ORNL-TM-1735 NASA CR- 72172

CHEST SHIERS

Contract No. W-7405-eng-26

CHEMICAL TECHNOLOGY DIVISION

HC 3.00: MN .65

A PROGRAM FOR CALCULATING OPTIMUM DIMENSIONS OF ALPHA RADIOISOTOPE CAPSULES EXPOSED TO VARYING STRESS AND TEMPERATURE

J. P. Nichols

D. R. Winkler

RELEASED FOR AMBOUNCEMENT

IN MUCLEAR SCIENCE ABSTRACTS

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not '...fringe or any information, apparatus, method, or process disclosed in this report may not '...fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

These evaluation studies at ORNL were supported by the National Aeronautics and Space Administration, Lewis Research Center, under an Interagency Agreement with the Atomic Energy Commission - C-64217-A.

APRIL 1967

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

CONTENTS

																					Page
Abst	ract						•		•	• •	•	•	•		•	•	•	•	•	•	1
1.0	Intr	oductio	on .			• •	•	• •	•	• •	•	•	•	• •	•	•	•	•	•	••	1
2.0	Math	ematica	l Mo	del		• •	•	• •	• 74	* 4	•	•	• •	• •	•	•	•	•	•	•	2
3.0	CAPS	UL Prog	ram		٠ ٠•		- • ,		•		•	•	•	• •	•	•		•	•	•	7
	3.1	Ieast	Squa	res A	lna]	ys i 8	of	Cre	ep	Dat	ta	(M	0PI	<u> </u>	1).	•	•	•	•	9
		3.1.1	LST	SQ.	• •		, •		•	•	•	•	• (•	•	•	•	•	•	•	11
		3.1.2	MAT	Q.	• •	• •	•		•		•	•	•		•	•	•	•	•	•	11
		3.1.3	Inp	ut Ir	rforr	matí	on d		•	•	•	•	•		•	•	•	•	•	•	11
	3.2	Calcul	atio	n of	Capa	sule	Dir	ens	ior	ns 1	or	M	exi	ma	m						
		Specif	ic P	ower	(M	PT	= 2	or	3).	•	•	•	• •		. •	•	•	•	•		13
		3.2.1	DR			• •				•	•	•	• •		•	•	•	•	•	•	17
		3.2.2	WR	• •.			•	. •		•	•	•	• •	•	•	•	•	•	•	•	18
		3.2.3	DF.					•	•		•	•	•	•		• .	•	•	•	•	18
		3.2.4	RZE	RO .				•		•	•	•		•	•	•	•	•	•	•	19
		3.2.5	LIM	IT .				•		a	•	•			•	•	•		•	•	19
		3.2.6	WHI																		20
		3.2.7	vsu	, CON	VERI			•		•	•			•	•	•		•	•		20
		3.2.8																			
		3.2.9																			
	3.3	Capsul																			
4.0	Resul	lts of A	Anal	ysis	of C	ree	o Da	ta		•	•	•		•	•			•		•	22
		Predic																			
		Analys																			
		Analys:																			
Pefer																					
References												· -									
Appendix A - Units and Glossary of Symbols												41									
Appendix B - Example Problems												48									
Appendix C - CAPSUL Program List.											56										

A PROGRAM FOR CALCULATING OPTI JM DIMENSIONS OF ALPHA RADIOISOTOPE CAPSULES EXPOSED TO VARYING STRESS AND TEMPERATURE

J. P. Nichols D. R. Winkler

ABSTRACT

A method and computer program were developed for calculating the creep and optimizing the dimensions of capsules filled with alpha-emitting radioisotopes. The method solves an integral equation that was developed assuming linear accumulation of partial creep lives and relating life to timedependent stress and temperature using the Iarson-Miller parameter. The computer program, CAPSUL, is written in Fortran language for the IBM 360/75 computer. The program makes a least squares fit of the creep life function using conventional constant stress, constant temperature creep data. Dimensions of capsules having maximum thermal power per unit of weight, volume, or area are calculated for a given creep life and pressure-temperature history using a numerical Lagrange Multiplier formulation. The program also calculates the life to a prescribed strain for capsules of given dimensions and pressure-temperature history. The method has been used to analyze creep data for the alloys 304 stainless steel, Hastelloy N. Cb-1% Zr. FS-85, and T-222.

1.0 INTRODUCTION

In capsules containing alpha-emitting radioisotopes for use in space power packages, it is desirable to provide maximum power per unit of weight, volume, or projected area within the constraints imposed by the need to maintain capsule integrity during normal operation and in the event of one or more accidental conditions. Because of the continuous generation of helium gas, together with decay of the thermal power, such capsules are characterized by time-dependent stress and temperature. Very high initial temperatures cause creep to be an important consideration in the design.

A model and computer program were formulated for calculation of the strain and optimum dimensions of capsules within the desired constraints.

BLANK PAGE

The following sections will describe the model and the computer program and present an analysis of experimental creep data that tend to confirm the model. A glossary of symbols, example problems, and a program list are included as appendices.

2.0 MATHEMATICAL MODEL

We wish to develop a phenomenological model of creep resulting from time-varying stress and temperature in certain metals for which the only available experimental data are ultimate strength properties at low temperatures and constant load, constant temperature creep properties at high temperatures. A precise analysis of the problem requires an equation of state that relates strain rate to stress, temperature, strain, and time. No single equation is available, but approximate equations may be developed for restricted classes of materials. One such equation, which has been substantiated for a number of metals 1,2 and plastics,3 assumes that the fractional creep life for a given stress and temperature is independent of other fractions sustained under different conditions and that these fractions may be accumulated linearly. Stated mathematically:

$$1 = \int_{0}^{\Theta} \frac{dt}{\Theta(\sigma(t), T(t))}$$
 (1)

where

θ[σ,T] = a function, hereafter called the "creep life function," that determines the life to a prescribed strain or rupture for a given stress, σ, and temperature, T,

t = time since application of the load,

 Θ = resultant life to prescribed strain or rupture for timevarying stress and temperature.

A suitable creep life function can be determined by empirically fitting an equation to experimental data for stress as a function of a time-temperature parameter. Several time-temperature parameters, including those of Orr, Sherby, and Dorn; Manson and Haferd; and Larson and Miller, have been evaluated for this purpose; and it was found that the Larson-Miller

parameter provided the most accurate correlation for a wide selection of metals. 4 Larson and Miller base related the creep life at a given stress to the absolute temperature by an equation that may be derived from the Arrhenius rate law,

T $\ln \kappa\theta = \text{constant}$, Larson-Miller parameter.

The constant K has the physical connotation of "maximum rupture rate." The common logarithm of K is called the Larson-Miller constant and is in the range of 10 to 30 for most metals when time is measured in hours.

The development of the creep life function for the present model is illustrated in Fig. 1. Shown is a typical plot relating the logarithm of measured nominal, unlaxial stress to the Iarson-Miller parameter. The creep data are obtained at temperatures generally above one-third the absolute melting temperature by measuring the time to a specified strain or rupture under conditions of constant load (constant nominal stress) and temperature. The data for ultimate strength (or stress for a specified "instantaneous" elastic and plastic strain) as a function of temperature are determined under conditions of constant imposed strain rate which is not necessarily the "natural" strain rate measured in creep experiments. We have assumed that the actual life measured in ultimate strength tests is a good approximation of the equivalent creep life, particularly for those materials which exhibit little strain hardening (nearly constant nominal stress for nominal strain greater than the yield), because (1) the life approximates unity and has little effect on the $K\theta$ product. and (2) the stress is insensitive to the Larson-Miller parameter in the low-temperature range at which the ultimate strength data are used to supplement creep data.

As temperature increases the creep (or time dependent) strain for a given finite life becomes a progressively larger fraction of the total strain and the fractional strain from elastic and "instantaneous" plastic strain becomes progressively more negligible. At high temperatures the logarithm of the applied stress for many materials 4,5 is a linear function of the Larson-Miller parameter having intercept $\ln \alpha$ and slope m. We have assumed that the creep component of stress, σ_{c} , has this linear form at all temperatures.

ORNL DWG 66-11005 R1

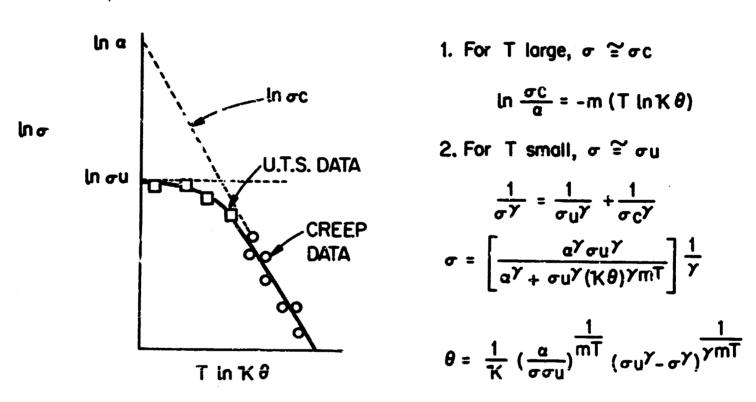


Fig. 1. Derivation of θ (σ , T).

At temperatures below approximately one-third the absolute melting temperature the creep strain becomes negligible with respect to the elastic and plastic strain. In this region the stress is generally constant, $\sigma_{\rm u}$, over a large domain of the parameter. This behavior, as well as the behavior at high temperatures, is accommodated by a resultant stress function that is generated by adding reciprocals of the time dependent (creep) and time independent components of stress. An empirically fitted constant, γ , provides for appropriate curvature in the transition region.

The computer program, to be described in the next section, has provision for determination of the constants, α , m, and K by least squares analysis of a set $[\sigma, T, \theta]$ of creep data. The constants σ_u and γ are selected by the investigator by analysis of a curve of ultimate strength as a function of temperature and/or by iteration to determine the best fit of combined ultimate strength-creep data in a time-temperature domain of interest.

The general formulation of the approximate equation of state is obtained by substituting the creep life function (Fig. 1) in Eq. (1) and making provisions for individual safety factors on ultimate strength, $S_{\rm u}$, and creep strength, $S_{\rm c}$.

$$1 = \kappa \int_{0}^{\Theta} \left\{ \frac{S_{c}^{\gamma} \sigma_{u}^{\gamma} \sigma^{\gamma}(t)}{\alpha^{\gamma} [\sigma_{u}^{\gamma} - S_{u}^{\gamma} \sigma^{\gamma}(t)]} \right\} dt = D$$
 (2)

In principle, the integral in Eq. (2) can be evaluated numerically for any time behavior of stress and temperature. For radioisotope fuel capsules we have chosen to neglect the effect of strain on the volume of the capsule and reinforcing effects by layers other than the primary structural material. End effects are also neglected since the capsules have length-to-diameter ratio greater than 2. The stress is considered to be the maximum nominal tensile stress, the circumferential stress at the inner wall of the primary container

$$\sigma(t) = \frac{P(t)}{E} \left[\frac{R(4)^2 + R(3)^2}{R(4)^2 - R(3)^2} \right]$$
 (3)

where

P = pressure in the capsule,

E = weld efficiency,

R(4) = outer radius of primary container,

R(3) = inner radius of primary container.

The time-dependent pressure is calculated from the ideal gas law since the helium gas is well above the critical point. The volume of gas is the void volume at the center of the capsule plus any additional void in the fuel region. The moles of gas are those that are present initially plus those that are formed by decay of the radioisotope.

The heat flux is in transient equilibrium with the power in capsules containing long-lived radioisotopes. Assuming that the overall heat transfer coefficients do not vary appreciably with temperature, the temperature of the helium gas and the container wall vary with time in the following way:

$$T(t) = Ta + (T^{\bullet} - Ta)e^{-\lambda t}, \qquad (4)$$

where

T = initial temperature,

Ta = ambient temperature,

 $\lambda = \text{decay constant.}$

Explicit formulae for the individual temperatures, volumes, etc., are given in the following section which describes the program, CAPSUL.

Equation (2) reduces to one previously derived by Kennedy under conditions of high constant temperature and constant stress rate, σ . High temperature implies $\sigma = \dot{\sigma}t \ll \sigma_u$; therefore, if the safety factors are unity, Eq. (2) reduces to:

$$1 = \kappa \int_{0}^{\Theta} \left(\frac{\dot{\sigma}t}{\alpha}\right)^{\frac{1}{mT}} dt = \kappa \left(\dot{\sigma}/\alpha\right)^{\frac{1}{mT}} \frac{\frac{1}{mT} + 1}{\frac{1}{mT} + 1}, \qquad (5)$$

where $\frac{1}{mT}$ and α/κ^{mT} are the constants "n" and "A" used by Kennedy.

Kennedy, and later McCoy, 7,8,9 verified that this equation is valid for several materials (including 304 and 309 stainless steels, T-111,

T-222, and Cb-1% Zr) by comparing creep rupture lives obtained at high constant temperatures and constant stress with those at the same temperature but constant stress rate. These data serve, indirectly, to validate Eq. (2). The use of the CAPSUL program to re-evaluate these constant stress rate experiments by direct numerical integration is described in Sect. 4.3. The adequacy of the model can be tested for other materials and at lower temperatures by performing experiments in which stress and temperature are known functions of time and evaluating the integral in Eq. (2) either analytically or numerically.

3.0 CAPSUL PROGRAM

calculates the life to a prescribed creep strain and optimum dimensions of alpha radioisotope full capsules crosed to varying stress and temperature. The capsules (lig. 2) are right cylinders with multilayered walls and elliptical end caps. Independent variables are RO, the inside radius of the capsule X(2), the thickness of the fuel layer; and X(4), the thickness of the primary container wall.

The program has eight principal and eleven subsidiary subroutines. ISTSQ determines constants (α, K, m) in an equation for rupture life (or life to a prescribed strain) as a function of stress and temperature by a least squares fit of creep-ultimate strength data. Once the constants are determined, ISTSQ is normally bypassed for calculations with the same material and design life criterion. The subroutine MAX 10 uses a numerical Lagrange multiplier formulation to find a maximum of one of three thermal power functions (thermal power per unit projected area of a flat array of capsules, per unit volume of a rectangular parallelepiped that encloses a capsule and its auxiliary structural material, or per unit weight of capsule, each calculated in subroutine WR) subject to a time-integrated stresstemperature constraint (subroutine DR) that is dictated by a prescribed rupture or strain life. The subroutine RZERO calculates the allowable inside radius as a function of thermal power, if it is required that the capsule surface temperature not exceed a given value if the capsule is buried in an infinite medium of earth. The subroutine LIMIT examines the

T-222, and Cb-1% Zr) by comparing creep rupture lives obtained at high constant temperatures and constant stress with those at the same temperature but constant stress rate. These data serve, indirectly, to validate Eq. (2). The use of the CAPSUL program to re-evaluate these constant stress rate experiments by direct numerical integration is described in Sect. 4.3. The adequacy of the model can be tested for other materials and at lower temperatures by performing experiments in which stress and temperature are known functions of time and evaluating the integral in Eq. (2) either analytically or numerically.

3.0 CAPSUL PROGRAM

CAPSUL is a Fortran program for the IBM 360/75 computer. The program calculates the life to a prescribed creep strain and optimum dimensions of alpha radioisotope full capsules crosed to varying stress and temperature. The capsules (Fig. 2) are right cylinders with multilayered walls and elliptical end caps. Independent variables are RO, the inside radius of the capsule X(2), the thickness of the fuel layer; and X(4), the thickness of the primary container wall.

The program has eight principal and eleven subsidiary subroutines. ISTSQ determines constants (α, κ, m) in an equation for rupture life (or life to a prescribed strain) as a function of stress and temperature by a least squares fit of creep-ultimate strength data. Once the constants are determined. ISTSQ is normally bypassed for calculations with the same material and design life criterion. The subroutine MAX 10 uses a numerical Lagrange multiplier formulation to find a maximum of one of three thermal power functions (thermal power per unit projected area of a flat array of capsules, per unit volume of a rectangular parallelepiped that encloses a capsule and its auxiliary structural material, or per unit weight of capsule. each calculated in subroutine WR) subject to a time-integrated stresstemperature constraint (subroutine DR) that is dictated by a prescribed rupture or strain life. The subroutine RZERO calculates the allowable inside radius as a function of thermal power, if it is required that the capsule surface temperature not exceed a given value if the capsule is buried in an infinite medium of earth. The subroutine LIMIT examines the

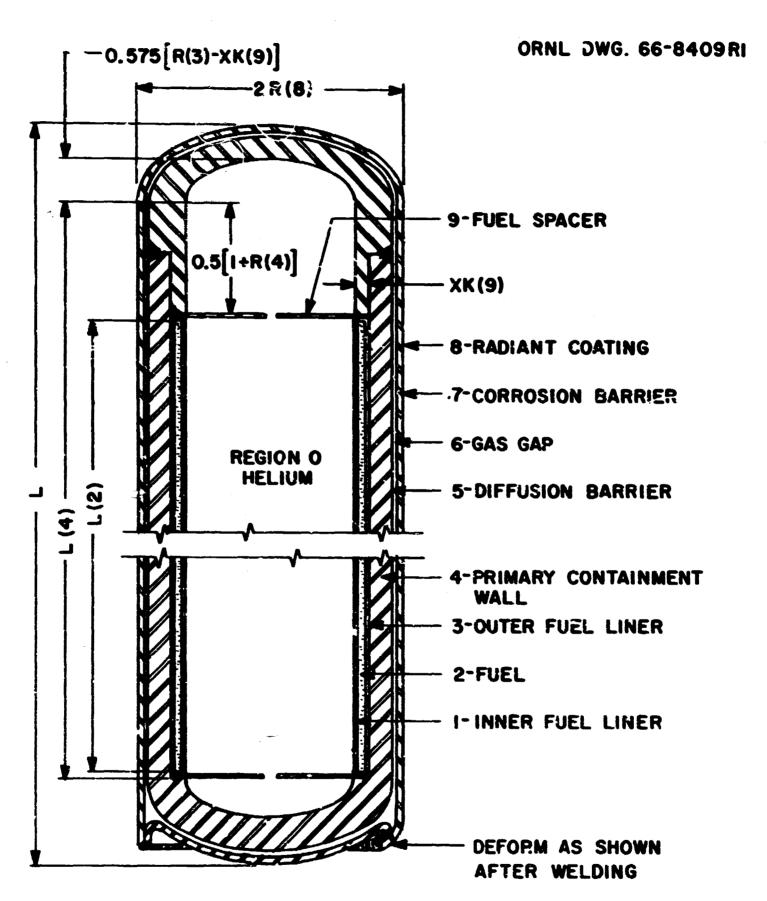


Fig. 2. Reference Design of Fuel Capsule

dimensions of the optimized capsules for adherence to limits dictated by engineering considerations. If the wall thickness or radius of the capsule is too small or too large, the appropriate dimension is fixed at its nearest limit and MAX or the subroutine DF is used to determine the maximum power function in the remaining variable(s). The subroutine DF calculates a single remaining variable to satisfy the stress-temperature constraint. The program subroutine THETAC calculates the rupture life or life to a prescribed strain of a capsule with specified dimensions. It is used to determine the life of capsules that have been optimized on the basis of another criterion. The subsidiary programs are WHT, which calculates the weight of the fuel capsule; CONVERT and VSU, which convert the capsule dimension variables to and from the MAX nomenclature; and SETUP, GTAIAM, VECT, CONVG, OUTPUT, ARITH, MATQ, and STEP, which are used by MAX. Library subroutines are SQRT, ABS, ALOG, ALOGIO, SETFAULT, and EXP.

The main program, CAPSUL, reads and writes all input data, guides the selection of subroutines for prescribed options, and prints pertinent results. The program operates in any of four sequences. Each sequence selection requires a complete complement of data cards and is termed a "case." There is no upper limit on the allowable number of cases per run.

The sequence for a given case is determined by an input integer, MOPT. The first sequence (MOPT = 1) is used to provide a fit of the creep life function (Fig. 1) by a least squares analysis of creep data. The second sequence (MOPT = 2) fits the creep life function and calculates optimum capsule dimensions for a prescribed life. The third sequence (MOPT = 3) calculates optimum capsule dimensions when the constants of the creep life function are given as input. The fourth sequence (MOPT = 4) calculates the life (or safety factor for a prescribed life) of a capsule with given dimensions and material properties. The following sections will describe the formulation of the subroutines for these sequences and provide input information. A list of the program is given in Appendix C.

3.1 Least Squares Analysis of Creep Data (MOPT = 1)

This sequence begins with the reading of the constants MOPT, K, SIGU (σ_{ij}) , and GAMMA (γ) . Next, the programs reads and stores information

from K data cards containing K triples [SIGMA(I), T(I), THETA(I)] of creep and/or ultimate strength data. Values of SIGMA(I) greater than SIGU are not permitted. The main program calls subroutine ISTSQ (which, in turn, calls MATQ) and values of the fitted constants (ALPHA, XM, XKO) are computed. The main program then computes the following quantities:

- 1. The value of stress, SIGB(I), predicted by the fitted creep life function for each pair [T(I), THETA(I)].
- The value of life, THETB(I), predicted by the fitted creep life function for each pair [SIGMA(I), T(I)].
- 3. The Larson-Miller parameter,
 LMP(I) = T(I) log₁₀ [(XKO)(THETA(I))], for each triple of data.
- 4. DLTH(I), the common logarithm of the ratio THETA(I) to THETB(I).
- 5. DISG(I), the common logarithm of the ratio SIGMA(I) to SIGB(I).
- 6. SELTH, SELSG, and RESIG, the standard errors in the common logarithm of creep life, common logarithm of stress, and relative stress, respectively.

The quantities SEITH, SEISG, and RESIG are calculated as follows:

SELTH =
$$\begin{bmatrix} \frac{1}{K-3} & \sum_{I=1}^{K} (DITH(I))^2 \end{bmatrix}^{1/2}$$

SEISG =
$$\left[\begin{array}{cc} \frac{1}{K-3} & \sum_{I=1}^{K} \left(DISG(I) \right)^2 \end{array}\right]^{1/2}$$

RESIG =
$$\left[\frac{1}{K-3} \quad \sum_{I=1}^{K} \left(\frac{\text{SIGMA}(I) - \text{SIGB}(I)}{\text{SIGB}(I)} \right)^{2} \right]^{1/2}$$

The program prints the values K, SIGU, GAMMA, ALPHA, XM, XKO, SELTH, SELSG, and RESIG and the array I, SIGMA(I), T(I), THETA(I), LMP(I), THETB(I), SIGB(I), DLTH(I), DLSG(I).

The program then reads another data card containing the integer K. If the new value of K is greater than the previous value, the program reads an additional number of triples of creep data equal to the difference in the two values of K. These new data are stored together with the previous data and the entire calculational procedure is repeated. This procedure, which permits a sequential analysis of data which are ordered with respect to one of the variables [usually THETA(I)], continues until the program reads a card with K = 0. After reading a card with K = 0, the program proceeds to the next case.

Execution time of this sequence is less than one minute for analysis of 500 (the maximum allowable) number of triples of creep data that are read in at a single time.

3.1.1 ISTSQ

This subroutine prepares the elements of a matrix equation for determination of the constants ALPHA(α), XM(M), and XKO(κ) by a least squares analysis of the creep life function (Fig. 1). The function is linearized by writing it in logarithmic form (see Appendix C). This procedure is an approximation in the sense that the sum of the squares of the residuals of the logarithms are minimized rather than those of the original variables.

3.1.2 MITQ

This subroutine solves the matrix equation AX = Y for X using modified Gaussian elimination (pivotal reduction using column pivots). A CO-OP description of this subroutine is given by Clark and Kam. 10

3.1.3 Input Information

The sequence, MOPT = 1, uses only the data cards of type "a", "b", and "c", shown in Table 1. The cards of type "a" and "b" are followed by K cards of type "c". For sequential analysis the initial set is followed by stacks having a single card of type "b" followed by K'-K cards of type "c". Here, K' and K are the present and immediately preceeding values of K, respectively. The last card of type "c" in a case

Table 1. The Format of Input Data Cards for the CAPSUL Program

Card Type	Format	MOPT	Deta
a	312	1,2,3,4	MOPT, NMAX, NQ
ъ	I3,2F10.0	1,2	K, SIGU, CAMMA
C	3F20.0	1,2	SIGMA(I), T(I), THETA(I)
đ	8F10.0	2,3,4	GAMMA, RR, E, PS, TS, H, ZM, TA
e	8F10.0	2,3,4	T8, A, ETA, BETA, DELTA, C, G, TA1
f	E10.3, 2I3	2,3,4	LAMDA, N, NN
g	9-1.	2,3,4	X(I), I = 1,9
h	9 F 8.0	2,3,4	P(I), I = 1,9
i	9F8.0	2,3,4	XX(I), I = 2,10
j	3E10.0	3.4	ALPHA, YK, XM
k	4F10.0	2,3	X4U, X4L, R3U, R3L
1	4E20.0	2,3,4	SIGU, SC, SU, PHI
m	4E20.0	2,3	Q, DELRO, DELX2, DELX4
n	4 E 20.0	2,3	TAU, T81, T82, XLD
0	4E20.0	2,3	RO, $X(2)$, $X(4)$, THET
p	5 I 4	2,3	IX, NLAM, NITER, ITER, LMOST
q	4F10.0	2,5	G, C, CRIT, ALAM
r	4E20.0	4	Q, DELTH, DELOME, THMAX
s	7.E20.0	4	TAU, T81, XLD, RO
t	3E20.0	4	X(2), X(4), THET

is followed by a card of type "b" with K = 0. The last case is followed by a card of type "a" with MOPT = 0.

3.2 Calculation of Capsule Dimensions for Maximum Specific Power (MOPT = 2 or 3)

The sequence begins by reading and writing MOPT, NMAX, and NQ plus 46 normally unchanging constants. If MOPT = 2, the program calls the entire sequence for MOPT = 1 to generate the three constants in the creep life function from experimental data; if MOPT = 3, these constants are read in and written. The program then reads and writes an additional 29 constants. Next, the program iterates (calling VSU and DR) to modify the initial estimates of X(2) and X(4) such that the constraining function is approximately satisfied $(0.3 \le D \le 4.0)$. The iteration proceeds by multiplying the previous value of X(2) by 0.95 if D is too large or by multiplying the previous X(2) by 1.05 and the previous X(4) by 0.95 if D is too small. The calculation stops, prints pertinent data, and proceeds to the next case if an appropriate value of D is not determined in 100 iterations.

The subroutine VSU generates a set of independent variables [AIF(K) and their increments, DEL(K) and WEL(K)] for the MAX format from the capsule-dimension variables. The set of capsule-dimension variables to be used in a case is determined by the integer NMAX.

NMAX = 1	Variables are RO, $X(2)$, and $X(4)$.
NMAX = 2	Variables are RO and X(2).
NMAX = 3	The outer radius R(8) is specified. This option is used to generate capsules with given outside dimensions.
NMAX = 4	The radius R(3) is specified.
NMAX = 5	The radius RO is to be computed by the sub- routine RZERO, assuming that the capsule is

buried in an infinite medium.

The subroutine DR performs a numerical integration of Eq. (2) and generates a value of the constraining function D for a current set of variables. The subroutine DR calls the subroutine CONVERT if NMAX \neq 0 and NQ \neq 0. The subroutine CONVERT reconverts the MAX variables to capsule dimensions, depending on the value of NMAX. If NMAX = 5, the subroutine CONVERT calls the subroutine RZERO to generate a burial-limited value of RO that is compatible with the current values of X(2) and X(4).

The main program calls the subroutine MAX if values of the variables are determined that approximately satisfy the constraining equation. MAX uses a numerical Lagrange multiplier formulation to find stationary values of the function W subject to the constraining equation D = C (C is the constrained value). The numerical technique seeks a minimum in a defined function YSQ by making successive linear approximations along the path of steepest descent. The function YSQ is the square of a vector that is zero when the constraining equation is satisfied and the gradients of the functions D and W are parallel, the condition for a local maximum or minimum in the function W. The function W is to be maximized in the present calculation; the minimum value is zero if X(2) = 0. The calculation proceeds by making outer and inner iterations. The outer iterations (counted by M) are steps in the domain of the function YSQ resulting from the linear approximation. Inner iterations (counted by ISTOP) prevent overstepping which might result in a divergent sequence.

The subroutine MAX calls the subroutines DR and WR to generate values of the constraining function D and the thermal power function W for use in tests and numerical computation of derivatives. The function W for a given case is chosen by the input integer NQ:

NQ = 1	Thermal p	ower per	unit of	projected	area
	(W = W1).				

NQ = 2 Thermal power per unit volume of a circumscribed rectangular parallepiped (W = W2).

NQ = 3 Thermal power per unit of weight (W = W3).

After each iteration, MAX writes current values of the following quantities:

M Number of the outer iteration.

D Value of the constraining function.

W Value of the thermal power function (W1, W2, or W3, depending on MQ) that is to be maximized.

YSG The function which has a value of zero at the desired solution point. The square of a vector Y.

Z $YSQ \cdot C^2$ (equal to YSQ for C = 1).

ISTOP Number of the inner iteration within the outer iteration %.

Y(K) Components of the solution vector Y.

ALF(K), K = 1,NR Values of the independent variables and the Lagrange multiplier.

R(I), I = 0.9 Outer radius of the nine regions of the capsule.

L Length of the capsule.

AV2 Thermal power of the capsule.

W1, W2, W3 The specific Chermal power functions.

WT Weight of the capsule.

The MAX calculation stops when either the function YSQ becomes smaller than a prescribed convergence criterion, $(CRIT)^2$, or a prescribed number of inner (M \leq ITER) and outer (IMOST \leq ISTOP) iterations is exceeded. It is recommended that the present type of calculation be stopped by the number of iterations since it is very difficult to predict an acceptable maximum value of the solution vector. The selection of a maximum allowable number of iterations has one disadvantage; it is often the case that variables determined in other than the last iteration provide a better solution of the problem. Since the properties of the capsule are completely described after each iteration, the "best" set of dimensions can be

determined by reviewing the printed matter and selecting the iteration for which (1) the constraint D = 1.00 is approximately satisfied, (2) the value W is maximum, and (3) YSQ is minimum.

When the MAX calculation stops, control is returned to the main The last set of calculated dimensions are then examined by the subroutine LIMIT to determine if the variables R(3) and Y(4) are within the preselected domains R3L \leq R(3) \leq F3U and X4L \leq X(4) \leq X4U. If the variables [first X(4), then R(3)] are too small or too large, the appropriate dimension is fixed at its nearest limit; NMAX is changed to reflect a decrease in the number of independent variables; and control is returned to the main program. If the previous value of NMAX was 1 (new value 2 or 4), the entire calculation is repeated (starting with the iteration to determine suitable values of the variables and proceeding into the MAX subroutine) using the last computed values of RO and X(4) or X(2) and X(4) as initial estimates. If the previous value of NMAX was 2, 3, 4, or 5, the routine DF is called to calculate a value of the single remaining independent variable, X(2), that satisfies the constraining equation, DH = 1.00. When the calculation is completed, the main program writes a final list of the variables; these numbers are different from those computed in the last MAX iteration only if the program DF has been called.

The MAX calculational procedure does not insure convergence to the constrained maximum value of the function W. If the investigator is unsure of the neighborhood of the solution point, he should submit several cases with different initial estimates of the variables. If results are erratic, the tolerance limits on the functions (PHI and Q) may not be sufficiently small. Increments in the variables (DELRO, DEIX2, and DEIX4) must be chosen such as to cause only small changes in the functions.

The execution time of this sequence for 100 iterations (inner plus outer) with 100 initial increments (N) in the domain of integration is approximately 3.5 minutes. The execution time is approximately proportional to the product of ITER and N.

3.2.1 DR

Subroutine DR calculates the value, DH, of the constraining function, D, using Simpson's rule with N increments. An abbreviated formulation of the function, the more important internal dependent variables (the integrand and stress and temperature functions) follows. More specific formulations are relegated to the list of the subroutine (Appendix C). Symbols are defined in Appendix A.

$$DH = \int_{TNTT} F dt$$

$$F = \kappa \left[\frac{s_{c}\sigma_{u}\sigma}{\alpha} \right]^{\frac{1}{mT4}} \left[\sigma_{u}^{\gamma} - s_{u}^{\gamma}\sigma^{\gamma} \right]^{\frac{1}{\gamma mT4}}$$

$$\sigma = \frac{RR}{E(VO + \eta \cdot V2)} \left[\frac{R(4)^2 + R(3)^2}{R(4)^2 - R(3)^2} \right] \left[\frac{PS(VO + \eta V2)}{RR \cdot TS} + \frac{H \cdot V2 \cdot P(2)}{XM} \left(1 - e^{-\lambda \cdot T} \right) \right]$$

$$\times \left[TA + (TO - TA)e^{-\lambda \cdot T} \right]$$

$$T^{4} = TA + (T^{4}O - TA)e^{-\lambda T}$$

$$T^{1}40 = T8 + \frac{AV2}{2\pi \cdot L2} \sum_{J=4}^{8} \frac{1}{XK(J)} \left[\frac{R(J)}{R(J+1)} \right]$$

TO = 140 +
$$\frac{AV2}{2\pi \cdot 12 \cdot XK(3)}$$
 ln $\frac{R(3)}{R(2)}$ + $\frac{A}{4 \cdot XK(2)}$ $\left[R(2)^2 - R(1)^2 - 2 \cdot R(1)^2 \ln \frac{R(2)}{R(1)} \right]$

DR doubles the number of increments in the domain of integration a maximum of 16 times to satisfy a convergence criterion, PHI. The input number PHI is compared to the ratio of the difference in the last two values of D to the last value. The statement "failed to converge" is

written if 16N increments are not sufficient. The library subroutine SETFAULT is used to set exponential underflows to zero.

The subroutine DR will accommodate functions other than those for which it is primarily intended (constant stress and/or temperature and constant derivatives of stress) by such devices as redefining the constants, setting T8 = TA, and dropping terms by setting leading constants equal to zero. In making such formulations, one must avoid negative arguments of logarithms (including values that are to be raised to a power) and division by zero.

3.2.2 WR

This subroutine calculates values of one of three specific thermal power functions for use as the function W in MAX. Choice of the function is determined by the current value of NQ. If the subroutine is called with NQ = 0, the values of all three thermal power functions are calculated. If NQ = 3, the subroutine calls subroutine WHT to calculate the capsule weight. The three functions are:

$$W1 = \frac{AV2}{4 \cdot XID \cdot R(8) \cdot [R(8) + BETA]}$$

$$W2 = \frac{AV2}{8 \cdot \text{XID} \cdot \text{R}(8) \cdot [\text{R}(8) + \text{BETA}] \cdot [\text{R}(8) + \text{DELTA}]}$$

$$W3 = \frac{AV2}{\sum_{i=1}^{N} V(i) \cdot P(i)}$$

3.2.3 DF

This subroutine uses Newton's method to calculate a value of X(2) to satisfy the constraint D = 1. The calculation proceeds until $D - 1 \le Q$.

3.2.4 RZERO

This subroutine calculates RO from the following equation that relates the outside radius of a cylindrical capsule buried in an infinite conducting medium to the thermal power and temperature difference (difference between the maximum capsule surface temperature and ambient temperature of the conducting medium),

$$RO + \sum_{J=1}^{8} x (J) = \frac{AV2 \cdot \sinh^{-1} (XLD)}{4\pi \cdot XK(10) \cdot XLD \cdot (T82 - TA)}$$

In this equation AV2 (see list for subroutine WR) is a function of RO. The variable RO is initially estimated by an approximate formula and then calculated by iteration using Newton's method until the relative change in AV2 is less than 10^{-6} or 10 iterations have occurred. Convergence is normally accomplished in less than five iterations because the initial approximation is good and the derivatives are computed analytically. If the current values of the variables X(2) and X(4) are such that RO is negative, RO is set equal to 0.2.

3.2.5 LIMIT

This subroutine examines the last set of variables computed by MAX to determine if X(4) and R(3) are within the preselected domains $X4L \leq X(4) \leq X4U$ and $R3L \leq R(3) \leq R3U$. If the current value of NMAX is 1 and X(4) is too large or too small, the variable X(4) is set at its nearest limit and the entire MOPT sequence is repeated for NMAX = 2. If the current value of NMAX is 1 and $X4L \leq X(4) \leq X4U$, but R(3) is too large or too small, the variable R(3) is set at its nearest limit and the calculational sequence is repeated for NMAX = 4. If the current value of NMAX is 2 and R(3) is too large or too small, R(3) is set at its nearest limit and the independent variable X(2) is calculated to satisfy the constraint D = 1.00. If the current value of NMAX is 3, 4, or 5 and X(4) is too large or too small, X(4) is set at its nearest limit and X(2) is, again, calculated by the subroutine DF.

3.2.6 WHT

This subroutine calculates the radii, length, and weight of the fuel capsule using the current values of the variables RO, X(2), and X(4). The weight, WT, is calculated as the sum of the product of volume and density of each region.

3.2.7 VSU, CONVERT

These two subroutines convert the capsule dimension variables to and from the variables used in MAX. Depending on the current value of NMAX, VSU generates the variables ALF(K) from RO, X(2), and/or X(4) and the increments DEL(K) = WEL(K) from DELRO, DELX2, and/or DELX4. CONVERT reconverts to capsule dimensions and calls RZERO if NMAX = 5.

3.2.8 MAX

The MAX program, used as a subroutine in the CAPSUL program, was written by F. H. S. Clark and F. B. K. Kam of ORNL. The reader is referred to their report 10 or to the program list (Appendix C) for detailed information. The following will describe the sequence of calculations in MAX and a few changes that were made in the program for use in CAPSUL.

The main routine MAX begins by computing numbers that are to be used as convergence criteria and setting the outer iteration index M equal to one. Subroutine SETUP is then called. SETUP, which calls the subroutines DR and WR, produces values of the functions D and W and all their first and second derivatives at the current trial set of independent variables, AIF(K). When control returns from SETUP to MAX, a test is made on the input number NIAM. If NIAM = 0, the subroutine GTAIAM is called to generate an initial estimate of AIAM, the Lagrange multiplier. A value of NIAM other than zero signals that the initial estimate of AIAM has been provided as input. Subroutine VECT is called next to generate components of the solution vector Y.

if YSQ is less than the product of G (< 1) and its value in the previous iteration. If either (1) M is equal to one, (2) YSQ is less than the computed product, or (3) the input integer LMOST is equal to zero (a

change), an index, JWAY, is set equal to one. If these criteria are not satisfied, JWAY is set equal to zero and the components of the step that was last made in the domain of the function Y are multiplied by 0.5. The index JWAY is set equal to -1 if the number of these (JWAY = 0) inner iterations has exceeded the input integer, LAOST.

After CONVG, subroutine OUTPUT writes current values of the pertinent indices, variables, and functions and returns control to MAX. The MAX program then tests the index, JWAY, to determine whether to stop the case and proceed to the next one (JWAY = 1), to try an inner iteration with a reduced step in the domain of the function (JWAY = 0), or to proceed with convergence tests (JWAY = 1). If JWAY = 0, the function YSQ is reevaluated with the reduced increments until either the conditions for JWAY = 1 or -1 are met.

If JWAY = 1, tests are made to determine if the trial solution is converged or if the prescribed number (ITER) of outer iterations in M have been made. If either of these questions is answered affirmatively, the calculation is halted and input for the next case is called. Otherwise, subroutine ARITH is called. In this subroutine elements of a matrix (A) are evaluated at the new trial point. Next, subroutine MATQ is called. This solves for X the matrix equation (A)X = Y. The index M is increased by one and subroutine STEP is called, with subsequent operations following as previously described.

3.2.9 Input Information

The sequence for MOPT = 2 or 3 requires, in order, one each of the data cards "a" and "d" through "i" (Table 1). For MOPT = 2, these initial cards are followed by cards of type "b" and "c", stacked in the same order as for MCPT = 1; again, the last card of type "c" is followed by a card "b" with K = 0. The next card, of type "j", is included only if MOPT = 3. One each of the remaining data cards of type "k" through "q" then follows for either MOPT = 2 or 3. The last case is followed by a card of type "a" with MOPT = 0. The input constants T81, TA1, and NN are not used for MOPT = 2 or 3; consequently, these fields may be left blank.

3.3 Capsule Lifetime Analysis (MOPT = 4)

This sequence begins by reading and writing 67 input constants, the first of which is MOPT (NMAX and NQ must be zero). The program then calls the subroutine THETAC. This subroutine uses the subroutine DR and Newton's method with an initial estimate of life, THET, to calculate a value of the resultant life, THETA, that satisfies the constraint D = 1.00. In this case, D is the sum of two integrals. The first integral, over the time domain from zero to the input number TAU, uses the value T8 as the initial steady state temperature of the outer surface of the capsule and TA as the temperature of the environment. The second integral, over the time period TAU to THET, uses T81 as the initial (time zero) steady state temperature of the surface of the capsule and TA1 as the temperature of the environment. A value of TAU = 0 sets the first integral equal to zero.

If, on any iteration, THET is larger than an input constant, THMAX, and D is less than one, THET is set equal to THMAX and a new variable, OMEGA, is computed by Newton's method to satisfy the constraint D = 1. OMEGA is a number that multiplies the safety factors SC and SU.

After each iteration, the program writes the current values of either THETA, D, and the contribution of the second integral to D; or THMAX, D, and OMEGA. The calculation stops and returns control to the main program when D - 1 is less than the input number, Q.

Execution time of the program with N = NN = 100 is generally less than 20 seconds.

The sequence for MOPT = 4 requires, in order, one each of the data cards "a", "d" through "j", "l", and "r" through "t" (Table 1). The last case is followed by a card of type "a" with MOPT = 0.

4.0 RESULTS OF ANALYSIS OF CREEP DATA

Creep data for several alloys have been analyzed to confirm the applicability of the model used in the CAPSUL program. The following sections will present a statistical analysis of the predicted creep life functions for three commercial materials, an analysis of the errors in time extrapolations, and results obtained in predicting constant stress rate data from conventional, constant stress, creep data.

4.1 Predicted Creep Life Functions

Creep life functions for three commercial alloys (304 stainless steel, Hastelloy N, and Cb-1% Zr) were generated using the MOPT = 1 option of the CAPSUL program. The fitted creep life function for rupture of 304 stainless steel (Fig. 3) was made using 189 reduced creep data points 11 for 18 heats of bar and plate, covering the temperature domain from 900 to 1700°F and rupture life to 100,000 hr. The reported data, at decade intervals, were generated by interpolation or extrapolation of the larger body of experimental creep data for a given heat of material and temperature. Only three of the 100,000-hr data points were obtained from experiments terminated at approximately 100,000 hr. The other thirteen data points were obtained by extrapolation of data from experiments terminated at earlier times in the 10,000 to 100,000-hr decade. The constants γ and o, were chosen prior to the least squares analysis to force a fit of the ultimate strength vs temperature (0.1-hr rupture) data in the temperature domain above 400°F. A parametric plot of the derived creep rupture function (Fig. 4) shows that the fit is good over the entire range of the variables. The frequency distribution of the error (Fig. 5) in the logarithm of the measured life and stress with respect to values predicted by the fitted function is approximately gaussian. The distribution of the error in relative stress is also approximately normal; the relative standard error in stress is 0.17 (68% confidence level).

The fitted creep life function (Fig. 6) for rupture of Hastelloy N (INOR-8) was made using 93 data points 12,13 for live heats of rods, sheet, and plate, covering the domains in temperature from 1100 to 1800°F and rupture life to 14,400 hr. A parametric plot of the predicted function and data at four temperatures is shown in Fig. 7. In this case, the distribution of error (Fig. 8) is not gaussian, but the frequency peaks on both sides of the fitted function. This phenomenon is explained by the fact that approximately half of the data were obtained with the commercial Hastelloy N alloy which is somewhat stronger than the initial version of the alloy, which was called INOR-8. If it is assumed that the frequency distribution is gaussian, the relative standard error in stress is 0.16.

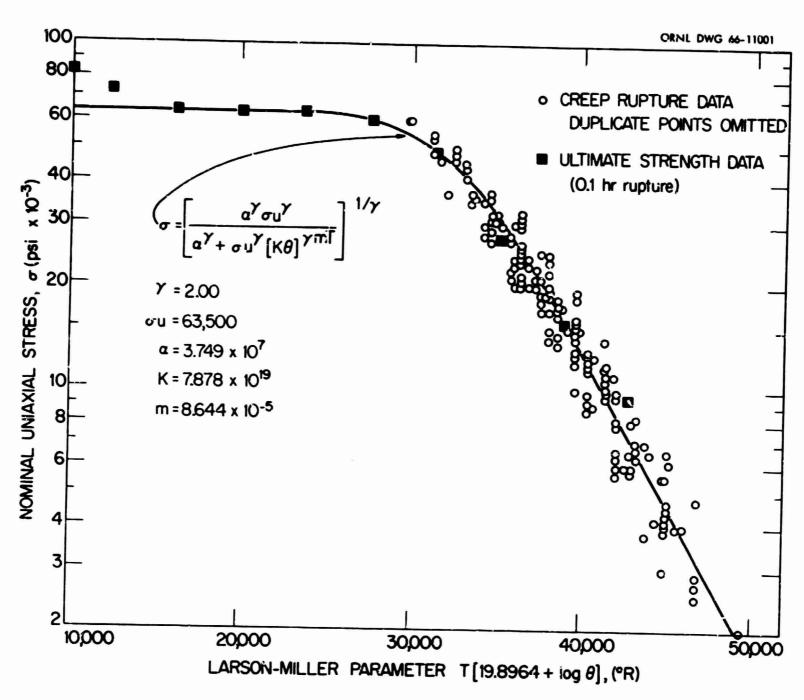


Fig. 3. Master Larson-Miller Plot for Creer Rupture in 304 Stainless Steel. 18 heats. 189 data points. 1360 \leq T \leq 2160. 10 \leq 0 \leq 100,000.

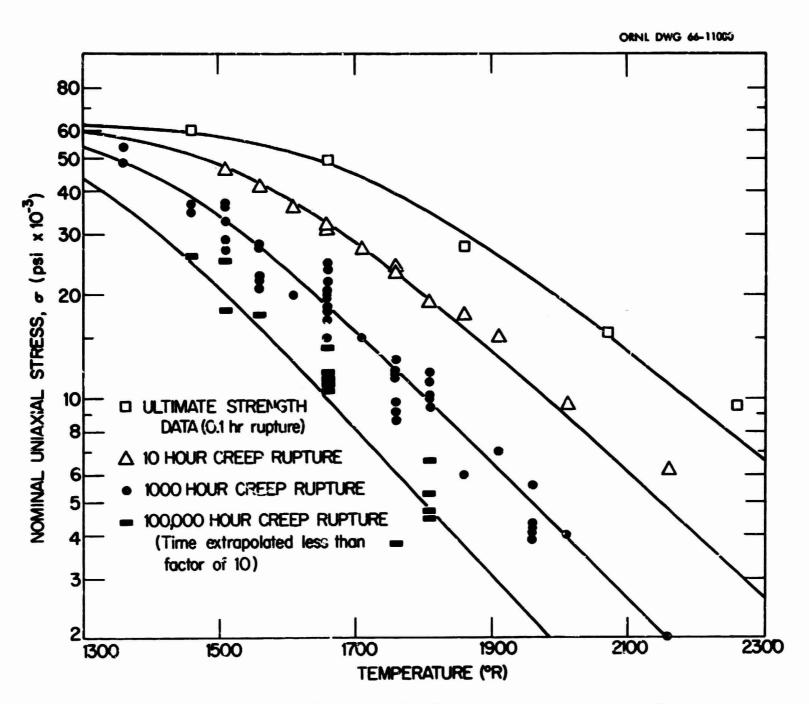


Fig. 4. Parametric Plot of the Derived Creep Rupture Function for 304 Stainless Steel Compared with Experimental Data. 18 heats of bar and plate. 1360 \leq T \leq 2160. θ \leq 100,000 hr.

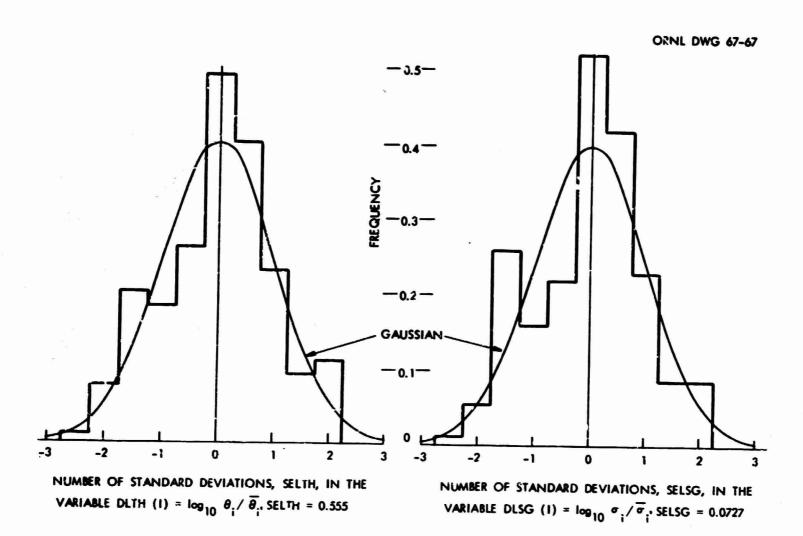


Fig. 5: Distribution of the Error in the Logarithm of Measured Rupture Life and Stress for 304 Stainless Steel with Respect to Values Predicted by a Least-Squares Fit of the Creep Rupture Function. Area normalized to 1.00.

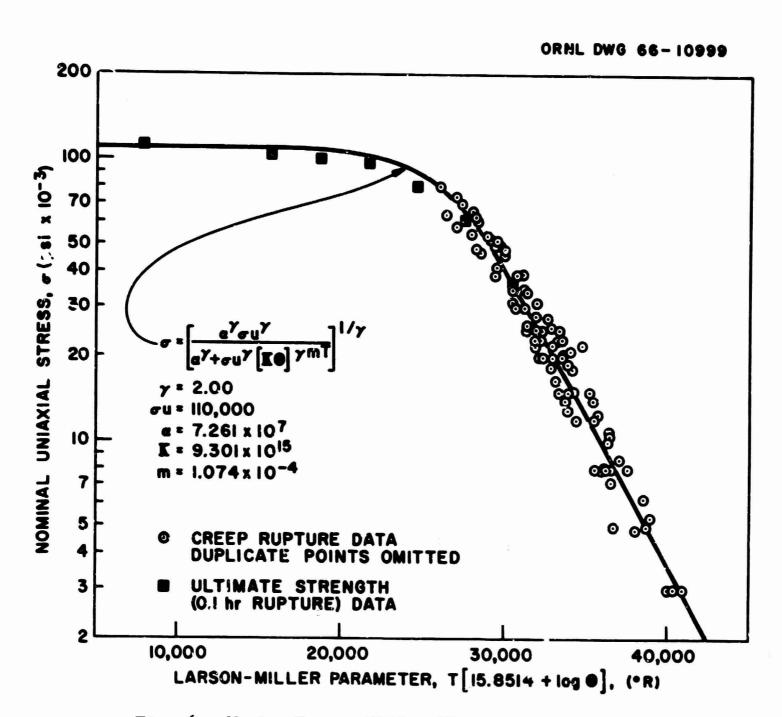


Fig. 6. Master Larson-Miller Plot for Creep Rupture in Hastelloy N. 5 heats. 93 data points. 1560 \leq T \leq 2260. Θ \leq 14,400 hr.

ORNL DWG. 66-11004

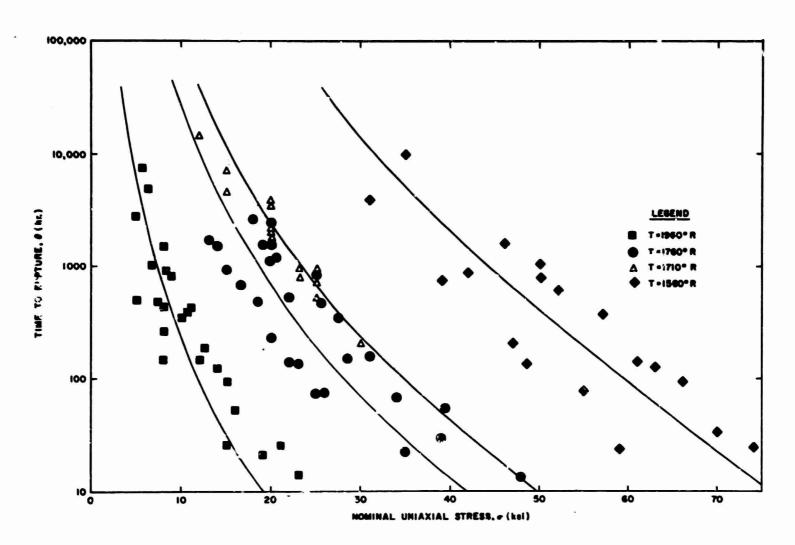


Fig. 7. Parametric Plot of the Derived Creep Rupture Function, θ (σ , T), for INOR-8 Compared with Experimental Data. The function was determined by a least-squares fit of an assumed functional type using 93 data points measured with 5 heats at 7 temperatures over a rupture life range of 0.5 to 14,000 hr.

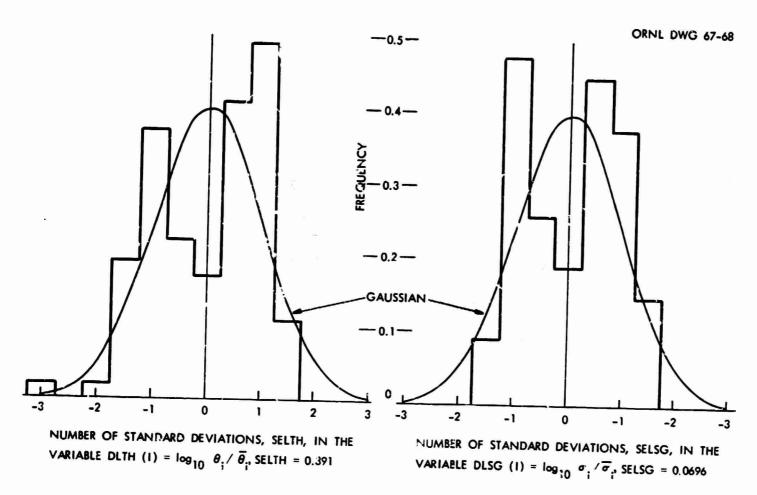


Fig. 8. Distribution of the Error in Measured Rupture Life and Stress for Hastelloy N with Respect to Values Predicted by a Least-Squares Fit of the Greep Rupture Function. Area normalized to 1.00.

The creep life function for rupture of Cb-1% Zr (Fig. 9) was generated using data 14,15 from 25 heats of sheet, bar, and plate, covering the temperature domain from 1600 to 2200°F and rupture life to 1733 hours. The abnormally large amount of scatter in the data, shown in the parametric plot (Fig. 10), is caused, primarily, by changes that were made in the composition and heat treatment of the alloy that resulted, accidentally or deliberately, between the periods of testing. The frequency distribution of the error (Fig. 11) is approximately gaussian. The relative standard error in stress is 0.14.

The analysis of these creep data indicates that the general creep life function chosen for the model can provide a good description of constant stress, constant temperature creep behavior in 304 stainless steel, Hastelloy N, and Cb-1% Zr. Based on the results of others 4,5 who have correlated creep data with the Larson-Miller parameter (but, generally not extending the fit into the ultimate strength range), we assume that the same conclusion will apply to many other notals and alloys (probably including most alloys of copper, nickel, iron, aluminum, and the refractory retals). It is apparent from the analysis that the ultimate strength data are useful for complementing the creep data in the high-stress, low-temperature region.

The parametric plots of the fitted functions and data show that the distribution of data with respect to the fitted functions tends to be random in that the relative error does not vary significantly over the domain of the variables. In general, we have found that the frequency distribution function is most nearly gaussian when either one heat or many heats of an alloy are analyzed. There may be significant deviation from gaussian behavior if only a few heats of material, of varying properties, are analyzed.

4.2 Analysis of Errors in Time Extrapolations

The accuracy of the model for extrapolation of creep life in the three commercial alloys was investigated by making fits of constant stress and temperature creep data with rupture life less than a selected time; using these fitted functions to predict the stress as a function of

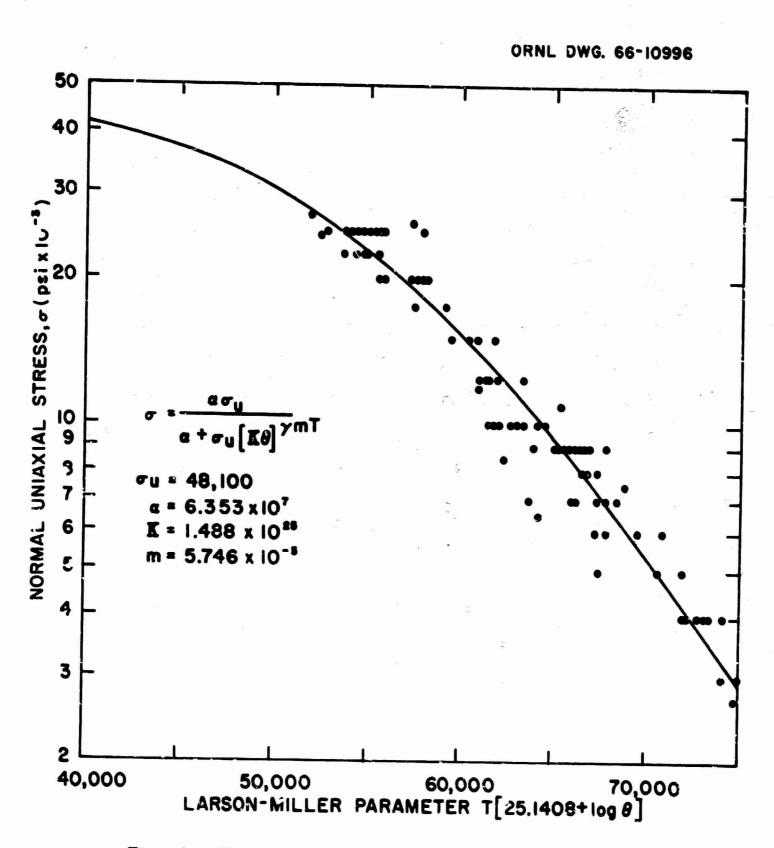


Fig. 9. Master Larson-Miller Plot for Creep Rupture in Cb--1% Zr. 25 heats. 2060 \leq T \leq 2660. θ \leq 1733 hr.

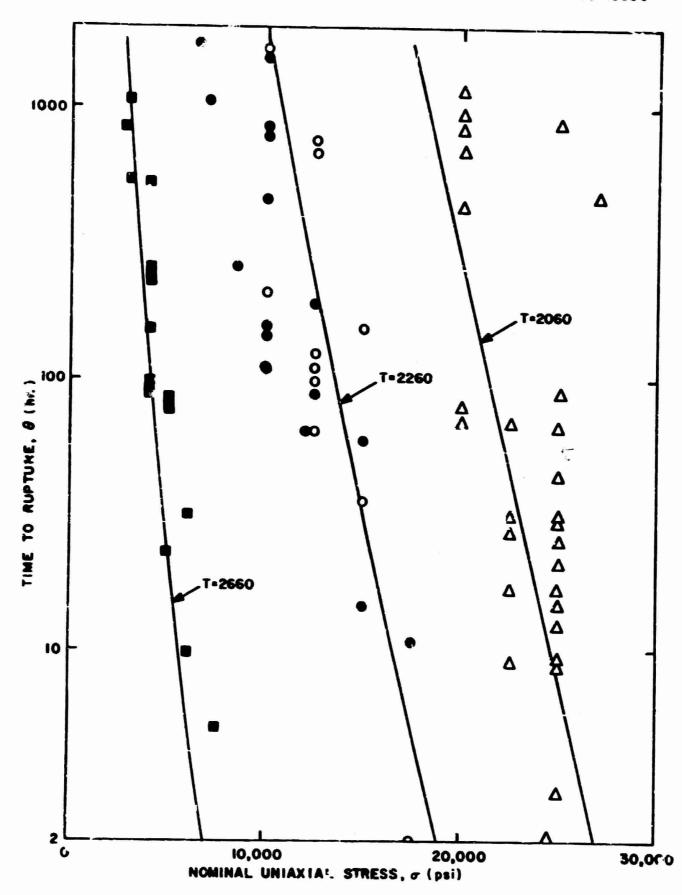


Fig. 10. Parametric Plot of the Derived Creep Rupture Function of Cb--1% Zr Alloy Compared with Experimental Data. 25 heats. 104 data points. 2060 \leq T \leq 2660. θ \leq 1733. ORNL data points closed; Pratt & Whitney data points open.

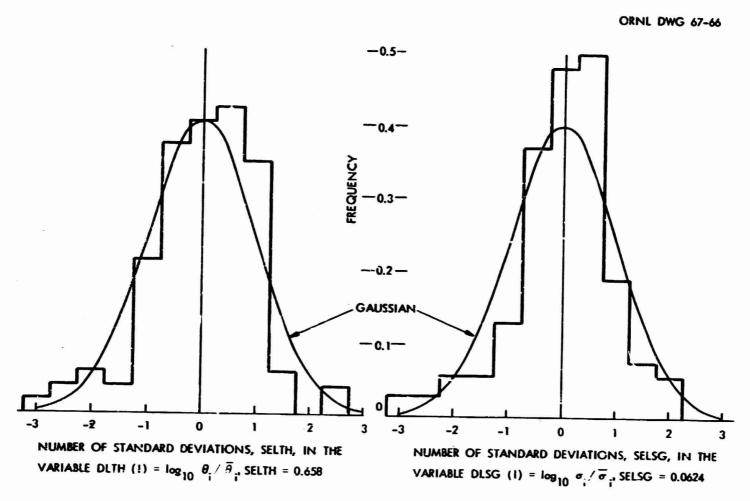


Fig. 11. Distribution of the Error in the Logarithm of Measured Rupture Life and Stress for Cb--1% Zr with Respect to Values Predicted by a Least-Squares Fit of the Creep Rupture Function. Area normalized to 1.00.

temperature to cause rupture at a greater time; and comparing the predicted stress with the actual average stress which caused failure at the greater time. The accuracy of the extrapolation, expressed in terms of the maximum relative error (or bias) in the predicted stress as a function of temperature, is then compared to the standard error (error at 67 percent confidence level since the distribution of stress data is approximately gaussian) in relative stress caused by the normal scatter of data about the predicted best-fit function. The model is then known to provide for adequate extrapolation of creep within the time range such that the bias in the predicted stress is small as compared to the standard error.

The first column of Table 2 shows the material, number of heats, and temperature range of the creep data that were analyzed. The next two columns show the values of the selected times and the corresponding number of data points (with rupture life less than the selected time) for which best-fit functions were evaluated. The fourth column shows the values of rupture life for which stress as a function of temperature was predicted by the model. The fifth column shows the standard error in relative stress for each of best-fit functions. The last column shows the maximum bias in the predicted stress, defined as the ratio of the maximum difference between the predicted and mean-measured stress to the mean-measured stress within the temperature range of the experiments.

Two very striking, but tenuous, conclusions may be drawn based on the results of Table 2.

- 1. It appears that, for a large number of metals, the present creep model can provide a fit of creep data such that the standard error in relative stress will not exceed 15 to 17 percent. Knowledge of the statistics of the fit and the frequency distribution function will permit the choice of a design stress for a predetermined confidence level.
- 2. In each of the commercial alloys analyzed, the bias in predicted stress for a long-time extrapolation becomes small, using only 100 to 200-hr creep data. For these alloys, the creep data for times greater than 100 to 200 hours is superfluous. The data seem to suggest that if

Table 2. Statistics and Predictability of Creep Rupture Data for Several Alloys

Material No. of Heats Temp. Domain, F	No. of Data Points	Maximum Lifetime in Data (hr)	Life to be Predicted (hr)	Relative Standard Error in Stress	Maximum Absolute Relative Bias in Predicted Stress
	15	10	100,000	0.03	-1.0
304 Stainless Steel	63	100	100,000	0.13	-0.10
18 heats	123	1,000	100,000	0.14	-0.09
$900 \le \mathtt{T} \le 1700$	173	10,000	100,000	0.16	-0.05
	189	100,000	100,000	0.17	0.0
	26	100	10,000	0.16	0.2
To obolian N	40	200	10,000	0.16	0.08
Mastelloy N	55	500	10,000	0.17	-0.04
5 heats	55 69	1,000	10,000	0.16	-0.02
$1100 \le \mathtt{T} \le 1800$	81	2,00	10,000	0.16	0.008
	93	15,000	10,000	0.16	0.0
	49	80	1,500	0.09	0.25
Cb - 1% Zr	66	150	1,500	0.10	0.07
25 heats	83	300	1,500	0.12	-0.04
1600 ≤ T ≤ 2200	92	750	1,500	0.13	0.05
	104	1,800	1,500	0.14	0.0

a Note use of previously reduced data describe 1 on p. 23.

creep data are available that span two to three decades in time (1 to 200 hours, for example), then a fitted function can be determined that will permit extremely long extrapolations in time with the error of the extrapolation being less than the normal scatter in moderate-time creep rupture data. This conclusion assumes, of course, that the long-term environment is the same as the test environment.

The data also suggest a post_ble method for avoiding experiments of unnecessarily long term in creep determinations. The creep program would begin by generating first short time; then, progressively, longer time data. The composite data would then be fitted, sequentially, as each new, longer-time data point is generated; and the fitted function would be used to predict the conditions to cause failure (or a given strain) at a very long time (perhaps 100,000 hours). The creep program would be terminated when sufficient data are generated such that sequential data cause small and random (as opposed to monotonic) changes in the predicted conditions to cause long-term failure.

4.3 Analysis of Constant Stress Rate Tests

The accuracy of the model in predicting creep, under conditions of varying stress, was investigated by analyzing constant stress rate tests with the CAPSUL program. The time to rupture of the alloy T-222 and time to 1 percent strain of the alloy FS-85 exposed to a constantly increasing stress rate and constant temperature were calculated (Fig. 12) using a creep life function that was generated using conventional creep and ultimate strength data 9,16 over a wide range of stress and temperature. The predicted stress rates agree with the measured data for the alloy T-222 within experimental error. Agreement with the FS-85 data is satisfactory, but it appears that the predicted results are biased at the particular temperature at which the experiments were conducted.

McCoy has analyzed these same creep data using a simpler, but less general, model. McCoy fitted conventional creep data, at the specific temperature of interest, by assuming that the logarithm of stress is linearly related to the logarithm of the creep life, an assumption that

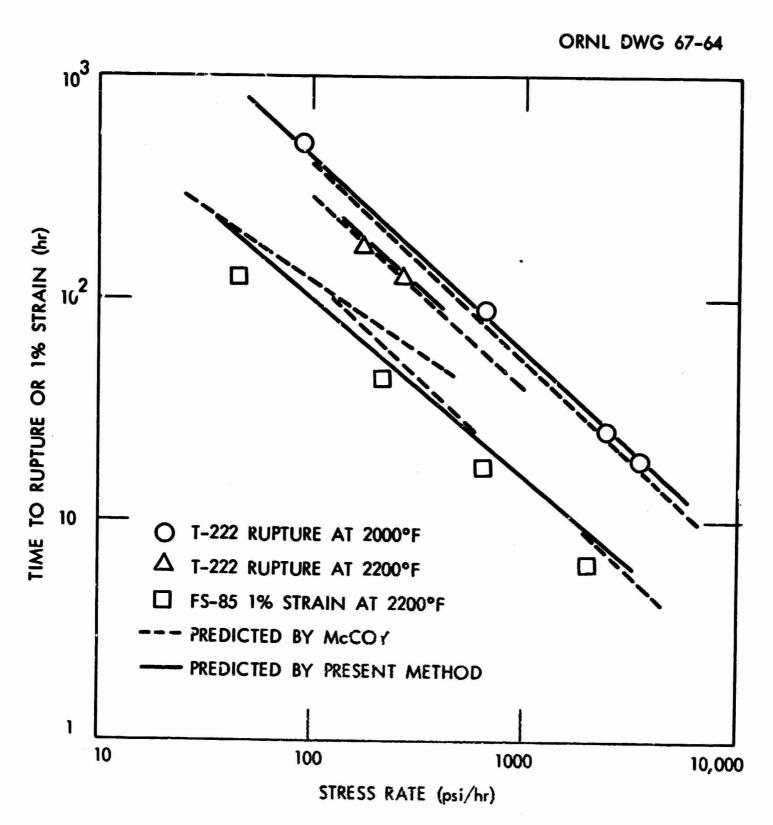


Fig. 12. Predicted and Observed Creep Behavior of T-222 and FS-85 at a Constant Stress Rate and Constant Temperature.

is equivalent to the assumption used in the present method if the temmerature is high. McC.y. predictions are also good, but no better than those predicted by the present method in site of the fact that his model was based on data only for the specific temperature of interest. McCoy required two equations to provide a good fit of the FS-85 data over the stress rate domain of the experiments.

The procedure for determining the 1-percent-creep function for the FS-85 is shown as * example of the MOPT = 1 sequence of the CAPSUL program in Appendix B. Also shown is one of the constant stress rate calculations for rupture of the T-222 alloy as an example of the MOPT = 4 sequence.

REFERENCES

- 1. E. L. Robinson, Trans. Am. Soc. Mech. Engrs. 74(5), 778-81 (1952).
- 2. S. V. Serenson and V. S. Strelayev, "Creep Resistance and Low-Cycle Fatigue of Fibreglass Plastics," pp. 3-93 to 3-98 in <u>Proceedings of Joint International Conference on Creep</u>, Institute of Mechanical Engineers, 1963.
- 3. A. J. Kennedy, <u>Processes of Creep and Fatigue in Metals</u>, Wiley, New York, 1963, pp. 402-28.
- 4. E. C. Larke and N. P. Inglis, "A Critical Examination of Some Methods of Analyzing and Extrapolating Stress-Rupture Data," pp. 6-33 to 6-47 in Proceedings of Joint International Conference on Creep, Institute of Mechanical Engineers, 1963.
- 5. F. R. Larson and J. Miller, <u>Trans. Am. Soc. Mech. Engrs.</u> 74(5), 765-75 (1952).
- 6. C. R. Kennedy, Metals and Ceramics Div. Ann. Progr. Rept. May 31, 1962, ORNL-3313, pp. 44-45.
- 7. H. E. McCoy, Metals and Ceramics Div. Ann. Progr. Rept. June 30, 1965, ORNL-3870, pp. 122-23.
- 8. H. E. McCoy, "Creep-Rupture Properties Under Conditions of Constant and Varying Stresses," <u>Nucl. Appl.</u> 2(6), 481-84 (1966).
- 9. H. E. McCoy, <u>Creep Rupture Properties of the Tantalum-Base Alloy</u> T-222, ORNL-TM-1576 (Sept. 1966).
- 10. F. H. S. Clark and F. B. K. Kam, A Generalized One-Constraint Lagrange Multiplier Numerical Formulation, ORNI-3742 Rev. (June, 1965).
- 11. W. F. Simmons and J. A. Van Echo, The Elevated Temperature Properties of Stainless Steels, American Society for Testing and Materials, Philadelphia, Pa., 1965.
- 12. R. W. Swindeman, The Mechanical Properties of INOR-8, ORNL-2780 (Jan., 1961).

REFERENCES (contd)

- 13. J. T. Venard, Tensile and Creep Properties of INOR-8 for the Molten Salt Reactor Experiment, ORNL-TM-1017 (February, 1965).
- 14. H. E. McCoy, <u>Creep Properties of the Nb-1% Zr Alloy</u>, ORNL-TM-005 (August, 1964).
- 15. Creep Rupture Data for Cb-1 Zr Alloy, CNIM-4267, Pratt and Whitney (Sept. 1962).
- R. L. Stephenson, Creep-Rupture Properties of FS-85 Alloy and Their Response to Heat Treatment, ORNL-TM-1456 (July 1966).

APPENDIX A

Units and Glossary of Symbols

Units

Length ...

inch

Mass

pound

Time

hour

Temperature

degrees Rankine

Heat

Btu

Symbc.'s

A, AO, A2

Thermal power per unit of fuel region.

ALAM, AIF(IX + 1)

The Lagrange multiplier.

AIF(K), K = 1,19

Independent variables in MAX.

ALPHA, α

The fitted value of creep stress for a

Iarson-Miller parameter of zero.

AV2

Thermal power of the fuel region.

BETA

One-half the surface-to-surface distance between parallel columns of capsules.

C

Constrained value of DH.

CRIT

An input value of a convergence criterion

for MAX.

D, DH

Value of the constraining function, Eq. (2).

DEL(K), K = 1,19

The increment in the variables AIF(K) in

calculating DH.

DELOME

The increment in OMEGA.

DELTA

Thickness of the structural liner surrounding

the capsule.

DELRO

The increment in RO.

DELTH The increment of THET. DEIX2 The increment in X(2). DELX4 The increment in X(4). DISG(I), I = 1,500The common logarithm of SIGMA(I)/SIGB(I). DLTH(I), I = 1,500The common logarithm of THETA(I)/THETB(I). E Capsule weld efficiency. ETA Volume fraction of gas space in the fuel region. F Integrand of the constraining function. G A number slightly less than 1.0 in the convergence criterion for MAX. GAMMA, y A constant in F, usually 1.0 or 2.0. H Weight fraction of alpha-emitting isotope in the fuel. I An index. TTER Maximum number of outer iterations in MAX. IX Number of independent variables in MAX. J An index. JAM An integer that counts and limits to 100 the number of iterations to adjust input estimates of X(2) and X(4) such that $0.3 \le DH \le 4.0$. K Maximum number of data points in ISTSQ. Elsewhere an index. L An index in THETAC. Overall length of the fuel capsule in the main program. 12 Length of fueled section of capsule. L4 Length of the straight section of the capsule.

LAMDA, λ

Decay constant of the radioisotope.

LMOST

Maximum number of inner iterations in MAX.

LMP(I), I = 1,500

Value of the Larson-Miller parameter.

ISTOP

An index which counts inner iterations in MAX.

Ŋ

An index which counts outer iterations in MAX. An index in RZERO.

MOPT

M

An input index which decides the sequence

to use in the main program

N, NN

The initial number of (even) increments for Simpson's rule integration in DR. If MOPT = 2 or 3, N is the initial number of increments in the time domain 0.0 to THET. If MOPT = 4, N is the initial number of increments in the domain 0.0 to TAU and NN is the initial number of increments in the

domain TAU to THET.

NITER

An input index to determine if a convergence criterion is to be used in MAX.

NIAM

An input index to determine if GTALAM is to be used to estimate the initial value of the Lagrange multiplier.

NMAX

An input index that specifies the set of independent capsule dimension variables that are subject to optimization.

NNN

An index that causes additional creep data cards to be read and analyzed by ISTSQ together with data previously in storage.

NQ

An input index that decides the function to be maximized.

NR

The index of the Lagrange multiplier, IX + 1.

OMEGA, XK(1)

A number that multiplies the safety factors SC and SU in THETAC to satisfy DH \approx 1.0 if THET > THMAX.

P(I), I = 1,9

Density of the material in region I or the capsule.

PHI

An input convergence criterion for the Simpson's Rule integration in DR.

PS Initial pressure in the fuel capsule. Q An input convergence criterion on DH for use in the subroutines DF and THETAC. R(I), I = 1,8Outer radius of region I of the capsule. RESIG The standard error in relative stress for the fitted creep life function. RK YSQ.G, a test quantity in MAX. RO The outer radius of the void region of the cepsule. R3L The imposed lower limit for the outer radius of region 3 of the capsule. R3U The imposed upper limit for the outer radius of region 3 of the capsule. SC, S The safety factor on creep stress. SELTH The standard error in the common logarithm of creep life for the fitted creep life function. SELSC The standard error in the common logarithm of stress for the fitted creep life function. SIGB(I), I = 1,500, σ The value of stress predicted by the fitted creep life function for the values T(I) and THETA(I). SIGMA(I), I = 1,500The measured value of stress in the input creep data. SIGT The current value of stress as a function of time in DR. STOU, o An imposed upper limit on stress as a function of the Larson-Miller parameter. SU, S The safety factor on SIGU. T, t Time since application of the stress. T(I), I = 1,500The measured value of absolute temperature in the creep data.

Ambient temperature of the earth (MOPT = 2 or 3)

and the first environment (MOPT = 4).

 Λ T

TAl Ambient temperature of the second environment (MOPT = 4), see T81. 'TAU Lifetime in the initial service environment for use in THETAC. TERM The upper limit of the integral in DR either TAU or THET. THET, THETA, O Resultant life of the fuel capsule exposed to varying stress and temperature. THETA(I), I = 1,500The measured value of life to a prescribed creep criterion in the input creep data. THETB(I), I = 1,500, θ The value of life predicted by the fitted creep life function for the values SIGMA(I) and T(I) THMAX An imposed upper limit on the value of THET in THETAC. TNIT The lower limit of the integral in DR, either zero or TAU. TS Temperature of the gas when the capsule is sealed. TO The initial steady state temperature of the helium cas in the fuel capsule as calculated in DR. **T**4 The instantaneous value of the steady state temperature of the inner wall of the primary structural material. **T40** The initial steady state temperature of the

inner wall of the primary structural material. **T**8

T81

The imposed initial steady state of the outer surface of the capsule. In THETAC this is the initial temperature in the time period zero tr TAU.

In subroutine THETAC the imposed initial steady state temperature of the surface of the fuel capsule in the time period TAU to THETA expressed as the temperature at zero time (i.e., at full thermal power).

T82	The initial steady state temperature of the surface of the capsule assuming that it becomes buried in an infinite medium of conductivity XK(10) at zero time.
V(I), I = 1,9	Volume of region I of the capsule.
v o	Volume of the void region.
V 2	Volume of the fuel region.
W, WH	The specific thermal power function that is to be maximized (W1, W2, or W3).
WEL(K), $K = 1,19$	The increment in the variables AIF(K) in calculating WH.
WT	Weight of the fuel capsule.
MI	Thermal power of the capsule per unit of projected area.
W2	Thereal power of the capsule per unit of volume of a circumscribed rectangular parallepiped.
w3	Thermal power of the capsule per unit of weight.
X(I), I = 1,9	Thickness of region I of the capsule.
X(K,1), XX(K,1), K = 1,19	An increment in the variable AIF(K).
XID	The overall length-to-diameter ratio of the capsule.
XM, m	A fitted constant in the creep life function.
чко, ч к, н	A fitted constant in the creep life function.
XK(I), I = 2,8	Thermal conductivity of region I of the capsule.
XK(9)	Thickness of the capsule bushing (see Fig. 2).
XK(10)	Temperature averaged thermal conductivity of the infinite medium in which the capsule is immersed.
X4L	The imposed lower limit on the thickness of the primary structural material of the capsule.

The imposed upper limit on the thickness of the primary structural material of the capsule.

YK

See XXO.

The square of the vector y, which is the function minimized in MAX.

ZM

Atomic weight of the alpha-emitting radio-isotope.

Capsule Regions (Fig. 2)

i Inner fuel liner	
2 Radioisotope fuel	
3 Outer fuel liner	
4 Primary containment wall	
5 Diffusion barrier	
6 Cas gap	2 E B) =
7 Corrosion barrier	
8 Radiant coating	
9 Fuel spacer	
10 An infinite heat conducting med:	ium

APPENDIX B

Example Problems

B1. MOPT = 1

This sequence is used to generate constants in the creep life function for 1 percent strain in the alloy FS-85. A photograph of the output is shown in Table Bl. The creep data are the 28 data points (K = 28) reported by Stephenson. The ultimate strength at room temperature (SIGU) is taken to be 80,000 psi. A moderately large value of 2.0 is chosen for the constant GAMMA to provide a rather abrupt change in the behavior of the function in the transition range. Shown on the second and third rows of the output are the computed constants (AIPHA, XM, XKO) and the standard errors in life and stress (SEIMH, SEISG, and RESIG) relative to the fitted function. The array of basic experimental data [SIGMA(I), T(I), THETA(I)] is shown in columns two through four of the output. Other columns list pertinent calculated results [IMP(I), THETB(I), SIGB(I). DITH(I), and DISG(I)] for each data point.

Table Bl

K .	28		SIGU =	800			A = 2				11/1	at the state of the					
AL PH	A =	0.	336050E	08	XM =	0.9	91687	6E-04		KKO =	1	0.1336546	14	1000	5		
SELT	H =	0.4	418337E	00	SELSG	=	0.97	4960F	-01	RE	SIG	= 0.20	2662E	00			
-						1							Wh. I	111			
1	SIGMA		T(1)	THE	TA(I)		LMP(I			TB(I		SIGE			DL TH(I		DLSG(1)
1		00.	2260.		4.10		1050E	the second secon	10 17 / 10 / 10 / 10 / 10	064E		0.41041			43112E	_	-0.69151E-01
2		00.	2260.		24.00		2784E			966E (0.30627			50602E-		-0.89825E-02
3		00.	2260.		128.00		4427E			123E	-	0.22490		-	C4316E		0.45943E-01
4		00.	2260.		205.00		4889E			771E (0.20544			20554E		0.39505E-01
5		00.	2260.		470.00		5704E	The state of the s		296E (0.17467	The state of the s		40975E		0.80005E-01
6		00.	2460.	11	0.74		1968E			193E		0.35331			77612E		-0.15025E 00
7	200	00.	2460.	ī	6.30	0.3	4256E	05	0.129	936E (02	0.23247	E 03	-0.	31247E	00	-0.65341E-01
8	175	00.	2460.	11	32.00	0.3	5993E	05	0.24	202E (02	0.16478	E 05	0.	i2131E	00	0.26122E-01
9	150	00.	2460.	7	110.00	0.3	7312E	05	0.49	364E (02	0.12587	E 05	0.	34799E	00	0.76154E-01
10	140	00.	2460.		130.00	0.3	7490E	05	0.67	727E (02	0.12133	E 05	0.	28318E	00	0.62165E-01
11	130	00.	2460.		130.00	0.3	7490F	05	0.94	983E	02	0.12133	E 05	0.	13630E	00	0.29980E-01
12	100	00.	2460.		600.00	0.3	9124E	05	0.31	47E (03	0.86428	E 04	0.	28473E	00	0.63345E-01
13	175	00.	2660.		0.75	0.34	4583E	05	0.196	528E (Ul	0.21818		-0.	41782E	00	-0.95772E-01
14	160	00.	2660.		2.50	0.3	5974E	05	0.28	326E (01	0.16542	E 05	-0.	61841E-	01	-0.14460E-01
15	150	00.	2660.		4.00	0.30	6517E	05		946E (0.14815	E 05	0.	22890E-	01	0.53835E-02
16	125	00.	2660.		15.00		8044E			978E (0.10821		0.	26239E	00	0.62632E-01
17		00.	2660.		55.00		9544F			346E (0.79165			42133E		0.10147E 00
18		00.	2660.	2	80.00		9977E			309E	The state of	0.72310		0.	39376E	00	0.95044E-01
19		00.	2660.		121.00		0455E			85E (0.65418			12144E		0.29402E-01
20		00.	3660.		200.00		1036E		and the state of t	485E (FEG. ST.	0.57914	The state of the s	0.	33968E	00	0.82313E-01
21		00.	2660.		152.00		0719E			332E		0.61900			38201E		-0.92720E-01
22		00.	2660.		205.00		1064E		The second second	532E (0.57568			25210E		-0.61213E-01
23		00.	2660.		000.00		2895E		The second secon	192E (0.39168			11984E		-0.29190E 00
24		00.	3060.	97.7	0.30		8565F		10070470	964E		0.97097	Committee of the commit		46338E-		0.12795E-01
25		00.	3060.		1.10		0292E			340E		0.67694			26079E		0.72537E-01
26		00.	3060.		3.60		18686			56E	-	0.48623	- T		32697E		0.91306E-01
27		00.	3060.		20.00		4147E			556E (0.30088			23449E		0.65669E-01
28		00.	3060.		280.00	-	7654E			165E		0.14357			55995E		-0.15707E 00
			2000	-	20000				31.0				7 7 7				

B2. MOPT = 3

This problem requires determination of the dimensions of a capsule $^{244}\text{Cm}_2\text{O}_3$ fuel having maximum power per unit of volume. Restrictions on the capsule are: (1) The primary container material, fuel liners, and the bushing are to be made of Hastelloy N. (2) The fuel liners and bushing are to be 0.010 in. thick. (3) The outer surface temperature of the capsule is not to exceed 2100°R if the capsule becomes buried in dry sand [XK(10) = 0.0167] immediately after incapsulation. (4) The capsule is to be designed such that the probability of rupture in 5 years is Q.001. This condition (see Sect. 4) is approximately satisfied by designing for rupture in 5 years with a stress safety factor of 2.0. (5) $0.05 \leq X(4) \leq 0.5$, $0.01 \leq R(3) \leq 3.0$.

The input data for this problem are tabulated in the first 19 nows of the printed output (Table 82). Initial estimates of the variables R), X(2), and X(4) are 0.3, 0.1, and 0.16, respectively. In this problem, it is chosen to use only outer iterations in the MAX calculations (IMOST = 0). The variables and their increments for per in this relculation are so small that inner iterations would so etimes fail because of 1 as of significance (the IBM 560/75 corners only seven significant figures in this program).

The minimum value of YSQ (57.36) for which the constraint (D = 1,0000) is satisfied and I is maximum (59.25 Btu/hr in³) occurs in iteration number 48 (M = 48). The iterations the folior produce the isms computed values indicating that YSQ is trapped at either a stationary point or an absolute minimum that may be obtained with higher and lower starting estimates of X(4) indicated that this solution provides maximum power within the range of interest in the variables R(3) and X(4). The last array of computed values in the output is the same as in the last iteration produced by MAX, indicating that LIMIT did not call DF because R(3) and X(4) were within the preselected limits.

Table B2

			1.00 GA	MA = 2.00				
	20.6 E = 1	244-U TA		S = .560-C	060			
LAMBDA =	0.43680E-05	N = 100	NN = 100				أستنست بطال	
MOPT = 3	MMAX = 5	NQ = 2						
THE FOLLOW	ING THREE ROUS	ARE THE CONTE	NTS OF THE X	. P. AND XK	ARRAYS	Sur Milenes	Physical Control	
0.010	o c.o	0-0100	0.3	0.0	0.0	0.0	0.0	0.0
0.325		0.3250 2.0000	9.3250 1.3000	1.0000	1.0000	1.0000	0.0	0.0
ALPHA -	0.72610E 0a			100				No. of the second
XM - 71.	10740E-03	in the second						
	93C1CE 16							
X4U = 0.50		50 R3U =	3.000 R3	L = 0.010				
SIGU - 1		2.00 SU		HI = 0.10E	-04 DELX4 = 0.1	0F-05		
TAU = 0.0	T81	= 2100.	T82 = 210	O. XLD	5.0			
KO = 0.360	1.21 = 0.1	65 X(4) =	0.100	HETA = 0.4	3836 05			
IX = 2 6 = 0.990	NLAM = 0 C = 1.000	NITER =		SC LM M = 0.0	DST = 0	Thursday.		
	1 0= 0.39025		.753760E 02		57817E 06 Z	- 0.1578176	06 LSTOP=	0
A 468 05				134 011		- 01110116	Estate in the second	
0.3053	98E U3 U.338	484E-01						
0.3652	67E 02 0.160	000E 00						
	53E C1 0.0							
-C.29C2	332 (1 000	The transport of the last					The second	
RADII ARE	- Salar Francisco	7557 0.3114 .33641E C3		0.48142 E 02 WZ =		48142 0.48 W3 = 0.442		
RADII ARE L = 0.4814	0.26557 0.2	.33641E C3	WI = 0.72575	E 02 WZ =	0.75376E 02	W3 = 0.442		0.76067E
RADII ARE L = 0.4814	0.26557 0.2 ZE OI AVZ = 0 Z O= 0.17911	.33641E C3	WI = 0.72575	E 02 WZ =	0.75376E 02	W3 = 0.442	200 03 WT 0	0.76067E
RADII ARE L = 0.4814	0.26557 0.2 ZE OI AVZ = 0 Z	.33641E C3 ZE 01 W= 0	WI = 0.72575	E 02 WZ =	0.75376E 02	W3 = 0.442	200 03 WT 0	0.76067E
RADII ARE L = 0.4814 R= 0.6349	0.26557 0.2 ZE OL AVZ = 0 Z	.33641E C3 ZE O1 N= 0 644E-O1	WI = 0.72575	E 02 WZ =	0.75376E 02	W3 = 0.442	200 03 WT 0	0.76067E
0.6349 -0.5923 -0.7911	0.26557 0.2 ZE OL AVZ = 0 Z	.33641E C3 ZE 01 W= 0 644E-01 109E 00 450E C3 0895 0.3410	WI = 0.72575	YSQ= 0.44	0.75376E 02 0.6695E 10 2	W3 = 0.442 = 0.4066958 51572 0.51	20€ 03 WY =	0.76067E
0.6349 -0.5923 -0.7911	0.26557 0.2 ZE 01 AVZ = 0 Z 0= 0.17911 69E 05 0.320 ZEE 04 0.164 ZZE 00 0.187 0.29895 0.3 ZEE 01 AVZ = 0	.33641E C3 ZE 01 N= 0 644E-01 109E 00 450E C3 0895 0.3410 .35996E 03	WI = 0.72575 .656371E 02	YSQ= 0.41 0.51512 2 02 W2 =	0.75376E 02 0.6695E 10 2 0.51512 0. 0.65837E 02	W3 = 0.442 • 0.406695E 51572 0.51 W3 = 0.403	200 03 WY =	0.76067E
0.6349 -0.5923 -0.7911 RADII ARE L = 0.5151	0.26557 0.2 ZE 01 AVZ = 0 Z 0= 0.17911 69E 05 0.320 ZEE 04 0.164 ZZE 00 0.187 0.29895 0.3 ZEE 01 AVZ = 0	.33641E C3 ZE 01 W= 0 644E-01 109E 00 450E C3 0895 0.3410	WI = 0.72575 .656371E 02	YSQ= 0.41 0.51512 2 02 W2 =	0.75376E 02 0.6695E 10 2 0.51512 0. 0.65837E 02	W3 = 0.442 • 0.406695E 51572 0.51 W3 = 0.403	200 03 WY =	0.76067E
0.6349 -0.5923 -0.7911 RADII ARE L = 0.5151	0.26557 0.2 ZE 01 AVZ = 0 Z 0= 0.17911 69E 05 0.320 ZBE 04 0.164 ZZE 00 0.187 0.29895 0.3 ZE 01 AVZ = 0 3 0= 0.11429	.33641E C3 ZE 01 N= 0 644E-01 109E 00 450E C3 0895 0.3410 .35996E 03	WI = 0.72575 .656371E 02	YSQ= 0.41 0.51512 2 02 W2 =	0.75376E 02 0.6695E 10 2 0.51512 0. 0.65837E 02	W3 = 0.442 • 0.406695E 51572 0.51 W3 = 0.403	200 03 WY =	0.76067E
Q.6349 -0.5923 -0.7911 RADII ARE L = 0.5151	0.26557 0.2 ZE 01 AVZ = 0 Z 0= 0.17911 69E 05 0.320 ZBE 04 0.164 ZZE 00 0.187 0.29895 0.3 ZE 01 AVZ = 0 3 0= 0.11429	.33641E C3 ZE 01 N= 0 644E-01 109E 00 450E C3 0895 0.3410 .35996E 03	WI = 0.72575 .656371E 02	YSQ= 0.41 0.51512 2 02 W2 =	0.75376E 02 0.6695E 10 2 0.51512 0. 0.65837E 02	W3 = 0.442 • 0.406695E 51572 0.51 W3 = 0.403	200 03 WY =	0.76067E
Q.6349 -0.5923 -0.7911 RADII ARE L = 0.5151; M= -0.2145	0.26557 0.2 ZE 01 AVZ = 0 Z 0= 0.17911 69E 05 0.320 ZBE 04 0.164 ZZE 00 0.187 0.29895 0.3 ZE 01 AVZ = 0 3 0= 0.11429	.33641E C3 ZE 01 W= 0 644E-01 109E 00 450E C3 0895 0.3410 .35996E 03 9E 01 W= 0 294E-01	WI = 0.72575 .656371E 02	YSQ= 0.41 0.51512 2 02 W2 =	0.75376E 02 0.6695E 10 2 0.51512 0. 0.65837E 02	W3 = 0.442 • 0.406695E 51572 0.51 W3 = 0.403	200 03 WY =	0.76067E
-0.2145 -0.1429	0.26557 0.2 ZE 01 AVZ = 0 Z 0= 0.17911 69E 05 0.320 ZEE 04 0.164 ZZE 00 0.187 0.29895 0.3 ZE 01 AVZ = 0 3 0= 0.11429 92E 07 0.297 Z7E 06 0.163 92E 00 -0.919	.33641E C3 ZE OI N= 0 644E-OI 109E OO 450E C3 0895	WI = 0.72575 .656371E 02 1 0.35101 W1 = 0.67828 .606518E 02	VSQ= 0.49 0.5'512 02 W2 = VSQ= 0.49	0.75376E 02 0.6695E 10 Z 0.5151Z 0. 0.65837E 02 64751E 13 Z	W3 = 0.442 = 0.4066958 51572 0.51 W3 = 0.403 = 0.4647518	512 0.51512 91E 03 WT =	0.76067E

.

Table B2 (continued)

No	44	0=	C.100000E					WZ = 0.59					0
	307230	-	0.29122		• • • • • • • • • • • • • • • • • • • •	717101 01	134				3446 04	23107-	
	051226		C.16361										e a continue
												1 81	*
	768376		0.11130										
L = 0.5			AV2 = 0.3	7975E 0	MI	- 0.64293	E 02	W2 = 0.59	154E 02		.38135E		0.99581E
No	45	0-	C. 10COCOE	Cl. W	0.5	91540E 02	420=	0.104162	E 04 Z	0.104	162E 04	LSTOP=	. 0
-0.3	157946	CZ	0.29122	5E-01									
0.4	70410	CI	0.16361	BE OC									
-0.9	536748	-C6	0.11073	5E 02						44.0	Er militar		
			70 0.340										
L = 0.5	4344E	01	AV2 = 0.3			= 0.64293							0.95511
N=	46	Ŭ=	0.100000E	01 W	0.5	9154GE 02	YSQ=	0.302119	E 04 Z	0.302	119E 04	LSTOP=	- · O
7.5	49556	CZ	0.29122	5E-01									
0.1	C376C	01	0.16361	BE GC								·	
0-9	53674E	-C6	0.11223	9E 02									
			7C 0.340		36982	0.37982				and the second contract of	0.54344		
			0.10000CE				-						
			Service Service		. 0.5	134CE 72	134-	11.3141211	. 02 .	0.3/1	1216 02	ESTOP-	
	633306		0.29122		4		= = =						
	552CGE		0.16361	BE CC			MI.		للأنه البال		ف أليه ف		
1 - 4 -	536746		0.10956					Y					
RADII A			70 0,340 AV2 = 0.3	70 0.	36982 3 MI	- 0.64293		W2 = 0.59			0.54344 .38135E		0.9958LE
N=	48	0=	0.10000CE	01 h	0.5	91540E 02	YSQ=	0.573656	02 Z	0.573	656E 02	LSTOP=	0
-0.6	289066	00	0.29122	5E-01	•	-40	2						
0.7	54785E	Cl	0.16361	BE 00			Mary Visa		W.				be all
-0.9	53674E	-C6	0.109569	9E 02									
RACII A	KE 0	.330 01	7C C.34G	70 C.	6982 WI	0.37982 = 0.64293	C.54	344 0.543 W2 = 0.59	344 0.5 154E 02	54344 W3 = 0	0.54344 .38135E	0.54344 03 WT =	
R=	49	t=	0.1000COE	01 W	• 0.5	9154CE 02	Y5Q=	0.573656	02 Z	0.573	656E 02	LSTOP=	0

Table B2 (continued)

-c	. 953674E-06	0-109569E 0	2							
RACII		07G G.34070 AVZ = 0.37975		0.37982						
- A.	50 Co	C-100000E 01	W= 0.	59154GE 02	Y5Q= 0	.573656E 02	Z= 0-5	73656E 02	LSTOP=	0
-0	.6285CFE 00	G.291225E-0								
- 0	.754785E CL	0.163618E O	9							_
•	.953674E-C6	0.109569E 0	2	· * 						
		070 C 47 46 AV2 . 7975								
N=	51 O=	0.100000E 01	W= 0.	591540E 02	YSC= 0	.573656E 02	Z= 0.5	73656E 02	LSTOP=	0
-0	.6289C6E 00	0.291225E-0			1					
c	. 754785E CL	0.163618E 0	G							
-с	. 953674E-C6	0.109569E C	2							
RADII	ARE 0.33	070 0.34070 AVZ = 0.37975	0.36982 C3 W	0.37982	0.54344 E02 72	0.54344 = 0.59154E	0.54344 02 W3	0.54344 0.38133E	0.54344 03 WT =	0.99581E 00
		070 C.3407C AV2 = 0.37975						0.54344 0.38135E		0.99581E 00

B3. MOPT = 4

We will illustrate the use of this sequence to calculate the rupture life of an alloy exposed to a constant stress rate, a problem different from the normal one of calculating the life of a capsule. The alloy T-222 is subjected to a constantly increasing stress rate, σ , of 3500 psi/hr at a temperature of 2460°R. The input constants (some are redefined), printed on the first 14 rows of the output (Table B3) are determined as follows:

- 1. Let TA = A = BETA = DELTA = PS = TA = NMAX = NQ = TAU = PC = 0. Let ETA = C = G = TC = X(I), I = 1,9 but $\neq 4 = P(I)$, I = 1,9 = XK(I), I = 2,10 but $\neq 9 = SC = SU = SID = 1.5$.
- 2. The constants GAMMA, SIGU, ALPHA, YK, and AM are chosen from a fit of T-222 rupture data.
- 3. Let TA1 = T81 = ZM = 2460. ZM cancels TA1 in the expression for SIGT.
- 4. Choose THET such that $\dot{\sigma}$ THET < SIGU; therefore, THET = 25.
- 5. Choose LAMBDA such that LAMBDA THET < 0.01; therefore LAMBDA = 10⁻⁴. This causes the expression [1 EXP(-LAMBDA T)] to produce LAMBDA T.
- 6. Choose $H = 10^4$ to cancel LAMETA.
- 7. Let RO = 0 and XK(9) = 3; therefore R(3) = XK(9) and VO = 0.
- 8. Let X(4) = 2 and E = 2.125. This causes E to cancel the term $[R(4)^2 + R(3)^2]/[R(4)^2 R(3)^2]$.
- 9. Let RR = $\sigma = 3500$.
- 10. Let PHI = 10^{-4} , Q = 10^{-3} , DELTH = DELOME = 10^{-2} , and THMAX = 10^{6} .

The computed value of THETA, determined in five iterations, is 19.33 hours; this compares with an experimentally determined value of 19.1 hours. The value of OMEGA is one since TIMAX was.not exceeded.

Table B3

DELTA = 0.0 RR = 3500.0		•00 G = 1 125 PS =		MA = 2.00 = 1.0				
R = 10000.000	ZM = 2	The second secon		TA1 = 2460.	.0	0 4	Aller Service	
MOPT = 4	MAX - C	NQ = 0						- 188 - 146
THE FOLLOWING	HREE ROWS A	RE THE CONTENT	S OF THE X.	P, AND XK	ARRAYS	5		
1.0000	10000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.000
1.0000	1.00C0	1.0000	1.00CO	1.0000	1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	3.0000	1.000
SIGU = 130000 Q = 0.10E-02 TAU = 0.0	DELTH = T81 =	2460.0 XL	DELUME = 0 C = 1.000	RO = 0.0	I.O = XAMHY	00E 07		1
	V/41 - 2/		0.250E 0	CATACLE CALAMITETIS INCAPPARATIVE CO. C. CALAMITETIS CO.				
x(2) 7 1.000				C.6503E-04				
X(2) = 1.000 ALPHA = 0.953	E 07 YK	= 0.4763E 13		TAXTOTA		AND THE PROPERTY OF STREET AND ADDRESS OF THE PARTY OF TH		10.707
X(2) = 1.000 ALPHA = 0.953! C.25C0000	E 02 YK	0.1276997E 02		6997E 02				
X(2) = 1.000 ALPHA = 0.9535 C.25C0000 0.2293690	E 07 YK	0.1276997E 02 0.5114078E 01	0.511	4078E OL		· ·		
X(2) = 1.000 ALPHA = 0.953! C.25C0000 C.2293690 C.2110220	E 07 YK E 02 (E C2 (E)))))))))))))))))))))))))))))))	0.1276997E 02 0.5114078E 01 0.2253933E C1	0.511	4078E 01 3933E 01		N 1		
X(2) = 1.000 ALPHA = 0.953! C.25C0000 C.2293690 C.2110220 0.1986649	E 07 YK E 02 (E 02 (E 02 (E 02 (0.1276997E 02 0.5114078E 01 0.2253933E C1 0.1283113E C1	0.511 0.225 0.128	4078E 01 3933E 01 3113E C1		V		
X(2) = 1.000 ALPHA = 0.953! C.25C0000 C.2293690 C.2110220	E 07 YK E 02 (CE	0.1276997E 02 0.5114078E 01 0.2253933E C1	0.511 0.225 0.128 0.102	4078E 01 3933E 01		X 2		

APPENDIX C

List of CAPSUL Program

```
PROGRAF CAPSUL
      DIMENSION SIGNA(500). 7(500). THETA(500). THETB(500). SIGB(500)
      REAL LMP(500). DLTH(500). DLSG(500)
      COPPON/CON/ K. SICU. ALPHA. YK. XM. PHI. C. DELTA. DELOME, THMAX.
     ITAU. TRI. T92. XLC. RO. R(B). GAMMA. RR. E. PS. TS. H. ZM. LAMBDA.
     2TA. NO. X(9). P(9). XK(10). A. ETA BETA, TNIT, TERM. T8, SC. SU.
     3N. NN. DELTH. AV2. NMAX. L. WI. W2. M3. THET. WT. TAL
      REAL LAMBDA. L
      COMMON/MAX/IX.M.ALAM.ALF(19).C.CSO.DH.WH
      EQUIVALENCE (XK(1),OMEGA)
      COMMON/LIM/X4U. X4L. R3U. R3L
      COMMON/NIC/CRIT. NITER. ITER
      COMMON/DELS/DELRO. DELX2. DELX4
      CCPMON/CCNVG/XX(19.1).RK.LMOST.LSTOP.JWAY.G
C+++ VARIABLES USED IN THIS PROGRAM FOR DECIDING OPTIONS
     MOPT DECIDES ON SEQUENCE TO USE
       MOPT=1 LSTSO IS USED ALONE
       MCPT=2 LSTSO. MAX. LIMIT. AND DF ARE USED
       MOPT=3 MAX. LIMIT. AND DF ARE USED
       MOPT=4 THETA ALCNE IS USED
C
     NMAX DECICES ON SEQUENCE TO USE IN MAX
       NMAX=1 THREE INDEPENDENT VARIABLES
       NMAX=2 X(4) IS SPECIFIED
       NPAX=3 R(8) IS CONSTANT
C
       NMAX=4 R(3) IS CONSTANT
       NMAX=5 RZFRO IS TO BE COMPUTED
    NO CECICES FUNCTION TO BE MAXIMIZED
             POWER/PROJECTED AREA
             POWFR/VOLUME OF CIRCUMSCRIBED RECTANGULAR PARALLELEPIPED
       NO=2
       NO=3 POWER/WFIGHT
   90 REAC(5C.100) MOPT. NMAX. NO
      IF(#CPT-1) 13.10.91
C+++ COMPON CONSTANTS FOR MOPT=2.3.AND 4 FOLLOW
   91 RFAD(50-111) GAMMA-RR-E-PS-TS-H-ZM-TA
      READ(50.111) T8.A.LTA.BETA.DELTA.C.G.TAl
      READ(5C.150) LAMBDA.N.NN
      READ(50.112) (X(1).1=1.9).(P(1).1=1.9).(XK(1).1=2.10)
  100 FORMAT(312)
  110 FORPAT(3E10.0)
  111 FORMAT(8F10.0)
  112 FORMAT(SF8.0)
  150 FORMAT(E10.3. 213)
      WRITE(51.892) TA. A. ETA. BETA. DELTA. C. G. GAPMA. RR. E. PS. TS.
     1 H. 7M. TA. TAL. LAMBDA. N. NR
  892 FORMAT( 118 = .F7.1.5x. A = .F10.1.5x. ETA = .F5.1.5x. BETA = .
     1F8.4./. ! DFLTA = "F8.4.5X. "C = ".F6.2.5X. "G = ".F6.2.5X. "GAMMA = ".
     2F5.2./. RR = -.F1C.1.5x. E = -.F7.3.5x. PS = -.F6.2.5x. TS = -.F6.1.
     3/.. H = .. F 1 2. 3. 5 X .. 'ZM = .. F 7. 1. 5 X .. TA = .. F 7. 1. 5 X .. TA 1 = .. F 7. 1.
```

4/-1	IAMBDA = ".E15.5.5X. "N = ".[4.5X. " NN = ".[4]
	F(51.890) MOPT.NMAX.NO
	AT (RHOAL PHA =, E15.5./.5H XM =, E15.5./.5H YK = . E15.5)
	AT(OMOPT = 1.13.5X. NMAX = 1.13.5X. NQ = 1.13)
	F(51.891) (X(1).1=1.9).1P(1).1=1.9).(XK(1).!=2.10)
	NATICOTHE FOLLOWING THREE ROWS ARE THE CONTENTS OF THE X. P. AN
	ARRAYS • . / / . (9F12-4))
	O (10.10.20.30). MOPT
	ANTS FOR LSTSG ROUTINE
LO DEAL	(50-101) K. SIGU. GAMMA. (SIGMA(1).T(1).THETA(1).I=NNN.K)
	.FC.0) GO TO 95
	AT (13,2F1C.0,/(3F20.C))
	LSTSQ (K.SIGU.GAMMA.SIGMA.T.THETA.ALPHA.XM.XKO)
	H=0.0
	G=0.0 G=0.0
-	09 l=1.K
	G/XP/T(I)
	R(1)=1.0/xKG*(.Cl*ALPHA/SIGMA(1)/SIGU)+*EX+(SIGU+* MA-SIGMA(1)~
S168	(1)= ((ALPHA++GAMMA+SIGU++GAMMA)/(ALPHA++GAMMA + SIGU++GAMMA+
	+THETA(1))++(GAMMA+XM+T(1)))
	1}=T(1}+ALOG;C(XKO+THETA(1))
	(1)=ALOGIO(3IGMA(1)/SIGB(1))
	G-SELSG+(DLSG(1))++2
	([!=ALCGIC: THETA([)/THETB([))
	H=SELTH+(DLTH(1))++2
	G=RESIG +((SIGMA(I)-SIGR(I))++2)/SIGB!1)++2
1109 CONT	
	H=SCRT(SELTH/(x-3.0))
	G=SORT(SELSG/(K-3.0))
	G=SQRT(RESIG/(K-3))
WRIT	F(51.522) K. SIGU. GAMMA. ALPHA. XM. XXO. SELTH. SELSG.
	G.(I. SIGMA(I). T(I). THFTA(I). LMP(I). THETB(I). SIGB(I).
522 FORM	AT('1K ='.14.5X.'SIGU ='.F9.0.5X.'GAMMA ='.F5.2 ./.
1º AL	PHA =1.E15.6.5x. "XN =1.E15.6.5X. "XKO =1.E15.6./.
21 SF	LTH = 1.E15.6.5X. 1 CELSG = 1.E15.6.5X. 1RESIG = 1.E15.6.//.
3º 1	1.16. "SIGNALI)", T.6. "T())", T23. "THETALLI", T38. "LMP(1)".
4751.	*THFTB(1)*.T66.*SIGB(1)*.T80.*DLTH(1)*.T94.*DLSG(1)*./.
	F9.0.F7.0.F11.2.2X.E12.5.2X.E12.5.2X.E12.5.2X.E12.5.2X.E12.51)
NNN=	
5.5	C 10
	O (90.25).MOPT
100 101 100 100	ANTS FOR USE IN MAX
the same of the last of the la	(5C.110) ALPHA.YK.XM
	F(51,103) ALPHA, XM, YK
25 CDAT	
	(50.11)) X4U. X4L. R3U. R3L

```
WRITE(51,1261 X4U, X4L, R3U, R3L
  126 FORMAT( OX4U = . . F6.3.5X. "X4L = . . F6.3.5X. "R3U = . . F6.3.5X, "R3L = .
      READ(50.241) SIGU. SC. SU. PHI. C. DELRO. DELX2. DELX4. TAU. T81.
     1782, XLU. RO. X(2), X(4), THET
  241 FORMAT(4E2G.0)
      WRITE(51.242) SIGU. SC. SU. PHI. O. DELRO. DELX2. DELX4. TAU. T81.
     1182. XLD. RO. X(2). X(4). THET
242 FORMATI OSIGU = FLO.0.5X. SC = F.F. 2.5X. SU = F. F. 2.5X. PHI = 7
     1E10.2./. 0 = . E10.2.5x. DELRO = . E10.2.5x. DELX2 = E10.2.5x.
     2'DFLX4 ='E10.2./." TAU =".E11.3.5x."TB1 =".F8.0.5x."T82 =".F8.0.5X
     3'X1D = F6.1./. RO = F6.3.5X. X(2) = F6.3.5X. X(4) = F6.3.5X.
     4'THETA =".E12.4)
      RFAD(50.402) IX. MLAM. NITER. ITER. LMOST. G. C. CRIT. ALAM
 402 FORMAT(514./.4F10.0)
      WRITE(51.403) IX. NLAM. NITER. ITER. LMOST. G. C. CRIT. ALAM
 403 FORMAT( OIX = 1.14.5X. 'NLAM = 1.14.5X. "NITER = 1.14.5X. "ITER = 114.5X.
     l*| MOST =*.14./* G =*F6.3.5X.*C =*F6.3.5X.*CRIT =*F8.5.5X.*ALAM =*.
     2 F6.31
  POC NMAX1=NMAX
      D=MAL
      CALL VSU
 61 CALL DR
      1+416=446
      IF(JAN.GT.100) GO TO 66
      IFIGH-GT.4.01 67.63
  63 JFIDH.LT.Q.3) 64,65
  65 KRTTF(51.4) RO. (R(1).1=1.8). L. AVZ. WI. WZ. W3. MT
      GO TO 90
   62 \times (2) = 0.95 \times (2)
      CALL VSU
      GG TO 61
  64 X(7) = 1.05+X(; \
      X(4) = 0.95+X(4)
      CALL VSU
      60 TO 61
  65 CONTINUE
      CALL MAXINLAM)
      NOTENC $ NC=0
      CALL WR
      CALL LIMIT
      WRITE(51.4) RO. (R(1).1=1.8). L. AV2. W1, W2, W3. WT
    4 FORMAT('ORADII ARE'.9F10.5./.' L ='.E12.5.3X.'AV? ='.E12.5.3X.
    1'W1 = 1.F12.5.3X. "H2 = 1.E12.5.3X. "W3 = 1.E12.5.3X. "WT = 1.E12.5)
      IF (NPAX.EC.NMAX1) 9C.900
C+++ THE FOLLOWING ARE THE CONSTANTS USED IN CALCULATING THETA
  30 READISC.1101 ALPHA.YK.XM
      RFAC(5C.210) SIGU. SC. SU. PHI. U. DELTH. DELONE, THMAX. TAU. TRI.
```

```
XLC. RO. X(2). X(4).THET
210 FORMAT (4F20.0)
    WRITE(51.211) SIGU. SC. SU. PHI. Q. VELTH. DELOME, THMAX. TAU.
   1 TAT. Y_D. RC. X(2). X(4). THET. ALPHA. YK. XM
711 FURMAT( OSIGU = "F10.0,5x. SC = 1.F5.2.5X. SU = 1.F5.2.5X. PHI = 1.
   1 F10.2./. Q = 1. F1G.2.5X. UFLTH = 1.F10.2.5X. DELOME = 1.E10.2.
   75x. 'THMAX ='. F10.3,/.' TAU ='. F10.3.5x. T81 = F8.1.5X. XLD = .
   3F7.3.5x.9KC = "F6.3./. X(2) = ".F6.3.5x, "X(4) = ".F6.3.5X. THET = ".
   4 +12.3./. ALPHA = 1-E12.4.5X. YK = 1.E12.4.5X. XM = 1.E12.4)
    CALL THETAC
    MRITF(51.72) THET. CMEGA
 72 FORMAT( OTHFTA= F15.6.5X. UMEGA = F15.6)
    G() T() 90
 13 END
    SLARDUTINE LSTSQ (K.SIGU.GAMMA.SIGMA.T.THETA.ALPHA.XM.XKO)
    DIPHNSIUN SIGMA(503). 1(500). THETA(500). Y(500). Z(500).
   1 A(3.3). X(3)
    SIG = SIGU++GAMMA
    CO 10 1=1.K
    SIGI = SIGPA(I) **GAHMA
    Y(I) = ALOG(SIG+SIGI/(SIG-SIGI))
10 7(1) = T(1)*ALOG(THETA(1))
    00.20 \cdot 1 = 1.3 \cdot 5 \cdot 7(1) = 0.0
    GG 20 J=1.3
70 A(1.3)=0.0
    DC 30 1=1.K
    \Delta(1.2) = \Delta(1.2) + T(1)
    A(1.3) = A(1.3) + Z(1)
    A(7.2) = A(2.2) + T(1)**2
    A(2.3) = A(2.3) + T(1)*Z(1)
    A(3.3) = A(3.3) + 7(1)**2
    x(1) = x(1) - y(1)
    x(2) = x(2) - T(1) + y(1)
30 \times (31 = \times (3) - 7(1) + 7(1)
    A(1.1) = -K + A(2.1) = -A(1.2)
    A(3.1) = -A(1.3) + A(3.2) = A(2.3)
    CALL MATCIA.X.3.1.CFT.3.3)
    A1=x(1) $ A2=x(2) $ A3=x(3)
    ALPHA = EXP(A1/GAMMA)
    XM= A3/GAPPA
    XKC=EXP(A2/GAMMA/XM)
    RETURN
    FNC
    SURROUTINE CONVERTINMAX.X.ALF.R.RO)
    CIMENSION X(9). ALFIL9).R(8)
    GO YC (10.20.30.40.50).NMAX
 10 RO=ALF(1)
```

	$X(2)=\Delta LF(2)$
	X(4)=ALF(3)
	RFTURN
20	RO=ALF(1)
	X(2)=ALF(2)
	RETURN
30	x(2)=ALF(1)
	X(4)=ALF(2)
	RO=R(R)-X(1)-X(2)-X(3)-X(4)-X(5)-X(6)-X(7)-X(8)
	RETURN
40	X(2)=ALF(1)
	X(4)=ALF(2)
	R0 = R(3) - X(1) - X(2) - X(3)
	RFTURN
<u>50</u>	X(2)=ALF(1)
	X(4)=ALF(2)
	CALL RZERO
	RFTURN
	END
	SUPROUTINE WR
	COMMON/MAX/IX.M.ALAM.ALF(19).C.CSO.DH.WH
	CCPMCN/CON/ K. SIGU. ALPHA. YK. XM. PHI. O. DELTA. DELCME. THMAX.
	ITAU. TRI. TRZ. XLD. RO. R(B). GAPMA. RR. E. PS. TS. H. ZM. LAMBDA.
	2TA. NO. X(9). P(9). XK(10). A. ETA. BETA. TNIT. TERM. T8. SC. SU. 3N. NN. DELTH. AVZ. NMAX. L. WI, WZ. W3. THET. WT. TAI
	REAL LAMPDA. L CALL CONVERTINMAX.X.ALF.K.RO)
	K(I)=RO+X(I)
	DO 4C I=2.8
40	R(I)=R(I-1)+X(I)
40	XI 2=2.0*(XLD575)*R(8)5*(1.0+R(4))-2.0*(X(1)+X(9))
	AV7=A+X1 7+3.14155+(R(2)++2-R(1)++2)
_	60 TO (1C.2C.3C) NC
10	
10	WH = AV7/(4.0*XLD*R(8)*(R(8) + BETA))
	bl=h+
20	WH = AV2/(8.0*XLD*R(8)*(R(8) + BETA)*(R(8) + DELTA))
	IF(NO.NF.O) RETURN
	W2=WF
30	CALL WHT
	WH = AV2/WT
	w3=WH
-	RETURN
	END
	CHROCHTINE LUT

SUPRCUTINE WHT COMMEN/CON/ K. SIGU. ALPHA. YK. XM. PHI. Q. DELTA. DELCME. THMAX. ITAU. TAI. TAZ. XLD. RC. R(8). GAMMA. RR. E. PS. TS. H. ZM. LAMBDA.

```
2TA. NO. X(9), P(9), XK(10), A. ETA, HETA, TNIT, TERM, TH. SC. SU.
   3N. NN. DELTH. AV2. NMAX. L. WI. W2. W3 THET. WT. TAI
   RFAL L.12.L4.V(5)
   L = 2.0 + \times LD + R(8)
   L4 = 2.C*(XLU - .575)*R(8)

L2 = L4 - .5*(1.G + R(4)) - 2.0*(X(1) + X(9))
   R(1) = RC + X(1)
    00 60 1 = 2.8
60 R(1) = R(1-1) + x(1)
   VO = 3.1416*RU**2*L2 + 2.409*((R(3, AK(9))**3) + 1.5708*((R(3)-
  1 XK(9))**2)*(1.C+R(4))
   V(1) = 3.1416*(L2 + 2.0*X(1))*(R(1)**2 - R0**2)
   V(2) = 3.1416 + L2 + (R(2) + +2 - R(1) + +2)
   V(3) = 3.1416*(L2 + 2.0*X(1))*(R(3)**2 - R(2)**2)
   V(4) = 3.1416*L4*K(4)**2 + 2.409*R(4)**3 - V(1) - V(2) - V(3)
   1 - 6.283*R(3)**2*X(9) - VC
   V(5) = 3.1416 + L4 + (R(5) + + 2 - R(4) + + 2 + 409 + (R(5) + + 3 - R(4) + + 3)
   V(6) = 3.1416 + L4 + (R(6) + +2 - R(5) + 2.409 + (R(6) + +3 - R(5) + +3)
   V(7) = 3.1416*(L - .575*R(8))*(R(7)**2 - R(6)**2) + 3.1416*R(7)**2
   1 *X(7) + 1.204*(R(7)**3 - R(6)**3)
   V(8) = 3.1416 + (1 - .575 + R(8)) + (R(8) + +2 - R(7) + +2) + 3.1416 + R(8) + +2
   1 + x(R) + 1.204 + (R(8) + 3 - R(7) + 3)
   V(9) = 6.283 \times K(3) **2 \times X(9)
   WT = 0.0
   DO 79 I=1.9
70 \text{ WT} = \text{WT} + \text{V(I)} + \text{P(I)}
   RETURN
    END
   SUBROUTINE VSU
   COMPENSONS K. SIGU. ALPHA. YK. XM. PHI. O. DELTA. DELCHE. THMAX.
  ITAU. TRI. TRZ. XLD. RO. RES). GAMMA. RR. E. PS. TS. H. ZM. LAMBDA.
  2TA. NG. X(9). P(9). XK(10). A. ETA. BETA. TNIT, TERM. TS. SC. SU.
   3N. NN. DELTH- AV2. NMAX. L. WI. W2. %3. THET. WT. TAI
   COMMEN/SETUP/W.D.WF&(19).UFD(19).WSD(19.19).DSD(19.19).UEL(19).WEL
  1(19)
   CCMMON/MAX/IX.M.ALAM.ALE(19).C.CSQ.CH.WH
   COMMON/DFLS/DFLRO. DELX2. DELX4
   TERM=THFTSTNIT=0.0
   GO TO (10:20.30.40.50).NMAX
10 DFI (1)=WEL(1)=DELRO
   DEL (2)=WEL(2)=DELX2-
   DEL (3)=WFL (3)=DELX4
   ALF(1)=RO
   ALF(2)=X(2)
   ALF(3)=X(4)
   1X=3
   RETURN
20 DFI(1)=WEL(1'=DELRO
```

```
DFL(2)=WFL(2)=DELX2
      ALF(1)=RO
      ALF(2)=X(2)
      1 X = 2
      RETURN
   30 DEL(1)=WEL(1)=DELX2
      DEL(2)=WEL(2)=DELX4
      ALF(1)=x(2)
      ALF(2)=X(4)
      1X=>
      RETURN
   40 DEL(1)=WEL(1)=DELX2
      DF1 (2)=WFL(2)=UELX4
      RO = R(3) - X(1) - X(2) - X(3)
      ALF (1) = X(2)
      ALF(2)=x(4)
      1 X = 2
      RETURN
   50 DEL())=WEL(1)=DELX2
      DE1 (2)=WEL(2)=DELX4
      ALF(1)=X(2)
      A1 F(7) = X(4)
      1X=2
      RETURN
      END
      SUBROUTINE RZERO
      COMMON/CON/ K. SIGU. ALPHA. YK. XM. PHI. O. DELTA, DELOME. THMAX,
     1TAU. TRI. TRZ. XLC. RO. R(8). GAMMA. RR. E. PS. TS. H. Z. LAMBDA.
     27/ NO. X(9). P(9). XK(10). A. ETA. BETA. TNIT. TERM. T8. SC. SU.
     3N. NN. DELTH. AV2. NMAX. L. WI. W2. W3. THET. WT. TAI
      REAL L2
C*** SUBROUTINE CALCULATES A RO BY NEWTONS METHOD
      M=0
      HSIN = ALOG(\lambda LD + SORT(\lambda LD**2 + 1.C))
      8 = 4.0*XK(10)*XLD*(182 - TA)/A /HSIN
      RC = B/(4.C*X(2)*(XLD-.825)) - X(1) - X(2)/2.C
   35 R(P) = RO
      DO 10 1=1.8
   10 R(8) = R(8) + X(1)
      1.7 = 2.0*(XLD - .575)*R(8) - .5*(1.0 + R0 + X(1) + X(2) + X(3) +
     1x(4)) - 2.0*(x(1) + x(9))
      V2PIF = L2*(2.0*X(2)*(R0 + X(1)) + X(2)**2)
      IF(ABS((B*R(8)-V2PIE)/B/R(8)).GT.1.0E-61 30, 31
   30.30 = RO - (R*R(R) - V2PIE)/(R-2.0*(XI,D-.825)^*(2.*X(2)*(RO+X(1))+
     1X(2)**2) - 2.0*X(2)*L2)
      M = M + 1
      IF (M.GT.10) GO TO 31
      GJ TC 35
```

31 CONTINUE
JF (RO.GT.O.O) RETURN
RC=, 20
RETURN
END
The second secon
SUBROUTINE LIMIT
COMMON/LIM/X4U. X4L. K3U. R3L
COMMON/CON/ K. SIGJ. ALPHA. YK. XM. PHI. Q. DELTA. DELOME, THMAX,
17AU. 181. T82. XLD. RU. R!8). GAMMA. RR. E. PS. TS. H. L. LAMBDA.
2TA. NO. X(9). P(9). XK(10). A. ETA. BETA. TNIT. TERM. T8. SC. SU.
3N. NN. DELTH. AVZ. NMAX. L. WI. WZ. W3. THET. WT. TAI
GO TO (10.20.30).NMAX
10 IF(X(4).GT.X4U) 40.50
$40 \times (4) = \times 40 + NMAX = 2$
RETURN
50 IF(X(4).LT.X4L) 6C.70
$60 \times (4) = \times 4L . 5 \text{ NMAX} = 2$
RETURN
70 IF(R(3).GT.R3U) 8C. 90
$\frac{80 \text{ R(3)}}{80 \text{ R(3)}} = \frac{830 \text{ S}}{100 \text{ NM}} = \frac{4}{100 \text{ NM}}$
RETURN
90 IFIR(3).LT.R3L) 1CC. 110
100 R(3) = R3L S NMAX = 4
110 RETURN
20 IF(R(3).GT.R3U) 120. 130
120 R(3) = R3U \$ GU TO 160
130 IF(R(3).LT.R3L) 140, 150
140 R(3) = R3L \$ GU TO 160
150 RETURN
160 R0 = R(3) - X(1) - X(2) - X(3)
CALL DF
RETURN
30 IF(X(4).GT.X4U) 170.180
$170 \times (4) = \times 40 + 60 \times 100$
180 IF(X(4).LT.X4L) 190,200
190 X(4) = X4L \$ GO TO 210
200 RETURN
21C CALL DE RETURN
FND
SUBROUTINE DE
COMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
COMMON/CON/ K. SIGU. ALPHA, YK. XM. PHI. Q. DELTA, DELOME, THMAX,
1TAU. T81. T82, XLD. RO. R(8). GAMMA. RR. S. PS. TS. H. Z. LAMBDA.
2TA. NO. X(9), P(9), XK(10). A. ETA. BETA. TNIT. TERM. T8. SC. SU.
3N. NN. DELTH. AV2. NMAX. L. WI. W2. W3, THET. WT. TAL
COMMON/DELS/DELRO. DELX2. DELX4

33	CALL DR
	CI = CH
	IF(ABS(01-1.0).LF.0) 30. 31
31	X(2) = X(2) + DELX2
	CALL DR
	x(2) = x(2) - DELX2 - (DI-1.0)/(DH-DI)*DELX2
	GO TO(10.10.33).NMAX
10	R0=R(3)-X(1)-X(2)-X(3)
	60 10 33
30	RETURN
	END .
	SUBROUTINE THETAC
41	COMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
	EQUIVALENCE (XK(1), OMEGA:
	COMMON/CON/ K. SIGU. ALPPA. YK. XM. PHI. Q. DELTA. DELOME. THMAX.
1	ITAU. TRI. TRZ. XLD. RO. R(R). GAMMA. RR. E. PS. TS. H. ZM. LAMBDA.
	PTA. NG. X(9). P(9). XK(10). A. ETA. BETA. INIT. TERM. T8. SC. SU.
	BN. NN. DELTH. AVZ. NMAX. L. WI. WZ. W3. THET. WT. TAL
*	REAL LAMPDA. L
	NSTOR=N \$ 180=18
	TAC=TA
	D3 = D4 = TNIT = 0.0
	L = 0
	CMEGA =1.0
	SC1 = SC S SU1 = SU
	TERM=TAU \$ N=NN
	IF(INIT.EQ.TERM) GO TO 10
	CALL DR
	03 = 0H
10	TNIT=1AU \$ 18=181
	TA = TAI
20	TERM=THET \$ N=NSTOR
	CALI DR D4 = DH+D3
	WRITE(51.100) THET.D4.DH
100	FORMAT (3E20.7)
100	IF(D4.LT.1.0.AND.THFT.GE.THMAX) GU TO 40
	IF(ABS(D4-1.0).LF.Q) RETURN
	TERM = TERM + DELTH
	CALL DR
	D5=D3+OH
	THET = TERM - DELTH - (D4-1.0)*DELTH/(D5-D4)
	GO TO 20
40	TNIT=G.0 \$ T8=T80
	TA=TAO
	TERMETALL \$ N=NN
	OMEGA1=CMEGA+OFLOME
	SC=OMEGA1*SC1 \$ SU=OMEGA1*SU1

```
C3=C4=0.C
          IF(INIT. EC. TERM) GC TO 41
          CALL DR
          C3=CH
          SC=OMFGA*SC1 $ SU=CHEGA*SU1
          CALL ER
          C4=CH
  41 TNIT=TAU $ 18=T81
          TA=TAI
          TERMETHMAX & NENSTOR
          SC=OMFGA1*SC1 $ SU=OMEGA1*SU1
         CALL ER
          C5=CH
          SC=GFFGA+SC1 $ SU=CHEGA+SU1
          CALL DR
          C6=CH
          D9=C4+C6
          WRITE(51.100) TERM. D9. GMEGA
          IF(ARS(E4+D6-1.G).GT.Q) 30. 31
  30 DMFGA=CMFGA - (U4+G6-1.0)+DELUME/(D3+U5-B4-D6)
         1=1+1
          IF(1.GT.10) 31. 4C
 31 THET = TERM
          RETURN
         END
          SUBROUTINE DR
         COMMON/CON/ K. SIGU. ALPHA. YK. MM. PHI. O. DELTA. DELOME. THMAX.
       ITAU. TRI. TRZ. XLD. RO. R(R). GAPMA. RR. E. PS. TS. H. ZM. LAMBDA.
       2TA. NO. X(9). P(9). XK(10). A. ETA. BETA. TRIT. TERM. T8. SC. SU.
       3h. Ph. DELTH. AVZ. NMAX. L. MI. WZ. W3. THET. WT. TAI
         CCMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
          REAL LAMPEA. L.L7.L4
          EQUIVALENCE (XKC.YK). (AO.A.AZ)
         DIFF=TFRP-INIT
          IF(NFAX.NF.U.AND.NG.NE.O) CALL CONVERT(NMAX.X.ALF.R.RG)
         D1=SUM=C.O S NT=1
          R(1) = x(1) + R0
110 DC 80 I=2.8
  8C R(I) = R(I-1) + X(I)
          00 190 J=4.8
190 SUM = SUM + 1.0/XK(J)*ALCG(R(J)/R(J-1))
         L2 = 2.0*(XLD - .575)*R(9) - .5*(1.0+R(4)) - 2.0*(X(1) + X(9))
          VO = 3.1416*RC**2*L2 + 2.409*((R(3)-XK(9))**3) + 1.5708*((R(3)-XK(9))**3) + 1.5708*((R(3)-XK(9))**3)
       1 XK(9))**2)*(1.C+R(4))
          V2 = 3.14159 \pm 1.2 \pm (R(2) \pm 2.2 - R(1) \pm 2)
         T40=TA+(TR-TA+A*V2/6.2832/L2*SUM)
         TO = 140 + A0*V2/(6.28318+L2+XK(3))+ALCG(R(3)/R(2)) + A0/4.0/XK(2)
       1+(R(2)++2 - R(1)++2 - 2+R(1)++2+ALOG(R(2)/R(1)))
```

C1 = RR/E/(VC + ETA+V2) + (R(4) + + 2 + R(3) + + 2)/(R(4) + + 2 - R(3) + + 2)
• $C2 = T8 - TA + A2*V2/6.28318/L2*SUM$
$C_{i}^{2} = 0.0 \text{ s N1} = \text{N}$
C3=PS+(VO+FTA+V2)/RR/TS
C4=P(2)*V2*H/ZM
CALL SFTFAULT(5.5HEU=-1)
DO 9C T=TNIT.TERM.CIFF
SIGT = C1*(C3 + C4*(1.0 - FXP(-LAMBDA*T)))*(TA +(TO - TA)*
1EXP(-LAMBDA+T))
T4 = TA + C2*EXP(-LAMBDA*T)
90 D1 = D1 + XKO+(SC++GAMMA+SICU++GAMMA+SIGT++GAMMA/ALPHA++GAMMA/
1 (SIGU**GAMMA - SU**GAMMA*SIGT**GAMMA})**(1.0/GAMMA/XM/T4)
SIGG = SIGU**GAMA & SUGA = SU**GAMA
302 NPT = 1 \$ 0.0
DO 1G J=1.N1-1
EX=FXP(-LAMBDA+(TNIT+J+D1FF/N1))
29 SIGT = C1*(C3 + C4*(1.0 - EX))*(TA + (TO - TA)*EX)
T4 = TA + C2*EX
F =XKO+1SC**GAMMA*SIGG*SIGT**GAMMA/ALPHA**GAMMA/(SIGG - SUGA*
1 SIGT++GAMMA))++(1.0/GAMMA/XM/T4)
GO TO (11.12), NPT
11 D2 = D2 + 4.C*F \$ NPT = 2 \$ GU TO 10
12 D2 = D2 + 7.0 + 5 NPT = 1
10 CONTINUE
GO TO (300.301).NT
3CC D3=DIFF*(C1+02)/3.C/N1 \$ N1=2*N1 \$NT=2 \$ GC TO 302
301 D2=D1+D2 \$ D2=D1FF*D2/3.0/N1
IF (ABS((C2-C3)/92).LT.PHI) 3C4. 3C5
305 D3 = D2 \$ N1=2*N1
IF(N1.GT.16*N) 306, 302
306 WRITF(51.247)
247 FCRMAT(FAILED TO CCNVERGE')
304 DH = D2
CALL SFTFAULT(4.4HEU=0)
END
SUBROUTINE MAX(NLAM)
CGMMCN/CONVG/XX(19.1).RK.LMOST.LSTOP.JWAY.G
CBMMON/MAX/IX.M.ALAM.ALF(19).C.CSO.DH.WH
CCMMCN/MATQ/A(19.19).X(19.1).NR.YSQ.Z
COMMON/NIC/CRIT. NITER. ITER
CRITSC=CRIT**2
CSQ=C*C
NR=IX+1
M=1
4 CALL SETUP
IF(NLAM)10.5.10
5 CALL GTALAM
C FIRST LAMBCA COMPUTED IN SUBR. GTALAM
TANGE EFFOR MOTOTED IN SOUND STREET

		Au 3-4-1
C		NLAM=1 FIRST LAMEDA FROM INPUT
C	10	CALL VECT
_	10	CALL CCNVG
		CALL OUTPUT
-		
	1.0	IF(JNAY)100.35.12
_	1/	IF(NITER)15.15.20
C	1.5	TEST ON NUMBER OF CUIER ITERATION
_	15	IF(M-ITER) 25.75.100
C	2.0	CONVERENCE CRITERIA TEST
		IF!7-CRIISO)1CO.100.15
	77	CALL ARITH
		CALL MATCIA.X.MR.1.DET.LS.19)
		N=M+1
_	20	LSIGP=0
	10	CALL STEP
-	100	GC TC 4
	100	RFTURN
		FND MAX
		CHOOCHTINE CETHO
_		SUBROUTINE SETUP COMMON/SETUP/W.D.WED(19).DED(15).WSD(19.19).DSD(19.19).GEL(19).WEL
-		CCPMON/MAX/IX.M.ALAM.ALF(19)-C.CSC.DH.WH
_		COMPUTES QUANTITIES IN LABELED COMMON SETUP
C		CALL DR
•		COMPUTE FIRST AND SECOND DERIVATIVES OF FON D
<u>C</u>		D=D+
		DÐ 40 I=1∙IX
_		SIGRI=ALF(1)
		A[F(I)=ALF(I)+CEL(I)
-		CALL OR
		CPODH .
		ALF(I)=STORI-DEL(I)
		CAL: OR
-		DM=DH
		DFD(1)=(CP-DM)/(2.*DEL(1))
-		DSD(1,1) = (DP+DM-2,*D)/(DEL(1)**2)
		J=1
	4	IF(IX-J140.1.1
		IF(J-1)13.3.2
-		$DSD(I \cdot J) = DSD(J \cdot I)$
		J=J+1
_		GO TO 4
	2	STCRJ=ALF(J)
_		ALF(J)=ALF(J)-DEL(J)
		CALL DR
		C3=DH
		ALF(J)=SIORJ+CEL(J)

-		CALL DR
		02=DH
		ALF(I)=STOR!+DEL(!)
		CALL DR
		D1=DH
		ALF(J)=STORJ-DEL(J)
		CALL DR
		D4=DH
		ALF(I)=STORI-DEL(I)
		ALF(J)=STCRJ
		OSD([.J)=(D1+D3-D2-D4)/(4.*DEL(I)*DEL(J))
		GO TO 3
	40	ALF(I)=STORI
		CALL WR
C		COMPUTE FIRST AND SECOND DERIVATIVES OF FCN H
		W=WH
		DO 60 I=1.IX
		STORI = ALF(I)
		ALF(I)=ALF(I)+WEL(I)
		CALL WR
		WP=WH
		ALF(I!=STORI-WEL(I)
		CALL WR
		WM=WH
		WFD(I)=(WP-WM)/(2.*WEL(I))
		WSD(I.I)=(WP+WM-2.*W)/(WEL(I)**2)
		J=1
	24	IF(IX-J)60.21.21
		IF(J-I)213.23.22
		WSD(1.J)=WSD(J.I)
-		J=J+1
	_	GO TO 24
	22	STORJ=ALF(J)
		ALF(J)=ALF(J)-WEL(J)
		CALL WR
		W3=WH .
		ALF(J)=STORJ+WEL(J)
		CALL WR
		W2=WH
		ALF(1)=STORI+WEL(I)
		CALL WR
		W1=WH
		ALF(J)=STORJ-WEL(J)
-		CALL WR
		W4=WH
	_	ALF(I)=STORI-WEL(I)
		ALF(J)=STORJ
		WSD(I.J)=(W1+W3-W2-W4)/(4.*WEL(I)*WEL(J))
		GO TO 23

		RETURN
		END
_		SUBROUTINE GTALAM
		COMMON/SETUP/W.D.WFD(19).DFD(19).WSD(19.19).DSD(19.19).DEL(19).W
_		(19)
		COMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
		COMPUTES AVERAGE LAMBDA FOR 1ST ITERATION
		SUM=0.
		DEN=C.
		0014J=1.IX
_	12	IF(DFD(J))13.14.13 SUM=SUM+WFD(J)/CFD(J)
	1 2	
	14	CONTINUE
	14	IF(DEN)16.15.16
-	16	CALL FRRCR
	_	ALAM=SUM/DEN
_	10	RETURN
		END
_		CNU
		SURROUTINE VECT
_		COMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
		COMMON/SETUP/W.D.WFD(19).DFD(19).WSD(19.19).DSD(19.19).DEL(19).W
_		(19)
		CCMMCN/MATC/A(19.19).Y(19.1).AR.YSQ.Z
		AX=Y NR=IX+1
		COMPUTES Y-YSO-AND Z
		YSQ=0.
		DO:5J=1.1X
		Y(J.1)=-(WFD(J)-ALAM*DFD(J))
	15	YSQ=YSQ+Y(J.1) +Y(J.1)
		Y(NR.1)=C-D
		YS(=YSC+Y(NR+1)++2
		2=Y50/CSC
		RETURN
		END
_		SUBROUTINE CONVG
		COMMON/CONVE/XX(19.1).RK.LMOST.LSTOP.JWAY.G
		COMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
		COMMON/MATO/A(19.19).X(19.1).NR.YSO.Z
		TESTS WHETHER MCRE INNER ITERATIONS ARE REQUESTED AND COMPUTES A
		VECTOR INCREMENT ONE HALF THE MAGNITUDE OF THE LAST SUCH VECTOR
		INCREMENT TRIED. IF NEEDED
		TE(N-1) 1.2.8
	1	IF(M-1) 1.2.8 CALL ERRCR

	2 RK=YSO+G
	I=YAWL
	GO TO 100
	3 IF(YSO-RK)2.4.4
	4 LSTOP=LSTOP+1
	IF:LMOST-LSTOP)5.6.6
	5 JWAY=-1
	30 TO 100
	6 DO 7 K=1.NR
	$XX(K \cdot 1) = .5 + XX(K \cdot 1)$
	7 X(K.1)=\(\chi(K.1)\)
	JWAY=0
10	O RETURN
	END
	SUPROUTINE OUTPUT
	COMMON/CON/ K. SIGU. ALPHA, YK. XM. PHI, D. DELTA, DELOME, THMAX,
	1TAU. 181. T82. XLD. RO. R(8). GAMMA. RR. E. PS. TS. H. ZM. L/MBDA.
	211. NO. X(9). P(9). XK(10) ABC.ETA. BETA. TNIT. TERM. T8. SC. SU.
	3N. NN. DELTH. AV2. NMAX. L. WI. W2. W3. THET. WT. TAI
	C(IMMON/SETUP/W.D.WFD(19).DFD(19).WSD(19.19).DSD(19.19).DEL(19).
	1WFL (19)
	COMMON/MATO/A(19.19).Y(19.1).NR.YSO.Z
	COMMON/MAX/IX.M.ALAM.ALF(19).C.CSQ.DH.WH
	COMMCN/CONVG/XX(19.1).RK.LMOST.LSTOP.JWAY.G
	WRITE (51.1)M.D.W.YSQ.Z.LSTOP
	! FURMAT(1H03X2HM=16.5H D=E14.6.5H W=E14.6.7H YSQ=E14.6.
	15H 7=E14.6.9H LSTOP=I6)
	WR!TE(51.2)((Y(I.1).ALF(i)).I=1.NR)
	2 FORMAT(1H02F16.6)
	NO1=NC \$ NC=0
	CALL WR
	NO=NC1
	WRITF(51.4) RO. (R(1).I=1.6). L. AV2. WI. W2. W3. WT
	4 FORMAT("ORADII ARE", 9F10.5, /, L =", E12.5, 3X, "AV2 =", E12.5, 3X, 1'W1 =", E12.5, 3X, "W2 =", E12.5, 3X, "W3 =", E12.5, 3X, "W7 =", E12.5)
	RETURN
	END
	SUBROUTINE ARITH
	COMMON/SFTUP/W.D.WFD(19).DFD(19).WSD(19.19).DSD(19.19).DEL(19).WEL
	1(19)
-	COMMON/MAX/IX.M.ALAM.ALF(19).C.CSO.DH.WH
_	COMMON/MATO/1(19.19).X(19.1).NR.YSO.Z
<u>C</u>	COMPUTES FLEMENTS OF MATRIX A. NR=IX+1
	DO 10 I=1.IX
	CO 11 J=1.IX
1	1 A(I.J)=WSD(I.J)-ALAM*DSD(I.J)
	$\Delta(I \cdot NR) = -CFC(I)$

10	A(NP I)=DFD(I)
	A(NR.NK)=0.
	RFTURN
	FND
	SUBLOGITIME MATO(A.X.NR.NV.DET.NA.NX)
	DIMENSION A(10).X(10)
	DET=1.0
	NR1=NH-1
	DO 5 K=1.NR]
	[R]=K+]
	PIVOT=0.0
	DO 6 1=K.NR
	IK=(K-1)*NA+I
	7=APSF(A(IK))
	IF(Z-P1VCT)6.6.7
7	PIVOT=7
	FPR=T
6	CONTINUE
	IF(PIVOT)8.9.8
9	DET=0.0
	RETURN
the management	IF(IPR-K)10.11.10
10	DO 12 J=K•NR
	IPRJ=(J-1)*NA+IPR
	7=A(IPRJ)
	KJ=(J-1)*NA+K
	A(IPRJ) = A(KJ)
12	A(KJ)=7
	00 13 J=1.NV
	IPRJ=(J-1)*NX+1PR 7=X(IPRJ)
	KJ=(J-1)*NX+K
	X(IPRJ)=X(KJ)
13	X(KJ)=Z
1.5	DET=-DET
11	KK=(K-1)*NA+K
	DET-DET+A(KK)
	PIVOT=1.0/A(KK)
	DO 14 J= IR1.NR
	KJ=(J-1)*NA+K
	A(KJ)=A(KJ)*PIVOT
	DO 14 := IR1.NR
	IJ=(J-1) +NA+I
	IK = (K-1) * NA + I
14	A(IJ)=A(IJ)-A(IK)*A(KJ)
	DO 5 J=1,NV
	KJ=(J-1)*NX+K
	IF(X(KJ)) 15.5.15

	16	X(KJ)=X(KJ)*PIVOT
	17	DO 16 I=!R1.NR
_		IJ=(J-1) *NX+I
	• .	IK=(K-1)*NA+ï
		X(IJ)=X(IJ)-A(IK)+X(KJ)
	5	CONTINUE
		NRNR=(NR-1)*NA+NR
		IF(A(NRNR)) 17.9.17
_	17	DET=DET*A(NRNR)
		PIVOT=1.C/A(NRNR)
		DO 18 J=1.NV
		NRJ = (J-1) + NX + NR
		X(NRJ)=X(NRJ)*PIVOT
		GO 18 K=1.NR1
		1=NR-K
		SUP=0.0
		DO 19 L=I.NR1
		IL=L*NA+I
		$\{J=(J-1)*NX+(L+1)$
	19	SUM=SUM+A(IL)+X(LJ)
-		[J=(J-1)+NX+I
	18	MUS-(LI)X=(LI)X
		RETURN
		END
		SURROUTINE STEP
		CCMMCN/CONVG/XX(19.1).RK.LMOST.LSTOP.JWAY.G
		CCMMON/MAX/IX.M.ALAM.ALF(19).C.CSC.DH.WH
		CCMMEN/MATC/A(19.19).X(19.1).NR.YSO.Z
		DIMENSION ALFX(19)
C		COMPUTES NEW ALPHAS AND LAMBDA. RR=IX+1
		TF(JWAY)5.5.9
	5	007K=1.NR
		ALF(K)=ALF(K)-X(K,1)
	•	GO TO 11
	9	ALF(NR)=ALAM
		DOIOK=1.NR
		$XX(K \cdot 1) = X(K \cdot 1)$
		ALFX(K)=ALF(K)
	10	
	11	ALAH=ALF(NR)
		DO 20 K=1.1X
		IF(ALF(K).LT.0.0) 19.20
	19	ALF(K)=0.5*ALFX(K)
		$XX(K \cdot 1) = -1 \cdot 0 * ALF(K)$
_	20	CONTINUE
		RETURN
		END