THE STABILITY OF ECCENTRICALLY STIFFENED CIRCULAR CYLINDERS

VOLUME IV

GENERAL INSTABILITY OF CYLINDERS HAVING LONGITUDINAL AND CIRCUMFERENTIAL STIFFENERS; AXIAL COMPRESSION

Prepared for the
GEORGE C. MARSHALL SPACE FLIGHT CENTER
National Aeronautics and Space Administration
Huntsville, Alabama

By
G. W. SMITH, E. E. SPIER, and E. A. MUSCHA
20 June 1967

Prepared by
CONVAIR DIVISION OF GENERAL DYNAMICS
San Diego, California

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE
NATIONAL TECHNICAL INFORMATION SERVICE
SPRINGFIELD, VA 22161
ACKNOWLEDGEMENTS

This volume was prepared by the Structural Analysis Group of General Dynamics Convair Division to present a portion of the results obtained under NASA Contract NAS8-11181. The overall project was conducted in two separate, consecutive phases. The first phase was performed by G. W. Smith and F. A. Dittoe with Dr. A. H. Hausrath acting in the capacity of project leader. The second phase was performed mainly by G. W. Smith and E. E. Spier with Mr. Smith assigned as project leader. Valuable contributions were also made by Dr. S. N. Dharmarajan and Dr. P. E. Wilson in connection with interaction behavior and equation verifications.

During the overall effort, programming for the digital computer was accomplished mainly by Mrs. L. S. Fossum, Mrs. E. A. Muscha, and Mrs. N. L. Fraser, all of the Technical Programming Group. Mr. J. R. Anderson of the Guidance and Trajectory Programming Group also contributed.

Appreciation is expressed to H. L. Billmayer and H. R. Coldwater of the Structures Division, Propulsion and Vehicle Engineering Laboratory, Marshall Space Flight Center, for their support of the entire project. In the role of NASA Technical Representative, Mr. Billmayer provided helpful assistance in the definition and achievement of the study goals.

All six volumes of this report were typed by Mrs. F. C. Jaeger of the Convair Structural Analysis Group.

ii

GENERAL DYNAMICS CONVAIR DIVISION
THE STABILITY OF ECCENTRICALLY
STIFFENED CIRCULAR CYLINDERS

VOLUME IV

GENERAL INSTABILITY OF CYLINDERS
HAVING LONGITUDINAL AND CIRCUMFERENTIAL
STIFFENERS; AXIAL COMPRESSION

By

G. W. Smith, E. E. Spier, and E. A. Muscha
General Dynamics Convair Division
San Diego, California

ABSTRACT

This is the fourth of six volumes, each bearing the same report
number, but dealing with separate problem areas concerning the stability
of eccentrically stiffened circular cylinders. The complete set of documents
was prepared under NASA Contract NAS8-11181. This particular volume deals
with the general instability of simply supported, axially compressed circular
cylinders which have longitudinal and circumferential stiffening (stringers
and rings). Analysis methods are presented in the forms of curves and a
digital computer program. Since the contents of this volume are based
upon a Donnell-type small-deflection theory, the proposed methods should be
used in conjunction with empirical knock-down factors to account for the
effects of initial imperfections. In addition, the Donnell assumptions pre-
clude application to non-axisymmetric buckle patterns where the number of
circumferential waves is small.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ILLUSTRATIONS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>2</td>
<td>EQUATIONS</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>2.1 General</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>2.2 Axisymmetric Mode</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>2.3 Non-Axisymmetric Mode</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>2.4 Preferred Mathematical Forms</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>2.4.1 General</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Axisymmetric Mode</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Non-Axisymmetric Mode</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>2.5 Special Geometrical Considerations</td>
<td>2-9</td>
</tr>
<tr>
<td>3</td>
<td>ANALYSIS METHODS</td>
<td>3-1</td>
</tr>
<tr>
<td>4</td>
<td>BUCKLING CURVES</td>
<td>4-1</td>
</tr>
<tr>
<td>5</td>
<td>ELASTIC CONSTANTS</td>
<td>5-1</td>
</tr>
<tr>
<td>6</td>
<td>DIGITAL COMPUTER PROGRAM</td>
<td>6-1</td>
</tr>
<tr>
<td>7</td>
<td>REFERENCES</td>
<td>7-1</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>BUCKLING CURVES FOR SANDWICH CYLINDERS</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>BUCKLING CURVES FOR ISOTROPIC CYLINDERS</td>
<td>B-1</td>
</tr>
</tbody>
</table>

GENERAL DYNAMICS CONVAIR DIVISION
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coordinate System</td>
<td>2-2</td>
</tr>
<tr>
<td>2</td>
<td>Sample Wall Cross Section Lying in Plane Normal to Axis of Revolution</td>
<td>2-12</td>
</tr>
<tr>
<td>3</td>
<td>Sample Wall Cross Section Lying in Radial Plane</td>
<td>2-14</td>
</tr>
<tr>
<td>4</td>
<td>Alternative Ring Loading Conditions</td>
<td>3-3</td>
</tr>
<tr>
<td>5</td>
<td>CR Factor</td>
<td>3-6</td>
</tr>
<tr>
<td>6</td>
<td>Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening (Stringers Outside; Rings Inside)</td>
<td>4-5</td>
</tr>
<tr>
<td>7</td>
<td>Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening (Stringers Inside; Rings Inside)</td>
<td>4-32</td>
</tr>
<tr>
<td>8</td>
<td>Input Format - Program 4267</td>
<td>6-2</td>
</tr>
<tr>
<td>9</td>
<td>Sample Input Data - Program 4267</td>
<td>6-15</td>
</tr>
<tr>
<td>10</td>
<td>Sample Output Listing - Program 4267</td>
<td>6-16</td>
</tr>
<tr>
<td>11</td>
<td>Flow Diagram - Program 4267</td>
<td>6-17</td>
</tr>
<tr>
<td>12</td>
<td>Classical Buckling Coefficients for Simply Supported Sandwich Cylinders Under Axial Compression (Isotropic Core and Faces)</td>
<td>A-3</td>
</tr>
<tr>
<td>13</td>
<td>σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Axial Load; BEST FIT</td>
<td>B-2</td>
</tr>
<tr>
<td>14</td>
<td>σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Axial Load; PROBABILITY = 90%; CONFIDENCE = 95%</td>
<td>B-3</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS
(Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Axial Load; PROBABILITY = 99%; CONFIDENCE = 95%</td>
<td>B-4</td>
</tr>
<tr>
<td>16</td>
<td>σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Bending Moment; BEST FIT</td>
<td>B-5</td>
</tr>
<tr>
<td>17</td>
<td>σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Bending Moment; PROBABILITY = 90%; CONFIDENCE = 95%</td>
<td>B-6</td>
</tr>
<tr>
<td>18</td>
<td>σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Bending Moment; PROBABILITY = 99%; CONFIDENCE = 95%</td>
<td>B-7</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Table of Contents for Curves of Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening (External Stringers and Internal Rings).</td>
<td>4-3</td>
</tr>
<tr>
<td>II</td>
<td>Table of Contents for Curves of Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening (Internal Stringers and Internal Rings).</td>
<td>4-4</td>
</tr>
<tr>
<td>III</td>
<td>Recommended Formulas for Fundamental Constants of Circular Cylinders Having Both Stringers and Rings.</td>
<td>5-3</td>
</tr>
<tr>
<td>IV</td>
<td>Program 4267 Notation.</td>
<td>6-11</td>
</tr>
<tr>
<td>V</td>
<td>Fortran Listing - Program 4267.</td>
<td>6-22</td>
</tr>
</tbody>
</table>
DEFINITION OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_r</td>
<td>Cross-sectional area of single ring (no cylindrical skin included); (see Table III and its notes).</td>
</tr>
<tr>
<td>A_{r+s}</td>
<td>Cross-sectional area of single ring augmented by an effective width of skin which is considered to essentially behave as part of the ring (see Table III and its notes).</td>
</tr>
<tr>
<td>A_s</td>
<td>Cross-sectional area of single stringer (no cylindrical skin included); (see Table III and its notes).</td>
</tr>
<tr>
<td>A_{11}', A_{22}', A_{12}', A_{33}</td>
<td>Elastic constants (see Table III).</td>
</tr>
<tr>
<td>a</td>
<td>Ring spacing.</td>
</tr>
<tr>
<td>B_{A12}</td>
<td>See equations (2-14) and inequality (2-15).</td>
</tr>
<tr>
<td>b</td>
<td>Stringer spacing.</td>
</tr>
<tr>
<td>b_s</td>
<td>Thickness of integral longitudinal stiffener (see Table III).</td>
</tr>
<tr>
<td>C_R</td>
<td>Correction factor defined by equation (3-5).</td>
</tr>
<tr>
<td>C_F</td>
<td>Experimentally determined constant [see equation (1-1)].</td>
</tr>
<tr>
<td>C_{hx}</td>
<td>Quantity defined by equation (2-25).</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>C_{hy}</td>
<td>Quantity defined by equation (2-29).</td>
</tr>
<tr>
<td>C_{px}</td>
<td>Quantity defined by equation (2-26).</td>
</tr>
<tr>
<td>C_{py}</td>
<td>Quantity defined by equation (2-30).</td>
</tr>
<tr>
<td>$C_{11}, C_{22}, C_{12}, C_{21}$</td>
<td>Eccentricity coupling constants (see Table III).</td>
</tr>
<tr>
<td>c</td>
<td>Thickness of sandwich core.</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of middle surface of basic cylindrical skin in conventional skin-stringer-ring constructions; Parameter defined in equations (A-1).</td>
</tr>
<tr>
<td>D_Q</td>
<td>Transverse shear stiffness of sandwich wall [see equations (A-1)].</td>
</tr>
<tr>
<td>$D_{11}, D_{22}, D_{12}, D_{33}$</td>
<td>Elastic constants (see Table III).</td>
</tr>
<tr>
<td>E</td>
<td>Young's modulus.</td>
</tr>
<tr>
<td>E_F</td>
<td>Young's modulus of sandwich faces.</td>
</tr>
<tr>
<td>G</td>
<td>Modulus of elasticity in shear.</td>
</tr>
<tr>
<td>G_c</td>
<td>Shear modulus of sandwich core.</td>
</tr>
<tr>
<td>h</td>
<td>Distance between middle surfaces of faces in sandwich cylinder.</td>
</tr>
<tr>
<td>h_s</td>
<td>Depth of integral longitudinal stiffener (see Table III).</td>
</tr>
<tr>
<td>h_x</td>
<td>See Figure 2.</td>
</tr>
<tr>
<td>h_y</td>
<td>See Figure 3.</td>
</tr>
</tbody>
</table>
DEFINITION OF SYMBOLS
(Continued)

Symbol Definition

\(I \) Moment of inertia.
\(\bar{I}_r \) Centroidal moment of inertia for single ring
 (no cylindrical skin included); (see notes
 following Table III).
\(\bar{I}_{r+s} \) Centroidal moment of inertia of single ring
 augmented by an effective width of skin which
 is considered to essentially behave as part of the
 ring (see Table III and its notes).
\(\bar{I}_x \) Running centroidal moment of inertia of effective
 shell wall cross section lying in plane normal
 to axis of revolution (see Table III and its notes).
\(\bar{I}_y \) Running centroidal moment of inertia of effective
 shell wall cross section lying in radial plane.
\(i \) \(= \sqrt{-1} \); symbol denoting the \(i^{th} \) quantity of an
 array of values.
\(K \) Parameter defined by equation (3-7).
\(k_{xa} \) Sandwich loading parameter defined in equations
 (A-1).
\(L \) Overall length of cylinder (see Figure 1).
\(M \) Overall bending moment.
\(m \) Number of axial half-waves in buckle pattern.
DEFINITION OF SYMBOLS

(Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_s</td>
<td>Number of discrete load points for the case shown in Figure 4(a); (Number of stringers).</td>
</tr>
<tr>
<td>N_THIEL</td>
<td>Loading parameter defined in equations (2-3), (positive for tensile loading).</td>
</tr>
<tr>
<td>(N_THIEL)_c</td>
<td>= - N_THIEL, (positive for compressive loading).</td>
</tr>
<tr>
<td>N_x</td>
<td>Applied longitudinal tensile running load acting at the centroid of the effective skin-stringer combination.</td>
</tr>
<tr>
<td>(N_x)_c</td>
<td>Applied longitudinal compressive running load acting at the centroid of the effective skin-stringer combination (= - N_x).</td>
</tr>
<tr>
<td>n</td>
<td>Number of circumferential full-waves in buckle pattern.</td>
</tr>
<tr>
<td>R</td>
<td>Radius to middle surface of basic cylindrical skin in conventional skin-stringer-ring constructions; Radius to centroid of ring depicted in Figure 4; Mean radius of sandwich cylinder; Mean radius of isotropic cylinder.</td>
</tr>
<tr>
<td>r_a</td>
<td>Parameter defined in equations (A-1).</td>
</tr>
<tr>
<td>t</td>
<td>Thickness of basic cylindrical skin.</td>
</tr>
<tr>
<td>t_F</td>
<td>Thickness of single face of sandwich wall.</td>
</tr>
<tr>
<td>t_c</td>
<td>Skin thickness of corrugated wall.</td>
</tr>
</tbody>
</table>
DEFINITION OF SYMBOLS

(Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}_x)</td>
<td>Thickness of appropriate smeared-out area of cross section lying in plane normal to axis of revolution (see Table III and its notes).</td>
</tr>
<tr>
<td>(\bar{t}_y)</td>
<td>Thickness of appropriate smeared-out area of cross section lying in radial plane (see Table III and its notes).</td>
</tr>
<tr>
<td>(U)</td>
<td>Parameter defined by equation (2-10).</td>
</tr>
<tr>
<td>(u, v, w,)</td>
<td>Reference-surface displacements (see Figure 1).</td>
</tr>
<tr>
<td>(W)</td>
<td>Force depicted in Figure 4(a).</td>
</tr>
<tr>
<td>(w_c)</td>
<td>Running load depicted in Figure 4(b).</td>
</tr>
<tr>
<td>(x, y, z)</td>
<td>Coordinates (see Figure 1).</td>
</tr>
<tr>
<td>(Z)</td>
<td>Parameter defined by equation (2-2).</td>
</tr>
<tr>
<td>(Z_a)</td>
<td>Parameter defined in equations (A-1).</td>
</tr>
<tr>
<td>(Z_l)</td>
<td>Parameter defined by equation (2-7).</td>
</tr>
<tr>
<td>(\bar{z}_x)</td>
<td>Eccentricity (see Figure 2 and Table III).</td>
</tr>
<tr>
<td>(\bar{z}_y)</td>
<td>Eccentricity (see Figure 3 and Table III).</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Parameter defined in equations (2-3).</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Parameter defined in equations (2-3).</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Parameter defined in equations (2-3).</td>
</tr>
<tr>
<td>(\Delta_R)</td>
<td>Radial deflection for the points of load application shown in Figure 4(a).</td>
</tr>
</tbody>
</table>
DEFINITION OF SYMBOLS
(Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_R</td>
<td>Radial deflection due to uniformly distributed running load shown in Figure 4(b).</td>
</tr>
<tr>
<td>η_p</td>
<td>Parameter defined in equations (2-3).</td>
</tr>
<tr>
<td>η_s</td>
<td>Parameter defined in equations (2-3).</td>
</tr>
<tr>
<td>θ</td>
<td>Half-angle between discrete load points depicted in Figure 4(a).</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson's ratio.</td>
</tr>
<tr>
<td>ν_F</td>
<td>Poisson's ratio for faces of sandwich cylinder.</td>
</tr>
<tr>
<td>ρ_x</td>
<td>Local centroidal radius of gyration for effective shell wall cross section lying in a plane which is normal to the axis of revolution (see Table III and its notes).</td>
</tr>
<tr>
<td>ρ_y</td>
<td>Local centroidal radius of gyration for effective shell wall cross section lying in a radial plane (see Table III and its notes).</td>
</tr>
<tr>
<td>ρ_{xy}</td>
<td>Parameter defined in equations (2-13).</td>
</tr>
<tr>
<td>(Σ_d)</td>
<td>Total peripheral length of corrugation center-line.</td>
</tr>
<tr>
<td>σ_{cr}</td>
<td>Critical compressive buckling stress of isotropic cylinder.</td>
</tr>
<tr>
<td>$\bar{\sigma}$</td>
<td>Compressive stress obtained by dividing the longitudinal compressive running load by t_x.</td>
</tr>
</tbody>
</table>
The contents of this volume deal with the general instability (see GLOSSARY, Volume I [1]) of simply supported, axially compressed circular cylinders having both stringers and rings. Designing for the prevention of this mode of instability usually centers around the choice of a suitable criterion to establish dimensions for the circumferential stiffeners. In the past, a number of rather crude empirical formulas have been proposed for this purpose. One of the earliest of these was proposed by the Guggenheim Aeronautical Laboratory of the California Institute of Technology (GALCIT) as an outgrowth of their tests on small-scale cylinders [2]. Shortly thereafter, the Polytechnic Institute of Brooklyn Aeronautical Laboratory (PIBAL) proposed a different criterion based on their own test results from similar specimens [3]. Shanley [4] then drew upon both the GALCIT and the PIBAL data to generate the following empirical formula for the minimum ring stiffness required to prevent general instability in stiffened cylinders subjected to pure bending:

\[
E \bar{I}_r = \frac{C_f M D^2}{a}
\]

(1-1)

where

- \(E\) = Young's modulus
- \(\bar{I}_r\) = Centroidal moment of inertia for ring
- \(C_f\) = Experimentally determined constant
- \(M\) = Overall bending moment
- \(D\) = Cylinder diameter
- \(a\) = Ring Spacing

Numbers in brackets \[\] in the text denote references listed in SECTION 7.
Although derived specifically for the case of pure bending, this formula has been widely used for cases of axial compression by considering the peak running load intensity to be the controlling factor. Still another criterion was suggested by Becker [5] in 1958. This approach employs certain geometrical features of the inward-bulge along with an estimate of the elastic restraints afforded by the rings. In general, all of these approaches constitute oversimplifications of the problem in that they do not recognize all the important variables involved. Engineers have long been wary of these criteria and have hedged their ring designs through the use of generous safety factors and extensive proof-testing.

In recent years it has become increasingly popular to attack this problem by means of orthotropic shell theory. For example, applications have been made [6] of the small-deflection formulation presented by Thielemann in reference 7. The methods presented in the sections to follow are based on an extension of this approach to include the effects of finite cylinder length as well as stringer and ring eccentricities. These influences have also been included in an alternative formulation developed by Block, Card, and Mikulas in reference 8. Furthermore, Block [9] has recently published a paper which treats the buckling of eccentrically stiffened perfect orthotropic cylinders in which prebuckling deformations, load eccentricity, and ring discreteness are all considered. That paper points the way for further improvement of the methods presented in the sections to follow. It should be noted here that, under NASA Contract NAS 8-9500, the Lockheed Missiles and Space Company has likewise published a solution [10] which accounts for prebuckling deformations and load eccentricities (end moments). However, their development is limited to configurations which are stiffened only in the longitudinal direction (no intermediate rings).

The analysis methods presented in this volume are given in the forms of curves and a digital computer program. In order to keep the number of curves within reasonable bounds, they embody a number of simplifications which result in some loss of rigor. Therefore, these curves are to be used
primarily for the purposes of preliminary sizing, rough checking, and the study of trends. To meet the more stringent requirements of a final design, one should employ the digital computer program of SECTION 6. This program can be used to obtain single-point solutions and/or additional curves which more closely apply to the selected configurations of interest.

It should be kept in mind that this volume deals only with the general instability mode of failure. Other possible modes must be separately checked. The most important of these other possibilities is the panel instability (see GLOSSARY, Volume I [1]) mode which is treated in Volume III [11].

The theoretical foundation for the methods given here lies in small-deflection orthotropic shell theory. Therefore, it is recommended that these methods be used in conjunction with empirical knock-down factors in order to account for the influences of initial imperfections. Volume V [12] presents a practical criterion in this regard. Since most practical stiffened cylinders are "effectively thick", the related reductions will generally not be nearly so severe as those encountered for thin-walled isotropic cylinders.

It is also important to note that the basic buckling equation of this volume is based upon Donnell-type simplifications [13]. As a result, the methods given here cannot be applied when the instability manifests itself in a non-axisymmetric buckle pattern having a small number of circumferential waves. The rule-of-thumb guideline is offered here that these methods should be considered inapplicable for cases where

\[0 < n < 2 \]

(1-2)

Throughout this volume, only the case of classical simple support is considered. In addition, it is always assumed that the behavior is elastic. To consider critical stresses which lie above the proportional limit, one must employ iterative procedures which recognize the shape of the applicable stress-strain curve.
2.1 GENERAL

The following orthotropic cylinder equation provides the basis for the methods given in this volume:

\[
\left(N_{\text{THIEL}} \right)_c = \frac{1 + 2\eta_p \sqrt{\gamma} \beta^2 + \gamma \beta^4}{4\alpha \beta^4} + \frac{\alpha \beta^4 (Z)^2}{1 + 2\eta_s \beta^2 + \beta^4}
\]

(2-1)

where,

\[
Z = \left[1 - \frac{C_{11} + C_{22}}{2\alpha (A_{22} D_{22})^{1/2} \beta^2} - \frac{C_{12}}{2\alpha A_{22} (D_{22}/A_{11})^{1/2}} - \frac{C_{21}}{2\alpha (A_{11} D_{22})^{1/2} \beta^4} \right]
\]

(2-2)

A detailed derivation of these relationships is given in reference 14 where the coordinate system shown in Figure 1 was used. Some general background information concerning equations (2-1) and (2-2) is given in Volume I [1]. As noted there, these equations have been written in rather compact, instructive forms through the introduction of the following parameters, most of which were first proposed by Thielemann [7]:

\[
\left(N_{\text{THIEL}} \right)_c = -\bar{N}_{\text{THIEL}} = -\frac{\bar{N}_R}{2} \left(\frac{A_{11}}{D_{22}} \right)^{1/2}
\]

\[
\eta_s = \left(\frac{A_{12} + \frac{A_{33}}{2}}{\sqrt{A_{11} A_{22}}} \right)
\]

(2-3)
\[\eta_p = \frac{(D_{12} + 2D_{33})}{\sqrt{D_{11}D_{22}}} \]

\[\gamma = \frac{D_{11}A_{11}}{D_{22}A_{22}} \]

\[\beta = (\frac{m}{n})(\frac{\pi R}{L})(\frac{A_{22}}{A_{11}})^{1/4} \]

\[\alpha = \frac{L^2}{2Rm \pi^2 A_{22} \left(\frac{D_{22}}{A_{11}}\right)^{1/2}} \]

Reference Surface
(Middle surface of basic cylindrical skin)

Figure 1 - Coordinate System

2-2

GENERAL DYNAMICS CONVAIR DIVISION
The various A_{ij}'s, D_{ij}'s, and C_{ij}'s of equations (2-2) and (2-3) are very important fundamental constants. The physical significance of these constants is discussed in Volume I [1]. The A_{ij}'s and D_{ij}'s are usually referred to as elastic constants while the C_{ij}'s might be identified as eccentricity coupling constants.

2.2 AXISYMMETRIC MODE

In order to apply equations (2-1) and (2-2) to practical structures, both axisymmetric and non-axisymmetric (checkerboard) buckling modes must be considered. Specialization to the axisymmetric case is achieved by allowing β to increase without bound ($\beta \to \infty$). This yields the following result:

$$\lim_{\beta \to \infty} (\ddot{N}_{THIEL})_c = \frac{Y}{4\alpha} + \alpha \left[1 - \frac{C_{12}}{2\alpha A_{22} (D_{11}/A_{11})^{1/2}} \right]^2$$ (2-4)

By substituting equations (2-3) into (2-4), one can then obtain the following equation for axisymmetric buckling:

$$\left(\ddot{N}_x \right)_c = \frac{m^2}{L^2} \frac{2\pi D_{11}}{L} + \frac{L^2}{m^2 \pi R^2 A_{22}} \left[1 - \frac{m^2}{L^2} \frac{22}{C_{12}} \frac{R}{R} \right]^2$$ (2-5)

It is easily shown that, for $m > 0$, the second derivative of $(\ddot{N}_x)_c$ with respect to m is always positive. Hence, a relative minimum for $(\ddot{N}_x)_c$ can be located by differentiating equation (2-5) with respect to m and equating the result to zero. It is found that the derivative vanishes when

$$m = \frac{L}{\pi} \left[Z_1 \right]^{1/4}$$ (2-6)

where

$$Z_1 = \frac{1}{R^2 A_{22} \left(D_{11} + \frac{C_{12}^2}{A_{22}} \right)}$$ (2-7)

2-3

GENERAL DYNAMICS CONVAIR DIVISION
The quantity Z_1 will always be a positive number. The four roots to equation (2-6) can therefore be expressed as follows:

$$m_1 = + \left(\frac{L}{\pi} \right)^{\frac{1}{4}} \sqrt[4]{Z_1}$$

$$m_2 = - \left(\frac{L}{\pi} \right)^{\frac{1}{4}} \sqrt[4]{Z_1}$$

$$m_3 = + (i) \left(\frac{L}{\pi} \right)^{\frac{1}{4}} \sqrt[4]{Z_1}$$

$$m_4 = - (i) \left(\frac{L}{\pi} \right)^{\frac{1}{4}} \sqrt[4]{Z_1}$$

(2-8)

For applications to actual structures, only the single, real, positive root, m_1, is of interest. For cases where $m_1 \geq 1$, the critical loading for axisymmetric buckling can be found by making the substitution $m = m_1$ in equation (2-5). The condition $m < 1$ is a physical impossibility for the problem under discussion. Therefore, whenever $m_1 < 1$, the critical loading for axisymmetric buckling is found by making the substitution $m = 1$ in equation (2-5).

Detailed derivations of the foregoing relationships are given in reference 15 which also presents the background information concerning the digital computer program of SECTION 6. This program makes use of the above equations in the computation of output listings and the generation of automatically plotted critical strains.

2.3 NON-AXISYMMETRIC MODE

To obtain the critical loading for non-axisymmetric buckling, equation (2-1) must be minimized with respect to two wave-type parameters. In this volume, α and β were selected for this purpose although m and n would have been equally suitable. Therefore, the partial derivative of equation

2-4

GENERAL DYNAMICS CONVAIR DIVISION
(2-1) was taken with respect to \(\alpha \) and the result was set equal to zero. From this it was found that the derivative will vanish whenever

\[
\alpha = \left(\frac{1 + 2\eta \sqrt{\beta^2 + \gamma^2}}{4\beta^2} \right)^{1/2} + \frac{1 + 2\eta \beta^4 + \beta^4}{U^2}
\]

(2-9)

where

\[
U = \frac{(C_{11} + C_{22})}{2(A_{22}D_{22})^{1/2} \beta^2} + \frac{C_{12}}{2A_{22}(D_{22}/A_{11})^{1/2}} + \frac{C_{21}}{2(A_{11}D_{22})^{1/2} \beta^4}
\]

(2-10)

Here again, only the single, positive root is of interest to the problem under discussion. No theoretical consideration was given to the question of insuring that this \(\alpha \) corresponds to a relative minimum rather than a relative maximum or an inflection point. Such safeguards were incorporated in the numerical procedures into which these relationships were injected. In addition, the minimization with respect to \(\beta \) is accomplished solely by numerical procedures. The digital computer program of SECTION 6 accomplishes this by screening over practical \(\beta \) values in small increments of \(\beta \), always retaining the lowermost loading encountered. Constraints are imposed which disallow buckle patterns for which \(m < 1 \) and/or \(n \) is greater than zero but less than a set value selected by the analyst (usually unity).

A detailed derivation of equation (2-9) is given in reference 15 which, as already noted, also presents background information concerning the digital computer program of SECTION 6.

2.4 PREFERRED MATHEMATICAL FORMS

In order to better understand the basic equations of this volume, and to facilitate the presentation of design data in the most practical manner, it is helpful to rewrite the equations in different forms from those presented in the foregoing. Reference 15 gives all the detailed mathematical steps involved in these transformations. Only the major results are given here.
\[q_{11} = \left[\left(\frac{R}{c} \right) A_{11} \right] = \left(\frac{\pi^2}{R} \right)^2 \left(\frac{L}{R} \right)^2 \left(\frac{m \beta^2}{\pi} \right)^2 + \left(\frac{A_{33}}{A_{11}} \right)^{1/2} \left(\frac{A_{33}}{A_{22}} \right)^{1/2} \left(\frac{L}{\sqrt{A_{33} \left(D_{12} + 2D_{33} \right)}} \right)^2 \left(\frac{m \beta^2}{\pi} \right)^2 + \left(\frac{\pi^2}{R} \right)^2 \left(\frac{m \beta^2}{\pi} \right)^2 + \frac{4m^2}{\left(\frac{L}{R} \right)^2} \left(m^2 \right) (\beta^4) \]

\[+ \frac{4m^2}{\left(\frac{L}{R} \right)^2} \left(m^2 \right) (\beta^4) \]

\[g_{11} = \left[\left(\frac{R}{c} \right) A_{11} \right] = \left(\frac{\pi^2}{R} \right)^2 \left(\frac{L}{R} \right)^2 \left(\frac{m \beta^2}{\pi} \right)^2 + \left(\frac{A_{33}/A_{22}}{A_{33}/A_{11}} \right)^{1/2} \left(\frac{C_{11} + C_{22}}{R} \right) \left(\frac{1}{\beta^2} \right) - \frac{C_{21}}{2R} \left(\frac{A_{33}/A_{22}}{A_{33}/A_{11}} \right)^{1/2} - \frac{1}{\beta^4} \]

\[+ \frac{4m^2}{\left(\frac{L}{R} \right)^2} \left(m^2 \right) (\beta^4) \]

\[\text{(2.1) GDC-DMG-67-006} \]
2.4.1 GENERAL

One type of useful reformulation of the basic buckling equation (2-1) can be achieved through the substitution of equations (2-3) and subsequent algebraic manipulation. This leads to equation (2-11) which provides the basis for the STIFF option computations of digital computer program 4267 (see SECTION 6).

To obtain the additional reformulation expressed as equation (2-12), it is helpful to define the following quantities:

\[p_x = \sqrt{D_{11}A_{11}} \]

\[p_y = \sqrt{D_{22}A_{22}} \]

\[p_{xy} = \sqrt{\frac{A_{33}(D_{12} + 2D_{33})}{A_{11}A_{22} - A_{12}^2}} \]

(2-13)

Recognizing the physical basis [1] for the elastic constants \(D_{ij} \) and \(A_{ij} \), it is clear that the first two of equations (2-13) are quite logically selected as effective local radii of gyration in the axial and circumferential directions. The last of these three equations is an artificial, contrived definition which has been made in the interest of convenience. It should be noted, however, that this equation does display some similarity-of-form to the equations for \(p_x \) and \(p_y \). It was this likeness which led to the use here of the notation \(p_{xy} \). Additional clarification of the terms involved in equations (2-13) can be obtained from a study of Table III and its related notes.

In addition to the foregoing, equation (2-12) is also based on the use of the following simplified formulas for the elastic constants of interest:
Table III and its notes furnish helpful clarifying information concerning the quantities which appear in these expressions. Permissible values for B_{A12} are bounded as follows:

$$0 \leq B_{A12} \leq 1$$

As noted in reference 15, little error is introduced if this quantity is taken equal to 0.50 for all cases. Therefore, this value was selected for use in the present volume. This practice, together with the substitution of equations (2-13) and (2-14) into equation (2-11), permits one to rewrite the basic buckling equation in the instructive form of equation (2-12). This expression provides the basis for the RATIO option of digital computer program 4267 (see SECTION 6).

2.4.2 AXISYMMETRIC MODE

The procedures described in SECTION 2.4.1 were likewise applied to rewrite equations (2-5), (2-6), and (2-7) in alternative, preferred mathematical forms. The following expressions were obtained for use in the RATIO option computations of digital computer program 4267 (see SECTION 6):
\[\frac{\sigma}{E} = \left[\left(\frac{N}{x} \right) A_{11} \right] = \frac{\pi^2}{(L/p_x)}^2 \frac{m^2}{2} \]

\[+ \left(\frac{1}{\pi} \right)^2 \left(\frac{L}{R} \right)^2 \left(\frac{t_y}{t_x} \right) \left(\frac{1}{m^2} \right) \left[1 - \pi^2 \left(\frac{C_{12}}{R} \right) \frac{m^2}{(L/R)^2} \right]^2 \]

(2-16)

where

\[m = \left[\frac{\pi^4}{(L/R)^2} \left(\frac{t_y}{t_x} \right) + \frac{1}{(L/p_x)^2} + \frac{\pi^4}{(L/R)^4} \left(\frac{C_{12}}{R} \right)^2 \right]^{1/4} \]

(2-17)

Since equations (2-5), (2-6), and (2-7) are already in a suitable form for the STIFF option computations, no additional transformations of these equations are required.

2.4.3 NON-AXISYMMETRIC MODE

The procedures described in SECTION 2.4.1 were likewise applied to rewrite equations (2-9) and (2-10) in alternative, preferred mathematical forms. Equations (2-18) and (2-19) were obtained for use in the RATIO option computations of digital computer program 4267 (see SECTION 6). Equations (2-20) and (2-21) were obtained for use in the STIFF option computations of the program.

2.5 SPECIAL GEOMETRICAL CONSIDERATIONS

The large number of geometrical values appearing in the foregoing equations makes it necessary to introduce a number of simplifying assumptions to arrive at a suitable format for general instability design curves. Several such simplifications have been selected based on practical considerations relative to the cross sections which lie in planes normal to the axis of revolution. A portion of such a section is depicted in Figure 2. It should be noted that \(b \) denotes the circumferential stringer.
\[
m = \left(\frac{1}{4\pi^4} \right) \left(\frac{L_R}{R} \right)^4 \left(\frac{\tau_y}{\tau_x} \right) \left(\frac{R}{\rho_y} \right)^2 \left(\frac{L_y}{L_x} \right)^2 + \frac{2}{4^8} \left(\frac{L_y}{L_x} \right)^2 \left(\frac{R}{\rho_y} \right)^2 \left(\frac{L_R}{R} \right)^2 \left(\beta^2 \right)^2 + \frac{1}{\rho_x} \left(\frac{L_y}{L_x} \right)^2 \left(\frac{R}{\rho_y} \right)^2 \left(\frac{L_R}{R} \right)^2 \left(\beta^4 \right)
\right]^{1/4}
\]

\[
1 - v \left(\frac{\tau_y}{\tau_x} \right)^{1/2} \left(\beta^2 \right)^{1/2} + \left(\frac{E}{\rho_G} \right) \left(\frac{\tau_x}{\tau_y} \right)^{1/2} \left(\beta^2 \right)^{1/2} + \left[4 \left(\frac{E}{\rho_G} \right) \left(\frac{\tau_x}{\tau_y} \right)^{1/2} \left(\beta^4 \right) \right]
\]

where,

\[
U = \left(\frac{R}{\rho_y} \right) \left[\frac{1}{2} \left(\frac{C_{11}}{R} + \frac{C_{22}}{R} \right) \left(\frac{L_R}{R} \right)^2 + \left(\frac{1}{2} \right) \left(\frac{C_{12}}{R} \right) \left(\frac{L_y}{L_x} \right)^2 \left(\frac{1}{\beta} \right)^2 + \left(\frac{1}{2} \right) \left(\frac{C_{21}}{R} \right) \left(\frac{L_y}{L_x} \right)^2 \left(\frac{1}{\beta} \right)^4 \right]
\]
\[m = \left[\frac{1}{4\pi} \left(\frac{L}{R} \right)^4 \frac{A_{11}}{A_{22}} \right] \left(\frac{R^2}{D_{22} A_{22}} \right) \left\{ \frac{4 \alpha^8}{1 + \frac{(2)(D_{12} + 22 A_{22})(A_{11} A_{22})^{1/2}}{L^2} \left(B^2 + \frac{D_{11} A_{11}}{D_{22} A_{22}} \right) \left(\beta^2 \right) + 4 \beta^2} \right\}^{1/4} \]

where,

\[U = \frac{R}{(D_{22} A_{22})^{1/2}} \left[\frac{C_{11} + C_{22}}{2 R \beta^2} + \left(\frac{1}{2} \right) \left(\frac{C_{12}}{R} \right)^{1/2} \left(\frac{A_{11}}{A_{22}} \right)^{1/2} + \left(\frac{1}{2} \right) \left(\frac{C_{21}}{R} \right) \left(\frac{A_{22}}{A_{11}} \right)^{1/2} \left(\frac{1}{\beta^4} \right) \right] \]
spacing. In addition, the area of a single stringer (no skin included) will be identified by the symbol A_s. The eccentricity is represented as \bar{z}_x. By assuming that

(a) All of the skin and stringer material is fully effective and

(b) The stringer centroid (no skin included) lies at its mid-height,

one can employ the simple laws of mechanics to arrive at the following formula for the absolute magnitude of the eccentricity:

$$|\bar{z}_x| = \frac{\left(\frac{t_x}{t}\right) - 1}{\left(\frac{t_x}{t}\right)} \left(\frac{h_x + \frac{t}{2}}{\frac{t_x}{2}}\right)$$

(2-22)
where
\[\bar{t}_x = \left[\frac{A}{b} + t \right] \]

(2-23)

Introduction of the assumption that \(h_x \gg (t/2) \) permits one to rewrite equation (2-22) as

\[|\bar{z}_x| = \frac{(1/2)\left(\frac{\bar{t}_x}{t} - 1\right)h_x}{\left(\frac{\bar{t}_x}{t}\right)} \]

(2-24)

It then becomes convenient to define two new quantities, \(C_{hx} \) and \(C_{\rho x} \), as follows:

\[C_{hx} = \frac{|\bar{z}_x|}{h_x} \]

(2-25)

\[C_{\rho x} = \frac{\rho}{h_x} \]

(2-26)

The quantity \(\rho_x \) is the local centroidal radius of gyration of the skin-stringer combination. For practical skin-stringer configurations, the value \(C_{\rho x} = .33 \) will usually approximate the actual conditions reasonably well. Therefore, the buckling curves of SECTION 4 are based upon this value. These curves are also based upon the relationship

\[C_{hx} = \left(\frac{1}{2}\right) \left[\left(\frac{\bar{t}_x}{t}\right) - 1 \right] \]

(2-27)
which is obtained through the substitution of equation (2-25) into (2-24). The computations performed within digital computer program 4267 make use of the C_{hx} and C_{px} values to arrive at reasonable measures of eccentricity based on specified ρ_x values. That is, $|\bar{z}_x|$ is found from the following equation which results from the substitution of equation (2-26) into (2-25):

$$|\bar{z}_x| = \left(\frac{C_{hx}}{C_{px}} \right) \rho_x$$ (2-28)

Although the buckling curves of SECTION 4 incorporate the several approximations indicated above, it should be noted that digital computer program 4267 features several options which allow one to obtain improved accuracy for given configurations. For example, one may choose to input actual C_{hx} and C_{px} values for selected structures. Furthermore, an option is provided which permits the insertion of primary input geometry in the form of elastic constants and eccentricity coupling constants.

Consideration will now be given to cross sections which lie in radial planes. A portion of such a section is depicted in Figure 3. The symbol

![Effective Skin](image)

Figure 3 - Sample Wall Cross Section Lying in Radial Plane

2-14

GENERAL DYNAMICS CONVAIR DIVISION
a denotes the spacing between rings while the eccentricity value of interest is identified as \(\bar{z}_y \). Unlike the case for the section shown in Figure 2, the usual proportions encountered in skin-stringer-ring constructions make it improper to assume that the complete skin-ring combination is fully effective. Normally, only a relatively short length of skin can be considered to essentially behave as part of the ring cross section. Therefore, no relationship corresponding to equation (2-24) is involved in the ring-related simplifications embodied in the buckling curves of SECTION 4. These simplifications are introduced only through the terms \(C_{hy} \) and \(C_{\rho y} \) which are defined as follows:

\[
C_{hy} = \frac{|\bar{z}_y|}{h_y} \quad (2-29)
\]

\[
C_{\rho y} = \frac{\rho_y}{h_y} \quad (2-30)
\]

The quantity \(\rho_y \) is the local centroidal radius of gyration of the ring-effective skin combination. Substitution of equation (2-30) into (2-29) permits one to express the absolute magnitude of the hoop eccentricity as follows:

\[
|\bar{z}_y| = \left(\frac{C_{hy}}{C_{\rho y}} \right) \rho_y \quad (2-31)
\]

To generate the buckling curves of SECTION 4, this equation was used to arrive at reasonable measures of \(|\bar{z}_x| \) based upon the specified \(\rho_y \). The values

\[
C_{hy} = .425
\]

\[
C_{\rho y} = .4 \quad (2-32)
\]

were used for this purpose. These were selected as reasonable estimates for the proportions likely to be found in practical skin-stringer-ring constructions. Note however that digital computer program 4267 features an
input format which allows one to obtain improved accuracy for given configurations. For example, one may choose to input actual C_{hY} and C_{py} values for selected structures. Furthermore, as already noted, an option is provided which permits the insertion of primary input geometry in the form of elastic constants and eccentricity coupling constants.
The methods given in this volume deal only with general instability (see GLOSSARY, Volume I [1]). No consideration is given here to the panel instability mode (see GLOSSARY, Volume I [1]). The methods employ the smearing-out technique whereby discrete stiffness values are averaged over the entire surface of the cylinder. One must therefore exercise engineering judgement to prevent misapplication to configurations having excessively large stiffener spacings. In addition, it should be noted that only classical theoretical solutions are employed. Influences from initial imperfections are completely ignored. It is therefore recommended that the values obtained from this volume be reduced in accordance with the knock-down criterion of Volume V [12].

The methods presented here for the analysis of general instability basically consist of the following:

(a) A collection of buckling curves (see SECTION 4) which embody a number of simplifications which are reasonable for conventional skin-stringer-ring configurations.

(b) Digital computer program 4267 (see SECTION 6) which can be used to obtain single-point solutions and/or additional buckling curves. The input options of this program enable one to obtain particular solutions of greater accuracy than can be obtained from the curves of SECTION 4. These curves sacrifice accuracy in the interest of generality and practicality. The computer program also enables one to analyze corrugated and waffle configurations, neither of which are covered by the given buckling curves since all of these plots apply only to conventional skin-stringer-ring arrangements and proportions.

The simplifying assumptions embodied in the buckling curves of SECTION 4 are as follows:

(a) The entire skin-stringer combination is assumed to be fully effective.

(b) The stringer centroid (no skin included) is assumed to lie at its mid-height.

(c) $h_x >> \frac{t}{2}$
Assumptions (h) and (i) are justified on the basis that the constants D_{12}, D_{21}, C_{12}, and C_{21} involve the available mechanisms for interplay which are dependent upon Poisson's-ratio influences. For usual stringer and ring arrangements, this interplay is of a minimal nature since it occurs primarily in the localized regions where the stiffeners intersect. However, when the stringer and ring spacings are very small (as for waffle configurations) and/or the contributions from stiffener rigidities approach that of the skin (also as for waffle configurations), non-zero values should be used for D_{12}, D_{21}, C_{12} and C_{21}. In such cases, one must resort to point-solutions using digital computer program 4267.

It is important to recall here that a Donnell-type theory furnishes the basis for the methods given in this volume. Therefore, these methods cannot be applied to cases of non-axisymmetric buckling where the number of circumferential full-waves is small. As a rule-of-thumb, it is suggested that the methods be considered inapplicable where

$$0 < n < 2$$

(3-1)

All of the curves given in SECTION 4 completely ignore this restriction. Therefore, to insure that this condition is not violated, one should supplement the plotted data with appropriate checks from digital computer runs using program 4267. However, most practical configurations likely to be encountered will not display buckle patterns with $0 < n < 2$. Hence it should not prove necessary to make the suggested check for every configuration investigated. When a large number of candidate designs are to be
studied, it will usually be reasonable for one to assume that the wave-number restrictions are satisfied so that the foregoing check need only be made as a final operation for a few selected cases.

It is further suggested that, in applying the methods of this volume, one give some consideration to the influences which shallow rings and/or wide stringer spacings might have on the elastic constant A_{22}. For the axisymmetric buckling mode it seems clear that the A_{22} value should reflect the difference in flexibility between the discretely loaded ring of Figure 4(a) and its uniformly loaded counterpart shown in Figure 4(b). For this purpose, a correction factor C_R can be established which is simply a ratio of these two flexibilities.

Figure 4 - Alternative Ring Loading Conditions
The following formula [16] can be used for the radial deflection of the discretely loaded ring:

\[\Delta_R = \frac{WR^3}{2EI_r} \left[\frac{1}{\sin^2 \theta} \left(\frac{\theta}{2} + \frac{\sin \theta \cos \theta}{2} \right) - \frac{1}{\theta} \right] \]

(3-2)

where

\[\Delta_R = \text{Radial deflection at points of load application.} \]

\[\theta = \text{Half-angle between discrete load points, radians.} \]

The radial deflection for the uniformly loaded case is denoted \(\delta_R \) and the following formula for this quantity is easily derived:

\[\delta_R = \frac{w_c R^2}{A E} \]

(3-3)

To establish a basis for comparison between these two situations, the following relationship between \(W \) and \(w_c \) is employed:

\[W = \frac{2\pi R}{N_s} w_c \]

(3-4)

where

\[N_s = \text{Number of discrete load points for the case of Figure 4(a); (Number of stringers)} \]

The factor \(C_R \) may then be defined as follows:

\[C_R = \frac{\delta_R}{\Delta_R + \delta_R} = \frac{1}{\frac{\Delta_R}{\delta_R} + 1} \]

(3-5)
By substituting equations (3-2), (3-3), and (3-4) into equation (3-5), the following result is obtained:

\[
C_R = \frac{1}{1 + \left(\frac{\pi K}{N_s}\right)\left(\frac{R^2 A_r}{I_r}\right)}
\]

(3-6)

where

\[
K = \left[\frac{1}{\sin^2 \theta} \left(\frac{\theta}{2} + \frac{\sin \theta \cos \theta}{2}\right) - \frac{1}{\theta}\right]
\]

(3-7)

and

\[
\theta = \frac{\pi}{N_s}
\]

(3-8)

Figure 5 presents plots of \(C_R\) versus \(\left(\frac{R^2 A_r}{I_r}\right)\) for selected constant values of \(N_s\). The form of equation (3-7) leads to the usual numerical difficulties that one encounters when handling small differences between large numbers. Therefore, the curves of Figure 5 were plotted from digital computer results obtained to double-precision accuracy.

It is thought that the most logical use of the \(C_R\) value is as a correction factor to the quantity \(\left(\frac{1}{A_{22}}\right)\) appearing in any terms which do not vanish as \(\beta \to \infty\). However, such corrections have not yet been incorporated into either the buckling curves of SECTION 4 or digital computer program 4267. Therefore, Figure 5 can only be used here as a means to check the applicability of the given methods. It is suggested that, when \(C_R \geq 0.95\), one might conclude that the discreteness mechanism depicted in Figure 4 is of negligible importance. On the other hand, lower \(C_R\) values would indicate a need to apply engineering judgement in evaluating results obtained from the curves of SECTION 4 and digital computer program 4267. However, it will be found that, for most realistic skin-stringer-ring constructions, the geometric proportions will be such that \(C_R\) is essentially equal to unity.
Figure 5 - C_R Factor
BUCKLING CURVES

The curves of this section present critical strain values for axially compressed circular cylinders having eccentric stringers and rings. To make proper use of these curves, one should refer to the instructions furnished in SECTION 3, "ANALYSIS METHODS". All of these curves were developed by using digital computer program 4267 (see SECTION 6) in conjunction with an automatic plotting machine. The machine located individual points through which the curves were drawn by hand. Since the plotting machine does not have the capability to print out lower case letters, the symbols t, x, and the y of \bar{t} are shown in upper case notation.

The following information is furnished to clarify the meanings of all terms appearing on the plots:

- $T_{BAR X} = \bar{t}_x$ = Thickness of appropriate smeared-out area of cross sections lying in planes normal to the axis of revolution (see Table III and its notes).
- $T_{BAR Y} = \bar{t}_y$ = Thickness of appropriate smeared-out area of cross sections lying in radial planes (see Table III and its notes).
- $T = t$ = Thickness of basic cylindrical skin in conventional skin-stringer-ring constructions.

To facilitate application to other configurations and to cases where buckling of the isotropic skin panels precedes general instability, it is helpful to note that this quantity enters into the given curves through both the elastic constant A_{33} and equation (2-27).
\(L = \) Overall length of the cylinder. (Note that this quantity is NOT the ring spacing).

\(R = \) Radius to middle surface of basic cylindrical skin.

\(\rho_y = \) Local circumferential radius of gyration. This quantity may be computed from

\[
\rho_y = \sqrt{\frac{I_r + s}{A_r + s}} \quad \text{or} \quad \rho_y = \sqrt{\frac{I_r}{A_r}}
\] \hspace{1cm} (4-1)

as applicable (see Table III and its notes).

\(\text{RHO } X = \rho_x = \) Local longitudinal radius of gyration. This quantity may be computed from the equation

\[
\rho_x = \sqrt{\frac{I_x}{t_x}}
\] \hspace{1cm} (4-2)

(See Table III and its notes).

\(\text{SIGMA BAR } = \overline{\sigma} = \) Critical compressive buckling stress obtained by dividing the critical longitudinal compressive running load by \(\overline{t}_x \).

\(E = \) Young's modulus.

Table I lists the families of curves provided here for the case of external stringers and internal rings. Table II lists the families of curves provided here for the case of internal stringers and internal rings.
TABLE I - Table of Contents for Curves of Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening (External Stringers and Internal Rings)

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>$\left(\frac{t_x}{t} \right)$</th>
<th>$\left(\frac{L}{R} \right)$</th>
<th>$\left(\frac{t_y}{t} \right)$</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6(a)</td>
<td>1.2</td>
<td>1.0</td>
<td>0.1</td>
<td>4-5</td>
</tr>
<tr>
<td>6(b)</td>
<td>1.2</td>
<td>1.0</td>
<td>0.5</td>
<td>4-6</td>
</tr>
<tr>
<td>6(c)</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>4-7</td>
</tr>
<tr>
<td>6(d)</td>
<td>2.0</td>
<td>1.0</td>
<td>0.1</td>
<td>4-8</td>
</tr>
<tr>
<td>6(e)</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>4-9</td>
</tr>
<tr>
<td>6(f)</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4-10</td>
</tr>
<tr>
<td>6(g)</td>
<td>3.0</td>
<td>1.0</td>
<td>0.1</td>
<td>4-11</td>
</tr>
<tr>
<td>6(h)</td>
<td>3.0</td>
<td>1.0</td>
<td>0.5</td>
<td>4-12</td>
</tr>
<tr>
<td>6(i)</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4-13</td>
</tr>
<tr>
<td>6(j)</td>
<td>1.2</td>
<td>2.0</td>
<td>0.1</td>
<td>4-14</td>
</tr>
<tr>
<td>6(k)</td>
<td>1.2</td>
<td>2.0</td>
<td>0.5</td>
<td>4-15</td>
</tr>
<tr>
<td>6(l)</td>
<td>1.2</td>
<td>2.0</td>
<td>1.0</td>
<td>4-16</td>
</tr>
<tr>
<td>6(m)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.1</td>
<td>4-17</td>
</tr>
<tr>
<td>6(n)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5</td>
<td>4-18</td>
</tr>
<tr>
<td>6(o)</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>4-19</td>
</tr>
<tr>
<td>6(p)</td>
<td>3.0</td>
<td>2.0</td>
<td>0.1</td>
<td>4-20</td>
</tr>
<tr>
<td>6(q)</td>
<td>3.0</td>
<td>2.0</td>
<td>0.5</td>
<td>4-21</td>
</tr>
<tr>
<td>6(r)</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>4-22</td>
</tr>
<tr>
<td>6(s)</td>
<td>1.2</td>
<td>3.0</td>
<td>0.1</td>
<td>4-23</td>
</tr>
<tr>
<td>6(t)</td>
<td>1.2</td>
<td>3.0</td>
<td>0.5</td>
<td>4-24</td>
</tr>
<tr>
<td>6(u)</td>
<td>1.2</td>
<td>3.0</td>
<td>1.0</td>
<td>4-25</td>
</tr>
<tr>
<td>6(v)</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>4-26</td>
</tr>
<tr>
<td>6(w)</td>
<td>2.0</td>
<td>3.0</td>
<td>0.5</td>
<td>4-27</td>
</tr>
<tr>
<td>6(x)</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4-28</td>
</tr>
<tr>
<td>6(y)</td>
<td>3.0</td>
<td>3.0</td>
<td>0.1</td>
<td>4-29</td>
</tr>
<tr>
<td>6(z)</td>
<td>3.0</td>
<td>3.0</td>
<td>0.5</td>
<td>4-30</td>
</tr>
<tr>
<td>6(aa)</td>
<td>3.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4-31</td>
</tr>
</tbody>
</table>
TABLE II - Table of Contents for Curves of Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening (Internal Stringers and Internal Rings)

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>$\frac{t_x}{t}$</th>
<th>$\frac{L}{R}$</th>
<th>$\frac{t_y}{t}$</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(a)</td>
<td>1.2</td>
<td>1.0</td>
<td>0.1</td>
<td>4-32</td>
</tr>
<tr>
<td>7(b)</td>
<td>1.2</td>
<td>1.0</td>
<td>0.5</td>
<td>4-33</td>
</tr>
<tr>
<td>7(c)</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>4-34</td>
</tr>
<tr>
<td>7(d)</td>
<td>2.0</td>
<td>1.0</td>
<td>0.1</td>
<td>4-35</td>
</tr>
<tr>
<td>7(e)</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>4-36</td>
</tr>
<tr>
<td>7(f)</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4-37</td>
</tr>
<tr>
<td>7(g)</td>
<td>3.0</td>
<td>1.0</td>
<td>0.1</td>
<td>4-38</td>
</tr>
<tr>
<td>7(h)</td>
<td>3.0</td>
<td>1.0</td>
<td>0.5</td>
<td>4-39</td>
</tr>
<tr>
<td>7(i)</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4-40</td>
</tr>
<tr>
<td>7(j)</td>
<td>1.2</td>
<td>2.0</td>
<td>0.1</td>
<td>4-41</td>
</tr>
<tr>
<td>7(k)</td>
<td>1.2</td>
<td>2.0</td>
<td>0.5</td>
<td>4-42</td>
</tr>
<tr>
<td>7(l)</td>
<td>1.2</td>
<td>2.0</td>
<td>1.0</td>
<td>4-43</td>
</tr>
<tr>
<td>7(m)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.1</td>
<td>4-44</td>
</tr>
<tr>
<td>7(n)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.5</td>
<td>4-45</td>
</tr>
<tr>
<td>7(o)</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>4-46</td>
</tr>
<tr>
<td>7(p)</td>
<td>3.0</td>
<td>2.0</td>
<td>0.1</td>
<td>4-47</td>
</tr>
<tr>
<td>7(q)</td>
<td>3.0</td>
<td>2.0</td>
<td>0.5</td>
<td>4-48</td>
</tr>
<tr>
<td>7(r)</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>4-49</td>
</tr>
<tr>
<td>7(s)</td>
<td>1.2</td>
<td>3.0</td>
<td>0.1</td>
<td>4-50</td>
</tr>
<tr>
<td>7(t)</td>
<td>1.2</td>
<td>3.0</td>
<td>0.5</td>
<td>4-51</td>
</tr>
<tr>
<td>7(u)</td>
<td>1.2</td>
<td>3.0</td>
<td>1.0</td>
<td>4-52</td>
</tr>
<tr>
<td>7(v)</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>4-53</td>
</tr>
<tr>
<td>7(w)</td>
<td>2.0</td>
<td>3.0</td>
<td>0.5</td>
<td>4-54</td>
</tr>
<tr>
<td>7(x)</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4-55</td>
</tr>
<tr>
<td>7(y)</td>
<td>3.0</td>
<td>3.0</td>
<td>0.1</td>
<td>4-56</td>
</tr>
<tr>
<td>7(z)</td>
<td>3.0</td>
<td>3.0</td>
<td>0.5</td>
<td>4-57</td>
</tr>
<tr>
<td>7(aa)</td>
<td>3.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4-58</td>
</tr>
</tbody>
</table>
Figure 6(a) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(b) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening STRINGERS OUTSIDE RINGS INSIDE
Figure 6(c) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RINGS INSIDE
Figure 6(d) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RINGS INSIDE

Orthotropic Stiffening STRINGERS OUTSIDE
Figure 6(e) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RING INSIDE
Figure 6(f) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(g) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(i) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RINGS INSIDE
Figure 6(j) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(k) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RINGS INSIDE

T BAR X / Y = 1.200x10^-00
L/R = 2.000x10^-00
T BAR Y / T = 5.000x10^-01
Figure 6(1) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RINGS INSIDE
Figure 6(m) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(n) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening STRINGERS OUTSIDE RINGS INSIDE
Figure 6(o) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RING INSIDE
Figure 6(p) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(q) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(r) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
RINGERS OUTSIDE
RINGs INSIDE
Figure 6(a). - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(t) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening. STRINGERS OUTSIDE RINGS INSIDE.
Figure 6(v) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening.

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(6) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(x) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(y) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(z) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE
RINGS INSIDE
Figure 6(aa) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS OUTSIDE

RINGS INSIDE
Figure 7(a) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(b) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
Figure 7(c) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening STRINGERS INSIDE RINGS INSIDE
Figure 7(d) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening STRINGERS INSIDE RINGS INSIDE
Figure 7(e) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(f) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
Figure 7(g) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening STRINGERS INSIDE
RINGS INSIDE
Figure 7(h) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening STRINGERS INSIDE RINGS INSIDE
Figure 7(i) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(j) - Critical Axial Compression for General Instability in Cylinders with Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(k) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
Figure 7(1) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
Figure 7(m) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening Stringers Inside Rings Inside
Figure 7(n) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(o) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS INSIDE
RINGS INSIDE
Figure 7(p) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS INSIDE
RINGS INSIDE
Figure 7(q) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(r) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS INSIDE
RING INSIDE
Figure 7(s) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening
STRINGERS INSIDE
RINGS INSIDE
Figure 7(t) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(u) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
Figure 7(v) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening Strings INSIDE
Figure 7(w) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

- Stringers Inside
- Rings Inside
Figure 7(x) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(y) - Critical Axial Compression for General Instability in Cylinders with Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
Cylinders With Eccentric Orthotropic Stiffening

Figure 7(z) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE
RINGS INSIDE
Figure 7(aa) - Critical Axial Compression for General Instability in Cylinders With Eccentric Orthotropic Stiffening

STRINGERS INSIDE

RINGS INSIDE
SECTION 5
ELASTIC CONSTANTS

The digital computer program of SECTION 6 includes an option which allows for the input of elastic constants and eccentricity coupling constants. This feature was incorporated to provide the engineer with a more flexible analysis method than is given by the curves of SECTION 4. However, in order to make use of this capability, one must first compute appropriate values for the A_{ij}'s, D_{ij}'s, and C_{ij}'s. Some recommended formulas for these constants are listed in Table III. The tabulated formulas are simplified expressions suitable for application to most practical stiffened configurations (not including waffle-type structures). To be rigorous, more complicated expressions would be required. All of the given formulas apply only where the behavior is elastic. For cases where the buckling stress exceeds the proportional limit of the stress-strain curve, the stringer (or corrugation) and skin stiffnesses should be modified to reflect tangent modulus influences.

In addition to the elastic constants and eccentricity coupling constants, Table III also lists recommended formulas for the computation of the quantities t_x, t_y, ρ_x, and ρ_y which must be computed if one is to make use of the curves given in SECTION 4 or the RATIO option of digital computer program 4267 (see SECTION 6).

To fully understand Table III, it is helpful to note that the A_{ij}'s and D_{ij}'s arise out of mathematical integrations involving the distribution of the composite wall material about the appropriate centroidal surface. Note that the centroidal surface has a curvature of its own. Therefore, the related material distribution is equivalent to that which exists about the centroidal plane of the flat plate obtained by unfolding the composite circular shell wall into a flat configuration. All influences of curvature in this regard are inherent in the basic shell equations into which the A_{ij}'s and D_{ij}'s are substituted.
Table III applies only to cases where no buckling of the isotropic skin panels and no local buckling of the stringers occur prior to overall instability. In addition, it is assumed that the stringers are spaced sufficiently close together to justify the assumption that all of the skin material is fully effective. In cases where these several conditions do not prevail, it becomes necessary to introduce effective-width concepts to modify the information given in the table and the notes which follow it.
Notes for TABLE III

(a) For convenience, all of the non-corrugated configurations shown here only depict the case of external stringers. In addition, only internal rings are shown. However, all of the formulas for t_x, t_y, ρ_x, ρ_y, the A_{ij}'s, and the D_{ij}'s apply equally well for other orientations of the stiffeners (inside vs. outside). On the other hand, the signs of the C_{11} and C_{22} values depend on the stiffener locations (z_x is positive for internal stringers and negative for external stringers; z_y is positive for internal rings and negative for external rings).

(b) The quantity t_x is the wall thickness for a monocoque circular cylinder of the same radius as the middle surface of the stiffened-cylinder basic skin, and of the same total cross-sectional area as the actual composite stiffened wall including both skin and stringers. The cross section referred to here is obtained by passing a plane through the cylinder, normal to the axis of revolution.

(c) The quantity A_s is the cross-sectional area of a single stringer and does not include any of the basic cylindrical skin. The cross section referred to here is obtained by passing a plane through the cylinder, normal to the axis of revolution.

(d) The symbol (Σ_{d_i}) is used to denote the total peripheral length of the corrugation center-line for the wave-type cross section obtained by passing a plane through the cylinder, normal to the axis of revolution. Hence, $(\Sigma_{d_i}) > 2\pi R$ and the total area for the stated corrugation cross section may be taken equal to $(\Sigma_{d_i})(t_c)$.
Notes for TABLE III (Continued)

(e) The quantity A_{r+s} is the cross-sectional area of a single ring augmented by an effective width of skin which is considered to essentially behave as part of the ring. The user must apply engineering judgement in selecting the effective width to be used here. The cross section referred to lies in a radial plane.

(f) The quantity A_r is the cross-sectional area of a single ring and does not include any effective width of skin. The cross section referred to here lies in a radial plane.

(g) The quantity a is the spacing between rings (assumed to be uniform throughout the structure).

(h) The quantity I_x is the local longitudinal centroidal running moment of inertia for the flat configuration obtained by unfolding the entire composite circular shell wall. For example, consider the case of a cylinder having a local wall cross section of the type

![Centroidal Surface](image-url)
After computing I_{A-A} for the cross-hatched area shown, \bar{I}_x is found as follows:

$$\bar{I}_x = \frac{I_{A-A}}{b}$$

(i) The quantity \bar{I}_{r+s} is the centroidal moment of inertia for the cross section of a single ring augmented by an effective width of skin which is considered to essentially behave as part of the ring. The user must apply engineering judgement in selecting the effective width to be used here. The cross section referred to lies in a radial plane.
Notes for TABLE III (Continued)

(j) The quantity I_r is the centroidal moment of inertia for the cross section of a single ring and does not include any effective width of skin. The cross section referred to here lies in a radial plane.

(k) The term $(1-v^2)$ has been omitted from the formulas for D_{11} and D_{22} since the specified configurations provide incomplete restraint to the related anticlastic bending (see GLOSSARY, Volume I [1]).

(l) The several values which have been set equal to zero all involve the available mechanisms for interplay that are dependent upon Poisson's-ratio influences. For usual stiffened constructions, such interplay is of a minimal nature since it occurs primarily in the localized regions where the stiffeners intersect. However, when the stringer and ring spacings are very small (as for waffle configurations) and/or the contributions from stiffener rigidities approach that of the skin (also as for waffle configurations), non-zero values should be used for A_{12}, D_{12}, C_{12}, and C_{21}. However, no recommendations are made here as to practical formulations to be used for the computation of such values.
This section presents the essential features of General Dynamics Convair digital computer program numbered 4267. This program was developed for the analysis of general instability in axially compressed circular cylinders having eccentric stringers and rings. The solution is based upon the theoretical considerations presented in SECTION 2. The output can be obtained in the form of automatically plotted data or single-point solutions, as desired. All of the buckling curves presented in SECTION 4 were obtained by using the automatic plotting option of the program. The input format is shown in Figure 8. Symbols are listed in Table IV. A detailed, card-by-card description of the input follows below. Runs may be stacked. For further information concerning this program one may refer to the detailed derivations and basic logic presented in reference 15.

CARD TYPE 1: One card per run.
Enter PROBLEM IDENTIFICATION anywhere in columns 1-60.
Alphanumeric characters.

CARD TYPE 2: One card per run.
Enter INPUT OPTION (RATIO or STIFF) in columns 1-5.
This option permits the user to choose between alternative formats for cards other than types 1, 2, and 3.
Enter NO OF CASES as right adjusted integer in columns 6-10 (15).
Enter POISSON'S RATIO (v) in columns 11-15 (F5).
Enter E/G (Young's modulus / Modulus of Elasticity in Shear) in columns 16-20 (F5).
FORTRAN CODING AND DATA FORM

GENERAL INSTABILITY OF ECCENTRICALLY STIFFENED CYLINDERS

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>Problem Identification</td>
</tr>
<tr>
<td>2</td>
<td>Option Cases Data</td>
</tr>
<tr>
<td>3</td>
<td>Max. Ordinate Screening</td>
</tr>
<tr>
<td>4</td>
<td>(RRHY), (RRHY), (RRHY),</td>
</tr>
<tr>
<td>5</td>
<td>Case No.* (E), (L), (E), (E),</td>
</tr>
<tr>
<td>6</td>
<td>(L) (P), (P), (E), (R), (R), (R), (R),</td>
</tr>
<tr>
<td>7</td>
<td>Case No.</td>
</tr>
<tr>
<td>8</td>
<td>Beta Factor</td>
</tr>
</tbody>
</table>

Figure 8 - Input Format - Program 4267
Enter LOWER C_α in columns 21-25 (F5). Output is listed for critical $m = (\text{LOWER } C_\alpha) \times m^*$. The value (LOWER C_α) = 0.99 will usually be suitable.

Enter UPPER C_α in columns 26-30 (F5). Output is listed for critical $m = (\text{UPPER } C_\alpha) \times m^*$. The value (UPPER C_α) = 1.01 will usually be suitable.

Enter LOWER C_β in columns 31-35 (F5). Output is listed for critical $\beta = (\text{LOWER } C_\beta) \times \beta^*$. The value (LOWER C_β) = 0.99 will usually be suitable.

Enter UPPER C_β in columns 36-40 (F5). Output is listed for critical $\beta = (\text{UPPER } C_\beta) \times \beta^*$. The value (UPPER C_β) = 1.01 will usually be suitable.

Enter NRRHOY (number of R_ϕ^y ratios to be included in plots and/or tables which result from automatic sequencing operations) as right adjusted integer in columns 41-45 (I5). Will be left blank when only point solutions are to be obtained.

Enter η_p OPTION as right adjusted integer in columns 46-50 (I5). Always insert the number 1 here except where

(a) it is desired to eliminate the ρ_{xy} contribution in RATIO-option point solutions

or

(b) it is desired to eliminate the η_p contribution in STIFF-option point solutions.
In the latter two instances leave columns 46-50 blank.

Enter C_{12} OPTION as right adjusted integer in columns 51-55 (I5). Always insert the number 1 here except where it is desired to eliminate the C_{12} contribution in point solutions. (For other types of solutions the program always assumes $C_{12} = 0$). For those point solutions where one chooses to ignore the C_{12} influence, columns 51-55 are to be left blank.

Enter C_{21} OPTION as right adjusted integer in columns 56-60 (I5). Always insert the number 1 here except where it is desired to eliminate the C_{21} contribution in point solutions. (For other types of solutions, the program always assumes $C_{21} = 0$). For those point solutions where one chooses to ignore the C_{21} influence, columns 56-60 are to be left blank.

Enter A_{12} OPTION as right adjusted integer in columns 61-65 (I5). Always insert the number 1 here except where it is desired to eliminate the A_{12} contribution in any type of solution. In the latter case, columns 61-65 are to be left blank.

Enter N_R as a right adjusted integer in columns 66-70 (I5). This input constitutes the number of refinement cycles used to improve the accuracy of final computed values. Whenever (BETA FACTOR) ≤ 1.05, the value $N_R = 5$ should usually be satisfactory. Each single refinement cycle essentially cuts the final β screening increment in half.
Enter DUMP OPTION as a right adjusted integer in columns 71-75 (I5). Insert the number 1 whenever supplementary diagnostic output data is to be printed out. Otherwise, leave blank.

CARD TYPE 3: One card per run.

Enter MAX ORDINATE FOR PLOTS in columns 1-10 (E10.5). Any of the following values may be inserted here:

.0005	.001	.006
.0006	.002	.007
.0007	.003	.008
.0008	.004	.009
.0009	.005	.010

This entry is left blank when no plots are to be made.

Enter SCREENING CUT-OFF in columns 11-20 (E10.5). This is a cut-off value used in the minimization process and must be set greater than the output critical strain. Whenever the computed critical strain exceeds the SCREENING CUT-OFF value, the printed results cannot be believed. In such cases, one should increase the input SCREENING CUT-OFF value and rerun the program. In general one will have little interest in critical strains above .010. Therefore, this value will usually be a suitable choice for the SCREENING CUT-OFF.

Enter MIN NO CIRCUMF HALF-WAVES in columns 21-30 (E10.5). This is the minimum number of circumferential half-waves considered to be permissible for non-axisymmetric buckle patterns. A value of 2.0 should usually be inserted here.
CARD TYPE 4 (RATIO OPTION):

There will be NRRHOY/8 (rounded to the higher whole number) cards per run. However, when NRRHOY = 0, no cards of this type are required.

Enter RRHOY (R/\rho_y) values, with a maximum of 8 to a card (8 \text{E10.5}).

CARD TYPE 5 (RATIO OPTION):

There will be one of these cards for each case.

Enter CASE NO as right adjusted integer in columns 1-5 (I5).

Enter OUTPUT OPTION as right adjusted integer in columns 6-10 (I5).

1 = Tables with no plots
2 = Tables plus plots
3 = Plots with no tables
4 = Point solution

Enter the thickness ratio (\bar{t}_x/t) in columns 11-20 (E10.5).

Enter the (Length/Radius) ratio L/R in columns 21-30 (E10.5).

Enter the thickness ratio (\bar{t}_y/t) in columns 31-40 (E10.5).

Enter the geometric factor C_{px} in columns 41-50 (E10.5).

This factor is defined by equation (2-26) and is not used for point solutions. Hence, when OUTPUT OPTION = 4, leave this entry blank. The value of C_{px} = .33 will usually be reasonable for practical skin-stringer combinations.
Enter the geometric factor C_{hx} in columns 51-60 ($E10.5$). This factor is defined by equation (2-25) and is not used for point solutions. Hence, when OUTPUT OPTION = 4, leave this entry blank. When it is desired that the computer employ the equation

$$C_{hx} = \left(\frac{1}{2} \right) \frac{\left(\frac{t}{t_x} \right) - 1}{\left(\frac{t_x}{t} \right)}$$

insert the left adjusted word AUTOMATIC in columns 51-60.

Enter the geometric factor C_{py} in columns 61-70 ($E10.5$). This factor is defined by equation (2-30) and is not used for point solutions. Hence, when OUTPUT OPTION = 4, leave this entry blank. The value $C_{py} = .40$ will usually be reasonable for practical skin-ring combinations.

Enter the geometric factor C_{hy} in columns 71-80 ($E10.5$). This factor is defined by equation (2-29) and is not used for point solutions. Hence, when OUTPUT OPTION = 4, leave this entry blank. The value $C_{hy} = .425$ will usually be reasonable for practical skin-ring combinations.

CARD TYPE 6 (RATIO OPTION):

There will be one of these cards for each case.

Enter STRINGER LOCATION (INSIDE, OUTSIDE, SYMMETRIC) as left adjusted word in columns 1-10.
Enter RING LOCATION (INSIDE, OUTSIDE, SYMMETRIC) as a left adjusted word in columns 11-20.

Enter BETA FACTOR in columns 21-30 (E10.5). This is a stepping factor used in the minimization process. That is, screening is performed involving β values computed from

\[β_{i+1} = \frac{β_i}{(BETA \ \text{FACTOR})} \]

(6-2)

The value (BETA FACTOR) = 1.02 should be suitable for most applications.

CARD TYPE 7 (RATIO OPTION):

This card only required for point solutions (OUTPUT OPTION = 4).

Enter the longitudinal slenderness ratio \(L/ρ_x \) in columns 1-10 (E10.5).

Enter the hoop slenderness ratio \(R/ρ_y \) in columns 11-20 (E10.5).

Enter the artificial slenderness ratio \(L/ρ_{xy} \) in columns 21-30 (E10.5).

Enter the eccentricity-dependent ratio \(C_{11}/R \) in columns 31-40 (E10.5).

Enter the eccentricity-dependent ratio \(C_{22}/R \) in columns 41-50 (E10.5).

Enter the eccentricity-dependent ratio \(C_{12}/R \) in columns 51-60 (E10.5).

Enter the eccentricity-dependent ratio \(C_{21}/R \) in columns 61-70 (E10.5).

6-8

GENERAL DYNAMICS CONVAIR DIVISION
CARD TYPE 4 (STIFF OPTION):

There will be one of these cards for each case.

Enter CASE NO as right adjusted integer in columns 1-10 (I10).

Enter the elastic constant A_{11} in columns 11-20 (E10.5).

Enter the elastic constant A_{22} in columns 21-30 (E10.5).

Enter the elastic constant A_{12} in columns 31-40 (E10.5).

Enter the elastic constant A_{33} in columns 41-50 (E10.5).

Enter the eccentricity coupling constant C_{11} in columns 51-60 (E10.5).

Enter the eccentricity coupling constant C_{22} in columns 61-70 (E10.5).

Enter R (the radius to the middle surface of the basic cylindrical skin) in columns 71-80 (E10.5).

CARD TYPE 5 (STIFF OPTION):

There will be one of these cards for each case.

Enter the elastic constant D_{11} in columns 11-20 (E10.5).

Enter the elastic constant D_{22} in columns 21-30 (E10.5).

Enter the elastic constant D_{12} in columns 31-40 (E10.5).

Enter the elastic constant D_{33} in columns 41-50 (E10.5).

Enter the eccentricity coupling constant C_{12} in columns 51-60 (E10.5).

Enter the eccentricity coupling constant C_{21} in columns 61-70 (E10.5).

Enter the overall length L (this is NOT the ring spacing) in columns 71-80 (E10.5).
CARD TYPE 6 (STIFF OPTION):

There will be one of these cards for each case.

Enter BETA FACTOR in columns 11-20 (E10.5). This is a stepping factor used in the minimization process. That is, screening is performed involving β values computed from

$$
\beta_{i+1} = \frac{\beta_i}{(\text{BETA FACTOR})}
$$

(6-3)

The value (BETA FACTOR) = 1.02 should be suitable for most applications.

A sample input coding form is shown in Figure 9.

The program output consists of a listing and/or plots depending upon the options selected. A sample output listing for

INPUT OPTION = RATIO
OUTPUT OPTION = 1

is shown in Figure 10. Typical plots are given in SECTION 4. A basic flow diagram for the program is presented as Figure 11 and a Fortran listing of the program is shown in Table V.
<table>
<thead>
<tr>
<th>Program Notation</th>
<th>Report Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>----</td>
<td>Problem identification.</td>
</tr>
<tr>
<td>RAORST</td>
<td>Input Option</td>
<td>RATIO or STIFF.</td>
</tr>
<tr>
<td>NCASES</td>
<td>----</td>
<td>Number of cases.</td>
</tr>
<tr>
<td>POISR</td>
<td>(v)</td>
<td>Poisson's ratio.</td>
</tr>
<tr>
<td>EDSIG</td>
<td>((E/G))</td>
<td>Ratio of Young's modulus to modulus of elasticity in shear.</td>
</tr>
<tr>
<td>CALPHL</td>
<td>Lower (C_\alpha)</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>CALPHU</td>
<td>Upper (C_\alpha)</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>CBETAL</td>
<td>Lower (C_\beta)</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>CBETAU</td>
<td>Upper (C_\beta)</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>NRRHOY</td>
<td>NRRHOY</td>
<td>The number of (R/p) ratios to be included in plots and/or tables which result from automatic sequencing operations.</td>
</tr>
<tr>
<td>IETAP</td>
<td>(T) Option</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>IC12</td>
<td>(C_{12}) Option</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>IC21</td>
<td>(C_{21}) Option</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>IA12</td>
<td>(A_{12}) Option</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>NR</td>
<td>(N_R)</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>IDUMP</td>
<td>Dump Option</td>
<td>See description of input for CARD TYPE 2.</td>
</tr>
<tr>
<td>Program Notation</td>
<td>Report Notation</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ORDMAX</td>
<td>Max Ordinate</td>
<td>Uppermost grid line for plots.</td>
</tr>
<tr>
<td></td>
<td>For Plots</td>
<td></td>
</tr>
<tr>
<td>SCREEN</td>
<td>Screening</td>
<td>See description of input for CARD TYPE 3.</td>
</tr>
<tr>
<td></td>
<td>Cut-Off</td>
<td></td>
</tr>
<tr>
<td>CHWMIN</td>
<td>Min no. circumf. half-waves</td>
<td>Cut-off value used in minimization process. See description of input for CARD TYPE 3.</td>
</tr>
<tr>
<td>RDRHOY</td>
<td>----</td>
<td>R/P ratios to be in plots or tables.</td>
</tr>
<tr>
<td>NCASE</td>
<td>----</td>
<td>Case number.</td>
</tr>
<tr>
<td>ITYPE=0</td>
<td>Output Option</td>
<td>1 = Tables only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Tables plus plots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Plots only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Point solution</td>
</tr>
<tr>
<td>THICKX</td>
<td>\bar{t}_x/t</td>
<td>Thickness ratio.</td>
</tr>
<tr>
<td>FLGRAD</td>
<td>L/R</td>
<td>Length-to-radius ratio.</td>
</tr>
<tr>
<td>THICKY</td>
<td>\bar{t}_y/t</td>
<td>Thickness ratio.</td>
</tr>
<tr>
<td>CRHOX</td>
<td>$C_{\rho x}$</td>
<td>Geometric factor defined by equation (2-26).</td>
</tr>
<tr>
<td>CHX</td>
<td>C_{hx}</td>
<td>Geometric factor defined by equation (2-25).</td>
</tr>
<tr>
<td>CRHOY</td>
<td>$C_{\rho y}$</td>
<td>Geometric factor defined by equation (2-30).</td>
</tr>
<tr>
<td>CHY</td>
<td>C_{hy}</td>
<td>Geometric factor defined by equation (2-29).</td>
</tr>
<tr>
<td>STRING</td>
<td>Stringer Location</td>
<td>Stringer location (INSIDE, OUTSIDE, SYMMETRIC).</td>
</tr>
</tbody>
</table>

6-12
GENERAL DYNAMICS CONVAIR DIVISION
<table>
<thead>
<tr>
<th>Program Notation</th>
<th>Report Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINGL</td>
<td>Ring Location</td>
<td>Ring location (INSIDE, OUTSIDE, SYMMETRIC).</td>
</tr>
<tr>
<td>BETAF</td>
<td>Beta Factor</td>
<td>See description of input for CARDS TYPE 6.</td>
</tr>
<tr>
<td>FLRHOX</td>
<td>L/ρ_x</td>
<td>Longitudinal slenderness ratio.</td>
</tr>
<tr>
<td>FLRHOY</td>
<td>R/ρ_y</td>
<td>Circumferential slenderness ratio for point solution only.</td>
</tr>
<tr>
<td>FLROXY</td>
<td>L/ρ_{xy}</td>
<td>Artificial slenderness ratio.</td>
</tr>
<tr>
<td>C11R</td>
<td>C_{11}/R</td>
<td>Eccentricity coupling ratio.</td>
</tr>
<tr>
<td>C22R</td>
<td>C_{22}/R</td>
<td>Eccentricity coupling ratio.</td>
</tr>
<tr>
<td>C12R</td>
<td>C_{12}/R</td>
<td>Eccentricity coupling ratio.</td>
</tr>
<tr>
<td>C21R</td>
<td>C_{21}/R</td>
<td>Eccentricity coupling ratio.</td>
</tr>
<tr>
<td>A11</td>
<td>A_{11}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>A22</td>
<td>A_{22}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>A12</td>
<td>A_{12}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>A33</td>
<td>A_{33}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>C11</td>
<td>C_{11}</td>
<td>Eccentricity coupling constant.</td>
</tr>
<tr>
<td>C22</td>
<td>C_{22}</td>
<td>Eccentricity coupling constant.</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>Radius.</td>
</tr>
<tr>
<td>D11</td>
<td>D_{11}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>D22</td>
<td>D_{22}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>D12</td>
<td>D_{12}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>Program Notation</td>
<td>Report Notation</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>D33</td>
<td>D_{33}</td>
<td>Elastic constant.</td>
</tr>
<tr>
<td>C12</td>
<td>C_{12}</td>
<td>Eccentricity coupling constant.</td>
</tr>
<tr>
<td>C21</td>
<td>C_{21}</td>
<td>Eccentricity coupling constant.</td>
</tr>
<tr>
<td>FLENGT</td>
<td>L</td>
<td>Overall length of cylinder.</td>
</tr>
<tr>
<td>CODE</td>
<td>CODE</td>
<td>DATE</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

FORTRAN CODING AND DATA FORM

FUNCTION: GENERAL INSTABILITY OF ECCENTRICALLY STIFFENED CYLINDERS

CARD TYPE: 6-15

SAMPLE PROBLEM

<table>
<thead>
<tr>
<th>RATIO</th>
<th>1.3</th>
<th>2.6</th>
<th>.99</th>
<th>1.01</th>
<th>.99</th>
<th>1.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

PARAMETERS

- **outside**: 3.0
- **inside**: 2.0
- **ratio**: 1.0
- **type**: AUTOMATIC
- **parameter**: .4

OTHER: 1.02
Sample Problem

Input Number Poissons E.G C Sub Alpha C Sub Beta C Sub Rho Y Option

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Output Option</th>
<th>T Bar X/T</th>
<th>L/R T/R</th>
<th>T Bar Y/T</th>
<th>C Sub Rho X C Sub Rho Y C Sub Hx C Sub Hy Beta Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0000E+01</td>
<td>2.0000E+00</td>
<td>3.0000E+00</td>
<td>2.0000E+00</td>
<td>1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00</td>
</tr>
</tbody>
</table>

Critical Long Case M Critical Long Case N Critical Long Case S

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Output Option</th>
<th>T Bar X/T</th>
<th>L/R T/R</th>
<th>T Bar Y/T</th>
<th>C Sub Rho X C Sub Rho Y C Sub Hx C Sub Hy Beta Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.0000E+01</td>
<td>2.0000E+00</td>
<td>3.0000E+00</td>
<td>2.0000E+00</td>
<td>1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00</td>
</tr>
</tbody>
</table>

Figure 10 - Sample Output Listing - Program 4267

General Instability of Eccentrically Stiffened Cylinders 4267
Figure 11 - Flow-Diagram - Program 4267
Routine to find minimum

\[m_{\text{MIN}} = 1, \text{ compute} \]

\[m_{\text{MAX}}, \beta_{\text{MIN}}, \beta_{\text{UL}}, \text{ AXISYM} \]

Y_{\text{AXISYM}} \text{ and from } Y_{\text{AXISYM}} \text{ find (AXISYM Sigma Bar)/E} \]

\[\beta = \beta_{\text{UL}} \]

Compute \((m_1)_{n,1}\)

\((m_1) > 1 \)

Yes

Compute \(U \)

Using \(\beta\) and \(U\) compute \(m\)

Compute \(Y\)'s corresponding to \(\{\beta, (m_1)\}, (\beta, m),\) and \(\{\beta, m_{\text{MAX}}\}\)

\((m_1) < m < m_{\text{MAX}} \)

Yes

Select algebraically lowest of \(Y\) values computed. Save in \(Y\) (saved) and corresponding \(m\) and \(\beta\) in \(m\) (saved) and \(\beta\) (saved)

No

Compute \(Y\)'s corresponding to \(\{\beta, (m_1)\}\) and \(\{\beta, m_{\text{MAX}}\}\)

\((m_1) = 1 \)

No

\((m_1) = 1 \)

Yes

\((m_1) = 1 \)

No

Figure 11 - Flow-Diagram - Program 4267 (Continued)
Figure 11 - Flow-Diagram - Program 4267

(Continued)
Figure 11 - Flow-Diagram - Program 4267
(Continued)
TABLE V - Fortran Listing - Program 4267

$IBFTC READD M94/2,LIST
COMMON/CSTRAT/DUM(50)
C**
C STANDARD INPUT FOR ALL OPTIONS
COMMON/ALL/
C
* TITLE(10)
C * RAORST
C * NCASES
C * POISK
C * EUSIG
C * CALPHEL
C * CALPHU
C * CBETAL
C * CBETAU

PROBLEM IDENTIFICATION
INPUT OPTION (RATIO OR STIFF)
NUMBER OF CASES
POISSON'S RATIO
E/SIGMA
LOWER C SUB ALPHA
UPPER C SUB ALPHA
LOWER C SUB BETA
UPPER C SUB BETA

THE NUMBER OF (R/RHO SUB Y) RATIOS TO BE INCLUDED IN PLOTS OR TABLES WHICH RESULT FROM AUTOMATIC SEQUENCING OPERATIONS. WILL BE LEFT BLANK WHEN ONLY POINT SOLUTIONS ARE TO BE OBTAINED

ETA SUB P OPTION (BLANK OR 1)
C SUB 12 OPTION (BLANK OR 1)
C SUB 21 OPTION (BLANK OR 1)
A SUB 12 OPTION (BLANK OR 1)
N SUB R *** THE NUMBER OF REFINEMENT CYCLES TO BE EMPLOYED IN THE MINIMIZATION PROCEDURE
DUMP OPTION *** 1 WHEN SUPPLEMENTARY DIAGNOSTIC OUTPUT DESIRED
MAXIMUM ORDI NATE FOR PLOTS
SCREENING CUT OFF FOR THE MINIMIZATION PROCESS
MINIMUM NUMBER OF CIRCUMFERENTIAL

6-22
GENERAL DYNAMICS CONVAIR DIVISION
HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION
PROCEDURE

REAL DUMP*

LOGICAL DUMP
DUMP=.FALSE.
DATA RATIO /5HRATIO/
**STIF /5HSTIFF/
**BLANK/6H /
I5=5
I6=6
I8=8
100 CONTINUE
ASSIGN 1500 TO IEOF
CALL ERCTRL(34,IEOF)
CALL ERRTR(-34)
READ(I5,200)TITLE
200 FORMAT(10A6)
CALL ERCTRL(34,0)
CALL ERRTR(34)
DUMP=.FALSE.
READ(I5,300)RAORST,NCASES,P0ISR,EDSIG,CALPHL,CALPHU,CBETAL,CBETAU,
*NRH0Y,IEAP,IC12,IC21,IA12,NR,IDUMP
300 FORMAT(A5,I5,6(F5.0),7(I5))
READ(I5,400)ORDMAX,SCREEN,CHWMIN
400 FORMAT(3E10.5)
IF(I5700)DUMP=.TRUE.
IF(RAORST.EQ.RATIO)GO TO 600
IF(RAORST.EQ.STIFF)GO TO 1000
WRITE(I6,500)RAORST
500 FORMAT(1H0,45HERROR IN OPTION REQUESTED NOT RATIO OR STIFF,A5)
RETURN
600 CONTINUE
950 CALL RATIO
GO TO 100
1000 CONTINUE
CALL STIFF
GO TO 100
1500 RETURN
END
$IBMAP TAP
ENTRY *UN08.
*UN08. PZE UNIT08
UNIT08 FILE *A(1),READY,OUTPUT,BLK=115,BCD
END
$IBFTC RATIOD M94/2,LIST
SUBROUTINE RATIO
COMMON/INTER/
*F1
**F2

GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

* F3
* F4
* F5
* F6
* F7
* F8
* F9
* F10
* F11
* F12
* F13
* F14
* F15
** SOLU1(8)
** ARRAY(11,25)
** FLROX(11)
** FMMAX

C***
C STANDARD INPUT FOR ALL OPTIONS

- COMMON/ALL/

C * TITLE(10) PROBLEM IDENTIFICATION

C **RAOHST INPUT OPTION (RATIO OR STIFF)

C **NCASES NUMBER OF CASES

C **POISR POISSON’S RATIO

C **EDSIG E/SIGMA

C **CALPHL LOWER C SUB ALPHA

C **CALPHU UPPER C SUB ALPHA

C **CBETAL LOWER C SUB BETA

C **CBETAU UPPER C SUB BETA

C **NRRHOY THE NUMBER OF (K/RHO SUB Y) RATIOS

C TO BE INCLUDED IN PLOTS OR TABLES

C WHICH RESULT FROM AUTOMATIC SEQUENCE

C NCING OPERATIONS. WILL BE LEFT BLANK WHEN ONLY POINT SOLUTIONS ARE

C TO BE OBTAINED

C **IEETAP ETA SUB P OPTION (BLANK OR 1)

C **IC12 C SUB 12 OPTION (BLANK OR 1)

C **IC21 C SUB 21 OPTION (BLANK OR 1)
TABLE V - Fortran Listing - Program 4267

(Continued)

<table>
<thead>
<tr>
<th>C</th>
<th>IA12</th>
<th>A SUB 12 OPTION (BLANK OR 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>NR</td>
<td>N SUB R *** THE NUMBER OF REFINEMENT CYCLES TO BE EMPLOYED IN THE MINIMIZATION PROCEDURE</td>
</tr>
<tr>
<td>C</td>
<td>IDUMP</td>
<td>DUMP OPTION *** 1 WHEN SUPPLEMENTARY DIAGNOSTIC OUTPUT DESIRED</td>
</tr>
<tr>
<td>C</td>
<td>ORDMAX</td>
<td>MAXIMUM ORDINATE FOR PLOTS</td>
</tr>
<tr>
<td>C</td>
<td>SCREEN</td>
<td>SCREENING CUT OFF FOR THE MINIMIZATION PROCESS</td>
</tr>
<tr>
<td>C</td>
<td>CHWMIN</td>
<td>MINIMUM NUMBER OF CIRCUMFERENTIAL HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION PROCEDURE</td>
</tr>
</tbody>
</table>

LOGICAL DUMP

RATIO INPUT INFORMATION

COMMON/CSTRAT/

<table>
<thead>
<tr>
<th>C</th>
<th>* NCASE</th>
<th>CASE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>ITYPE0</td>
<td>OUTPUT OPTION 1=TABLES, 2=TABLES AND PLOTS, 3=PLOTS, 4=POINT SOL.</td>
</tr>
<tr>
<td>C</td>
<td>THICKX</td>
<td>THICKNESS RATIO (T BAR SUB X/T)</td>
</tr>
<tr>
<td>C</td>
<td>FLGRAD</td>
<td>LENGTH TO RADIUS RATIO (L/R)</td>
</tr>
<tr>
<td>C</td>
<td>THICKY</td>
<td>THICKNESS RATIO (T BAR SUB Y/T)</td>
</tr>
<tr>
<td>C</td>
<td>CRHGX</td>
<td>GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO X</td>
</tr>
<tr>
<td>C</td>
<td>CHX</td>
<td>GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H X</td>
</tr>
<tr>
<td>C</td>
<td>CRHOY</td>
<td>GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO Y</td>
</tr>
<tr>
<td>C</td>
<td>CHY</td>
<td>GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H Y</td>
</tr>
<tr>
<td>C</td>
<td>STRING(2)</td>
<td>STRINGER LOCATION (INSIDE, OUTSIDE, SYMMETRIC)</td>
</tr>
<tr>
<td>C</td>
<td>STRING(2)</td>
<td>RING LOCATION (INSIDE, OUTSIDE, SYMMETRIC)</td>
</tr>
</tbody>
</table>
TABLE V - Fortran Listing - Program 4267

(Continued)

**RINGL(2)

**FLRHOX

**FRRHOY

**BETAF

**FLROXY

**C11K

**C22K

**C12K

**C21K

DIMENSION CMZ(2)

**AUTO(2)

LOGICAL POINT

DATA (AUTO(I),I=1,2)/6HAUTOMA,3HTIC/

**FINSID/6HINSIDE/

**OUTSID/6HOUTSID/

**SYMMET/6HSYMMET/

POINT=.FALSE.

PI=3.1415926

PI2=PI*PI

I_COUNT=0

I_FLAG=0

I5=5

I6=6

I8=8

FLROX(2)=42.5

FLROX(3)=60.0

FLROX(4)=86.0

FLROX(5)=121.5

FLROX(6)=175.0

FLROX(7)=245.0

FLROX(8)=350.0

FLROX(9)=495.0

FLROX(10)=700.0

GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267

(Continued)

FLROX(I1)=1000.0
100 CONTINUE
IEND=11
FLROX(1)=30.0
IF(NRHR=EQ.0)GO TO 200
READ(I5,150)(RDRHOY(I),I=1,NRHR)
150 FORMAT(I8E10.5)
200 CONTINUE
DO 500 J=1,NCASES
READ(I5,250)NCASE,IYPEO,THICKX,FLGRAD,THICKY,CRHOX,CH2,CRHOC,CHY
250 FORMAT(I5,I5,4E10.5,A6,A4,2E10.5)
ICOUNT=ICOUNT+1
DO 300 I=1,2
IF(CHX(I).*NE.AUTO(I))GO TO 350
300 CONTINUE
CHX=(1.0/2.0)*(THICKX-1.0)/THICKX
GO TO 450
350 READ400,NCASE,IYPEO,THICKX,FLGRAD,THICKY,CRHOX,CHX,CRHOC,CHY
400 FORMAT(I5,I5,7E10.5)
450 CONTINUE
READ(I5,500)STRING,RINGL,BETAF
500 FORMAT(A6,A4,A6,A4,2E10.5)
IF(IYPEO.*NE.*4)GO TO 1000
READ(I5,550)FLRHOX,FHRHOY,FLROXY,C11R,C22R,C12R,C21R
550 FORMAT(7E10.5)
FRRHOY=FRRHOY
900 POINT=.TRUE.
1000 CONTINUE
IF(IYPEO.*EQ.*3)GO TO 1050
CALL PRINT(IFLAG)
1050 CONTINUE
DO 2000 I=1,NRHR
F1=PI2/(RHRHOY(I)*RHRHOY(I)*FLGRAD*FLGRAD)
IF(DUMP)WRITE(I8,10000)F1
F2=0.0
IF(POINT)F2=(2.0*PI2)/(EDSUG*(THICKX**.5)*(THICKY**.5)*FLROXY*FLROXY)
F2=(Q*PI2)/(FLGRAD**2)
IF(DUMP)WRITE(I8,10000)F2
F3=(Q*PI2)/(FLGRAD**2)**(THICKY**.5)/THICKX)*F3
IF(DUMP)WRITE(I8,10400)F5
IF(STRING.*EQ.*FINSID)FK3X=1.0
IF(POINT)GO TO 1100
IF(STRING.*EQ.*OUTSID)FK3X=-1.0
IF(STRING.*EQ.*SYMMET)FK3X=1.0
FK3Y=1.0
IF(RINGL.*EQ.*OUTSID)FK3Y=-1.0
IF(RINGL.*EQ.*SYMMET)FK3Y=1.0
C22R=(FK3Y*CHY)/(CRHOC*RHRHOY(I))
TABLE V - Fortran Listing - Program 4267
(Continued)

C12R=0.0
C21R=0.0

1100 CONTINUE
F7=(.5*C12R*(THICKY**.5/THICKX**.5))
IF (C12.EQ.0) F7=0.0
IF (DUMP) WRITE(I8,10600) F7
F8=(.5*C21R*(THICKX**.5/THICKY**.5))
IF (C21.EQ.0) F8=0.0
IF (DUMP) WRITE(I8,10700) F8
F9=(-1.0)*POISR*((THICKY**.5)/(THICKX**.5))
IF (IA12.EQ.0) F9=0.0
IF (DUMP) WRITE(I8,10800) F9
F10=EDSIG*(THICKX**.5)*(THICKY**.5)
IF (DUMP) WRITE(I8,10900) F10
F12=(1.0/PI2)*FLGRAD*FLGRAD*(THICKY/THICKX)
IF (DUMP) WRITE(I8,11100) F12
F13=P12*(C12R/FLGRAD*FLGRAD)
IF (C12.EQ.0) F13=0.0
IF (DUMP) WRITE(I8,11200) F13
F15=((PI2*PI2)/(FLGRAD**4.0))*C12R*C12R
IF (DUMP) WRITE(I8,11400) F15
IF (.NOT.POINT) GO TO 1200
IEND=1
FLROX(1)=FLRHOX

1200 DO 1900 J=1,IEND
F3=PI2/(FLROX(J)*FLROX(J))
IF (DUMP) WRITE(I8,10200) F3
IF (.NOT.POINT) C11R=(((FK3X*CHX)/CRHOX)*FLGRAD*(1.0/FLROX(J))
F6=.5*(C11R+C22R)
IF (DUMP) WRITE(I8,10500) F6
F11=P12/(FLROX(J)*FLROX(J))
IF (DUMP) WRITE(I8,11000) F11
F14=(PI2*PI2*THICKX)/(FLGRAD*FLGRAD*THICKY*FLROX(J)*FLROX(J))
IF (DUMP) WRITE(I8,11300) F14
ILOPT=0
CALL MINIMUM(IOPT)
IF (ITYPE0.EQ.2.OR.ITYPE0.EQ.3) ARRAY(J,1)=SOLUT(3)
IF (ITYPE0.EQ.3) GO TO 1900
CALL PRINT2(J,1)

1900 CONTINUE
2000 CONTINUE
IF (ITYPE0.EQ.2.OR.ITYPE0.EQ.3) CALL PLOT
5000 CONTINUE
RETURN

10000 FORMAT(1HO,10X,6HF1 = *1PE12.5)
10100 FORMAT(1HO,10X,6HF2 = *1PE12.5)
10200 FORMAT(1HO,10X,6HF3 = *1PE12.5)
10300 FORMAT(1HO,10X,6HF4 = *1PE12.5)
10400 FORMAT(1HO,10X,6HF5 = *1PE12.5)
10500 FORMAT(1HO,10X,6HF6 = *1PE12.5)
10600 FORMAT(1HO,10X,6HF7 = *1PE12.5)
TABLE V - Fortran Listing - Program 4267
(Continued)

10700 FORMAT(1H0, 10X, 6HF8 = $1PE12.5)
10800 FORMAT(1H0, 10X, 6HF9 = $1PE12.5)
10900 FORMAT(1H0, 10X, 6HF10 = $1PE12.5)
11000 FORMAT(1H0, 10X, 6HF11 = $1PE12.5)
11100 FORMAT(1H0, 10X, 6HF12 = $1PE12.5)
11200 FORMAT(1H0, 10X, 6HF13 = $1PE12.5)
11300 FORMAT(1H0, 10X, 6HF14 = $1PE12.5)
11400 FORMAT(1H0, 10X, 6HF15 = $1PE12.5)
END

$IBFTC STIFFD M94/2, LIST
SUBROUTINE STIFF
C**
C INPUT FOR STIFF OPTION
COMMON/CSTRAT/
C
C ** NCASE
C ** A11
C ** A22
C ** A12
C ** A33
C ** C11
C ** C22
C ** R
C ** D11
C ** D22
C ** D12
C ** D33
C ** C12
C ** C21
C ** FLENGT
C ** BETAF
COMMON/INTER/
** F1

CASE NUMBER
ELASTIC CONSTANT
ELASTIC CONSTANT
ELASTIC CONSTANT
ELASTIC CONSTANT
ECCENTRICITY COUPLING CONSTANT
ECCENTRICITY COUPLING CONSTANT
RADIUS TO MIDDLE SURFACE OF BASIC CYLINDRICAL SKIN
ELASTIC CONSTANT
ELASTIC CONSTANT
ELASTIC CONSTANT
ELASTIC CONSTANT
ECCENTRICITY COUPLING CONSTANT
ECCENTRICITY COUPLING CONSTANT
OVERALL LENGTH OF CYLINDER
AN INCREMENTING FACTOR USED IN MINIMIZATION PROCESS

6-29
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

**F2
**F3
**F4
**F5
**F6
**F7
**F8
**F9
**F10
**F11
**F12
**F13
**F14
**F15
**SOLUT(8)
**ARRAY(11,25)
**FLROX(11)
**FMMAX

C**
C STANDARD INPUT FOR ALL OPTIONS
 COMMON/ALL/

C TITLE(10) PROBLEM IDENTIFICATION
C **RAURST INPUT OPTION (RATIO OR STIFF)
C **NCASES NUMBER OF CASES
C **POISK POISSON'S RATIO
C **EDSIG E/SIGMA
C **CALPHL LOWER C SUB ALPHA
C **CALPHU UPPER C SUB ALPHA
C **CBETAL LOWER C SUB BETA
C **CBETAU UPPER C SUB BETA

C **NRRHOY THE NUMBER OF (R/RHO SUB Y) RATIOS TO BE INCLUDED IN PLOTS OR TABLES WHICH RESULT FROM AUTOMATIC SEQUENCING OPERATIONS. WILL BE LEFT BLANK WHEN ONLY POINT SOLUTIONS ARE TO BE OBTAINED
C **IETAP ETA SUB P OPTION (BLANK OR 1)
C **IC12 C SUB 12 OPTION (BLANK OR 1)
C **IC12 C SUB 21 OPTION (BLANK OR 1)

6-30

GENERAL DYNAMICS CONVAIR DIVISION
A SUB 12 OPTION (BLANK OR 1)

N SUB R *** THE NUMBER OF REFINEMENT CYCLES TO BE EMPLOYED IN THE MINIMIZATION PROCEDURE

DUMP OPTION *** 1 WHEN SUPPLEMENTARY DIAGNOSTIC OUTPUT DESIRED

MAXIMUM ORDINATE FOR PLOTS

SCREENING CUT OFF FOR THE MINIMIZATION PROCESS

MINIMUM NUMBER OF CIRCUMFERENTIAL HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION PROCEDURE

*DUMP

**IC21
C A SUB 12 OPTION (BLANK OR 1)
C
**IA12
C
**NR
C THE NUMBER OF REFINEMENT CYCLES TO BE EMPLOYED IN THE MINIMIZATION PROCEDURE
C
**IDUMP
C DUMP OPTION *** 1 WHEN SUPPLEMENTARY DIAGNOSTIC OUTPUT DESIRED
C
**ORDMAX
C MAXIMUM ORDINATE FOR PLOTS
C
**SCREEN
C SCREENING CUT OFF FOR THE MINIMIZATION PROCESS
C
**CHWMIN
C MINIMUM NUMBER OF CIRCUMFERENTIAL HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION PROCEDURE
C

LOGICAL DUMP
I5=5
I6=6
I8=8
IFLAG=0
100 CONTINUE
DO 1000 K=1,NCASES
READ(I5,150)NCASE,A11,A22,A12,A33,C11,C22,R
150 FORMAT(I10,7E10.5)
READ(I5,200)D11,D22,D12,D33,C12,C21,FLENGT
200 FORMAT(I10X,7E10.5)
READ(I5,250)BETAF
250 FORMAT(I10X,E10.5)
PI=3.1415926
FLENG2=FLENGT*FLENGT
PI2=PI*PI
K2=R*R
F1=(PI2*D22*A22)/FLENG2
IF(IC12.EQ.0)F1=0.0
IF(DUMP)WRITE(I8,10000)F1
F2=(2.0*PI2*(D12+2.0*D33)*((A11*A22)**.5))/FLENG2
IF(IETAP.EQ.0)F2=0.0
IF(DUMP)WRITE(I8,10100)F2
F3=(PI2*D11*A11)/FLENG2
IF(DUMP)WRITE(I8,10200)F3
F4=(4.0*PI2)/ (FLENG2/R2)
IF(DUMP)WRITE(I8,10300)F4
F5= (A11/A22)**.5)
IF(DUMP)WRITE(I8,10400)F5
F6=(1.0/2.0)*((C11/R)+(C22/R))
IF(DUMP)WRITE(I8,10500)F6

6-31
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267

(Continued)

F7=(1.0/2.0)*(C12/R)*((A11/A22)**.5)
IF (IC12.EQ.0) F7=0.0
IF (DUMP) WRITE (18, 10600) F7
F8=(1.0/2.0)*(C21/R)*((A22/A11)**.5)
IF (IC21.EQ.0) F8=0.0
IF (DUMP) WRITE (18, 10700) F8
F9=(2.0*A12)/((A11*A22)**.5)
IF (DUMP) WRITE (18, 10800) F9
F10=A33/((A11*A22)**.5)
IF (DUMP) WRITE (18, 10900) F10
F11=(P12*D11*A11)/FLENG2
IF (DUMP) WRITE (18, 11000) F11
F12=(1.0/F12)*(FLENG2/R2)*(A11/A22)
IF (DUMP) WRITE (18, 11100) F12
F13=(P12*C12*R)/FLENG2
IF (DUMP) WRITE (18, 11200) F13
F14=(P12*R2*D11*A22)/(FLENG2*FLENG2)
IF (DUMP) WRITE (18, 11300) F14
F15=(P12*R2*C12*C12)/(FLENG2*FLENG2)
IF (DUMP) WRITE (18, 11400) F15
I0PT=1
CALL MINIMUM (I0PT)
CALL PRINT3(K)

1000 CONTINUE
RETURN
10000 FORMAT (1HU, 1UX, 6HF1 = +1PE12.5)
10100 FORMAT (1HU, 1UX, 6HF2 = +1PE12.5)
10200 FORMAT (1HU, 1UX, 6HF3 = +1PE12.5)
10300 FORMAT (1HU, 10X, 6HF4 = +1PE12.5)
10400 FORMAT (1HU, 1UX, 6HF5 = +1PE12.5)
10500 FORMAT (1HU, 1UX, 6HF6 = +1PE12.5)
10600 FORMAT (1HU, 1UX, 6HF7 = +1PE12.5)
10700 FORMAT (1HU, 1UX, 6HF8 = +1PE12.5)
10800 FORMAT (1HU, 1UX, 6HF9 = +1PE12.5)
10900 FORMAT (1HU, 1UX, 6HF10 = +1PE12.5)
11000 FORMAT (1HU, 1UX, 6HF11 = +1PE12.5)
11100 FORMAT (1HU, 1UX, 6HF12 = +1PE12.5)
11200 FORMAT (1HU, 1UX, 6HF13 = +1PE12.5)
11300 FORMAT (1HU, 1UX, 6HF14 = +1PE12.5)
11400 FORMAT (1HU, 1UX, 6HF15 = +1PE12.5)

END

$IBUS MINIMD $94/2 LIST
SUBROUTINE MINIMUM (I0PT)
C***
C STANDARD INPUT FOR ALL OPTIONS
COMM/COMMON/ALL/
C
* TITLE(1U)
C
* RAC/ST
C
6-32
GENERAL DYNAMICS CONVAIR DIVISION
| C | **NCASES** | NUMBER OF CASES |
| C | **POISR** | POISSON'S RATIO |
| C | **EDSIG** | E/SIGMA |
| C | **CALPHL** | LOWER C SUB ALPHA |
| C | **CALPHU** | UPPER C SUB ALPHA |
| C | **CBETAL** | LOWER C SUB BETA |
| C | **CBETAU** | UPPER C SUB BETA |

THE NUMBER OF (R/RHO SUB Y) RATIOS TO BE INCLUDED IN PLOTS OR TABLES WHICH RESULT FROM AUTOMATIC SEQUENCING OPERATIONS, WILL BE LEFT BLANK WHEN ONLY POINT SOLUTIONS ARE TO BE OBTAINED.

C	**NRRHOY**	ETA SUB P OPTION (BLANK OR 1)
C	**IETAP**	C SUB 12 OPTION (BLANK OR 1)
C	**IC12**	C SUB 21 OPTION (BLANK OR 1)
C	**IC21**	A SUB 12 OPTION (BLANK OR 1)
C	**IA12**	N SUB R *** THE NUMBER OF REFINEMENT CYCLES TO BE EMPLOYED IN THE MINIMIZATION PROCEDURE
C	**NR**	DUMP OPTION *** 1 WHEN SUPPLEMENTARY DIAGNOSTIC OUTPUT DESIRED
C	**IDUMP**	MAXIMUM ORDINATE FOR PLOTS
C	**ORDMAX**	SCREENING CUT OFF FOR THE MINIMIZATION PROCESS
C	**SCREEN**	MINIMUM NUMBER OF CIRCUMFERENTIAL HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION PROCEDURE
C	**CHWMIN**	COMMON/INTER/
*F1		***DUMP
*F2		
*F3		

6-33
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

**F4
**F5
**F6
**F7
**F8
**F9
**F10
**F11
**F12
**F13
**F14
**F15
**SOLUT(8)
**ARRAY(11*25)
**FLRHOX(11)
**FMMAX

C**
C RATIO INPUT INFORMATION
COMMUN/CSTRAT/
C
* NCASE
C
* ITYPEO
C
* THICKX
C
* FLGRAD
C
* THICKY
C
* CRHOX
C
* CHX
C
* CRHOY
C
* CHY
C
* STRING(2)
C
* RINGL(2)
C
* FLRHOX

CASE NUMBER
OUTPUT OPTION 1=TABLES, 2=TABLES AND PLOTS, 3=PLOTS, 4=POINT SOL.

THICKNESS RATIO (T BAR SUB X/T)
LENGTH TO RADIUS RATIO (L/R)
THICKNESS RATIO (T BAR SUB Y/T)
GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO X
GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H X
GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO Y
GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H Y
STRINGER LOCATION (INSIDE,OUTSIDE,SYMMETRIC)
RING LOCATION (INSIDE,OUTSIDE,SYMMETRIC)
(L/RHO SUB X) LONGITUDINAL SLENDE
RNESS RATIO (POINT SOL. ONLY)

6-34
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

C
C **FRRHOY
C
C **BETAF
C
C **FLROXY
C
C **C11R
C
C **C22R
C
C **C12R
C
C **C21R
C EQUVALENCE
C *(ITYYPE0,A11)
C *(THICKX,A22)
C *(FLGRAD,A12)
C *(THICKY,A33)
C *(CRHOX,C11)
C *(CHX,C22)
C *(CRHOY,R)
C *(CHY,D11)
C *(STRING(1),D22)
C *(STRING(2),D12)
C *(RINGL(1),D33)
C *(RINGL(2),C12)
C *(FLRHOX,C21)
C *(FRRHOY,FLENGT)
C DIMENSION BET(9),YMP(9),FMMP(9)
C
I8=8
KOUNT=0
PI=3.1415926
FMMIN=1.0
IF(DUMP)WRITE(I8,10000)FMMIN
FMMAX=(SCREEN/F3)**.5
IF(FMMAX*LT.2.0)FMMAX=2.0
IF(DUMP)WRITE(I8,10100)FMMAX
BETMIN=(F1/SCREEN)**.25
IF(DUMP)WRITE(I8,10200)BETMIN
IF(IOPT)300,300,400
300 BETAUL=(FMMAX*(THICKX**.25))/(FLGRAD*.5*CHWMIN*(THICKY**.25))*PI
GO TO 450
400 BETAUL=(FMAX*PI*R*(A22**.25))/(FLENGT*.5*CHWMIN*(A11**.25))
450 FMASY=(1.0/(F14+F15))**.25
 IF(DUMP)WRITE(18,10300)BETAUL
 IF(FMAXSY*LT.1.0)FMASY=1.0
 IF(DUMP)WRITE(18,10400)FMASY
 YAXSYM=F11*FMASY*FMASY+(F12/(FMASY*FMASY))*(1.0-F13*FMASY*FMASY)**2.0)
 IF(DUMP)WRITE(18,10500)YAXSYM
 IF(9OPT)500,500,600
500 SOLUT(B)=YAXSYM
 GO TO 700
600 SOLUT(B)=YAXSYM/A11
700 CONTINUE
 BETA=BETAUL
1100 BETA2=BETA*BETA
 BETA4=BETA2*BETA2
 IF(DUMP)WRITE(18,10600)BETA
 BETAS=BETA
 CALL SEVELE(BETAS,YS,FMS,9OPT)
 KOUNT=KOUNT+1
 IF(KOUNT*LE.1)GO TO 1650
 IF(YS.GE.YS1)GO TO 1700
1650 YS1=YS
 IF(DUMP)WRITE(18,11000)YS1
 FMSI=FMS
 IF(DUMP)WRITE(18,11100)FMSI
 BETAS1=BETAS
 IF(DUMP)WRITE(18,11200)BETAS1
1700 IF(BETAS2*LE.BETMIN)GO TO 1800
 BETA=BETA/BETAF
 GO TO 1100
1800 CONTINUE
 BETA1=BETAF
 DO 2100 I=1,NR
 BETA2=SQRT(BETA1)
 IF(DUMP)WRITE(18,11300)BETA2
 DO 1900 J=1,9
 FJ=-5+J
 BET(J)=BETAS1/BETA2**FJ
 IF(BET(J)*LE.BETAUL)GO TO 1850
 BET(J)=BETAUL
 CALL SEVELE(BET(J),YMP(J),FMMP(J),9OPT)
1850 CONTINUE
 K=1
 DO 2000 J=1,9
 IF(YMP(J)*LT.YMP(K))K=J
2000 CONTINUE
 YS1=YMP(K)
 IF(DUMP)WRITE(18,11400)YS1
 BETAS1=BET(K)
TABLE V - Fortran Listing - Program 4267
(Continued)

IF(DUMP)WRITE(I8,11500)Betas1
FMSI=FMPF(k)
IF(DUMP)WRITE(I8,11600)FMSI
BETAF1=BETAF2

2100 CONTINUE
IF(IOPT)2200,2200,2500

2200 SOLUT(3)=YS1
SOLUT(1)=FMSI
SOLUT(2)=(FMSI*PI*(THICKXY**.25))/(BETAS1*FLGRAD*(THICKY**.25))
IF(YS1,GT,YAXSYM)GO TO 2300
GO TO 2400

2300 SOLUT(3)=YAXSYM
SOLUT(1)=FMAXSY
SOLUT(2)=0.0

2400 GO TO 3000

2500 CONTINUE
IF(YS1,GT,YAXSYM)GO TO 2800
SOLUT(3)=YS1/A11
SOLUT(1)=FMSI
SOLUT(2)=(FMSI*PI*R*(A22**.25))/(BETAS1*FLENGT*(A11**.25))
GO TO 3000

2800 SOLUT(3)=YAXSYM/A11
SOLUT(1)=FMAXSY
SOLUT(2)=0.0

3000 IF(YS1,GT,YAXSYM)GO TO 3500
FML=ALPHL*FMSI
FMH=ALPHU*FMSI
BETL=CBETAL*BETAS1
BETH=CBETAU*BETAS1
SOLUT(4)=FCN(BETL,FML)
SOLUT(5)=FCN(BETH,FML)
SOLUT(6)=FCN(BETL,FMH)
SOLUT(7)=FCN(BETH,FMH)
IF(IOPT)3500,3500,3100

3100 DO 3400 I=4,7
SOLUT(I)=SOLUT(I)/A11

3400 CONTINUE

3500 RETURN

10000 FORMAT(1H0,10X,12HM SUB MIN = ,1PE12.5)
10100 FORMAT(1H0,10X,12HM SUB MAX = ,1PE12.5)
10200 FORMAT(1H0,10X,15HBETA SUB MIN = ,1PE12.5)
10300 FORMAT(1H0,10X,14HBETA SUB UL = ,1PE12.5)
10400 FORMAT(1H0,10X,15HM SUB AXISYM = ,1PE12.5)
10500 FORMAT(1H0,10X,15HY SUB AXISYM = ,1PE12.5)
10600 FORMAT(1H0,10X,7HBETA = ,1PE12.5)
11000 FORMAT(1H0,10X,20HITERATIVE Y SAVED = ,1PE12.5)
11100 FORMAT(1H0,10X,20HITERATIVE M SAVED = ,1PE12.5)
11200 FORMAT(1H0,10X,23HITERATIVE BETA SAVED = ,1PE12.5)
11300 FORMAT(1H0,10X,20HBETA FACTOR SUB 2 = ,1PE12.5)
11400 FORMAT(1H0,10X,31HREFINEMENT ITERATION SAVED Y = ,1PE12.5)
11500 FORMAT(1H0,10X,34HREFINEMENT ITERATION SAVED BETA = ,1PE12.5)
TABLE V - Fortran Listing - Program 4267
(Continued)

11600 FORMAT(1H0, 10X, 31HREFINEMENT ITERATION SAVED M = .1PE12.5)
END

SUBFTC SEVLED M94/2, LIST
 SUBROUTINE SEVLE(BETAS, YS, FMS, IOPT)
 COMMON/INTER/
 *F1
 *;F2
 *;F3
 *;F4
 *;F5
 *;F6
 *;F7
 *;F8
 *;F9
 *;F10
 *;F11
 *;F12
 *;F13
 *;F14
 *;F15
 *;SOLUT(8)
 *;AKKAT(11, 25)
 *;FLKUX(11)
 *;FMMA

C***
C RATIO INPUT INFORMATION
C***
C CASE NUMBER
C OUTPUT OPTION 1=TABLES, 2=TABLES AND PLOTS, 3=PLOTS, 4=POINT SOL.
C THICKNESS RATIO (T BAR SUB X/T)
C LENGTH TO RADIUS RATIO (L/R)
C THICKNESS RATIO (T BAR SUB Y/T)
C GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO X
C GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H X
C GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO Y
C GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H Y

GENERAL DYNAMICS CONVAIR DIVISION
STRINGER LOCATION (INSIDE, OUTSIDE, SYMMETRIC)
RING LOCATION (INSIDE, OUTSIDE, SYMMETRIC)
(L/RHO SUB X) LONGITUDINAL SLENDRINESS RATIO (POINT SOL. ONLY)
(R/RHO SUB Y) CIRCUMFERENTIAL SLENDRINESS RATIO (POINT SOL. ONLY)
INCREMENTING FACTOR USED IN MINIMIZATION PROCESS
(L/RHO SUB X Y) ARTIFICIAL SLENDRINESS RATIO (POINT SOL. ONLY)
(C11/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)
(C22/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)
(C12/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)
(C21/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)
R/RHO SUB Y RATIOS TO BE IN PLOTS OR TABLES
PROBLEM IDENTIFICATION
INPUT OPTION (RATIO OR STIFF)
NUMBER OF CASES
POISSON'S RATIO
E/SIGMA
LOWER C SUB ALPHA
UPPER C SUB ALPHA
LOWER C SUB BETA
TABLE V - Fortran Listing - Program 4267
(Continued)

C
**CBETAU
C
**NRRHOY
C
**IETAP
C
**IC12
C
**IC21
C
**IA12
C
**NR
C
**IDUMP
C
**ORDMAX
C
**SCREEN
C
**CHWMIN

LOGICAL DUMP
EQUIVALENCE
*(ITYPE0,A11)
*(THICKX,A22)
*(FLGRAD,A12)
*(THICKY,A33)
*(CRHOX,C11)
*(CHX,C22)
*(CRHOY,R)
*(CHY,D11)
*(STRING(1),D22)
*(STRING(2),012)
*(RINGL(1),D33)
*(RINGL(2),C12)
*(FLRHOX,C21)
*(FRRHOY,FLENJT)
PI=3.1415926

UPPER C SUB BETA

THE NUMBER OF (R/RHO SUB Y) RATIOS TO BE INCLUDED IN PLOTS OR TABLES WHICH RESULT FROM AUTOMATIC SEQUENCING OPERATIONS. WILL BE LEFT BLANK WHEN ONLY POINT SOLUTIONS ARE TO BE OBTAINED

ETA SUB P OPTION (BLANK OR 1)
C SUB 12 OPTION (BLANK OR 1)
C SUB 21 OPTION (BLANK OR 1)
A SUB 12 OPTION (BLANK OR 1)
N SUB R *** THE NUMBER OF REFINEMENT CYCLES TO BE EMPLOYED IN THE MINIMIZATION PROCEDURE

DUMP OPTION *** 1 WHEN SUPPLEMENTARY DIAGNOSTIC OUTPUT DESIRED

MAXIMUM ORDI Nate FOR PLOTS

SCREENING CUT OFF FOR THE MINIMIZATION PROCESS

MINIMUM NUMBER OF CIRCUMFERENTIAL HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION PROCEDURE

DUMP
TABLE V. Fortran Listing – Program 4267
(Continued)

PI2=PI*PI
I8=8
BETA=BETAS
BETA2=BETA*BETA
BETA4=BETA2*BETA2
IF(IO=T)800,800,900
800 FMS1=(BETA*FLGRAD*CHWMIN*(THICKY**.25))/(PI*2.0*(THICKX**.25))
GO TO 1000
900 FMS1=(BETA*FLENGT*CHWMIN*(AIL**.25))/(PI*R*2.0*(AIL**.25))
1000 CONTINUE
IF(FMS1.LT.1.0)FMS1=1.0
IF(DUMP)WRITE(I8,10700)FMS1
OMIC=.5*((F4/F1)**.5)*(F6*(1.0/(BETA2)))+F7+F8*(1.0/(BETA4)
*)
IF(DUMP)WRITE(I8,10800)OMIC
FM=(((F5**2)*F4*F4*0*BETA4*BETA4)/(4.*F1*1+(1.0+(F2/F1)*BETA2+(F3/F1
)**BETA4)*(1.0+F9*BETA2+F10*BETA2+BETA4)+4.0*OMIC*OMIC*BETA4*BETA4)
*)**.25
IF(DUMP)WRITE(I8,10900)FM
IF(FMS1.LT.FM.AND.FM.LT.FMMAX)GO TO 1200
Y1=FCN(BETA,FMS1)
IF(DUMP)WRITE(I8,11000)Y1
Y3=FCN(BETA,FMAX)
IF(DUMP)WRITE(I8,11100)Y3
1200 Y1=FCN(BETA,FMS1)
IF(DUMP)WRITE(I8,11200)Y1
Y2=FCN(BETA,FM)
IF(DUMP)WRITE(I8,11300)Y2
Y3=FCN(BETA,FMAX)
1300 CONTINUE
IF(Y1.LT.Y2.AND.Y1.LT.Y3)GO TO 1500
IF(Y2.LT.Y3)GO TO 1400
FMS=FMMAX
BETAS=BETA
YS=Y3
GO TO 1600
1400 FMS=FM
BETAS=BETA
YS=Y2
GO TO 1600
1500 FMS=FMS1
BETAS=BETA
YS=Y1
1600 CONTINUE
IF(DUMP)WRITE(I8,11300)BETAS
IF(DUMP)WRITE(I8,11400)FMS
IF(DUMP)WRITE(I8,11500)YS
RETURN

6-41

GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

10700 FORMAT(HO,10X,18H(M SUB S) SUB 1 = ,1PE12.5)
10800 FORMAT(HO,10X,10HUPSILON = ,1PE12.5)
10900 FORMAT(HO,10X, 4HM = ,1PE12.5)
11000 FORMAT(HO,10X,37HY CORRESPONDING TO (M SUB S) SUB 1 = ,1PE12.5)
11100 FORMAT(HO,10X,31HY CORRESPONDING TO M SUB MAX = ,1PE12.5)
11200 FORMAT(HO,10X,23HY CORRESPONDING TO M = ,1PE12.5)
11300 FORMAT(HO,10X,13HSAVED BETA = ,1PE12.5)
11400 FORMAT(HO,10X,10HSAVED M = ,1PE12.5)
11500 FORMAT(HO,10X,10HSAVED Y = ,1PE12.5)
END

$IBFTC Y M94/2,LST
FUNCTION FCN(BETA,FM)
COMMON/INTER/
*F1
*F2
*F3
*F4
*F5
*F6
*F7
*F8
*F9
*F10
*F11
*F12
*F13
*F14
*F15
*SOHUT(8)
*ARRAY(11,25)
*FLR0X(11)
*FMMAX
18=8
BETA2=BETA*BETA
BETA4=BETA2*BETA2
FCN=1*(FM*FM)/BETA4)+F2*((FM*FM)/BETA2)+F3*(FM*FM)+F4*FM*FM*BETA
4(F5*(1./(FM*FM))-F6*(1./BETA2)-F7-F8*(1.0/BETA4))*2/(1.0+F9*E
*ETAA2+F10*ETAA2+ETAA4)
RETURN
END

$IBFTC PRIN T M94/2,LST
SUBROUTINE PRINT(IFLAG)
COMMON/INTER/
*F1
*F2
*F3
*F4
*F5
*F6

6-42
GENERAL DYNAMICS CONVAIR DIVISION
Table V - Fortran Listing - Program 4267
(Continued)

```fortran
***F7
***F8
***F9
***F10
***F11
***F12
***F13
***F14
***F15
***SOLUT(8)
***ARRAY(11,25)
***FLROX(11)
***FMAX

C******************************************************************************
C RATIO INPUT INFORMATION
C

CASE NUMBER

OUTPUT OPTION 1=TABLES, 2=TABLES AND PLOTS, 3=PLOTS, 4=POINT SOL.

THICKNESS RATIO (T BAR SUB X/T)

LENGTH TO RADIUS RATIO (L/R)

THICKNESS RATIO (T BAR SUB Y/T)

GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO X

GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H X

GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB RHO Y

GEOMETRIC FACTOR (ONLY FOR POINT SOLUTION) C SUB H Y

STRINGER LOCATION (INSIDE,OUTSIDE,SYMMETRIC)

RING LOCATION (INSIDE,OUTSIDE,SYMMETRIC)

(L/RHO SUB X) LONGITUDINAL SLENDERNESS RATIO (POINT SOL. ONLY)

(H/RHO SUB Y) CIRCUMFERENTIAL SLENDERNESS RATIO (POINT SOL. ONLY)
```

6-43

GENERAL DYNAMICS CONVAIR DIVISION
INCREATING FACTOR USED IN MINIMIZATION PROCESS

(L/RHO SUB X-Y) ARTIFICIAL SLENDRNESS RATIO (POINT SOL. ONLY)

(C11/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)

(C22/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)

(C12/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)

(C21/R) ECCENTRICITY COUPLING RATIO (POINT SOL. ONLY)

R/RHO SUB Y RATIOS TO BE IN PLOTS OR TABLES

RDRHOY(25)

STANDARD INPUT FOR ALL OPTIONS

PROBLEM IDENTIFICATION

INPUT OPTION (RATIO OR STIFF)

NUMBER OF CASES

POISSON'S RATIO

E/SIGMA

LOWER C SUB ALPHA

UPPER C SUB ALPHA

LOWER C SUB BETA

UPPER C SUB BETA

THE NUMBER OF (R/RHO SUB Y) RATIOS TO BE INCLUDED IN PLOTS OR TABLES WHICH RESULT FROM AUTOMATIC SQUEEING OPERATIONS. WILL BE LEFT BLANK WHEN ONLY POINT SOLUTIONS ARE TO BE OBTAINED

ETA SUB P OPTION (BLANK OR 1)

C SUB 12 OPTION (BLANK OR 1)
TABLE V - Fortran Listing - Program 4267
(Continued)

```
C Sub 21 Option (Blank or 1)
A Sub 12 Option (Blank or 1)
N Sub R *** The number of refinement cycles to be employed in the minimization procedure
DUMP Option *** 1 when supplementary diagnostic output desired
MAXIMUM ORDINATE FOR PLOTS
SCREENING CUT OFF FOR THE MINIMIZATION PROCESS
MINIMUM NUMBER OF CIRCUMFERENTIAL HALF WAVES USED TO ESTABLISH A CUT OFF VALUE IN THE MINIMIZATION PROCEDURE

*IC12
*IC21
*IA12
*NR
*IDUMP
*ORDMAX
*SCREEN

*CHWMIN
LOGICAL DUMP
EQUIVALENCE
*(ITYPE0,A11)
*(THICKX,A22)
*(FLGKAD,A12)
*(THICKY,A33)
*(CRH0X,C11)
*(CHX,C22)
*(CROHY,R)
*(CHY,D11)
*(STRING(1),D22)
*(STRING(2),D12)
*(RINGL(1),D33)
*(RINGL(2),C12)
*(FLRHOX,C21)
*(FRKHOY*FLENGT)
I5=5
I6=6
I8=8
IF(ITYPE0.EQ.3)RETURN
IFLAG=IFLAG+1
IF(IFLAG,NE.1)GO TO 200
WRITE(I6,5000)
WRITE(I6,5100)TITLE
WRITE(I6,5200)
WRITE(I6,5300)
WRITE(I6,5400)RAORST,NCASES,POISR,EDSIG,CALPHL,CALPHU,CBETAL,CBETA
WRITE(16,5500)
```

6-45
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267

(CONTINUED)

| WRITE(I6,5600) |
| IF(IYPE0.EQ.4)GO TO 100 |
| WRITE(I6,5700)ORDMAX,SCREEN,CHWMIN,NR |
| WRITE(I6,5800) |
| WRITE(I6,5900)(RDRHOY(I),I=1,NRRHOY) |
| GO TO 200 |

100 CONTINUE
| WRITE(I6,7500)SCREEN,CHWMIN,NR |

200 CONTINUE
| IF(IFLAG.NE.1) WRITE(I6,7750) |
| WRITE(I6,6000) |
| WRITE(I6,6100) |
| IF(IYPE0.EQ.4)GO TO 400 |
| IF(CH2.EQ.BLANK)GO TO 300 |
| WRITE(I6,6200)NCASE,IYPE0,THICKX,FLGRAD,THICKY,CRHOX,CHX,CRHOY,CHY |
| GO TO 500 |
| DATA BLANK/6H |

300 CONTINUE
| WRITE(I6,7600)NCASE,IYPE0,THICKX,FLGRAD,THICKY,CRHOX,CRHOY,CHY |
| GO TO 500 |

400 CONTINUE
| WRITE(I6,7700)NCASE,IYPE0,THICKX,FLGRAD,THICKY |
| WRITE(I6,7300) |
| WRITE(I6,7400)FLKHOX,FRRHOY,FLROXY,C11R,C22R,C12R,C21R |
| WRITE(I6,6300) |
| WRITE(I6,6400)STRING,RINGL,BETA |
| RETURN |

500 WRITE(I6,6300) |
| WRITE(I6,6400)STRING,RINGL,BETA |
| RETURN |

5000 FORMAT(1HI,31X,62HGENERAL INSTABILITY OF ECCENTRICALLY STIFFENED CYLINDERS 4267) |

5100 FORMAT(1H0,32X,1UAb) |

5200 FORMAT(1HU,5HINPUT,4X,6HNUMBER,3X,3HPOISSONS,13X,5HLOWER,8X,5HUPPE |
| K,7X,5HLOWER,7X,5HUPPER,13X,9HETA |
| SUB P,4X,3HC12,5X,3HC21,5X,3HA12 |
|) |

5300 FORMAT(1X,6HOPTION,2X,8HOF CASES,3X,5HRATIO,5X,3HE/6,4X,11HC SUB A |
| LPHA,2X,11HC SUB ALPHAPA,2X,10HC SUB BETA,2X,6HUERH |
| *C,3X,6HOPTION,4X,6HOPTION,2X,6HOPTION,2X,6HOPTION |
|) |

| *6X,12,7X,11,9X,II,7X,11,9X,II |
|) |

5500 FORMAT(1HU,22X,12HMAX ORDINATE,10X,9HScreenING,15X,11HMIN NO C1KC |
| 5600 FORMAT(25X,9HFOR PLOTS,12X,7HCUT-OFF,16X,10MHALF-WAVES,11X,7MN SUB |
| R) |

5700 FORMAT(1H0,22X,1PE10.3,11X,1PE12.5,15X,0PF5.2,16X,I2) |

5800 FORMAT(1HU,42X,40HR/KHO Y RATIOS FOR AUTOMATIC SEQUENCING |
| 5900 FORMAT(1HU,8(1PE12.5,4X)/1X) |

6000 FORMAT(1HU,2X,4HCASE,9X,HOUTPUT) |

6100 FORMAT(2X,6HNUMBER,8X,6HOPTION,7X,9HT BAR X/T,8X,3HL/R,8X,9HT BAR |
| *Y/T,5X,11HC SUB RHO X,4X,8HC SUB HX,5X,11HC SUB RHO Y,4X,8HC SUB H |

GENERAL DYNAMICS CONVAIR DIVISION
*Y
6200 FORMAT(1H0,2X,I4,11X,I1,8X,7(1PE12.5,2X))
6300 FORMAT(1HO,21X,17HSTRINGER LOCATION,17X,13HRING LOCATION,16X,11HBE
*TA FACTOR)
6400 FORMAT(1H0,25X,A6,A3,25X,A6,A3,17X,1PE12.5)
6500 FORMAT(1H0,58X,7HR/RHO Y)
6600 FORMAT(1H0,55X,1PE12.5)
6700 FORMAT(1H0,16X,8HCRITICAL,6X,8HCRITICAL,6X,8HCRITICAL,8X,2HLL,12X,
*2HHL,12X,2HH,12X,10X,6HAXISYM)
6800 FORMAT(3X,7HL/RHO X,5X,12HL Case M,2X,12HL Case N,2X,6(11H
*SIGMA BAR/E,3X))
6900 FORMAT(1H0,9(1PE12.5,2X))
7000 FORMAT(1H0,9X,8HCRITICAL,6X,8HCRITICAL,6X,8HCRITICAL,6X,2HLL,12X,2
*HLH,12X,2HH,12X,10X,6HAXISYM)
7100 FORMAT(8X,12HL Case M,2X,12HL Case N,2X,6(11HSIGMA BAR/E,3
*)
7200 FORMAT(1H0,7X,8(1PE12.5,2X))
7300 FORMAT(1H0,28X,7HL/RHO X,7X,7HR/RHO Y,7X,8HL/RHO XY,6X,5HC11/R9X,
*5HC22/R,9X,5HC12/R,9X,5HC21/R)
7400 FORMAT(1H0,27X,7(1PE12.5,2X))
7500 FORMAT(1H0,43X,1PE12.5,15X,F5.2,16X,I2)
7600 FORMAT(1H0,2X,I4,11X,I1,8X,4(1PE12.5,2X),14X,2(1PE12.5,2X))
7700 FORMAT(1H0,2X,I4,11X,I1,8X,3(1PE12.5,2X))
C
C**
C**
C
ENTRY PRINT2(JJ,II)
 IF(IITYPE0.EQ.4) GO TO 700
 IF(JJ,NE,1) GO TO 600
 IF(II,NE,1) WRITE(I6,7750)
7750 FORMAT(1H1)
 WRITE(I6,6500)
 WRITE(I6,6600)RDRHOY(II)
 WRITE(I6,6700)
 WRITE(I6,6800)
600 CONTINUE
 IF(SOLUT(2),NE,0,0) GO TO 650
 WRITE(I6,7775)FLROX(JJ),(SOLUT(I),I=1,3),SOLUT(8)
7775 FORMAT(1H0,4(1PE12.5,2X),56X,1PE12.5)
 RETURN
650 WRITE(I6,6900)FLROX(JJ),(SOLUT(I),I=1,8)
 RETURN
700 WRITE(I6,7000)
 WRITE(I6,7100)
 IF(SOLUT(2),NE,0,0) GO TO 750
 WRITE(I6,7250)SOLUT(I),I=1,3),SOLUT(8)
7250 FORMAT(1H0,7X,3(1PE12.5,2X),56X,1PE12.5)
 RETURN
750 WRITE(I6,7200)SOLUT(I),I=1,8)
 RETURN

6-47
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

C
C***
C***
C
ENTRY PRINT3(KK)
ITYPE0=0
I5=5
I6=6
I8=8
IF(KK,NE.1)GO TO 1000
WRITE(I6,5000)
WRITE(I6,5100)TITLE
WRITE(I6,7800)
WRITE(I6,7900)
WRITE(I6,8000)RAORST,NCASES,CALPHL,CALPHU,CBETAL,CBETAU,IETAP,IC12,*IC21,IA12
WRITE(I6,8100)
WRITE(I6,8200)
WRITE(I6,8300)SCREEN,CHWMIN,BETAF, NR
1000 WRITE(I6,8400)
WRITE(I6,8500)
WRITE(I6,8600)NCASE,ITYPE0,A11,A22,A12,A33,C11,C22,R
WRITE(I6,8700)
WRITE(I6,8800)D11,D22,D12,D33,C12,C21,L
WRITE(I6,8900)
WRITE(I6,9000)
WRITE(I6,9100)(SOLUT(1),I=1,8)
RETURN
7800 FORMAT(1HU,5HINPUT,7X,6HNUMBER,6X,5HLOWER,8X,5HUPPER,8X,5HLOWER,7X
*5HUPPER,7X,9HETA SUB P,4X,3HC12,9X,3HC21,9X,3HA12)
7900 FORMAT(1X,6HOPTION,5X,8HOF CASES,2X,11HC SUB ALPHA,2X,11HC SUB ALP
*HA,2X,10HC SUB BETA,2X,10HC SUB BETA,7X,6HOPTION,4X,6HOPTION,6X,6H
*OPTION,6X,6HOPTION)
*1X,11,11X,11)
8100 FORMAT(1HU,1UX,9HScreening,11X,11HM IN NO CIRC,19X,4HBETA)
8200 FORMAT(1X,19X,7HCUT-OFF,12X,10HHALF-WAVES,19X,6HFACTOR,11X,7HN SUB
* R)
8300 FORMAT(1HU,16X,1PE12.5,12X,F5.2,18X,1PE12.5,11X,12)
8400 FORMAT(1HU,1X,4HCASE,3X,6HOUTPUT)
8500 FORMAT(1X,6HNUMBER,2X,6HOPTION,6X,3HA11,11X,3HA22,11X,3HA12,11X,3H
*4A33,11X,3HC11,11X,3HC22,12X,1HR)
8600 FORMAT(1HU,1X,14,5X,11,5X,7(1PE12.5,2X))
8700 FORMAT(1HU,2UX,3HD11,11X,3HD22,11X,3HD12,11X,3HD33,11X,3HC12,11X,3
*HC21,12X,1HL)
8800 FORMAT(1HU,16X,7(1PE12.5,2X))
8900 FORMAT(1HU,2X,8HCRITICAL,7X,8HCRITICAL,5X,8HCRITICAL,10X,2HLL,13X,
*2HHL,13X,2HHL,13X,2HHL,13X,8HAXISYM)
9000 FORMAT(1X,12HLOWER CASE M,3X,12HLOWER CASE N,3X,6(7HN SUB X,8X))
9100 FORMAT(1HU,1PE12.5,3X,4(1PE12.5,2X),1X,3(1PE12.5,3X))
END

6-48

GENERAL DYNAMICS CONVAIR DIVISION
$IBFTC PLOT D M94/2LIST

SUBROUTINE PLOT

COMMON/INTER/

*F1
*F2
*F3
*F4
*F5
*F6
*F7
*F8
*F9
*F10
*F11
*F12
*F13
*F14
*F15
*SOLUT(8)
*ARRAY(11,25)
*FLROX(11)
*FMMAX

COMMON/ALL/

* TITLE(10)
* RAORST
* NCASES
* POISR
* EDSIG
* CALPHL
* CALPHU
* CBETAL
* CBETAU
* NRHOY
* IETAP
* IC12
* IC21
* IA12
* NR
* IDUMP
* PEMAX
* SCREEN
* CHWMIN

LOGICAL DUMP

COMMON/CSTRAT/

* NCASE
* ITYPE0
* THICKX
* FLGRAD
TABLE V - Fortran Listing - Program 4267
(Continued)

* THICKY
* CHHOX
* CHX
* CRIHOY
* CHY
* STRING(2)
* RINGL(2)
* FLRHOX
* FRRHOY
* BETA1
* FLROXY
* C11R
* C22R
* C12R
* C21R

EXTERNAL NXV
EXTERNAL NYV
MX=1
MY=0
CALL SMXYV(MX,MY)
L=4
CALL SETMIV(24,0,130,24)
XL=10.0
XR=1000.0
YB=0.0
YT=ORDMAX
DX=1.0
IF (ORDMAX.LT.0.006, AND, ORDMAX.GT.0.001) DY = 0.001
IF (ORDMAX.GE.0.006) DY = 0.002
IF (ORDMAX.LE.0.001) DY = 0.0002
N=1
IF (DY.EQ.0.001) M=10
IF (DY.EQ.0.0002, OR, DY.EQ.0.00002) M=5
I=-N
J=-M
K=-M
NX=6
NY=6
CALL GRIDIV(L,XL,XR,YE,YT,DX,DY,N,M,I,J,NX,NY)
CALL APRNTV(0,-14,-21,21HSIGMA BAR / ELASTIC E,.5,790)
CALL PRINTV(-6,14HT BAR X / T = .133,1010)
CALL LBLV(THICKX,245,1010,-4,1,1)
CALL PRINTV(-6,6HL/R = .551,1010)
CALL LBLV(FLGRAD,599,1010,-4,1,1)
CALL PRINTV(-14,14HT BAR Y / T = .823,1010)
CALL LBLV(THICKY,935,1010,-4,1,1)
CALL PRINTV(-9,9HL / RHO X,554,120)
CALL RITE2V(248,77,1023,90,1,38,-1.36HCRITICAL AXIAL COMPRESSION F
* OR GENERAL, NLAST)
CALL RITE2V(239,45,1023,90,1,39,-1.39HINSTABILITY IN CYLINDERS WIT
TABLE V - Fortran Listing - Program 4267
(Continued)

*H ECCENTRIC, NLAST
CALL RITEV(392, 13, 1023, 90, 1, 22, -1, 22) HORTHOTROPIC STIFFENING, NLAST *
DO 1000 I=1, NRRHOY
CALL APLTETV(11, FROX, ARRAY(I, I), 1, 1, 1, 55, IERR)
1000 CONTINUE
RETURN
END
$IBMAP ERRTR1
*
*
* USAGE - FORTRAN IV
*
*
* CALL ERRTR (ICODE)
*
*
* WHERE IABS (ICODE) = FORTRAN EXECUTION ERROR MONITOR CODE (FXEM).
* IF CODE .LT. 0 , THEN NO ERROR TRACE WANTED.
* IF CODE .GT. 0 , THEN ERROR TRAC WANTED.
*
* REFERENCE " COMPUTER SYSTEMS BULLETIN, NO. 90, 9 MAY 66
*
ERRTR SAVE 2, 4
AXT 0, 2
CLA* 3, 4
STZ FLAG
TPL AGAIN
SIL FLAG
SSP
AGAIN SUB =35
TXI **+1, 2, -1
TZE **+2
TPL AGAIN
STA ALS
CLA =1
ALS
ALZ **
NZT FLAG
TRA OFF
ORS ERR+1, 2
RETURN ERRTR
OFF COM
ANS ERR+1, 2
RETURN ERRTR
ERRW CONTL ERRW, ERRWD
ERRW PZE
PZE
PZE
ERRWD NULL

6-51
GENERAL DYNAMICS CONVAIR DIVISION
TABLE V - Fortran Listing - Program 4267
(Continued)

* IF FLAG .EQ. 0 THEN TURN BIT OFF.
* IF FLAG .NE. 0 THEN TURN BIT ON.

<table>
<thead>
<tr>
<th>FLAG</th>
<th>BSS</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL DYNAMICS CONVAIR DIVISION
REFERENCES

REFERENCES
(Continued)

In order to provide a basis for the comparison of skin-stringer-ring constructions against sandwich configurations, the buckling curves of Figure 12 are presented here. These curves are based on the classical solution of Stein and Meyers [17] for axially compressed, simply supported sandwich cylinders having isotropic faces of equal thickness and an isotropic core. Since this solution employs small-deflection shell theory, the values obtained from these curves must be reduced by suitable knockdown factors to account for the influences of initial imperfections (see Volume V [12]). This practice is necessary if one is to obtain safe design values for the critical loading. The following definitions apply to the notation used in Figure 12:

\[k_{x_a} = \frac{\left(\frac{N_x}{h}\right) L^2}{\pi^2 D} \]

\[Z_a = \frac{2L^2 \sqrt{1 - \nu_F^2}}{R h} \]

\[r_a = \frac{\pi^2 D}{D Q L^2} \] \hspace{1cm} (A-1)

\[D = \frac{E_F t_F h^2}{2(1-\nu_F^2)} \]

\[D_Q = \frac{G_c F}{c} \]
where,

\[
\left(\frac{N_x}{c} \right) = \text{Critical running axial compression, lbs/in.}
\]

\[L = \text{Overall length of cylinder, in.}\]

\[v_F = \text{Poisson's ratio of faces.}\]

\[R = \text{Mean radius of cylinder, in.}\]

\[h = \text{Distance between middle surfaces of faces, in.}\]

\[E_F = \text{Young's modulus of faces, psi.}\]

\[t_F = \text{Thickness of single face, in.}\]

\[G_c = \text{Shear modulus of core, psi.}\]

\[c = \text{Core thickness, in.}\]
Figure 12(a) - Classical Buckling Coefficients For Simply Supported Sandwich Cylinders Under Axial Compression (Isotropic Core And Faces)
Figure 12(b) - Classical Buckling Coefficients For Simply Supported Sandwich Cylinders Under Axial Compression (Isotropic Core And Faces)
Figure 12(c) - Classical Buckling Coefficients for Simply Supported Sandwich Cylinders Under Axial Compression (Isotropic Core and Faces)
In order to provide a basis for the comparison of skin-stringer-ring constructions against isotropic cylinders, the buckling curves of Figures 13 through 18 are presented here. Each of the following loading conditions are covered:

(a) Unpressurized under pure axial load.
(b) Unpressurized under pure bending moment.

These curves were developed by Convair through the statistical analysis of test data [18]. Separate families are given for each of the following statistical criteria:

(a) Best fit
(b) 90% probability; 95% confidence
(c) 99% probability; 95% confidence

Each family consists of separate curves for \((L/R) = 0.25, 1.0, \text{ and } 4.0\).

Criterion (a) was established by means of the conventional least squares technique and gives the mean expected (50% probability) level for buckling. Half of any large array of typical test data would be expected to fall below this level. Criterion (b) may be considered to represent that there is 95% confidence that at least 90% of any large array of test points would fall on or above the related design curves. Criterion (c) may be similarly expressed for 99% probability and 95% confidence. Criteria (b) and (c) statistically correspond to the MIL-HDBK-5 "B" and "A" values, respectively.
Figure 13 - $\frac{\sigma_{cr}}{E}$ vs. $\frac{R}{t}$ for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Axial Load; BEST FIT
Figure 14 - $\frac{\sigma_{cr}}{E} \times 10^3$ vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Axial Load; PROBABILITY = 90%
CONFIDENCE = 95%

B-3
GENERAL DYNAMICS CONVAIR DIVISION
Figure 15 - σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Axial Load; PROBABILITY = 99%
CONFIDENCE = 95%
Figure 16 - $\frac{\sigma_{cr}}{E}$ vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Bending Moment; BEST FIT
Figure 17 - σ_{cr}/E vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Bending Moment; PROBABILITY = 90% CONFIDENCE = 95%
Figure 18 - $\frac{\sigma_{cr}}{E} \times 10^3$ vs. R/t for Unpressurized Monocoque Circular Cylinders (Clamped Ends) Under Pure Bending Moment; PROBABILITY = 99%
CONFIDENCE = 95%

B-7
GENERAL DYNAMICS CONVAIR DIVISION