Orbits Panel

Matters relating to the Atlas/Agena launch, rendezvous, EVA, and post-rendezvous maneuvers

were included in the agendas for the Trajectory and Orbits Panel, which were discussed in Section ll.A. 2. e

of the GLV. The GATV was represented by SSD and LMSC.
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d. GAATV Ascent Guidance Working Group

This group was established and chaired by SSD to coordinate all GAATV ascent guidance activities

and resolve all associated problems. The participating agencies were SSD, MSC/GPO, MSC/FOD,

LMSC, GD/C, TRW, GE, and Burroughs.

e. Operational Interface

Early in the program many discussions took place between NASA, the Air Force, and LMSC

concerning LMSC support to NASA FOD at Houston. As a result of these negotiations, three LMSC

engineers were stationed in Houston to improve the liaison between LMSC Sunnyvale, and FOD

Houston.

In Summer 1965, as the GATV program approached the operational phase, it became apparent

that the Air Force and LMSC support to FOD could be greatly improved by sending a highly qualified

select team of systems engineers to Houston for each GATV mission. This team, composed of LMSC

engineers, SSD officers, and one Aerospace representative, provided technical consultation service to

FOD, manned a console in the MCC Staff Support Room, and performed real-time evaluations of

problems occuring in flight.

4. PROGRAM DOCUMENTATION

The general documentation requirements for the GATV Program were specified in the Contract

Statement of Work, AF 04(695)-545, and in general followed standard program documentation. The

following documents are deemed unique to the GATV Program in scope and/or application.

1) TOR Document, GeminiAgena Target Vehicle Procedure and Requirements for Acceptance

z)

3)

4)

5)

established and defined the role of the Gemini Agena Target Vehicle Acceptance Team

(VAT); listed the documentation required to support the VAT; and set forth the criteria,
procedures, and ground rules used by the VAT.

The Gemini Human Engineering Program Plan described the mission and vehicle-peculiar

equipment, design, aerospace ground equipment modification, and new design to provide
proper allocation of functions to men and equipment. It established equipment layouts for

efficient operation and ease of operation and maintenance. The plan indicated the method
of accomplishing the general requirements of AFSSD Exhibit 62-44A and MIL-M-Z651Z-B.

The Gemini Milestone Network Report provided a schedule of milestones and a

report about them, utilizing the Program Evaluation Review Technique (PERT}.

The number of networks required and the scope of each were established by

the PERT team. A full scale PERT program however, was never implemented.

The Detail Specification for the AGE at Merritt Island, NASA Radar Boresight Range
covered the design, construction, performance, and test requirements necessary to

permit the AGE to support NASA-directed tests of the GATV and Gemini spacecraft at
Merritt Island, NASA Radar Boresight Range.

Gemini Agena Target Vehicle Familiarization Handbook provided a thorough familiarization

of the Gemini Target Vehicle (GTV} and the function and operation of its various subsystems

and components. It was revised immediately after systems test of the scheduled first flight

GATV (5001). The document was also revised several times to satisfy other vehicle
changes. It provided a comprehensive description of the Agena Target Vehicle hardware

and its operation, including the airframe, PPS, SPS, power system, guidance system,

flight control system, tracking system, command system, telemetry system, TDA, Agena
Status Display Panel, flight termination system, and command functions.
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6)

7)

Gemini Agena Target Operational Capability Handbook developed into a detailed drivers
manual for those who were to have control of the GAT on orbit. The OCHdefined the

recommended operating procedures for the GAT for the orbital phase of the Gemini mission

(docked and undocked) and the contents were valid for any mission plan. Since this hand-

book was primarily an operating procedures manual, it was necessary to emphasize

operational constraints imposed by GAT hardware in orbit as determined by engineering
analyses and tests. The constraints were categorized as Prohibited Operations, Mandatory

Operations, Operational Restrictions, and Operational Requirements.

Gemini Altas Agena Target Vehicle System Ascent Guidance Contacts, Flow Diagrams, and

Documentation List was published by SSVT on 4 March 1965. Section A contained the name,

telephone number, and address of key persons directly involved with GAATV ascent guidance.
Section B contained the GAATV ascent guidance implementation cycle as described by flow
charts. Section C contained all GAATV definitive ascent guidance documentation and showed

the documents needed by each agency to carry out its ascent guidance task.
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SECTION III. A

DEFINITIONS

AFSC

AGE

AGM

C and C

DEV

DOD

EGO

EVA

FOD

GAT

GATV

GAATV

GD/C

GPO

ISCD

LMSC

MAC

MCC

MSC

MSVP

NASA

OAL

OCH

POGO

RandD

R CAF

REL

SCTB

SLV

SSD

TRW

Air Force Systems Command

Aerospace Ground Equipment

Assistant General Manager

Command and Communication

Development

Department of Defense

Eccentric-Orbit Geophysical Observatory

Extra Vehicular Activity

Flight Operations Directorate

Gemini Agena Target

Gemini Agena Target Vehicle

Gemini Atlas Agena Target Vehicle

General Dynamics/Convair

Gemini Program Office

Interface Specification and Control Document

Lockheed Missiles and Space Company

McDonnell Aircraft Corporation

Mission Control Center

Manned Spacecraft Center

Medium Space Vehicles Programs

National Aeronautics and Space Administration

Orbiting Astronomical Laboratory

Operational Capability Handbook

Polar Orbiting Geophysical Observatory

Research and Development

Royal Canadian Air Force

Reliability

Santa Cruz Test Base, LMSC

Standard Launch Vehicle

Space Systems Division, USAF

Thompson Ramo Wooldrid_e
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B. PROGRAM DESCRIPTION (METHODS OF OPERATION)

I. PHILOSOPHY AND HISTORY

The Gemini Agena Target Vehicle "Pilot Safety" requirements differed in one major way from

those of the Mercury Atlas and the Gemini Titan Launch Vehicles. It is significant that the unmanned

ascent phase of the GATV mission provided a severe test of the ability of the vehicle to accomplish the

missionls "manned" phase, i.e. , rendezvous and docking in orbit. This allowed mission flights to be

used as proving flights. For example: the significantly modified but not yet flight tested 8Z47 engine

was first flown on the target vehicle for Gemini VI. The loss of this vehicle occurred shortly before

orbit insertion and well before the GLV launch and thus did not endanger the astronauts. The engine

failure, however, led to a major review of hardware performance.

It was in this less demanding environment that a modified Pilot Safety program was adopted in

which cost considerations influenced decisions signficantly more than in the Gemini Launch Vehicle

Program. However, many of the concepts which were so successful with the Gemini Launch Vehicle

were integrated into the target vehicle program in a manner consistent with the difference in mission

requirements and with the fact that the target vehicles were initially accepted as Standard Agenas

and then modified in the GATV program.

Close coordination between NASA, SSD, and LMSC was maintained through a series of monthly

technical direction meetings to ensure that program objectives were being met. Aerospace Corporation

Gemini Launch Systems Directorate was given a Technical SurVeillance role on the GATV late in 1964

and, as its first responsibility, reviewed the status of the program and the adequacy of pre-flight test-

ing. Although this was after design and fabrication of the first flight article, it was possible to include

in the program some additional Mercury/Gemini Launch Vehicle Pilot Safety concepts:

1) A Critical Components History and Review Program.

Z) A detailed review of all program failure analyses by an independent agency.

3) An independent detailed review of all subsystem and system data taken during pre-acceptance

and acceptance testing.

4) An independent detailed review of data taken at ETR.

Detailed design reviews were conducted by NASA, SSD/Aerospace and LMSC The review prior to

the first launch resulted in such things as the decision not to fire the GATV primary propulsion engines

with the manned spacecraft docked with the GATV until after there had been a successful primary propul-

sion system (PPS) firing after the ascent burn. The review conducted in conjunction with the "Sure-

Fire Program" after the initial Agena failure resulted in locking out an overspeed shutdown circuit

during ascent to prevent an unnecessary vehicle shutdown during that period.

Z. CONFIGURATION CONTROL - ECP REVIEW

The configuration management and control requirements for the GATV System were in general

agreement with AFSCM 375-i I and ANA Bulletin No. 445 z although the GATV contract statement of

work made minor modifications. Before the imposition of the aforementioned military documentation

into the LMSC contract, a form of configuration control was in existence by virtue of certain LA4SC

procedures and practices. When the contractual requirement for configuration management

was established by SSD, a Configuration Management Office was established within the program

office and implementation plans for compliance with AFSCM 375-I and ANA Bulletin No. 445 (including

First Article Configuration Inspection (FACI) and Engineering Change Proposal (ECP) preparation) were
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issued. Serialization/effectivity programming of all changes, both Class I and Class TT, was initiated

by the Gemini Program for additional control of change activity and traceability.

The FACI of the GATV System was performed at Sunnyvale in conjunction with the acceptance

activity of the first vehicle. The baseline configuration for the vehicle was established at the time of

the first formal attempt to accept Vehicle 5001. FACI of Complex C-10 at Sunnyvale was accomplished

by SSD/Aerospace after the Vehicle 5001 system acceptance test, which occurred subsequent to hot

firing and the anechoic chamber radio frequency interference test. Hangar E ground equipment FACI

was accomplished after Vehicle 5001 checkout and subsequent to the r-f compatibility test at Merritt

Island. The FACI of the Merritt Island aerospace ground equipment (AGE) was accomplished after

Vehicle 5001 checkout. Pad 14 AGE equipment FACI was accomplished after the first Gemini Agena

Joint Flight Acceptance Composite Test. In each instance of FACI, an approved specification in accord-

ance with the requirements of Exhibit II of AFSCM 375-i as well as complete engineering drawings

was required.

After completion of the FACI's and the establishment of the configuration baselines, the

re-identification of hardware pursuant to change activity followed the strict interpretation of the appro-

priate military documentation.

The requirement for the initiation of an ECP came from one of the following agencies: NASA,

SSD/Aerospace, McDonnell Aircraft, General Dynamics/Convair, Standard Agena office or within the

LMSCprogramoffice. Requests for ECPpreparations from other than theLMSCorgAnizationwerealways

transmitted to SSD initially, who in turn decided upon the desirability of having LMSC prepare and sub-

mit the ECP to the SSD Configuration Control Board (CCB) for disposition.

This board was composed of the Chief of the GATV Directorate as the chairman and the follo_-ing:

members who represented each office in the GATV Directorate, Aerospace Gemini program

office; NASA and the Air Force Plant Representative's office. In certain instances due to priority or

urgent conditions, LMSC personnel were in attendance to present their ECP's.

The LMSC GATV configuration management office (CMO) established certain internal practices

and policies for compliance with their contractual direction in AFSCM 375-i and ANA Bulletin No. 445.

The LMSC CCB functioned as a clearing house for all GATV change activity. After a short time, it

became apparent that certain in-house functions were enhanced as a direct result of the CCB activity.

Cost effectiveness and contract requirements were considerably improved. Engineering and support

personnel were able to reduce the length of time spent on the reconciliation of changes to hardware and

data and documentation by utilizing the configuration change accountability and traceability reports.

The "Gemini Vehicle Configuration History" report 3 was especially useful in this respect. It was

distributed weekly and issued separately for each vehicle. It traced the identity and change history of
4

each item of vehicle hardware controlled by the GATV Detail Model Specifications. This report was

one of the basic tools used by SSD/Aerospace during vehicle acceptance and the configuration audit at

ETR.

The LMSC CMO assumed responsibility for assuring that all Class II engineering changes were

furnished to the AFPRO for review and concurrence prior to their incorporation through the engineer-

ing release system.

The Controlled Configuration Article system for parts accountability was a significant aid in pro-

viding traceability. Each component designated, was given an eight digit CCA number. The first four

digits identified the component though not its exact configuration and the last four digits were the unit

serial number. Since LMSC kept detailed records on the history of articles by CCA number, this was

the basis for screening to purge the system of suspect or nonflightworthy items.
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Prior to final acceptance of each GATV at the factory in Sunnyvale, representatives from

SSD/Aerospace and the AFPRO conducted a configuration review of the GATV, its associated AGE and

the applicable drawings, data and documentation.

A final SSD/Aerospace configuration review of the GATV and its associated AGE was performed

at ETR in conjunction with the LMSC GATV Launch Audit. All ECP's scheduled for incorporation since

shipment from the factory were reviewed to insure proper implementation, validation and accountability.

All ETR test results were reviewed for completeness, compliance with the applicable specifications and

to assure compatibility of the AGE with the particular vehicle undergoing test. The major replacement

items were reviewed to assure authorized configuration and finally the critical spares list for support

of the launch was reviewed to insure that the configuration of the spares was correct and compatible

with the configuration of the GATV on the launch pad.

3. RELIABILITY

a. Quality Control

The failure reporting, analysis and corrective action system was a function that was common to

the reliability and quality programs. Both the reliability and quality control programs were carried

out by NASA Programs Product Assurance at LMSC, which could in this way assure effective coordina-

tion of all of the activities concerned. Failures and other discrepancies included in the system were

those that occurred in receiving inspection, manufacturing, final assembly, systems test, and launch

site tests. Flight failures were handled separately.

(I) Failed Equipment and Discrepancy Report (FEDR)

When a failure or discrepancy was observed, the proper Product Assurance (inspection) repre-

sentative initiated a Failed Equipment and Discrepancy Report (FEDR). A reliability representative

immediately conducted an on-the-spot failure investigation. Failure analysis and corrective action

followed. Disposition of the discrepant material or equipment (i. e. , rework, repair, use-as-is or

scrap) was made by a Material Review Board (MRB), and was based on the judgment of cognizant engi-

neering as well as the reliability analysis. After all action had been completed, the FEDR was signed

by MRB and AFPRO and given general distribution. One copy of each FEDR was forwarded to SSD by

Product Assurance. A daily listing of significant FEDR's on vehicle equipment was distributed to

responsible organizations and to AFPRO within twenty-four hours of a failure. A significant FEDR

was one that included a trouble or failure (but not a nonfunctional discrepancy) that occurred on a vehi-

cle during system test or at the launch base.

(Z) Corrective Action Repair and Diagnosis (CARD)

NASA Programs Product Assurance at LMSC initiated an analysis of failed equipment, as soon as

the failure had been verified. On the Gemini Program the analysis was taken to as low a level as neces-

sary to determine the actual cause of the failure or discrepancy, and to provide sufficient information

to effect corrective action. On all critical equipment failures the analysis was performed down to

piece part level.

In the case of nonfunctional discrepancies both analysis and ensuing corrective action was per-

formed on the spot, insofar as was possible. However, in ordinary circumstances a CARD was ini-

tiated to document each of the one or more steps required for an analysis. A CARD was assigned to

a cognizant organization, and that organization was required to provide specific information or action.
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DocumentationofthisactionwasmadeontheCARD,andit wasthen returned to the reliability engineer

responsible for the analysis. Wherever it was advantageous, a CARD, accompanied by a discrepant

component, was assigned to the diagnostic _est laboratory for analysis. Additional CARD's were

assigned until a definite cause of failure had been determined. Failure analysis, exclusive of diagnos-

tic testing, was completed expeditiously. Normally, two weeks were allowed for completion of a CARD.

However, on the Gemini Program, special effort was made to expedite CARD closure,usually on an

around-the-clock basis, on discrepancies occurring in the manufacturing electronics or in systems test

areas when it was necessary to maintain schedules. In the course of the failure analysis of a discrep-

ancy, a CARD was assigned to investigate a specific factor of that discrepancy. When it was found

that a particular item appeared to have more than one failure nnode or that a failure mode was associ-

ated with a manufacturing process and repeated itself on several items, special failure studies were

initiated under the reliability program. In these studies, the reliability engineer examined all FEDR's

and CARD's associated with a recurrent mode to search for a more basic cause of failure and to cor-

relate the group of discrepancies. Each study was documented and included a listing of related failures,

together with recommendations for preventing their recurrence; the recommendations were assigned

as action items to the organization that could resolve the problem. Copies of reports were maintained

by NASA Programs Product Assurance at LMSC for review by SSD and Aerospace.

As a result of the reliability investigation and failure analysis, the action necessary to correct

the discrepancy, and to preclude its recurrence, together with the organization assigned, was indi-

cated on the FEDR or CARD. If problems crossed organization lines, or responsibility was disclaimed

by an assigned organization, the unresolved item was referred for assignment to a Corrective Action

Committee, made up of individuals from the several organizations. When the corrective action was

completed it was documented on the form. In the case of analysis or corrective action required by a

supplier, the procurement organization coordinated the processing of the CARD. Following verifica-

tion (by re-inspection, re -analysis, etc.) the CARD was closed out by NASA Programs Product

Assurance at LMSC, and distribution made in the same manner as the FEDR. Although a maximum of

two weeks was allowed for corrective action assigned to an LMSC organization or six weeks when

assigned to a supplier, CARD's on the GATV Program were expedited. SSD/Aerospace reviewed all

CARD's, along with FEDR's, to assure themselves of the adequacy of their content prior to acceptance

of closeout. If additional information had to be provided to accept the conclusions on the CARD,

Aerospace requested this information of LMSC, either directly or by going through SSD.

(3) Urgent Action Survey (UAS)

This survey was a method used for rapid dissemination of information related to discrepancies,

failures or troubles that required immediate management action to prevent extensive damage or

destruction to equipment. Although at least some of these surveys resulted in prevention of reliability

degradation (e. g. , from stock sweep of suspected items), they were, nevertheless, included under the

quality program.

b. Surveillance - Agena Family Flights

The failure reports and subsequent analyses from all NASA Agena programs were continually

monitored in search of repetitive failures that might affect Gemini Agena hardware. When these were

noted, a problem report was established, and given intensive study by NASA Product Assurance at
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LMSC, along with SSD/Aerospace. A report defining the common problem and indicating the steps to be

taken to achieve a solution, was published. Problem area reports were published in monthly discrepancy

analysis reports. The Gemini program derived a direct benefit from these reports. Gemini Agena

Target Vehicle telemetered data received during the period from liftoff through mission completion was

also analyzed by data groups for detection of failures. Responsible subsystem engineers, assisted by a

Product Assurance reliability representative, verified the failure and recorded it on a FEDR. Task

assignments for further investigation or diagnosis were made by issuing a CARD as directed by the

reliability engineer. Corrective action that applied to subsequent vehicles was assigned in the same way.

AFPRO/SSD/Aerospace had the opportunity to conduct their own reviews of the reliability program

at the LMSC facilities at any time. The Product Assurance group at LMSC maintained working data files

for all Agena programs, in which data pertinent to the reliability programs were available for these

reviews. Records of the control and audit system and the failure reporting system, together with copies

of documents that had been reviewed, were included in these files. In addition, all organizations con-

cerned delivered to NASA Product Assurance at LMSC copies of reports, analyses, and other documents

prepared in the course of the Gemini Agena reliability program and required by this plan. These copies

were forwarded to Product Assurance as they were generated. The customer was given full opportunity

to assess the reliability program and to determine that the contractual reliability requirements were

being met.

c. Continuous Review of Contractor and Vendor Problems; Failure Analysis

(1) Monthly Progress Report

The Gemini Agena Target Vehicle (GATV) Program Progress Report was a monthly report on all

phases of the Gemini program, indicating significant progress accomplished during the report period.

The Product Assurance section of this report contained paragraphs pertaining to reliability activities

required by this program plan. Reliability Program Status Reports (including significant task accom-

plishments, updated milestone schedules, and summary of reliability budget status for major tasks)

the Reliability Estimate, and Analysis Reports (including quantitative reliability estimates of vehicle

systems and subsystems of GATV's, as well as an accompanying analysis of the reliability) were

included within the Product Assurance section of the GATV Program Progress Report.

(Z) Discrepancy Analysis of Preflight Equipment Failures

This report was an objective analysis of preflight equipment failures encountered during the

reporting month on the Gemini Agena Program. Summaries of vehicle functional discrepancies were

statused each month, pertinent vehicle nonfunctional FEDR's were presented for updating information,

status of problem areas were indicated, and component functional discrepancies were listed for the

month in which they occurred. A cumulative summary of rejected vehicle components was also included.

In addition to this report, copies of all GATV FEDR's, CARD's and UAS's were forwarded to SSD

and Aerospace on a weekly basis. A perpetual summary of all GATV FEDR's and CARD's, including

their status, was maintained by LMSC/NASA Product Assurance and Aerospace.

In order to prevent the introduction of degrading effects that would reduce reliability, surveillance

of manufacturing, assembly, and test activities was required. In the manufacturing electronics area,

particularly, normal inspection was not sufficient; the unusual demands inherent in GATV man-in-space

requirements, together with the need to utilize previously untried methods, precluded any routine operation.
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Inlieuofareliabilitytestingprogram,reliabilityengineersmonitoredthemanufacturingandfabrication
ofelectroniccomponentspeculiartotheGeminivehicleinordertoparticipateimmediatelyin correction
ofinadequatepracticesandprocessesastheyweredetectedandtomodifyinspectionplansaccordingly.

Reliabilityengineersalsomaintainedsurveillanceof all stagesof GATVproduction;finalassembly,
hot-fire, andsystemstest. Thisprovidedadditionalassurancethatdesignreliabilityintegritywasbeing
maintainedandthatinspectionandtestrequirementswereproperlyinterpreted.Further, there was an

opportunity to present the reliability point of view during resolutions of problems encountered during

systems test.

A continuous review and surveillance of contractor and vendor problems and failure analysis was

maintained by Aerospace in close coordination with SSD, LMSC cognizant personnel and vendor person-

nel. This included FEDR, CARD and accompanying paper review, and review of those failed components,

and/or subsystems in failure analysis.

d. Extra Care Program

In order to place constant emphasis on the need for quality workmanship and high reliability in

the Gemini program, Lockheed Missiles &Space Company inaugurated the Gemini Extra Care Program,

June 3, 1964, in cooperation with the U.S. Air Force and NASA. This program was designed to make

certain that the Agena Target Vehicles were, in every way, as near perfect as they could be made.

Over 2000 employees in appropriate Agena Target Vehicle departments were specially selected for

Gemini team work. Selections were based on good performance, knowledge of work, seniority and

attitude.

Through the Gemini Extra Care Program there was increased inspection of all work, and constant

reminders of the need for Extra Care. All major components and significant parts in the work flow were

marked with special Gemini stamps and decals. All related paper work was identified in a similar

manner. Gemini work areas were identified with prominently displayed signs. Motion picture showings

and special brochures kept Gemini teams abreast of the Manned Space Program. Regular newsletters

and articles kept them well informed of Extra Care and Gemini progress.

Monthly and semi-annual performance awards were presented to those team members who exhibited

outstanding performance, and who made special contributions in the Gemini program. Quarterly group

awards were made in recognition of a work section's outstanding achievements during the quarter.

Employees who submitted suggestions leading to higher reliability, quality, or process improvement

also received special awards.

The success of the Gemini Extra Care Program is indicated by the drastic decrease in workman-

ship FEDR's (Figure III. B-l) recorded in the Gemini final assembly area. It is significant to note

that the forward auxiliary racks for 5002, 5003, 5004 and 5006 were fabricated with no workmanship

FEDR's. In fact, the 5006 rack did not have a single FEDR or discrepancy during its fabrication -

over 27,000 separate operations.

Special skill training was given to Gemini employees as the need arose. Gemini managers and

supervisors attended training sessions on the principles and techniques of employee motivation. Top

management personnel toured Gemini areas regularly to extend support. Continuous morale assess-

ment and follow-up corrective action, if necessary, by Extra Care coordinators, helped maintain a

strong team spirit and attitude in the Gemini work areas.
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4. ACCEPTANCE

a. Engine Acceptance (PPS/SPS)

The mission plan required that the spacecraft be docked with the Agena vehicle in both the passive

and active mode. It was therefore necessary to re-rate the primary and secondary propulsion systems

for operation in a manned configuration. Within the limitations posed by the program, a systematic

component/system review of the engine was established.

The review was patterned after the Gemini launch vehicle propulsion review and the primary

purpose was to establish that:

• Hardware met the performance requirements of the model specification.

• Hardware used with discrepancies did not compromise system integrity.

• When a failure occurred a component failure analysis was performed.

• Corrective action was taken when deemed necessary.

The acceptance documentation for the engine systems was reviewed by SSD/Aerospace at the

Bell Aerosystems Corporation facilities in Buffalo. This review was, when possible, made prior

to the shipment of the engines from the Bell plant.

The following is a list of the major documentation reviewed.

• Acceptance Test Lo_.. This document contains all acceptance data, anomalies, deviations,

replacement summarles and configuration.

• Component Histor[ Card. This card contains the complete history of a component including

a record of problems encountered in manufacturing and after component acceptance.

• Vendor Discrepancy Records. This form describes discrepancies encountered with vendor

components after receipt of these components at the Bell plant.

• Failure Reports. This is' primarily used when a functional component fails after it had been

previously accepted.

• Failure Analysis and Corrective Action Report. Each failure report is followed by this

report.

• Materials Review Report. This form is primarily used during manufacture to report non-

functional discrepancies.

• Functional Test Reports. This is used by the inspection laboratory to describe all of the

functional tests required for component acceptance.

After completion of the review, recommendations were made by Aerospace to SSD to either

accept the system or to direct specific rework and retest.

b. Vehicle Acceptance

(I) Philosophy

The GATV vehicle acceptance plan was patterned after the one used on the Gemini Launch

Vehicle but with such modifications as necessary to achieve its objectives in a manner compatible with

LMSC operations and procedures. The plan consisted of a review of data, contractor failure reports,

contractor documentation including critical component histories, and finally a physical inspection of

the hardware. The acceptance requirements and procedures to be followed by the SSD/Aerospace vehicle

acceptance team (VAT) and LMSC were detailed in an Aerospace Corporation report 5 which was formally

made a part of the LMSC contract in a Contract Change Notice.
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(2) Subsystem Data Review

Acceptance of a vehicle for shipment to Cape Kennedy depended upon a thorough detailed customer

review of the data accumulated by subsystem and system testing in the LMSC C-10 test complex.

These tests were laid out bytask number, with Tasks Ithrough VIdesignated for vehicle and

subsystem preparations, and Tasks VIII through X designated as final system tests used as a basis

for final vehicle acceptance. Task VII was atest used early in the Agena program and subsequently

discarded.

Tasks I through VI provided verification of: vehicle wiring and interconnections with the test com-

plex; power hookup including measurement of magnitudes of voltage, current, ripple and noise; range

safety command system; guidance and flight control; communications and control; and the Agena/

target docking adapter (TDA) interface.

The final systems tests were based upon a simulated countdown and flight, both ascent phase and

orbital, with data recordings of the time and event functions which would occur during a mission.

Both subsystem and final tests included data for checking appropriate event sequences against

time (go no-go) and quantitative recordings of gain levels, signal responses, etc. All data from both

sets of tests were subjected to a detailed evaluation, and all questions and discrepancies were re-

solved prior to vehicle acceptance.

(3) Discrepancy Reports.

Past experience on other programs had shown that some formal method was required to expedite

the resolution of problem areas and to answer questions which originated during the several VAT

review activities. Since LMSC already had in operation a discrepancy reporting system within their

product assurance organization, it was decided to use that basic system and adapt it to the needs of

the VAT. This was accomplished through coordination with the Program Office and Product Assurance

personnel.

A summary of the discrepancies written by the VAT is shown in Table Ill.]3-1.

Table IlL B -I.

I_'_._V ehicle

Activity

SYSTEMS

DATA REVIEW

CRIT.

COMPONENT

DATA REVIEW

PHYSICAL

INSPEC TION

T OT ALS

5001

Summary of Discrepancies Written by the

Vehicle Acceptance Team

5002

46 41

5003 5004

16 8

N/A N/A 7 15

N/A iZ 24 7

46 53 47 30

5005 5006

7 6

9 8

4 8

20 22

5001R

16

11

3Z
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(4) FEDRReview

A preflightanalysisofeachGATVwasconductedbyLMSCduringthevehicleacceptanceactivi-
ties. Theprimarypurposeoftheseactivitieswasto reviewthequalityoftheparticularvehicleand,
havingcorrectedanydiscrepancies,presentit for customeracceptance.Duringthisreviewareliabil-
ity analysisofthevehicleunderinvestigationwasrequiredasoneof thestepsofvehicleacceptance.
Thelatestestimateof reliability, resultsofreliabilitytests,qualificationstatus,andcorrective
actionresultingfromfailurereportswereall includedin thisanalysis.

Prior to acceptanceoftheGATVvehicle,all vehiclelogswerereviewedfor anyqualityand
reliabilityassociatedproblems.Thisincludedacompletereviewofall FEDR'sandassociatedpaper.
W_erefailureanalysis,vendorreplies,or additionalworkwasrequiredto satisfythecauseandcor-
rectiveactionoftheproblem,theFEDRwasleft openuntil suchtimeasall individualsconcernedwith
theproblem,includingLMSC/Aerospace/SSDdesignengineeringandqualitycontrol,hadapprovedthe
FEDRandassociatedaction.

TheworkingrelationshiponanomalousFEDR'srequiringadditionalinformationwasaninformal
one,duetothenatureofthecontract. However,LMSCqualitydidcomplywithAerospace/SSDrequests
for additionalinformation,whenneededandrequested,to completeaFEDRhistoryand/ortoclose
outa problem.

A FEDRsummaryis shownonTableIIl.B-Z.

(5) CriticalComponentReview
Twenty-five(Z5)GATVcomponentsconsideredcriticalto thesafetyof theastronautswere

selectedbySSD/Aerospacefor specialattention.LMSCwascontracturallyrequiredto assemble,
summarize,reviewandmaintainthedetailedhistoryof eachofthesecomponentsfor eachvehicleand
theflight-approvedspares.

Prior to acceptanceofeachvehicle,eachcriticalcomponentdatapackagewasreviewedbyLMSC
(Engineering,ProgramOffice,QualityandReliability),SSDandAerospace.Eachpackagecontained,
asaminimum,thefollowing:

l) TitlePage
2) TableofContentsandCheckSheet
3) ChronologicalHistoryofSignificantEvents
4) Data- Includinginpart:

a) FEDR's
b) CARD
c) MRB reports

d) Calibration Data

e) Operating Time

f) Manufacturing Test Data

g) Acceptance Test Data
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Table Ill. B -Z.

Final

As sy

Vehicle F NF

5001 11 1Z8

FEDR Summary

VST

F NF

75 + 119 x

ETR

F NF

13 Z2

48 32 19

Z7 12 15

8 18 i0

9 6 14

8 9 Ii

5 7 6

5002 Z 24 17

5003 5 Z8 Z0

5004 I0 31 5

5005 3 26 4

5006 0 38 8

5001R 7 107" 7

F

NF

Includes 41 from SCTB

Includes 48 from SCTB

Includes 85 from refurbish-

ment of 5001 following use

of 5001 for initial testing
at ETR.

Functional

Non -functional

A comprehensive technical evaluation of these data was made by the contractor and customer

technical teams. Components were removed and replaced on vehicles (and retested), when information

found in the data packages cast doubts on the integrity of the components.

(6) Physical Inspection.

In keeping with the "Extra Care" policy instituted for the GATV program, a VAT physical inspec-

tion team was created to give an "outsiders' look" at the vehicle. Whereas the LMSC and Air Force

product assurance and quality control inspection teams were bounded by contractual requirements dur-

ing these inspections, the VAT inspection team was authorized to squawk anything which looked

unsound - even though it may have been per blueprint. This approach proved to be beneficial in

that in several cases where an item was per print but a borderline case, a reanalysis of the situation

resulted in equipment change-out, a minor redesign or other remedial action.
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5. PRE-LAUNCHACTIVITIES

Launchpreparationsfor eachvehiclewereofacontinuingnaturebuttherewereseveralregularly
scheduledpre-launchactivitieswhichin themselveswereofvaluebecausetheywere"forcingfunction"
statusreviews. Thesein chronologicalorderwere:

1) AnSSD/Aerospace"Scrubdown"at LMSCconductedapproximatelyamonthprior tolaunch.
2) An"TechnicalReview"conductedfor NASAMSCabout3weeksbefore

launch.
3) AnLMSC"LaunchAudit"conductedduringthefinaltwoweeksbeforelaunch.
4) TechnicalReviewUpdate,conductedaboutaweekbeforelaunch.
5) TheFlightSafetyReviewconductedtwodaysbeforelaunch.

A shortdescriptionofsomeof thesereviewsfollows.
a. Scrubdowns

The "Scrubdown" was a thorough review of hardware and procedure readiness for launch conducted

by SSD/Aerospace with LMSC. All flight problems from other Agena programs were reviewed for their

impact on the upcoming GATV flight and those which could influence GATV performance were studied in

depth along with the corrective action being taken. Although day-to-day contact was maintained between

SSD/Aerospace and LMSC engineers, the scrubdowns did generate new action items which when completed

either increased the mission probability of success or at the minimum provided program management

with a detailed understanding of risks involved.

b. Technical Reviews

6
In addition to the normal technical and management program monitoring, a significant design review

was conducted prior to the first launch of the Gemini Atlas Agena Target Vehicle. This effort culminated

in a formal presentation to an ad hoc group of NASA Directors. Although the data presented to this

committee was considerably summarized, all facets of the program were investigated in depth.

A second formal design review 7 was presented to the NASA ad hoc committee after the redesign

of the GATV following the engine "hard start" failure of GATV 5002. Although all aspects of the target

vehicle were open to reconsideration the emphasis of this second design review was centered around the

start system and start characteristics of the 8247 engine.

The Technical Review conducted for MSC prior to each launch consisted of a thorough

review of all technical matters which could influence the upcoming flight. It provided MSC with

an understanding of open problems and presented to them sufficient facts so that they could evaluate

all known flight risks.

The LMSC "Launch Audit" was a Lockheed in-house review of hardware status to insure that all

directed action had taken place. Since it was conducted by the LMSC program Chief Systems Engineer

it represented an active meaningful review.

c. ETR Surveillance

The difference between the GLV and the GATV effort at ETR was related to the difference in

program philosophy and the extent of surveillance required to achieve the basic mission. Accordingly,

Lockheed did not make any significant changes in their methods of normal Agena ETR surveillance

except for program-peculiar tests.
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The Aerospace technical surveillance role permitted their participation in the Flight Test Working

Group and all significant activity at ETR

d. Flight Safety Review

The Flight Safety Review Board activities associated with the GATV were the same as those of

the GLV and are outlined in the previous section II. B. 8. Flight Safety Review Board.

6. POST-FLIGHT DATA ANALYSIS

Immediately after each GATV launch, and prior to the GLV launch, all data was given a rapid,

but thorohgh analysis in the LMSC hanger at ETR. The data reviewed was from Telemetry Statien Z

(TEL Z) and in analog form. This "quick look" allowed Gemini Launch Control to launch the manned

vehicle, knowing that the target vehicle had met its objectives.

After the mission, LMSC, SSD, NASA and Aerospace conducted separate ascent data analyses

using data available from NASA-Houston, ETR (TEL Z) and LMSC. Particularly after those flights

where troubles were encountered, the unfiltered analog data from ETR made possible a more rapid

and accurate identification of the problems, than data which had been filtered and computerized. The

PCM data received from the Agena was printed point for point to produce analog-type data. The com-

puter gated all data received and discarded all data during temporary synch losses. Much of this

discarded data was recovered by careful review of the analo_ type data rolls.

When the individual studies were completed, joint meetings compared results and the partici-

pating organizations arrived at the final results.

While excellent coverage of the ascent of the Agena was possible, the "on orbit" data available

ranged from scanty to almost non-existent. Data was normally available only from maneuvers which

took place over a ground station, (although up to Z0 minutes of taped data could be recovered) and

after a few orbits, the number of ground stations was reduced to only one or two.
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AGE

AFPRO

ATV
CARD

CCA
CCB

CMO
ECP

ETR
FACI

FEDR
GATV

J-FACT

LSMC

MRB

MSC

NASA

PCM

Plan X

PPS

SCTB

SLD

SPS

SSD

TDA

TEL Z

UAS

VAT

VST

SECTION HI. B

DEFINITIONS

Aerospace Ground Equipment.

Air Force Plant Representative's Office.

Agena Target Vehicle.

Corrective Action Repair & Diagnosis.

Controlled Configuration Article.

Configuration Control Board.

Configuration Management Office.

Engineering Change Proposal.

Eastern Test Range.

First Article Configuration Inspection.

Failed Equipment Discrepancy Report.

Gemini Agena Target Vehicle.

Joint Flight Acceptance Composite Test.

Lockheed Missiles and Space Company

Material Review Board.

Manned Spacecraft Center

National Aeronautics and Space Administration.

Pulse Code Modulation.

GATV Spacecraft Compatibility Test conducted at ETR.

Primary Propulsion System.

Santa Cruz Test Base, LMSC

Simultaneous Launch Demonstration.

Secondary Propulsion System.

Target Docking Adapter

Telemetry Receiving Station at ETR.

Urgent Action Survey.

Vehicle Acceptance Team.

Vehicle Systems Test.
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C. GEMINI AGENA TARGET VEHICLE DEVELOPMENT AND CONFIGURATION

I. GENERAL

The Gemini Agena Target Vehicle (GATV) was developed based on mission requirements

from NASA/MSC:

I) Establish a circular orbit within specified limits.

Z) Provide a stable target with which the spacecraft can rendezvous and dock.

3) Respond to commands from either ground stations or the spacecraft.

4) Perform a complex sequence of orbital maneuvers by means of either real time or stored

commands if less than optimum launch of Agena or spacecraft occurs.

5) Provide an active orbit life of 5 days.

These requirements were analyzed by Lockheed Missiles and Space Company (LMSC) to provide

design criteria for the unique hardware needed to adapt the Standard Agena D to the Gemini mission.

This effort was begun with the award of a letter contract on 1 May 196Z, and evolved into the following

major hardware items:

1) Modification of the primary propulsion system to provide a multiple restart capability (one
ascent burn and four restarts on orbit).

2) Addition of a secondary propulsion system (two 16-pound and two Z00-pound thrusters) to
provide ullage orientation and minor orbit adjustments.

3) Design of a digital command and communications subsystem including a programmer, con-

troller, PCM telemetry system and on-board tape recorder.

4) Design of changes to provide the guidance and control functions peculiar to the GATV. These
included modification of the Standard Agena guidance J-Box, flight control J-Box, and

flight control electronics package, and the addition of a new unit, the flight command logic

package, to provide the appropriate interface between the guidance and control functions
and the command equipment.

5) Addition of an auxiliary forward equipment rack with an interface capable of supporting the
target docking adapter.

The sections following will provide more detail regarding these Gemini peculiars. General

vehicle configuration is shown in Figure III. C-1.
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2. AIRFRAME

a. Subsystem Description

The GATV configuration is illustrated in Figure III. C-2.

The target vehicle consisted of seven major structural sections designated as follows:

• Aerodynamic Shroud

• Target Docking Adapter (Government Furnished Equipment (GFE) manufactured by
McDonnell Aircraft Corporation)

• Auxiliary Forward Rack

• Forward Section

• Integral Skin/Propellant Tank

• Aft Section

• Booster Adapter

The shroud and the booster adapter were not a part of the orbital vehicle; the shroud was ejected

during the ascent phase and the booster adapter remained with the Atlas launch vehicle at separation.

(1) Aerodynamic Shroud

The aerodynamic shroud was a weather-tight, RF-transparent, jettisonable fairing constructed in

two segments with a longitudinal parting plane. It was 117 inches long and consisted of a cylinder

23. S inches long by 65 inches in diameter, blended to a 1S-degree half-angle cone topped by a 12-inch-

diameter hemisphere. The phenolic fiberglass skin was the main structural member. A redundant nose-

cone latch assembly provided positive nose cone-shroud closure. A change that was introduced after

the flight of Vehicle 5002 was the modification of the aft actuator bracket to preclude spring hangup which

occurred on separation tests for another program.

These failures were on one "cold" ambient test, when one of the two brackets hung up, and on one

'rhot" simulated-ascent-condition test when both brackets hung up. The hangup was caused by excessive

vertical and horizontal translation of the forward-pivot fitting on the shroud about the aft-pivot fitting on

the Agena-forward rack, which resulted in the shroud-pivot fitting locking into coils of the actuator

spring between the two fittings. The modification applied to the GATV 500B shroud (and subsequent

shrouds) was to widen the lip of the pivot fitting and preclude future hangup.

(2) Target Docking Adapter

The TDA was bolted on the forward face of the auxiliary rack and the shroud mounts on the TDA

adapter section, shielding the docking cone during ascent.

(B) Auxiliary Forward Rack

The auxiliary forward rack was a 17. S-inch extension of the forward midbody, peculiar to the

Gemini Agena Target Vehicle design. Its purpose was to house equipment peculiar to the GATV, and

was in essence part of the payload. It was bolted to the forward midbody and structurally supported

the TDA and the shroud. A diaphragm at the forward end of the auxiliary rack controlled the thermal

environment of the TDA. The auxiliary rack housed the equipment indicated in Figure IH. C-3;

access doors were provided for all components and interface electrical connectors.

(4) Forward Section

The GATV forward section consisted of external skin and access doors held and reinforced by

three stiffener rings. Within the forward section, a truss-type tubular aluminum frame provided

additional strength to the shell and mounting locations for equipment. The forward section housed

the equipment shown in Figure III. C-4.
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(5) Integral Skin/propellant Tank Assembly

The GATV propellant tank was both the vehicle cylindrical skin and a dual-chamber tank assembly.

The overall tank length, including the hemispherical ends, was 129.08 inches. The volume of the

forward tank was 75. 3 cubic feet, and with baffles installed, the nominal capacity was 553. 31 gallons

(or 3,818 pounds) of unsymmetrical dimethylhydrazine (UDMH). The vohtme of the aft cell was 98.4

cubic feet, and with baffles installed, the nominal capacity was 738.0 gallons (or 9,700 pounds) of

inhibited red fuming nitric acid (IRFNA). Two fairings on the outside of the tank section accommo-

dated electrical wiring, plumbing, and cooling air flow from the forward to the aft section of the

vehicle.

(6) Aft Section

The aft section provided the mounting structure for the primary and secondary propulsion systems,

the attitude control gas tanks, the thrust valve clusters, and the hydraulic power package. The aft sec-

tion consisted primarily of the engine-mounting cone and the equipment rack (Figure III. C-5). The aft

section was fabricated from the basic Agena thrust cone and equipment rack by adding the following: a

modified optional engine-cone-shear-panel kit to support additional weight; program-peculiar shear

panels, Secondary Propulsion System (SPS) mounting structure on the aft equipment rack structure

(Figure III. C-6); and thermal protection shields over the thrust cone and the SPS units.

A change made after the GATV 5002 flight was the shock-mounting of the following equipment in

the aft section:

(7)

a)

b)

c)

d)

e)

f)

Safe/Arm J-box

Aft signal conditioner if-box

Aft power distribution J-box

Two accelerometer amplifiers (-Z axis forward of Sta 46Z. 5)

Turbine over speed signal detection if-box

Turbine overspeed gate and Pilot operated solenoid valve (POSV) (and the relocation
of the accelerometers and amplifiers to the aft approximately five feet)

Booster Adapter

The booster adapter connected the GATV to the Atlas booster.

diameter cylinder that flared to a diameter of 71 inches at the Atlas attachment plane.

permanently attached to the Atlas booster.

b. Component History

(1) Development Testing

The adapter consisted of a 60-inch

The adapter was

(a) Static Tests. The calculated loads for the Gemini Agena Target Vehicle were less than the design

loads for the Standard Agena. Structural tests performed on the Standard Agena program satisfied the

test requirements of the Gemini program for the structural elements that were identical. A comparison

of expected and design loads is shown in Figure HI. C-7 and III. C-8. After a detailed stress analysis

was conducted, the Gemini peculiar structure was successfully tested for the GATV design loads. The

GATV-peculiar structural tests were as follows:
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1) The forward section, consisting of a simulated shroud, target docking adapter, forward

auxiliary rack, forward midbody, and simulated tank "Y" ring, was tested to the following

loading conditions :

a) Bending moment and shear loads caused by maximum airload conditions.

b) Compressive axial loading corresponding to the BECO condition.

All loads were applied to 200 percent of limit without failure.

2) The aft section, consisting of the rack and thrust cone, was tested to the following

loading conditions:

a) Tensile axial loading corresponding to the SECO condition.

b) Side loads corresponding to the maximum ground handling conditions.

All loads were applied to ZOO percent of limit without failure

GATV design air loads were based on launch trajectories defined in LMSC-A604934, Design

Trajectory for Gemini Mission, 15 August t964, t and LMSC document SS-570-5351, "Computer

Program for MSFC Wind Criteria for AMR, " 8 May 1963. 2 Another source is, Loads Analysis

Report for Gemini 37205, LMSC-A633170, 1 September 1964.3

(b) Dynamic Tests. Structural qualification for dynamic flight environments for the forward and

aft sections was conducted in two steps. These were (1) sinus0idal sweep testing with an electro-

dynamic shaker in the three mutually perpendicular axes, for frequencies noted below, and (Z)

acoustic testing at Santa Cruz Test Base, using an acoustic environment produced by an 8247 engine

firing, to account for high frequency random excitation. The maximum overall acoustic levels

reached during these tests were 158.3 db for the forward rack and 147.9 db for the aft rack.

The sinusoidal test levels for the forward rack were as follows:

Range Level

A_is _

X 10- 140 1.5

140-250 3.0

Y- Z 10-100 1.0

100-250 Z.O

Sinusoidal test levels for the aft rack were:

Range Level

Axis _

X I0- I00 Z. 0

100-400 3.0

Y - Z I0-I00 1.0

100-400 2.0

The basic structure and equipment support bracketry in the forward area of the Gemini Target

Vehicle were qualified for the dynamic flight environment. The term "forward area" includes the

Gemini forward auxiliary rack and Gemini-peculiar installations in the Agena D forward rack.

The aft rack basic structure and equipment support hardware also were qualified for the dynamic

flight environment. The aft rack included the aft rack basic structure, engine cone, program peculiar

support structure, dummy engine and two secondary propulsion units.
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3. PROPULSION SYSTEMS

(a) Primary Propulsion System. The primary propulsion system was composed of a helium

pressurization system, propellant tanks anda turbopump-fed 16,000-pound thrust engine as shown in

Figure III.C-9. The primary purpose of this system was to inject the target vehicle into the prescribed

orbit. In orbit it had a minimum capability of four engine restarts to make large plane or phase change

maneuvers.

The pressurization system maintained the required pump inlet pressure by supplying helium gas to

both propellant tanks. The helium was stored ina high pressure sphere and was separated from the pro-

pellant tanks by the helium control valve. The propellant tanks were pre-pressurizedin order to provide

adequate pump inlet pressures during engine start. Tank pressure was maintained during engine opera-

tion by flowing the helium from the helium tank through orifices located in the helium control valve to the

propellant tanks. Helium flow was started I.5 seconds after engine start by an electrical signal that

initiated a squib. Helium flow continued until all of the helium was expelled into the propellant tanks.

At 318 seconds after opening the helium valve, a second squib was fired isolating the oxidizer tank

from the helium supply. This prevented a hoop compression load on the common tank dome by ensur-

ing that the oxidizer tank pressure was lower than the fuel tank pressure.

The main engine used IRFNA (inhibited red fuming nitric acid) and UDMH (unsymmetrical dirnethyl-

hydrazine) as propellants. The engine was capable of multiple restarts, using a liquid start system with

tanks that were recharged during engine operation.

Starting was accomplished by electrically signalling the fuel and oxidizer gas generator solenoid

valves open. The combustion gases generated were utilized to operate a single stage impulse turbine

which was geared to a centrifugal fuel and oxidizer pump. The pressure generated by the oxidizer pump

opened the main oxidizer valve, permitting the oxidizer to flow first through the thrust chamber cooling

passages and then to the injector. A pressure buildup in the oxidizer manifold of the injector trippeda

pressure switch that signaled the fuel valve to open. This method of starting ensured that the oxidizer

entered the thrust chamber before the fuel.

This starting sequence was a change from the original sequence which did not contain any pressure

switches. The original start signal, in addition to opening the fuel and oxidizer gas generator valves,

also opened the main fuel valve. This method of starting permitted the fuel to enter the thrust chamber

before the oxidizer and was considered the cause of the flight failure of Vehicle 5002. A further discus-

sion of this redesign is in Section III-E where Project Surefire is described. This change was effect-

ive on all vehicles subsequent to Vehicle 5002.

Thrust vector control was obtained by two mutually perpendicular hydraulic actuators. The forward

end of the engine was mounted in a gimbal ring. A portion of the fuel from the fuel pump was used to

drive a hydraulic pump.

Propellant isolation valves were installed between the propellant tanks and the pump inlets. These

valves were closed when the engine was shut down and the residual propellants in the engine were vented

overboard through these valves.

An electronic overspeed trip device connected to the gearbox was utilized to shut down the engine

when the turbine speed was 20 percent above normal. This device was only in operation during orbital

operation of the engine. The original configuration hadthe overspeed trip enabled during the ascent burn

in addition to the on-orbit operations. After a slow opening fuel valve on a standard Agena flight caused

an overspeed condition, without the loss of the vehicle/mission, a new study of the overspeed trip was

made. The study showed that there were conditions that could cause a temporary overspeed from which

the engine could recover. Since it could not recover during the ascent burn from an overspeed shut-

down and, since crew safety was not a factor, it was decided to disable the overspeed trip during the

ascent burn.
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(b) Secondary Propulsion System. The secondary propulsion system (SPS) consisted of two independent

modules mounted on opposite sides of the target vehicle aft section. Each module was capable of producing

a total impulse of 40,000 pound/seconds and consisted of a pressurization system, propellant tanks and a

large and a small thrust chamber capable, respectively, of producing 200 pounds of thrust and 16 pounds

of thrust. The 200-pound thrust chambers were used for producing velocity increments that were below

the minimum capability of the main engine. The 16-pound thrust chambers were used to orient the pro-

pellants prior to each main engine firing. This system was unique to the target vehicle and was not a

part of the standard Agena configuration. A schematic is shown in Figure Ill. C-10.

The pressurization system maintained the required pressure to the thrust chamber by supplying

high pressure nitrogen gas through a pressure regulator that reduced and maintained the pressure at

approximately Z05 psi. This pressure was supplied to the propellant tanks, each of which contained a

metal bellows used to provide orientation of the propellants during zero g coast periods. A solenoid

valve at the nitrogen tank outlet was closed at the end of each burn period, and opened 16 seconds prior

to each burn period to ensure that adequate tank pressures are available.

The thrust chambers utilized UDMH (unsymmetrical dimethylhydrazene) and MON (mixed oxides of

nitrogen) as propellants. The system was capable of multiple restarts. Starting was accomplished by

sending an electric signal to either the 16-pound or the 200-pound 3-way solenoid valve. When the sole-

noid opened, nitrogen gas pressure forced both the oxidizer and fuel poppets open, thereby allowing pro-

pellant flow to the thrust chamber; ignition was hypergolic. Shutdown was accomplished by removal of

the electrical signal which closed the 3-way solenoid and vented the nitrogen gas causing the poppets to

close.

This configuration was utilized for the entire flight program.
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4. ELECTRICAL POWER SUBSYSTEM

a. Subsystem Description

The electrical power subsystem of the GATV supplied the operating voltages and power requirements

for the propulsion, pyrotechnic, telemetry, command and communications, guidance and control, and

flight-termination system, as well as for the TDA.

Internally-mounted primary batteries began to furnish power shortly before launch when the primary

battery circuit was energized and the ground-supplied electrical power was disconnected. Unregulated

Z8 vdc power was supplied for most of the using components. Electrical power subsystem components

also modified the battery-supplied power to provide regulated 28 vdc and 115 v three-phase and single

phase a-c power. Power was distributed througha network of harnesses and junction boxes, with power

for pyrotechnic devices routed separately. Power for pyrotechnics was furnished by a diode-isolated

primary battery. Figure III. C-f1 is a block diagram of the electrical subsystem.

b. Component Description

Components of the electrical power system may be grouped into three functional categories: power

source components, power conversion components, and power control and distribution components. The

power source components included the primary battery units that supplied the initial source of energy to

the power conversion components and to the using system components. Also included were the self-

destruct system batteries, range safety shutdown system batteries, running lights system batteries, and

a GFE battery for acquisition lights in the TDA. Power conversion components, which modified the initial

power source to regulate tolerance limits or convert the power into various voltage forms, consisted of

a Type XIIA inverter and two Type IX dc-dc converters. Power control and distribution components

switched power from one unit to another and distributed power from the source to load points. The power

transfer switch, wiring harnesses and junction boxes were the primary components in this category.

The majority of the harnesses used on the GATV were supplied with the Standard Agena. Other compo-

nents of this system that were received with the Agena were as follows:

2 Type I-C primary batteries

1 Type IX dc/dc converter

1 Current sensor with differential amplifier

1 Ampere hour meter with current sensor

1 Power distribution J-Box

1 Aft instrumentation J-Box

1 Booster discrete J-Box

1 Aft safe/arm J-Box

1 Forward safe/arm J-Box.

Additional standard Agena components added to support the requirements of the GATV are as follows:

4 Type 1-C primary batteries$

1 Type IX dc/dc converter

1 Current sensor with differential amplifier

2 Premature separation switches

Reduced to 3 (total of 5) to correct center of gravity offset on Vehicles 5004, 5, 6, and I.
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To complete the GATV electrical subsystem the following equipment was added:

Forward power distribution J-Box

Aft power distribution J-Box

l Forward signal conditioner J-Box

Aft signal conditioner J-Box

1 Auxiliary forward safe/arm J-Box

l Running lights J-Box

1 Filter J-Box

1 Time Control J-Box

2 Type XVII primary batteries

2 Type V secondary batteries

2 Type VIA secondary batteries

l Long delay timer

1 GFE battery

c. System Operation

The electrical power system supplied the necessary power in various forms to the using compo-

nents systems. Power distribution and on-off control was handled in several ways. Prior to launch,

power distribution and control were regulated by ground commands routed through the umbilical connec-

tion. During ascent, power was controlled principally by the GATV sequence timer and by the Atlas

booster discrete signals. Following the Atlas-GATV separation, the command controller and the flight

command logic package were the principal power control devices. A typical power profile is presented

in Figure III. C-12.

(I) Acquistion Lights. The acquisition lights were illuminated from a GFE 28v battery. Control of

power application was provided by a relay in the forward power distribution J-box. This entire circuit

was shielded, and the shieldmultigrounded, to prevent EMI problems from the pulsing strobe ]ights,

The system was referenced to the vehicle equipotential plane at the battery connector.

(2) Approach Lights. The approach lights were illuminated upon command through dropping resistors

in the running lights J-box. The dropping resistors reduced the 28 v main battery bus voltage to 12v to

eliminate excessive brilliance.

(3) Running Lights. The running lights were powered by a separate 6.5 v power source; two Type

XVII primary batteries were used. The running lights could be commanded on or off in conjunction with

the approach lights. They could also be reactivated by the long delay timer after a predetermined period.

(4) Major Problems

• Several junction boxes originally contained relays with getters. These indicated a tendency

to shatter and contaminate the relays and were replaced throughout the vehicle with getterless
relays. No flight failures were attributed to this problem.

• Older Type IX dc/dc converters contained tantalum capacitors which exhibited a tendency to

leak electrolyte and short out. A newer model of the converter was substituted containing

fewer of these capacitors. No flight failures occurred.

• When the type I-C main batteries were activated for 5001 (GT-I2), they were found to have

lower than specification short-circuit voltage. This was due to normal aging (batteries were

I0 months old). Tests showed that the batteries still had sufficient capacity to perform the

mission and were used with no problem.

• Several problems concerned with the single point ground system were solved by revision of

grounding methods (including occasional violations of the single point ground principle).
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5. GUIDANCE AND CONTROL

a. Subsystem Description

The primary purpose of the Guidance and Control Subsystem was to provide the GATV with adequate

guidance and control capabilities to satisfy the overall mission requirements. The primary functions

were to:

l) Provide an earth-oriented inertial attitude reference.

Z) Sense and control velocity increases along the plus vehicle longitudinal axis.

3) Control the vehicle attitude in a stable manner.

4) Accept commands from both spacecraft and ground stations for vehicle functional conditioning

and events.

5) Initiate timing signals for prescribed events (ascent phase only).

This subsystem was composed of two major sections: (i) the guidance system and, (2) the flight

control system. These are shown in Figure Ill. C-13.

The major part of this subsystem was unchanged from the Standard Agena components. However,

there were numerous changes made to the Standard Agena equipment during the course of the Gemini

program. Several of these changes were of major importance. New and modified major components

are indicated in Figure III. C-14.

(I) Guidance System

The requirement for an earth-oriented inertial attitude reference was fulfilled by the inertial refer-

ence package (IRP) and the horizon sensor (H/S). The IRP provided an inertial attitude reference and the

horizon sensor provided the earth-orientation. The velocity meter (V/M) satisfied the requirement for

sensing and controlling velocity increases along the vehicle longitudinal axis (plus polarity only). The

ascent sequence timer provided discreet signals for timed functional events, during the ascent phase.

The flight command logic package (FCLP) was the interface with the Command Communication Subsystem

which enabled various functional configuration modes to be selected and commanded events to occur. These

modes and events could be selected by either the spacecraft or ground stations. Vehicle attitude could

be changed by applying the appropriate signals to the various components. Vehicle velocity could be

changed by firing the appropriate propulsion system and utilizing the velocity meter to terminate thrust

after the desired delta velocity had been achieved. Both of these events could be initiated by real-time

commands (RTC's) or by stored program commands (SPC's). Either of these provided command inputs

to the flight command logic package. Although it represented an interface between the command system

and the remaining systems in the vehicle, the flight command logic package was considered a part of the

guidance system, since many of its outputs were routed to this system. The guidance J-box and the flight

control J-box provided the interconnects between the major components of the system. In addition, por-

tions of the component circuitry were located in these boxes to facilitate program-peculiar modifications

to these components.

(2) Flight Control System

The principal function of the flight control system was to provide stabilization and control of the

vehicle attitude in response to signals from the guidance system. During primary propulsion system
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Guidance System

Inertial Reference Package (Mod III)

Horizon Sensor (Mod IIC)

Mixer Box

Right Sensor Head

Left Sensor Head

Velocity Meter

Accelerometer Unit

Accelerometer Electronics

Counter (Mod IIA)

Guidance J-Box

Ascent Sequence Timer

Flight Command Logic Package

Flight Control System

Flight Control J-Box

Flight Control Electronics Package

Pneumatic System

Pneumatic Storage Spheres

Pneumatic Pressure Regulator

Pneumatic Thrust Controllers

Hydraulic System

Pitch and Yaw Hydraulic Actuators

Hydraulic Power Package

Standard Agena

Standard Agena

Standard Agena

Standard Agena

Standard Agena

Standard Agena

Standard Agena

Modified

Standard Agena

New

Modified

Modified

Standard Agena

Standard Agena

Standard Agena

Standard Agena

Standard Agena

Figure III. C-14. Guidance and Control Subsystem Component Modifications -

Standard Agena vs GATV
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(PPS) engine operation, the hydraulic control system controlled direction of the thrust vector about the

pitch and yaw axes by the use of hydraulic actuators while the roll attitude was maintained by the pneuma-

tic control system. During the coast phase, the pneumatic control system controlled vehicle pitch, yaw,

and roll motion by means of thrust controllers. Both the pneumatic and the hydraulic control systems

were controlled by the IRP through the flight control electronics package (FCEP).

When the PPS engine is not operating, the pneumatic system controlled vehicle attitude by applying

corrective force about three axes by means of pneumatic thrust valves. Signals from the IRPwere fed to

the flight control electronics package, and trigger circuits applied pulses to the proper thrust valve to

produce the desired corrective force.

The hydraulic control system guided the vehicle by providing thrust-vector control during each

period of PPS engine operation. The pitch and yaw attitude of the vehicle were controlled by angular

positioning of the thrust vector so that control movements were imparted to the vehicle. This was

accomplished by two hydraulic actuators that deflected the engine about each gimbal axis.

b. Component History

As has been pointed out, standard Agena Guidance and Control components were adapted for use in

the GATV with minimum changes. Components that required extensive modifications and could, therefore,

be labeled Gemini-peculiar items, were the guidance J-Box, flight control J-Box (Patch Panel) and the

flight control electronics package. The flight command logic package was a new component and unique to

the GATV. This component was required to interface with the command and control subsystem. The

modified and new components were tested as required both in the breadboard level and production config-

uration in Electromagnetic Interference (EMI) tests; elevated stress and extended life tests were also

added to demonstrate suitability for the Gemini application. Qualification tests were performed on all

the Gemini peculiar components. In addition, the Standard Agena component, Mod II-A counter was

requalified by the Standard Agena Office during the program because a new design was incorporated

in the velocity meter.

Qualification test reports for the unmodified Standard Agena components were reviewed early in

the program. An evaluation was made to ascertain whether limited requalification tests or "qualified by

similarity" gave adequate assurance for changes that had been made to the equipment. Random sampling

test results were also monitored where possible for additional confidence.

During the Gemini program, the reliability of LMSC manufactured electronic components was

increased by piece part selection. This equipment upgrading was not unique to the GATV, but was phased

in on the Standard Agena Vehicle.

It was established that guidance and control system performance trend analyses on the vehicle level

testing were not being accomplished. Furthermore, it was determined that there were deficiencies in

the test procedures, both at Sunnyvale and ETR. This situation was corrected by:

• Standardizing methods of testing.

• Recording and tabulating necessary data and calculations.

• Increasing scope of specific tests.

Performance trend analyses were performed and data correlations were made. This proved to be a suc-

cessful operation and a valuable indicator for the guidance and control equipment.
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c. Major Problems

During the program, several problems or piece-part deficiencies required intense developmental

testing activities but of limited scope. Secondary GATV 5004 failures which occurred after the primary

Atlas failure resulted in a test program evaluating effects of umbilical arcing on the inertial reference

package, ascent sequence timer, static inverter and associated power J-boxes. Results gave additional

confidence that the components were adequate for the Gemini program. Prior to GATV 5001 flight, sev-

eral transistors in the gyro heat control circuitry were suspected of contamination. The entire guidance

module was changed out and replaced with a spare unit, which was used for flight. The suspect piece

parts were found to be faulty and were replaced.

The horizon sensor, which was used without modification from the Standard Agena configuration,

exhibited erratic outputs during the flight of GATV 5006. An extensive test program to analyze the prob-

lem resulted in the implementation of special test monitoring on vehicle 5001. This problem is still

under investigation by LMSC to determine its effect on other programs.

The original practice of modifying guidance junction boxes with limited disassembly was changed

to a more complete disassembling and rebuilding practice. This improved the confidence factor in modi-

fying this high density component. During the program, a temperature cycling test was initiated on

these units to discover workmanship type errors, particularly bad solder joints. Variations of the same

cycling test were applied to other guidance and control components for the same reasons and served to

increase confidence in their successful operation.

During the course of the program, the velocity meter counters were subjected to rework cycles to

eliminate transistors suspected of contamination, leaky tantalum capacitors, and transistors afflicted

with a dew point moisture problem. The latter problem also affected the guidance junction box, the hori-

zon sensor mixer, and the flight control electronics package, and was satisfactorily resolved in each

case.

Prior to the flight of GATV 5003, a major modification was made on the hydraulic channels in the

flight control electronics package. This was required because of the lower bending frequencies present

when the Agena is docked with the Gemini spacecraft. The dynamic characteristics of the Standard Agena

hydraulic channels would not permit stable operation in this mode. To obtain a stable system, the passive

lead-lag shaping network was replaced by an active lead-lag shaping network with a longer time constant.

This redesign is discussed in detail in the special studies section (III-E) of this rep_ort.

Progressive current leakage of capacitors caused a problem in the capacitor block in the flight con-

trol electronics package. Failure modes were either a loss of guidance power or a reduction of stability

because of attenuation of the derived rate signals. Special test data correlation was initiated on GATV

5003 where all factory and ETR vehicle level test results of this subsystem were compared. This trend

analysis of data proved invaluable in giving assurance that a critical failure mode had not occurred and

that consecutive data examination would reveal any deterioration that might be developing.

III.C-25



6. COMMAND AND COMMUNICATION SUBSYSTEM

The Command and Communications Subsystem (C & C) performed three functions:

telemetry, and tracking. These three functions are described separately in this section.

is a block diagram of the overall system.

a. Control C ommandin_

commanding,

Figure III. C-15

(1) System Description

The control commanding system received, decoded and processed command signals for operation-

ally conditioning the Agena. These commands were generated by the ground tracking stations and/or by

the Gemini spacecraft. UHF commands from the ground stations were sent either as real time commands

which were executed immediately or sent as stored program commands and executed at some later, pre-

selected time. The spacecraft sent r-f commands by means of its L-Band command subsystem or, when

docked, by means of the TDA hardline command capability. The spacecraft commands were all sent as

real time commands and executed immediately.

Figure III. C-16 shows the format of the real-time and stored-program commands. The vehicle

address identified the spacecraft to which the command was directed. The system address identified

the message as a real-time or a stored-program command. The other words in the command message

were self-explanatory. The command system continuously monitored the sub-bit code to validate the

commands that had been sent.

The programmer checked the command message for proper command address and length, decoded

the command function and, for real-time commands, sent a command to the controller which conditioned

the execution signal and forwarded it to the required vehicle area. Upon accepting either a real-time or

stored-program command, the programmer sent a message accepting pulse to the telemetry subsystem

which transmitted it back to the ground station.

For stored-program commands, the programmer located the command in its memory according

to the address designated in the command message. The vehicle clock in the programmer continuously

counted. The clock's count and the stored-command times were continuously circulated through a com-

parator. When the clock and command message times were coincident, the command function was

decoded and a proper execution signal was sent to the command controller.

The command controller also contained an engine sequencer which, upon initiation by means of a

command, properly sequenced the events for starting and stopping the primary propulsion system. The

controller also contained the emergency reset timer. If, during a preselected mission time, the emer-

gency timer were not reset because of loss of command contact, the timer would time-out, turning on

the telemetry links, tracking beacons, the tape recorder, L-Band System and enabling the UHF command-

ing capability (if previously disabled). This assisted the ground stations in reacquiring the vehicle.

(2) Major Problems

During the early months of the program, there were a large number of failures of the integrated

circuits used in the programmer and controller. These were traced to failure of the gold-to-aluminum

bond between the substrate and the leads of the circuit chips. Replacement with integrated circuits

manufactured with g01d-to-gold bonded junctions eliminated the problem.
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Undesirabletime-outs of the emergency reset timer occurred during pre-launch checkouts of

Vehicle 5004 at Cape Kennedy. Analysis showed the problem to be a function of the design of the timer

circuit which could set itself to the time-out position when power was removed from the vehicle. Rather

than redesign the circuitry, operational procedures were changed to automatically turn off all equipments

turned on by _.RT timeout and automatically reset the timer each time power was reapplied to the vehicle.

During pre-launch checkout of Vehicle 5006, spurious commands were processed by the command

system. These commands were generated only when the vehicle clock was started by umbilical discon-

nect. Circuit analysis, which was verified by test, showed that the basic programmer design allowed

the generation of spurious commands at clock start, but only if three conditions were met:

1) The memory must contain a command load.

2) The vehicle clock must be stopped by AGE at a specific time during a memory row readout.

3) The vehicle time accumulator must be reset to zero by AGE before restarting the vehicle
clock.

The problem could not occur during orbital operations because the time accumulator was reset by

stored program command and the clock was never stopped. Again, the problem during ground test was

circumvented operationally by loading the time accumulator with a number other than zero prior to any

clock restarts. For the special case of liftoff, the clock was started several minutes prior thereto

rather than via umbilical pull. These procedural changes were utilized successfully for the launches of

5006 and 5001.

b. Telemetry System

(I) System Description

The telemetry system was designed to sense, encode, record, and transmit vehicle information to

telemetry ground systems. This PCM-FM telemetry system (designed in accordance with IRIG 106-60),

consisted of the following:

• 1Z8-channel PAM Main Multiplexer

• 128-channel PAM Submultiplexer

• PAM-PCM Encoder

• Telemeter Control Unit

• Tape Recorder

• VHF Telemetry Transmitters (2)

• Telemeter RF System, including antennas and multicoupler.

A simplified block diagram of the system is presented in Figure III. C-17.

The system accommodated three broad categories of data as inputs to the telemeter; analog,

direct digital, and pulse analog.
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(2) SystemOperation

AnalogdatarequiringlowfrequencyresponsewassampledbytheI28-channelPAMsubmultiplexer.
Theoutputofthesubmultiplexerwasin turnsampled{ina synchronousmanner)bythe1Z8-channelPAN
mainmultiplexer.Analogdatarequiringasomewhathigherresponsewassampleddirectlybythemain
multiplexer.Thepulseamplitudesamplesoftheanalogdatawerethenencodedtoa seven-bitword. An
eighth-bitthatis thecomplementoftheleastsignificantbitwasaddedtoprovidewordsynchronization
andseparation.Theoutputof theencoderwasthenfedintothetelemetercontrolunitwhereit wascom-
binedwiththecontentof thedirectdigitalinputregistersandpulseanalogcountersina sequentialman-
nertoprovideanorderlyformatthatbecameacontinuousserialbit streamasanoutput.Thetelemeter
controlunitcontainedthecircuitryformaintainingsynchronismwiththeprogrammersothatthedirect
digitalinputsfromtheprogrammercouldbetransmitted.

ThetelemetercontrolunitoutputfrequencymodulatedaVHFtransmitter{240-250mcregion)to
formthePCM/FMtransmittedsignalata rateof16,384bitspersecond.

Theoutputofthetelemetercontrolunitcould,uponcommand,berecordedonthePCMTape
Recorder,TypeIX, for playbacklater. Thetaperecorderhada capacityfor 20 minutes of stored data

and played it back at four times the read-in rate, which allowed for complete readout in five minutes at

a rate of 65,536 bits per second. The output of the tape recorder frequency modulated a second VHF

transmitter. It was possible to reverse the two VHF transmitters inputs by use of a pair of commands

to operate the Mod Bus Select. The VHF Multicoupler, Type XI, allowed the two transmitter outputs to

feed a common antenna system. Separate antennas were used for the ascent and orbit phases.

c. Tracking System

(1) System Description

The tracking system for the GATV included the following on-board equipment:

• S-band Transponder

• C-band Transponder

• L-band Transponder

• Antennas

Tracking of the GATV by ground stations was by the interrogation of independently operated S-band

and C-band transponders. The telemetry signals also could be used as an acquisition aid. Tracking of

the GATV by the spacecraft was by interrogation of the L-band transponder in the TDA.

(a) S-Band Transponder. In response to ground-generated signals, the S-band transponder accepted

a pulse code consisting of two one-microsecond pulses spaced 15.25 microseconds apart, at an interro-

gation rate of 150 to 1600 pulse pairs per second. Signal strength at the receiving antenna terminals

had to be minus 60 dbm or greater.

Nominally, one microsecond after receiving the second pulse of a pair, the transponder transmitted

a single one-microsecond pulse on a slightly higher frequency. This was with a nominal peak power out-

put of 630 watts at the antenna terminals, which included line loss to the antenna.

{b) C-Band Transponder. In response to ground-generated signals, the C-band transponder accepted

a pulse code consisting of two one-microsecond pulses spaced 3.5 microseconds apart at an interroga-

tion rate of 100 to 1600 pulse pairs per second. Signal strength at the receiving antenna terminals had

to be minus 60 dbm or greater.
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Nominally, Z.75 microseconds after receiving the second pulse of a pair, the transponder trans-

mitted a single one-microsecond pulse on a slightly higher frequency. This was with a nominal peak

power output of 2Z0 watts at the antenna terminals, including line loss to the antenna.

(c) L-Band Transponder. The L-band transponder accepted from the spacecraft radar a single one-

microsecond pulse at an interrogation rate of Z56 pulses per second.

Binary-coded commands were transmitted via pulse position modulation of the interrogating pulse

train. This transponder was included in the TDA.

(d) Antennas. Transmitting and receiving antenna systems were provided for tracking functions during

the ascent, orbit, and docking phases of flight operations. During ascent and orbit, single linearly

polarized C-band and S-band antennas were used; and during the docking phase, an L-band antenna sys-

tem consisting of three antennas was used.

(Z) Major Problems

Several EMI problems resulted in momentary synchronization losses of the telemetry system.

Grounding revisions reduced these losses to a minimum.

Two problems affected the tape recorder. The first was due to a breakdown of adhesive used to

apply the metallic t_e end sensing strip to the tape. This was cured by splicing in the metallic strip

rather than laminating it to the tape. The second was failure of the bearings in the idler assembly. New

bearings were installed after inspection and test to assure proper lubrication and an audible noise test

was used to monitor bearing operation.

Individual transducers and sensors failed during the program. Only two continuous problems were

monitored. One was with stick-on temperature sensors which showed their characteristic high mechanical

failure rate, and the other was a problem with welding temperature sensors to the engine in high temper-

ature areas. No completely satisfactory solution was found to either problem.

(3) Flight Termination System

Range-safety requirements were satisfied by two independent systems: the premature separation

self-destruct system and the range safety engine-shutdown system. The premature separation self-

destruct system provided two capabilities:

a) During the period between liftoff and Atlas/GATV separation, a destruct signal from range-

safety transmitters will ignite destruct charges in the Atlas and in the GATV booster adapter

that will destroy both vehicles.

b) During the period between liftoff and Atlas sustainer engine cutoff, the GATV will be

automatically destroyed by ignition of a charge in the booster adapter if premature separa-

tion from the Atlas booster occurs.

The range safety engine-shutdown system provides two capabilities:

a) During the period between liftoff and GATV engine ignition, a thrust-termination signal from

range-safety transmitters will prevent GATV primary propulsion system start.

b) During the period of GATV-powered flight prior to injection into the parking orbit, a thrust

termination signal from the range-safety transmitters will cause PPS thrust cutoff.

There were no significant problems associated with this system. A thrust termination signal was

This signal inhibited Agena PPS first burnsent following the failure of Atlas 5303 (Gemini mission IX).

representing satisfactory operation of the system.
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7. TARGET DOCKING ADAPTER AND DISPLAY 4'5

a. General

The Target Docking Adapter (TDA), manufactured by the McDonnell Aircraft Corporation, was

attached to the forward end of the Gemini Agena Target (GAT) to permit mating with the Gemini space-

craft for docked operation of the combined vehicles. The TDA consisted of two principal structural parts:

the adapter which was mounted rigidly on the GAT as an integral assembly and contained the equipment

necessary for rendezvous and docked operation as well as for spacecraft - commanded undocked opera-

tion, and the docking cone which enabled the mating and demating of the two vehicles and their joint

operation.

b. Mechanical Operation

In the unrigidized (extended) position, the docking cone:

• Received the rendezvous and recovery (R & R) section of the Gemini spacecraft and absorbed
the associated contact shock loads,

• Locked the spacecraft's Rk R section into the cone with spring-loaded latches, and

• Automatically rigidized (retracted) against structural pads, pulling the spacecraft in to form

a rigid structural connection between the two vehicles and a hardline electrical connection
through the mating of a nine-pin umbilical connection.

In the rigidized position, the docking cone could be commanded to unrigidize and to release

(unlatch) the spacecraft.

During the ascent phase, the adapter supported a nose shroud which served as a protective shield

for the TDA against max q and heating effects. This shroud was separated from the GAT shortly after

PPS thrust initiation during the orbital insertion phase.

c. Electrical Control and Spacecraft - GAT Interface

For the purpose of effecting a rendezvous between the Gemini Spacecraft (SIC) and the GAT by

radar tracking and providing a capability of sending S/C commands to the GAT in docked or undocked

configurations, the TDA was equipped with an L-Band transponder and associated antennas, and with

C- and S-Band transponder beacons for ground tracking.

In the undocked configuration, the S/C L-Band radar operated with the TDA's transponder in the

tracking mode from approximately 200 n. mi. out, and in the command mode to prepare the GAT for the

final rendezvous phase and docking. To complement the radar, two high intensity flashing acquisition

lights were mounted on the TDA, -which became visible on the night side at an approximate range of 50

n. mi. Visual acquisition under reflected sunlight conditions occurred at approximate ranges of 70 to 80

n. mi. For the docking phase, Z flood (approach) lights were installed to illuminate the area of the dock-

ing cone and permit visual inspection of the cone prior to docking. In addition, colored running lights

were provided on the GAT to permit determination of its orientation and attitude on the night side.

In the docked configuration, S/C commands were sent through the umbilical to the L-Band trans-

ponder's sub-bit detector and on to the GAT's programmer for execution. Since the sub-bit detector was

powered directly off the GAT's regulated bus, the L-Band transponder need not be on during docked

flight. Acceptance of S/C commands by the GAT was indicated by the Message Acceptance Pulse (MAP)

illuminating the MAP light in the SIc.
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Additional hardline circuits crossing the S/C - GAT interface were the Engine Arm/Stop switch

circuit, which enabled or disabled the PPS and SPS control circuits in the docked configuration, and 3

hardline TDA cone command circuits controlled by a two-way Rigidize/Rigidize Stop and a one-way

Undock momentary toggle switch. The rigidize and undock circuits ran through special single point

umbilicals which mated when the docking latches were seated and permitted control in the event of a fail-

ure of the automatic rigidizing sequence of the GAT command and control system.

Ground commands to the GAT were received by the Agena's UHF command receiver and transmit-

ted to the programmer for execution. These commands were locked out by an L-Band command presence

signal which in the undocked mode was generated by Agena phase lock, with the S/C radar power and

encoder power switches on. In the docked mode, this same ground command lockout was achieved when

the S/C encoder was on. Ground transmittal of stored program commands (SPC's) was inhibited in the
6

same way, but not the execution of the commands unless the SPC disable command was sent.

d. A_ena Status Display 7

The Agena status display (Figure HI. C-18) was located in the upper forward section of the adapter.

A cutout was provided in the docking cone to make it visible to the S/C crew in the docked configuration.

It reflected the status Of the propulsion, flight control and electrical subsystems of the Agena in addition

to the position of the docking cone. Figure HI. C-19 shows the logic driving the display in block diagram

form.

The configuration and location of the display were largely determined by the limitations of space in

the spacecraft and TDA, and the limited capacity of the electrical interfaces between the TDA on the one

hand and the spacecraft and Agena on the other.

In the light of the above mentioned restrictions and taking into account the backup role of associated

telemetry measurements, the logic behind the legend indicators was acceptable on the theory that no

single failure which was not displayed could give rise to an unrecoverable condition even if associated

with PPS operation. The unavailability of a status display for the PPS, particularly covering conditions

of the OMPS, OFPS and PIV's, made necessary the imposition of an operational restriction for docked

PPS burns during initial flights to be performed within range of a ground station. The PPS control cir-

cuit configuration for the GAT did require verification of a proper shutdown on the previous burn to

ensure a safe start.

Ground station monitoring of all docked maneuvers was also desirable due to the limited accuracy

of the GAT propellant-remaining displays for the PPS, SPS, and ACS. The first two (PPS, SPS) required

real time or delayed tape playback monitoring of the maneuvers for the reasons mentioned in this and

preceding paragraphs.

Operationally, the location and size of the display imposed restrictions on its utility, and on mis-

sion flexibility. Inability to read the panel from a distance greater than 50 feet, and thus ascertain safe

status of the GAT, imposed the requirement that the final stages of rendezvous from 1500 feet out be

conducted within range of ground stations. In docked configuration, legibility of the display was dependent

on the sunlight incidence angle and the particular flight condition. Furthermore, the need for monitoring

S/C displays during PPS burns made simultaneous monitoring of the Agena display difficult.

Optimum reliability of the Agena Status Display was limited by the non-redundancy of transducers

and logic circuits, and by the lack of fail-safe design. However, within its functional and operational

limitations, it performed reasonably well and experienced no failures during any of the four missions

flown.
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In summary, if operational flexibility is to be attained in the performance of rendezvous, docking

and joint maneuvers between a manned spacecraft and an unmanned space vehicle, it is imperative that

subsystem status of the space vehicle be displayed accurately in the spacecraft in both the docked and

undocked configuration, preferably from maximum ranges required for rendezvous radar lock-on.

Furthermore, the design should provide maximum redundancy and fail-safety to reduce dependence on

ground stations to a minimum.
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8. ATLAS/AGENA INTERFACE

The mechanical interface between the Atlas SLV-3 and the GATV consisted of a booster adapter

section which stayed with the Atlas at the time of GATV separation. Separation was initiated by the

detonation of a circumferential primacord and the operation of two retrorockets which slowed the booster

section so that the target vehicle could slide out on rails in the adapter. First motion disconnected the

punaway umbilical generating a backup signal to start the ascent sequence timer. Three detents in the

booster adapter actuated a switch on the GATV to permit telemetry monitoring of GATV motion in the

adapter, while a spring-loaded lever, released as the GATY left the booster adapter rails, actuated two

separation switches which enabled the GATV pneumatic attitude control system and gave a telemetry

indication. Two other separation switches served the purpose of initiating the self-destruct system in

the booster adapter in the event of premature separation of the GATV during the SLV-3 boost phase.

The self-destruct circuitry, which could also be actuated by ground command to the Atlas range safety

receivers, was disabled by the SECO signal in the SLV-3 with backup provided by the VECO signal. The

VECO signal also crossed the interface to the GATV to uncage its gyros.

Operation of the Atlas Agena interface and separation system was faultless with the exception that

the separation monitor on GATV 500Z and 5003 failed to transmit the 3 distinct voltage steps represen-

tative of GATV motion in the adapter. Laboratory tests conducted after the second malfunction which

could have been caused by a shorted capacitor showed that the dynamic characteristics of the switch

mechanism generated multiple actuations. Reduction of switch travel and a change in spring charac-

teristics corrected the problem.
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D. GUIDANCE AND PERFORMANCE ANALYSIS

i. GEMINI ATLAS AGENA TARGET VEHICLE SYSTEM ASCENT GUIDANCE

a. Introduction

All Gemini Atlas Agena Target Vehicles (GAATV) were launched by the AF 6555th ATW at Cape

Kennedy, Florida. AFSSD had prime responsibility for the development and implementation of GAATV

ascent guidance which was accomplished by the Mod Ill Radio Guidance System consisting of the Burroughs

Computers and GE Mod III System. Lockheed Missiles and Space Company (LMSC) as integrating contractor,

furnished the reference trajectories, range safety package and flight termination system reports. General

Dynamics/Convair (GD/C) provided the SLV-3 flight termination system reports and conducted a pre-flight

data exchange with LMSC. The guidance equation contractor, Thompson-Ramo-Wooldridge (TRW), provided

GAATV ascent guidance equations and associated documentation as well as tray wiring information. Bur-

roughs Corporation wired the guidance trays and operated the Burroughs computers. General Electric (GE)

provided the guidance canisters and operated the GE Mod Ill System.

b. Injection Requirements

NASA/Manned Spacecraft Center (MSC) specified the first orbit requirements for the GAATV to

the Air Force. Their requirements, completed in January of 1965, were that all GATV's would be

injected into a near circular 161 n mi orbit at an inclination angle of Z8.87 degrees. Two additional

requirements were specified as follows:

i) The GAATV guidance equations would have the capability of either steering for the nodal

point or for the inclination angle.

Z) The GAATV would have the capability of either using or not using the biased launch azi-

muth (dog-leg).

The requirement for nodal point steering was generated by MSC because control of the inertial

longitude of the ascending node was more important than control of the inclination angle. MSC selected

nodal point steering for all six GAATV missions and, to accomplish this, specified the desired inertial

longitude of the ascending node for each mission. In the fall of 1964, TRW suggested and proved that

the launch azimuth of the GAATV could be biased (dog-leg) to permit a 7-I/2 minute extension of the

GLV spacecraft launch window. This biased launch azimuth was used on the Gemini VI and VIII

missions.

c. Development and Description of GAATV's Guidance Equations

The TRW Systems Group guidance equation program, developed for the AF/NASA Atlas -Agena

Ranger-Mariner (Block Change) Contract was used as the basis for the GAATV equations program.

The Ranger -Mariner equations program was modified to include deadreckoning, nodal point steering,

and yaw look angle constraints. In the GAATV equations, the radar data is filtered (Kalmin filter)

to obtain the best estimate (nearly minimum variance) of the vehicle's position, velocity, and accelera-

tion vectors, independent of the amount of time sequence of data received. As a result, an intermittent

or complete failure of either the track or rate system does not cause a large decrease in guidance ac-

curacy. By use of this filter, the navigation problem is separated from the control problem resulting

in maximum flexibility with respect to different missions. The guidance equations also had capability

of steering in either pitch or yaw (or both) during the SLV-3 booster phase. This permitted the cot -

rection of 3-sigma booster dispersions without large attitude maneuvers during the sustainer phase.
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d. GAATV Ascent Guidance Working Group

To coordinate all GAATV ascent guidance activities and to resolve all ascent guidance problems,

SSVT, in May of 1964, formed the GAATV Ascent Guidance Working Group. These meetings, chairedby

SSD, consisted of representatives from NASA, SSD, 6555th ATW, LMSC, GD/G, TRW, GE, and Burroughs.

These meetings were held as necessary to complete the GA-ATV ascent guidance tasks.

e. Guidance Equations Design Review Board

The TRW Guidance Equations contract called for Guidance Equation Design Review Boards (first

on internal TRW DRB followed at a later date by a Government DRB). The purpose was to review and

certify all of the TRW's effort. AFSSD invited MSC and LMSC to the Goverllment DRB's. These meet-

ings were held at TRW Systems Group in Redondo Beach, California. Several were held during the

guidance equation development stage and a DRB was held for each GAATV mission.

f. GAATV Ascent Guidance Certificates

In the area of ascent guidance, the Air Force felt that certain tasks and areas of responsibility

should have additional emphasis and contractor responsibility. LMSC, TRW, GE, and Burroughs

agreed to provide certificates for each flight. These signed certificates were received by SSD prior

to each launch and were available at each GAATV Flight Safety Review. Basically, these certificates

were as follows:

LMSC: LMSC as integrating contractor was responsible for verifying that the G/kATV guidance

equations and manual constants satisfied the mission requirements.

TRW Systems Group: TRW certified that they had completed an internal review of the guidance

equations and computer program for the upcoming launch and that the equations as programmed for the

Burroughs Computer were flight-ready.

General Electric: GE certified that their missile-borne guidance sets assigned to support the

upcoming GAATV launch were flight-ready and that the GE Mod Ill System was ready for launch.

Burroughs" Burroughs ran an independent check of the TRW-supplied computer program and

certified it to be correct. They also certified that the Burroughs A-1 computing system was flight-

ready.

g. GAATV Ascent Guidance Performance

The ascent performance of the GAATV was excellent. The desired initial injection conditions

were met for each successful injection into orbit. Even on the Gemini VI and IX GAATV failures, the

ascent guidance system performed satisfactorily until failure occurred. On the four successful launches

into orbit, all dispersions_ errors, etc., were well within the three sigma limits of GAATV ascent

guidance calculated.

Z. GEMINI A:I LAS AGENA TARGET VEHICLE MISSION PLANNING

a. Definition of First Orbit Requirements

Although NASA/MSC had informally stated the proposed orbital requirements at varioas Trajec-

tory and Orbits Meetings, no firm decision was reached by MSC until early 1965. To permit maximum

flexibility to MSC, the Air Force on Z0 October 1964, directed LMSC to study the possibility of a number

of first orbits within a certain volume of space. The size of this proposed mission box (volume of space)

was as follows:
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1) Orbitaltitude:121toZ01nauticalmiles
2) Orbitinclination:28.4913 ° to 29.87 °

3) Eccentricity: from near circular to 0.0111

After discussion, MSG/GPO stated by TWX on 7 Jan t965 that the target orbit altitude for Mission GT-6

would remain as a 161 nautical mile circular orbit and that this altitude was planned for subsequent missions.

With the initial orbit specified, the only variation from launch to launch would be the amount of biased

launch azimuth {dog-leg) and the ascending nodal position requirement which would be defined by NASA for

each flight.

b. On-Orbit Requirements for the GATV

The requirements of the GATV on-orbit were more easily defined. At a Trajectory and Orbits

Meeting on 14 August 1963, basic ground rules for GATV on-orbit maneuvers were discussed and agreed

upon by NASA, Air Force, and LMSC. Primary emphasis in the development of the ground rules was

given to establishment of maneuvers assuming greatest probability of rendezvous success. Some of

these basic ground rules were:

1) GATV in-plane and out-of-plane maneuvers shall not be attempted during a maneuver

sequence with a single thrust.

2) The GATV pitch and yaw capabilities shall be employed individually and never in combination.

3) The maximum GATV apogee of the in-plane dwell maneuver is limited only by the available

delta velocity in the GATV.

To summarize, the GATV could be called upon to make a wide variety of maneuvers in-plane and out-of-

plane, docked or undocked.

c. Post-Rendezvous Mission Planning

LMSC and the Air Force had forwarded to NASA/MSC in 1963 -64 several recommendations on

post-rendezvous tests and maneuvers. In September of 1965, MSC officially requested SSD/Aerospace

and LMSC assistance in this area. On 30 September 1965, the review of the MSC Post S/C Retro

Fire/Recovery Maneuvers Plan for the Agena Target Vehicle was sent to NASA. Several additional

maneuvers and tests were also proposed. The importance of this September 1965 activity was that

the decisions reached and the maneuvers discussed did not vary during the remainder of the program.

Due to the two GAATV failures and other flight problems, there were few opportunities to perform these

maneuvers and thus no need to recommend new ones.

d. Trajectory and Orbits Panel

The Trajectory and Orbits Panel was a NASA/MSC mission planning meeting always convened at

MSC. LMSC and the Air Force were members of this panel and had representatives at all meetings to

which they were invited. The meeting discussed all aspects of the mission: launch, rendezvous, EVA,

experiments, post-rendezvous maneuvers, and recovery.
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E. SPECIAL STUDIES

I. TEN POINT PROGRAM

Because of the number of failures and rework problems during initial manufacturing stages of the

command and communications subsystem, it became apparent that certain mechanical and electronic

design deficiencies existed. Early in 1965 a "ten point program" was initiated to perform circuit and

packaging design reviews, 100% electrical testing of C&C piece parts, worst case analysis of critical

modules, and several specific quality control actions.

Performance of these tasks resulted in redesign of a number of programmer circuits and several

packaging changes to improve manufacturability. In addition, failure analysis and corrective action down

to the piece part level was expedited. Closer monitoring of vendor piece part processing was accom-

plished, and additional mandatory in-process quality control inspection points were established in the

manufacturing and rework areas.

The success of the ten point program is reflected in the fact that no failures occurred in the com-

mand system during any GATV flights.

Z. PROJECT SUREFIRE

The flight of target vehicle 5002 resulted in failure to obtain orbit. A review of flight data strongly

indicated that a hard start of the main Agena propulsion system was the initiating cause of the failure.

The most probable cause of the hard start was determined to have been the result of a fuel lead during

engine ignition. This conclusion was agreed upon by a group of industry propulsion experts who were

assembled in a symposium to evaluate this hypothesis. The GATV had been intentionally sequenced for

a simultaneous/slight fuel lead propellant start; this was done to conserve oxidizer for the many pro-

grammed restarts. I All previous standard Agena engines had utilized an oxidizer lead propellant start.

Because of the possible destructive nature of this type of failure and the program objective of uti-

lizing the Agena engines during docked modes, an intensive investigation was undertaken to correct this

condition. This program, titled "Project Surefire, " was concerned with the investigation of the cause of

the failure of GATV 500Z, the resulting system modification, redevelopment, and flight worthiness demon-

stration as required to insure adequacy of the system for manned usage. Surefire was to culminate in the

best flight configuration from both the hardware and procedural standpoints. During the investigation and

subsequent modification/test evaluation period, a number of studies were conducted. A few of these which

did result in hardware modification are presented.

o It was noted from flight records that the Zg accelerometers mounted on the engine cone were

damaged by the separation shock to the extent that they ceased to function. This led to the

conjecture that the separation shock, caused by firing the primacord used to separate the

GATV from the booster adapter structure, might be strong enough to damage components

mounted in the aft rack and on the engine cone structure. Shock mounts were designed for

these components and a series of shock tests conducted to verify the integrity of the shock-

mounted components (Reference: LMSC Report A796480, GATV Pyrotechnic Shock Tests and

Dynamic Response Tests, | March 1966). The integrity of the shock-mounted components

was satisfactorily demonstrated and the airborne accelerometers were replaced with a more

shock-resistant 5g unit.

o The propulsion system start sequencing was modified as described in Section III. C. 3, return-

ing the engine to an oxidizer lead configuration. This redesign/retest, both on the component

and engine level at BAC and under hard vacuum conditions at AEDC, comprised the major

effort of the Surefire program and was successfully concluded.

o During the design and reliability reviews which resulted in utilizing two pressure switches

(OMPS, OFPS) in the POSV control circuitry, it became apparent that a lock-in relay
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incorporated in the same circuitry had a failure mode which could result in power being

prematurely applied to the POSV. This premature activation of the POSV would negate the

desired oxidizer lead. The pressure switch relay box was redesigned to eliminate this

lock-in relay.

o As a result of evaluation of 5002 data and review of data from several standard Agena flights

which experienced slow-opening fuel valves, it became apparent that with the Gemini start

system an inadvertent overspeed shutdown could occur during ascent burn. If such a shut-

down did occur during ascent, the effect would be vehicle destruction resulting from over-

pressurization of the main propellant tank. To eliminate this condition, a wiring change was

made so that the circuitry to the engine solenoids did not pass through the overspeed trip and

that the overspeed trip was not enabled during the ascent burn portion of the overall mission.

o In the course of the component review and evaluation, the microswitch elements utilized in the

OMPS and OFPS were found to be not hermetically sealed, and hence, subject to a vacuum

environment in orbit. Because of the requirement for on-orbit life of up to 5 days, a condition

of cold welding of the metallic surfaces in close contact could be experienced. A test program

was satisfactorily conducted to verify switch integrity at pressure altitudes of Z00 nautical

miles.

The Project Surefire test series, including component�subsystem�engine level testing at BAC, and engine

level hard vacuum testing at AEDC, was successfully completed and the modified engine verified by the

remaining GATV flights. Both Bell and Lockheed have issued detailed reports covering all phases of

Z, 3, 4
study/tests on the Surefire program.

3. ATLAS GATV 500Z INTERFACE AND GATV EXPLOSION EFFECTS

During the GATV 500Z failure investigation, the SLV-3/GATV interface and the target vehicle

separation time history were carefully reviewed for any anomalies that might have contributed to the

GATV 5002 failure. Results of this review were that both the SLV-3 and GATV sides of the interface

and separation were completely clean with the exception of the failure ot the GATV 500Z.

After the failure investigation, a detailed review of SLV-3 data from the time o1 GATV 500Z

separation through primary propulsion system (PPS) start and explosion was made to determine whether

this data could be used to help establish a sate separation distance between the S/C and GATV in the

event of an impending Agena explosion.

On the basis of Atlas accelerometer, rate gyro and tank pressure data, the following was

established:

• Atlas-Agena separation was approximately 190 feet at PPS start, and approximately 270 feet

at the time of explosion.

• Mild disturbances without ringing were detected in SLV-3 data 0.9 and 1.4 seconds after PPS

start and vehicle explosion respectively, representing pressure waves traveling at an average

of Z00 feet/second. Absence of ringing and of tank pressure decay indicated strongly that the

SLV-3 was not hit by any debris of significant mass.

• SLV-3 attitude at the time of these events was essentially end-on, representing a minimal

surface area comparable to that of the spacecraft.

In summary, the data from this single event constituted too small a sample to consider a reduc-

tion in the 1500 foot minimum stand-off distance in the event of a threatened GATV explosion in orbit.

4. SHROUD SEPARATION

The nose shroud system used on the GATV was a modified A-IZ Shroud System designed and built

by Douglas Aircraft Co. The original modifications for the GATV consisted of removing thermal insula-

tion from the interior of the shroud. As a result of a iailure of the A-Iz system on a Comsat flight, the

ability of the system to separate properly in the GATV environment was questioned. LMSC conducted an
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extensive failure analysis of the Comsat system which was not successful in identifying the failure mode;

however, they recommended three modifications to preclude the most probable failure modes. These

modifications were:

• Installation of a tension band to correct warpage and ensure roundness at the mating fitting.

• Modification of the pivot brackets to provide greater travel distance and stronger local

structure.

• Changing of the lower actuator springs to provide more force.

Aerospace Corporation conducted a complete evaluation of these modifications and recommended

the adoption of the first two, but not the third. This recommendation was accepted and the modified sys-

tem was tested at the Lockheed Rye Canyon facility. The tests(tel. Lockheed Calif. Co. Report no. LR 19111,

dated 15 September)were completely successful and the shroud system functioned satisfactorily on all

GATV flights. It is noted that the shroud failure during the Gemini IX mission (The "Angry Alligator") was

the result of personnel error and in no way reflects on the reliability of the shroud separation system.

5. DOCKED BURN STABILITY

The GATV controls system was originally designed to provide stable flight for an Agena D and

payload. In the Gemini mission, it was required to provide stability during docked burns. The original

system was designed to filter out all Agena body bending modes which were greater than 8 cps. The

system could be modified by a gain change to handle modal frequencies as low as 5 cps; however, the

docked GATV and spacecraft had a fundamental body bending mode with a frequency between Z and 4 cps.

A lead-lag circuit described in I/I.E. 6 was designed by LMSC to cope with this mode, and stability

studies were run at MIT Instrumentation Labs to check out the modified system.

The fundamental mode in question involved rigid body motion of the GATV and spacecraft with a

flexible spring (the Target Docking Adapter) connecting them. Preliminary stiffness data from

McDonnell Aircraft Corporation showing both in-plane and out-of-plane response, when incorporated in

the MIT model, indicated the inability of the modified system to provide stability. It was decided to run

a dynamic response test at McDonnell to provide better data for the analysis. The results of this test

showed considerably more out-of-plane coupling in the fundamental mode than expected. The frequency

of this mode was found to be between Z.5 and 3.0 cps depending on the weight condition. Structural

damping varied between Z. 0 and 5.0 percent. In the course of evaluating the test data, errors in

handling the out-of-plane response were discovered in the MIT model. With the model corrected and

with the use of lower bound damping values, the lead-lag modification as proposed by LMSC was shown

to provide adequate stability. The modification was flown on 5003 and subsequent GATV's.

6. FLIGHT CONTROLS ELECTRONIC PACKAGE - HYDRAULIC CHANNEL LEAD-LAG SHAPING

NETWORK

As soon as the modal response of the docked Agena-Spacecraft had been established by studies at

Massachusetts Institute of Technology (MIT) and these results accepted by the affected contractors, the

flight control electronics compensation was established. Previous studies by 12_SC had shown that a

modification to the lead-lag shaping already in existence could handle both the ascent dynamics and the

docked dynamics with a minor change in loop gain between two flight modes. The MIT simulation of the

vehicle was increased to include the flight control system and the potential of the revised lead-lag was

confirmed.

Lockheed proceeded to mechanize and optimize the lead-lag design with the use of a single axis

digital computer simulation. Hardware components and hardware tolerances were evaluated. The most
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difficult development item in the change was the perfection of the temperature-stabilized operational

amplifier. Actual bread-boarded parts were tied into the single axis simulator for making temper ature

tests as well as system performance evaluations. This phase of the testing also was used to perfect test

procedures and test tolerances that would ensure proper system performance.

The physical configuration of the Standard Agena electronic card modifications were smaller

satellite cards mounted on standoffs above the basic pitch and yaw hydraulic channel cards. The only

problems encountered in building and checking the production lead-lag boards were with wiring and

soldering. The harnesses which attached the satellite boards to the first units were cut too short. This

caused lead breakage in assembly and test. Removal of the Standard Agenapiece parts prior to the

modification resulted in broken printed circuit traces and lifted eyelets. These difficulties were over-

come in sufficient time to meet the GATV 5003 effectivity.

Qualification was accomplished with vibration difficulty experienced on the first attempt. An old

laboratory unit was used which had non-production assembly techniques used on some transformers and

capacitors. These parts could not pass the vibration test. New production cards were modified and

vibration and temperature/altitude tests were completed with no further problems.

7. CENTER OF GRAVITY (C-G) OFFSET EFFECT

A major problem occurred on GATV 5003 during undocked on-orbit PPS powered flight. A

significant vehicle yaw heading error existed (hence a velocity vector error) which affected the orbital

guidance computations and resulted in adverse orbital ephemeris accuracies when making out-of-plane

orbit changes. This yaw heading error was due to a combination of yaw c-g offset, slow control system

response time and the vehicle dynamics. The yaw c-g offset was approximately twice that of the

Standard Agena due to the addition and location of two running light batteries (Type XVII). The slow

control system response time was an effect caused by the redesign of the flight control electronics

package. This redesign had been required to provide stable control system operation during the

docked mode.

Orbital altitude errors ranged up to approximately 120 miles during PPS operation. The errors

were much more pronounced when the vehicle was in a+_90 degree configuration and a plane change was

attempted. This was due to the offset being in the yaw direction and the velocity component error com-

bining directly with the orbital velocity. These errors greatly exceeded 3 sigma values derived in prior

error analyses and on-orbit guidance computations. The mechanics of this problem and the interactions

of c-g offset, attitude error, actuator position, vehicle mass properties, time, etc. are clearly
5

explained in the referenced document.

Various solutions to the c-g problem were investigated. These consisted of removing batteries,

realigning the engine, adding ballast, off-loading SPS propellant, correction tables and combinations of

the aforementioned. The following changes were made to the GATV to correct the problem by realigning

the vehicle c-g:

1) Removed one type IC battery (Prime Power)

2) Removed one type XVII battery (Running Light Power)

3) Replaced magnesium access door with stainless steel door

4) Installed two dummy battery spacers

5) Added lead ballast (approximately t58 pounds)

6) Prepared correction tables (for use in trimming out potential c-g dispersions)
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The referenced report contains correction tables and a method of making on-orbit corrections to

guidance calculations for both docked and undocked modes. A parametric study was performed which

related pitch and yaw attitude errors to c-g offsets for the GATV during PPS operation. Attitude errors

were determined as a function of burn time, vehicle c-g offsets and vehicle weight. Results were

plotted as a family of curves to provide programmed attitude correction data for desired orbit changes.

Average attitude error and actuator position for various PPS burn times, along with transient attitude

and actuator position response curves were presented.

The above solution was implemented successfully and good results were obtained for the remaining

GATV flights.

8. PROBABILITY OF METEOROID IMPACT AND PROPELLANT TANK BULKHEAD REVERSAL

In reviewing what failures of the GATV could lead to catastrophic consequences to the spacecraft

when docked or in the immediate vicinity, it was determined that the reversal of the inner propellant

bulkhead, separating the fuel and oxidizer tanks, would be the most probable cause 6.

Independent studies by LMSC 7' 8 and Aerospace were conducted with the purpose of determining

the mechanism of such failure, the probability of it occurring, and the warning time available to the

crew. Concurrently, a test program was undertaken by LMSC 9 to determine the tank pressure differ-

ential at which the bulkhead would actually collapse.

While the quantitative results of these studies showed a fairly wide spread mainly due to the lack

of good empirical data in the flight regime of interest, qualitatively they were in agreement:

• Most probable mechanism of failure would be meteoroid puncture of the fuel tank.

• Most probable hole size would result in fuel tank pressure decay rates low enough to allow

the S/C to separate from the GATV and move to a safe distance, provided the crew was

informed as soon as the Ap reached a critical level.

• Probability of fuel tank puncture during 8 hour docked sleep periods, when the crew could

not take evasive action, was well below the maximum acceptable level of risk of 0. 001.

Some consideration was given to the feasibility of providing for an audible alarm in the space-

craft operating off the Red MAIN circuit, or for venting of the oxidizer tank on the Agena, but both

considerations were dropped on the basis of cost, schedule, and low probability of meteoroid penetration.

A summary report on meteoroid penetration probability, in the light of latest empirical and

analytical data as applied to the Gemini Program, was published by Aerospace Corporation 10.

9. CHAMBER PRESSURE DROPOFF

During the course of the GATV program and before the last GATV flight there were four

Standard Agena flights that experienced a Pc dropoff anomaly. This anomaly consisted of a chamber

pressure drop of 30 to 50 psi, usually occurring at 100 to 150 seconds after start of engine burn.

Within two seconds the chamber pressure would recover to within 10 psi of its original value where it

remained with no further disturbances for the duration of the firing. There have been no unsuccessful

missions related to this anomaly and three of the four flights successfully accomplished restarts.

This anomaly has been continuously under study since the first occurrence; a sea level turbo-

pump test led to the first possibility of the cause. During this test the pump speed dropped and

recovered similar to the flight chamber pressure traces. A subsequent pump disassembly showed

that the fuel ball bearing had 3 flat balls. A further study revealed that this bearing, prior to

assembly, was heavily packed with a grease that was non-compatible with the rubber lipseal next
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to it. It was felt that the bearing failure might have been caused either by the grease effecting a

lipseal failure thereby allowing the fuel to contaminate the bearing or that the heavy grease packing

caused the balls to skid instead of roll. As a corrective action, future pump bearings were not to

be packed in grease prior to assembly. In addition, the outer race bearing carrier of the failed fuel

bearing was slightly undersized causing a tighter press fit than normal. All future bearing carriers

were dimensionally checked prior to pump assembly.

A Pc dropoff similar to the previous four cases occurred on the last GATV flight (5001). The

turbopump on this engine was assembled With all of the improvements previously discussed. A

further study effort by Lockheed, Bell and Aerospace has concluded that additional flight instrumen-

tation on Standard Agena flights is required in addition to a ground simulated altitude pump test

program. One theory that resulted from the study was the possibility that hot gas leakage past the

turbine seal could be causing a turbine bearing failure.

10. EXTENDED AGENA TARGET VEHICLE LIFETIME STUDY

The purpose of this study li was to examine the existing data to determine the engineering feasi-

bility of extending the CAT orbital lifetime from 5 days up to a maximum of 105 days by employment of

a deactivation mode. The results showed that, with minor changes, this extension of orbital lifetime

was feasible; however, no additional action was taken by MSC in this area.

1 I. ORBIT DECAY STUDY FOR GEMINI Vl AGENA TARGET VEHICLE 500g

The purpose of this study |Z was to determine the shutdown mode and recommend an altitude at

which the Gemini VI GATV could be maneuvered on 30 October 1965 (assuming a Z5 October 1965 launch)

so that it could be available as a non-powered, non-stabilized back-up target for the Gemini VIII mis-

sion. The LMSC recommendation was that the GATV be slowly tumbled in the orbit plane at a rate of

1. 5 degrees per second after injection into a Z08 nm circular orbit on 30 October 1965.

IZ. GEMINI AGENA TARGET ALTITUDE LIMITATION STUDY

This study t3 was initiated by SSVT primarily to ensure that the only limitation in making high alti-

tude maneuvers should be that lin%itation dictated by the delta velocity capability ot the primary propul-

sion system. The first part of the'study consisted of the effect of the upper limit orbit (perigee - 161

nmi, apogee - Z400 nmi) on the guidance and control system of the Gemini Agena Target. The second

and major part of the study was concerned with the thermal response of the GATV operating in elliptical

orbits having perigee at 161 nmi and apogees at altitudes up to Z_00 nmi. The results showed that the

vehicle could perform all required maneuvers but that for orbits having apogees greater than 560 nmi,

close monitoring of temperatures of equipment in the aft rack would be required.

13. AGENA MANEUVER ACCURACY FOR THE GEMINI PROGRAM

The purpose of this study 14 was to evaluate the soundness of the MSC ground rules for maneuvering

the GAT. The results presented errors in the orbital elements as well as position and velocity dis-

persions relative to the desired nominal orblts. These errors were within the accuracy limitations set

up by the MSC ground rules.

14. GEMINI AGENA TARGET VEHICLE GUIDANCE AND PROPULSION SYSTEM ERRORS

This study 15' 16 presented PPS and SPS velocity magnitude errors as well as steady state and

transient errors associated with pitch and yaw maneuvers (docked and undocked).
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15. REVISEDGEMINI/AGENARENDEZVOUSDISPERSIONANALYSIS
ThisreportlTpresentedageneralanalysis of the possible dispersion resulting from GATV on-

orbit maneuvers made for the Gemini rendezvous mission. Three basic GATV on-orbit maneuvers

were considered: the orbital plane change maneuvers; the phasing maneuvers; and the retro maneuver

into the rendezvous orbit.

III. E- 7



REFERENCES

1. SymposiumonHypergolicRocketIgnitionat Altitude, LMSC-A77684Z, Lockheed Missile and

Space Company, 1 December 1965.

Z. Project Surefire, Vol. 1 & II, LMSC-A818110, Lockheed Missile and Space Company, I July 1966.

3. Flightworthiness Demonstration Test Report, Vol. I, II & III, 8/-4?-910301, Engine, Rocket,

Liquid Propellant, USAF Model SLR81-BA-3, BellAerosystems Company, 5 May 1966.

4. Model 8Z47 Rocket Engine Simulated Altitude Test Prosram Final Report, 8Z47-910302, Bell

Aerosystems Company, II July 1966.

5. Gemini/Agena Attitude Errors During PPS Burn Resulting from C-GOffsets, Vehicle 5004,

Lockheed Missiles and Space Company, Technical Memorandum 64163-33, z5 April 1966.

(and Addenda)

6. Gemini Agena Target Vehicle Failure Mode Matrix Study, A 60289?, Lockheed Missiles and

Space Company (no date).

7. Gemini Agena Target Vehicle Meteorite Penetration Study, A 651481, Lockheed Missiles and

Space Company, November 1964.

8. Estimated Time for Gas Blowdown Through a Meteoroid Impact Hole in the Fuel Tank of the

Agena GeminiVehicle_ TM 91-37-13, Lockheed Missiles and Space Company, January 1965.

9. Gemini Agena Propellant Tank Inner Bulkhead Failure Test TA 1148, A 618951, Lockheed

Missiles and Space Company, January 1965.

I0. Meteoroid Penetration Probability and Estimate ot Resultant Hole Sizes, TOR-669(6183)-5,

Aerospace Corporation, February 1966.

11. Gemini ATV Extended Lifetime Study, Z0-Day Orbit Lifetime, LMSC SP-129-64-13,

27 April 1964.

12. Orbit Decay Study for Gemini Vl Agena Target Vehicle 5002, LMSC 580492, i2 October 1965.

13. Gemini Agena High Apogee Altitude Thermal Studies, LMSC A769586, 19 October 1965.

14. Agena Maneuvering Accuracy for the Gemini Program, LMSC 577139, 7 July 1964.

15. Analysis of Revised Agena Guidance and Propulsion System Errors - Gemini Program, LMSC

577i46, 13 July 1964.

i6. Gemini Agena Target Vehicle Guidance and Propulsion System Error Analysis, LMSC 582500,

6 July 1966.

17. T_O Panel, Revised Gemini Agena Rendezvous Dispersion Analysis, LMSC A749Zi0,

12 May 1965.
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AEDC

BAC

C and C

Comsat

GATV

LMSC

MIT

MSC

OFPS

OMPS

PC

POSV

PPS

S/C

SLV

SPS

SECTION IIL E

DEFINITIONS

Arnold Engineering Development Center

Bell Aerosystems Corporation

Command and Communication Subsystem

Communications Satellite

Gemini Agena Target Vehicle

Lockheed Missiles and Space Company

Massachusetts Institute of Technology

Manned Spacecraft Center

Oxidizer Feed Pressure Switch

Oxidizer Manifold Pressure Switch

Chamber Pressure

Pilot Operated Solenoid Valve

Primary Propulsion System

Spac ec raft

Standard Launch Vehicle

Secondary Propulsion System
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F. SYSTEMS PRODUCTION AND TEST

1. AT CONTRACTOR FACILITY

a. Standard Agena

The Standard Agena is a production line vehicle. It was supplied to the Gemini program as GFE

through the standard DD-250 procedure. When this vehicle was transferred to the Gemini program,

it had successfully completed all systems tests as required by contract and was considered to be a

flight-ready vehicle. The testing which had brought the vehicle to this status was basically the same as

that used to recertify the flight readiness of the Gemini Agena Target Vehicle (GATV) following its

modification from the Standard Agena.

b. GATV

( l} General

The test program for the GATV was conducted on both the component and systems level. Testing

was divided into (a) development testing to establish the functional characteristics of the components,

(b) qualification testing to qualify the components for flight, (c) acceptance testing to ensure that the

system was functioning properly, and (d) vehicle testing to gather information for systems evaluation

and to ensure that the vehicle would meet the flight objectives.

(2) Manufacturing and Final Assembly Tests

During the manufacturing and final assembly test phase, electrical bonding tests were conducted

to assure compliance with specifications. Electrical harness continuity and resistance checks were

made. All harnesses were visually inspected for nicks, abrasions, unnecessary twists or other signs

of damage, and for physical damage to the connectors and plugs. Automatic circuit analysis of electri-

cal continuity, resistance, and insulation voltage breakdown was conducted. Alignments were per-

formed and verified to assure compliance with the engineering drawings. Frequency, impedance,

insertion loss, and voltage standing wave r.atio tests were conducted after the transmission lines were

installed in their final configuration. Guidance system validation tests were conducted before and

after installation of the system in the vehicle. Leak checks were performed on the flight control pneu-

matic system, the hydraulic system, and the primary propulsion system.

(3) Vehicle Systems Test

The complete Vehicle (less the target docking adapter (TDA) and secondary propulsion system

(SPS)) was subjected to a systems test similar to that conducted on ali Standard Agena vehicles. Pre-

liminary subsystem te.sts (Tasks I through VI) were run to verify the operation of the electrical guid-

ance and control, and communication and control subsystems. The SLV-3 (Atlas)/GATV adapter and

the GATV nose shroud were also checked during these tests. Finally, a simulated countdown and

flight test was conducted to check the operation of the subsystem components according to the sequence

of events established for ascent and orbit. During this test, electrical power was supplied by vehicle

b&tteries and the vehicle hydraulics and control gas systems were pressurized. Orbit commands were

fed into the vehicle both manually and by tape. Data were received both by landline and by telemetry

link. Propulsion and pyrotechnic firings did not take place during these tests.

HI. F-I



(4) Special Tests

Several special test programs were included in the Gemini Agena program in addition to the nor-

mal engine development program. These are discussed in brief in the following paragraphs.

(a) Propulsion Test Assembly Program. Because of the extensive changes to the propulsion system,

a propulsion test assembly was fabricated and tests conducted at the Lockheed Santa Cruz Test Base

(SCTB) facility. The propulsion test assembly consisted of a basic Agena structure with propellant

pressurization, feed-and-load system, the primary propulsion system and two secondary propulsion

system units attached to the aft rack. Propellant loading operations and hot firings of both propulsion

systems were then conducted to establish the adequacy of the propellant loading system and the associ-

ated ground equipment for both the SPS and PPS, to demonstrate proper overall system operation, and

to obtain engineering data on the system and the resulting environment.

The first test series acquired base-line performance on the PPS and SPS and subjected one SPS

module to the dynamic and acoustic environment created by 55 seconds of PPS firing. The second

series simulated a possible Gemini mission profile including multiple firings and various coast and

burn times on both PPS and SPS units. Twelve firing cycles were completed on this series with maxi-

mum burn times of 184 seconds of the PPS, 167 seconds on the 16 Ib thrust SPS engine and 50 seconds

on the Z00 Ib thrust SImS engine. The third series involved a maximum number of starts and minimum-

impulse firings on both PPS and SPS units. Sixteen PPS firings were conducted with times ranging from

Z.0 to 145 seconds. Sixteen Ib thrust SPS firings were conducted with times ranging from 5 to 70 seconds

and ni'ne ZOO Ib thrust firings were conducted with times ranging from 0.3 to 48 seconds.

(b) Captive Flight Test Program. The first GATV (5001) was taken to the Lockheed Santa Cruz Test

Base for a captive flight test program designed to simulate actual on-orbit operation. The primary

objective of the static hot fire test program was to verify operation capabilities of the Agena Target

Vehicle under dynamic conditions during actual firing of the primary and secondary propulsion systems.

The propulsion system firings were accomplished in accordance with a simulated mission profile

sequence of events. This test included multiple firings of the primary and secondary propulsion systems.

Subsequent to the final propulsion system firing, and prior to removal of the vehicle from the test stand,

communications and control revalidation checks were accomplished to assure that vibration and acoustic

levels reached during engine firings did not adversely affect other vehicle systems. In addition, the

target docking adapter (TDA) built by McDonnell Aircraft Corporation was installed and tested as an

integral system during this program. The secondary objective of this program was to demonstrate

the integrity of the peculiar AGE, including the PCk4 telemetry ground station. Details of the prepara-

1
tion for the tests and the results can be found in the LMSC final report.

(c) EMI/RFI Compatibility Test Program. Following completion of the captive test program at SCTB,

the GATV (5001) was returned to Sunnyvale and placed in the anechoic chamber for Ek41/KFI compat-

ibility test. The objective of these tests was to demonstrate Agena electromagnetic compatibility in

each of four configurations: (i) on pad at the launch site, (Z) on ascent, (3) on orbit, (4) during predock,

docking, and docked maneuvers with simulated r-f radiation expected from the Gemini spacecraft. The

vehicle was suspended in the chamber as shown in Figure III. F-i. The spacecraft r-f generating de-

vices were placed outside the chamber with the antennas inside the chamber and properly directed and

attenuated to simulate spacecraft r-f radiation during orbital maneuvers. The testing program was

divided into the following phases: self compatibility of the GATV r-f system; compatibility of the GATV
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and Gemini r-f systems; self compatibility of the GATV during high conducted transient noise conditions;

compatibility of the GATV to simulated launch site r-f sources; and immunity of the GATV to static dis-

charges. The latter test employed a capacitor charged to 50 volts and was based on the assumption

that a static potential would exist between the GATV and Gemini spacecraft docking. Details of the

2
tests and results are available in LMSC Report A 744002.

i. VEHICLE TESTING AT ETR

Vehicle tests at ETR fulfilled four general requirements.

i) Assured the over-all integrity of the vehicle and associated hardware after shipment to

ETR by receiving inspection, preliminary functionals, and fit checks.

Z) Provided troubleshooting and retest, as required, to revalidate malfunctioning equipment

and/or equipment added or changed out at ETR.

3) Verified operational readiness of all vehicle systems prior to erection and again after

erection and mating to the Atlas vehicle on the pad.

4) Supported special tests such as Plan X and SLD.

The normal flow of vehicle tests began in Hangar "E" with the receiving inspection, fit checks,

preliminary leak checks, power-on, and interface functionals.

The vehicle was then delivered to KSC on Merritt Island and positioned on the "Timber Tower"

along with the Gemini spacecraft to support an r-f and functional mission compatibility test conducted

by NASA.

Objectives which were acconlplished in this test included:

I) Verified spacecraft/GATV hardline and r-f command capability.

Z) Verified functionally satisfactory operation of spacecraft/GATV and MCC Houston/Cape

command, data and communication links in proximity and docked modes of operation.

3) Provided astronaut familiarization in operating the spacecraft/GATV combination in a

simulated rendezvous mission.

The vehicle was then returned to Hangar "E" for the Combined Interface Test (CIT). The purpose of

this series of tests was to verify the operational readiness of all vehicle systems prior to erection

and mating to the Atlas. Major emphasis was on exercising all vehicle functions on an end-to-end

basis. Within the limits of practicability and equipment availability, test procedures and AGE utilized

in CIT were identical to those employed in Final Systems Test at Sunnyvale.

Following the CIT, the vehicle underwent SPS and PPS functional checks. The SPS installation

and checks at ETR were peculiar to the Gemini Program. A requirement 3 to repeat the PPS functional

and leak checks 40 calendar days after initiation of the original checks established the on-pad time

capability for GAATV after which demate would be required. This provided an on-pad capability of 14

days subsequent to the initially scheduled launch day.

After mating to the SLV-3 on Complex 14, the GAATV was subjected to a Joint Flight Acceptance

Composite Test (J-FACT). This test was a combined check of all contractors, the Range, the vehicle,

and AGE in a simulated countdown and flight. Propellants and high pressure gases were not loaded

and the gantry was not removed for this test.

Next, the vehicle supported a simultaneous launch demonstration (SLD). This was a Gemini

Program peculiar test which constituted a full dress rehearsal of the countdown. This test demon-

strated the coordination required to conduct a single countdown on two vehicles, the GAATV located on

Ill. F-4



Complex 14, and the GLV-S/C on Complex 19. The MCC Houston/Cape link and ETR Range support were

an integral part of the combined countdown and were satisfactorily demonstrated during this test. The

actual launch countdown procedures were used to the point of committment with GAATV termination

at T-18 seconds. The initial SLD, which was conducted with vehicle 5001, was a complete simulation

including tanking of propellants. Subsequent tests merely simulated the tanking sequence.

The actual launch countdown represented the final systems test for the GATV. H all systems

operated satisfactorily and within the redline parameter limits 3, the vehicle was committed for flight.
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AGE

CIT

EMI

ETR

GAATV

GATV

GFE
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J-FACT

KSC

MCC

PCM

PPS

RFI

S/C

SC TB
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SLV
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Aerospace Ground Equipment

Combined Interface Test

Electromagnetic Interference

Eastern Test Range

Gemini Atlas Agena Target Vehicle

Gemini Agena Target Vehicle

Government Furnished Equipment

Gemini Launch Vehicle

Joint Flight Acceptance Composite Test

Kennedy Space Center

Mission Control Center

Pulse Code Modulation

Primary Propulsion System

Radio Frequency Interference

Spacecraft

Santa Cruz Test Base, LMSC

Simultaneous Launch Demonstration

Standard Launch Vehicle

Secondary Propulsion System

Target Docking Adapter

III. F-7



G. GEMINI AGENA TARGET VEHIC LE (GATV) HISTORY

1. MISSION

The mission of the Gemini Agena TargetVehicle (GATV)was to provide a stable platform with an on-

orbit capability of commanded attitude changes and propulsion maneuvers for use by the Gemini Astronauts

as a target vehicle for rendezvous and docking missions. Six GATV's were used for Gemini

missions VI and VIII through XII. The history of these vehicles is shown in Figure Ill. G-1.

Z. OBJECTIVES

The test objectives for the GATV remained the same throughout the Gemini program. The pri-

mary objectives were as follows:

a)

b)

c)

d)

e)

3.

f)

To achieve a 161 nm circular orbit with an orbital inclination angle of Z8.87 degrees.

The SLV-3 (Atlas) was to place the GATV into a coast ellipse.

To maintain a stable attitude for a nominal 5-day active orbital life.

To receive, store, and execute ground-initiated commands and receive and execute space-

craft initiated commands for orbital control of guidance, propulsion, docking, and communi-

cations systems.

To maneuver into a new orbit in response to commands from the ground or the spacecraft.

To provide a safe environment during the rendezvous phases of the 5-day mission and to

participate in docking and undocking operations with the Gemini spacecraft.

To provide a safe environment in the docked configuration while operating the primary

and secondary propulsion systems.

FACTORY HISTORY

The manufacture and checkout of the GATV was accomplished entirely within the Lockheed

Missiles and Space Company facilities at Sunnyvale, California. Standard Agena D vehicles were pro-

vided to the Gemini program by the normal delivery procedures. Vehicles were then disassembled

and modified as necessary and the additional components required by the Gemini mission were added.

Figure III. G-i presents a summary of the manufacturing and test history of the six GATV's.

4. 5001 REFURBISHMENT 1

The highly specialized activity in connection with Vehicle 5001 is worthy of note. The need to

refurbish this vehicle was directly related to its history. The vehicle came into existence, during

April 1964, as Standard Agena _AD71. After systems testing and delivery by DD-250, the vehicle under-

went the modifications necessary for the Gemini Target Vehicle Configuration. During September 1964,

these modifications were completed and vehicle systems level testing started and continued until

July 1 965. During this period over 1600 hours of vehicle power-on time was accumulated. Testing

encompassed the following:

Sunnyvale Systems Test - 4 months

Sunnyvale RFI - 2 months

Santa Cruz Test Base Hot Fire - Z months

Launch Base Test Activity - 2 months

After completion of the test activity at the Air Force Eastern Test Range, (ETR) the vehicle was

retained as a backup for the first GATV launch (Vehicle 5002). Subsequent to this launch, the decision

was made to return 5001 to Sunnyvale for refurbishment and updating to the latest GATV configuration

for flight use later in the Program.
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MANUFACTURING AND

VEHICLE NUMBER

5001
AD-71, DD-250
30 April 64

5002
AD-82 DD-250
]7 Dec'64

5003
AB-I08, DD-250
2_Jul 65

5004
AD-109, DD-250
25 Oct 65

5005
AD-129, DD-250
2 Feb 66

500_
AD-130, 9D-250
22Mar66

5001R
AD-71, DD-250
30 April 64

PROGRAMMODIFICATION
FINAL ASSEMBLY

30April 1964/24September1964
418 in-processdiscrepancies
363CART inspection discrepancies
CART to VSTwith 49open items

18January 1965/18May 1965
81 In-processdiscrepancies
204CART Inspectiondiscrepancies
CART to VSTwith 54open items

4 ECP's worked

20 July 1965/14October 1965
Received with 1 open discrepancy
76 In-processdiscrepancies
109CART Inspection discrepancies
CART to VSTwith 48open items plus 75ABNI items

31 ECP's worked

25 October1965/'26January 1966
190 In-processdiscrepancies
102CART Inspection discrepancies
CART to VST with 37open items plus 59 ABNlitems
Modified PPSinstalled

18 ECP's worked

2 February1966/12 April 1966
Receivedwith 4 open items
209 In-processdiscrepancies
176CART Inspection discrepancies
CART to VST with 31open items plus 35 ABNI items

Modified PPS installed

13 ECP's worked

22March1966/6 June 1966
Receivedwith 3 open items
198 In-processdiscrepancies
133CART Inspection discrepancies
CART to VST with 43 open items plus 52 ABNI items
Modified PPS installed

20 ECP's worked

Returnedfrom ETR 23 Novembe(1965 for refurbishing
IRAN activity beganin Decemberof 1965
826 Squawks'written, only 150 required MRB action
Approximately 40%componentreplacementand35%
electrical harnessreplacement
Modified PPS installed
195CART Inspection discrepancies
CART to VST with 40openitems plus 40 ABNI items

41 ECP's worked
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CEPTANCE

VATACTIVITY
10May1965/27May196546Discrepanciesondataandcomponent
packages
FACI conducted 21Mayto 25 May-
818discrepancieswritten

DD-250 notsigned dueto lack-of confidence
in C&C system

6 July 1965/23 July 1965
41 Discrepancies ondata and component
packages
Limited physical inspection in conjunction
with AFQA

DD-250 23 July 1965

5 January1966/18January 1966
23 Discrepancieson data andcomponent
packages

24 Discrepancieson physical inspection
G1Configuration Managementdiscrepancies
DD-250 18 January 1966

23 February 1966/'11March 1966
8 Data discrepancies
15Componentpackagediscrepancies
7 Physical inspection discrepancies
11Configuration Management
discrepancies
DD-250 11 Mar1966

26 April 1966/14May 1966
7 Datadiscrepancies
9 Componentpackagediscrepancies
4 Physicalinspection discrepancies
DD-250 14May1966

26 June 1966/13 July 1966
6 Data discrepancies
8 Componentpackagediscrepancies
8 Physical inspectiondiscrepancies
DD-260 13 July 1966

8 August 1%6/2 September1966
5 Datadiscrepancies

16 Componentpackage discrepancies
11 Physical inspection discrepancies

DD-250 2 September1966

POST ACCEPTANCE ACTIVITY (ETR)

DD-250 ITEMS

Sentto ETR 28 May1965 to
supportSLD activitFes
17Design changes
11Vehicle discrepanctes
12Open removals
1 UAS
6 Non-flt components
10Dnqualcomponents

7 Open Engineering
1Openoperation
9 Vehicle discrepancies
4 Openremovals
1 UAS
62 5001FACI discrepancies
2 5002 FACIdiscrepancies
10Shortages

5 Vehicle discrepancies
11Open removals
4 Unqualcomponents
4 Nonfit components
9Config Mot discrepancies
6 open Failureanalyses
13Shortages

3 Openengineering
4 Vehicle discrepancies
2 Openremovals
2Shortages

2 Open engineers
5 Vehicle discrepancies
5 Configuration Manage-
ment squawks
4 Data packagesquawks
3 Shortages
6 Open ECP's
15 Open FEDR's
1 Unqual comp

1 Vehicle discrepancy
2 Shortages
29 Open FEDR's
2 Unqualnompoaents
l Non-fit component
5 Datapkg squawks

3 Openoperations
I Shortage
26 Open FEDR's
I Non-fit component

ADDITIONAL ITEMs

23 STI's
7 Engineeringchanges

4 Engineeringchanges
5Unqualcomponents
3 Non-fit components
23STI's
9 ABNI items

9 ECP's

2 Engineeringchanges
25STI's
1 UAS
22ABNI items

11 ECP's

Torquing UAS
15 STl's
3 Engineeringchanges
22ABNI items

6 ECP's

Torquing DAS
13STI's
4 Engineeringchanges
26ABNI items

13STI's
1 Engineeringchange
33 ABNI items

9 ECP's

22STI's
1UAS
27 ABNI items

24 ECP's

REMARKS

SCTB- Mated with TDA andSPS
On 20January 1965,PPS fired 5 times,SPSI
fired 5 times, andSPS II fired once-
firings satisfactory
Only'major anomalywas command
programmerclock jump due to EMI
62 Total data discrepancies
Anechoic Chamber-EMIshown due to AGE,
suitable protectionincorporated into
vehicle andAGE
Previously plannedEMI & RFI testing
complete without incident

CommandandCommunicationsubsystem
redesign efforts March - June

Coming glass capacitor body cracking
problem

GE Capacitor leakageproblem
Babcock relaygetter problem
Kemetcapacitorproblem
Potter& Brumfieldrelay contamination problem
Fairchild transistorleakage problem
TI Integratedcircuit welding problem
Special pyroshock tests of aft rackequipment

Onephysical inspection discrepancy
resulted in test and subsequentredesign
of the hyd powerpackage UDMHlines support
TI integrated circuit problem
Oeutschconnector locking ring problem
Dale resistor manufacturingproblem
Kemetcapacitor problem

Pyro operatedhelium control valve
orifice surveyaccomplished past
acceptanceon 5005,5001 and5006
valves also checked
Commandreceiversurvey for manufac-
turing anomaly
Thrust valve cluster flow path contaminaiion
problem_

Hughesquaddiode problem
Semcorcapacitory leakage problem

Thrust valve cluster flow path contamination
Special ConfigurationControl Board,

established to control vehicle
configurationduring refurbishment

INTERFACE TESTS
PLAN X

Notesting with this vehicle at this time

23 August 1965/1 September 1965
Command programmer anomaly
TM Sync loss
SpuriousMAP problem
ERT reset anomaly

26January 1966/28 January 1966
25Minor discrepancies
3 GATV problems

21March 1966/23March 1966
Cold solder joint in guidance J-box

1 June 1966/_ June 1966
No GATV problems

22 July 1%6/26 Jul 1966
NoGATV problems

16 September1966/20September1966
NoGATV problems

ETR TEST HISTORY

SYSTEMSTESTS
(Hanger E)

29May 1965/8 July 1965
Heliumsystemcontamination

25 July 1%5/23 August 1965 and
2 September1965/30September1965
ACS N2Regreplaced
Commandprogrammerfailure
SPSox till valve leakage

21 January 1%6/26 January 1966 and
29January 1966/28 February 1966
Turbine exhaustnozzle extension
clearance problem
FCEP Capacitor investigation
OxLip Seal Press problem

14March 1966/21March1966 and
24 March1966/1 May 1966
D-Timer faulty switch
CG modworked
Commandreceiver failure - no shutdown
oncommand

16May 1966/1 June 1966 and
8 June 1966/1July 1966
C-bandxsponderfrequency low, replaced,
PPS Fuel pumpassembly
seal leakage, replaced
Leaky fuel PIV, repFaced

15July 1966/21 July 1966 and
26July 1966/20 August 1966
SPSpadmisalignment problem
C-bandtranspondersensitivity
out-of-spec,
HPP replaced, leak in reservoir seal

4 September1966/16September1966 and
20 September1966/22 October 1966
SPSbi-propellant valve bellow leak
Shroudlatching mechanismproblem
Shroud lanyardreplaced due to kinks
Performedengine align verification as
a result of the 5006 flight anomalies
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FLIGHT SUMMARY

SYSTEMSTESTS REMARKS
(Complex14) MISSIONNUMBER RESULTS ANOMALIES

N/A_65/26 July 1965
Reg replaced

!r 1965/20 October ]965
re ERT clockout anomaly

L966/9March 1966
;ponder failure
imolies

_6/10May 1966
imand Receiverreplaced due
ct manufacturingerrorfound
le 5005 units

)66A2 Jury 1%6
ice between Complex 14and

during V/M loadingtests

;t 1966/31September1966
ler failure dueto Semcor

problem
programmercommandproblem

er 1%6/i November1966
irked to change-outquestionable

system leak
oil contamination of PPS POSY
cmddueto TDA control panel

Gemini Vl
25 October 1965
1500:04 GMT

Gemini VIII
16 March1966
1500:03 GMT

Gemini IX
17May 1966
1515:03 GMT

Gemini X
18July 1966
?039:46GMT

Gemini Xl
12 September1%6
1305:02 GMT

Gemini Xll
11 November1906
1907:59 GMT

Maintainedas a back-upfor 5092
Subsequentlyreturned to SV for refurbishmenton
19 November1965

Orbit notachieved dueto GATV
PPS malfunctionduring ascent

Successful orbit
Rendezvouswith S/C on 5th orbit

First dockingin space
8-PPS/SPS-I and 2-SPS II
undockedburns

Maximumapogee407n mi

Orbit not achieved dueto SLV-3
pitch control malfunction

Successful orbit
Rendezvouson4th orbit
First dockedPPS burn
3-PPS/SPS I & 3 SPSII dockedburns
Mannedaltituderecord413 n mi
2-PPS/SPS-I & 1-SPS II undockedburns

Maximumapogee751n mi

Successful orbit
Rendezvouson 1st S,,_orbit
3-PPS/SPS I dockedburns
Mannedaltitude record 741 n mi
3-SPS II undockedburns
Artificial gravity created by spinning
tetheredS*, GATMconfiguration

Successful orbit
Rendezvouswith S./Con 4thorbit
2-SPS II Docked burns

SPSI undockedburn prior to attempted
PPS Number2
Excessive use of ACS duringdocked
maneuversandEVA depleted gas supply

YawCGoffset

ACSControlgas regulator pressure
dropduring1st yaw maneuver
S/CproblemterminatedS/C mission early

Excessiveinverter temperature
following SLV-S problem

+Y SPSII Indicated low Pc
-Y SPSII Shutdown impulse
abovenominalon last 2 burns
V/MWith negnull torquegave
greater .4 Vthan programmed
Taperecorder problem following
active mission

Yawheadingerror greater than
expected during PPS burns
Rollattitude excursion larger
than expected during SPSII
burns
Time accumulator skip/L-band
transponder failure;
H/S pitch and roll errortransients
Tether interference

Momentarythrust decayduring PPS
ascent burn
Turbine speed measurementanomaly
Overspeedshutdownof PPS at
start of burn Number2

Excessive invertertemperature
followin2 lossof attitude contrel

V/M Anomaly,instrumentfail=re

Safety problem-S_ N2 sphere pressurewith._
personnel in area
PPS removedand sent to BAC for modification

N2 sphere pressureproblemcontinued,
waiver granted for 5002 only
Excessiveproblem with out-of-specMON
f_ SPS

V/M Counter contamination

Out-of-spec MON
Invertertempprobablecause-arcing at
mainumbilicaldueto Atlas exnaustgases

IRFNA AGE Filter contaminated

Tankpressureswitch cleaning history
investigation

AGEpower lossduringCIT, no vehicle
damage

MONSpecH20 contentincreased

Spuriouscommandproblemsdetermined
to bedesignproblem-eliminated by
proceduralchange
1st lauecfiattempt scrubbeddue
to GLV propellantleakageproblem
2nd lannchattemptscrubbeddue to
SLV-3 autopilotproblem,

V/M Electronics mplaced by Extra Care
Teamdueto excessiveshelf life

Investigationof Babcock relays forsuspect
overstressduringLMSC receiving
TI Transistorssuspectedof contamination

Figure III-G-1. Gemini Agena Target Vehicle Histories
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Several major decisions had to be made prior to the start of the vehicle refurbishment activity:

• How far should the vehicle be disassembled in order to effect refurbishment?

• Who would manage and direct the refurbishment?

• What controls were required to ensure the final vehicle configuration?

• What requirements were necessary to ensure proper control of vehicle components
during refurbishment?

It was decided to do the job adequately, the vehicle would have to be disassembled completely.

This was necessary in order to (1) uncover and correct all structural corrosion; and (2) properly clean

the main propellant tanks. The level of disassembly went to the point of a permanently attached

assembly, in other words, riveted or welded. This decision to completely disassemble the vehicle

proved to be sound. It not only revealed areas of corrosion unsuspected at the time of the vehicle's

return, but established confidence that refurbishment would be thorough.

In order to ensure proper reassembly of the vehicle, it became apparent that the total configura-

tion of the reassembled vehicle must be known as early as possible in the refurbishment activity.

Attempts were made to establish a configuration utilizing existing CCN's and engineering documentation.

This system, however, was not manageable because of the extensive research required to establish a

configuration of detailed components. The final method of establishing vehicle configuration was by

means of an integrated numerical parts list (INPL) covering both the program-peculiar and Standard

Agena components of the Gemini Agena Target. It was also decided that special configuration

inspections of the vehicle should be accomplished at certain major milestones. During these

inspections, the vehicle was inspected for conformance to existing engineering and the INPL was

used as a reference and updated. The inspection points chosen were as follows:

1. Completion of major structural assembly

2. Completion of wire harness installation

3. Completion of "black box" installations.

These inspections proved advantageous, aside from assuring the proper configuration of the vehicle.

The inspections also allowed the paper system to have a complete audit and any errors corrected.

It is of interest that throughout these inspections the hardware was never found in error, but

invariably there were numerous errors in the various paper systems. The original premise is

still valid that the "as-built" configuration must be known as soon as possible. Experience gained

in this refurbishment activity indicated that the delivered vehicle configuration be known prior to

disassembly, preferably by some means like an IN]PL.

Because of the nature of the refurbishment activity, it was decided that it would be most

expeditiously handled by a Task Force mode of operation under the direction of the program office.

Each participating organization assigned people to the Task Force for the duration of that organization's

responsibility. Each organization also assigned a member to act as its team leader, responsible for

that organization's effort.

III. G-5



All components were retested, updated, or repaired as necessary; however, the decision was

made to use existing hydraulic or pneumatic tubing whenever possible. Subsequent test history proved

this decision to be grossly in error. After reassembly of the vehicle, an additional 5 shifts were

expended to complete the scheduled 4-shift leak checks. Upon delivery to the launch base and the

ensuing high pressure checks, numerous leaks were found. This condition can only be attributable

to the use of used tubing. Even though the tubing was reinspected for pressure and flare condition,

no attempt was made to compare it to its original bend data. The vehicle, after being completely

disassembled and reassembled was therefore not in exactly the same alignment as the tubing had

previously experienced. This resulted in adjustments of the tubing to ensure proper fit.

5. ETR HISTORY

After the signing of the formal acceptance by the Air Force (Form DD-250), vehicles were

transferred to the Eastern Test Range where additional confidence tests and spacecraft interface

tests were conducted prior to launch.

6. LAUNCH

The GATV's were launched from Complex 14 at Cape Kennedy. Initial boost for the GATV was

provided by the SLV-3 (Atlas). The SLV-3 placed the GATV into a coast ellipse and initiated the

discrete start-up command for the GATV sequence timer. Final orbit attainment was achieved by

firing the GATV primary propulsion system.

7. FLIGHT SUMMARY

The flight history of the GATV was impressive, but not entirely successful. Of the six GATV

launches attempted, only four resulted in the attainment of the desired orbit by the GAT. The failure

of the Gemini VI mission was attribflted to malfunction to the GATV primary propulsion system during

the ascent burn. The failure of the Gemini IX mission was the result of an Atlas (SLV-3) guidance

control malfunction.

On the brighter side, however, the four GATV's which attained orbit did so to near perfection

and performed very well throughout the active portion of their respective missions. The significant

events accomplished in the Gemini Program which the GATV made possible were:

a) G-VIII - first docking of two vehicles in space.

b) G-X - a new manned altitude record of 413 n mi.

c) G-XI - a new manned altitude record of 741 n mi.

d) G-XI - a creation of an artificial gravity by rotating the GATV/SC combination connected

by a tether.
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SECTION III. G

D E FINIT IONS

ABNI

ACS

AFQA

AGE

APDJB

CART

CG

CCN

CMP

ECD

EMI

ERT

ERF

FACI

FCEP

FCJB

FCLP

FEDR

GMT

H/S

INPL

IRP

MAP

MON

MRB

PlY

PPS

RFI

SCTB

Available but Not Installed

Attitude Control System

Air Force Quality Assurance

Aerospace Ground Equipment

Aft Power Distribution J-Box

Conditions of Assembly for Release and Transfer

Center of Gravity

Contract Change Notice

Configuration Management Plan

Engineering Change Directive

Electromagnetic Inte rfe rence

Emergency Reset Timer

Engineering Reconciliation Form

First Article Configuration Inspection

Flight Control Electronics Package

Flight Control J-Box

Flight Command Logic Package

Failed Equipment Discrepancy Report

Greenwich Mean Time

Horizon Sensor

Integrated Numerical Parts List

Inertial Reference Package

Message Acceptance Pulse

Mixed Oxides of Nitrogen

Materials Review Board

Propellant Isolation Valve

Primary Propulsion System

Radio Frequency Interference

Santa Cruz Test Base, LMSC
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DEFINITIONS (Continued)

SPS

STI

TI

TLM

UAS

UDMH

UHF

V/M

VST

Secondary Propulsion System

Special Test Instruction

Texas Instrument

Telemetry

Urgent Action Survey

Unsymmetrical Dimethylhydr azine

Ultra-high Frequency

Velocity Meter

Vehicle Systems Test
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SECTIONIV

GEMINITARGETBOOSTER

A. INTRODUCTION

This portion of the report presents a summary of the historical background and the role played by

the SLV-3 (Atlas) Target Booster in the Gemini Program. Since the standard mission of the SLV-3 is

to place an Agena vehicle into a specified coast ellipse, the SLV-3 is discussed primarily in terms of

aspects that were peculiar to the Gemini mission. The part it played in the backup Augmented Target

Docking Adaptor (ATDA) mission - a different application in which the SLV-3 placed the target (ATDA)

into a direct-ascent earth orbit - will also be discussed.

B. SELECTION OF THE SLV-3

The requirements of abooster for the Agena Target Vehicle included consideration of the Titan If.

Factors that made the Atlas SLV-3 vehicle a desirable choice follow. The Atlas D (LV-3) vehicles:

• Were capable of meeting the target mission requirements.

• Were in quantity production and currently used as a standard workhorse booster for Air Force

and NASA payloads.

• Had a demonstrated compatabilitywithAgena vehicles, and were in routine use on USAF and

NASA Programs.

• Constituted the most cost effective vehicle system.

Although these considerations in themselves were sufficient to determine the launch vehicle to be

used, there was one additional fact that reinforced the decision. At that time, the Air Force had con-

tracted with the Convair Division of General Dynamics for a new, improved version of the Atlas to be

identified as the SLV-3. The modified Atlas was to incorporate a large number of mechanical and elec-

trical design changes in an effort to eliminate the identifiable problem areas and failure modes experi-

enced with the Atlas D (LV-3) space booster vehicle. To offset the weight increase due to these changes,

the booster total engine thrust was increased by approximately I0 percent. The objective of the modifi-

cations was to achieve a vehicle reliability of 95 percent or better. The modificationsi established a

standard vehicle configuration for use with any space program. This standardized vehicle was expected

to reduce cost and increase the rate of production and reliability. The Gemini Program would benefit

from these improvements since there would be at least twelve SLV-3 launches before the first target

mission.

C. SLV-3 PROGRAM MANAGEMENT

Concurrent with the decision to use the SLV-3 as the target booster, it was decided to use the

management organization within AFSSD for the procurement and management of the Gemini target

boosters. Figures IV. C-I and IV. C-Z show the standard organizational relationships inherent in the

SSD program management for SLV-3 type vehicles.

The Air Force SLV-3 Directorate (Figure IV.C-I) was used for the procurement and management

of the SLV-3 for the Gemini Target Program; being a standard program office organization, it requires

no description. Funding for procurement of SLV-3's comes from the various program offices using

them, in this case, the Agena Target Vehicle Directorate. The relationship with NASA for implemen-

tation of SLV-3 purchase and launch support services is covered in Section III.A, which deals with

Agena program management.
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The Aerospace Corporation provided technical surveillance over the SLV-3 in an advisory capacity

to the Air Force. The Air Force and Aerospace program offices managing the over-all SLV-3 program

provided combined support to the Gemini Program. Figure V.C-2 shows the contractor relationships in

the SLV-3 program. In general, and because of the standard vehicle concept, none of the SLV-3 con-

tractors established program offices specifically for Gemini. The Convair Division of General Dynamics,

however, did have a special Gemini project engineer who had been given management authority. The

mission planning and integration of the SLV-3 and associated activities were the responsibility of

Lockheed except for the ATDA effort, which was completely GD/C's. ATDA management is discussed

in D-4 of this section. The responsibilities of SSD/Loekheed are discussed in Section III. A.

The SLV-3 used as the Gemini Atlas Target Vehicle (GAATV) required a minimum of hardware

changes to satisfy the Gemini program mission requirements. The program-peculiar modifications were

handled by the same contractor engineering/management organizations that supported the over-all SLV-3

program, with SSD directing the effort and Aerospace supporting SSD, as required. The launch prepara-

tion was handled by the contractor's field organizations. Established field procedures were used and SSD

(6555th Test Wing) directed the over-all effort at the ETR. Aerospace and vehicle contractor personnel

participated in all of the GAATV design and technical reviews and in the flight readiness presentations

made to the Flight Safety Review Board at Cape Kennedy prior to each launch. In addition, Aerospace

Corporation in support of SSD, provided a special team of system experts at ETR, which reviewed the

vehicle prelaunch test data to further assure vehicle flight readiness on all vehicles subsequent to the

2nd (5302) GAATV launch.

D. GEMINI TARGET BOOSTER HISTORICAL SUMMARY

i. VEHICLE CONFIGURATIONS

In accordance with the original program management decisions, the SLV-3's assigned to the

Gemini program were standard vehicles selected from the production line by matching their scheduled

delivery dates to the site need dates in support of Gemini. The Gemini target boosters were not con-

secutively produced, and the normal scheduled reliability improvement changes for SLV-3 were incorpo-

rated in the production articles as the need arose. These changes, which were minimal and of the

product improvement type, generally resulted in no two Gemini SLV-3 booster vehicles having exactly

the same configuration. However, all modifications were made solely to improve the over-all reliability

of the SLV-3 family.

The standardization of design in the SLV-3 minimized the need for special modifications to accommo-

date the different programs. For most missions (using an Agena upper stage), the only significant dif-

ference between SLY-3 configurations is in the displacement gyro canister of the autopilot system. The

Gemini program used identical canisters for all its flights except on the ATDA mission. Program-peculiar

modifications consisted of gain changes in the displacement gyro to attain the required trajectories. In all

other respects, the Gemini Target Boosters were standard SLV-3 vehicles.

The ATDA mission, which involved direct injection of the payload (ATDA) into orbit, required a

number of special modifications to the SLY-3. They were adopted from the Mercury and Ballistic

Missile Programs and are tabulated in Table IV.D-I.

2. OVER-ALL FLIGHT SUMMARY

The mission of the SLY-3 terminated at Agena target vehicle separation, and the only result signifi-

cant in the program history was the success of the SLV-3 in satisfying mission injection parameters.

Table IV.D-2 summarizes the results of the SLV-3 launches. The failure of SLV-3/5303 led directly to

the decision to use the ATDA concept, and these two events are described in the following sections.
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TABLE IV. D-i

SUMMARY OF SLV-3/5304 FOR THE ATDA MISSION CONFIGURATION CHANGES

SYSTEM

Booster Adapter

Flight Control

MODIFICATION

The ATDA Kit modifies the Gemini target equipment

adapter forward of the existing booster adapter

extension as follows:

I. Removes the four existing jettison rails.

Z. Removes the retro-rocket fairings and support

bracketry.

3. Removes LMSC pyrotechnic ring and detonator

housing at station 361.5 and bracketry in the

destruct package area.

4. Removes the discrete destruct box and all

electrical harnesses.

5. Vent holes in 4 access doors at station 436.6

are plugged up and the vent holes in the 4 access

doors at station 391.05 are enlarged' from 1-1/4-

in.to 3- in.diamete r.

i. Modifies the gyro canister rate and displacement

gains to implement the requirements of the ATDA

Bulletin No. 2-00197.

2. Changes the Pitch Attenuation Factor to 0.69.

3. Changes the staging backup accelerometer to

implement a staging backup level of 6. i g.

4. Modifies the programmer canister as follows:

a. Revises the pitch program amplitude and

time slots.

b. Retimes the Subroutine II (SECO to Reset)

to begin at 464 sec to accommodate longer

sustainer burn time.

c. Revises the VECO B/U and ISS B/U activa-

tion time.

d. Revises the guidance enable time to L + 95

sec.

e. Revises the integrator status by eliminating

the null command during staging sequence.

f. Revises staging enable time slot to L + 114
sea.
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TABLE IV. D- 1 (concluded)

SUMMARY OF SLV-3/5304 FOR THE ATDA MISSION CONFIGURATION CHANGES

SYSTEM

Flight Control

Pneumatic

Electrical

Telemetry &
Instrumentation

Propulsion

Range Safety

MODIFICATION

g. Revises time slot to provide liftoff filter
switch at stg. + 0.1 sec and changes

harness to provide liftoff filter switch

signal from low-power Switch 26 instead
of Switch 6.

5.

1.

2.

lo

2,

h° Revises displacement switch timing by

adding low-power Switch 8 timing for dis-
placement gain change at L + 90 sec.

i. Revises rate switch timing by modifying

low-power Switch 9 timing to achieve a
rate gain change at L + 90 sec and SECO.

Provides a servoamplifier assembly similar to
the OAO configuration.

Modifies the boiloff valve installation by read-

justment of the valve controller for a 3.0 to

4.0 psig operating pressure and a larger
bellows stroke.

Modified the Lox regulators and relief valve

installation for lowered Lox tank flight

pressures (new range of 24.7 - 26.0 psig).

Replaces the existing MOD HI guidance antenna

and associated waveguide with a Mercury
booster guidance antenna and associated

waveguide.

Revises electrical harness by rerouting one
wire to carry autopilot programmer Switch 8

output to the gyro package.

1. Addition o_ one landline measurement to the ATDA

kit: S13Z5X, VECO Programmer Test Output.

Z. Deletion of the following measurements for the
ATDA kit:

Y41X Start D Timer

Y1041X Start D Timer

YI040X Uncage LMSC Gyros

$248X Release Payload

SIZ48X Release Payload

Installs a larger-in-diameter and longer Rocketdyne

sustainer lube oil tank (similar to the one used in the

Mercury Program) and associated modified tubes per
Rocketdyne ECP MA5-88. This sustainer lube oil tank

has an increased capacity of approximately 1.7 gallons.

The ATDA kit deletes the interface requirement for
upper stage. The harness at P/J106is disconnected
and tied back.
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TABLE V.D-Z

SLV-3 TARGET LAUNCH VEHICLE OVER-ALL FLIGHT SUMMARY

SLV

S/N

53012

3
530Z

4
5303

53045

6
5305

53067

8
5307

Gemini

Mission

Vl

VHI

IX

IX-A

(ATDA)

X

Xl

XlI

Sequence Among SLV-3 Launch Atlas
Date of All Atlas Sequence Mission

Launch Space Launches Number Objectives

10-25-65 86 14 Successful (Agena Failure)

3- 16- 66 90 18 Successful

5- 17-66 96 23 Failure

6- 0 I- 66 98 24 Successful

7- 18- 66 103 28 Successful

9- 12- 66 107 3Z Successful

1 I- II-66 115 38 Successful
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3. SLV-3 S/N 5303 FAILURE

Vehicle 5303 experienced the only SLV-3 flight failure in the Gemini program, and was one of the

only two flight failures at that time in the SLV-3 program, which had an over-all success of better than

95 percent in 4Z launches.

The flight of SLV-3/5303 proceeded normally until approximately 120 seconds (I0 seconds prior to

nominal Atlas booster engine cutoff). At this point, control of the B2 engine was lost. It gimballed

rapidly to the full pitchdown position and remained against the stop. The autopilot loop, sensing

the incorrect engine position, gave a full pitchup correction command; however, only the B1 engine

responded. The B1 engine's response merely decreased the rate of angular acceleration to near zero.

The initial rate of pitchdown angular rotation continued essentially unchanged and had reached a value

of over 20 deg/sec. The vehicle continued out of control until after booster separation, at which time

the sustainer engine regained control and stabilized the vehicle (150 sec after liftoff).

The vehicle performed a 216-deg pitchdown maneuver and pointed toward Cape Kennedy in a

climbing attitude about 13 deg above the horizontal. During the maneuver, both radio guidance lock and

pitch attitude reference were lost, resulting in the vehicle continuing on a new trajectory following nor-

mal autopilot programmer sequencing until vernier engine cutoff. Normal Agena separation was accom-

plished by programmer-timed backup command; however, because of the various abnormal conditions,

the Agena did not attain orbit and fell into the Atlantic Ocean some 90 miles off the coast of Florida.

As a result of the flight failure, an intensive two-week failure analysis was undertaken. The

conclusion of the investigation was that a short circuit occurred in the servo control circuit somewhere

between the autopilot servo amplifier and the BZ pitch actuator. Corrective action taken for the follow-

ing SLV-3 launches furnished protection against shorting of the control harnesses and consisted of

the following measures:

• X-ray all soldered electrical connectors of less than eight pins. Include all servo valve and

feedback transducer plugs.

• X-ray all servo valve torque motor wiring (Survey 38-66) to establish that pinching does not exist.

• All servo-actuator assemblies are to be subjected to a run-in of 4000 cycles of operation of 50 to

95 percent full stroke at i/2 cycles/sec.

• Perform a manual flex test on the servo amplifier and excitation transformer connectors.

4. AUGMENTED TARGET DOCKING ADAPTOR (ATDA)

After the failure of the first target mission (Agena 5003), there was concern as to whether the

Agena failure mode could be defined and corrected without causing a serious delay in the Gemini pro-

gram. The possibility of another Agena failure would have a major impact on the program. Because

of the potential problems, a parallel program, Augmented Target Docking Adapter (ATDA), was insti-

tuted by NASA to be used in the event of another Agena Target Vehicle failure. The SLV-3 was chosen

as the boost vehicle since it was a standard production item that could be made available on relatively

short notice.

a. Concept

McDonnell Aircraft Company proposed a modified target docking adapter mounted on a simplified

airframe, which would utilize anattitude control system adapted from existing Gemini vehicle hardware.

The ATDA would be a passive docking vehicle as compared to the active Agena target vehicle. This

ATDA would offer an alternate capability for testing the docking functions in the event the current Agena
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problems were not resolved within a reasonable time. The ATDA could be built in a relatively short

time since it utilized existing hardware and would be light enough so that an SLV-3 could inject it

directly into orbit without requiring a second stage. The plan was to make the ATDA and the modified

SLV-3 available in time to support the scheduled March 1966 mission. The ATDA, if not used, would

then be kept in a state of readiness throughout the remainder of the Gemini program.

b. Manajement

The tight schedule available for the development and production of the ATDA dictated a highly

responsive management system to insure no time delays in implementation. Within their organizations,

the Air Force established a streamlined project management team and identified project officers in

each key function to work as part of the ATDA management team. Personnel identified as part of this

team were given authority and support to insure that there would be no delays in decision-making or

contractual activity, which might adversely affect the program. In retrospect, the ATDA program

stands out as an excellent example of the effectiveness of this type of project control for rapid response

missions.

c. Implementation

From the time that NASA decided to implement the ATDA program, it was possible to have the

affected contractors/organizations briefed and authorized to start work within a period of four working

days. Convair, as the systems integrating contractor, performed the necessary vehicle integration

studies, the open- and closed-loop trajectory analyses, and the identification and fabrication of modi-

fied SLV-3 hardware within 45 days from go-ahead. McDonnell Aircraft Co. was to provide the shroud

and all engineering services associated with its installation and use. The guidance equations were modi-

fied by the TRW Systems Division and validated by GD/Convair during this period. GD/C studies_

supplementing the McDonnell Company's efforts, identified a potential problem in the ATDA shroud in

sufficient time for corrective recommendations to be implemented. The program schedule was met with

all of the program-peculiar SLV-3 kits at Cape Kennedy by 1 March 1966. The SLV-3 booster vehicle

kits included all changes in the site procedures necessary to launch the ATDA vehicle, as well as the

complete hardware, instructions for installation, and drawing changes. As of 1 March 1966 everything

associated with the SLV-3 booster vehicle was in readiness for application of the ATDA modifications

to any Gemini SLV-B for a launch within 18 days from go ahead,

d.

The day after the failure of SLV-3 S/N 5303, NASA decided to launch the ATDA. Although the

original schedule called for an 18-day turnaround, SLV-B/5304 was modified, erected at Complex 14,

and prepared for launch within 14 days. The launch took place on 1 June, the 15th day following the

5303 failure. The flight of 5304 5 was routinely precise and the ATDA was injected into orbit. The

planned insertion conditions were met within close tolerances.

The ATDA 10 was not used for on-orbit docking maneuvers due to a failure of the nose shroud to

separate.

E. C ONC L USIONS

The application of a standard launch vehicle, in this case, the SLV-3, which requires only minor

program-peculiar modifications, proved very satisfactory for the Gemini target booster.

The injection parameters obtained during each mission, with the exception of 5303, were

extremely accurate.
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Considerable cost savings were realized, primarily because of the low cost of the SLV-3.

Furthermore, since no extensive program modifications were required, it was not necessary to man

the program office with additional personnel to manage the SLV-3.

The flexibility of a standard vehicle and the utilization of the kit concept for program-peculiar

modifications were mandatory for the ATDA mission. Only through the kit concept was it possible to

modify the SLV-3 so rapidly for such a mission.
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SECTIONIV

DEFINITIONS

AFSSD
ATDA
B1
B2

B/U
ECP

g
GD/C

ISS

LMSC

LV - 3

NASA

OAO

SECO

SLV - 3

SSD

TRW

VECO

Air Force Space Systems Division

Augmented Target Docking Adapter

Booster 1

Booster 2

Backup

Engineering Change Proposal

Gravitation Acceleration

General Dynamic s / Convair

Integrated Start System

Lockheed Missiles and Space Company

Launch Vehicle 3

National Aeronautics and Space Administration

Orbiting Astronomical Observatory

Sustainer Engine Cutoff

Standard Launch Vehicle 3

Space Systems Division

Thompson Ramo Wooldridge

Vernier Engine Cutoff
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V. CONCLUSIONS

As this report was prepared, conclusions specifically applying to a particular area or subject were

developed and appear with the related material. The following conclusions represent general reflections

of lessons learned and techniques used successfully during the course of the program.

MANAGEMENT

The Martin Company maintained an aggressive and technically capable reliability organization

reporting independently to program management. This was extremely effective for Gemini and this

particular organization contributed much to the company's success on Gemini.

Incentive contracting as used on Gemini was administered quite successfully from a management

standpoint; however, the manned aspect of the program and the associated publicity provided a

more effective incentive of a personal nature to the work forces in the factories and test areas.

This motivating factor was encouraged by management and it added greatly to overall pride of

workmanship.

TEST - ACCEPTANCE

Contractual control of ground testing must be tailored to meet the special situation. It is very

easy for managing agencies to impose approval requirements on testing at an improper level. Loss

of control can occur by approving contractor test plans at too general a level or by selecting a

detail level which quickly results in an unmanageable administrative burden as the program becomes

ope rational.

Interface agreements must be contractual to be effective and should contain test requirements and

criteria as well as configuration.

The Airborne Systems Functional Test Stand (ASFTS} at Martin/Baltimore continually provided

technical support to the GLV program. This extremely comprehensive and flexible engineering

tool functioned in a "pilot plant" capacity throughout the program in areas of system integration,

component and procedure development, and AGE compatibility. As basic studies were completed,

this facility was used effectively to support failure analysis investigations. The existence of this

engineering and test tool was unquestionably justifiable for Gemini and the concept could be highly

advantageous for future programs.

A highly disciplined contractual hardware acceptance program is extremely important to a program

where reliability is paramount and launch preparation time is critical. The question of incremental

or end product acceptance of significant systems must be given careful evaluation by a customer

agency before an approach is chosen.

TREND ANALYSIS

The observation of selected parameters monitored at regular intervals during normal factory and

prelaunch testing can reveal useful performance trends. These trends may be used to advantage:

To express normal operating drift and test-to-test characteristics for baseline tolerances.

To identify incipient failures and allow timely replacement in the test cycle.

As a corrective action method in situations where suspect parts cannot be retrofitted because

of cost, schedule, or accessibility.

A great deal of emphasis was placed on establishing nominal behavior patterns of Gemini critical

components and systems.

RELIABILITY - QUALITY

The importance of a highly disciplined hardware oriented reliability program cannot be over-

emphasized. Realistic qualification testing and a relentless closed loop failure analysis effort

must be part of the basic contracts and have the support of management at all times.

Periodic problem reporting and status meetings among all agencies involved in the program

provided a good avenue for rapid, up-to-date information dissemination on real and potential

problems with the end result of minimizing their effect on the program. The regularly scheduled
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GPIS reviews and the GPIS accounting system as described in this report provided a very useful

technique for assuring that all problems received the timely and proper amount of attention from

all agencies concerned. The prelaunch technical reviews between Aerospace and the contractors

for a final vehicle statusing prior to launch greatly reduced the possibility of an item "dropping

through the crack. "

Piece-part traceability is an extremely useful corrective action tool. It was not formally accepted

in Gemini for economy reasons; however, on many occasions, the Gemini contractors at their
own expense found ways to isolate suspect parts by long _edious research of manufacturing and

procurement records.

Vendor control is by far the most annoying program problem. Many problems with Atlas, Agena,

and GLV contractors were ultimately traced to vendor weaknesses. Extremely tight procurement
specifications, effective source and receiving inspection techniques, vendor audits, and motivation

briefings are just a few of the measures needed to control this problem. Any program with ahigh

reliability objective must specifically attack this area aggressively with maximum management
attention.

Following the successful conclusion of a program such as this, the highly disciplined techniques

and mechanisms that were developed disappear rapidly as the people disperse. Every facet of the

Gemini program was complex and challenging: the missions; the procurement, production, and testing;

the launches; the communications; the geography; and especially the management. This report has

related some of the techniques used in the hope that present and future programs might benefit.

The common goal of providing safe and predictable vehicles which would permit the astronauts

maximum concentration on the scientific objectives of the Gemini program was achieved. There is no

attempt at accolades in this report. Gemini was a highly successful engineering endeavor. Many of

the reasons are contained herein, but the methodology demands competent contractor personnel and

extremely capable management agencies. Such was the case on Gemini:
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Gemini IGS Hardware Validation, Final Report, TOR-469(5126-

41)-3, D.E. Anderson, B. Krishan, G.H. Koeckel, 18 January

1965.

The Modularized Vehicle Simulation (MVS) System, TOR-469(5126-
42)-5, R.D. Hartwick, J.H. Neally, M.J. Rademacher, V. Hender-

son, April 1965.

Summary of Combined Systems Acceptance Test Data for GLVs

-2, -3, -4, TOR-469(51Z6-80)-3, W.A. Read, 5 April 1965.

Proposal for Gemini Rendezvous Mission Range Safety Data,

TOR-469(5126-80)-4, 1 July 1965; RevA, 3 $anuary 1966.

Gemini Launch Vehicle Acceptance Specification, SSVL Exhibit
65-i, TOR-469(5126-81)-3, 8 February 1965.

Gemini Program Specification Tree, TOR-469(5126-82)-2,

C.C. VanArsdale, 4 June 1965.

A Simplified Center-of-Gravity Migration Analysis for Gemini,
TOR-669(A6126-10)-I, i September 1965.

VI. A-I1



C.

Automatic Systems Test Analysis (ASTA), TOR-669(A6126- I0)-4,
R.E. Seelers, 13 January 1966.

An Engineering Approach to Combustion Instability, TDR-

669(6126-22)-1, O.W. Dykema, 5 November 1965.

General Electric Mod Ill Gemini Look-Angle Restraints Supple-
ment, TOR-669(6126-40)-2, W.W. Begley, December 1965.

Guidance Program Validation, TR-669(6126-40)-Z, Lucile F.

ZSolberg, July 1966.

Orbital Rendezvous Optimization Usin_ the Pontryagin Maximum

Principle, TR-669(61Z6-40)-5, E.H. Fallin, III, June 1966.

Mid-Program Status Report on Gemini Launch Vehicle Guidance
and Performance, TOR-669(6126-42)-I2, Leon R. Bush, March

1966.

MVS Modification Required for Gemini Post-Fli_ht Reconstruction,
TOR-669(6126-43)-5, W.A. Feess, April 1966.

Evaluation of Gemini Launch Vehicle Structural Loads from Fli_ht
Measurements- GT-Z and GT-3, TOR-669(61Z6-43)-6, J.S. Field,

I4. C.Kopp, and L.M. Saslow, July 1966.

Titan Family Fli_ht Anomalies and Problems, TOR-669(6126-80)-6,

A.A. Jacobs, J.F. Bazyk, and T. Shiokari, 6 October 1966.

Performance Reports

Gemini Launch Vehicle Monthly Performance Report,* TOR-
69(2126)-3, E.H. Fallin, Ill, 15 June 196Z.

TOR-

TOR-

TOR-

TOR-

TOR-

TOR-

TOR-

TOR-

TOR-

169(3126)-I, 15 July 196Z

169(3126)-3, 15 August 196Z

169(3126)-4, 15 September 196Z

169(3126)-5, 15 October 196Z

169(3126)-7, 15 November 196Z

169(31Z6)-9, 15 December 196Z

169(3126)-IZ, 15 January 1963

169(3126)- 13, 15 March 1963

169(3126)- 15, 15 April 1963

This report started as a monthly report and was subsequently changed to

bimonthly and then quarterly.
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TOR-169(3126)-I7,15May 1963
TOR-169(3126)-20,15June 1963
TOR-269(4126)-I_10July 1963
TOR-269(4126)-4, i0 August1963
TOR-Z69(4126)-6,I0 September1963
TOR-269(4126)-8,I0 October 1963
TOR-269(4126)olI_i0 November1963
TOR-Z69(4126)-14, i0
TOR-269(4126)-15, i0
TOR-Z69(4126)-20,i0
TOR-Z69(4126)-Zi, i0
TOR-Z69(4126)-Z5,i0
TOR-269(4126-40)-l,
TOR-269(4126-40)-3,
TOR-269(4126-40)-5,
TOR-269(4126-40)-7,
TOR-469(51Z6-40)-i,
TOR-469(5126-4Z)-2,
TOR-469(5126-42)-6,
TOR-469(5126-42)-8,
TOR-669(6126-42)-i,
TOR-669(6126-42)-4,
TOR-669(6126-42)-8,

December1963
January 1964
February 1964
March 1964
April 1964
i0 May 1964
i0 June 1964
I0 August 1964
i0 September1964
i0 November1964
January 1965
March 1965
May 1965
July 1965
October 1965
January 1966

TOR-669(6126-42)-II, April 1966
TOR-1001(ZI26-42)-I, July 1966
TOR-1001(2126-42)-5,October 1966
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3.

a.

MARTIN COMPANY, BALTIMORE DIVISION, BALTIMORE,

MARYLAND

Type I Documentation

General Development Specification for the Gemini Launch Vehicle

Systems, MB-1040, A-B2-D, 20 February 1962.

Gemini Launch Vehicle System Integrated Documentation

Recluirements Specification, MB-1041B, A2-AB-A4-B3, 15 July
]965.

Gemini Launch Vehicle System Test Program Specification,

MB-1042, A-B2-D, 2 April 1962.

Gemini Launch Vehicle System Integrated Environmental Recluire-

merits and Tests Specification, MB-1043, A-B2-D, 26 February
1962.

Gemini Launch Vehicle Performance Specification, MB-1046,

A-B2, 20 February 1962.

Gemini Launch Vehicle Model Specification, MB- 1047, A-B2,

23 April 1962.

Gemini Launch Vehicle Acceptance Specification (SHIP 1 - 4},

MB-1049, A-B2-D, 16 April 1962.

Gemini Launch Vehicle System AGE Performance Specification,

MB-1050B, A-B2-D, 18 October 1963.

Gemini Prosram Facilities Recluirements and Activation Speci-

fication for Launch Complex and Launch Vehicle Support Areas,

MB-1051, A-B2-D, 2 April 1962.

Gemini Launch Vehicle System Vertical Test Site Facilities and

Activation Specification, MB-1052, A-B2-D, 16 April 1962.

Gemini Launch Vehicle Martin/Aerojet/Interface Specification,

SSD Exhibit 62-190A, Special.

GLV Radio Guidance Interface Specification, SSD Exhibit

62-194B, Special.

Gemini Launch Vehicle System Specification Plan, MB-I060,

A-B2-D, 5 February 1962.

GLV Mistram Interface Specification, SSD Exhibit 63-9, Special.

GLV Control Receiver Interface Specification (MB-1063), SSD

Exhibit 63-8, Special.

GLV Simulator Specification, MB-1064B, A-BZ-D, 27 August
1963.
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b.

GLV System Gyro Test Set Specification, MB-1066, A-BZ-D,
22. March 1963.

Acceptance Summary Report, MBX-Series, A-BZ, Z5 October
1963.

Gemini Spacecraft Interface Specification, ISCD-I, Special.

GLV System Command Receiver Interface Specification, SSVL
Exhibit 64- i.

Management Documentation

Program Planning Rep., ER-12255, A--BE--D, 16 May 1962,

Rev as required.

Reliability Test Plan, ER-IZZ58, A--BZ, 15 June 1962.

Manufacturing Plan, ER-IZ324, A--BZ--D, 21 May 1962, Rev

as required.

Reliability Program Plan, ER-IZZ56, A--BY---D, 31 May 196Z,

Rev as required.

Support Plan, ER-IZ3ZSC, Rev July 1966, A--BZ--D.

Quality Assurance Plan, ER-IZZ54-A, A--BZ--D, 16 May 1962-,

Rev C, A--BZ--D, 13 September 1963.

AGE Plan (Operating Ground Equipment Section), ER-12330,

A--BZ--D, 3 May 1962.

AGE Plan (Maintenance Ground Equipment Section), ER-12331,
A--BZ--D, I June 196Z.

Gemini Launch Vehicle System Safety Program Plan, ER-12054,

A--BZ--D, 31 May 1962, Rev "C", A--BY--D, Rev 15 December

1963.

Facilities Planning Report, ER-IZ259, A--BZ--D, Ii May 1962,

Rev as required.

Make or Buy Plan, AI, Z March 196Z, as required.

Configuration Accounting and Control, ER-12326, A-B3-D,

15 April 1962.

PERT Networks, A3, 30 June 1962, as required.

PERT Reports, A,4, 30 June 1962, as required.

Gemini Launch Vehicle Program and Facilities Progress Reports,
ER-IZZ60, A-B3, Monthly.

Contract Financial Status Report, A-B3-D, Quarterly.
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Contract Cost Status Report, A4--B3, Monthly, starting

28 February 1962.

Funding Status Information Report, A4-- B3, Monthly, starting
28 February 1962.

Material Report, Section I, AI, and Section II, A3, Monthly.

Program Recluirements Document (was LV24, now Ltr. Report),
A3-A4, I June 1962, Rev as required.

Manpower Planning Report, Sections I and II, A4, Semi-annually,

starting 31 July 1962.

Manpower Status Report, A4, Monthly.

"Red Flag" Report, A4, as required.

Still Photography, B3, Special, Monthly.

Film Footage Inputs, B3, Special, Monthly.

Quarterly Film Report, LV-264-I, A--B3, 21 August 1963.

Qual. Test Reports, Cover all types, A--B2, as required.

Government Furnished Airborne Equipment Recluirement

Schedule, DD Form-610, A--BZ, Annually.

Government Furnished Airborne Equipment Shortage Report,

DD Form-611, A--B2, Monthly,

Government Furnished Airborne Equipment Status Report,
DD Form-611, A--B2, August 1963.

AGE Requirement Schedule and Status Report, No form no.,

A-B2, Annually.

Reliability Progress Report, ER-12794, AI(A}-A2(A)-A3-B3,

Monthly.

Value Engr. Plan, ER-13063, A4, I October 1963, as required.

Value Engineering Quarterly Status Report, A4, Quarterly.

Launch Vehicle History, LV-344 Series, A-B3, Rev as required.

Incentive Monitoring Catalog, IM-101, -I02, -103, Etc., Special,

Rev as required.

Reliability Program Status Report, ER-13660, AI(A)-AZ(A)-

A3-B2-D, Quarterly, starting January 1965.

Gemini Launch Vehicle Man-Rated Techniques, LV-410, E,

as required.
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Co

d,

Type Ia Non-Negotiated Documentation

Parker PreValve Engineering Evaluation Test Plan, LV-336,

A-BZ, Z March 1964.

Overhauled Gyro Analysis Reports, A-B3, as required.

GLV Structural Design Criteria, ER- 12790, A-BZ, Z6 April

1963.

Launch Complex Design Criteria (A&E), ER-IZ053, A-BZ,

Z0 April 196Z.

Gemini Facilities, AGE Acceptance Test Criteria, Complex 19,
ETR, LV-ZIZ, A-BZ, 8 March 1963.

Emergency Flight Termination and Tracking Systems Data for

Range Safety Planning, ER-IZ714, A-BZ, Z7 September 1963.

GLV - AGE Systems Test Specification for ETR/VTF, 4Z4-

1715007, A-BZ, I February 1963.

Launch Vehicle Acceptance Test Specification, 424-10Z000Z,

A-BZ, 15 February 1963, as required.

Stiction Test Data, LV-3Z4, A-BZ, Z4 January 1964.

Launch Vehicle Systems Tests VTF/ETR, 4Z4-1430002, A-BZ

II June 1963, as required.

Reliability Measurement Plan, ER-13030, BZ, Z6 March 1963.

Type II Documentation

EEI System Compatibility Report, LV-335, A-B3, 27 April
1964.

Measurement of Buffet Forces on0.085 Model - Ames, LV-3Z0,

A-B3, 30 June 1964.

Martin/Mac Gemini Simulator Support Plan, ER-13369, Special,

30 July 1964.

Master Measurements Listing, LV-Z20 Series, A-BZ-CI-CZ,

30 April 1963, as required.

Gemini Safety Subsystem Analysis, ER-13062, A-BZ, 27 June

1964.

Preliminary Description of the Termination Flight System GLV,

ER-IZ4Z0, AZ-A3-A4, 19 September 196Z.

Gen.!ni Launch Vehicle Estimated Weight and Balance Report,
ER-IZ051, A--BZ, Z0March 196Z.
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Gemini Launch Vehicle Calculated Weight and Balance Report,

ER-12710, A--B2, 21 December 1962.

Gemini Launch Vehicle Actual Weight and Balance Report,
LV-170 Series, A--BZ, as required.

Gemini Launch Vehicle Weight and Balance Status Report:

(a) Design Phase, and (b) Test and Planning Phase, LV-90,

A--BZ, as required.

Gemini Launch Vehicle Performance Status Reports, LV-ZZ,
A--BZ, Monthly.

Gemini Launch Vehicle Propellant, Fluid Capacity and Loadin_

Weight Report, LV-167, A--BZ, 3 October 1963.

Gemini Launch Vehicle Weight Verification of Test Reports:

(a) Planning, (b) Progress, and (c) Completion (I) Preliminary,
(2) Final, LV-169, A--B2, 15 November 1963, as required.

Gemini Launch Vehicle Weight Coordination Planning Report,
LV-165, A--BZ, IZ March 1963.

Gemini Launch Vehicle Weights Report: (a) Predicted, (b) Pre-

Fli_ht, and (c)Post Flight, LV-165-1 series, A--B3, as required.

Gemini Launch Vehicle Performance Weight Error Analysis,
LV-168, A--B2, 15 November 1963.

Limiting Design Weight and Center of Gravity Conditions, LV-166,
A--BZ, 12 March 1963.

GLV Limited Life Components, LV-182, A--B2, 6 March 1963.

GLV Time Recording System, LV-Z53, A--BZ, Z5 July 1963.

Structural Breakup During Abort of GLV following Rapid Mall.

in Power Fli_ht, LV-Z50, A--BZ, 15 November 1963.

Fireball Analysis Escape Environment, LV-Z24, A--BZ, 23 Decem-
ber 1963.

GLV Transonic Buffet, LV-279, A--BZ, 20 December 1963.

GLV Transonic Buffet, LV-280, A--BZ, 10 January 1964.

Gemini Air Vehicle Vibration Analysis, Wind Tunnel Test

Program, Wind Tunnel Test Results, and Letter Report,
LV-281-1 series, AI--B3, 17 July 1964.

GLV Airborne Antenna Systems Design Analysis Report,
ER-IZ527-1, A--B2, 15 October 1963.

Gemini Roll Out Inspection Plan, ER-IZ789G, A-B2, 29 April
1964.

VI. A-18



GLV Man Rated Pre-valve Evaluation, LV-Z97, A-B3,

8 November 1963.

Gemini Rendezvous Recycle Capability Study, LV-300, A5,
6 February 1964.

GLV Revised Trajectory Dispersion Analysis, LV-Z74, A-B3,
1 November 1964.

GLV-I Airborne Electrical Load Analysis, LV-Z73, A-BZ,
1 October 1963.

GLV Basic Trajectory and Aerodynamic Data for AFMTC,

ER-IZ715, A-B3, Special, I0 February 1964.

GLV Trajectory and Aerodynamic Data for AFMTC, ER-12716,
A-B3, i0 December 1964.

GLV Specific Trajectory and Aerodynamic Data for AFMTC,

ER-IZ717, A-B3, Special, 1 August 1964.

Interim Pre-valve Description and Justification, LV-316, A-B3,
I0 December 1963.

Gemini Tank Improvement Program, ER-13ZZ8, A-B3, 13 Feb-
ruary 1964.

Interim Prevalve Phase II Engineering Evaluation Test, LV-330,

A-B3, 15 April 1964.

GLV Longitudinal Oscillation Instability Study- POGO, ER-13374,
A-B3, I0 December 1964.

Pre-valve Fuel Compatibility Evaluation Test Report, LV- 39 i,

A-B3, 4 May 1965.

Oxidizer Standpipe Remote Charge System, LV-385, A-B3,

ZZ September 1965.

Launch Vehicle Longitudinal Oscillation (POGO) Summary,
LV-401, A-B3, 19 November 1965.

Investigation of Oxidizer Standpipe Charging, LV-396, A-B3,

19 November 1965.

Flight Control System Studies, LV-Z96, A-B3, 6 December 1963.

GLV Flight Mechanics Staging Analysis, LV-348, A-B3,

15 August 1964.

Flight Analysis of the Piggyback, LV-ZZ6 series, A-B3,
10 June 1964.
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Radio Guidance System Decoder - Piggyback Program, LV-359,

A-B3, g July 1964.

Optimum Rate Switch Setting Study, LV-351, A-BZ; 26 June
1964.

Analysis of POGO Event - GT-5, LV-395, A-B3, 24 September

1965.

Failure Modes Analysis (MDS Report), LV-103, A--BZ,

Z5 September 196Z, as required.

GLV Weight Savings Studies, LV-Z30, AZ--A4--BZ, 8 May 1963.

Slow Malfunction Report, LV-304, A--BZ, Monthly, starting
ii November 1963.

Martin Trainin_ Program Report, LV-305, A--B2, 28 November
1963.

Effects of Slow Malfunction, LV-306, A--B2, 31 January 1964,

as required.

Detection Methods Report, LV-307, A--BZ, 31 January 1964, as

required.

Training Data Report, LV-308, A--BZ, 28 February 1964, as

required.

Martin Trainin_ Program Results, LV-309, A--BZ, 28 May

1964.

Stress Analysis Report (Preliminary), Final Report, ER-130ZSA,

A--B3, 1 September 196Z, 1 March 1963.

Stress Analysis Report (Interim), ER-130Z8, A--B3, 17 Feb-

ruary 1964.

GLV - POGO Study Low Pressure Toroidal Fuel Accumulator,
LV-325, A-B3, 1 February 1964.

Spacecraft/LV Interface Structure Test Evaluation, ER-13367,

A-B3, 20 July 1964.

AMR Checkout and Launch Control, LV-33, A--B2, 17 August

1962.

VTS Checkout and Launch Control, LV-34, A--B2, 17 August

1962.

Handling and Transportation, LV-35, A--BZ, 4 June 196Z.

Environmental Conditioning - Launch Vehicle, LV- 36, A-- BZ,
II June 1962.
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Erector and Umbilical Tower/OGE Systems, LV-38, A--BZ,

9 July 1962.

Maintenance, LV-40, A--BZ, 24 August 1962.

AGE Reverification Plan, LV-268, A--B2, 25 August 1963, as

required.

GLV Vibration Parameter Variation Study, LV-251, A--B2,
30 July 1963.

Launch Countdown Hazard Analysis, LV-181, A-BZ, 15 January
1963.

Compartment 3 Air Conditioning Requirements, LV-Z62, A/BZ,

30 July 1963.

Comprehensive Demonstration Report Complex 19 ETR, A-B2,

as required.

Electrical Load Analysis Gemini Complex 19, LV-_87, A-B2,
7 October 1963.

Electrical Load Analysis Gemini Complex 19, ER-13064, A-BZ,
30 July 1964.

Propulsion (PTPS), LV-3Z, A--BZ, 15 June 1962.

Hydraulic Servicing, LV-37, A--B2, 6 June 1962.

AMR & VTS AGE Instrumentation, LV-30, A--BZ, 16 August

1962.

Launch Countdown Task Analysis (Preliminary), LV- 139, A-- B2,
18 December 1962.

AMR & VTS Activation System Design Report, gv-41, A--BZ,

3 July 1962.

CatastrophyPlan Complex 19, LV-35Z, A-B2, 19 June 1964.

Facility Design Criteria - Launch Complex 19 System
Redundancies, ER-13371, A-B2, 26 June 1964.

GLV and Erector Response to Ground Winds, LV-387, A-B3,

as required.

Launch Vehicle Acceptance Test Report Combined Systems
Acceptance Data Book(CSAT), 424-189/VTF and 424-191/VTF,

A5, as required.

Flight Summary (Detailed Technical), ER-13ZZ7, AI-B2, Special,

as required.
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GLV Scupper Hot Flow and Seal Leakage Test Results, LV-ZZ1,
A--B3, 5 April 1963.

Pretest Report Seal Development Test Program - Martin,

LV-272, A-B2, 18 September 1963.

Pretest Report Scupper Hot Firing Test Program, LV-Z67,

A-B2, 18 August 1963.

Effect of Titan II Flight Results on the GLV, LV-58, A-2 A-3,

A-4 B-3, as required.

GLV Long Life Scupper Development Program, LV-345, A-B3,

26 May 1964.

Pre-Flight Test Reports, LV-3Z6 Series, A-B3, Zl January

1964.

Preliminary SCF Report GLV, LV-3Z8 Series, A-B3, 7 February
1964.

Post SCF Evaluation Report, ER-13226, A-B3, Z4March 1964.

Evaluation Test Report interstage Cordage, LV-346, A-B2,

1 May 1964.

Qual Test Report Microfuse Envelope, ER-13659, A-BZ,

15 December 1964.

Engineering Evaluation Electronic Tech. Relay, LV-384, A-BZ,
1 March 1965.

Vibration Testing of Diodes, LV-388, A-BZ, i April 1965.

Final Summary Report Stray Voltage Susceptibility Evaluation
of Gemini Ordnance, LV-366, A-BZ, 14 October 1964.

Fuel Accumulator Direct Drive Rotary Pot Assembly Vibration

Evaluation Report, LV-361, A-B3, I0 July 1964.

Propulsion System Test Program, LV-354, A-B3, 1 August
1964, 9 December 1964.

Propellant Compatibility Direct Drive Rotary Pot, LV-370,
A-B3, Z8 October 1964.

Qual Test Report SECO Junction Box, ER-13658, A-B3,

30 January 1965.

Abort Techniques for Engine Malfunctions - Single Engine
Controls, LV-369, A, I0 December 1964.

Abort (Mode I) Re-evaluation Report LV-390,

A-B2, Z6 August 1965.
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Guidance and Flight Controls AGE Requirements and Testing,
424-Ii12003, Special, 6 April 1962.

RGS/TARS Torquing Sensitivity Test, LV-375, A-BZ, 17 Decem-
ber 1964.

Final Report ASFTS Test Program, LV-381, A-B3, January
1965.

Acquisition Ligh t System Test Report, LV-393, A-B3, June
1965.

Gemini Erector Vibration Test Data Report, LV 3Zl, A-B3,
15 March 1964.

Gemini Vehicle Test Data Report, LV-3ZZ, A-B3, 30 April 1964.

Summary Report Structures Verification, ER-IZ417, Vols I _ II,
A-B3, 31 March 1964.

Launch Vehicle System Reliability Design Analysis Report,

LV-95 Series, A-BZ, 9 January 1963.

List of Critical Components, LV-5Z, A-BZ, Z0 April 1962-.

Occupational Hazard Report, ER-123Z5, A-BZ-C, 15 February
1963.

Medical Surveillance Plan, ER-IZZIZ, 31 August 196Z.

Launch Complex Safety Procedure, ER-IZZI3, A-B?-C,
1 June 1963.

Reliability Survey Critical Component Suppliers, LV-333, A-B3,
30 April 1963, as required.

GLV Launch Window Availability Study, ER-13ZZ5, A-BZ,

Z7 April 1964.

Countdown Hazard Analysis, LV-377, A-BZ-D, May 1965.

Flight Hazards Analysis, LV-378, A-BZ-D, May 1965.

Summary of Unresolved Reliability Problems, LV-389 Series,

Special, 30 March 1965, as required.

GT-Flight Performance Reports, GLVWG Post, Fli_ht

Reporting, GEM-799 Series, Special, as required.

Precautions for GLV Hang Fires and Station Keeping, LV-403,
A-BZ, 3 Decembe/- 1965.

Qual. Test Report, Instrumentation Junction Box, ER-13069,

AZ-A3-A4, 20 January 1964.
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eo Type

Structural Integrity Instrumentation Test Report, LV-386,

Special, 26 May 1965.

Reliability and Extended Life Test Report for Rate Switch

Package, ER:13663, A-B2, 19 November 1965.

GLV System Transportation Plan, ER-12419, A-B2, 1 March
1963.

Crew Training, LV-225, A-B3, 15 November 1963.

III Documentation

Gemini Launch Vehicle Preliminary System Description Report,

ER-IZZ09, 1 February 1962.

Gemini Launch Vehicle System Description Report, Final

ER-1ZZ09, Rev A, 1 April 1962.

Geophysical Design Criteria and Data, LV-2, 16 February 1962.

Gemini Launch Vehicle System Contamination Control, Martin

Manufacturing, Certification, Specification, 424- 1000005,

3 April 1962.

Gemini Launch Vehicle System Contamination Control Vendor

Certification, Specification, 424-1000027, Z7 April 196Z.

Gemini Launch Vehicle System Preferred Materials List,

LV-3, 12 April 1962.

Launch Vehicle Systems Diagram Report, LV-63, 18 May 1962.

Gemini Launch Vehicle System Vendor Documentation and

Engineerin 8 Data Requirements Specification, MB- 1053,
26 March 1962.

Earth Orbit Rendezvous GLV (Rev. A), LV-50, 18 May 1962.

Review of Titan I Failure Applicable to GLV, LV-62.

Checkout Coordination System - VTS, 424-1715010, 30 Septem-
ber 1962.

Spacecraft Simulator, 424- 1715012, 30 October 1962.

Launch Vehicle Destruct Environment, LV-93, 27 July 1963.

Review of Requirements for a Restrained Firing Program,

LV-II4:, 24 September 1962.

Gemini Data Center, LV-245, 17 July 1963.

Management of the Qualification Test Program, ER-13068,
15 October 1963.
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Human Error Analysis Plan, LV-337, 30 March 1964.

Gold Flaking Report, LV-356, 16 May 1964.

Operational Plan for Gemini Mission - GLV-7/6A, LV-399 &

Addn, 5 November 1965.

Launch Vehicle Range Safety System and AGE Requirements

Design Report, 4Z4-111600Z, 30 May 1962.

Abort Program Status Report, LV97A-7, 27 December 1963.

Titan II- Operation Wrap-up, LV-301, 13 November 1963.

Gemini Launch Vehicle Acoustic and Vibration Environment,

ER-IZ414, 15 March 1963.

Gemini Launch Vehicle System Airborne Equipment Finish

Specification, 4Z4-1000004, 15 March 196Z.

Airborne Rec]uirements for Weight and Thrust Measurements

and Launch Clearance Requirements, 424-1110004, Z April 1962.

Invest. of GLV Internal Flow Parameters, LV-83, 30 June 196Z.

Summary Report of Trajectories Following Malfunction During

Stage I Flight, LV-101-Z, Z9 October 1962.

A Study of the Minimum Time Delay Required for Pilot Abort,

LV-10Z, Zl September 196Z.

GLV Wind Tunnel Test Results of Aerodynamic Force Char-
acteristics from Mach 0.6 to 3.5 of a 6% Scale Model at NASA

Ames Research Center, LV-109, 5 December 1962.

Pressure and Load Distribution Results of Wind Tunnel Tests

on a 6% Scale Model of the Gemini Launch Vehicle at Mach Num-

bers from 0.6 to 3.5 at NASA Ames Research Center, LV-110,

23 October 1962.

GLV Dispersion Study, LV-I15, 4 October 1962.

Gemini-Titan II Procured Parts Usage Status Report, LV- 154,
28 December 1962.

Gemini Launch Vehicle Airborne Air Distribution System

Analys4s Report, Compartments II and III, LV-152, 1 February
1963.

Gemini Vibration Analysis for Flight Conditions, LV-141,
29 November 1962.

Gemini Preliminary Vibration Modes and Frequencies, LV-120,
Z7 December 1962.
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Run Program for Vehicle Motions Following Rapid Malfunctions

During Powered Flight of the Gemini Launch Vehicle, LV-180,
31 January 196Z.

Minimum Flight Catastrophe Study, LV-157A, ii January 1963.

Gemini Launch Vehicle Performance Dispersions Report,

LV-16Z, 8 February 1963.

GLV Stage I Base Environment Analysis, LV-163, 8 February
1963.

GLV Airborne Air Conditioning System Loads Analysis, LV-243

26 July 1963.

Summary Report of Vehicle Motion Following Rapid Malfunction

During Flight, LV-2Z3, 25 July 1963.

GLV Critical Component History for GT-I, LV-277, 13 August

1963.

GLV Summary of Component Qualifications, LV-Z8Z, 21 January 1964.

Error Prediction of Performance Parameters, LV-Z93,

2 March 1964.

Closed Loop Yaw Guidance Study, LV-299, 8 November 1963.

GLV Flight Data Evaluation Plan, LV-323, 6 February 1964.

Launch Vehicle Electrical System Trade Study, LV-8, 9 Feb-

ruary 1962.

Launch Vehicle Electrical System Design Report, 424-II1700Z,

20 April 1962.

Airborne Voltage Transients, LV-98, 9 December 1962.

Test Results of Explosive Firing Circuits, LV-350, 1 June 1964.

Switchover Studies GLV #i, LV-315, 18 December 1963.

Launch Vehicle Separation System De sign Report, 424- 1116001,

Z3 March 1962.

Destruct Hazard Analysis - Gemini Launch Vehicle, ER-12322,

27 July 1962.

Safe Distances Based on 10% and I% TNT Equivalent Blast

Effects of a Hypergolic Mixing Reaction, LV-146, 2 January

1963.

GLV Trajectory and Aerodynamic Data for Aerospace/AMRO

Range Safety Study, ER-12713, 1 October 1963.
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Launch Vehicle Propulsion System Design Report, 424- 1111000,
9 March 1962.

Gemini Launch Vehicle Propellant and Pressurization System

Contamination Control Specification, 424- 1000025, 29 March
1962.

Stage I and Sta_e II Tank Volumetric Chan_es From Pressuriza-
tion, LV-59, 11 July 1962.

Autogenous Gas Pressurization Subsystem Joint Leak Test,

LV-70, 16 May 1962.

Launch Vehicle Oxidizer Feed Line Test Report, LV-122,
1 December 1962.

Insulation Requirements for Protuberance Heatin_ From Inter-

face Lugs and Firings, LV-104, 12 September 1962.

Tank Pressurization Top Off System, LV-107, 30 September
1962.

Pre-Test Report Martin Scupper Hot Firing Test Program,
LV-119, 5 October 1962.

Pre-Test Report Martin Scupper Seal Test Program, LV-145,
28 November 1962.

Stage II Fuel Tank Ullage Pressure "Safe to Stage" Analysis,
LV- 134, 16 November 1962.

Stage II SECO Thrust Tail-off Analog Simulation, LV-129,
28 November 1962.

GLV Conditionin_ Capability and the Effects of Cold Propellants
on Performance, LV-144, 10 December 1962.

Performance Improvement Design Studies, LV-155 Series,
31 May 1963.

Statistical Analysis of GLV Stage I Engine Misali_nments,
LV-148, 31 December 1962.

Tankage Malfunction Detection System and Autogenous Pressuri-

zation System Verification Test Request, LV-28-3A, 31 July
1962.

Gemini Propellant Dome Impact Analysis, LV-211, 6 June 1963.

Effects of Sta_e I Engine Rates on Loads and Control, LV-228
29 April 1963.

Propellant Shutdown Level Sensor Removal Study, LV-234,

13 May 1963.
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Study of GLV Performance with Cold Propellants,. LV-ZI4,
Z9 March 1963.

Propellant Transfer System Operation, LV-ZI5, 6 June 1963.

GLV Propellant Loading and Outage Control, LV-Z31, Z6 July
1963.

GLV Propellant Heating Analysis, LV-Z32, 1 July 1963.

Engine Compartment Fire Detection Techniques for Static

_, LV-Z88, Z4 October 1963.

GLV POGO Study, LV-Z91, 31 December 1963.

GLV Propellant Loading Method, LV- 313, 2-5 March 1964.

Oxidizer Feedline Pressure Test, LV-314, Z8 February 1964.

Gemini Titan II Flight Test Pogo Parameters, LV-353, Z June
1964.

Pressure Cycle Test Oxidizer Feed Line, LV-331, Zl February
1964.

Engine Analytical Model Verification, LV-339, 4 June 1964.

Evaluation of Guidance and Control Redundancy and Backup

Schemes, LV-7, 9 February 1962.

Launch Vehicle Flight Control and Guidance System Design

Report, 424-1112004, Z3 March 1962.

Redundant Guidance F.C. and Hydraulic System Configuration

Study_, LV-15, ZZ February 196Z.

Flight Control System Linear Analysis, LV-64, 15 May 1962.

Flight Control System Analogue Study, LV-65-1, 15 May 196Z.

Linear Analysis Tolerance Study, LV-194, 1 August 196Z.

Flight Control System Analogue Study, LV-65-Z, 1 August 196Z.

Flight Control and Rate Gyro vs. Separate Rate Gyro and Switch

Package for MDS Sensing, LV-47, 30 June 196Z.

Comments on Flight Control Hydraulics System Redundancy

Using a Single Autopilot, LV-66, 7 May 196Z.

Requirements for a Gemini Ground Vibration Program, LV-67,
ZZ March 1962.

Guidance and F.C. Hydraulic Redundant System Test Plan,
LV-85, 30 September 196Z.
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Flight Control System Stage I Gain Charger Circuit Analysis,
LV-87, 16 July 1962.

GG57G TARS Roll Intervalometer Susceptibility Test, LV- 112,
13 September 1962.

Roll Program Trade Study TARS Intervalometer vs. RGS,
LV-113, 17 September 1962.

Mechanization of Revisions to GLV Switchover Provisions for

the Secondary Flight Control System, LV-135, 31 October 1962.

Effect of TARS Revision on Dispersion and RGS Look Angles,
LV-127, 2 November 1962.

Redundant Autopilot Flight Control System Linear Analysis,
LV-132, 28 November 1962.

Stage I Aerodynamic Data for Control, LV-140, 28 November
1962.

Roll Control System Analog Simulation, LV-161, 25 April 1963.

Qualitative Analysis of Roll Nozzle Friction Effects, LV-227,
29 May 1963.

Gemini Flight Control System Tolerance Study Pitch and Yaw,
LV-242, 25 June 1963.

Closed Loop Flight Control Systems Malfunction Report,
LV-259, 27 December 1963.

Prelaunch Simulation of Flight Loads, LV-349, 1 June 1964.

Redundant System Summary Report, LV-126B, 1 June 1963.

Launch Vehicle Hydraulic System Design Report, 424-1113000,
27 April 1962.

Gemini Launch Vehicle Hydraulic System Contamination Control

Specification, 424- 1000026, 12 April 1962.

Support Documentation Gemini Launch Vehicle Airborne Hydrau-

lic System, LV-I28, 5 November 1962.

Position Transducer-GLV Tandem Actuator Electrical-

Electronic Interference ETR, LV-177, 30 April 1963.

GLV Servo-actuator Dynamic Block Diagram and Transfer

Function Development, LV-99, 28 November 1962.

RF Interference Interim Design Evaluation Report - Tandem

Actuator Position Transducer, LV-184, 29 May 1963.

Analysis of GLV SERVO, LV-292, 1 November 1963.
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Launch Vehicle Airborne Instrumentation System Design
Data Report, 424-1115001, 11 May 1962.

Launch Vehicle Undervoltage Detection, LV-86, Z4 June 1962.

Noise Study for Real Time Telemetry Identification of Slow
Drift Malfunctions, LV- 179, 1 February 1963.

Vibration and Acoustic Summary Report, LV- 199- 1, 15 March

1963.

Vibration and Acoustic Measurement, LV-199-Z.

In-Flight Fire Protection-Study, LV-Z94, Z0 April 1963.

Fire Detection and Protection Studies, LV-Z94-1, 30 December

1963.

Launch Vehicle Structures Studies for Malfunction Detection

System, LV-9, 9 March 1962.

Gemini/Titan Malfunction Detection System Trade Study, LV-6,
16 February 1962.

Launch Vehicle Malfunction Detection, 424-1119001, 1 May 1962.

MDS Description Study, LV-14, 23 February 1962.

MDS Event Analysis Data Rev A, Rev B, LV-Z5, 23 February
1962.

Preliminary Study of Escape From Failure Modes in the Region

of High Dynamic Pressure, LV-54, 3 May 196Z.

Preliminary Malfunction Detection Switchover to Redundant

Systems, LV-II8, 31 October 196Z.

Minimum Flight Catastrophe Study, LV-157, 4 January 1963.

MDS Configuration Report, LV- 196, 15 March 1963.

Friction and Damping Effects on MDS Rate Switch, LV-Z57,

Z5 July 1963.

Gemini Launch Vehicle Loads and Stiffness Design Report,

ER-IZ3Z3, 30 March 196Z.

Acceptance Criteria-Welding, 424- 1000028, Z March 1962.

Predicted Heating Rates and Structure Temperatures for the
Gemini Launch Vehicle, LV-43, 17 April 196Z.

Structure Heating Program No. FB-045 for the 7090 Digital

Computer, LV-44, Z9 June 196Z.

Structural Verification Test Plan, LV-7Z, 14 December 1962-.
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Preliminary Stress Analysis of Stage II Forward Oxidizer
Skirt, LV-57, Z7 April 196Z.

Methods of Analysis for Determination of Local Flow

Properties and Aero Heating Rates, LV-45, 15 July 196Z.

Sub Routines in 7090 Machine Program UD045 for Calculation

of Structural Temperatures and Allowable Loads, LV-117,
1 October 196Z.

G.L.V. Structural Strength Status Report, LV- 111, lZ Sep-
tember 196Z.

G.L.V. Airframe Loads Subsequent to Engine Malfunctions
(Shutdown), LV- 149, 7 December 1962.

G.L.V. Structural Load Parameters for Use in F/L Redundant

Systems Switchover Studies, LV-150, 14 December 196Z.

Compilation of the Results of Gemini Structural Dynamics Loads

Analysis, LV-138, 19 November 1962.

Final Structural Loads and Stiffness Data GLV, ER-13026,

23 December 1963.

GLV Structural Dynamics Load Verification, LV-Z56, 31 Decem-
ber 1963.

Fragment Motion Analysis of Titan II Staging, LV-298, 1 Novem-
ber 1963.

Oxidizer Feed Line Pressure Stress Analysis for GLV i,

LV-278, 31 December 1963.

GLV Final Structural Loads - Trajectory Parameters, LV-317,
iZ December 1963.

GLV Standard Repair Instructions, LV-340, Z7 March 1964.

Development of Weld Allowables, LV-357, 12 June 1964.

Investigation of Staging Problems, LV-364, 30 August 1964.

Engineering Evaluation of GT-5 Recovered Stage I Oxidizer
Tank, LV-407, Z1 March 1966.

GLV Stability Analysis, LV-409, Z2 March 1966.

Gemini Launch Vehicle Airborne Antenna System Design

Analysis Report, ER-IZ5ZY, 15 February 1963.

Re-Design of the GLV Mistram Antenna, LV-183, 16 January
1963.
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GLV Mistram Antenna Re-Design Study Report, LV-219,

30 March 1963.

AGE System Report, ER-12052, 15 February 1962.

Daily Launch Capability Study, LV-46, 15 May 1962.

Qualification of AGE Components, LV-81, 10 December 1962.

Calibration Plan for Gemini Launch Vehicle Measurin_

Equipment, LV-142, Zl November 1962.

Electrical Cordage Photographs - Gemini, ER-13029-I,
8 October 1963.

Electronic Equipment Cooling Provisions, LV-263, 30 August

1963.

Summary of Dual Loading Capability Study, LV-68, 9 May 1962.

Four Day Propellant Temperature Hold, LV-82, 18 June 1962.

Gemini Launch Vehicle Propellant Loading Measurement

Methods, LV-I24, 22 October 1962.

Summary of the Umbilical Disconnect Load Analysis, LV-249,

i July 1963.

Interim Pre-Valve (Phase I) Engineering Evaluation, LV: 310,

15 January 1964.

GLV Modified Interim Prevalve Verification Test, LV-247,

9 June 1964.

Analytical Feasibility of A.T.C. Removal, LV-402, Z7 January
1966.

Gemini V-gamma and V-y Dot Plotboard Analysis for Trajectory

Monitoring, LV-153, 18 January 1963.

FM/FM-Airborne Tape Recorder/Reprod. Relay Logic System.

EEl Eval. Test Report, LV-222, 1 April 1963.

Pulse Code Modulation Bench Test Report, LV-238, I July 1963.

GLV POGO Study Structural Configuration ChanGe of Titan Jl,

LV-318, 3 March 1964.

Report for Gemini Vapor Vent Stack Complex 19 ETR, LV-IZ3,
II October 196Z.

Erector Enhancement Study, LV-160, 15 January 1963.

Summary of Propellant Vapor Venting Study, LV-159, 14 Decem-
ber 1962.
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Preliminary Lighting Instl. Rumenation Proposal for

Complex 19 ETR, LV-373, 5 November 1964.

Integrated SC/LV Countdown and Recycle Requirements, LV-26,

as required.

Data Processing and Analysis Plan for VTE/AMR, LV-76,

19 February 1964.

Test Data Summary Gemini A/B Systems ASFTS, LV-131,
12 December 1962.

GLV System Integration Test Program Plan, LV-29, I October
1962.

LV System Test Plan ETR, LV-16, 1 October 1962.

Test Conductor Requirements for AGE Design/AMR, LV-12,

3 April 1962.

Gemini Qualification Test Procedure Format, LV-156, 3 Decem-

ber 1962.

Gemini LV 6% Model Wind Tunnel Test Results from Mach Z.0

to 3.5 at High Angles of Attack, LV-151, 31 January 1963.

ASFTS Test Report Phase II and III, LV-239, 4 October 1963.

Buffet Wind Tunnel Test Report, LV-244, 15 July 1963.

Spacecraft/LV Interface Lug Test, LV-260, I September 1963.

Qualification Test Report, ER-13066, 2 January 1964.

Qualification Test Report, ER- 13067, 2 January 1964.

Test Plan, ER-IZ327, 12 May 1962.

Start Cartridge Airline Flow Verification Test Report, LV-379,
31 December 1964.

Evaluation Test Report Time Delay Relay, LV-394, July 1965.

List of Deleted Tests, GLV-6A Recycle, LV-400 Ik Addn,
8 November 1965.

Oxidizer Flowmeter Report, LV-303, 20 January 1964.

Engr. Evaluation of Defective Conduit Welds, LV-382, 1 Feb-

ruary 1965.

GLV Modified Interim Prevalve Verification Test Report, LV-338,

i April 1965.

GLV Tank Calibration Error Analysis, LV-404, 24 February

1966.
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Spin Motor Rate Detector QTR, ER-12706, 2Z February 1963.

Autopilot Adapter Assembly QTR, ER-12707, 28 June 1963.

Flt. Cont. System Adapter Package EEI Test, LV-173,

25 January 1963.

Flt. Control System Adapter Package Module EEI Tests, LV-174,

8 February 1963.

Module Assembly QTR, ER-12703, 14 March 1963.

Failure Mode Test Spin Motor Rotation Detector, ER-13070,

July 1964.

Failure Mode Test Power Amplifier, ER-13071, July 1964.

Failure Mode Test Auto Pilot Adapt Assembly, ER-13222,

October 1964.

Envir. Life Test Auto Pilot Assembly, ER-13ZZ4, August 1964.

Malfunction Detection Package QTR, ER-12-705, I0 May 1963.

Malfunction Detection Package Electrical - Electronic Inter-

ference Evaluation Test Report, LV-171, Z5 January 1963.

Malfunction Detection Package Power Amplifier Electrical -
Electronic Interference ETR, LV-172, 1 February 1963.

Malfunction Detection Package SMRD Module Electrical-
Electronic Interference ETR, LV-176, 2.5 January 1963.

Load Simulator QTR, ER-IZ5Z9, I0 May 1963.

Test Requirements MDS Piggyback Program, LV-137,
I0 December 196Z.

Gemini Mode II Escape Technique Studies, L V-79, 15 June 196Z.

Structural Test Prog. , LV-78, 2.8 August 196Z.

GVS Test Requirements for Finance Estimates, LV-71,
I0 May 1962.

Interstage Structural Test (Denver TR-I), LV-158, 3 January
1963.

Structural Design Report VTF, ER-12791, 2 January 1964.

Vendor Requirements for Control and Identification of Critical

Components, MB-1054, 8 March 1962.

Specification for Vendor and Subcontractor Reliability Require-

ments, Gemini Launch Vehicle System, MB-1055, Z6March
1962.
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4.

Reliability Apportionment Report, LV-80, 15 May 1962.

Impact of Failure Data on System Reliability, ER-12252,
15 March 1962.

Production Monitoring Test Program, LV-92, 31 July 1962.

GLV AGE Reliability Goals for Countdown, LV-371, May 1965.

GLV #2 Tandem Actuator Report, LV-383, January 1965.

Telemetry Reliability Effects, LV-372, May 1965.

GLV Systems Trainin 8 Plan, ER-12257, 1 July 1962.

GLV Repair Plan, ER-124ZI, 15 August 1962.

Maintainability Summary, LV-94, 2 September 1962.

GLV System Spare Parts Production Lists, as required.

Complex and LV Support Area Activation Plan, ER-I2211,

12 April 1962.

Vertical Test Site Activation Plan, ER-12251, 12 April 1962.

AEROJET-GENERAL CORPORATION, SACRAMENTO, CALIFORNIA

Gemini Propulsion Design Review, 9535-15-62-90-i,
13 June 1962.

Minimum Fuel and Oxidizer Tank Ullages, Gemini Launch
Vehicle, 0788-MU-I, 5 June 1964.

Certification Tests of Gemini Fli_ht Instr., 0788-GAIC-I,

15 August 1964.

YLR87-7 Turbopump Lower High Speed Thrust Bearin_

Failure Analysis, RiML:983, 4 September 1964.

Summary of Gemini Ablative Skirt Demonstration Testins,

Gemsip Injector Model GELX-22-21, Technical Review,
3 March 1965.

Extended Duration Ablative Skirt Test Program, GESR-5,
15 March 1965.

Vibration Testing of the YCR91-AJ-7 Gas Generator Propellant

Supply Line Assembly, 393-4-TN65-3, 22 April 1965.

Gemini Propulsion System Test Plan, Final Test Report,

89-PSTP-Final, 30 April 1965.

Review and Evaluation Study of Reduction of Sta_e I and II

Minimum Ulla_e, 393-CCN148-I, 25 June 1965.
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a.

Gemini Stability Improvement Program, Final Report,
GEMSIP FR-I, 31 August 1965.

Titan II Augmented Engine Improvement Program, Final

_, SSD-TR-65-161, December 1965.

The Development of a Turbopump Gearbox Lubricant for the

Titan II Family Engines, SSD-TR-65-161-1, 27 May 1966.

BURROUGHS CORPORATION, PAOLI, PENNSYLVANIA

General Reports

Programming Manual for the Data Exchange Unit, 2425-63-
496, 27 September 1963.

Combined Systems Test Program, 4411-65-242, 30 June 1965.

Real Time Data Remoting Program, 4411-65-244, 21 July 1965.

T-15 Minute Targeting Program Change Notice, 8607-65-325,

21 September 1965.

Mod III Computing System Launch Support Program Report,
Martin Interface Test (Class IV}, 8607-65-377, 30 October

1965.

Mod III Computing System Launch Support Program Report,

Inertial Guidance System Interface Test (Class IV), 8607-
65-379, 30 October 1965.

Auxiliary Support Programs, Classes II and IV, 8607-66-329,

9 March 1966.

Design Report for the Real Time Data Remoti-tg Program,

Mod III Computing System, 2428-64-336, 1 November 1964.

T-15 Minute Targeting Program, 4411-65-240, 30 June 1965.

Burroughs Input to the GLV System Test Plan, Contract

AF 04(695)-28, 411-63-293, 2 May 1963.

A Plan for the Integration of the A- I and J- 1 Computing Systems

for Project Gemini, 681-62-717, i October 1962.

Gemini Pilot Safety Plan, 2411-64-432, II February 1964.

A-i/J-I Concept for Gemini, 2411-63-570, Final Report,

19 September 1963.

Gemini Slow Malfunction Monitoring, 411-63-284, 16 April 1963.
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Real Time Refraction Correction for Gemini/J-l, 4Z5-63-175,
20 March 1963.

Burroughs Film Coverage for Project Gemini, 2411-63-567,
27 August 1963.

Mod III (A- i) Computer Test Instructions; Non-lnterference

Test Plan for the Integration of the Mod III A- 1 Computer and

the Data Exchange Unit for Project Gemini, 4838-T.1-6.11,
4 September 1963.

A Plan for the Integration of the Mod III Computer and Data

Exchange Unit for Project Gemini, 2411-63-543, 5 August 1963.

Mistram Tie-ln Progress Report for Gemini Program, 681-62-
305, 21 May 1962.

Gemini Data Link Test, 4838-F.P.-6.1, 15 September 1963.

Preliminary Simultaneous Gemini and Atlas/Agena Countdown
Test Plan, 4838-T.I.-6.1.

Gemini Project Program Plan for the Launch Vehicle Guidance

Computer, Rev 17 May 1963.

Programming Information for Project Gemini, 425-63-140,

i February 1963.

Gemini Answer Package for GT-2, Subject of Burroughs Letter
CDR 4833, 17 September 1964.

Results of GT-2 Mission Guidance Program Verification Efforts,
2425-64-852, 2 December 1964.

Equation Verification for Gemini Contract AF 04(695)-28,

Exhibit E, 411-63-291, 24 April 1963.

Burroughs Review of Gemini Ascent Guidance Equations, 411-
63-394, 6 June 1963.

Project Gemini Ascent Guidance Program and Test Plan for the

Mod III Computing System, 2411-64-791, 28 October 1964.

Rev I, 20 May 1965.

Rev 2, 4 August 1965.

Rev 3, ii October 1965.

Rev 4, 4 March 1966.

Gemini Radio Guidance Program Flow Charts, Assembly Listing,

Program Card Listing, and Program Card Deck, C-77-BL-14,

6 September 1963.
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b.

Gemini Assembly Listing No. i, C-1524-BRC-21, Z0 June 1963.

Gemini Radio Guidance Program Assembly Listing, C-80-BL-14,

20 September 1963.

Flight Reports

Post-Flight Report, GLV-I, AFMTG Test No. 275, 2411-64-

2078, 9 April 1964.

Gemini Post- Flight Evaluation Report, G- 21 I- BL- 14, 16 June

1964.

Gemini Post-Flight Data From Mod Ill Guidance System, GT-2

Flight, AFETR Test 4466, 2411-65-2009, 19 January 1965.

Gemini Post-Flight Data From Mod Ill Guidance System, GT-3

Flight, AFETR Test 0475, 4411-65-2050, 23 March 1965.

Gemini Post-Flight Data From ModIll Guidance System, GT-4

Flight, AFETR Test 1777, 4411-65-2988, 4 June 1965.

Gemini Post-Flight From Mod Ill Guidance System, GT-5 Flight,

AFETR Test 2315, 4411-65-2123, 23 August 1965.

Gemini Post-Flight From Mod LlI Guidance System, GT-6A

Flight, AFETR Test 7100, 8707-65-2174, 16 December 1965.

Gemini Flight Data, Mod ILl Guidance System, GT-7 Flight,
AFETR Test 6145, 8707-65-2120, 4 December 1965.

Gemini Flight Data, Mod III Guidance System, GT-6A Flight,
AFETR Test 7100, 8707-65-2170, 13 December 1965.

Gemini Post-Flight from Mod Ill Guidance System, GT-7 Flight,
AFETR Test 6145, 8707-65-2124, 6 December 1965.

Gemini Data Report, Mod llI Computing System, GTA-8 Flight,
AFETR Test 1503, 8670-66-2074, 16 March 1966.

Gemini Post-Flight Data, Mod Ill Guidance System, GTA-8

Flight, AFETR Test 1503, 8670-66-2076, 21 March 1966.

Gemini Flight Data Report, Mod Ill Guidance System, Gemini

IX__._A,8670-66-2127, 3 June 1966.

Gemini Post Flight Data, Mod ILl Guidance System, Gemini IXA

Flight AFETR Test 2433, 8670-66-2129, 6 June 1966.

GLV-9 Post Flight Study, 8607-66-471, 24 June 1966.

Gemini Flight Data from Mod ILl Guidance System, Gemini X

Flight, AFETR Test 6833, 8670-66-2206, 18 July 1966.
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Gemini Post Flight Data from Mod III Guidance System,

Gernlni X Flight, AFETR Test 6833, 8670-66-2Z08, Z0 July
i966.

Gemini Flight Data from Mod III Guidance System, Gemini XI

Flight AFETR Test 3287, 8670-66-ZZ67, 12 September 1966.

Gemini Post Flight Data from Mod III Guidance System,

Gemini _I Flight, AFETR Test 3287, 8670-66-Z269,

IZ September 1966.

Gemini Flight Data Report, Gemini XII, 8670-66-Z3i9,

il November i966

Gemini Post Flight Data Report, Gemini XII, 8670-66-Z3Z1,
16 November 1966.

GENERAL ELECTRIC COMPANY, SYRACUSE, NEW YORK

General Reports

Gemini-Mod III Guidance System, DSD-GEM-t00, 3 August f962.

Letter Progress Report (42 monthly issues), August 196Z -

December 1965.

Documentation Plan, DSD-GEM-20Z, 15 August t96Z

Program Plan (published as one report), 3i August 1962.

Program Planning Report, DSD-GEM-Z03

Manufacturing Plan, DSD-GEM-Z06

Quality Control Plan, DSD-GEM-209

Reliability Plan, DSD-GEM- 204

Configuration Accounting and Control, DSD-GEM-208

Aerospace Ground Equipment Plan;

Operating Ground Equipment Section, DSN-GEM-200

Safety Plan, DSD- GEM- 207

Bibliography Report, DSD-GEM- 300

Support Plan, DSD-GEM- 500

Facilities Planning Report
Facilities Master Plan

AF Base Support Requirements

Transportation Plan

Training Plan
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Gemini-Mod III, System I Real-Time Measurement

Uncertainties, Data Analysis Memo 55, 29 October i962.

Aerospace Ground Equipment Recommendation Data-Part s I & II,
DSD-GEM-201, 30 October i962.

Aerospace Ground Equipment Plan; Maintenance Ground Equip-
ment Section, DSD-GEM-200, 13 November i96Z.

Antenna Requirements Study, Preliminary Report, DSD-GEM-30i,
i5 November i962.

Human Factors Program Report No. 1, Z8 December i96Z.

Associate Contractor Agreement, Martin-General Electric,

I January 1963.

Aerospace Ground Equipment Data, Revisions to Part If,

DSD-GEM-201A, 14 January 1963.

Systems Analysis Report No. I: Applicability of Radio Guidance

System for Updating Inertial Guidance System, January 1963

Systems Analysis Report No. 2: Optimum Radio Guidance

Configuration, January 1963.

Mod III I_ok-Angle Restrictions and Evaluation of Alternate

Airborne Antenna Studies, SE-EM-29, 15 April 1963.

Systems Analysis Report No. 3: Task III-Mod III Noise Gener-
ator for Radio Guidance Digital Simulation, DSD-GEM-603-, -

! May 1963.

Reliability Program Plan, DSD-GEM-204, Rev A, 15 May 1963.

Gemini Launch Vehicle Guidance System Test Plan, 63H351,

! September 1963.

Gemini Launch Vehicle Guidance: Addenda and Errata to System

Analysis Report No. 3, 63J351, 14 October 1963.

Gemini 4-Inch Antenna Requirements Study, 63K360,
Z0 November 1963.

Gemini Launch Vehicle Guidance System Test Plan, 63H351,
Rev i, 15 March 1964.

Evaluation Report of Guidance System with Gemini Launch

Vehicle No. 1, Mission GT-1, 64E202, 8 May 1964.

Gemini Launch Vehicle Guidance Launch Countdown Study

(Human Factors Study}, 64H351, August 1964.

Gemini Launch Vehicle Guidance System Test Plan, 63H351,

Rev 2, January 1965.

Gemini Reliability Program Plan (Revision 1}, 30 October 1961,

February 1965.
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Gemini Maintainability Task Report, 65A003, January i965.

Evaluation Report o£ Guidance System with Gemini Launch

Vehicle 2, Mission GT-Z, 65BZ00, February i965.

Evaluation Report of Mod III Radio Guidance System with Gemini

Launch Vehicle 3, Mission GT-3, 65BZ01, 21 April 1965.

Evaluation Report of Mod IIIA Radio Tracking System and

Mod III G Missileborne Guidance Equipment with Gemini Launch

Vehicle 4, Mission GT-4, 65GZ00, 7 July i965.
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a.

(1)

(z)

(3)

GEMINI AGENA TARGET VEHICLE

AEROSPACE CORPORATION, EL SEGUNDO, CALIFORNIA

GATV's 5001 - 5006

GATV-5001

Gemini Agena Target Vehicle (5001) Procedure and Require-

ments for FACI/Acceptance, TOR-469(5183)-I, 16 April 1965.

Vehicle Acceptance Report Gemini Agena Target Vehicle-5001,
TOR-469(5183)-3, 50 June 1965.

Agena Status Display Panel Review and Vehicle 5001 Accept-
ance Report, TOR-669(6183)-Z, 2 September 1965.

Vehicle Acceptance Report Gemini/Agena Target Vehicle 5001,
TOR-1001(2183)-6, October 1966.

Gemini A_ena Target Vehicle 5001 NASA Mission Gemini XlI
Technical Review at NASA/MSC, TOR-1001(2183)-7,

25 October 1966.

Flight Safety Review at ETR, GATV-500i, TOR-i001(2183)-8,
8 November i966.

GATV-500Z

Gemini A_ena Target Vehicle (5002 & on) Procedure and
Requirements for Acceptance, TOR-469(5183)-2, Reissue A,
24 November 1965.

Vehicle Acceptance Report Gemini Agena Target Vehicle-5002,
TOR-669(6183)-I, 15 August 1965.

Flight Safety Review for Gemini VI at ETR GATV-500Z, TOR-669
(6183)-4, 23October 1965.

GATV-5003

Meteoroid Penetration Probability and Estimate of Resultant

Hole Sizes, TOR-669(6183)-5, 10 February 1966.

Vehicle Acceptance Report Gemini]Agena Target Vehicle-5003,
TOR-669(6183)-6, 19 February 1966.

Flight Safety Review for Gemini VIII at ETR GATV-5003, TOR-
669(6183)-8, 15 March 1966.
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(4) GATV-5004

Vehicle Acceptance Report Gemini/Agena Target Vehicle 5004,
TOR-669(6183)-7, March 1966.

Gemini Agena Target Vehicle 5004 NASA Mission Gemini IX

Technical Review at NASA/MSC, TOR-66e(61837-11.

20 April 1966.

Gemini Agena Target Vehicle 5004 NASA Mission Gemini IX
Flight Safety Review at ETR, TOR-669(6183)-12, 16 Ma'y-1966.

(5) GATV-5005

(6)

Vehicle Acceptance Report Gemini/AgenaTarget Vehicle 5005,
TOR-669(6183)-9, May 1966.

Gemini/Agena Target Vehicle GATV-5005 (Gemini X) Technical

i_eview at SSD/Aerospace, TOR-1001(2183)-l, 1 July 1966.

Gemini A_ena Target Vehicle GATV-5005, (Gemini X) Flight

Safety Review at ETR, TOR-1001(2183)-2, 17 July 1966.

GATV-5006

Vehicle Acceptance Report Gemini/Agena Target Vehicle-5006,
TOR-1001(2183)-3, August 1966.

Gemini Agena Target Vehicle 5006 NASA Mission Gemini XI

Technical Review at NASA/MSC, TOR-1001(2183)-4,

24 August 1966.

Gemini Agena Target VehicleGATV-5006, (Gemini XI) Flight
Safety Review at ETR, TOR-1001(2183)-5, 8 September 1966.

LOCKHEED MISSILES AND SPACE COMPANY

MSVP Monthly Progress Report, 447186 through -49,
December 1960 to June 1964.

AGE Systems Design Analysis, 926638D.

Agena Target Vehicle Simulator, 929423, 30 January 1964.

Primary Propulsion Checkout Cart, 929424, 10 March 1964.

Telemeter System Instrumentation Schedule, 1352265C,
6 January 1965.
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Telemeter System Instrumentation Schedule, Agena/Gemini,

Vehicle 5001, 1352265G, 7 July 1966.

Telemetry System Instrumentation Schedule, Agena/Gemini,
Vehicle 5003, 1352267B, I0 January 1966.

Telemeter System Instrumentation Schedule, Rev B, Gemini

Agena Vehicle 5005: 1352269B, 17 May 1966.

Telemeter System Instrumentation Schedule, Rev C, Agena/
Gemini Vehicle 5005, 1352269C, 3 June 1966.

Telemeter System Instrumentation Schedule, Gemini Agena

Vehicle 5006, 1352270, 27 May 196:.

Gemini Agena Vehicle Detail Specification, 1417169-A.

Gemini Electrical Potential Analysis, A014921, 22 January 1963.

Gemini Target Vehicle Program Requirements Document,

A056232, Final Revision l May 1965.

Documentation Plan for Gemini Program Target Vehicle System,
Phase II, A057625C, 26 September 1963.

Reliability Plan for ATV Gemini Program, (SP-129-64-3),
A057701D, 18 December 1964.

Gemini Agena Target Vehicle Propulsion System Presentation,
A057703, 2 August 1962.

Gemini Agena C&C Subsystem Design Concept Presentation,
A059006, 23 August 1962.

Design Study for the NASA Gemini-Agena Communications and

Control System, A079323A, 23 April 1962.

Countdown Termination Summary, A088866-28 - 41, I May 1965

through 1 June 1966.

Gemini Program Plan, A306070, 1 April 1963.

Integrated Test Plan, Gemini Agena Target Vehicle, A306106C,

14 May 1964.

Gemini Agena Target Vehicle C&C Subsystem Presentation,
A314668, i March 1963.

Gemini Target Vehicle Human Engineering Program Plan,

A315601A, 18 February 1963.

Gemini Program Facilities Master Plan, (SP-129-64-4),
A322586, i May 1964.

C&C Subsystem Engineering Analysis Report - Gemini Agena

Target Vehicle, A374270, 19 July 1963.
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Parameters Handbook for Gemini Agena Target Vehicle,

A374366, I May 1963.

Agena Ascent Flight History Summary, A374543-21 - 34,

i May 1965 through ! June 1966.

Description of Rendezvous Guidance Equation Program,
A374549, 10 May 1963.

Mission Concept of the Gemini Agena Target Vehicle,
A374567, t July 1963.

Flight Evaluation and Performance Analysis Report,
A376433-158 - 188, 14 May 1965 through 20 April 1966.

Weight and Performance Status Report - Gemini/Agena D,
A376845, i September 1963.

Gemini/Agena Potential as a Space Environmental Test Vehicle,
A376903, 2i August 1963.

Weight and Performance Status Report - Gemini Agena,
A377|63-I - 5, I March 1964.

Maintenance Data Package Proposal, Gemini Agena Target

Vehicle and Associated AGE, (SP-129-64-12), A377595-A,

15 June 1964.

Agena Failure Summary and Gemini Mission Interpretation,

A377604-7, 14 May 1965.

Weight and Balance Status Report, Gemini Shroud, (DAC Report
TU-24848) A378366, 10 September 1963.

Test Plan, Gemini Docking Adapter Shroud System, (DAC Report

TU-24845) A378367, 11 September 1963.

Engineering Analysis Report, BAC Model 8250, Liquid Propellant

Secondary Propulsion System, (BAC Report 8250-910002),
A387649-1, 24 March 1964.

Malfunction Analysis of BAC Model 8250 Secondary Propulslon

System (BAC Report 8250-910003), A387650-2, 13 December 1963.

Determination of BAC Model 8250 Secondary Propulsion System

Performance Variations (BAC Report 8250-910010), A38765t-1,

14 February 1964.

Determination of Altitude Performance from Ground Test Data,

BAC Model 8250 SPS, {BAC Report 8250-910011), A387652-I,

14 February 1964.

Technical Manual, Transponder Set, AN/DPN-66 (SST-102A),
(Motorola Report 68-23613A) A387657, 13 December 1963.
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Lockheed Radar Transponder, Type VII (Modified AN/DPN-66),
(Motorola Report W1220-2515), A387658, 14 December 1963.

Qualification Test, Agena UHF Command Receiver, Type IX,
i-Jvlotorola Report 2835-4-I), A387660, 5 February 1964.

Design Proof Test Report for Agena UHF Command Receiver,

Type IX (SN-100), (Motorola Report 2835-3-I), A387662,

24 May 1963.

Quality Assurance Plan for the Agena Command Receiver,

Type IX, A387663, 10 May 1963.

Reliability Stress Analysis for Agena UHF Command Receiver,

Type IX, (Motorola Report 2835-7-3), A387664, 15 May 1963.

Final Report of Study Program, Use of the AN/DPN-66

Transponder in a Range Calibration Satellite, (Motorola Report
WF-2910-2), A387665, 21 November 1963.

Service and Maintenance Handbook for Liquid Propellant Rocket

Engine BAC Model 8247 - USAF Model XLR81-BA-13, (BAC

Report 8247-954201), A392358-I, 31 January 1964.

Post-flight Evaluation of GATV 5003 On-Orbit Maneuvers,

582127, ii May 1966.

Post-flight Evaluation of GATV 5005 On-Orbit Maneuvers,

583076, 13 September 1966.

Post-flight Evaluation of GATV 5006 On-Orbit Maneuvers,
583432, 10 November 1966.

Post-flight Evaluation of GATV 5001 On-Orbit Maneuvers,
583762, 28 December 1966.

Gemini Project Manufacturing Program Plan, ATV and AGE,
A602064, 25 March 1964.

Statement of Work, Phase II GATVS, A602326, 21 September 1964.

Gemini ATV Familiarization Handbook, A602521, Final Revision

10 May 1966.

Gemini Agena Target Vehicle Failure Mode Matrix Study,

A602897, February 1964.

Agena Target Vehicle Detail Design Review,. A603249,
20 February 1964.

Gemini Extra Care Program Plan for Gemini Target Vehicle

System, A603394, 18 September 1964.

PMC Telemeter System Electromagnetic Interference Test Plan,

A603630, 15 April 1964.

VI. B-5



Recorder Type IX Electromagnetic Interference Test Plan,
A603689, 22 April 1964.

UHF Command Receiver Type IX Electromagnetic Interference

Test Plan, A603837.

Subsystem D Engineering Analysis Report for Gemini Agena

Target Vehicle, A604100, 22 June, 1964.

Propulsion Subsystem Engineering Analysis Report - Gemini

Agena Target Vehicle, A604141, 30 June 1964.

Qualification Status, Gemini-Agena Model 37205 Peculiar

Equipment {5001), A604642, I0 May 1965_

Gemini Agena Target Vehicle Quality Program Plan,
A604643.

Gemini Agena Target Operational Capability Handbook,
A604913, Final Revision 17 June 1966.

Weight and Performance Status Report - Gemini-Agena D,
A605025-I - 26, September 1964 through November 1966.

Gemini Agena Target Vehicle Program Progress Report,
A605200-I - 27, August 1964 through December 1966.

Reliability Estimate and Analysis Report _Appendix to Gemini

Agena Target Vehicle Program Progress Report for June 1965),
A605200-I0, App., 20 July 1965.

Gemini Spacecraft Control of Agena Thrust Vector, A605669:
14 October 1964.

Exploratory Test Results of the Suction Pressure Start Method
for Model 8247 Turbopump, (BAC Report 8247-910003),

A607055, 8 January 1963.

Main Propellant Valve Exploratory Program, (BAC Report
8247-910018), A607056, 30 October 1962.

Nozzle Extension BAC Model 8247 Design Analysis Report,

(BAC Report 8247-910015), A607057, 4 October 1962.

Analysis of Thrust Chamber Testing for the Pressure Switch

Removal Feasibility Program, (BAC Report 8247-910017),

A607059, 10 September 1962.

Start Tank System Servicing Procedure, Model 8247, (BAC

Report 8247-928007), A607060, 22 August 1963.

Malfunction Analysis of BAC Model 8247 Rocket Engine

XLR81-BA-13, (BAC Report 8247-910003), A607061,
25 June 1963.
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Malfunction Analysis of BAC Model 8247 Rocket Engine

XLR81-BA-13, (BAC Report 8247-910203), A607.062,
7 February 1964.

Service and Maintenance Handbook, Checkout Console for

BAC Model 8250 Secondary Propulsion System, A607205,
27 March 1964.

Qualification Test of VHF Multicoupler, Type II, A624003,
29 October 1965.

Gemini/Agena Shroud Leak Test Report, A636708, 22 March 1964.

Service and Maintenance Handbook, BAC Model 8250 SPS,

(BAC Report 8250-954001), A637010, 28 February 1964.

Utility Technical Manual, Agena UHF Command Receiver,

Type IX, (Motorola Report 2835-11-1), A637077, 15 January 1964.

Gemini Target Vehicle Human Engineering Progress Report,
A638605, 1 March 1963 through 31 March 1964.

Gemini Agena Target Vehicle Meteorite Penetration Study,

A651481, 20 November 1964.

Gemini ATV Reliability Program Status Report, A652869-A,
February 1965.

Vehicle 5002 Calibration Report, 664486, 25 May 1965.

Vehicle 5001 Calibration Report, 664599, 31 May 1965.

Revision 4 to LMSC-664486 for Vehicle 5002, (Rev to

Calibration Report), 664686, 30 June 1965.

Updating of Alpha Numerical Table of Contents of Vehicle 5001

Calibration Report LMSC-664599, 664738, 2 July 1965.

Revision 5 to LMSC-664486 for Vehicle 5002, 664769,

13 July 1965.

Vehicle 5002 Calibration Report, 664852, 15 August 1965.

Vehicle 5002 Calibration Report, Rev i, 664852-i, 15 July 1965.

Vehicle 5001 Calibration Report, 664853, 15 August 1965.

Maintenance Data Package, Gemini ATV Telemetry System -

Power Converter, Type VIII, (SP-129-64-II), A667726,
15 June 1964.

Maintenance Data Package, Gemini ATV Telemetry System -

Telemetry Controller, Type I, (SP-129-64-10), A667727,
15 June 1964.

Maintenance Data Package, Gemini ATV Telemetry System -

PAM Multiplexer, Type XII, (SP-129-64-9), A667728,
15 June 1964.
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MaintenanceData Package,Gemini ATV Telemetry System -

Tape Recorder, Type IX, (SP-129-64-8), A667729,
I5 June 1964.

Maintenance Data Package, Gemini ATV Telemetry System -

PAM-PCM Telemetry Encoder, Type I, (SP-129-64-7),
A667730, 15 June I964.

Maintenance Data Package, Gemini ATV UHF Command System -

Command Controller, Type IV, (SP-129-64-6), A667731,
15 June I964.

Maintenance Data Package, Gemini ATV UHF Command System -

Programmer, Type XVI, (SP-129-64-5), A667732,
15 June 1964.

Gemini Agena Calibration Report
667865, 8 October 1965.

Gemini Agena Calibration Report
8 October I965.

Vehicle 5002 Calibration Report,

Vehicle 5002 Calibration Report,

Gemini Agena Calibration Report
9 September 1965.

Gemini Agena Calibration Report
668545, I0 January 1966.

Gemini Agena Calibration Report

28 January I966.

Gemini Agena Calibration Report

for Vehicle 5002, Rev 2,

for Vehicle 5003, 667948,

Rev 3, 668007, 19 October 1965.

668014, 22 October 1965.

for Vehicle 5003, 668407,

for Vehicle 5003, Rev 1,

for Vehicle 5004, 668585,

for Vehicle 5003, Rev 2,

668619, 28 January 1966.

Vehicle 5004 Calibration Report, Rev 1,

Vehicle 5003 Calibration Report, Rev 3,

Vehicle 5004 Calibration Report, Rev 2,

Vehicle 5003 Calibration Report, Rev 4,

Vehicle 5005 Calibration Report, 669700,

668746, 18 February 1966.

669266, 1 March 1966.

669276, 1 March 1966.

669430, 21 March 1966.

l l April 1966.

Gemini Agena Calibration Report
669827, 21 April 1966.

Vehicle 5004 Calibration Report,

Vehicle 5005 Calibration Report_

Vehicle 5005 Calibration Report,

Vehicle 5006 Calibration Report,

for Vehicle 5005, Rev I

669863, 29 April 1966.

Rev 2, 669864, 2 May 1966.

Rev 3, 670417, 25 May 1966.

670442, 15 June 1966.
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Vehi'cle 5006 Calibration Report, Rev 1, 670530, 22 June t966.

Vehicle 5005 Calibration Report, Rev 5, 670593, 8 July 1966.

Vehicle 5006 Calibration Report, Rev Z, 670594, 8 July 1966.

Vehicle 5005 Calibration Report, Rev 6, 670666, i9 July 1966.

Vehicle 5001 Calibration Report, 670705, 28 July 1966.

Vehicle 5001 Calibration Report, Rev 1, 671098, t2 August 1966.

Vehicle 6006 Calibration Report, Rev 4, 671227, 5 September t966.

Vehicle 5001 Calibration Report, Rev 2, 671293, 2t September 1966.

Vehicle 5001 Calibration Report, Rev 3, 67t496, 3t October t966.

Vehicle 5001 Calibration Report, Rev 4, 672021, 7 November 1966.

Maintenance Data Package - Gemini ATV Telemetry System -
PCM Telemetry System, (SP-i29-64-18), A700183,
15 June 1964.

Flight Termination System Report, GAATV System, A709868A,
I February 1966.

Tape Recorder Type IX Qualification Final Report, A709879,
30 November 1964.

Discrepancy Analysis of PrefliKht Equipment Failures,

A7Z74Z0-1 - 23, November 1964 through September 1966.

System Test Plan - Gemini Atlas Agena Target Vehicle System,

A727459, 15 February 1965.

Systems Test Objectives, Gemini Atlas Agena Target Vehicle

System, A727460A - E, October 1965 through October 1966.

PCM Telemeter Qualification Final Report, A732514,
15 February 1965.

Gemini A_ena Propellant Tank Inner Bulkhead Failure Test,
A736662, 2 April 1965.

Atlas-Agena Performance Improvement Study, A740913,

Z0 April 1965.

Command Controller Qualification Test Report, A742518,
15 June 1966.

Gemini A_ena Tar'_et Vehicle Anechoic Chamber.Test,
A74400Z, Z April 1965.

TA 6t90 Gemini Type IX Command Receiver Extended Life Test,
PIN Iz_64003, A745791, 6 May 1965.
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Vehicle 5001 Acceptance Summary Report, RevA, A745798,

3i August i966.

GeminiATV R_ange Safety Report, A746889, i July i965.

Gemini Agena Target Vehicle Final Design Review, (Includes

Attachment B: Summary of Speakers' Remarks, GATV Design

Review), A749223, 6 May i965.

Gemini Agena Target Astronauts Briefing, A754822, 29 June 1965.

Helium Systems Contamination, GATV 500i, A755708,
15 June i965.

Vehicle 5002 Acceptance Summary Report, A755948, 24 July i965.

Standard Agena Failure Summary and Gemini Mission
Interpretation, A756725-i - 8, i5 May i965 through i5 September

i966.

Standard Agena Failure Summary and Gemini Mission

Interpretation, A756725-i - 4, 15 July 1965 through

i5 January i966.

Final Failure Analysis Report, GATV 5002 Forward Power
Distribution J-Box, P/N i351552-505, A75841i-i,

9 August 1965.

Failure Analysis Report, GATV 5002 Aft Power Distribution

J-Box P/N i352436-505, A'['59i35-i, Z9 September 1965.

Agena Two-Burn Flight Experience, A761097, i6 July i965.

Gemini Agena Target - Astronauts Briefing, Gemin i VIII and IX

Flights, A764068, 7 January i966.

Gemini A/_ena Target Vehicle Briefing, A765526, I 0 September
1965.

SSD Configuration Management Report, A765847-I - 6,

October i965 through March 1966.

Technical Review for GTA-6 Mission, A7669_4, ZZ September
i965.

Design Certification Report for GTA-6 Mission, A766983,
5 October 1965.

Design Certification Presentation for GTA-6 Mission (issued

twice - for NASA/MSC on I October, then revised and presented

in Washington on 5 October 1965), A767763, 5 October 1965.

Gemini Agena High Apogee Altitude Thermal Studies,
A769586, 19 October 1965.

GATV 5002 Flight Safety Review, A773526, I November 1965.
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GATV 5002 Flight Safety Review, A773526A, 3 November 1965.

Gemini Program Submittal of Contract Documentation, Reliability
Program, A773952, 4November 1965.

ECP LH-545-101P GATV Modification & Test Program - Project
"Sure-Fire", A774097, 24 November 1965.

Gemini Agena Target Vehicle 5002 Systems Test Evaluation

(45-Day Report), Rev i, A774454, 6 January 1966.

Gemini Program Submittal of Contract Documentation, Reliability

Program, A775129, 15 November 1965.

Proposed GATV Modification & Test Program, A775135,
i5 November 1965.

Proposed GATV Modification & Test Program Presentation,
A775186, i5 November 1965.

Statement of Work (BAC), GATV Modification and Test Program,
A775766, 23 November 1965.

Gemini Program Submittal of Contract Documentation, Reliability

Program, A775789, 18 November i965.

GATV Modification & Test Program, A7759ii, 20 November i965.

Gemini Program Submittal of Contract Documentation, Reliability

Program, A775975, 24 November 1965.

ECP LH-545-101P-RI GATV Modification & Test Program -

Project "Sure-Fire", A776524, 8 December 1965.

Project "Sure-Fire" Test Plan for XLR81-BA-13 Rocket Engine

Test Program at AEDC, A776806, 29 November 1965.

Symposium on Hypergolic Rocket Ignition at Altitude (meeting on
12 and 13 November), A776842, I Decemb4r 1965.

Gemini Agena Target Vehicle Program Status _FSRB Meeting at
Tullahoma), A777567, 5 January 1966.

Test Plan, Gemini Pyrotechnic Shock Test, A778441,
A778441, i7 December 1965.

Final Report for Qualification Test of Command Controller IV,
A778475, I December 1965.

Summary of Alternate Failure Hypothesis for GATV 5002,

A778486, 5 January 1966.

Vehicle 5003 Acceptance Summary Report, A780053,

16 January 1966.

GATV Single Point Failures, A781044, 24 February 1966.

Dynamic Response Test Plan, A781095, 13 January 1966.
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GATV Special Design Review Report (Prelim), A792813A,
25 January 1966.

Gemini Agena Target Vehicle Special Design Review Report,

A792813B, 7 February 1966.

GATV Design Certification Report for Gemini VIII Mission,
A794903, 10 February 1966.

GATV Desisn Certification Presentation for Gemini VIII Mission,
A794968, 26 February 1966.

GAATV Integrated Guidance System Flight Test Report (5301-5002),

A796429, 17 February 1966.

Evaluation and Proposed Action, GATV Special Design Review

Findings, A796445, 18 February i966.

GATV Pyrotechnic Shock Tests and Dynamic Responst Tests,
A796470, Final Report i March 1966.

Vehicle 5004 Acceptance Summary Report, A797125,
15 March i966.

GATV 5003 Systems Test Evaluation (45-Day Report), A817204,

5 May 1966.

Vehicle 5005 Acceptance Summary Report, A817008,

15 May 1966.

Gemini Agena Attitude Errors During PPS Burn Resulting From
CG Offsets, Vehicle 5004, A817240, 3 May 1966.

Project "Sure-Fire", GATV Engine Modification and Test Program
(Final Report), Volumes I & If, A818110, I July 1966.

GATV 5004 Flight Data Analysis, A819788, 23 May 1966.

GATV 5004 Systems Test Evaluation (45-Day Report), A819881,
30 June 1966.

Gemini Agena Target Astronauts Briefing, A824563, 22 June 1966.

Gemini Atlas-Agena Target Vehicle Integrated Guidance System

Test Report (SLV-3 5302, GATV 5003), A824580, 20 June 1966.

Vehicle 5006 Acceptance Summary Report, A824789, 9 July 1966.

GATV 5005 Systems Test Evaluation (45-Day Report), A831532,

I September 1966.

Vehicle 5001 Refurbishment Summary Report, A832599A,

15 October 1966.

GATV 5006 Systems Test Evaluation (45-Day Report), A836462,
24 October 1966.
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GATV Integrated Guidance System Flight Test Report, 5305-5005,
A840911, 1 November 1966.

GATV Program First Article Condiguration Inspection (FACI},
A849451, January 1966.

GATV 5001 Systems Test Evaluation 14S-Day Report), A849472,
23 December i966.

Agena Flight Evaluation and Performance Analysis Report,
B070148-25 - 35, 14 May 1965 through l0 March 1965.

Weight and Performance Status Report, Gemini Agena D,
SP-129-64-2, Rev 4, ! June 1964.

Gemini ATV Extended Lifetime Study, 20-Day Orbit Lifetime,
SP-129-64-13, 27 April 1964.

Astronaut Command Sequences for the ATV, SP-129-64-16,
4 June 1964.

Study of Possible Modes of Catastrophic Structural Failure of the

Agena/Gemini Moored Configuration, SS-392-535i,
11 January 1963.

Orbit Thermodynamics Test Report, TXAI29-73, 2 June 1964.

Analysis of Memory Assembly, Command Programmer Type XVI,
SRI Monthly Status Report No. 5, ! through 30 April 1965.

BellAerosystems Company Report No. 8250-910017, Model 8250

Unit II Thrust Chamber Assembly Erosion and Burnout

Investigation Program, Final Report 15 June 1965.

SSD Configuration Management Report, AFSCM 375- 1,
l0 October 1965.

Gemini Target Vehicle Progress Report 1 (19-minute Film Report}

August 1963.

Gemini Target Vehicle Progress Report 2 (16-minute Film Report I

October through December 1963.

Gemini Agena Mission Concepts Film Report, September 1963.

Captive Flight Test Program IFinal Report} GATV 5001, Santa
Cruz Facilities, 72235, 24 March 1965.

Worst Case Analysis and Redesign of Modules for Gemini

Programmer XVI, 8-83-65-2, 3 September 1965.

Final Report - Memory Assembly Study, Programmer XVI,
TM64-35-44, November 1965.

Gemini Agena Interface Specification and Control Document,

NASA ISCD-2, 20 April 1965.
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Orbit Decay Study for Gemini VI Asena Target Vehicle 5002, LMSC
580492, 12 October 1965.

ena Maneuverin_ Accuracy for the Gemini Program, LMSC
139, 7 July i964.

Analysis of Revised Guidance and Propulsion System Errors -

Gemini Program, LMSC 577i46, 13 5uly 1964.

Gemini Agena Target Vehicle Guidance and Propulsion System Error

Analysis, LMSC 582500, 6 3uly 1966.

T&O Panel, Revised Gemini Asena Rendezvous Dispersion Analysis,
LMSC A749210, i2 May 1965.
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VII. ENGINEERING CHANGE PROPOSAL (ECP) TABULATION

This section contains a tabulation of airborne ECP's. Section A lists those changes incorporated

on the Gemini Launch Vehicle (Martin Company and Aerojet General). Section B lists the changes

incorporated on the Gemini Agena Target Vehicle (Lockheed Missiles and Space Company).
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Table VII. A-I. GLV Airborne Systems - ECP Tabulation

Aerojet-General Corporation, Sacramento

STAGE I ENGINES

ECP TITLE _ _ m _ _ _ ¢_ _ ......o g ..... g o g o o o o

AJ - 009 - R* P* P P P P P P P P P P P P

AJ-012 R R P P P P P P P P P P P P P

AJ-013 R R P P P P P P P P P P P P P

AJ-016 R2 Replacement of Autogenous Restrictors (Back pressure) R ...............

AJ-017 RI Clamping of PSV Conduit, Control Harness Clamping R R P P P P P P P P P P P P P

AJ-018 Thrust Chamber Assembly Flange Bolt Mod. - Oxidizer R R P P P P P P P P P P P P P

Stage 1 Gearbox Modification

FPDPS Qual. Test Failure

PSV Mod. - Incorporating New Solenoid Valve, Sleeve

and Spool Assembly

and Fuel TCV Flange

AJ-023 Rl Thrust Chamber Valve Assembly Mod. "87"

AJ-029 R4 Fuel Suction Line Modification (POGO) Frequency

Converter

AJ-031 Mod. of TCV Assemblies by Replacement of Clevises and

Actuation Arms

AJ-033 Addition of Turbine Exhaust Stack Closure

AJ-039 R2 Replacement of Frame Bolt at Frame 5th Point

A J-043 Vlodffication of GGA Fuel Check Valve

AJ-044 Rl Oxidizer Suction Line Modification (Short)

R R P P P P P P P P P P P P P

R - - - I - I .... , ......

R P P P P P P P P P P P P P

R P P P P P P P P P P P P P

R R P P P P P P P P P P P P P

R R R P P P P P P P P P P P

R .... , - - ..- .......

AJ-122

AJ-144

;AJ-146

]AJ-149

Mod. of Autogenous Tank Pressure _ TLM Instrmnentation R P P P P P P P P P P P P P P

S::; S S P P P P P P P P P P P

S S S P P P P P P P P P P P

R R P P P P P P P P P P P P P

R p p p p P IP P P P P p

R R ............

S S S P P P P P P P P P P P

.... R R ......

RRRRRPPPPPPPPP

RRR ..........

RRRRRRRRRRRRRR

AJ-045

Installation

AJ-078 Mod. of MDS Cable Assemblies to Incorporate Smaller

O.D. Hose Assemblies

AJ-082 Mod, of PMDS Cable Assemblies to Incorporate Smaller

O.D. Assemblies

AJ-090 Replacement of Telemetry Instrumentation Dust Covers

AJ-083 Rl Mod, of TPA to Permit Installation of POGO Itardware

AJ-101 Mod. of Fuel Accumulators h Support Bracket Installation

AJ-102 Instrumentation Pressure Transducer

(Statham added as an approved Vendor)

AJ-035 Replacement of Frequency to DC Converter R R R P P P P P P P P P P P P

AJ-117 First Stage Engine Reidentification per TLM Requirements ..... P P P P P P P P P P P

AJ-118 TLM Kit Switch GIN- 1002 to GLV-1005 R P ..........

AJ-057 RI Replacement of Turbine Interstage Labyrinth Seal ,Adth one R R R R P P P P P P P P P P

of Improved Material

AJ-094 RI Modification of Fuel Accumulator Support Bracket

Installation

AJ-086 Replacement of Solenoid Mounting Screws on Pressure

Sequence Valve

Replacenaent of Telemetry Instrumentation Interface

Bracket

Stage I SSC Thermal Conditioner

R R R R R R R R R

R R R R R .......

...... R R R R R R R

R R R

S R R R R R R R R R R

S S S S S P P P P P P

R R R R R 'R R R R R

Addition of Fire Protection Insulation to the YLR87-AJ-7

Rocket Engine

AJ-149R PC5C Tranmnitter Add. Insulating Wrap

AJ-162 Replacement of Telemetry Inst. Interface Bracket R

A J- 165 Replacement of Hot Gas Cooler Outlet Tube Assembly R

AJ - 166 Replacement of Marman Clamps S

AJ-175R Lockwire Gas Generator Oxidizer Line "B" Nut and R I-

POBTV Pressure Cap. (Stage lit

* * [AJ-Igl Replacement of the Stage I Sub Assy I Oxidizer Pressure - R - R R R R R R R R R

Discharge (POD) Boss

AJ-176 Replacement of Lube Oil Cooler Rigid Inlet and Outlet Tube - I .... , - - R R R R R R R R

Assy with Flex Metal ttose Assy

AJ- 183R Replacement of Oxidizer Autogenous Back Pressure R R R R R R R R R

Restrictor (OPBPO)

AJ- 182 Integration of TCPS Functions with MDTCPS ..... , - - - R R R R R R R

AJ- 184R Replacement of Oxidizer and Fuel Thrust Chamber Valve ..... • - - S R S R R R R R

"Thru" Bolts (Stage I)

*R : Retrofit

P Production line installation

- Non-applicable serial numhers

S Spares
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Table VII.A-Z. GLV Airborne Systems - ECP Tabulation

Aerojet-General Corporation, Sacramento

ECP

A/-007

A J-014

AJ-015

AJ-019

AJ-021 RZ

AJ-024 RI

AJ-028

AJ-032

A J-036

AJ-040 RI

A J-048

AJ-048- I

AI-050

A J-055

AJ-059 Rl

A J-065

AJ-081

A J-087

AJ-091

AJ- 103

AJ- 116

AJ-II9

AJ- 123

AJ- 141 RI

AJ- 142

AJ- 145

A J- 154R2-C

AJ- 164

AJ- 167

AJ- 174R

AJ- 185R

TITLE

Replacement of Turbine Manifold

Mod. & Replacement of Pressure Sequence Valve

Add. of "91" Roll Control Nozzle Burst Diaphragm

TCA Flange Bolt Modification

Reroutlng of Oxidizer Bootstrap Line _ Clamp Changes

Thrust Chamber Valve Assembly Mod. "91"

STAGE II ENGINES

o o o o 0 o o o o o o o o o o

R* P" P P P P P p p ,p p p p p P

R R P P P P P P P P P P P P P

R R P P P P P P P P P P P P P

R R P P P P P P P P P P P P P

R R P P P P P P P P P P P P P

R R P P P P P P P P P P P P P

Turbine Seal Assembly Replacement (Design Chg. of TPA) R R P P P P P P P P P P P 19 P

Mod. of TCV Assemblies by Replacement of Clevises and R P P P P P P P P P P P P P
Actuation Arms

Replacement of Frequency to DC Converter R R P P P P P P P P P P P P P

T LM- JB-Mounting Bracket R R P P P P P P P P P P P P P

Replacement of MDS and Telemetry Pressure Tube -* R R R R P P P P P P P P P P
Assemblies

Mod. of Adapter Box to provide for engine MDS Switch
Relocation

PSV Override Solenoid Monitoring Rocket Engine Test
Set Mod.

Incorporation of Ultrasonic Inspection and Magnetic Particle

Inspection Engine Requirements for Frame Assembly

Mod. of TPA Turbine Kit by Replacing Safety Wire with

Lock Ring

Lube Oil Pump Redesign

Replacement of Malfunction Detection System Cable
Assemblies

Replacement of Solenoid Mounting Screws on Pressure

Sequence Valve

Replacement of Telemetry Instrumentation Dust Covers

Instrumentation Change (Statham Transducer)

Replacement of Nuts and Washers on Frame Rod End
Connectors

Second Stage Engine Reidentification per TLM Requirement ....... P P P P P P P p P P P

Modification of Telemetry Instrumentation Installation

Stage II Redundant Shutdown

Mod. of Telemetry Instrumentation Interface Bracket

Stage H SSC Thermal Conditioner

Incorporation of the YLRgl-AS-7 GEMSIP Injector into

Gemini Engines

Modification of Clamping of Oxidizer and Fuel Gas

Generator Supply Line Installation

Replacement of Marman Clamps

Lockwire Gas Generator Oxidizer Line "B" Nut and

POBTV Pressure Cap. (Stage II)

Replacement of Oxidizer anf Fuel Thrust Chamber Valve

"Thru" Bolts (Stage If)

*R = Retrofit

P = Production line installation

- = Non-applicable serial numbers

S = Spares

R R P P P P P P P P P P P P P

S * S S S S S P P p P p P P P

S S S S S S S P P P P P P P

R R R P P P P P P P P p P P P

S S S P P P P P P P P P P P

R R R R R P P P P P P P P P

R R P P P P P P P P P P P P P

S S S P P P P P p P p P P P

S S S R P P P P P P P P P P

R R R ...................

R R R R R R P P P P P P P

R R R R P P P P P P P P P P

R R R R R R R R R R R R R R

- , ....... R P P P P P P P

R R R R R R P P P P P P P

S S S S S P P P P P P P

....... R R R R R R R R R R R

- , ....... R S S R R R R R
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