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ABSTRACT 

Hansen's planetary theory represents the position of the disturbed planet as a deviation in 
time and space from the position of a fictitious planet, whose motion is Keplerian relative to 
pseudo-time. This work contains an investigation about the nature of the basic function w of 
Hansen's theory, which serves to determine the deviation mentioned. The standard way to obtain 
the differential equation for W is based on the application of the method of variation of the astro­
nomical constants. However, Hansen's coordinates of a planet a r e  more intimately connected with 
the perturbations in the position vector than with the perturbations in the elements. For this rea­
son, following von Zeipel, dW/dt is obtained here as the projection of the perturbations in the 
acceleration vector on a variable vector N', which is selected in such a way that dW/dt is totally 
integrable. 

The form of W thus obtained contains an arbitrary constant and an arbitrary function of the 
osculating areal velocity. If dW/dt is obtained in terms of a disturbing force, then it can clearly 
be seen that the presence of the arbitrary elements in W suggests the separate introduction of a 
vector 3 and of a scalar ho/h, bypassing the formation of W . In fact, w represents a fusion of 
three independent series into one, although no actual gain is expected from such a fusion in terms 
of programming or computing time. 

The "barred" Hansen function m y  however, is the most essential part of the theory. It is 
intimately connected with the determination of the perturbations in Hansen's coordinates and with 

-
the formation of the integrating operator. W is retained in this exposition. Furthermore, the 
geometric characteristics of Hansen's theory favor the expansion of the perturbations into trigo­
nometric series with the disturbed mean anomalies of planets as arguments. Such a form of ex­
pansion eliminates the need to develop W and the disturbing force in powers of the perturbations 
of the mean anomalies. It contracts the series and speeds up the convergence. We economize, 
especially, in the expansions of the odd negative powers of the mutual planetary distances. 

The motion of the disturbed planet is related to an inertial frame of reference situated in the 
orbital plane of the fictitious planet. The standard use of the rotating ideal frame of reference 
instead of an inertial frame does not simplifythe actual numerical procedure. Hansen himself was 
compelled to introduce the perturbations in the "third coordinate." In the final instance this is 
equivalent to the use of a fixed frame of reference of the type mentioned. 

The integration operator is expanded into a series, whose form favors the application of the 
method of iteration. At  each step of the iterative process the perturbations are obtained by solv­
ing a linear partial differential equation with constant coefficients. 
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NOTATION 

P - the disturbed planet, 


m - the mass of P, 


M - the mass of the Sun, 


f - the gravitational constant, 


p2= f ( M t m ) .  


PI - the auxiliary planet moving in a fixed plane in accordance with Kepler’s laws,  


M, a , ,  e,, . . . etc. the standard elliptic elements of P,, 


P’ - the disturbing planet, 


< - the heliocentric position vector of P, 


? - the projection of 7 on the orbital plane of P, 


r = 171, 


;- the heliocentric position vector of P I ,  


r = l ? l ,  


7 - the true anomaly of PI ,  


E - the eccentric anomaly of P I ,  


u - the distance of P from the orbital plane of P,, 


- the unit vector directed toward the perihelion of P I ,  -
R - the unit vector normal to the orbital plane of P, , 
6 Z X F ,  


1 + u - the ratio r/?, 


t - time, 


z - the pseudo-time (the disturbed time). It appears instead of 

d? 
v - the velocity of relative to z .  

h z  = z - t - the perturbations of time, 

noh z  - the perturbations in the mean anomaly, 

t in Kepler’s equation for P,, 

The notations for P’ corresponding to the above a r e  designated by the “primed” symbols, 


J - the mutual inclination of the orbital planes of two auxiliary planets, 


V’ - the gradient operator relative to ;’, 


2 = ?’ - ? - the mutual distance between two auxiliary planets, 


87 = v? + UE - Hansen perturbations of ?, 

:+ST = 7 ,  


87’  U ‘ T=’  t U’ ’is - Hansen perturbations of ?’, 
7 ‘  z 7 ,  +SF‘, 

D’ V ‘ e x p ( E ? ’ V ’ ) .-
D” = C’ exp(S’ . \-’), 

I - the operator of projection on the orbital plane of P,, 

i/h - the areal velocity of the projection of P on the orbital plane of P, , 
l /h,  - the areal velocity of P,, 

X = h,/h, 


wand W - Hansen’s functions. 
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INTRODUCTION 

This work presents an investigation concerning the foundations of Hansen's planetary theory 
(1857), and a system of formulas which can be used in actual computations of the first and higher 
order general perturbations in Hansen's coordinates. 

A s  the first approximation to the motion of the planet P we take, following the suggestion by 
Oppolzer (1883) and Andoyer (1926), the motion of a fictitious auxiliary planet P, moving in a con­
stant ellipse in a fixed plane (xy)  in accordance with Kepler's laws .  The position of P is determined 
by its deviation from the position of P, in time and space. 

More precisely: at the moment t the projection of the position vector of P on the (xy)-plane 
wi l l  have the same direction as the position vector of P, at the moment Z .  Designating by < the 
heliocentric position vector of P, by 7 the heliocentric position vector of the projection of P on (xy), 
by u the distance of P from (xY), by 7 the heliocentric position vector of P, and finally by the 
unit  vector normal to (xY), we can w r i t e  the basic relations of the theory in the form: 

Z ( t )  = ;(t) + "(t)i i  , 

+ 

7 ( t )  = ( l + v ) T ( z ) ,  (1) 

The fictitious planet should be so chosen that Hansen's perturbations v, u ,  and 6z in the semi-
major axis, in the "third coordinate", and in time, respectively, w i l l  be small-of the order of the 
perturbations. The introduction of the pseudo-time z and of the "perturbations of time'' 6 z  is the 
main characteristic of Hansen's theory which w a s  considered peculiar during his lifetime and 
which, surprisingly, is sometimes considered difficult to accept even now. Another important 
characteristic of Hansen's theory is that the perturbations v and 6z in the orbit plane of PI,  a r e  
determined by one single function f .  The mean anomalies of the fictitious planets corresponding 
to the disturbed and to the disturbing planets are the basic arguments in expansions of the per­
turbations into periodic series. The role of the mean anomaly of P, is twofold: It enters into the 
expansion of the perturbations of Hansen's coordinates and it is also the argument in the expansion 
of the elliptic coordinates of P,. In order to separate the perturbative effects from the elliptic 
motion of P, Hansen uses a special notation for each mean anomaly. Then he forms a function W and 
its derivative dW/dt in which these anomalies are kept separated. The derivative dW/dt is formed 
in terms of the components of the disturbing force. The W-function is obtained by integrating 
dW/dt . After the integration, the f-function is obtained by removing the distinction between the two 
types of mean anomalies. 
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The operator for converting W into is Hansen's "bar-operator," and its use represents the 
third main characteristic of Hansen's theory. Normally the differential equation governing the 
variation of W is deduced on the basis of the variation of elements. Thus, the theory of Hansen can 
be considered as an ingenious transfer of the perturbations in the elements to the perturbations 
in the coordinates. However, an approach without resor t  to the variation of elements and based 
solely on the equations of motion is also possible. Such an approach was  suggested by von Zeipel 
(1902). He used the Lagrangian form of the equations of motion in polar coordinates with the eccen­
tric anomaly as the independent variable. 

Looking closely at dW/dt, one can recognize easily that it is the projection of the perturbations 
in the acceleration of P on a variable vector selected so that dW/dt is totally integrable and W is 
a linear function of dv/dt . W contains an arbitrary vector which can be taken to be a function of 
the "elliptic" mean anomaly. Hansen's solution corresponds to the special case when Z is normal 
to the position vector of the auxiliary planet. We follow here in von Zeipel's footsteps with some 
modifications. The direct use of Equation (1)leads immediately to the expression for the pertur­
bations of the acceleration vector of P and to the general forms of dW/dt and W which facilitate 
the kinematical conclusions. 

Looking at these general forms of W and dW/dt we recognize that h, rather than W, represents 
the main feature of the method. The w-function has a direct kinematical meaning, whereas W repre­
sents merely an artificial device to combine these ser ies  into one. At  the present time the ex­
pansion of the perturbations into ser ies  is done on electronic machines. Neither the length of the 
series,  nor the computing time can be reduced by employing W instead of the three series. For 
this reason we propose to compute the three parts of W separately. After the computation is com­
pleted, we form the F-function. 

We deviate from Hansen in the method of expanding the disturbing force and in the method of 
integration. In Hansen's work the expansion of the disturbing function and of the disturbing force 
is done in powers of V ,  v', no  S z ,  no( S z ' ,  u and u'. The expansion in powers of v ,  v' and U, U' is as­
sociated with the expansion of the disturbing force in  odd negative powers of the mutual distance of 
the planets, while the expansion in powers of no Sz and no( Sz' is associated with the expansion of the 
odd negative powers of 4 as functions of time. The perturbations no  Fz and n,,' SZ' normally a r e  the 
largest ones. Their determination is associated with the possible appearance in the process of 
integration of the squares of the small divisors caused by the commensurability of the mean motions 

Thus, the convergence in powers of no Sz and n i  6 2 '  is a relatively slow process as compared 
to the convergence in V, v', U, u'. To speed up convergence we discard the development in powers 
of no  F Z  and no) 6 2 :  Then the angular arguments in the periodic ser ies  representing the perturba­
tions or their derivatives will  become the linear functions of the perturbed mean anomalies M and 
M'. The integration of such ser ies  is then reduced either to solving a partial differential equation 
if we use the process of iteration, or to solving a chain of linear partial differential equations, all 
of the same type, if we resort  to the standard asymptotic expansion of perturbations in powers of 
masses. 
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We will not follow in Hansen's and von Zeipel's footsteps and do not employ the eccentric an­
omaly as the independent variable. However, only a slight modification is required in the method 
we present if it is desired to switch to either the eccentric or the true anomaly as the basic variable. 

The computational scheme is arranged so that the process of iteration is applicable and thus 
the programming is homogeneous. If preferred, the computational scheme for the standard asym­
ptotic expansion in powers of masses can be easily deduced. 

THE DIFFERENTIAL EQUATIONS OF MOTION AND THE EXPANSION' 
*< 

OF THE DISTURBING FORCE 

( The motion of the planet P, is Keplerian and its position vector ? ( z )  satisfies the differential 
equation 

The equation of motion of P can be written in the form (Musen, 1965) 

where 

.e = 1x1 , 



- -  

4 

and V' is the gradient operator relative to r'. From the author's previous (1965) work, we take the 
expansions: 

t 2(Z - 82) ( 8 2  - 82)  + - 8 2  - 84 84 + * - .  ; (9)3 :5 - -> > 

and 

In the process of expanding (9) and (10) and the components of the disturbing force in terms of the 
disturbed mean anomalies, we shall use the following auxiliary quantities: 

-B = B' = r - r-, -- a. a,,' ( a c c '  +,Bcs' +a' s c '  +,B' s s ' )  , 

- 4 -

A'  = R . F x T '  -- a. a,,' ( a '  c c '  - Q S C '  +,B' c s '  - ,Bss ' )  , 
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(14') 

(11") 

(13") 

i, 

(15'') 
4. 

where 

r - ­
c = ;;-cos f ,  s 1 L s i n f ,

0 0 

- 4 + 
a = P - P ' ,  a' = Q . , 

The expansion of (11)- (17) in terms of M and M' is performed in the standard manner, either using 
the classical analytical formulas o r  by employing harmonic analysis. 

The explicitly written portions of (9) and (10) permit the development of the general perturba­
tions up to the fourth order relative to the disturbing masses. We have from (7): 
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Substituting these expressions into (9) and (10) we deduce the expansions: 

j ,  j ' ,  k ,  k '  2 0 ,  j t j ' t k + k '  = n 

n = 0 ,  1, 2, e * - . 

In the following table we give the values of the coefficients K and H which a r e  different from 
zero for n = 0, 1, 2. 
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7 

i 



- - Ko',(:2 = 30 12F 
47 G ' F +  - ,

45 

30 6
Ki$:] = t -FF' t - cos J ,47 4 5  

This table permits one to develop the perturbations up to the third order. This accuracy is 
sufficient for the majority of planets in our solar system. The inclusion of the perturbative ef­
fects of the fourth and higher orders, if  necessary, can be easily accomplished by expanding the 
additional terms in (9) and (10). 

The choice of the orbital planes of the auxiliary planets can be made in such a way that the 
orders of the magnitudes of u and u' numerically will  be higher than the orders of magnitudes of 
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+ 
v, v', no Fz, no( Fz'. Thus, the terms in F which contain the factors m'vu, m ' u u ' ,  m '  v' U ,  m '  v'u', 

m '  u2 ,  m '  UU', m '  u t '  can usually be omitted. 

From (3) we have 

where we set  

I- 1 

I is the operator of projection on the (xy)-plane. It can be represented in several ways ,  either as 

* --, + +  
I = h o R x  ( F C - G F )  

o r  as 

or as 

+according to the kind of decomposition of F we prefer. The representation (31) of I is preferable 
i f  we want to separate the terms with small divisors. The first terms in (29) and (30) can be 
written as 

r 1 

9 
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and 

P2 u - - _ _  
p2 - (.2 + .2)  3/2 r 3  

, The last quantity normally is negligible. 

Taking (11)- (15") into account, we deduce the following expressions for Z and for the com­
+ 

ponents of F :  

Z = fm' ( K ' F  + H + H '  cos J )  , (35) 

+ + 3 u2 +. F = f m '  ( u + K ' B + H ' F ' ) + i j p 2  = ( l t ~ ) - ~  , (36)
r 3  

+ - + +  

R x  7 F = fm' (K'  A'  + H '  0 ' )  , (37) 

3 U* 
cP . F = fm' [Ka, c + K '  ad (ac' + P s ' )  t H '  K ]  + 2 p2 a, ( 1  + v ) - ~  + * e e , (36') 

- + +  3 U 2 
Q * F = fm' [ K a o s + K ' a ~ ( a ' c ' + p ' s ' ) + H ' K f ]  t 2 p 2 a , ; S ( l + u ) - 4 s t  . (37') 


The system of formulas (35) - (37'), because of its symmetry, provides us with a scheme which is 
convenient for the use of the process of iteration as well  as for programming. 

PERTURBATIONS IN THE ORBITAL PLANE OF THE AUXILIARY PLANET 

Differentiating (1) twice with respect to time and taking (2) and(27)into account, we have 

10  
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Introducing Hansen's notations for the sectorial velocities, 

w e  deduce from (39)the classical formula 

where we set 

Taking (43)into account we can rewrite (40)as 

+ 
We now determine a vector so that the scalar product of N with the left side of (45)represents a 
totally integrable function. 

+ 
For this purpose a convenient form of the decomposition of N is 

4 2 4 + -+ 
N = p v x  R + q R x  r ,  

where P and q a r e  functions of X ,  u ,  z. From (42)w e  have 

We determine a function 

w = W(X, u, ;, 2) (49) 

11
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such that, in accordance with (45)- (48),we have 

In this respect we follow in von Zeipel's footsteps. However, since we a r e  using time, and not the 
eccentric anomaly, as the independent variable, the straight forward application of (2)and (27) 
makes the exposition simpler. In addition, the kinematical meaning of the results becomes more 
direct. 

From the last equation we deduce: 

aw d w  /Lz-;+=- x 
= ( 1  t u )  - x2 . - - p . 

du (1 + u ) 2  ( 1  +u)3  F3 ho 

From (52)we conclude that w must have the form 

w = +;+b(X, u ,  z )  

0 ho 

Substituting (54)into (51)and (53)we obtain 

ab 

a v  
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Thus p is a function of z only and from (55) and (56), we deduce 

The general solution of (58) is 

-, 
p = h o <  * r , 

where Z is an arbitrary vector lying in the orbital plane of P I .  

-dz = h,Z * V . 

From (55), (56) and (60), we have 

where f (X) is an arbitrary function. 

From (57) we have 

Substituting (61) and (62) into (46) and (54) w e  obtain 

and the general form of the W-function is 

Taking (31) into account, we obtain 

(59) 

From (59), w e  also deduce 



From (45) and (50), we deduce 

Substituting (64) and (65) into the last equation, and because Z and f are arbitrary, we obtain 

The equation (66) is classical. The equation (67) is new. It is convenient to bypass the use of W 

and introduce the vector defined by the differential equation 

Ofcourse, this formula can be connected with the variation of astronomical constants. 

W e  have from (67) 

Taking (42) into consideration we deduce from the last equation, after some easy vectorial 
transformations, 

We can obtain v from (70) by integration. Then a constant a itegration wil l  appear which de­
pends upon the constant in X.  Perhaps it is preferable to determine u from (71) which does not in­
volve any additional integration. We can re-write (71) in the form ' 

u = ( l + u )  [(I - $)+ + ? .  ;] 
which is convenient for the application of the process of iteration. 

14 
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At this step we introduce Hansen's W-function in order to determine noSZ. We have 

-	 2x
w = - 1 - x t - l + u '  (73) 


The quantity X differs from unity by the order of perturbations and we can se t  

x = 1 + s x .  (74) 

Using (71) we obtain 

and the perturbations in the mean anomaly and z can be obtained by using Hill's (1881) formulas: 

PERTURBATIONS IN THE THIRD COORDINATE 

Taking into account the identity 

d Z u  - d Z u  du dt d _ _ _  
dt [p-dt dz  dt (%)I (%)' I 

c 
- =  

w e  can rewrite (28) in the form: 

d Z u  - p z u  dt- ­
dzZ T3 + C z ,  

where we set 

1 
+ -­dt dt (dz) 

(79) 
(.Z +,2)3/2 21 + 

dt du d e 
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Expanding the first t e rm in powers of u and using (71),(43) and (77), we obtain 

From (43) we have 

From (73) we obtain with the needed accuracy 

and substituting this value into (81) we have 

2 (2) = ( 2 - W - S X ) Z  
du 

- ( 1 - W - S X )  
dx
dt . 

Thus (80) becomes 

For the majority of planets the perturbations of the second order in u will  suffice, providing that 
the orbital plane of P' is chosen in a proper way. Then we can put 

The integration of (78) gives 

At this point it w a s  convenient to use the Hansen and Hill device: the auxiliary mean anomaly (M) 
in the expressions of 

-
P - Pa cos+ and a s i n ?  

0 
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is considered as a temporary constant. After  the integration is completed (M) must be replaced by 
M. In computing the terms of the second order in (83) the elliptic values of the coordinates can be 
used. 

THE PROCESS OF INTEGRATION 

The integration of the differential equations of the problem is accomplished by the method of 
successive approximation using the expansion of the integrating operator into series. The operator 

D = -d 
d t  

can be decomposed into a sum of two operators 

D = T o + T ,  (85) 

where 

and 

(85") 

If only the perturbative effects of the first and second orders a r e  needed then we set  v 2  = U" = 0 

in (85') and the operator T takes a simpler form. Putting (85) in the form 

D = To ( I , + T ; ' T )  

where Io  is the identity operator, we obtain the expansion of the integrating operator. 

Q = D-1 = ( I ~  0+ T ; ' T ) - ~  ~ - 1  



--- 

-- 

The explicitly written terms in this expansion suffice for computing of the perturbations up to the 
third order. The central part of the integration procedure is the application of the integrating 
operator Ti1. The basic formulas to be used a r e  either 

(s+1)S I
( s  + 2 )  

z s + 2  = 1 s ' - 1  t s' ( s '  - 1)
( s  + 1) ( s  + 2 )  ( s  + 3 )  

z s + 3  = ( s ' - 2  - ... 

- 1 z s  z l s ' + l  - -s- ~ zs-lz , s ' t 2  + __ s( s - 1) 
-. zs-2 z 1 s ' + 3  - ... 

- s ' + 1  ( s '  + 1) ( s '  + 2 )  ( s '  + l ) ( s '  + 2 ) ( s '  + 3 )  

and 

o r  their modifications. In practical application of these formulas, we usually do not go beyond 
m = 2. 

After v', u ,  n o  6z a re  obtained, the time is determined from the equation 

n o t  n o z  + c 0  - n o  6z = M - n o 6 z  . 

If the t is given then the corresponding value of z is determined from the last equation by means of 
successive approximations. The disturbed position vector -s' is determined using the standard 
equation 

CONCLUSION 

The geometrical characteristics of Hansen's planetary theory favor the expansion of perturba­
tions in terms of the disturbed mean anomalies of the auxiliary planets. This approach eliminates 
the need to expand in powers of no  62, n,,' 6 z :  - - - and speeds up the convergence of series repre­
senting Hansen's coordinates. We economize especially on the expansions of odd negative powers 1 

of the mutual distances. Thus, we a re  not compelled to form the derivatives of the f i r s t  and 
higher orders of the disturbing function relative to the pseudo-time. Hansen's theory is connected 
more intimately with perturbations in the rectangular coordinates than with perturbations of the 
elements. For this reason we suggest here the form of the theory which does not appeal to the 
method of variation of astronomical constants. We prefer instead to make direct use of the dif­
ferential equations of motion in rectangular coordinates relative to an inertial frame of reference. 
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We did this because the classical use of the moving ideal system of coordinates evidently does not 
simplify the actual numerical procedure. 

Hansen himself was  compelled to introduce the perturbations of the "third coordinate." To 
obtain them he used a method which combines the direct kinematical considerations with the method 
of variation of constants. Furthermore, we do not make use of Hansen's W-function because of the 
way the operations with periodic series are performed on electronic machines. However, we con­
sider employing i as the most essential part of Hansen's theory. The i-function is intimately 
connected with the determination of the perturbations in the mean anomaly as well as with the 
formation of the integrating operators. For these reasons we have retained the W-function in the 
present exposition. 
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