EQUIPMENT

Gerald A. Anderson
Schobl of Physics and Astronomy University of Minnesota

June 1967

Processed for . . .

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

notice to defense documentation center users

This document is being distributed by the Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, as a result of a recent agreement between the Department of Defense (DOD) and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents which are or have been announced in the Technical Abstract Bulletin. (TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.

$$
4
$$

DESIGN FOR ORIENTATION OF BALLOOT-BORNE EQUTPMENT *
by
1 Gerald A. Anderson

$$
+0^{\gamma}
$$

CR-96

* Sponsored by NASA contract Sd24-005-050(122) and ONR contract Nonr-710(60).

June 1967

ABSIRACI

Presents the design of a system to orientate a balloon-bome instrument package about a vertical axis. Pointing accunacy obtained is $\pm 1.5^{\circ}$. An independent photographic recording system measures the azimuth angle with respect to the star Polaris to $\pm 0.1^{\circ}$. The instrment package is rotated against a light weight reaction wheel which is designed for maximum monent of inertia. A pulse-width modulation system is used to drive the oriantation motor. A fluxgate magnetometer, used for the sensor element, causes the instrument package to be orientated with respect to the horizontal component of the earth's field. The instmment, a gamamay telescope, is oriented in the northmsouth plane and is tilted at an angle with the vertical which will correspond with the elevation of the suspected garma-ray source when the source crosses the local meridian。!

One requinement of many modern balloon-borne exieriments is that the orientation of the instmment package about a vertical axis be fixed with respect to a premdetermined set of coordinates. A typical experiment having such a reguirement is a search for gammarray sources using a telescope developed at the School of Physics and Astronomy, University of Minnesota. This teler oope consists of an array of particle detectors including photom graphic nuclear emulsions, scintillation counters, spark chambers, and a gas Cerenkov counter.

The physical size of this detector array is large compared to the electronics packages, batteries, and auxilliary equipment. For this reason the entire instrument package, contained in a pressurized cylindrical container, approxinately, 915 m aiameter and 2.13 m long, is hung at a fixed declination and oriented about the vertical axis so that suspected sources sweep through the upening angle of the telescope. In our suspension syitem, the cylinder is supported Dy a trapeze-type framework, with the capability of tilting the detector package at angles of 10° to 26° from the vertical. The entire packare weifhs approximately 250 kg e The physical constraints on the orientation system are that no part of the mechanism is to protrude into the field of view of the detector, and that the anount of material above the horizontal piane containing the upper end of the detectors is minimized.

MECHANICAL DESIGA

The objectives of the mechanical design of our system are to couple the instrment package to the balloon in a way that allows the instrument package te rotate dicut the vertical axis with respect to the balion, to provide adequate strength to withstand the shocks of launching, parachute opening, and landing, and to provide a reliable method of orienting the instrument
package. We mounted our reaction wheel above the instrument package and incorporated the drive mechanism which rotates the instrument package against the reaction wheel into the suspension system. Figure 1 shows the main elements of the suspension system. The attachment to the balloon is made by standard flexible steel cables and cable fittings. The thrust bearing in the top plate allows the instrument package to rotate with respect to the balloon. The universal joint is used to compensate for the difference in lengths between the cables used to attach the instrument package to the balloon. If the top plate is not perfectly horizontal when the package is suspended from the balloon, the iniversal joint will prevent the thrust bearing from binding.

The safety cables and safety plate, with its thrust bearing, are a backup system for the universal joint; they will support the instrument package if the shock of parachute opening breaks the universal joint.

The reaction wheel is a lightweight 11.9 kg structure on the general design of a bicycle wheel, 2.75 m diam. The rim is made of 2.54 an square aluminum tubing. The spokes are made of .16 cm steel aircraft control cable; standard control cable fittings are used to secure the ends of the cables to the rim and hub. The flanges of the hub are made of 1.27 cm aluminum plate, 15.2 cm diameter and separated by 20.3 cm . Following the bicycle wheel design, the twelve spokes are arranged so that they are nearly tangential to the hub at the points of attachment, in order to transmit the maximum torque to the rim for a given tension in the spokes. The reaction wheel is fastened to a stainless steel shaft, 1.59 cm dianeter. This shaft is threaded on both ends; the upper end screws into the bottom end of the univeral joint; a nut on the bottom end of the shaft bears against a timing belt pulley which, in turn, bears against the thrust bearing
beneath the top beam.
The timing belts and pulleys (T. R. Wood's Sons' Company, Chambersburg, $P a_{0}$), constitute a $25: 1$ speed reduction coupling between the motor and the shaft, and enable the motor to rotate the reaction wheel with respect to the instrument package. Thus, the instrument package from the balloon and as the drive shaft for the orientation system.

Initially, several designs for using the balloon as a reaction wheel were considered. These designs ane incompatible with the requirenent that the parachute, by which the instrument package is lowered to earth at the termination of the flight, is to be used as the coupling between the balloon and the instrument package. In this ammangement, the shroud lines of the parachute and the instrument package constitute a 'multifilar' pendulum whose free oscillation frequency in the rotationai mode is given by

$$
\omega=(r / k)(g / 1)^{1 / 2}
$$

where ' ω ' is the natural frequency, ' k ' is the radius of gyration of the instrument package, ' r ' is the effective circle of separation of the shroud Lines, ' I ' is the length of the shroud lines, and ' g ' is the acceleration of gravity. From the measured values of ' 1 ', ' k ', and ' r ', the multifilar pendulum frequency for our system was calculated to be . 4 radians/second. The natural frequency of our orientation system, for a torque gradient of .25 newton $-\mathrm{m} / \mathrm{radian}$ and a moment of inertia of $35.4 \mathrm{~kg}-\mathrm{m}^{2}$ is .26 radians/second, These two frequencies are close enough to each other to create a difficult design problem if the balloon is used as the reaction wheel. The design problem is made more difficult by our inability to predict paraneters such as air damping and bearing friction at the balloon operating altitude. By rigidly coupling the reaction wheel and the instrument padkage, most of the
inherent desim difficulties can be avoided. In the develoment of our desien we found that it is important that the reaction wheel be coupled to the balloon and that the instrment package be coupled to the reaction wheel. If the reaction wheel is mounted on the bottom of the instrument package, and the orientation system attempts to orient the instrunent Dackage, the friction of the thrust bearing between the balloon and the instrument package will cause the parachute shroud lines to twist and stone energy. Then, when the instrument package is pmoperly oriented, and the motor stops, the shroud lines will untwist and rotate the instrument package away from the proper orientation. If the thrust hearing was an ideal frictionless bearing, the system of the reaction wheel, instrument packafe, and motor would be incapable of acquiring any angular monentun with respect to an external reference. However, the nonlinear friction of the bearing will couple the instrument package to the balloon which in tum is coupled to the earth throurh aerodymamic friction. Under these conditions the sustem would acquire angular momentum when the motor rotates the reaction wheel, and the system could only dissipate this momentum throurg the flexible coupling of the parachute shroud lines to the balloon. In our design, on the other hand, motor tomue overcomes the friction of the bearing between the instrument package and the reaction wheel throurg a rigid counling, and the system does not acquire any angular momentur. In our system, in fact, the friction in the bearing between the reaction wheel and the ballon provides a small amount of coupling to the balloon, and helos to dissinate anv angular monentum the system mav have acquired.

ELECTRONIC DESICN

The electronic circuitry used in the orientation servo systen is essentially a pulse-width modulation system, (See Figure 2, Dratring 1131-233,)

The power thansistors wich drive the orientation notor are operated as switches; they are either qompletely off or completely saturated. Linear control is achieved by controlling the duty cycle, or ratio of conduction tine of the power transistons to total cycle time. The pulse repetition frequency is 500 ilz , much faster than the response time of the mechanical system. Consequently, the motor acts as an interrator; its tomue is proportional to the avemage nower delivered to it. An advantage of this system is the built-in dither; when the system is near the null position the input to the rotor is a series of narrow oulses, which, in turn produce tomue imulses fron the notor and help to overcome static friction. The motor driver trensistons cissipate a minimus of power in this sustem; consefuently, elaborate net-sinks are unnecessamy. Another advantare is the ease of incomonating additive tems to the systen response function, This ability rakes it possible to counteract the mon-linear friction of the notor and bearings.

The basic circuit in our system is a modified height-time converter, Which produces a pulse pronortional in duration to the arplitube of the error signal. The tmailine edge of the error-mportional nulse trifrems a monnstable nulti-vibratol, which, in tum, procuces a fized-width nulse. The width of the seconc pulse has been acljusted to compensate for the static friction of the motor brushos and gondola sustension bearings and also to comensate for the L / R tine-constant of the motor vindings. The two senuential pulses are added in tine to produce a drive pulse to the motor of the function:

$$
t=k 0+T
$$

where 't' is the total curation of the drive pulse, ' 6 ' is the gain of the
servo system, ' θ ' is the emor angle, and ' T ' is the dunation of the fixed width pulse.

The sensing element used to orient the instrument package is a flux-gate mapnetometer, (Type IND-5C-100NB, Schonstedt Instrument Company, Silver Springs, Maryland.) The output function of this magnetometer is:

$$
E \text { out }=k(\cos \theta) \phi
$$

where ' k ' is a constant dependent on the model of the magnetoneter, ' 0 ' is the angle betweon the axis of the sensor and the magnetic field vector, and ' Φ ' is the scalar intensity of the magnetic field. Mo narticulan difficulties were encountered in using the single axis magnetometer, althourh the axis of the sensor was horizontal, and thenefore the emor signal was pronortional to the angle between the axis and the horizontal comonent of the earth's magnetia field. The emor signal from the magnetometer is fec into a mixer anolifier. Because the error simnal is a low amplitude de simal, a differential trensistor pair is used for grod temperature stability. In principle, several other inputs could be fed to the mixer-amplifier, such as the outputs of rate gros, techometers, and other velocity-dependent signals, to provide damping, on programing signals to compensate for the change in magnetic variation. The basic tining circuit for the system is a sinple unijunction relaxation oscillator, followed by pulse-shaping circuits which provide both positive and negative pulses at 500 Hz . The timer pulses charge the integrating capacitor in the Miller integrator ramp senerator. The output of the Miller interrator is fed to a phase-splitter, which provides two ranms of nearly equal amplitude and opposite polarity. An adjustable section of the emitter resistor in the phase splitter ontrols the saturation voltage of the phase splitter, and also the effective deadband of the sustem.

The ramp voltages are compared to the error signal in two panallel discriminators. The Cll discriminator will provide an output pulse if the error signal is positive, and the COI discriminator will provide an output pulse if the error simnal is negative, Although one discriminator could have been used with a triangular wave reference, the maximun duty cycle possible would have been 50 percent; our system can attain a maximum duty cycle of nearly 100 percent. The output of the differential amplifier in the discriminator is fed into a Schmitt trigger circuit; the regenerative feedback and hysteresis of this circuit ensures that the output signal will definitely be in either the 'I' (positive) state, when the namp voltage is less than the error signal; or the ' 0 ' (negative) state, when the namp voltage is greater than the ermor voltage; with a minimum of switching time. The output of this circuit is fed to a phase splitter, which provides both the signal and its complement to the various logic cincuits. The trailing edge of the discriminator pulse triggers the fixed pulse generator. The outputs of the discriminator, the fixed pulse generator, and a protection or enable flipflop circuit are combined in a logic circuit to produce the input pulse to the notor driver circuit.

The Boolean function of the logic cincuit is, (for a positive emm signal):
(CJ FIXED CT DISCRIIITATOR) CT ETABLE
By DeMorgan's theorem, this expression can be simplified to:
(C. FIXED + CN DISCRIMINATOR) - CN ENABLE

Thus, for a pulse to the motor driver to be generated, the enable flip-flop must be in the proper state and either the discriminator or the fixed pulse generator must be in the 'I' stage.

The enable flip-flop has the inportant function of ensuring that only one 'polarity' of drive pulse to the motor drive circuit is produced in any one cycle. That is, if noise causes the discriminators and the fixed pulse generators to produce simultaneous pulses which would drive the motor in both directions at the same time, the enable flip-flop allows only one direction of rotor drive at any one time. The state of the enable flip-flop is changed by the negative-going trailing edge of the discriminator pulse which has the greater length and, therefore, mone ermor signal component.

The motor driver circuit consists of a simple bridge circuit using Pive and NPN transistors in complementary symmetry, Reversed-bias diodes are connected across each transistor, collector to emitter, to clamp any voltage transient generated by switching off the cument through the motor windings. In such a bridge, great care must be taken that only those two transistors on opposite sides of the motor conduct at any one time. This precaution is satisfied by the enable flipmflop, and by the design that requires positive base drive from an external source. This design also ensures that the bricge will not destroy itself if the regulated supply voltages to the logic are not present.

The operation of the pulse-width modulation can best be understood by tracing the signals through a cycle with the aid of the timing diagran (Figure 3).

Initialiy, assune a negative error signal which is inverted by the mixerarmlifier. The timing oscillator pulses and resets the rams to zero. Because the ramp voltage is lower in amplitude than the emor voltage, the Cil discriminator is in the 'I' state. Then the amplitude of the ramp voltage equals the amplitude of the error/signal the discriminator sivitches to the '0' state and, in switching, triggers the fixed pulse generator, Asswing the enable flip-flop is in the proper state, voltage will be anplied across the motor windings as long as either the discriminator or the fixed pulse
generator is in the 'I' state. As the axis of the instrument package approaches the proper orientation the amplitude of the emon signal and the duration of the discriminator pulse decreases until when the orientation is within the dead band, no drive pulse is applied to the motor at all. If the axis of the instrument crosses the deadband the error voltage will reverse in polarity, the $C C l$ discriminator will produce pulses, and after the first pulse has changed the state of the enable flip-flop, the notor will turn in the opposite direction.

The motor used in our systern is an Inland Tvpe T 5721 (Inland Motor Corporation of Virginia, Radford, Virginia). This motor is a permenentmagnet torque motor; that is, the output tomue is nearly oronortional to the applied voltage, over a wide range of angular volocities. The speed voltage, or back emf, coefficient is very low. This type motor was chosen for its fast response and its high stall tomue.

Because the outnut of the magnetometer is a de signal, the instability of the positive and negative 6 volt power supplies is directly related to the error in orientation. In our desim, the positive and negative 6 volt supplies are series negulators, drawing their power from the silver-zinc cells used to power the rest of the instrument packara. A temperaturecompensated silicon breakdown diode (Motonola MCR 2225) is used as the single voltage reference in the positive supply. The negative surply obtains its reference from the positive regulated output voltace, so that, if the reference changes with temperature, the positive and nerative voltares will chane equally in magnitude. In termerature tests the voltares changed appoxinately 6 millivolts over the temerature range from $+25^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$. The only effect of chances in the motor supply voltares is a slight change in systen gair; consequently, the moton is supplied directly from the batteries,

RIGIM RESULTS

The thivensity of Minesota gama-ray telescone was flow from the NCAP. facility at Palestine, Texas, on 16 October, 1966 and ayain on 12 Decenber, 1966. The orientation system was tumed on by ground cormand when the balloon reached its ceiling of $140,000 \mathrm{ft}$. Orientation was achieved within 30 seconds and held to within $\pm 1.5^{\circ}$ for 4 hours, the duration of the flight. The orientation direction was monitored by two 35 mm cameras which were mounted on the instmment package so that when orientation was achieved the star Polaris was in the field of view of the cameras. In one of these shutterless cameras the film traveled continuously, in a horizontal direction, to recond the pitch about the east-west axis. In the other canera the film traveled in a vertical direction to recond the azinuth angle. Firure 4, which shows a sample of the vertically moving filn, illustrates the pointins accuracy of the oriontation system. The track of Polaris is deliberaten., rfoconter in this part of the filn to compensate for the change in variation in the nerth'c field as the ballon traveled fron west to east.

The horizontal scale in Fipure 4 is the actual field of view of the camera. The actual azimuth error from the center of the film is, for small error angles and low georraphical latitudes, approximately
Δ azimuth $=\frac{\Delta \text { field of view }}{\cos (\text { latitude })}$

The lenses in these caneras are 35 mm . diemeter $\times 118 \mathrm{~mm}$, focal length. The film, which travels at a linear velocity of $4.7 \mathrm{cr} / \mathrm{rmin}$, is Kocak Linagraph Shellburst, Estar Base.

ACKIONLEDGE:EITTS

The University of Minnesota gama-ray telescope was constructed under INASA Contract SC24-005-050(122). Balloon flight services were funded by 0:JR contract Nonr-710(60). The author wishes to express his apreciation to Captain T. C. May, USAF, for his assistance in the design of the orientation system; to Professor C. J. Waddington, for his criticism of this manuscript; and to the shop personnel of the School of Physics and Astronomy who constructed the electronic and mechanical components of the orientation system.
Figure 1: lechanical design of susiension system.
Figure 2: Orientation circuit.
Firgure 3 Timing diagram for the orientation circuit.
Figure 4. Sample of film from azimuth monitoring camera.

FIGURE 1

frgure 3 TIMING DIAGRAM

FIGURE 4

