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ABSTRACT

The variation of gravity on the earth's surface is computed in three
mutually perpendicular directions: the horizontal anomalous variations

along the geocentric latitude and longitude curves, and the vertical com-

ponent along the plumb line. The numerical results obtained from Kozai's

and Gaposchkin's latest harmonic coefficients indicate a correlation between

the anomalous vertical gravity gradient and the earth's continental topography.
RESUME

Les variations de la pesanteur a la surface de la terre sont

calculées le long de trois axes trirectangles: 1les variations
horizontales anormales, le long des courbes de latitude et longi-
tude géocentriques, et la composante verticale, le long de 1la
direction du fil a plomb. Les résultats numeriques ohtenus a
partir des récents coefficients harmoniques de Kozai et Gaposchkin
indiquent 1l'existence d'une corrélation entre le gradient vertical

anormal de la pesanteur et la topographie des continents terrestres.
KOHCIIEKT

l3MeHeHHe CHJAL TAXECTH HA NMOBEPXHOCTH 3eMIM BHCUHTHBAETCA
IO TpeM B3aMMHO NEPNEHIUKYNADHHM HBaNpPaBleHUAM: TOPU3OHTAAbHHE
aHOMalbHHE K3MEHEHHA BJOJb KPHUBHX IeOUEeHTPUUYECKHMX EmHPOTH H JNOJIOTH,
1 BepPTHKANbHOR cocTaBasvwme# mo orBecy. LKdpoBhE pe3yabTaTH NOAY-
YeHHbHE [0 NOCIEIHMM rapMOHMUeCKrM Ko3dduumuenraMm Koszas ¥ l'anmoukmHa
yKa3hnBalkT Ha CBA3b MEXLYy aHOMaJbHHM BEDPTHKAJNbHHM TPafUeHTOM CHJIH

TAXECTH M 3€MHOK KOHTHMHEHTAIbHOH Tonorpaduei.
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GRAVITY GRADIENTS ON THE EARTH'S SURFACE
AS DEDUCED FROM SATELLITE ORBITS

W. Kohnlein

1. INTRODUCTION

Gravity gradients are widely used in geophysics for the analysis of com-

plex geological structures. Mass defects, for example, are easily recognized

in a gravity gradient field even in cases where purely gravimetric data some-

times fail to show a clear picture. We are trying to extend this procedure to

a worldwide scale using as gravity information the zonal and nonzonal har-
monic coefficients of the geopotential derived by Kozai (1964) and Gaposchkin
(1967). We take as reference an ellipsoidal field of the same potential and

of the same zonal coefficient of second degree.

We denote the geopotential as derived from artificial satellites by

00 n
2.2
GM Z Z ay! , : r 2
U= - 1+ <;) (C m €°8 m\ + Snm sin m\) an(51n ¢) + 2 >— cos ¢

(1)

with
GM = product of the gravitational constant and the mass of the earth,
a = equatorial radius of the earth,
r = geocentric radius,
¢ = geocentric latitude,
N = geocentric longitude,

This work was supported in part by Grant No. 87-60 from the National
Aeronautics and Space Administration.
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harmonic coefficients,

Legendre associated functions

2

earth's angular velocity;

and, similarly, the ellipsoidal potential by

GM a\ ad rl
V= > 14K, <—r~e> P, (sin ¢) +K4(—r—e) P, (sing)| + —= cos%
(2)
with
r = geocentric ellipsoidal radius,
KZ’ K4 = ellipsoidal harmonic coefficients.
Hence we obtain the gravity at any point from
1/2
feuy?, Leuy 1 euy? 3)
& = \\or 2\39 2 2 _\ox ’
r r cos ¢

and analogously for V. Of course, these expressions are valid, in a strict

sense, only in free space while disturbances, introduced by topographic inter-

ference at sea level, are neglected.

To keep the analytical expressions to a minimum, we consider only the
satellite potential U, and substitute for U the ellipsoidal potential V when

necessary.



2. HORIZONTAL GRAVITY GRADIENT

The tangent plane (horizon) of the geoid (i.

e., U = const at mean sea
level) is obtained from equation (l):

oU 8U 8U _ ,
pr Of t5g A0 T =0 (4)

and the tangents of the geocentric latitude and longitude curves are

oU oU

dr+gan=0 ’

s (5)
5
War+ 3 5% Y 44 =0

If we introduce these expressions into the total differential of equation (3),

dg = %gdr+—gd¢+—gdx , (6)

we obtain the components of the horizontal gravity gradient along the geo-

centric latitude and longitude curves on the geoid:

_(2g _ b 2U /28U
‘ng'<ax or ax/ar>d" (
: (7)
_(%g _8g 8U /28U
6g¢‘<’5§' or a¢/ar> do - s




Because the arc lengths of the geocentric latitude and longitude curves can be

written

2]1/2
5 _1.2 2 ouU /dU /
Sp=const = [T <5 ® * oy [/ Br, ™o

L

(8)

—

2 [au auzl/'2
6S)\.=const: t +<§d? E):l dé ’

we obtain the variation of gravity along the latitude curves ¢ = const,

-1/2
2
5g g _g<8U 8U>:| 2 s <8U BU)
e ¢>+ = , (9)
65¢=const I:B)\ dr \oN / Or o\ / Or

and, similarly, the variation of gravity along the longitude curves \ = const,

-1/2
22 _ |2z _ 8¢ (ou /au)|| 2, (8u /8U)?
os A=const |:8¢ or <8¢/8r >]|}' +<8¢ >:, - (19)

Hence the total amount of the horizontal gravity gradient is readily obtained:

1/2

\ 2
og ~ |(8= + (8= (11)
&s . os 6s :
horiz \=const, ¢=const

The approximate sign corresponds only to the potential U, while any rotational
symmetric potential such as V (substituted instead of U) satisfies equation
(11) exactly; this is because the geocentric latitude and longitude curves

in general do not intersect on the geoid perpendicularly. However, the
deviation is so small that for practical purposes the equal sign can be

used in equation (11).




3. VERTICAL GRAVITY GRADIENT

To obtain the vertical gravity gradient, we start from equation (6),

dg _9g dr _ 8g d¢ , 3g d)
ds 9r ds ' 94 ds ' O\ ds ° (12)

and substitute for dr/ds, d¢/ds, and d\/ds the expressions of the differential

equation of the plumb line,

dr _ _ 38U
ds or g ?

d¢ _ 90U 2
R T L

ds (13)
d\ _ 00U 2 2
ds - " on/ gr cos ¢ s

which are easily derived by comparison of the corresponding terms in

equations (14) and (15):
%=cos¢cos)\%-rsinq)cos)\.%%—rcosq)sin)\% s
g—;[=cos¢ sin)\g—z--rsinq) sink%%+rcos¢ cos)\% s (14)
dz . dr d
—d—s-=sm¢a+rcos¢£ s



and

g-:—"-=-cosq>cos)\la—U+rsin(1>cos)\ 1 -Eingrcoscbsin)\——-—l-——-ﬂ;I

ds g or 2 0¢ 2, O\
gr gr cos ¢

gxz-cos¢sin)\-l—%g+rsin¢sin)\ 12%-rcos¢cos)\—-—ng—f

s g gr gr cos ¢

9z . 1 8U 1_aU

—— =-sin¢— w=-rcosp—s — ,

ds g or ng 9¢

. 2 2 2 _ .2 . . .

withdx ™ +dy +dz~ =ds”. Hence the vertical gravity gradient can be

expressed as

vert g r r cos ¢




4. NUMERICAL RESULTS

As already stated, we based the numerical computations on Kozai's and
Gaposchkin's latest harmonic coefficients. However, for comparison and to
get an idea of the accuracy finally obtained, we also considered, where appro-
priate, King-Hele's (King-Hele and Cook, 1965; King-Hele, Cook, and Scott,
1965) zonal coefficients and Kaula's (1966) combination solution (obtained

by merging satellite and surface gravity data).

The numerical results are presented in two steps:

A. We compute the horizontal and vertical gravity gradients of the

ellipsoidal field, and

B. We add to these values corrections leading to the gravitational field
under consideration. In this way we deal with only small numbers, which
show immediately the deviations from an idealized field of a body with

ellipsoidal equipotential surfaces.

4.1 The Ellipsoidal Gravity Gradient

If, in equation (2), we give the values for the equatorial radius and the
harmonic coefficient of second degree, we can compute K

ellipsoidal field structure (Kohnlein, 1966); or, in detail,

4 25 suming an

a = 6378165 m ,
K, = CZO = - 1082. 645 X 10-6 (Kozai,1964),
_ -5
K, = 0.24x107°,

which means that the equipotential surface V = const has at sea level a
flattening of £ = 1/298. 25.



To obtain the variation of gravity, we only substitute V for U in equations
(9), (10), (11), and (16). Hence we get the horizontal gravity gradient along

V = const:

6ge
Ts =0
$b=const '
(17)
-1/2
oge %8 & _ax/av r2+_8_V_/8V2
N=const ¢ or L) 8re e 9 dre ’
and
6ge _6ge L
65 /horiz 0S5, _ ’ (18)
A=const

i.e., the gravity of an equipotential ellipsoid varies only along the meridian.
Table 1 gives the numerical values as a function of the geocentric latitude
for the Northern Hemisphere. In the Southern Hemisphere, (6ge/6s)horiz
becomes negative, but the amounts remain unchanged (because of the direc-

tion in which the latitude is counted).

Table 1. Horizontal gravity gradients (ellipsoidal)

6ge> -2
= sec
¢ (65 horiz( ‘
90 O sk
80 0.2767E -8
70 0.5206E -8
60 0. 7028E -8
50 0. 8010E -8
40 0. 8031E -8
30 0.7079E -8
20 0. 5264E -8
10 0. 2805E -8
0 0
8

:':E-8 means X 10 .




To obtain the vertical gravity gradient (perpendicular to V = const), we

substitute V into (16):

%) .1 (av P& 4 av P&
5s g, \or_ or Z 3¢ 8¢ ) ° (19)
e

which leads to negative values both for the Northern and Southern Hemispheres
(see Table 2). The strongest variation occurs at the equator, and the amount

of the gravity gradient monotonically decreases toward the poles.

Table 2. Vertical gravity gradients (ellipsoidal)

og
|o°] <5——e> (sec™?)
S
vert
90 -0.308337E-5
80 -0.308350E-5
70 -0.308388E-5
60 -0. 308446 E-5
50 -0.308518E-5
40 -0.308595E-5
30 -0.308667E-5
20 -0. 308726 E-5
10 -0.308764E-5
0 -0.308778E-5

4.2 The Horizontal Gravity Gradient

The components of the horizontal gravity gradient along U = const (with

U = V) can be obtained from equations (9) and (10). However, if we at first

subtract from (6g/6s))\=const the ellipsoidal part 6ge/6s x=const W€ obtain
the components of the "anomalous' horizontal gravity gradient:
-1 /2
& 9 9g (8U /oU 2 2 oU /oU
§s - [3‘% - ﬁ(ﬁ T)J[ cos’¢ +<a_>i s—)J (202)
¢=const



and

T =ag_§g<€1g ﬂ)][rz

+
TN
DI
&=
B
C:N
| I |
1
—
~
[yN]

Sy zconst _aqo ar \d ¢/ or
] -1/2
(|28 %8 (av jav \||,2, (av av \? "
L8¢ Bre 9 are e 0¢ Bre ) (20b)

Hence the total amount of the horizontal anomalous gravity gradient is

5 5 2 2|/
<A 3§> = |25 + A%g . (21)
horiz ¢=const ® \=const

This anomalous horizontal gravity gradient gives immediately the direction
and magnitude of greatest variation in the gravity anomalies along U = const
referred to V = const. A vector map 10° X 10° for the whole earth is shown

in Figvure 1, as obtained from Kozai's and Gaposchkin's coefficients. Besides
areas of strong local disturbance, like the eastern part of the Antarctic
[(Asg/6s), . =0.34x 1077

also have a typical zone-oriented pattern, especially near the North and

-2 .
sec ], the northern part of India, etc., we

South Poles and along latitude ¢ = 60°, etc., as can be seen in the figure.
Hence it is natural to consider only the zonal coefficients CnO in U of equation
(1) and compare their deviations from the ellipsoidal part (see Figure 2). For
comparison, we also included King-Hele's zonal coefficients, which give a
somewhat smoother curve because of the lower degree (coefficients up to
degree 9) considered. The maximum zonal anomaly of the horizontal gravity
gradient approaches 0.08 x 10-9 cm-z, i.e., only a quarter of the combined
zonal plus nonzonal anomalous effects. At the poles the zonal anomaly is,

of course, zero, because of the rotational symmetry of ] =ﬁ(CnO) with

U = V linked to the ellipsoid.

10
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Figure 2. Anomalous horitzontal gravity gradient (zonal part).

(g denotes the zonal part).

The overall results obtained from Kaula's coefficients are very similar
to those obtained from the Kozai-Gaposchkin coefficients, although a direct

comparison is somewhat difficult because of the different degrees and orders

of harmonic terms used.

4.3 The Vertical Gravity Gradient

The variation of gravity along the plumb line is obtained from equation (16).
Similarly to the horizontal gradient, we consider only the anomalous effects

relative to the ellipsoidal field, which lead to

12




r r r coszq) A O\
L1 (av %8 1 av %% '
g, \or_ Br_' _2 9% 3% : (22)
€

If in equation (22) we éubstitute the potential U = -ﬁ(Cno) with U = V for U, we
get the zonal part of the vertical variation. Figure 3 shows the anomalous
zonal gravity gradient along the plumb line for the Kozai and King-Hele har-
monic coefficients. Apart from the different degrees (14 and 9, respectively),
we obtain quite different results around the North Pole, and then fairly good
agreement along the meridian down to the South Pole (where the amplitudes
are twice as large in King-Hele's case as compared to Kozai's). This spread
gives an estimate of the accuracy at present obtained from satellite orbits.

If we plot only the zonewise (latitude dependent) proportion between sea

and continents (namely, the earth's topography) against Kozai's gravity
gradient, we obtain roughly the dotted curve in Figure 3. The negative ampli-
tude indicates the excess of water over land, and, analogously, a positive
amplitude would mean that along a certain latitude the land masses dominate.
The range is normalized and extends from -1 (only water) to 1 (only land).

At the North Pole and at the South Pole both the solid and the dotted lines are
clearly pointing in the same direction, and also the downward slope along the
meridian seems to fit fairly well. The remaining discrepancy can be
attributed : 1) to the uncertainty with which the vertical gradient can be
currently determined, 2) the rough guess of land/sea distribution (ignoring
elevations), and 3) other geophysical factors not considered. However, the
overall correlation between the anomalous zonal gravity gradient along a
plumb line and the mass distribution in the earth's crust is quite obvious from

Figure 3,

13




—— KOZA|
—— KING-HELE
e CONTINENTS vs. OCEANS

Figure 3. Anomalous gravity gradient along a plumb line
(zonal part)., (g denotes the zonal part).

Let us go one step further and consider the combined (zonal and nonzonal)
anomalous vertical gravity gradient. Using equation (22) we obtain for the
Kozai-Gaposchkin coefficients the number map shown in Figure 4. Each
element gives the anomalous effect as a function of its position (¢, \), relative
to the ellipsoidal field in Table 2. If we superimpose the continent contours,

we find the following characteristics:

A. Most of the continental area is covered with positive gravity gradient
anomalies, i.e., the variation of gravity along the plumb line is smaller than
the ellipsoidal part as already obtained for the zonal result (see Europe-Asia,
America, Australia, etc.).

B. The negative disturbances of the continents are strongly correlated

with the worldwide mountain chains, such as the Himalayas, the Rockies,

14




the Andes, etc. Hence, about 85% of the continental area shows its counter-

part in the anomalous gravity gradient pattern.

Of course, we also have, similar to the zonal part, areas that fit neither
the one nor the other pattern. For example, this is the case for the eastern
part of the Antarctic, the western part of Greenland, etc. But all these areas
have a high uncertainty as far as their gravity gradient anomalies are con-
cerned. If we take Ka_ula's harmonic coefficients (obtained from a combina-
tion of direct gravity measurements and satellite data), we can in such areas
suddenly find the opposite results compared to the Kozai-Gaposchkin values.
In brief, although the correlation between the continents and vertical gravity
gradient anomalies is clearly visible from the most recent numerical analyses
(Kozai, 1964; King-Hele and Cook, 1965; King-Hele et al., 1965; Gaposchkin,

1967; Kaula, 1966), we still need greater accuracies for more detailed investi-
gations.

15
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NOTICE

This series of Special Reports was instituted under the supervision
of Dr. F. L.. Whipple, Director of the Astrophysical Observatory of the
Smithsonian Institution, shortly after the launching of the first artificial
earth satellite on October 4, 1957. Contributions come from the Staff
of the Observatory.

First issuedto ensurethe immediate dissemination of datafor satel-
lite tracking, the reports have continuedto provide a rapid distribution
of catalogs of satellite observations, orbital information, and prelimi-
nary results of data analyses prior to formal publication in the appro-
priate journals. The Reports are also used extensively for the rapid
publication of preliminary or special results in other fields of astro-
physics.

The Reports are regularly distributed to all institutions partici-
pating in the U. S. space research program and to individual scientists
who requestthem from the Publications Division, Distribution Section,
Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
02138.



