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Abstract

The Perron-Frobenius theory of non-negative matrices has been
found to be of great value in the study of iterative processes. 1In

this paper, we extend much of this theory to include those matrices

which leave invariant a closed convex cone with non-empty interior.

Such matrices are completely characterized in terms of certain
spectral properties. The notion of irreducibility is generalized
to these matrices, and several theorems are proved to show that
this is a suitable extension of the classical concept. The basic
results of the Perron-Frobenius theory are then extended, and sev-

eral useful comparison theorems for iterative processes are derived.
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1. Introduction.

The basic results of the Perron-Frobenius theory of non-

negative matrices [2] are:

I. If A is an nxn matrix with non-negative elements (A > 0),
then a) p(A) is an eigenvalue, b) there is a corresponding
eigenvector which is non-negative, and c¢) if B > A, i.e.
B-A > 0, then p(B) > p(A) where p(a) is the spectral radius
of A.

IT. If A > 0 and irreducible3)

then a) p(A) is a simple eigen-
value, b) there is a corresponding eigenvector which is

positive, and c) if B > A and B ¥ A then p(B) > p(a).

ITI.If A has all positive elements (A = 0), then a) p(A) is a
éimple eigenvalue, greater than the magnitude of any other

eigenvalue, b) properties IIb and IIc hold.

The existence statments in these theorems (Ia, Ib, IIa, IIb,

IIIa) have been generalized to operators on a Banach space which

leave a cone invariant. (see (57, [6], [8]). The other state-

ments, i.e., those which compare the spectral radii of two matrices,

1) This work was supported in part by grant NsG 398 of the National
Aeronautics and Space Administration to the University of
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2) Computer Science Center, University of Maryland.
3) The matrix A is irreducible if no permutation matrix P exists

such that PTAP = [g g] where B and D are square, and O is a

-block of zeros.
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have not been adequately generalized in spite of their usefulness
in the study of iterative processes. Irreducibility, which is
important to this part of the theory, is usually replaced by a
stronger condition. Recently, for example, Marek L7] proved some
comparison-type theorems for Krasnoselskii's uo-positive op-
erators. It can be shown (see section 4) that, in the finite
dimensional case, all non-negative uo—positive operators are
irreducible, but not conversely. Shaeffer [8] has defined a
class of operators on a Banach space, which, in En becomes the
class of irreducible matrices; however, his results are only of

the existence type.

The generalizations referred to above, involve two exten-
sions of the classical theory. The spaces are usually assumed
to be infinite dimensional, and positivity is replaced by the
assumption that the operator leaves a cone invariant. 1In this
paper, we will retain the latter extension but, in order to ob-
tain stronger results, will consider only finite dimensional
spaces. Our first theorem gives necessary and sufficient con-
ditions for a matrix to leave a cone invariant. We then extend
the notion of .irreducibility and prove the corresponding Perron-
Frobenius type theorems. In the final section, these results are
used to generalize the comparison theorems of Stein-Rosenberg and

Fiedler-Ptak.

I would like to thank Professor Werner Rheinboldt, of the
University of Maryland, who suggested several of the ideas devel-

oped here, and aided in their development by frequent discussions.
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2., Cones in E .

We begin with a brief discussion of convex cones in finite
dimensional spaces. In this paper, we will define a cone to be
a closed subset K of En which satisfies K 0 (-K) = {0}, K + K = K,
and oK © K for any o« > 0. A cone K is solid if its interior

. . . . n .
K° is non-empty, and K is reproducing if E = K - K. (In En,

every solid cone is reproducing, and conversely.) If X € K we
sometimes write x > KO, and X > O will mean that X is in the

cone consisting of all vectors in En with non-negative coordinates.
If A is an n X n matrix, then we write A > Ko if A ¥ € K when-
ever X € K. If K is solid then yx > > Ko means X € Ko, and
similarly, A > > K0 implies A x > > Ko whenever ¥ € K and ¥ + o.
An important fact about elements in Ko is that, if y > > KO, and
y € En, then for some A > 0, y SK A Xx. (see[9].) A vector

X € K is called extremal if X = y+z with y € K and z € K implies
that both y and-z are non-negative multiples of X. A cone K is
generated by a set of vectors if any element in K can be written
as a- finite linear combination of these vectors, using only non-
negative coefficients. Our first result shows the connection be-
tween these last two concepts.

n
Theorem 2.1 Any cone in E is generated by its extremal

vectors.

Proof. By induction on n: For n = 2, the result is obvious.
Suppose éhe theorem is true for spaces of dimension less than n.
If x is an interior point of K C En, then let u € K be linearly
independent of ¥, and let H be the plane spanned by ¥ and u.

Then K = HN K is a cone, with x € K, so X = x. + x2 where

1
xl, x2 are on the boundary of ﬁ, and hence on the boundary of K.
Thus, to prove the theorem, we need only consider points on the
boundary 6K of K. Let x € 6K be arbitrary. We can assume X is

not extremal, in which case X = u+v, where u and v are linearly



independent of x. If u or v are in Ko, then so is %, hence
u, v € 6K. The set { ou + Bv | o, B > 0o} is a cone which con-
tains ¥ and is contained in 6§ XK. (we use here the fact that, if
y € &K and o SF X 53y then X € 6K .) Let S be the largest cone
such that ¥ € S ¢ § K. 1If HS is the smallest linear subspace
containing S, then clearly the dimension of Hs is less than n.
We can now apply the induction hypothesis, and the proof is com-
plete, provided that all extremal vectors of S are also extremal
vectors of K. But, suppose y € S is not an extremal vector of K.
Then y = u + v, where u, v € K. Suppose u € S and consider the
cone ‘
. S'={w+.au | we s, o> o0}.
Since

w +oau=w + o(y-v) 53x~ + gy € S c 8K
1f follows that S' < 6K. Since x € S' and S' is larger than S,
we have a contradiction to the definition of S. Hence, u € S,

and similarly, v € S, so y is not extremal in S.

A subcone of K is any cone contained in K, and an extremal
subcone is a subcone which is generated by some subset of the
extremal vectors of K. If an extremal subcone is contained in
the boundary, 6K ,of K then it is called a face of K, If F is
any,face, then it will be contained in a linear subspace of
dimension less than n. The smallest such subspace will be de-
noted by HF' To every x € 6K there corresponds a particular
face which has several useful properties. These are described
by the next lemma.

Lemma 2.1 Given any X € 06K, there exists a face F, such

X
that
i) x € Fxo, relative to the space H,
X
ii) Fy = 8K N
K HFX
iii) o< vy 5# X implies y € F,_ .

X




Proof. By theorem 2.1, any x € 6K can be written as
n

X =Z
Y. X.
i=1 *+ *

where Yi > 0, Xi is extremal, i = 1, 2,..., n. The cone generated
by Xqreeos Xn is a face which satisfies part i). vLet Fy be the
largest such face. Then ii) is also true since obviously

Fy, © 8K n HFX' and the cone 6K N HFX is a face which satisfies
i) so, in fact, we must have FX = 6K. N HF . Finally, if

0 55 vy 5? x then y € 6K. Suppose y § HE(T Then, let H' be the
subspace spanned by HFX and y. If F' = 8K N H' then F' is a
face, and x-y € F' so X is interior to F', relative to H'. This
contradicts the definition of FX' so y EI&&' and, by ii) it fol-
lows that y € Fy.

If xo is an extremal vector of K, then clearly A Xo is also
extremal, for any XA > 0. Hence, when referring to the number of
extremal vectors, we will consider only distinct vectors which
are normalized in some sense. (For example, we might assume
their euclidean norms are egual to some constant.) A cone with-
a finite number - of extremal vectors (in the above sense) is cal-

led polyhedral. If a cone contains n linearly independent vectors

Xpreser Xy then the vector Xl + X R Xn is interior to the
cone. Hence, a cone is solid if and only if it has n linearly
independent extremal vectors. A solid polyhedral cone which has

exactly n extremal vectors is called simplicial.




‘3. Matrices and Invariant Cones.

It follows from the theory of invariant cones in a Banach
space ([5], [6]) that if a matrix A leaves invariant a solid
cone, then p(A) is an eigenvalue, and a corresponding eigenvector
lies in the cone. This result can also be proved directly, using
the Brouwer fixed point theorem. However, Birkhoff [1] has given
an elementary proof of this result which uses instead the Jordan
Canonical form. The advantage of Birkhoff's proof is that it can
be extended to prove a further property of p(aA), which turns out
to be a sufficient condition for A to leave a cone invariant. 1In

order to state this condition, we need the following definition.

Definition 3.l. If A is an eigenvalue of a matrix A, then

the degree of . is the size of the largest diagonal block, in the
Jordan canonical form of A, which contains A\.

Theorem 3.1. If K is a solid cone, and A EF 0, then

i) p(A) is an eigenvalue,
ii) the degree of p(A) is no smaller than the degree of
any other eigenvalue having the same modulus,

iii) K contains an eigenvector corresponding to p (3).

Furthermore, conditions i) and ii) are sufficient to insure

that A leaves. invariant a solid cone.

Proof. Birkhoff's proof gives the necessity of conditions
i) and iii). We will sketch his proof in order to show how it
can be extended to prove ii). Let {xij} be a linearly indepen-

dent set of vectors which satisfy

L4 --= . --+ Ve i =l’¢o.,k, j =l,...,m.
(3.1) A X3 A Xig ¥ Xi5-1 i J i
‘i
Xio ~ 0, . m, =
i=1
where ki are eigenvalues of A. Since A X517 = Xi X 1 the vectors




{xil} are eigenvectors, and hence may be complex, in which case
‘they occur in conjugate pairs. The same is true of the principle
vectors Xij' j > 1. These vectors form a basis for E' in the

sense that any element ¥ € En can be written as

_‘ﬁ'

(3.2) z = ify. =+
i3 % %pq T *ij T ¥pq
1 j=1

We assume the eigenvalues satisfy

S P B R o LV A RN PP

v+1 k"

By induction, it can be proven that

j=1
r r-p ,x
A L. = . ..
X3 4 E: A | (p) Xis-p
p=0
where (5) is the binomial coefficient, and hence is a polynomial

in r of degree p.

m,
Thus, if Y = E: Xij is any element in En,
i=1 j=1
v jil v T (p)
2. Z ' i P Xi40p
= = p:o
' komy o B3 r. r-p
(3.3) =) ) ) Yiep B Ay )*ij
i=1l j=1 p=0
A"y
The sequence {H = H} is bounded, so there is a convergent sub-
. AY

sequence. From (3.3) it follows that the limit of this subsequence

must have the form

* =
(3.4) Y= ) B Xy,
i€d
where
a={i<v] miimj' 3=1,...,v}.
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Since K is solid, there is an element in K of the form

X = z (o ST X" ’ Q. . 0-
o i i
i1 4= Y +
and since A maps K into itself, AY Xo € K, and the above argument

shows that K conhtains an element of the form
*

Now, suppose for some iy €4, kio is not positive. An elementary
lemma says that there is a finite set of positive numbers

Wor e wq , such that

P _
pgowp llo =0

Let
. P ¥ _ - . \P
X “;%o ¥p AT X ;io Yo (18a Pi M%)
=i§d Py xil
Then
[} q: P
Py =Bi By vphj
and hence,
B; = o.

Thus, given any element of the form (3.5) in K, if Bio# 0 then either
kio > 0, or we can find another non-zero element in K, with Bio= 0.
Repeating this process, we finally get an element in K of the form
(3.5), with B; # 0 only if Aj = p(A). This element is an eigenvector,
with eigenvalue p(A), which completes Birkhoff's proof. To prove

ii) we note that, if this statement were false, then A would be

non-positive, for every i€d. Thus, by the above construction, we

would be able to produce a non-zero element in K, of the form (3.5),




in which all the coefficients B; are zero. This contradiction

proves ii). To prove the final statement of the theorem, let

A, = p(A), and normalize the Xi5 SO that (3.1) becomes
- . - = : --+ s ’ = 7 & o oy ’ .= 7 e o oy
(3.6) Axlj xlxlj e le-l 1 k, j 1 m;
where € =1 if v = K, otherwise
e =M - |A,4l

We assume

m Z2mj, 1=1, 2, ..., v
and will show that the set
(3.7) .
k m; ldijl 2 oy4, JEm
i= J= = . - T
ij T ¥pq *f Xij = Xpq
is a solid invariant cone. Clearly K is a cone. To show solid-
’ k my . .
ness, let Y = ¥, jgi Yij xij be an arbitrary element in EP. Then
(3.8)
= 3Z1 421 Pig Xij - 5E1 85 Xaj
where

Biy = Y¥iyr 1 #1
max <lX1j|: {|Xij|: m, =
max <|X1,m1|, {Ivijli m; = j}): jEm

65 = By ~¥ay

w
(]
).
|

!
.
v
u
1A
=

This choice of Bij and éj insures that both terms in (3.8) are in

K, hence K is reproducing. Since any reproducing cone in E® is also
solid, our assertion is true. To show that K is invariant, let
k ms

* =g 5E

o34 Xij € K

and,

g

k
AX = .3

l . .
i21 521 Pij %y
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By (3.6) we have

Bijy = @jj Ay + € o341 j < mj
@ij Mg j =my

Obviously Bj4 = Bpq if xij ='ipq' so we need only prove

|Bijl = B1j JEm
855l = Pom, JI1F™
Consider the various cases:
j < my
3 ‘my : |Bl]| = Ialj Xl + & Q’i’j + 1| = alj )\1 + & dl'j + 1 =Bl‘
jA mi H lBijI = lai,mi )\.il = Ql,mi )\.1 + & al'miq-i Bl 'ml
J = my
j<m; : by (3.6) |A;] -, so
18151 = laig A + € a5, 4, |
s dlml (}\1—6) + € Q’lml = Q/lml )\1 = Blml
j ml : ‘Bljl =l0{lj )\l‘ = alj )\1 = Bl]

Thus, AX €K and the result is proved.

An interesting corollary of this theorem is that, if A is a

symmetric matrix, then either A or -A leaves some cone invariant.
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4, Irreducibility.

Before generalizing the notion of irreducibility, we will give
an alternative definition, which emphasizes the geometric nature

of this concept. If e, ..., e, are the unit coordinate vectors

in E", then a coordinate subspace is a subspace spanned by any sub-

set of {e;, ...,ep}. An irreducible matrix is a matrix which has

no invariant coordinate subspace of dimension less than n. Since

the positive hyperoctant is generated by the vectors e;, ...,e,, a
non~-negative irreducible matrix maps the positive hyperoctant into
itself and leaves no face invariant. It is clear that this defini-
tion is equivalent to that given in section 1. (Gantmacher [4] and

others use this as a basic definition.)

If we replace the positive hyper-octant by an arbitrary solid

cone, the above definition leads to the following generalization.

K
Definition 4.1: The matrix A 2 0 is K-irreducible if A leaves

no face of K invariant. A matrix which is not K-irreducible is

called K-reducible.

To further justify this definition, we will prove several pro-
perties of K-irreducible matrices which are known to be true for
non-negative irreducible matrices. We assume always that K is a

solid cone.

K
Theorem 4.1: A 2 0 is K-irreducible if and only if no eigen-

vector of A lies on the boundary of K.

Proof: Suppose A 2 0 is K-reducible, and let F be an invariant
face of K. A, restricted to the subspace Hg, leaves the solid cone
F invariant; hence this restricted operator has an eigenvector x, € F.
But X; is also an eigenveétor for A, operating on the entire space
and X, 1is on the boundary of K. Conversely, suppose ¥ is an eigen-

vector on the boundary of K, and let FX be the face defined in
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lemma 2.1. Then, for any Y € F there exists an o > 0, such that

XI
B K

y s*% ax and hence Y & -ayx. Thus, AY éKA(ax) = oAX € F

so by lemma 2.1, Ay € FX’ Thus Fy is an invariant face and A is

K-reducible.

The next lemma gives an interesting property of matrices with
invariant cones, and allows us to prove another spectral character-

ization of K-irreducible matrices.

K
Lemma 4.1: If A =2 0 has two eigenvectors in k°, then A also

has an eigenvector on the boundary of K. Furthermore, the correspon-

ding eigenvalues are all equal.

’

Proof: Let %;.%xz € k° Dbe linearly independent eigenvectors,

with eigenvalues A, ,A; and let

to = min {t > 0| txz-x1 € K}
where we assume d = A, = A. If Xz = toXz-X1 then %3 is on the
boundary of K, and if X; # 0, then

Axzg = toheXz ~MXa = kl{to %%'XQ—XI} € K.
The definition of t, implies A; = X;, hence, in fact, A, = Ay. If
A\ = 0, then \; = 0, and Axs = 0. In either case, xa is an eigen-

vector on the boundary of K with eigenvalue A; = Aj.

The proof of the next theorem follows easily from the two

previous results.

v

Theorem 4.2: A 0 is K-irreducible if and only if A has

. . . C o °
exactly one eigenvector in K, and this eigenvector is in K .

Note that our concept of K-irreducibility depends on both the
matrix and the cone. It is possible for a matrix to leave two
cones invariant, but be K-irreducible with respect to only one.

An example of this is the matrix

S
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_ r 3
It ki ={t.v)| xz 0, yzo;

¢ 3
and Ky = 1L(x.y)l xz 0, |yl =z X

K .
then A 2 1 0 and A is K;-irreducible, but not K, -irreducible.

Frobenius introduced the class of non-negative irreducible ma-
trices because it is larger than the class of positive matrices,
but retains many of the important spectral properties. Clearly,
if A maps K into its interior, it can leave no face invariant,
hence it is K-irreducible. That is, the class of K-irreducible
matrices is larger than the class of matrices which satisfy A > >K'O.
Similarities in certain spectral properties of these two types of
matrices are pointed out by the next two theorems, which generalize

ITa,b and IIIa,b of section 1.

K
Theorem 4.3: If A 2 0 is K-irreducible then

i) p(A) is a simple eigenvalue, and any other eigenvalue
with the same modulus is also simple.
ii) There ié an eigenvector corresponding to p (A) in Ko,
and no other eigenvector lies in K.
Furthermore, i) is sufficient for A to be K-irreducible with respect

to some invariant solid cone.

Proof: Part i) follows from theorem 3.1, provided p(A) is
simple, and ii) is a restatement of theorem 4.2. Suppose p(A) is
not simple. Then, there exist vectors X;, Xz, linearly independent,

with x,; € k°, Ax, = p(A)x, and either

(4.1) AXz

p (B) Xz

or

(4. 2) AXz

p (A) Xz X3
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If (4.1) were true then, for large enough t > 0, Xz = tx;+txe € K
and Xxs is another eigenvector, contradicting theorem 4.2. If equa-
tion (4.2) holds, then -x» € K and we can define

t, = min {t > O‘ tx, -2 € K}.
Then, p(A) = 0 implies A(t X;-xz) = X3 £ K, and p(A) # O implies

A(tox1 =Xz2) "to P(A)X1 = p (BA)Xz X1

p (B) {(t - (A)>X1 Xe} € K

which contradicts the definition of t,. Hence, p(A) must be simplé.

To prove the last statement of the theorem, we use the proof of
theorem 3.1. The cone K defined in that proof contains only elements
of the form X, + y, where x; is the eigenvector corresponding to
p(A)’and a = 0 only if y = 0. Hence, no other eigenvector can lie

in K and by theorem 4.2, A is K-irreducible.

By replacing the assumption that A is K-irreducible by the con-
L K A .
dition that A > > 0, it is possible to make a stronger statement

about p (A).

K
Theorem 4.4: If A > > 0 then

i) p(A) is a simple eigenvalue, greater than the magnitude
at any other eigenvalue
ii) An eigenvector corresponding to p(A) lies in K.
Furthermore, condition i) is sufficient for A to map some cone into

its interior.

Proof: Most of the theorem follows as a corollary to the pre-
vious result. In fact, we need only prove the last part of ‘i) and
the final statement. Let A; be any eigenvalue different from p (),
with eigenvectorvxg, and suppose |A;| = p(A). For simplicity, we
assume p(A) = 1, in which case A\, = eie for some 6. We will show
that for some o, Re(eiwxg) € ¥ and from this, we will obtain a con-
tradiction. For any ¢, either Re(ei¢x2) € K, or else we can define

a positive number to by

t(p = min {t > 0| tx,+Re (e cPXa) € K}
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where y, € k® is the eigenvector corresponding to p (A).
If Yo = t¢x1+Re(ei¢x2), then Yo is on the boundary of K, and
. i(p+6) °
AYCP = cP‘)(1+Re (e ® Xg) € K . Hence t(P > t(p+9
and thus igf {t¢} = 0. From this, it follows that for some ¢,
Re (elPoy,) € K.

Yo
Now, if {gk} is any finite set of positive numbers, then ngAkyo =0
implies y, = 0. But, by a basic lemma, which was also used in the
proof of theorem 3.1, if 8 # 0 (mod 2m) then there exists a finite

set of positive numbers {g;} such that

zg, X% = o,
Hence,
E Ex Ak Y, =T Ex Re (eik® oi®oy )
= Re(z §, elk® elfoy) =0
so, y, = 0, i.e., ei((P°+")x2 = y, where y, is real. Since Ay, = A3Ya.,
where |A;] = 1, clearly A, = % 1. We can assume y, & K, and if we
let t, = min {t > 0| tx +y. € K)
then

A2(toX1+Ye) = t X1ty: € k®
which contradicts the definition of t . Hence Ixna] < p(B). To
prove the last statement of the theorem, we again use the notation

in the proof of theorem 3.1. The cone (3.7) becomes

5 om Jos5] = )
K = {XI X = a1X1 + .Z T i X.., [Fi31LF %
122 351 743 T4 @yy = dpq e, s
Tt Xij™Xpq)
Thus, if X € K, then
_ ko omy
Ax, = Bixa *+ I, 521 Bij Xij
where B, = A\ o1
Big = Joj3ri + 8 i, 94u j < my
. i=2,...,k
and €< A - x| Hence
3 < m; = lBl]l = Io{lj)\j + € ai,j'i'll < 011()\,1—6) + oy = B,
jo=my oz [Bigl = lagghil <ol =8,

so clearly, Ay is in the interior of K.
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‘It follows easily from the definition of irreducibility given
in section 1. that if 0 = A = B and A is irreducible, then B must

also be irreducible. The next theorem generalizes this result to

K-irreducible matrices.

K K . .
Theorem 4.5: If 0 = A = B and A is K-irreducible, then B

is also K-irreducible.

Proof: Suppose B were K-reducible. Then B must have an eig-

K
envector x € 6K. Using lemma 2.1, if y € F, then y £ aXx, some «a,

X
K K
and Ay = oAx = aByx € FX hence Ay € FX' That is, A leaves FX in-

variant, and is therefore K-reducible.

This result allows us to further extend our generalization of

the Perron-Frobenius theory.

K K . .
Theorem 4.6: If 0 = A = B where A is K-irreducible, and

A # B, then p(d) < p(B).

Proof: By theorem 4.5, B is also K-irreducible, so there exists
y; € K° with
By: = p(Bly:
Let x, € K° satisfy
Ax, = p(A)x;.
Then, by hypothesis,

(4.3) Bx, = Ax, = p(A)¥X, .
Let
(4.4) t, = inf"{t > 0‘ ty;—X1 € K}

then, if p (A) # O,

2 t p(B)yi-p(A)xy Dby (4.3)
(B) 7
= p(A) [to %_(_pT Y1‘X1J
By (4.4) this implies
(4.5) p(B) = p(A).
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Suppose p(B) = p(A) = A, and let t, = min {t > 0 | ty,-x; € k}.
If

(4.6) vy, =ax1 , « >0,

then

A(ax,) aAXy = Ay, = By, = BloXi)
hence (B-A)x; = 0. But x, € K° so if z € K is arbitrary, then there
exists B > 0 so that 0 =" z =" Bxy. But 0 <K (B-A) z s B(B-A)x, = O,
and z was arbitrary in X, hence A = B, This contradiction implies
that (4.6) cannot hold, i.e., x, and y, are linearly independent, and

hence if
2 = toya—Xa

then z # 0, z is on the boundary of K, and
Az = toBy, -AX; =' toBy,-Ax; = Atoy;-AX, = Az.

Let Fz be the face given by lemma 2.1l. Then F, is invariant uncder A

because for any x € F,, X =f 2z, some y > 0, and Ax <* vyAz sKX vz € Fypr

hence A € F,. This contradicts the K-irreducibility of A, and
hence we must conclude that p(a) # p(B).

If A is not K-irreducible, then the above theorem is weakened

slightly.

K

Corollary: If 0 = A =f B then p(A) = p(B).

Proof: ©Let C > >K 0, and define A¢ = A+tC, By = B+tC, t > 0.
Then clearly Ay > > 0, hence A; is K-irreducible. By the previous

theorem
. p(AL) < p (Bt)

and letting t - 0 gives

p(d) = p(B).
In the classical setting, it follows directly from the defini-
tions that if a matrix A is positive, non-negative, or irreducible,
then the same is true of A%, Because of the spectral characteriza-

tions given in theorems 3.1, 4.3 and 4.4, the same type of statement
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K K K . .
can be made about A 0, A > > 0, or AZ 0 and K-irreducible.
The cone which is left invariant by A, however, may not be the same

cone which is invariant under at, For example, if
21
2= o1
01

Then A EK 0 where K

¢
{0;v | xz0, 2|yl s x}.
But, K is not invariant with respect to At, The result that can

be proven is:

K ™
Theorem 4.7: If A =2 0 then there exists a solid cone K such
that AY =% 0. The same type of statement holds for A z 0 and

. K
K~-irreducible, or A > > 0.

Proof: Using the fact that A and at have the same eigenvalues,

this theorem follows from 3.1, 4.3, 4.4.

We conclude this section by showing the connection between

K-irreducibility and two related concepts.

Krasnoselski [5] has proved a result similar to theorem 4.3
using U, -positivity in place of K-irreducibility, where a matrix
az" 0 is called U, -positive if for some U, € K° and any x € K
there are constants o(x)> 0, B(x)> 0, and an integer k (x)> 0 such
that
(4.7) oz(x)Uo = Akx = B(x)U, .

Krasnoselski proves that a U -positive matrix has a unique eigenvec-
tor ¥x; in K. Since Akxl = £§x1, and U, € K°, (4.7) implies x; € k°.
Hence, by theorem 4.2, every U, -positive matrix is K-irreducible.

The converse is false, as shown by the example

01
A—<1o

which is non-negative and irreducible, but is not U, -positive.,

Schaefer [8] has proven a result, which is similar to theorem

4.3, for quasi-interior operators on a Banach space. For matrices
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which leave a solid cone invariant, this property can be defined as

follows:

K
A 2 0 is guasi-interior if, for some
-1 K
A > p(A), A(AI-A) > > 0.
Before proving that this is equivalent to K-irreducibility, we need

another basic fact about K-irreducible matrices.

K - K
Lemma 4.2: If A 2 0 is K-irreducible, then (I+A)%7! > >" o.

(n is the dimension of the space.)

Proof: Let y be an arbitrary non-zero element on the boundary

of K, and let Fy be the face given by lemma 2.1. Then by K-irreduci-

bility, Ay ¢ Fy, and hence (I+a)y & HFy In fact, if y; = (I+A)y is

not in KO, then it must be in a face F;, and the dimension of HF
1
must be greater than the dimension of HF' Repeating this argument

- K
shows that (I+A)ky € k° for some K = n-1, hence (I+A)n s st o,

K
Theorem 4.8: A Z 0 is K-irreducible if and only if A is quasi-

interior.

Proof: If A = A(XI—A)—l > >K 0 for some A, then A is K-irredu-
cible. But, A and A have the same eigenvectors so, by theorem 4.2,
A is also K-irreducible.. Conversely, if A is K-irreducible, then
for A > p(A),

1 ® A% KA A A anh™t

A(AI-n) T = < 2 (L +5T+"F5 + .. .+—FgT
( ) 32 AD T)

where o is some positive constant. By lemma 4.2, (I+A)n-l >> 0

so the proof is complete provided Ay > >K 0 whenever x > >K 0. But,

if for some x, > >K 0, Ax, were on the boundary of K, then x; = tx,,

where x; € «° is the eigenvector corresponding to p(A), t > 0, and
p(R)xy = Axy = tAx

which implies %, is on the boundary of K. This contradiction proves

the theorem.
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5. Applications

N

In this section, we will show how the piééeding results can
be used to generalize some well known theorems which can be used
to compare the rates of convergence of iterative processes. We
give a detailed proof of the important Stein-Rosenberg theorem, in
order to verify that our generalized Perron-Frobenius theory is as
complete as the classical theory. The proof we use follows that
given in [2]. Because of the comments at the end of section 4,
the theorems of this section contain the results of Marek [7] for

U, ~positive matrices.

Theorem 5.1: Let B = B; + By, be nxn matrices, with B; # 0,

p(B;) < 1, and Bi %K 0 where K is a solid cone, and assume B is
K-irreducible. Then, the matrix H = (I—Bl)-lB2 exists, and exactly
one of the following holds:

p(H) <p(B) <1

p(H) =p(B) =1

p(H) >p(B) > 1

8

Proof: Since p(B;) < 1, the series k§O B? converges. This
—_—— g =

shows that H exists, and HZ 0. Let X': p (H) and assume, for now,

that Y # 0. By 3.1, there exists an x, € K, such that Hy = X

[o]

Thus (I-By) "Bax, = ¥'%o

BaX, = X‘(I—Bl)xo
5.1 (¥'Br + Ba)xo = WX,
5.2 (B, "‘%"Ba)Xa = %o

By theorem 4.5, )"BI+B2 and B;+¥{ B, are irreducible and if

Py (t)
e (t)

p (tB; + By)

1
p (B +“{__'Ba)
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then by theorem 4.3, there is a unique vector y, € k°, with
(¥'B, + Ba)y, '—"Pl(?f')yo
Hence, by (5.1) and the uniqueness,
Ql(X) = Y
Similarly,
¢2(-§?) =1
Now suppose ¢ = 1, then
p(B) = p(¥By +B) = (¥) =0 = p(m)
1f ¥ > 1, then

¥B, +B, 2B, + 8, 20, ¥ B, + B, £#B, + By
0 §KB1 +‘%'B2 §KB1 + B, , B, + -%—Bg # B, + By
so, by theorem 4.6,
p(¥ By + By) > p(B)
o (B, +B2) < p(B)
and hence
Y=ou(f) >0® and 1=g @) <o),
l.e.,
1 <p(B) < ¥=op(m.
Finally, if 0 < ¥ < 1, then

o =¥ B, + B, ='B, 4B, + B, £B

B, +%‘rB2 =g =0, B, +%B2 # B,

so, as before,

1= 9 () = p(By +7B) > p(B) > p(¥By +B) =Y = o(m.
Now suppose ¥ = 0. We must show that p(B) < 1. But, if B, = 0,
then p(B) = p(B;) < 1 by assumption. If By # 0, then

vz (0) = p(By) < 1.
If p(B) 2 1 then & t € [0,1] with ¢ (t ) = 1, but then

1 = g(t,) = p(By + t, Bx)
so @ x > >0, with (B, + t, B)x = X

i.e., 1

- 1.

so p (H) = —%— >0
o}
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which contradicts = 0. Hence, we must conclude p(B) < 1.

If B is not K-irreducible, we can no longer prove the strict

inequalities. In fact, the theorem becomes:;

Theorem 5.2: If B = B; + B,, where B,

v

N 0, p(By) <1, B, # O.
Then H = (I_Bl)_lBg exXists, and either p(H) = p(B) = 1 or
p (H) p(B) = 1.

iv

As a corollary to theorem 5.1, we have the following generaliza-

tion of a theorem due to Fiedler and Ptak [3].

Theorem 5.3: Let B = B; + B, where Bi éK 0, B is K-irreducible,
p(B) < 1, and B; # 0. Suppose P is another matrix which satisfies
o =X p =K B, P#0, P# By,. Then HP = (I—(Bl + P)>-1 (B - P) exists,
and

0 < p(H,) < pl(H,)

where H,= (I-B,) 'B,.

The proof follows exactly as in the case where K is the positive

hyper-octant.
As an indication thét these results are indeed more useful than

}

the classical theorems, consider a matrix B with elements {bij
which satisfy

i+3 -

If B, and B; are upper and lower triangular, respectively, then we

K
have Bi Z (0 where

€= {lxas =eeoxg) | (-1 Y x5 = 03,

Hence, the above theorems may be applicable although B is not non-

negative as reguired by the standard theorems.

Finally, we point out that, in a similar manner, Varga's theory

of regular splittings [2] can also be extended to matrices with in-

-

variant cones.
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