

WANL-PR-(LL)-010

L

VOLUME 7

SYNTHESIS OF CALCULATIONAL METHODS FOR THE DESIGN AND ANALYSIS OF RADIATION SHIELDS FOR NUCLEAR ROCKET SYSTEMS

NAGS

A FORTRAN IV DATA PROCESSING PROGRAM FOR CALCULATION OF NEUTRON AND GAMMA RAY SOURCES AND NEUTRON AND GAMMA RAY HEATING IN TWO DIMENSIONAL GEOMETRIES

by

R. K. Disney R. G. Soltesz S. L. Zeigler

Contract No. NAS-8-20414 Contract No. DCN-16-28-0029(IF)

ACKNOWLEDGMENT

The authors appreciate the guidance provided by Mr. Henry E. Stern, Deputy Manager, Nuclear and Plasma Physics Division, George C. Marshall Space Flight Center, the technical monitor of the contract.

ABSTRACT

This report is Volume 7 of the nine volumes of the final report on "Synthesis of Calculational Methods for the Design and Analysis of Radiation Shields for Nuclear Rocket Systems." Presented in this volume is a description of the <u>Neutron Flux And Gamma Ray</u> Source Edit (NAGS) program.

The NAGS program is a series of FORTRAN IV routines which process multigroup neutron and photon energy fluxes for two dimensional (R, Z or R, θ) geometry models. Fluxes input to the NAGS program are obtained from the ODD-K two dimensional transport program described in Volume 6 of this report. Additional required input data to the NAGS program is prepared automatically by the POINT program described in Volume 2 of this report.

The NAGS program provides: (1) neutron and photon energy sources and distributions for use in point kernel, Monte Carlo, and photon transport analyses, (2) neutron and gamma ray dose rates, and (3) energy deposition data for use in subsequent thermal analyses. Source distributions which are output from the NAGS program are employed as input to the KAP-V point kernel program (Volume 4), the ODD-K two dimensional transport program (Volume 6), and the FASTER Monte Carlo program (Volume 9).

۵

ļ

R

.

PRECEDING PAGE BLANK NOT FILMED.

- - -

٠

ł

TABLE OF CONTENTS

Section			Page	
	ABSTRA	ACT		iii
1.	INTRO	DUCTIO	N	1
2.	PROGRAM DESCRIPTION			5
	2.1	Geomet	ту	8
	2.2	Multigr	oup Flux Operations	8
		2.2.1	Redefinition of Mesh Cell Data	10
		2.2.2	Flux Normalization	13
		2.2.3	Generation of Particle Flux Tape	14
	2.3	Mesh C	15	
		2.3.1	Library Data	15
		2,3.2	Region Data	17
		2.3.3	Mesh Cell Calculations	19
	2.4	Region	Operations	23
		2.4.1	Photon Source	23
		2.4.2	Energy Deposition	28
		2.4.3	Interpolation and Extrapolation Procedure	28
2.5		Overall Problem Operations		33
		2.5.1	Neutron or Photon Energy Source	33
		2.5.2	Neutron or Gamma Dose Rates	34
3.	INPUT	DATAD	DESCRIPTION	37
	3.1	Genera	ıl Data	37
	3.2	Flux Do	43	
	3.3	Library	44	
	3.4	Region	48	
	3.5	Summary of Library and Region Data		

TABLE OF CONTENTS (CONTINUED)

Ì

ſ

Secti	ion	Page	
4.	PROGRAM STRUCTURE AND LOGIC	57	
5.	OPERATING INSTRUCTIONS	61	
APP	ENDIX A NAGS Storage Allocation	65	
APP	ENDIX B Program Source Listing	66	

LIST OF ILLUSTRATIONS

4

B

1

Table

Figure		Page
1	Schematic Diagram of the "Final" Design Method	3
2	NAGS Basic Program Structure	7
3	Schematic Diagram of the Two Dimensional Transport Analysis System	9
4	Sample Geometries for the NAGS Code	11
5	Region Mesh Cell Description	21
6	Region Separable Distribution Description	25
7	Distribution Interpolation and Extrapolation Techniques	30
8	NAGS Region Geometry and Boundary Specification	49
9	Deck Order of Library and Region Input	56
10	NAGS Program Structure	58
11	NAGS Program Logic	59/60

LIST OF TABLES

Table		Page
1	Order of Library and Region Input Data	55

SECTION

1.0 INTRODUCTION

This report is Volume 7 of nine volumes of the final report on "Synthesis of Calculational Methods for the Design and Analysis of Radiation Shields for Nuclear Rocket Systems." Presented in this volume is a description of the <u>N</u>eutron Flux <u>And Gamma Ray</u> <u>Source Edit (NAGS) program.</u>

The NAGS program is a series of FORTRAN IV routines which process multigroup neutron and photon energy fluxes for two dimensional (R, Z or R, θ) geometry models. This program is an integral part of the "final" design method as schematically shown in Figure 1. The "final" design method is described in detail in Volume 1 of this report.

The starting point for the method is the POINT program (Volume 2) which prepares cross section and other basic data for use in the transport programs. In the "final" design method (Figure 2), the ODD-K two dimensional transport program (Volume 6) provides neutron and photon energy fluxes throughout the reactor geometry. The NAGS data processing program (Volume 7) processes these fluxes and calculates neutron and photon radiation levels and neutron and photon energy sources within the reactor system. These sources can be employed in either the KAP-V program (Volume 4) or the FASTER Monte Carlo program (Volume 9) for obtaining radiation levels at locations external to the reactor system. In addition, the FASTER program can compute heating rate distributions in the liquid hydrogen propellant (in either an on- or an off-axis tank) and the radiation level at the payload. Alternately, the DAFT program (Volume 8) can prepare neutron and photon energy and angular dependent fluxes at the reactor surface from the ODD-K program for use in the FASTER Monte Carlo code.

Fluxes input to the NAGS program are obtained from the ODD-K two dimensional transport program described in Volume 6. Additional input data needed for the NAGS program is prepared automatically by the POINT program described in Volume 2 of this report.

The need for automated data processing as a logical link in radiation and shielding methods is evident when the vast amount of data handling required in each step of a

1

of a complete, two dimensional radiation analysis of a reactor is considered. Particular difficult and time-consuming problems handled by the NAGS program are: (1) calculation of neutron and photon energy sources and distributions, (2) calculation of neutron and gamma ray dose rates, and (3) calculation of neutron, photon, and total energy deposition data.

Figure 1. Schematic Diagram of the Final Design Method

Astronuclear

Laboratory

W

SECTION

2.0 PROGRAM DESCRIPTION

The NAGS program is a special purpose program which serves as a link between the neutron transport solution and the photon transport solution using the discrete ordinates transport program, ODD-K. In addition, this program processes neutron and photon energy flux data simultaneously to calculate total heating and heating distributions in a reactor. The program also provides source distribution data for subsequent use in point kernel or Monte Carlo analyses.

The four basic operations of the NAGS program are:

1) Normalization of multigroup neutron and photon energy fluxes to units of per fission, per watt, or a selected power level.

2) Redefinition of the mesh cell description for use in photon problems.

3) Calculation of photon and neutron sources and distribution and heating rates for each region in the problem.

4) Calculation of the total photon and neutron sources and fissions in the reactor. These four operations are discussed in detail in subsequent sections of this report.

The FORTRAN structure of the NAGS system consists of a main control link (MAIN) and four basic calculation routines (NAGS 1 through NAGS 4) which individually perform steps in reducing the neutron and photon energy flux data into usable forms. The final output of a NAGS problem is dependent upon the route or options chosen.

A brief description of each FORTRAN routine is shown in Figure 2. A description of each routine's function is as follows:

1) The MAIN subroutine initializes the problem by clearing out (set to 0.0) all data storage and allocates data storage on the basis of input pieces of data so that a variety of problems can be handled without program changes. This routine also handles the logical flow throughout the NAGS program system.

2) The NAGS 1 routine processes all geometrical data and neutron and photon energy flux data to obtain a binary work tape containing the flux data in a usable form for subsequent use.

5

3) The NAGS 2 routine processes the elementwise neutron and photon reaction rate and flux data to obtain a regionwise source function and/or response function binary work tape for subsequent use.

4) The NAGS 3 routine calculates regionwise neutron and/or photon energy deposition distributions and integrals. In addition, NAGS 3 calculates neutron and photon dose rate throughout the two dimensional mesh cell array.

5) The NAGS 4 routine calculates regionwise photon source distributions and integrals for use in subsequent Monte Carlo or point kernel method analyses. The NAGS 4 routine also provides the two dimensional multigroup neutron or photon source data in each mesh cell for subsequent use in neutron or photon transport calculations.

In addition, a set of subroutines are included in the NAGS program system which calculate the region distribution data (SISET and SIR), processes neutron and photon energy flux data in the separable R and Z mesh cell directions (COLR and COLZ), and prints matrices of flux data (SCOUT). All NAGS subroutines are described more fully in Section 4.0 of this volume.

The NAGS program is an essential part of the two dimensional transport analysis system, which is shown schematically in Figure 3. As indicated in Figure 3, the POINT program prepared the macroscopic neutron and photon cross sections for use in the ODD-K program, and microscopic data for use in the NAGS program. The ODD-K neutron transport program run is the next step in the system (See Figure 3). Output from the neutron program are the neutron fluxes on cards (item A) and on tape (item B). The fluxes on cards (item A) are input to the first NAGS problem which computes the photon source data on cards for a redefined mesh (item C) and the neutron fluxes on cards (item D) for the redefined mesh. The photon source (item C) is then used in the ODD-K photon transport problem which produces photon energy fluxes on tape (item F) and on cards (item E). These photon energy fluxes (item E), and the previously computed neutron fluxes (item D), are employed in a final NAGS problem which calculates neutron and photon heating rates and dose rates.

6

NAGS Basic Program Structure 3 Figure

7

NAGSI

READS GENERAL PROBLEM DATA

FUNCTIONS

FLUX DATA

Astronuclear W Laboratory

Optionally, the neutron and photon energy flux tapes (items B and F) can be input to the DAFT program which produces appropriate angular, spatial and energy fluxes for input to the FASTER Monte Carlo program.

2.1 GEOMETRY

The problem geometry is described in the NAGS system as a two dimensional reactor mockup in the R, Z or R, θ geometry. This geometry is similar to that used in the discrete ordinate transport program, ODD-K. The reactor mockup is described geometrically in NAGS as a series of rectangular or angular sector regions in a two dimensional mesh cell layout. Figure 4 illustrates the limitations of the geometry and the method by which an irregular region, D, must be described. Since the program operates on each NAGS region as a separate problem, the number of NAGS regions which can be run in a single problem is unlimited.

The integration techniques used to obtain particle fluxes, reaction rates, response rates, or particle source data are identical to the ODD-K transport method program techniques. Hence, completely consistent results are obtained in NAGS and ODD-K, i.e., the total number of neutrons and photons from the ODD-K problem is conserved. Interpolation and extrapolation techniques employed in NAGS are based on a linear variation of flux or source in the mesh cells and an exponential falloff of flux or source at the external boundaries of the reactor mockup.

2.2 MULTIGROUP FLUX OPERATIONS

Flux data for the NAGS program are the multigroup neutron and photon energy fluxes from the discrete ordinate transport method program, ODD-K, described in Volume 6 of this report. These flux data are provided by ODD-K at the center of each mesh cell and is the average flux in the mesh cell. The program will accept flux data from either the R, Z or R, θ two-dimensional geometry solutions in ODD-K. The multigroup flux data are used in the NAGS system in a manner such that the total number of neutrons and photons from the ODD-K problem is conserved.

8

The NAGS program requires input flux data to be in either binary tape or decimal data punched card form. The input channels used for the flux data is dependent upon the type of NAGS problem (photon source or neutron and/or photon heating) to be run. A complete description of the input channels is presented in Section 5. The operations performed on the input flux data for an R, Z problem are:

1) Redefinition of radial and axial mesh cell description if required.

2) Normalization of flux data to units of per fission, per watt, or a selected power level.

3) Generation of a group dependent binary work tape containing all particle flux data in a form suitable for subsequent data processing.

The above operations are performed in a similar manner for R, θ calculations.

2.2.1 Redefinition of Mesh Cell Data

The NAGS Program is capable of redefining the radial or axial mesh cell description of the input problem geometry and fluxes. This procedure is included in order to increase the utility of the program by adjusting the mesh size in a NAGS problem to meet computer core memory limitations in subsequent problems. For example, a neutron transport problem with 16 energy groups, S₆ angular quadrature, P₀ scattering cross sections, and a total of 1200 mesh cells, is an approximate maximum ODD-K neutron transport problem. This same problem in photon transport, with 13 groups, S₆ angular quadrature, but with P₁ scattering cross sections will allow only a total of 800 mesh cells. Hence, in order to run linked neutron and photon transport problems, the linking program (NAGS) must include a technique for redefinition of the neutron transport mesh cell description in either (or both) the radial or axial direction to accommodate photon transport calculations.

Redefinition of mesh cells is done in a manner to conserve mesh cell fluxes in the redefined mesh cells. This procedure is restricted to the deletion of mesh lines internal to region boundaries of the problem geometry. The user specifies in the general problem input data, the mesh cell dimensions (coordinates) of the original or input flux data solution, as

10

1. R-Z GEOMETRY

well as the mesh cell coordinate identification numbers which will comprise the new (or redefined) mesh cell description. The average particle flux, $\emptyset_{|i|}$, in each group in each new (redefined) radial mesh cell is computed as:*

$$\emptyset_{|i|} = \frac{\sum_{i=i_{s}}^{i_{f}} \emptyset_{i|i} \cdot \Delta A_{i}}{\sum_{i=i_{s}}^{i_{f}} \Delta A_{i}}$$

where \emptyset_{ij} is the centered average flux in the redefined radial mesh cell, I, for each axial mesh cell, j. The quantities i_s and i_f are the input flux mesh cell coordinate indices which form the left and right boundaries of the new or redefined radial mesh cell, I. The quantity, ΔA_i is the cross sectional area, $\pi (R_{i+1}^2 - R_i^2)$, of the mesh cell, i. The computed average flux data, \emptyset_{1i} , is placed at the radial midpoint of the new mesh cell, $R_1 = 1/2 (R_{i_s} + R_{i_f})$.

In a similar fashion, the average flux, \emptyset_{11} , in each new axial mesh cell is obtained as:

 $\emptyset_{|J} = \frac{\sum_{j=i_{s}}^{l_{f}} \emptyset_{|j} \cdot \Delta Z_{j}}{\sum_{i=i_{s}}^{i_{f}} \Delta Z_{i}}$

where \emptyset_{IJ} is the centered average flux in each group in the redefined mesh cell, (I, J) and \emptyset_{Ij} is the centered average flux previously computed in the redefined radial mesh cell, I, for each axial mesh cell, j. The quantities, i_s and $i_{f'}$ are the input flux mesh cell coordinate indices which form the bottom and top boundaries of the new (or redefined) axial mesh cell, J. The quantity, ΔZ_i , is the height of each axial mesh cell, j. The computed average flux data, $\emptyset_{IJ'}$ is placed at the axial midpoint of the redefined mesh cell, $Z_J = 1/2 (Z_i + Z_{ij})$.

^{*}Note: The solution for the azimuthal variable, θ, in the R-θ solution is the same as for the variable Z in the R-Z solution.

The redefinition of the input flux data to a new mesh cell description is performed only if requested by the user in the general problem input data. The flux data which are processed by group are then normalized as described in the following section.

2.2.2 Flux Normalization

Normalization of the particle flux data is performed after redefinition of the mesh cell description. The constants for the calculation of the normalization factor, NF, are dependent upon the source of the flux data (i.e., neutron flux from ODD-K neutron transport, neutron flux from a previous NAGS problem, or photon flux from ODD-K). The user of NAGS has at his disposal a six parameter normalization factor. These six parameters are required input for each problem and are, also, descriptive of neutron flux normalization constants for an ODD-K problem. The normalization factor is computed as:

$$NF = \frac{\overline{V} \cdot K_1 \cdot P}{K_2 \cdot k_{eff} \cdot f \cdot A}$$

where:

 $\overline{\nu}$ = the average number of neutrons per fission (e.g.,

 $\overline{\nu}$ = 2.445 for a nuclear rocket flight-type reactor).

 K_1 = the fissions per second per watt of power. K_1 is dependent upon the operating history, gamma ray energy production, and neutron and gamma ray energy leakage from a reactor system. For a nuclear rocket flight-type reactor with 15 minutes of full power operation, the fissions per second required to produce one watt of thermal power is calculated to be 3.21 × 10¹⁰ fissions/watt-second.

P = the total reactor power in watts. Hence $K_1 \times P$ gives the fissions per second at full reactor power.

 K_2 = the parameter of radians. This parameter is 1.0 for R-Z,ODD-K problems and is included in the calculation of NF to account for symmetry in R-0,ODD-K. In R-0 problems, the parameter K_2 is $0/2\pi$.

 k_{eff} = the effective neutron multiplication factor (eigenvalue) of the ODD-K neutron transport problem and is used to normalize all fluxes to a critical (k_{eff} = 1.0) reactor system.

f = the fraction of fission events in the ODD-K problem which produce fission energy. This factor is included for the case when the (n, 2n) neutron interactions are included in the flux solution as pseudo-fission events. For ODD-K problems with MSFC library cross sections, beryllium (n, 2n) cross sections are <u>not</u> included as fission and f is input as 1.0.

A = the area (or volume) factor. This factor is required only if the neutron flux solution is normalized to some value other than the integral of fissions over the source volume. For ODD-K problems this value is always 1.0.

Hence, the normalization factor for a 5000 MW flight-type nuclear rocket reactor, in an R-Z ODD-K neutron transport problem with a multiplication factor of 1.01 is computed internally by NAGS as:

NF =
$$\frac{2.445 \times 3.21 \times 10^{10} \times 5 \times 10^{9}}{1.0 \times 1.01 \times 1.0 \times 1.0} = 3.89 \times 10^{20}$$

Fluxes printed out by NAGS using the above normalization constant will be in units of <u>neutrons</u> at full power (5000 MW) conditions. In normalizing flux data from a photon cm²-sec transport problem, or a previous NAGS problem (see Figure 3), the six normalization parameters are normally set equal to 1.0 since the flux solution in the ODD-K photon transport problem is based on normalized distributed fixed source data supplied by the previous NAGS photon source problem. Also, the neutron flux data from the NAGS problem is a processed library data tape based on previously normalized flux data.

2.2.3 Generation of Particle Flux Tape

The final operation on the input flux data is the generation of a binary work tape containing the groupwise fluxes to be used in later reaction rate and response rate calculations.

This data tape can be saved for use in subsequent NAGS problems as indicated in Figure 3. For example, the neutron flux data tape used in the calculation of distributed photon sources is used as input for the combined neutron and photon energy deposition calculation. This neutron flux data tape has the same mesh cell description as the photon source data and the photon flux data.

The binary flux tape, which is generated on MSFC IBSYS Version 13 tape unit A-6, remains on this unit throughout the NAGS problem. The tape consists of a logical tape record of each group with a total of ICM (number of redefined radial mesh cells) X JCM (number of redefined axial mesh cells) pieces of data in each logical tape record.

2.3 MESH CELL OPERATIONS AND LIBRARY DATA

The computation of the neutron and photon interactions in each mesh cell of each region of a NAGS problem geometry is carried out using fluxes obtained in the redefined mesh cell description. The interaction calculations and the resultant product (neutron source, photon source, or particle energy deposition) are summed over all groups, materials, and interactions to provide total interactions, source strength, or energy deposition on an individual mesh cell basis throughout the two dimensional model. Subsequent operations on the mesh cell data provide the region integral distributions, as well as the integrals over all mesh cells and all regions. These final data processing operations are performed without alteration of mesh cell data so that all mesh cell data can be used in subsequent photon transport calculations. The procedure for obtaining particle interaction data in the program is carried out on a regionwise basis. The program requires as input, a library of physical constants and neutron and photon spectrum dependent data for each element or isotope (i.e. H, Be, U²³⁵, etc.) in the reactor geometry. Library data and region data, and the interaction calculations are described in the following sections.

2.3.1 Library Data

Library data for a NAGS problem include standard neutron and photon multigroup constants as well as nuclear data for each element in the reactor geometry.

The nuclear constants required in the library for each neutron and photon energy group are:

1) Prompt fission photon energy, Γ_{p}^{k} , for each photon group, k.

2) Fission product decay photon energy, Γ_{p}^{k} , for each photon group, k, and for a specific reactor operating history (e.g., a nuclear rocket reactor with 15 minutes operation of full power).

- 3) Photon flux to dose rate conversion factors, K_D^k , for each photon group, k.
- 4) Neutron flux to dose rate conversion factors, K_D^g , for each neutron group, g.
- Neutron multigroup parameters of, 5)
 - Letharav width, $\Delta^{\mu 9}$, for each neutron group, g. (a)
 - (b) Energy width, ΔE^{g} , for each neutron group, g.

The other nuclear library data are required for each element or isotope, m, in the library and are as follows:

- 1) Identification number, NID ____
- Atomic mass, A
- 3) Average energy loss per neutron scattering event, $\frac{2 \text{ A}_{\text{m}}}{(\text{A}_{\text{m}}+1)^2}$
- Average energy of each alpha particle emission from neutron capture, $E(n, \alpha)$ 4)
- Microscopic thermal neutron (2200 meter/second) absorption cross section, σ_{c}^{2200} 5)
- 6) A six (6) character alphanumeric title (i.e., HYDROG, CARBON, etc.)

7) Inelastic neutron scattering photon energy, Γ_{sam}^{k} , from an inelastic event in neutron group, g, for photon energy release in group, k.

- 8) Neutron elastic scattering cross sections, σ_{em}^{g} , for each fast neutron group, g.
- 9) Neutron absorption cross section for (n, α) reaction, $\sigma_{n,\alpha}^{g}$ for each neutron

group, g.

Neutron elastic scattering anisotropic correction factor for neutron energy 10) deposition, $(1 - \overline{\mu_o}) \frac{g}{m}$ for each neutron group, g.

11) Neutron radiative capture photon energy, Γ_{cm}^k , for each material and photon group, k.

12) Photon mass energy absorption coefficient $(\frac{\mu}{\rho})_{am}^{k}$ for each photon group, k. 13) Neutron fission cross sections, σ_{fm}^{g} , for each neutron group, g.

- 14) Neutron radiative capture cross sections, σ_{cm}^{g} , for each neutron group, g.
- 15) Neutron elastic scattering cross sections, σ^{g} , for each fast neutron group, g.

16) Neutron inelastic scattering cross sections, σ_{sm}^{g} , for each fast neutron group for which inelastic scattering is to be calculated.

The last four sets of cross section data (defined above) are required input <u>only</u> when the user employs the NAGS library option of region independent cross section data. This library option is the standard mode of input if the POINT program output with region independent cross section data (as furnished MSFC) is used.

2.3.2 Region Data

Region input data for a NAGS problem are dependent on the type of calculation being performed. The region data are processed on an individual region basis. Required data for each region are:

1) A seventy-two (72) character alphanumeric title describing the region

- 2) Region boundary mesh cell numbers in the redefined mesh cell description
- 3) The number of elements in the region, and

4) A program control word to control the reading of new region data or to proceed to the next step of the NAGS data processing.

There are <u>two types</u> of calculations which can be performed by NAGS. The <u>first</u> <u>type</u> is the neutron interaction calculation which results in the production of neutron and photon sources in the mesh cells. The <u>second type</u> is the calculation of neutron and/or photon interactions which results in energy deposition in the mesh cell.

Region input data required for a photon source calculation are dependent on the NAGS library (Refer to Section 2.3.1) used for the problem. The element microscopic cross section data described below are <u>only</u> required when the NAGS short library option is used. The standard MSFC mode is the NAGS long library option; element microscopic cross sections are not required. The region input data required for each element, m, follows as:

- 1) Element identification number, L_m,
- 2) Element number density, N_m,
- 3) Element microscopic groupwise neutron cross sections for,
 - (a) fission, $\sigma \frac{g}{fm'}$
 - (b) radiative capture, $\sigma \frac{g}{cm}$
 - (c) elastic scattering, σ_{em}^{g} ,
 - (d) inelastic scattering, σ_{sm}^{g} .

The region data required for calculation of energy deposition of neutrons and photons are input for the material (e.g., fueled graphite, stainless steel, etc.) in the NAGS region. This technique is used because reactor components or structures are represented as part of a homogeneous region material in neutron and photon transport. For subsequent thermal analyses, the total heating and its distribution in these components is required. Hence, an Inconel bolt can be represented individually in a region to obtain its total heating. The input data required for the energy deposition calculation in each material, n, in each region are:

- 1) Material density in the region, ρ_n
- 2) Weight of the material in the region, W_{p} .

Input data for each element or constituent of the above material are required as:

- 1) Element identification number, L
- 2) Weight fraction, N_m of the element, L_m , in material, n.

The data are then processed on a mesh cell basis to obtain the total photon source or energy deposition in each mesh cell of a region.

An option is included in the program to eliminate repetitive input data for a NAGS region of identical composition to the previous NAGS region. This option is specified by a negative sign on the number of elements for a NAGS region. The program will then use the region element data (L_m , N_m and element cross sections) from the preceding NAGS region for all calculations in that region.

2.3.3 Mesh Cell Calculations

The mesh cell calculations are based on the redefined mesh cell description and fluxes. These fluxes are processed on a groupwise basis to obtain the total source or energy deposition in each mesh cell of a region. Mesh cell calculations are performed at both internal and external mesh cells of a region and at adjacent external mesh cells. Internal mesh cells are designated in Figure 5 by O's; external mesh cells are designated by X's.

Calculations in mesh cells, external to and adjacent to the region being calculated, provide results for use in interpolation or extrapolation of distribution values at the region boundaries. This procedure provides a calculated source or energy deposition distribution value at each boundary of a region. This calculation is described in detail in Section 2.4.3. The calculation of photon source and associated quantities at each mesh cell follow as:

1) Neutron fission density:

$$F_{IJ} = \sum_{m=1}^{NEL} \sum_{g=1}^{NGN} N_m \sigma_{fm}^g \phi_{IJ}^g$$

2) Fission neutron source density:

$$Q_{IJ}^{g} = \sum_{m=1}^{NEL} \sum_{g=1}^{NGN} N_{m} \nu^{g} \sigma_{fm}^{g} \phi_{IJ}^{g}$$

- 3) Photon source density in photon group, k, from neutron fission (prompt and decay): $Q_{FIJ}^{k} = \left(\prod_{p}^{k} + \prod_{d}^{k} \right) \cdot F_{IJ}$
- 4) Neutron radiative capture density for element, m:

$$C_{m|J} = \sum_{g=1}^{NGN} N_m \sigma_{cm}^g \phi_{J}^g$$

5) Photon source density in group, k, from neutron radiative capture:

$$Q_{CIJ}^{k} = \sum_{m=1}^{NEL} \Gamma_{cm}^{k} C_{mIJ}$$

6) Neutron inelastic scattering density for neutron group, g, and element, m:

$$S_{IJ}^{m} = N_{m} \sigma_{Sm}^{g} \phi_{IJ}^{g}$$

7) Photon source density in photon group, k, from neutron inelastic scatter:

$$Q_{SIJ}^{k} = \sum_{g=1}^{NI} \sum_{m=1}^{NEL} S_{IJ}^{m} \Big|_{sgm}^{k}$$

8) Total photon source density in photon group, k, from all sources:

$$Q_{\text{FIJ}}^{\text{k}} = Q_{\text{FIJ}}^{\text{k}} + Q_{\text{CIJ}}^{\text{k}} + Q_{\text{SIJ}}^{\text{k}}$$

The mesh cell calculations of energy deposition are performed for neutrons and photons on a groupwise basis. The calculations follow as:

	x	х	х	
×	0	0	0	×
×	0	0	0	х
×	0	0	0	x
	X	X	Х	

- O INTERNAL MESH CELL
- χ external mesh cell
- REGION BOUNDARIES
- MESH CELL BOUNDARIES

611855-61B

Figure 5. Region Mesh Cell Description

1) Neutron kinetic energy deposition:

$$H_{IJ} = 1.603 \times 10^{-13} \sum_{m=1}^{NEL} \sum_{g=1}^{NFAST} \sigma_{em}^{g} \left(\frac{2A_{m}}{(A_{m}+1)2}\right) (1.0 - \bar{\mu}_{o})_{m}^{g} \left(\frac{N_{m}N_{a}\rho_{n}}{A_{m}}\right) \phi_{IJ}^{g} \cdot \frac{\Delta E^{g}}{\Delta \mu^{g}}$$

2) Photon energy deposition:

$$H_{IJ} = 1.603 \times 10^{-13} \sum_{m=1}^{NEL} \sum_{k=1}^{NGG} N_m \rho_n \left(\frac{\mu_a}{\rho}\right)_m^k \phi_{IJ}^k$$

The quantity, N_{a} , is Avogadro's number 0.60248 x 10^{24} .

2.4 **REGION OPERATIONS**

Region dependent quantities are calculated from the internal and external mesh cell data described in the previous section. These data are processed on a single region basis to obtain the total mesh cell photon source for photon transport, or the region source integral and energy, or spatial distribution data required for point kernel and/or Monte Carlo input, or region energy deposition integrals and distributions. The calculation of the photon source data and particle energy deposition data is discussed separately in the following sections. The region boundary mesh cell numbers I_S , I_F , J_S , and J_F define the NAGS region in the total mesh cell description. These values determine the limits of integration to be used in NAGS region calculations.

2.4.1 Photon Source

The photon source mesh cell data, described in the previous section, are processed in conjunction with the region and mesh cell dimensions to obtain final region quantities of:

- 1) Total region volume.
- 2) Total region weight.
- 3) Region integrals of:
 - a) photon source
 - b) neutron induced fissions
 - c) neutron source
 - d) photon energy spectrum including volume averaged spectrum

4) Region separable radial and axial distributions for photon source, neutron induced fission, and neutron source.

Intermediate and final region data are calculated from the internal and external mesh cells as shown in Figure 5. The region boundary values calculated from these data are shown in Figure 6.

The initial operation to obtain region source or fission distributions separable in the radial and axial directions with values at the top, bottom, left, and right boundaries defining the exterior boundary of a region are as follows:

- 1) External mesh cell values
 - a) Top External

$$s_t = \sum_{I=I_S}^{I_F} \sum_{k=1}^{NGG} s_{tI}^k \Delta A_I$$

b) Bottom External

$$s_{b} = \sum_{I=I_{S}}^{I_{F}} \sum_{k=1}^{NGG} s_{bI}^{k} \stackrel{\Delta}{\longrightarrow} A_{I}$$

c) Left External

$$S_{I} = \sum_{J=J_{S}}^{J_{F}} \sum_{k=1}^{NGG} S_{IJ}^{k} \Delta Z_{J}$$

d) Right External

$$s_r = \sum_{J=J_S}^{J_F} \sum_{k=1}^{NGG} s_{rJ}^k \Delta Z_J$$

2) Internal mesh values

a) Radial

$$s_{I} = \sum_{J=J_{S}}^{J_{F}} \sum_{k=1}^{NGG} s_{IJ}^{k} \Delta z_{J}$$

b) Axial

$$s_J = \sum_{I=I_S}^{I_F} \sum_{k=1}^{NGG} s_{IJ}^k \Delta A_I$$

3) Region areas and volumes

$$\Delta A = \sum_{I=I_{S}}^{I_{F}} \Delta A_{I}$$
$$\Delta Z = \sum_{J=J_{S}}^{J_{F}} \Delta Z_{J}$$

$$V_{\rm R} = \Delta A \cdot \Delta Z$$

4) Region integral values

$$S_T = \sum_{I=I_S}^{I_F} \sum_{J=J_S}^{J_F} \sum_{k=1}^{NGG} S_{IJ}^k \Delta A_I \Delta Z_J$$

- 5) Normalized distribution values
 - a) Internal

S₁ (normalized radial) = S₁
$$\Delta A/S_T$$

S₁ (normalized axial) = S₁ $\Delta Z/S_T$

b) External

$$S_{t,b} = S_{t,b} \Delta A/S_T$$

 $S_{l,r} = S_{l,r} \Delta Z/S_T$

The normalization operation is performed as above for photon source, neutron induced fission, and neutron source. The values S_1, S_2, S_t, S_b, S_1 and S_r are used to calculate boundary values shown in Figure 6 using the techniques described in Section 2.4.3.

The remaining region quantities are obtained as follows:

1) Region Weight

$$W_{R} = V \cdot \sum_{m=1}^{NEL} \frac{N_{m}A_{m}}{N_{a}}$$

- 2) Region photon source
 - a) Total Integrated Spectrum

$$Q_{T}^{k} = \sum_{J=J_{S}}^{J} \sum_{I=I_{S}}^{I_{F}} \sum_{k=1}^{NGG} Q_{TIJ}^{k} \Delta A_{I} \Delta Z_{J}$$

b) Average Spectrum

$$Q_T^k = Q_T^k / V_R$$

c) Total

$$Q_T^k = \sum_{k=1}^{NGG} Q_T^k$$

3) Region neutron induced fission

$$F = \sum_{J=J_{S}}^{J_{F}} \sum_{I=I_{S}}^{I_{F}} F_{IJ} \Delta A_{I} \Delta Z_{J}$$

4) Region neutron source

$$Q_{T} = \sum_{J=J_{S}}^{J_{F}} \sum_{I=I_{S}}^{I_{F}} \sum_{g=1}^{NGN} Q_{IJ}^{g} \Delta A_{I} \Delta Z_{J}$$

2.4.2 Energy Deposition

The energy deposition mesh cell data described in Section 2.3.3 is used in a fashion similar to that described for processing of photon source data. The final region quantities calculated are:

- 1) Element or constituent quantities
 - a) Density in region in gms/cc
 - b) Total energy deposition in kilowatts
- 2) Region quantities for each material in the region
 - a) Density in Ibs/in.³
 - b) Weight in Ibs
 - c) Total energy deposition in kilowatts
 - d) Photon energy deposition in kilowatts
 - e) Neutron energy deposition in kilowatts

f) Total energy deposition in Btu/hour, watts/gram, watts/cm³ in the solid material, Btu/lb-hour, and Btu/in.³-hour in the solid material

3) Region separable radial and axial energy deposition distributions (relative to a region volume average of 1.0 and region average energy deposition in Btu/in.³-hour),

4) Region mesh cell total energy deposition in Btu/in.³-hour.

These distribution quantities are calculated using the same techniques described for the photon source calculation. Region integrals are obtained as the summation of neutron and photon energy deposition or as separate quantities. The integrals are multiplied by appropriate conversion factors to obtain either metric or English units.

2.4.3 Interpolation and Extrapolation Procedure

The procedures for calculating the end (or boundary) points of a radial or axial source or response distribution in a NAGS region are described in this section. The techniques are discussed in general terminology because the calculation of boundary values for neutron or photon source, fission, or energy deposition distributions are the same.

As defined earlier, a NAGS region is a set of adjacent mesh cells having the same material composition and a rectangular outer boundary. The separable radial and axial distributions are calculated at the midpoints of the redefined mesh cells of a region. These data are used for all interpolation or extrapolation operations. The additional data used in these operations are the external boundary sources (or response values) calculated with material properties of the region, but with particle fluxes at the mesh cells external and immediately adjacent to the region, as shown in Figure 6. Dependent upon the position of the region in the reactor geometry, the calculation of the boundary value assumes one of five types of interpolation or extrapolation techniques, as shown in Figure 7. The mesh cell data (internal and external to the NAGS region) are denoted by the dashed lines and the open O's. The boundary values to be calculated are denoted by the solid lines and by X's. The special case where the mesh cell lies at the reactor centerline, outer radius, top boundary, or bottom boundary of the reactor geometry requires special techniques to obtain the boundary value. In addition, the calculation of the boundary values of a region of only one mesh cell in width (or height) is based on the value at that mesh cell and at the two adjacent external mesh cell values. All values of external mesh cell data are calculated with the nuclear properties of the NAGS region and are relative to the internal mesh cell values.

Figure 7. (Continued) (3 of 3 Sheets)

2.5 OVERALL PROBLEM OPERATIONS

At the completion of the region data processing, the NAGS program performs calculations and operations for all mesh cells in the reactor geometry. These final operations are dependent upon whether the neutron or photon source or energy deposition calculation option is used.

2.5.1 Neutron or Photon Source

The overall reactor geometry neutron and photon source calculations yield the integral photon source, neutron source, and fissions in the reactor. These integrations follow:

1) Total photon source

$$Q_{\text{Total}} = \sum_{J=1}^{JCM} \sum_{I=1}^{ICM} \sum_{k=1}^{NGG} Q_{IJ}^{k} \Delta A_{I} \Delta Z_{J}$$

2) Total fissions

$$F_{\text{Total}} = \sum_{J=1}^{JCM} \sum_{I=1}^{ICM} F_{IJ} \Delta A_{I} \Delta Z_{J}$$

3) Total neutron source

$$Q_{\text{Total}} = \sum_{J=1}^{JCM} \sum_{I=1}^{ICM} \sum_{g=1}^{NGN} Q_{IJ}^g \Delta A_I \Delta Z_J$$

In addition, the NAGS program will prepare a group dependent neutron or photon source binary tape. This tape will contain either neutron, total photon, or fission product decay photon source for all mesh cells in the reactor geometry. These data (with minor intermediate processing to generate a tape with one logical record instead of NGN or NGG logical records) are compatible with distributed fixed source input requirements of the ODD-K discrete ordinate transport program. The options available to the NAGS user are controlled by input integer NPUN (Card Type 3). The program prepares a binary tape containing one of

the following sets of mesh cell data:

1) Total photon source for each group, k,

2) Fission product decay photon source for each group, k,

$$Q_{DIJ}^{k} = \Gamma_{d}^{k} F_{IJ}$$

3) Total neutron source for each group, g,

$$Q_{a}^{I} = x_{a} Q^{I}$$

Special features are included in the NAGS program for the generation of a binary tape of source data. The user can increase the size of the mesh cell source data of a reactor geometry by placing zeros on the tape to the left, right, or top of the reactor geometry. This option, which positions the NAGS calculated source data in a larger mesh cell description, is included to permit, for example, a detailed neutron source calculation in the reactor core for use in a subsequent coarse reactor geometry. The detailed source calculation in the coarse geometry may not be possible in NAGS because of limited memory core storage; hence, this option can be used to reduce the flux data and then expand the source data. Further, this option, in conjunction with the mesh cell and flux redefining options, provides the user with considerable flexibility in running a linked neutron and photon transport problem using the ODD-K discrete ordinate transport program.

2.5.2 Neutron or Gamma Ray Dose Rates

At the completion of a NAGS mesh cell energy deposition calculation, the flux data at each mesh cell in the reactor geometry are used to calculate the neutron and photon dose rate at each of the mesh cells. This calculation of the neutron and photon dose rate follows:

1) Neutron dose rate

•

$$D_{NIJ} = \sum_{g=1}^{NGN} K_D^g \phi_{IJ}^g$$

2) Photon dose rate

$$D_{PIJ} = \sum_{k=1}^{NGG} K_D^k \phi_{IJ}^k$$

Since this operation is essentially a response function calculation, and is not stored in memory, the NAGS user can substitute other conversion factors in place of K_D^g or K_D^k , in the library to obtain mesh cell data as desired.

SECTION

3.0 INPUT DATA DESCRIPTION

The input data for a NAGS problem are subdivided into four sets of data. These four sets, which are the general, flux, library, and region data, are described in the following sections. A description of each set of data input and the routine (in parentheses) which reads this data is as follows:

General problem data - integer data pertaining to data or array dimensions
 (i.e., number of mesh, number of groups, etc.), problem title information, integer control words, flux normalization parameters, neutron fission parameters, and mesh cell specifications.
 (Subroutine MAIN and NAGS 1).

2) Flux data – input flux data required for NAGS operation including mode of input. (Subroutine NAGS 1).

3) Library data – neutron and photon multigroup quantities, and for each element: identification, physical constants and groupwise nuclear data. (Subroutine NAGS 2).

4) Region data - region title information, region composition by element or material, and depending upon the library option or type of calculation, region dependent multigroup neutron cross sections. (Subroutine NAGS 2).

A detailed description of the overall deck setup and input data requirements for a NAGS problem is included in the following sections:

3.1 GENERAL DATA

The initial data input to the NAGS program specifies: (1) the data array sizes of all input quantities, (2) the program input/output control options, (3) the flux normalization constants, (4) the fission neutron spectrum and the number of neutrons per fission event, and (5) the mesh cell dimensions of the problem geometry. These data are input as described in the following table:

Card Type	FORTRAN Format	FORTRAN Variable	Meaning
1	2413	ICT	Number of radial mesh intervals in the input flux solution.
		ICM	Number of redefined radial mesh intervals to be used in all calculations and output data.
		JCT	Number of axial* mesh intervals in the input flux solution.
		JCW	Number of redefined axial mesh intervals to be used in all calculations.
		NGN	Total number of neutron groups NOTE: If NTYPE = 3, then NGN is input as NGG since only photon fluxes are required input to the NAGS program when NTYPE = 3.
		NFAST	Number of fast neutron groups (Neutron kinetic energy is calculated for NFAST groups).
		NI	Number of fast neutron groups for photon productions from neutron inelastic scatter.
		NGG	Number of photon energy groups to be calculated
		NEL	Number of elements in the library data
		NTYPE	Program control word for the type of calcula- tion to be performed.
			NTYPE = 1; Photon <u>or</u> neutron source calcula- tion.

* Azimuthal coordinates in radians (R-θ input flux solutions) can be substituted for axial coordinates in centimeters (R-Z input flux solutions) without any program changes. All further references to axial will also imply azimuthal.

Card <u>Type</u>	FORTRAN Format	FORTRAN Variable	Meaning
			NTYPE = 2: Combined neutron <u>and photon</u> energy deposition calculation.
			NTYPE = 3: Photon energy deposition calcula- tion only (i.e., fission product decay heating).
2	12A6	TITLE	Overall problem title (72 alphanumeric characters).
3	2413	NCD	Not presently used by the program. $NCD = 0$.
		NBIN	Input flux data control word which specifies input mode of flux data for different types of calculations (refer to Section 3.2 for details).
		NLIB	Library data option.
			NLIB = 0: Short library data option with region dependent neutron cross section data included with region input for each element, m, (refer to Section 3.3 for details).
			NLIB = 1: Standard MSFC option. Long library data option with region independent neutron cross section data included in the library for each element, m. (Refer to Section 3.3 for details on library.)
		NEX NEX 1	Source positioning indices in the radial direc- tion for all calculated results. (See Section 2.5.1 for details.) These indices are provided to enable the user to perform a NAGS calculation on a section of a reactor geometry and then position this section of data in a different reactor or problem geometry.

•

•

Card <u>Type</u>	FORTRAN Format	FORTRAN Variable	Meaning
		NEX	The number of zero entries to the right of the NAGS calculated sources in each radial row.
		NEX 1	The number of zero entries to the left of the NAGS calculated results in each radial row.
		ISTART	Starting radial mesh cell number in the NAGS input fluxes to be used in the redefinition of flux data. If in storage allocation, a flux edit is possible or desired for only a section of the input flux data then the user may specify ISTART = 1. ISTART is equal to the left mesh cell number of a section of the reactor geometry. The NAGS program redefines the flux data such that this left mesh cell number flux data will be the first mesh cell of the section. The mesh coordinates of the cells are altered to agree with the new mesh cell description.
		JSTART	Starting axial mesh cell number in the NAGS input to be used in redefinition of flux data. The discussion of ISTART is applicable to JSTART.
		NPUN	Binary tape output control word. Neutron or photon source data is placed on logical tape unit 9 which is MSFC IBSYS Version 13, Unit B-5. The tape contains NGN or NGG logical records each of size, ((NEX1 + ICM + NEX)*JCO).
			NPUN = 0: No binary data tape of sources is to be prepared.
			NPUN = 1: Neutron distributed source (Q_1^g) is to be placed on the binary tape of unit B-5.
			NPUN = 2: Total photon distributed source (Q ^k _{TIJ}) is to be placed on the binary unit B–5.

ľ

Card Type	FORTRAN Format	FORTRAN Variable	Meaning
			NPUN = 3: Fission product decay photon distributed source $(Q_{D_{1}})$ is to be placed on the binary tape on unit B–5.
		JCO	Source positioning index in axial direction for all calculated results. (Refer to Section 2.5.1 for details.) This index is similar in operation to the NEX index in that the program generated B-5 binary tape has logical records of size ((NEX1 + ICM + NEX)*JCO) where the last (NEX1 + ICM + NEX) * (JCO - JCM) pieces of data in each logical record are 0.0's.
4	(E12.5)	ZREF	Reference plane distance in inches from Z = 0.0. This input quantity adjusts all axial dimensions by Z ₁ = ZREF3936 *Z _T so that energy deposition and source data can be printed relative to a Z plane other than at 0.0.
5	(6E12.5)	ENU	Average number of neutrons released per fission event, ν 9. For photon flux input, ENU = 1.0.
		EFF	Fraction of fissions due to neutron fission events, EFF = 1.0, except where cross section data represents, (n, 2n) reactions by pseudo- fission. For ODD-K photon flux data, EFF = 1.0. For MSFC neutron cross section library data, EFF = 1.0.
		EFK	Multiplication factor, K_{eff} , of the ODD-K problem which provides input flux data. For photon flux data EFK = 1.0.
		VOLC	Volume of fissionable regions. For R-Z ODD-K input flux data, VOLC = 1.0.
		CONV	Conversion factor for input flux data in units of fissions per second.

Card Type	FORTRAN Format	FORTRAN Variable	Meaning
		РК	Area factors to account for partial geometrical solutions in ODD-K transport problems (i.e., PK = 1.0 for R-Z geometry but for $R-\Theta$ problems, PK = $\frac{\Theta}{2\pi}$.)
6	6E12.5	СНІ	The fission neutron spectrum, x^g (i.e., the fraction of a fission neutron born in each group, g). $\sum_{g=1}^{NGN} x^g \equiv 1.0$ NGN Values.
7	6E12.5	UNU	Neutron release (No. of neutrons) per neutron fission event by group, ν^{g} .
			NGN Values.
8	2413	IC	Mesh coordinate number of the right radial mesh coordinate of each redefined mesh cell. (e.g., if no redefining or reduction of mesh cell description is required, IC = 2, 3, 4, 5, 10, 11, 12, ICT; or, if a reduction of two mesh intervals must be made, IC = 2, 4, 5, 10, 12, ICT, where 3 and 11 are removed.) There are ICM required values of IC.
9	2413	JC	Mesh coordinate number of the top mesh coordinate of each redefined mesh cell. The discussion of IC is applicable to JC. There are JCM required values of JC.
10	6E12.5	R	Radial mesh coordinate (line) dimensions for the input flux data (ICT + 1 values).
11	6E12.5	Z	Axial mesh coordinate (line) dimensions for the input flux data (JCT + 1 values).

3.2 FLUX DATA

Input flux data for the NAGS program are input as, either a FORTAN IV binary tape, or, as punched decimal data cards. The two modes, tape and cards, cannot be intermixed for combined neutron and photon calculations. Therefore, the user must provide the input flux data in a consistent form. Since there are three types of calculations which can be performed by the NAGS program and two flux input data modes, there exist five combinations of input control word combinations. The input control words NTYPE and NBIN which are input in the general problem data (Refer to Section 3.1.) determine the binary tape unit locations or punched data cards for each type of NAGS problem.

The input flux data for either binary tape or decimal data cards are assumed to be group dependent such that:

 A logical tape record is ICT x JCT long and there are NGN (NTYPE = 1), NGG (NTYPE = 2 or 3), or NGN + NGG (NTYPE = 2) records on the binary tape, or

2) each neutron group or photon group is a set of punched decimal data cards and each new group begins on a new card.

The flux input data and the conditions of input mode are as follows:

Card	FORTRAN	FORTRAN	Meaning
Type	Format	Variable	
12	6E12.5 or FORTRAN IV Binary Tape	SC	Input flux data NOTE: If the binary tape input mode is used, then card type 12, flux data, is deleted from the NAGS problem deck and binary tape (or tapes) must be submitted with the problem. <u>Conditions on input mode</u> (which were input under general data) NTYPE = 1: NBIN = 1: Neutron flux data as binary tape data on logical tape 11 which is MSFC IBSYS Version 13 unit B-6 NTYPE = 2: NBIN = 1: Neutron flux data as binary tape on logical tape 11. Photon flux data as binary tape data on logical tape 12 which is MSFC IBSYS Version 13 unit A-9.

Card	FORTRAN	FORTRAN	Meaning
Type	Format	Variable	
			NTYPE = 3: NBIN = 1: Photon flux data as binary tape data on logical tape 11. NTYPE = 2: NBIN = 2: Neutron and photon flux data as bi- nary tape data on logical tape 11. NTYPE = 1, 2, or 3: NBIN = 3:

Neutron and photon flux data as punched decimal data cards with each group of neutron or photon data starting on a new card (card type 12).

3.3 LIBRARY DATA

The library data for the NAGS program are a compilation of the nuclear and radiation data for the reactor geometry and for the elements in the reactor. These library data, which are assumed to be region independent, are obtained as a complete punched decimal data deck from the POINT program (Refer to Volume 2,) or can be input by the user.

The data are divided into two sections: referred to as general data and element data. The general data include neutron and photon group dependent quantities required for photon energy release from fission, neutron dose rate, neutron kinetic heating, and photon dose rate calculations. The element data are required for each element in the problem.

Each input data card is described in this section. Section 3.5 summarizes in table form, the order in which the general data, the element data, and the region data (Section 3.4) are input to the NAGS problem depending on the control word NLIB, and whether a source or energy deposition calculation is to be performed.

Card Type	FORTRAN Format	FORTRAN Variable	Meaning
<u>Data Ca</u>	rds 13 – 19 are the Ger	neral Library Data	
13	13	NEL	Number of elements in the library
14	6E12.5	SFPS	Prompt fission photon spectrum for each photon energy group (Mev/fission) NGG values

Card Type	FORTRAN Format	FORTRAN Variable	Meaning
15	6E12.5	SFDS	Fission product decay photon spectrum for each photon energy group (Mev/ fission) NGG values
16	6E12.5	DKG	Photon dose conversion factors for each photon energy group (Dose rate/Mev- cm ⁻² sec ⁻¹) NGG values
17	6E12.5	DK	Neutron dose conversion factors for _2_ each neutron group (Dose rate/n cm ⁻² - sec ⁻¹) NGN values
18	6E12.5	DU	Letharge width (Δμ) of each neutron group NGN values
19	6E12.5	DE	Energy width (ΔE) of each neutron group (Mev) NGN values
<u>Data Ca</u>	rds 20 – 26 are Required	for Each Element	
20	13,4E12.5, 10X, A6	NID	Element or nuclide identification number (a table of element identification numbers for the MSFC library are presented in volume 2 of this report.)
		AMU	Atomic weight of element (grams/gram- atom)
		ESS	Average fractional energy loss of a neutron elastic scattering event (iso- tropic scattering)
		ENA	Energy of charged particle (alpha) emission with neutron absorption (Mev/ absorption)
		SA2200	Neutron absorption cross sections for thermal neutrons (2200 meter/second)
		LABEL	A six character descriptive title for the element
21	6E12.5	SINS	Neutron inelastic scatter photon energy spectra for each photon energy group arising from neutron inelastic scatter events occuring in the fast neutron groups (Mev/event)

Card Type	FORTRAN Format	FORTRAN Variable	<u>Meaning</u> NGG values for each of NI neutron groups with each NGG value defining a set of data starting on a new card
22	6E12.5	SS	Microscopic neutron elastic scatter cross sections for neutron kinetic energy deposition calculations. NFAST values
23	6E12.5	SNA	Microscopic neutron absorption cross sections for charged particle (alpha) emission NGN values
24	6E12.5	ECOS	Anisotropic correction factors for the NGN neutron energy groups to be used in neutron kinetic energy heating cal- culations. The factors account for anisotropy of elastic scattering as a fractional energy deposition per elas- tic scatter event ($0.0 \leq ECOS_m^g \leq 1.0$) NFAST values
25	6E12.5	SAS	Neutron radiative capture gamma ray spectra for gamma ray groups (Mev/ capture). NGG values
26	6E12.5	SAG	Microscopic gamma ray mass energy absorption coefficients for gamma ray groups. (cm ² /gram). NGG values
The Follo	owing Data for each Ele	ement is Entered Only	r if: NLIB = 1
26A	6E12.5	SF	Microscopic neutron fission cross sections, $\sigma_{\rm fm}^{\rm g}$.
			NGN values

Card Type	FORTRAN Format	FORTRAN Variable	Meaning
26B	6E12.5	SA	Microscopic neutron absorption cross sections (radiative capture), ^{gg} cm [.] NGN values
26C	6E12.5	SS	Microscopic neutron elastic scatter cross sections, σ ^g NFAST values
26D	6E12.5	SIN	Microscopic neutron inelastic scatter cross sections for production of photons, σ_{sm}^{g} .
			NI values

End of Element Data, Repeat From Card Type 20 for Each Element in the Library.

•

3.4 REGION* DATA

The final input to a NAGS problem are the region data which: (1) titles the region input and calculation data, (2) defines the location of the region in the two dimensional mesh cell description, (3) defines the number of elements in the region, (4) provides a program control word, and (5) depending on the type of NAGS problem (source or energy deposition), provides the material density and weight in the region, the element identification numbers, the element weight fractions or atom densities, and microscopic cross section data.

The description of a region in R, Z or R, θ geometry and the specification of the region external boundaries for a region are illustrated in Figure 8. These regions may be parts of a larger irregular region. The user must describe irregular regions as a composite of NAGS regions. The user must exercise caution in specifying regions so that region mesh overlays are avoided for photon source calculations since the NAGS region calculations are always initialized (all values set to 0.0) for each region and in photon source calculations the source data are saved for all mesh cells, for subsequent reactor geometry integrals, and for photon transport problems.

The input data cards for each region and each type of calculation are described below: These data cards are repeated for each NAGS region calculation in the problem. In addition, Section 3.5 summarizes in table form, the order in which the region data are input depending on the control word, NLIB, and whether a source or energy deposition calculation is to be performed.

*A region in the NAGS Code is defined as a rectangular (R,Z) or annular sector (R, θ) as illustrated in Figure 8.

Figure 8. NAGS Region Geometry and Boundary Specification

Astronuclear Laboratory

Card Type	FORTRAN Format	FORTRAN Symbol	Meaning
27	(12A6)	ID	A 72 character title or description of the region
28	(613)	IS	IS is the radial mesh line number corresponding to the left boundary of the region (See Figure 8)
		łF	IF is the radial mesh line number corresponding to the right boundary of the region (See Figure 8)
		SC	JS is the axial (or angular)mesh line number corresponding to the bottom boundary of the region (See Figure 8)
		JF	JF is the axial (or angular) mesh line number corresponding to the top boundary of the region (See Figure 8)
		JE L	Number of elements in the region NOTE: If IEL is entered as a negative number, the program as- sumes that this region is identical in composition to the preceeding region and the microscopic data cards (Card Types 26-28D) are de- leted from the deck. The next data card will be the title card (CARD TYPE 27 of the next sub- region)
		IND	Control word. This data controls the sequence of operations which are to be performed at the com- pletion of each region calculation. If, IND = 1, the program assumes another region follows and will re- turn to read data (cards 27-28D) after calculations for the present region are completed. If, IND=2,

ľ

Card	FORTRAN	FORTRAN								
Туре	Format	Symbol	Meaning							
			the program assumes that this is the last region and when calculations are complete the program transfers control to the next NAGS operation, which is the calculation of region integrals and distributions.							
The Following Se NAGS Energy D	t of Data (Card Types 29 eposition Calculation: N	and 30) Are Rea NTYPE=1.	quired Region Input <u>Only</u> for a							
29	2E12.5	DGM	Density of the material (i.e., stain- less steel, inconel, fueled graphite, beryllium) in the NAGS region (grams/cm ³ of the solid material)							
		WTGM	Weight of the material in the NAGS region (kilograms)							
There Are IEL (n	o. of Elements in Region) Required Data	Cards Containing NLM, DNM:							
30	13, E12.5	NLM	Element identification number corresponding to the library element identification numbers NID.							
		DNM	Weight fraction of the element NLM in the material described by DGM and WTGM (e.g., the weight fraction of Fe in stainless steel).							
The Following Se Source Calculati	et of Data (Card Type 31 on: NTYPE = 1.) are Required R	egion Input <u>Only</u> For a NAGS							
There are IEL (no	o. of elements in region)r	equired sets of d	ata (cards 28, 28A, 28B, 28C, 28D).							
31	13, E12.5	NLM	Element identification number corres- ponding to the library element identification number NID.							
		DNM	Atom density of element in region (X10 ⁻²⁴)							

•

Card Type	FORTRAN Format	FORTRAN Symbol	Meaning
The Followi	ing Neutron Cross Sectio	on Data are Input On	ly When NLIB = 0
31A	6E12.5	SF	Microscopic neutron fission cross section, σ^{g} .
			NGN values
31B	6E12.5	SA	Microscopic neutron absorption cross sections (radiative capture), σ^g . sm NGN values
31C	6E12.5	SS	Microscopic neutron elastic scatter cross sections, σ_{em}^g
			NFAST values
31D	6E12.5	SIN	Microscopic neutron inelastic scatter cross sections for production of photons, σ_{sm}^{9} .
			NI values

3.5 SUMMARY OF LIBRARY AND REGION DATA

This section summarizes the three types of library and region data required as input to the NAGS program. The input is dependent on the controls NLIB and NTYPE. The three types of input discussed in Section 3.3 and 3.4 are: general library, element library and region input data. Table 1 and Figure 9 clarify the order in which these data are entered into the NAGS program.

TABLE 1

ORDER OF LIBRARY AND REGION INPUT DATA

If NLIB = 1 (Standard MSFC set-up), data are entered as follows:

Source Calculation (NTYPE = 1)

Cards 13 - 19 (general data) Cards 20 - 26D(data for element 1) Cards 20 - 26D(data for element 2) etc.

Cards 27 - 28 (data for region 1) Card 31 (data for element 1, region 1) Card 31 (data for element 2, region 1) Card 31 (data for element 2, region 2) Card 31 (data for element 1, region 2) Card 31 (data for element 2, region 2)

Heating Calculation (NTYPE = 2 or 3)

Cards 13 - 19 (general data)Cards 20 - 26D(data for element 1)Cards 27 - 28 (data for region 1)Card 29*Card 30*Card 30*Card 30*Card 30*Card 30*Card 30*Card 29*Card 30*Card 29*Card 20*Card 20*Card 20*Card 20*Card 20*Card 20*Card 20*Card 30*Card 30*<

If NLIB = 0, data are entered as follows:

Source Calculation (NTYPE = 1)

Cards 13 - 19 (general data) Cards 20 - 26 (data for element 1) Cards 20 - 26 (data for element 2) etc. Cards 27 - 28 (data for element 1, region 1) Cards 31 - 31D(data for element 1, region 1) Cards 31 - 31D(data for element 2, region 1) Cards 31 - 31D(data for element 2, region 2) Cards 31 - 31D(data for element 2, region 2) Cards 31 - 31D(data for element 1, region 2) Cards 31 - 31D(data for element 2, region 2) Cards 31 - 31D(data for element 2, region 2) Cards 31 - 31D(data for element 2, region 2) Cards 31 - 31D(data for element 2, region 2) etc.

Heating Calculation (NTYPE = 2 or 3) Cards 13 - 19 (general data) Cards 20 - 26 (data for element 1) Cards 20 - 26 (data for element 2)

55.1

		region 1)	egion 1)	lement 1, region 1)	lement 2, region 1)		egion 2)	egion 2)	element 1, region 2)	element 2, region 2)	` `
5		δ	ē	ق	õ		وت	ē	٦	ē	
		(data	(data	(data f	(data f		(data 1	(data 1	(data 1	(data 1	
	etc.	8				etc.	8			-	erc.
	 0	Caras 2/ -	Card 29*	Card 30*	Card 30*		Cards 27 –	Card 29*	Card 30*	Card 30*	-

NOTE: Refer to Sections 3.3 and 3.4 for description of each data card.

*Cards marked with an asterisk must be inserted "by hand" at the proper location. All other data cards are punched as output from the POINT code.

Figure 9. Deck Order of Library and Region Input

56 -1

56.2

611855-64B

IF NLIB = 0: SHORT LIBRARY OPTION

SECTION

4.0 PROGRAM STRUCTURE AND LOGIC

The NAGS program consists of five major routines and five minor routines written in FORTRAN IV. The program is structured for the IBM 7094 Model II IBSYS Version 13 monitor system using the overlay mode. Overlay is employed in the program to achieve maximum memory core storage for data without severe penalties in program logic or running time. In addition, the NAGS program uses the variable dimensioning capability in FORTRAN IV to "pack" data into a single data vector, hence, maximizing the program's utility by allowing a wide variety of problems. The program structure is illustrated in Figure 10 with the overlay levels A and B shown. A brief description of the operations performed in each routine are included in the figure to illustrate the structure of the program with respect to the data processing functions performed.

The logical flow of the NAGS program is presented in Figure 11. Simplified flow diagrams are included for the major routines only, since the minor routines are straight forward calculations or operations. The logical flow through NAGS is controlled by the MAIN routine. The NAGS1 through NAGS4 routines return to the MAIN routine for the next NAGS step.

AND RETURN

Figure 11. NAGS Program Logic

SECTION

5.0 OPERATING INSTRUCTIONS

The operating instructions and card deck setup for NAGS problems are similar to any production problem to be run under IBM IBSYS (Version 13) FORTRAN IV Monitor System. Problems may be run using either the binary object or source deck. The binary object deck is the preferred mode since compilation time is saved and the probability of damage for the source deck is eliminated. The deck setup for a binary object deck is described below and the deck setup with source decks is identical except the FORTRAN compiler card (\$IBFTC in columns 1 - 6) and program source decks are substituted for binary object decks.

NAGS PROGRAM DECK SETUP

- 1. An accounting card (dependent on computer installation)
- 2. A job card, JOB in columns 1 4.
- A pause card, \$PAUSE in columns 1 6. (This card is required to permit the IBM 7094 operator to mount the required input tapes; hence, if no tapes are input, this card is not required.)
- 4. An execute card, \$EXECUTE, in columns 1 8 and IBJØB in columns 16 20.
- 5. An IBSYS job card, \$IBJØB, in columns 1 6 and GO, FIØCS, MAP in columns 16 27.
- MAIN subroutine binary object deck (A FORTRAN loader card, \$IBLDR, in columns 1 – 6 is included in the punched binary object deck from the FORTRAN IV compiler).
- 7. SISET subroutine binary object deck.
- 8. SIR subroutine binary object deck.
- 9. SCØUT subroutine binary object deck.
- An overlay origin card, \$ØRIGIN, in columns 1 7 and ALPHA, SYSUT3, REW in columns 16 - 31.
- 11. NAGS1 subroutine binary object deck.
- An overlay origin card, \$ORIGIN, in columns 1 7 and BETA, SYSUT3, REW in columns 16 - 31.

- 13. CØLZ subroutine binary object deck.
- 14. Same as card 12.
- 15. CØLR subroutine binary object deck.
- 16. Same as card 10.
- 17. NAGS2 subroutine binary object deck.
- 18. Same as card 10.
- 19. NAGS3 subroutine binary object deck.
- 20. Same as card 10.
- 21. NAGS4 subroutine binary object deck.
- 22. An entry control card, \$ENTRY, in columns 1-6.
- 23. A data control card, \$DATA, in columns 1 5.
- 24. NAGS Problem deck.
- 25. Appropriate end of file cards to end job.

This deck is then written off-line (card to tape) on an IBM Model 1401 or IBM Model 360/30 to manufacture a standard system input tape. Once the input has been written on tape, the machine operation is standard and the only operator action required is the tape mounting at the beginning of the job and tape dismounting at the completion of the job. The tapes used by NAGS are the following:

All BCD input	Logical Tape 5, MSFC IBSYS Version 13 A-2
All BCD output	Logical Tape 6, MSFC IBSYS Version 13 B-1
Flux Input Binary Tape	Logical Tape 11, MSFC IBSYS Version 13 B-6
Flux Input Binary Tape	Logical Tape 12, MSFC IBSYS Version 13 A-9
Redefined Flux Binary Work Tape	Logical Tape 10, MSFC IBSYS Version 13 A-6
Intermediate Binary Work Tape	Logical Tape 9, MSFC IBSYS Version 13 B-5
Overlay Tape	Logical Tape 3, MSFC IBSYS Version 13 A-4

The binary tapes always to be mounted at the beginning of a job are the input (5), work (9), work (10), and overlay (3) tapes. The standard save tape is the normal system BCD output (6) and tapes dependent on calculation type.

The binary tapes to be mounted and saved should be clearly labeled so that these tapes may be recalled for subsequent use as input tapes. The suggested tape labels for NAGS tapes are in parentheses in the following discussions. If the calculation is a source calculation, NTYPE=1, and the flux input mode is binary tape, NBIN=1, then a binary tape generated by the ØDD-K neutron transport problem is a required input on logical tape 11. The save tapes from this source calculation are the binary tapes from logical tape 9 (NAGS SOURCE DATA) and logical tape 10 (NAGS REDEFINED FLUX DATA). If the calculation is an energy deposition calculation, NTYPE=2 or 3, and the flux input mode is binary tape, then three flux input modes exist. The first input mode (NBIN=1 for NTYPE=2) requires the binary tape (NAGS REDEFINED FLUX DATA) saved from logical tape 10 on the prior NAGS source calculation as a required input tape on logical tape 11. In addition, a second binary tape generated by the ØDD-K photon transport problem is a required input on logical tape 13. The second input mode, NBIN=1 for NTYPE=3, requires the binary tape generated by the ØDD-K photon transport problem as required input on logical tape 11. The third input mode, NBIN=2 for NTYPE=2, requires the binary tape (NAGS REDEFINED FLUX DATA) saved from logical tape 10 on the prior NAGS energy deposition, NTYPE=2, as a required input tape on logical tape 11.

The save tape from the energy deposition calculations is the binary tape from logical tape 10 (NAGS REDEFINED FLUX DATA).

When the deck and tape mounting and dismounting requests are set up in the preceding manner, the NAGS program will operate under normal IBSYS Version 13 Monitor SYSTEM control.

APPENDIX A

NAGS STORAGE ALLOCATION

The NAGS program uses the variable dimension capability of the FORTRAN IV programming language to allocate data storage in the program. This variable dimensioning, which occurs when input data is loaded, provides flexibility in using the program for a variety of problems without recompilation of the source program. There are 18,050 core locations available for input and calculated data. The total data storage locations required for a particular NAGS problem can be determined from the 7 input quantities on card 1 of the input data and the following four equations:

1.
$$X_1 = 2^* [(ICT^*JCT) + (ICT + JCT + 1)]$$

2. $X_2 = [(ICM^*JCM)^*(NGG + 2)] + [(ICM + JCM)^*10], \text{ for NTYPE} = 1 or X_2 = [(ICM^*JCM)^*3] + [(ICM + JCM)^*10], \text{ for NTYPE} = 2 or 3$
3. $X_3 = [NEL^*NGN^*3] + [(NI + 2)^*NGG] + [(NFAST^*2) + NI] + 9$
4. $X_4 = [5^*NGG] + [4^*NGN]$

The summation of X's yields the total storage locations for a particular problem which must be less than 18,050. If this limit is exceeded, an error print is returned by the NAGS program and the problem is terminated.

×
≙
Z
Ë
Ā

PROGRAM SOURCE LISTING

	~~** **** ******	9000	このようやちをとうていららりょう。ちゃうてていららか。 しゃていまん ちゃうしょう ちゃくしょう しょうしょう
		NI V	
	OU D	R THE DAI X For the On of IX	9 N I 2 I S
L.	, NTYPE N SREF .	NEL .NTYPE Cation fo Usion of Location E dimensi	IMENSION
CE LISTING	IGS IGS NEL . IND ISTART . NPU	IT . NI . NGG . RAGE ALLO The Dime Torage Al	ARIABLE C
AM SOUR	94/2•XR7 Ension NA Ast•N1•Ng •Istart•J	•NGN•NFAS REAL STG ESPOND TG INTGER S I CORRESP	ARE THE T
PROGR	OCS CK+NODO+M IABLE DIM CH+NGN+NFX] •NEX+I	X (100) M. JCT (20) E MAXIMUM MUST CORR MUST CORR MUST CORR Value Value Hus	S I Z J Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
	008 • NOMAP • FI L IST • DE H FOR VAR ICM • JCT • J NBIN • NLIB	(18050) • 1 (18050) • 1 (19050) • 1 (1905	0 2 .1) 117 = 0rtran st
	IIIN BIN GO GO GO GO GO CO A MON ICT • I	4ENSION X 10 (5+1010 1117 NMA X AND 111 X AND 111 N117 NMA (CTOR 1X X RS=1805	
STBSYS	SIBFIC SI	014 014 017 018 018 018 018 018 018 018 018 018 018	

ñ J. MIN MAIN NICH NIM NIAN MAIN MIN NIVH NIN NIN MAIN MAIN NIN NIN NIN NIN MAIN NI M NI M MAIN NIN NIN NICH NIN NIN NIN NIM NIAN ZIV NIV NI NH NI M NIN NI M SG(ICM+JCM+NGG+2) OR SG(ICM+JCM+3) 91*11*81 + 220 UNU (NGN) + 16#19 J22 = J21 + 18*19 SINS(NGG,NI,NEL) 61+51 61+SI 61+LI 112 **81 +** 15 • 13 + 15 + + 18 6 • 11 U11=J10+11+13 EI#11+6C=01C + + + + • J12 JI9 = JIB SIN(NI•NEL) J20 = J19 SS (NFAST . NEL) J21 = J20 SC (ICT.JCT) **J13** 410 215 J17 = J16 J18 = J17 JS# J+I+ RS(ICM) TEMP (ICT.JCT) 2 J4=J3+I2 ZSF (JCM) J6=J5+I2 ZS(JCM) 5 J7=J6+I4 VOLR(ICT) SAS (NGG .NEL) SA (NGN . NEL) (NGN + NEL) VOLZ (JCT) J16 = , DNM (NEL) AMU (NEL) J14 = SFPS (NGG) JI5 = SFDS (NGG) H CHI (NGN) RSF (ICM) 5 SF O O U U U O U S υ υ O υ υ O U U υ O O C U

Astronuclear

Laboratory

W

U S S S S S S S S S S S S S S S S S S S				TG ZIVA 26 NIVA 16 NIVA	46 214 06 214 06 214 07 214 06 214 07 214 06 214 07 214 07 07 07 07 07 07 07 07 07 07 07 07 07	76 NIW 56 NIW 56 NIW	MAIN 100 101 NIAM 101 NIAM 101 NIAM	NOT ZIVI		011 214 11 214 211 214 211 214 211 214 211 214 211 214 214 214 214 214 214 214 214 214 214	
J24 = J23 + 19 C ESS(NEL) C ESS(NEL)	C ENA (NEL) 256 = 325 + 19	C SA2200(NEL) J27 = J26 + 19	C LABEL (NEL) J28 = J27 + 19 r sna (ngn.nei)	C ECOS(NFAST+NEL) C ECOS(NFAST+NEL)	C DK (NGN) L JE (NGN) C DE (NGN)	C DU (NGN) C DU (NGN)	C SAG (NGG+NEL) J34 = J33 + I8*19 C TSG (NGG)	C RI(ICM) C RI(ICM) J36 = J35 + I2	C ZI(ICM) J37 = J36 + I4 C SGB(ICM*3) J38 = J37 + I2*3	C SGT(ICM#3) J39 = J38 + I2#3 C SGR(JCM#3) J40 = J39 + I4#3	C 56L (JCM*3) C 75N (ICM) C 75N (ICM) C 25N (JCM) C 25N (JCM) C 25N (JCM) C 25N (JCM) C 25N (JCM) C 25N (JCM) C 25N (NGG) C 5TC (NEL) C 5TC (NEL)

1

「大学」

いたり、いたいとうないとないないない、ないない、このでいたので、こので、こので、こので、このではないない

16	0.0				1	17	17			17	~		7	18	18	18	1.0	18	9	180	0	d	B:0 ⇒ -			6	6	6	6	5	ŏ	6	6	19	202	201	20	20	202		20))
Z	Z Z			Z	Z	Z	Z	Z	Z	Z	Z		Z	Z	Z	Z	Z	Z	Z	NI	Z	2				Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z			-
A H			Ē	×	A H	A M	Ă	A I	A X	A N .	A :	A X	Ă	A	Ă	A N	A	Ĩ	A	A						A N	Ă	Ĩ	Ă	X	Ă	Ā	A X	Ā	A M	Ă	A I	AM .	A Z			E E
																																						-				
	•	•	٠	•	•		•			11					•		•	•		•										•	•		•	•	. •			1				
	-		ì	2	8	ŝ	ŝ			•					-	7	2	8	ŝ	2	5			•							4	7	8	ີຄ	ົ້			٠				
	5	5	5	ŝ	3	5	ち			0					5	5	2	5	5		r >		•	0						5	5	2	3	5	5			0				
	X		K	×	×	×	×		•	11					×	×	×	×	×	X	, (+						×	×	×	×	ž	×							
	•	•	•	•	•	•	٠			٠					٠	•	٠	•	•		•			•						•	٠	•	•	•	•			•				
	-		2	2	5	-	$\widehat{}$			_					~	2	2	2	-	-										~	2	2	2	3	2			~				
	4	2		Ň	2	134	₹			1					9	5	N	N	E		F		•	-			_			9	=	Ň	N	ě	₹			ĥ				
			2	ť	<u>.</u>	5	3			٠					ć	ć	3	5	5		-			•						ć	Ĵ	Ĵ	ć	ć	ć			٠				
	ĺ.		~	2		^	2			an					2		2	•			•			ñ							•	•	•	Ĵ				6 0				
			_	_	_	_	_			H					_	_	_	_	_				•	-						_	_	_	~	~	~			Ä				
	. I		V	6	S	e E	9			٠					ŝ	2	6	92	m m	9				•						S	12	19	\$ \$	B	9			٠				
		2	2	3	3	2	Ž			~					Ē	3	2	Ĵ	3		2		,							2	3	3	3	3	Ċ			~				
	×	()	×	×	×	×	×		•						×	×	×	×	×	×	٢.		•	-						×	×	×	×	×	×			••				
	•		•	•	•	•	•		~	•	^				•	•	•	•	•	•	•	•	~	•	~					٠	•	٠	٠	•	•	٠	_	•	~			
	~	•	2	8	ŝ	ŝ	6	9	E S	9	17					1	8	ŝ	n R	10	1		ກ ດ	٦0	-						2	8	ŝ	2	6	9	53	s	17			
	4	5	5	5	25	5	еr еr	5	3		H				*	5	5	5	5	5	<u>}</u>	5	2'		-					う	5	5	2	5	5	ち	3					
	X	Ċ	×	×	×	×	×	×	Ľ	•	•				×	×	×	×	×	X	 × 	- > < +	< -	•	•					×	×	×	×	×	×	×	×	•	•			
		•	•	•	٠	•	•	•	٠	ŝ	16				•	•	•	•	•	•		•	•	ຄູ່	16					٠	٠	•	٠	٠	٠	•	٠	S	16			
	-		2	2	2	2	2	2	ŝ	_	-				~	2	2	-		2		2 6	Ň.	_						~	2	2	3	2	ŝ	3	52)	7	<u> </u>	~		
	2	2	5	-	2	E.	56	1	2	•					<u>m</u>	110	1	Š		20	2		2	•	-	-				5	Ξ	2	ň	Ē	je E	4	5	-	5	-		
	-		ć	ć	Ĵ	Ĵ	ć	ć	×	*	Ξ				ć	ť	5	5	3	2			<			2				Ĵ	Ĵ	ć	3	ć	ć	3	ž	*	Ë	2		
¥			2	•				•		-			¥		2									-		0		¥		•	•	•	•	-	•	-	-		•	0	ע 7	ç
	_		_	~	~	_	~	_	â	-	÷		Ξ		~	~	_	_		_			2,			3		Ξ		~	~	~	~	~	~	~	â		<u> </u>	5	1	Ì
Z	n		.	16	3	ŝ	91	4	5	13	Ì		Z		N	a	16	M					ŝ		È	2		Z		N	ð	16	53	30	37	\$	5	EI	È:	2	Z	Ē
6		5	2	3	3	2	2	Ž	С Х				æ		2	5	2	3	2		22	2;	×	•	•	å		6		3	Ž	З	3	3	3	Ž	×	•	- 1	•	á	2
00	` ر	•	×	×	×	×	×	×	-		m		00	_	×	×	×	×	×	*	< >	< •			3	1		00	_	×	×	×	×	×	×	×	•		m	9	Ċ	Ś
	6		٠	٠	•	•	•	•	-	12				G2	•	•	•	•	•		•	•	- 1	212		Б		-	63	•	•	•	•	•	•	•	-	12	12	1	5	4 •
(6	۹ Z	-		ົດ	3	6	Ģ	ê	50	•	•	2	6	٩Z	-		ິດ	5	i 6	1	òŕ	5	50	•	•	7		9	A Z		_	ົວ	ŝ	6	9	e.	50	•	•		4 J 1 -	
لعا س	-1-	5	8	5	27	2	5	3	3		N	¥	Ę	_	5	90	5	; -	50	1 5	2-	5	2	4	2	S	ž	Ē	.	5	90	5	3	3	e P	5	3		2	2	Х н Х л	-
141	AL AL	<	×	×	X	×	×	×	XI	11	1	Ξ	ä	A	×	X	×	X	с ж	.>	$\langle \rangle$	- : < :	Ň			ís.	1	Ē	AL	×	×	×	×	×	×	×	XI	-	-	ہ _ ج		Ľ
S	٥,		-	•••	-	-	-	-	-		~	2	. .	υ	-		•			• •		-					Z	5	U		-	-1							-'	-	< 1	ж.

ľ
209 10-10 AI # 208 210 212 221 222 223 Ţ **()** 50 22 SISET SISET SISET SISET SISET NI'N NIN SISEI MAIN NIM NI M. SISEI SISE1 SISE1 SISE1 SISE1 SISEI SISE NIM MAIN MIN MAIN NIVI NI M NI'NN NIV SISE SISĒ. SISE SUBROUTINE SISET (SGLT, SGRT, SGBT, SGTP, R, RI, Z, ZI, 11, 12, 13, 14, 110, X (135) (12C) X X (J28) (†[^)X • 5 110 • X (J20) X (J27) (E10) X (+8r) X 61 R(I10) • RI(I2) • Z(I12) • ZI(I4) • RS(I2) • ZS(I4) **3110** • × Ð X (J12) X (J19) X (J26) (EEL) X (0+0) ŝ II2.II3.II4.IRS.IR1.IZS.IZ1.K.RS.ZS) DIMENSION SGLT(3).SGRT(3).SGBT(3).SGTP(3) × × DECK .NUDD . M94/2. XR7 (153) X (J18) X (J25) X (J32) X (J46) X (J46) (111) ø 11 PROBLEM IN LINK 13) XI Ś ٤Ō SGRT (K) N X (J52) (01r) (42 C) X (IEC)X X (J38) X (J45) 10 5 ŝ 00 đ × × . (E) X • (E) V IF (SGLT(K).GT.0.0) IX(J51) IF(III.EQ.1) A(3) NULIST. (6) (06C) X (E2U) X (オオフ)× (91C) X X (J37) È m RI (IRS2) RI(IRSI) RS(IRSI) (12 SGL 1 (K) A (1) RS (I HS RI (IRS) R(185) FORMAT (//17H FORMAT (2413) × t 113 RS I RS IRI DIMENSION [R] NAG4 UIMENSION N 2 x (J50) SISETR X (J15) X (J22) 2 G0 T0 1 56LT (K) (62 C) X X (J36) (E40) X N 60 10 (E) X CALL NT N N X Z 112 RF2 IRS2 IRFI (1)X (E) X (E) A IRSI NK=1 A (2) END (E) V X (2) III ¥z Z SIBFTC 1008 1010 16 ŝ 4

2		(Q	-	< N		1.	ŝ	.0		10	9	0		2	m		ŝ	-01	-	¢۵	(D -1	0		N .	3		ŝ	01	~~	Di	3 «	Э.		44	11.	¢ (ה	or	- · d	3	4
2	N	1	3	• 🕐	3	1	3	3	· 🖱	3	m	+		÷.	٠				•		•	5	5	ŝ	5	ŝ	ŝ	N	ŝ	Ô.	S .	Ð	9 : 4	Ó 's	O :•	Ô	0.	ō,	0.4		
																			-																	-	-	-			
-	•	- 6		-		-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	\mathbf{H}	1	-	*	-	-	-	i	-		⊢ 1		-	-	-	-	-	- 1			
ial	تعا	لمأدا	لمارا	14	لما ا	-64	لمدر	444	(Ind		المد	الما.	ial	inf.	لمه	العذر	.i.i	44.6		1.1	السان	, LLI	العذه	1.1	الما	i.	. 1 A I					AL	1.1.1		ian d		Lall I	in t d	. I. Í.	a in	
ā	ū	10	10	1	5 10	5	in	in	5	10	20	10	1	5	5	~	10	1	1	5	5	ā	1	1	5	10	70	10			7	0	777	Ā 1	5	1	5		ñ	N 17	
													-	-		22	2		2		-				-	2	2		_						-		~				
10		5.2			100						70		5	5	10	10		10	5	5	10	10			10			-			10									2 7	

,

			_		
_			C		
•					
0			0		
han.					
0			0	0	
ڻ ن	0		9		
			-		
~	0		~	0	
3	—	•		<u> </u>	
•			•		
~ ~		1		~ Q	
	NoNoñoo				~ ~~
~ - ~ ~ ~ .					
				302220	A 20
					- <u> </u>
					# (0 (D
a waare	TATAQUA				
			·		10 A. A. A.
	*				
U U					
<u> </u>			000007	<u> </u>	
				m n n m ~ n	
	K	OXHNNNH	+ T X	C C C C C C C	JOF X
a axxxm	Z 4 4 X X H 4 X U	NZZHHHH	444×××42	$\mathbf{A} \mathbf{A} \mathbf{X} \mathbf{X} \mathbf{H} \mathbf{A} \mathbf{U}$	502244
	N	00		C	

```
SCOUR
                                                                                                                                                                                                                                                                                                                                                                                                            SCOUR
SISET
                                                                                                                                                                                                                                                                                                                                                                                          SCOUR
            SISE1
SISE1
                                         SIŠĒT
                                                                               SISEI
                                                  SISÊI
                                                            SISEI
                                                                                                                                                  SISEI
                                                                                                                                                            SISE
                               SISEI
                                                                                                                                                                              SIRR
                                                                                                                                                                                                  SIRR
                                                                     SISE
                                                                                         SISE
                                                                                                  SISE
                                                                                                            SISE
                                                                                                                     3515
                                                                                                                               SISE
                                                                                                                                         351S
                                                                                                                                                                                                                                                                                                                                                                      SIRR
SIRR
                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                            ۲
                                                                                                                                                                                                                               NT=2, LINEAR INTERPOLATION IN 2
NT=3, LINEAR INTERPOLATION IN R*F(R) WITH DER(F(R))/DER(R)
                                                                                                                                                                                                   COMMON NCD.NBIN.NLIB.NEX.NEXI.ISTART.JSTART.NPUN .ZREF.JCO
                                                                                                                                                                                                                                                                                                                                         = A3+(X3/X1)+EXP((X1=X3)+(ALOG(A3+X3/(A2+X2)))/(X3=X2))
                                                                                                                                                                                                             ROUTINE
                                                                                                                                                                                SUBROUTINE SIR(A1,A2,A3,X1,X2,X3,NT)
Common Ict,Icm,Jct,Jcm,NgN,NFAST,NI,NGG,NEL,IND,NTYPE
                                                                                                                                                                                                                                                                                (42*X2+((43*X3=A2*X2)*(X]=X2))/(X3-X2))/X]
                                                                                                                                                                                                             IS THE BOUNDARY RESULT RETURNED BY THE SIR
                                                                                                                                                                                                                                                                                                                                                                                                  SUBROUTINE SCOUT (SC.RI.ZI.II.I2.I3.I4.K.NAME)
                                                                                                                                                                                                                                                 NT=4, LOGRITHAMIC EXTRAPOLATION IN R*F(R)
NT=5, LOGRITHAMIC EXTRAPOLATION IN Z
                                                                                                                      SIR(A(1), A(2), A(3), X(1), X(2), X(3), NK)
                                                                                                                                                                                                                                                                                                                       = ( K3+X2+X2+X2+X3+X3) / ( (X2+X3) + (X2+X3) )
                                                                                                                                                                                                                                                                                                                                                             = A3*EXP((X1=X3)*(ALOG(A3/A2))/(X3=X2))
                                                                                                                                                                                                                                                                                                                                                                                                            DIMENSION SC(11.12).AI(13).ZI(14).NAME(3)
                                                                                                                                                                                                                     NT=1, LINEAR INTERPOLATION IN A+F (R)
                                                                                                                                                                       DECK . NODD . M94/2 . XR7
                                                                                                                                                                                                                                                                                                                                                                                          DECK . NODD . M94/2 . XR7
                                                                                                                                                                                                                                                                                                   A2+ ( (A3=A2) + (X1=X2) ) / (X3=X2)
                                 4
                                20
                               09
                                                                                  +
                                                                                                                                                                                                                                                                     (2+4+6+8+10) •NT
                                                                                                                                GO TO (4.8.12.16).NT
                                                                                 2
                               IF (SGTP (K) .GT.0.0)
                                                                                                                                                                                                                                                                                                                                                                                          NOLIST.
                                                                                                                                                                       NOLIST.
                                                                                IF(III.6T.1) 60
                     ZI (IZF1)
                                         ZS(12F2)
                                                            ZI (12F2)
                                                  (121) SZ
                                                                     21(121)
                                                                                                                                           5687 (K)
            (121)12
                                                                                                             2(127)
Z(12F1
                                                                                                                                                                                                                                                                                                                                 10 12
                                                                                                                                                                                                                                                                                                                                                    TO 12
                                                                                                                                        SGTP (K)
                                                                                                                                                                                                                                                                                                                                                                                        SCOUR
  .
                                                                                                                                                                                                                                                                                          10
                                                                                                                                                   RETURN
                                                                                                                                                                                                                                                                                                                                                                      RETURN
                                                                                                                                                                                                                                                                                                             5
                                                                                                                                                             END
SIRR
                                                                                                                                                                                                                                                                       0
                                                                                                                      CALL
                                                                                                                                                                                                                                                                                                     .
                                                                                                                                                                                                                                                                                 .
                                                                                          N N
 X (1)
                     (E) X
                                         A (2)
                                                                                                             X (2)
                                                            X (2)
                                                                      (E) X
                                                                                                    A (2)
                                                   (E) V
            X (2)
                                                                                                                                                                                                                                                                                                                                                                                 END
                                                                                                                                                                                                                                                                                                                                                   09
                                                                                                                                                                                                                                                                                                   601
601
                                                                                                                                                                                                                                                                      00
                                                                                                                                                                                                                                                                                          60
                                                                                                                                                                                                                                                                                                                       41
60
                                                                                                                                                                                                                      14.
                                                                                                                                                                                                                                                                                                                                                              Į
                                                                                                                                                                                                             T A
                                                                                                                                                                                                                                                                                A1
                                                                                                                                                                                                                                                                                                                                          41
                                                                                                                                                                      $18FTC
                                                                                                                                                                                                                                                                                                                                                                                          SIBFTC
                                                                                                                                                                                                                                                                                                                                                              120
                                                                                                                                                                                                                                                                                                                          ø
                                                                                                                                           16
                                                                                                                                                                                                                                                                                                                                           30
                                                                                                                        *
                                                                                                                                                                                                                                                                                   N
                                                                                                                                                                                                              000000
```

Astronuclear Laboratory

F.EFK.VOLC.CONV.PK).1=1.NGN)
VCD • NGN • NGG • NET
X .NEX1 . ISTART .J
(NON)
PLANE IS AT F
+CONV . PNORM
LUMES ON ICT +
])-R(])+R(]))
POINTS

Astronuclear Laboratory

υ

U

-

	12 J1 = JC(J)	NAGS	0 i C
	Ke]	NAGS	0
	WHEN ODDK PROVIDES A BINARY FLUX TAPE		
	14 HEAU(12) ((30(1+0)+1=1+01)+0=1+13) BBD - BNABH	NAGS	115
	IF (NTVDF.FD.2.AND.K.GT.[5) PPD = 1.0	NAGS	116
	IF (NTYPE_E0_3) PPP = 1_0	NAGS	117
		NAGS	116
	DO 32 JE1+13	NAGS	119
	32 SC(I+J) #ABS(SC(I+J)) #PPP	NAGS	120
6 3	ALCULATE COLLAPSED FLUXES IN AN ICH * JCH MESH FROM THE ICT * JC	T NAGS	121
	ALUES	NAGS	N
	IF (ICM.LT.ICT) CALL COLR (SC, TEMP, VOLR, VOLZ, IC, JC, II . I3 . I),	3, 12, NAGS	
	114) Isticutis institution for the Volminul Istration 13 11.		5 27
	IT (JCH+LI+JCI) CALL COL4/JCHLERF#VOLA#VOLA#ACCUC#AL **J **!**	S S N N S S N	126
	₩₩11F (10) ((SC(I•J)•]#1•[2)•J#1•[4)	NAGS	15
	IF (NTYPE.LT.3.AND.K.LE.IS)	NAGS	128
	ICALL SCOUT (SC,RI,ZI,II,I3, I2,I4,K,18HNEUTRON FLUXES)	NAGS	129
	IF (NTYPE.EQ.3)	NAGS	130
	ICALL SCOUT(SC.RI.ZI.II.I3. IZ.I4.K.I8HPHOTON FLUXES)	NAGS NAGS	
	IF(K.GT.I5)	NAGU	V.: 7 (
	<pre>lcall scout(sc.ri.zi.il.i3. i2.i4.K.i8HPHOTON fluxes)</pre>	NAGS NAGS	
		NAGN	* 11 73 1 74 1
	IF(K.LE.NGT) GO TO 14	NAGS	
	IF (NBIN.EQ.2) NBINE!	N D C C C C C C C C C C C C C C C C C C	
	REWIND 11	ND CO	0; 7: -
c	ALCHLATE ADEAS AND RADII OF THE COLLAPSED (ICM&JCM) PROBLEM	NAGS	139
,		NAGS	140
	UO 34 I = 1.ICM	NAGS	
	1L = IC(I)	NAGS	V. 4
	VOLR(I) = 3.1415927*(R(IL)*R(IL)-R(IK)*R(IK))	NAGS NAGS	
	34 IX # IC(I)	N D C N	
	R(ICM+1) = R(IL)		
	U H JOIANI	カウマン	
		75 C C	
	VOLZ(J) = Z(J2)=Z(J])	NDCN	2.
	Z(1) = Z(1))	NDEN	Ť n T

NAGS 152	NAGS 153 NAGS 153	NAGS 155	NAGS 150	NAGS 157	NAGS 158	NAGS 159	NAGS 160	NAG5 161	NAG5 162	NAGS 163	NAGS 164	NAGS 165	NAGS 166	NAGS 167	NAGS 1 64	NAGS 169	NAGS 170						DIT ADV	111 CONN					INTER 183	V NAGS 184	NAGS 185	NAGS 186	NAGS 187	NAGS 188	NAGS 189	NAGS 190	TAT ADAN	COLZR J
11 = JC(J)	2 (JCM+1) = 2 (J2) 25 T LIAN	CORMAT(1H1// +47X+16H PROGRAM NAGS IV // 16X+12A6//)	'ORMAT(30H NO.OF RADIAL MESH INTERVALS++I3./	•30H NO.OF COL.INTERVALS (R) *****13./	• 30H NO. OF AXIAL MESH INTERVALS +13./	.30H NO. OF COL. INTERVALS (2) ***13./	•30H NO. OF BIN. FLUX CARDS*******13./	• 30H NO. OF NEUTRON GROUPS++++++13./	.30H NO. OF GAMMA RAY GROUPS ******13./	•30H NO. OF MATERIALS****************	ORMAT(30H BINARY CARD OPTION##########13./	· 30H LIBRARY OPTION************************************		•301 NO• OF ZEROS (RT) ••••••••••	• DOM NO. OF ZEROS (LT) ====================================	• 30H STARILNG INTERVAL (R) ********13•/	· JOH STARTING INTERVAL (2) ***************)			- URMAI (BHUK(I) + 10F8+3//(BX+10F8+3/))	· URMAI (0H02 (J) • 10F8•3// (0X•10F8•3/) · 00M-1-04U/0000: 54 · 0000: 1 - 11100 0 - 04000 0 - 110000	CHMAI (SANITHOULEM NONMALIZAIION PARAMETERS ///	GAT EFFEUTIVE NU TETTETETETETETETETETETETETETETETE	501 7 20407 7 751 JON 444444444444 514 517 517 517 517 517 517 517 517 517 517	VC4 VC4 ANALYANA ANALANA ANALANA ANALAN VC4	DET FLUCTON FOLIONE ANALANANANANANANANANANANANANANANANANANA	JCT CURVENCION CONSERVATE FLAGATIN	JCH NUTHELERIJUN CUNJENI ******* E44-3// JJM DAHED NADMAI14ATIAN FAFTOD 44 F1. E1	ORMAT (38H1NFUTRON FISSION PARAMFIFRS RY AROUP	38H GROUP NU CHI	4X+12+5X+2E14+5/))	ORMAT(55(2H.))	ORMAT (2413)	ORMAT (6E12.5)	() 246)	ORMAT (BX. #E10.5)	N) DETA EVENTS DET	COLRR NOLIST. DECK.NODD.M94/2.XR7
36		1008	1010	7	3	m	4	ŝ	Ð	~	1012			(1	∉ i	in v		-101	1016	8101	0201	1022	(7 V	¶ •	• 1			1024			1026	1028	1030	1032	1034	10100	191101 191101

1,

.

VR•VZ•IC•JC•I1•I2•I3•I4•I5•I6) (11•12)•VR(13)•VZ(14)•IC(15)•JC(16) CM•NGN•NFAST•NI•NGG•NEL•IND•NTYPE	COLZR COLZR COLZR	
BIN, NLIB, NEX, NEXI, ISTART, USTART, NPUN , ZREF, JCO	COLZA	
	COLZH	
	COLZR 5	101
	COLZR 10	· • •
	COLZH 1	
	COLZH 1	
	COLZR 14	- A 11 (C)
U) + VR(K) * A(K+U)	COLZR 10	
() < T < T	COLZH 14	
	COLZR 19	-
•SYSUT3•REW		
ST\$ DECK\$NOUD\$M94/2*XR7 L2(a,0,VR,VZ+IC+JC+J1+I2+I3+I4+I5+I6)	COLZ	
1.IZ).B(I].IZ).VR(I3).VZ(I4).IC(IS).JC(16) M. ICT. ICM.NGN.NFAST.NT.NGG.NF!.IND.NTYPE	COLZ	
IN NLIB NEX NEXI , ISTART, JSTART, NPUN , ZREF, JCO	COLZ	
• .	COLZ	
	COLZ	
	COLZ	
	COLZ	
((I・J)≖A(I・J1) 0 T0 20	COLZ	
	COLZ	
) • VZ(K) * A(I•K)	COLZ	
	COLZ	
	COLZ	
↓\$YSUT3•REW it• DECK•NODD•M94/2•XR7	A Z	-

l

l

ľ

•

Z Z Z Z SZ Z Z Z Z 2222 Z Z Z Ž 22 44 Z Ž Z Z Ž Z Ž Ž 22 ZZ Z NAG2 (R.Z.RSF.ZSF.RS.ZS.VOLR.VOLZ.SC.TEMP.SG.UNU.CHI. SFPS,SFDS,DNM,SA,SF,SIN,SS,SAS,SINS,AMU,ESS,ENA,SA2200,LABEL,SNA, • DIMENSION RSF(I13).2SF(I14).R(I10).2(112).RSN(I13).2SN(I14). DKG(18).RS(I13).2S(114).VOLR(11).VOLZ(13).SC(11,13).TEMP(115). 55NA (I5+19) + ECOS (16+19) + DK (15) + DE (15) + DU (15) + SAG (18+19) + TSG (18) • 6RI (12) •ZI (14) •SGT (12•3) •SGB (12•3) •SGL (14•3) •SGR (14•3) •IC (12) • 7JC (14) •NID (19) •NLM (19) •ID (12) •TITLE (12) •BUF (27) 2ECOS, DK, DE, DU, SAG, TSG, RI, ZI, SGB, SGT, SGL, SGR, RSN, ZSN, DKG, STC. \$SINS(18,17,19),AMU(19),ESS(19),ENA(19),SA2200(19),LABEL(19). COMMON NCD.NBIN.NLIB.NEX.NEX1.ISTART.JSTART.NPUN .ZREF.JCO 26(113+114+117) .UNU(15) .CHI(15) .SFPS(18) .SFDS(18) .DNM(19) . 113 (NGG.NI.NEL) • (NFAST .NEL) (NFAST , NEL) II4 • II5 • II6 • I17) COMMON ICT.ICM.JCT.JCM.NGN.NFAST.NI.NGG.NEL.IND.NTYPE 35A(15.19).5F(15.19).5IN(17.19).5S(16.19).5AS(18.19). NGG.NEL) (NGN NEL) NGN.NEL) (NGN . NEL) DIMENSION (NI .NEL) (NFAST) 112 (NEL) (NEL) (NEL) (NEL) (99N) (99N) (NON) (NEL) (99N) (NON) • INELASTIC ELASTIC . 0 DELAY FISS. GA. GAMMA DOSE C. NEUTRON DOSE C. Š LETHARGY WIDTH SIGMA (2200 M.) SIGMA (N.ALPHA) (1-4LPHA) /2.0 SIGMA FISSION (N.N. GAMMA) PROMPT FISS. ENERGY WIDTH 111 GAM ID NO. ATOMIC MASS 1-COS (THETA) NUCLIDE NAME ĂBS. READ LIBRARY CONSTANTS FROM POINT CODE Q (N. ALPHA) O(N.GAMMA) AND12 SIGMA SIGNA 3IC.JC.NID.NLM.I1.I2.I3.I4.I5.I6. • 110 8.STC(19) . STF(19) . STI(19) 5A2200 **NAGS** LABEL SNIS ECOS SFPS SFUS DKG OIN ESS SAS DWA ENA SNA 215 SS 20 SA • 19 X DO SF CROSS DEFINITION • 18 SUBROUTINE SINELA SYNET POINT LABEL SIGFI 25TF • STI • SIGA A10 A16 A12 A13 A14 A 15 2 6 N œ 4 5114 417

***	SAG	GAMMA	HAY	EAC	(NGG,NEL)	۹z	4 1 4
6 QN1						N	ي 1
ND 10						N	244 2
(5.1002)N	اۋر ا					۹z	-0 I -4
(5.1004)	(SFPS(K1),K1	=1•NGG)				N	4
(5.1004)	(SFUS(K1),K1	=1.NGG)				A Z	4
(5.1004)	(DKG (K1) • K1=	1 • NGG)				A N	6 i 4
(5,1004)	(DK())•J=]•	NGN)				٩N	C). S
(5,1004)	• [= [• ([)]]] •	(NON)				A N	Ţ,
(5.1004)	(DE(J) • J=] •	(NON)				V	N . G
N=1.NEL	•					V	ר <u>י</u> הי
(2.1006)	NID(N) • AMU(N) .ESS ()	4) • Er	(N) 47	• 542200 (N) • LABEL (N)	۹N	4 1 50 (
• K#]•N]						٩Z	<u>ເ</u>
(5.1004)	(SINS (K] • K	• N) • K] #	1 • NG0	6		۹N	56
)(2•1004)(SS (K+N) +K=] +	NFAST)					0 1
(5+1004)	(SNA(X.N).X	1 • NGN)				۲Z	010 01
(5+1004)	(ECOS (K+N) +K	EI.NFAS	2			A Z	5 H
(5+100+)	(SAS (K.N) KI	1 • NGG)				۹z	9
(5+1004)	(SAG (K . N) . K#	1 • NGG)				A Z	Ţ,
4LIB.EQ.0)	60 10 6						
0(5+1004)	(SF (K.N) • K#1	(NON •					
0(5+1004)(SA (K+N) +K=1+	(NON)					
(5+1004)(SS (K+N) +K=]+	NFAST)					
(5+1004)(SIN(X+N)+X=1	(IN+					
INUE							r v
E (6+1008	2					٩Z	0 .
E(6.1038)	(SFPS(K1) K	1=1 • NGG	-			V	1 1 1 1
E(6.1038)	(SFDS(K1)•K	1=1 • NGG	-			٩N	4 I: O:
IE (6+1038)	(DKG(K1),K1	=1,NGG)				۹N	9
ITE (6+1044						A N	01 0
re (6+1038)	<pre>CDK (JK) • JK #</pre>	I NGN)				V	0
re (6+1046)						A Z	10 M 40 M
rE (6+1038)	= X7 • (X7) n0)	(NON.				V	9 1
re (6.1048)						۹z	0
rE (6+1038)	(1) • 1K	1 . NGN)				۹z	
3 NEL NEL						V	Ni
TE (6.1026)	Z					٩N	2
E (6.1028)						۸N	**
TE (6,1024)	NID(N) • AMU	N) .ESS (1	V) . ET	(N) NN	• SA2200 (N) • LABEL (N)	۸N	5
E(6+1030)						N	9
E (6,1020	() NID(N)+(SA	S(K1+N)	K.	1 • NGG	•	۹z	
E(6.1032)						V	

Astronuclear Laboratory

ن ا

210 90 714:13 D D D 9 P 001 108 110 89 5 B ŝ 30 30 10711-0 107-0 010-010 3 Ť 11 11 **VN** Z Z **444444** 222222222 Ž **4 4 Z Z 4444** 22222 Ž AN Ž Z GAM CONSTANTS FOR MICROSCOPIC MATERIALS AND COMPUTE NID (N) +K+ (SINS (K]+K+N) +K]=1+NGG) NID (N) • (SAG (K1 • N) • K]=1 • NGG) (NTYPE.6T.1) READ (5.1004) DGM.WTGM (5+1002) 185+18F+12S+12F+1EL+1ND (6.1016) 185. 18F. 125. 12F. 1EL. IND (5+1004) (SS (K+M) +K=1+NFAST (5+1004) (SA (K+M)+K=1+NGN) (5.1004) (SF (K.M) .K=1.NGN) (2+1004) (SIN(K+M)+K+1+N1) WRITE (6+1014)(IU(I)+I=1+12) 22 (10(1),1=1,12) READ(5.1042) NLM(M), DNM(M) IF (NTYPE.GT.1) GO TO 18 60 10 60 TO 18 TO 18 IF (IEL.6T.0) GO TO 16 IF (NL.EQ.NID(JJ)) IF (NSKIP.EQ.1) GO (00100) NP WRITE (6+1022) (6+1020) (6+1040) 20 JJ#1.NEL READ IN GROUP IF (NLI8.61.0) A RAY SOURCES WRITE (6+1034) 12 1=1,113 = 0°0 411.1=1 12 K=1+117 SG(I+J+K)=0.0 00 28 MalileL 0.0 0.0 READ(5.1010) DO 8 K=1+NI = N_M (M) IZF IRF 28 CONTINUE IEL=-IEL OHAI XSN NPASS=0 NPR08=0 I = d I XSN STF (M) 2 **ARITE** STC (M) STI (M) WRITE WRITE 5 WRITE READ READ READ READ READ 00 121 E 8 Z 09 00 00 60 20 21 4 16 20 8

Astronuclear Laboratory

U.U

6		N N	120
V V) [- (*
4	#RITE(6.1018) NCM(M).0NM(M).101	< Z	
	IF (NTYPE.61.1) GO TO 26	۹Z	122
	IF (NLIB.61.0) MJEJJ		
	WDITE (4.1028)/SE(K.M.1).KE1.NGN)		
	WRITE (6+1038)(SIN(K+MJ)+NEI+NI)		
26	≭RITE (€•1038)(SS(K•MJ)•K#]•NFAST)		1
	₩RITE (6+1038)(SAG(K+JJ)+K#1+NGG)	4 2	121
ac	MRITE(A.)040)	٩v	128
			1 2 G
	IF(NTYPE,EQ,e2) NGT≣I5 → I8	42	
	IF(NTYPE.EQ.3) NGT#I8	٩Z	
	00 37 L # 1.3	A Z	132
		N	S EL
ė			
00	SGR(J+L) = 0.0		
	DO 32 I=IRS.IR1	۹z	
	SGT(I,+L) # 0.0	٩Z	JET
000			138
N T			
			h i¢ 7 :-
	READ (10) ((SC(1+4)+1=1+12)+4)	۲ ۷	
	00 66 Mml+IEL	٩Z	i + 1
		٩Z	142
			E 🕈 I
40	CONTINUE	٩Z	54
	WRITE (6.1000) NL	٩Z	04
	GO TO 66	٩Z	1+1
36	KLB = K = 15	٩z	P+ 1
;			
	IF (NLI8.61.0) MJ≖JJ		
	IF (NTYPE.EQ.2.AND.K.GT.NFAST.AND.K.LE.IS) GO TO 68	٩z	341
	IF (NTYPE_NE_1) GO TO 28		150
			•
			r i
	SIC = 0.0	٩Z	ייש
	IF (K.LE.NI) SIC = SIN (K.M.) +DNM (M)		
	G0 T0 42	4 Z	155
38	IF (NTYPE.6T.2) GO TO 40	۹z	156
•	15 (K.GT.15) SAC = SAG(KLB.14) +1.603f-13+0NM(M)+0GM	٩N	157
			•

ł

MUR.

PST 1	160	e:) 4	163	59 1	166	167		170	11	5/1 5/1	+	175	176	177				182	163	4 (001 271	9 9 1	189	190	161	24 6 7					
-13+NA	4 4 Z 2		A N		A N	A Z	4 4 Z 2		KG) + NA	AN AN	NN N	Z	4 2	A Z	۲. ۲	4 4 Z 2		Z	42	4 2		4 4 Z 2		A Z	A N	٩N	4 (2)	Z .	Z Z			۲Z
J)#1.603E		·							FC* (SFPS (J) *SC(I.	• • •				SC(I.J)						NS (XG, X . J											
•ECOS (K • J									(KG+JJ)+5	IS (KG.K.J			(7•1);		I+1)+SAC+		しまかというと) + SIC+SI											
*ÉSS(JJ)									(SAC+SAS	+ SIC+SIN) 	(1.1)	(K) +S(= SG(1+	+ 24C + 5C ()	1.1) 1.1)				+ SF DS (KG)				1.1	~) * UNU (K)	:	(r.)		
JJ) +DE (K) -DU (K))	M (M) + DGM			-					* ([*1):	[•]•KG)		SFC +S	SFC+ UNU		(1.1.1)			• • •			SFPS(KG)				- SC (IHS-	(IRS-1.)	(IRS-1.)		SC(IRI+1		0 • 1 • 1 + 1 + 1	
H SS (K+) AMC ()) *	3E_13#0N			() * VOLZ ()	C+SCV	C+SCV		2	KG) + SC	(6) = 56(•	I.NGF) +	+ (111)		.61.15) S						1.) + SFC+ (54	25	SGARB *	+ SFC+SC	+ SFC+SC	50	+ SGARB#		• 510420	
AST) SAC (M) +DGM/) * * • •		35.171	J) + VOLR (]	(W) + S]	C(M) + S1		• NGG	= 56(1.J	56(1.1.4		. SG(I.	. SG(1.	1	2. AND K	-3) 20(1) 2, AND X		•		VGG	SAS (KG+	121.22	1) 60 70	60 10	56L (J-1) +	56L (J+2)	56L (J+3)	2) GU 10	SGR (J•1)		(5.1) 190	
(K - LE - NF / 0248+DNM	TO 42	•0•0 •117-1			(M) # ST]	(W) = 51((X) X 014	• XG •	(•)+KG)	S(NG)))	LINUE	(JONOF)	(111.0.1)	ro 48	VTYPE.EG.	VTYPE .EG		INUE	₹B#0•0	50 KG#1 -	38 = (SAC)	SANG Maria	VTYPE.GT	IRS.EQ.1	= (1•r)	(2+5)		I H I • E 4 • I				
10.6(Ser.		A2 NGF	000	SCV S	112	S1C		00	005		44 CON	SG (26(09	46 IF (1		2005	48 CON	SGA	00	50 5GAI		IF C]71	SGL	SGL	SGL	52 JF (SGR	190	x 5 5 7	0 0

ي م	<pre>IF(IRS.GT.1) SGL(J.1) = SGL(J.1) + SAC*SC(IRS-1.)</pre>	٩Z	961
•	<pre>fr(IR)_[1.12] SGR(J.1) = SGR(J.1) + SAC*SC(IR]+1.J)</pre>	42	149
2		٩N	200
ק		A N	201
	IF(NTYPE_GT_1) GO TO 62	42	202
	IF(IZS_EQ.1) GO TO 58	٩Z	203
	SGR(1.1) = SGB(1.1) + SGARB + SC(1.12S+1)	۹z	204
	SGR(1.2) = SGR(1.2) + SFC + SC(1.12S-1)	42	202
	Sep (1) = SGB (1) + SFC + SC (1.125-1) +UNU (K)	42	206
89	IF(IZ1.EQ.I3) GO TO 64	42	202
1	SGT(I.1) = SGT(I.1)+SGARB*SC(I.1ZI+1)	A N	909 907
	SGT(1+2) = SGT(1+2)+SFC + SC(1+121+1)	42	50 C
	SGT([+3) = SGT([+3)+SFC *SC([+IZ]+])*UNU(K)	A Z	510
60	GO TO 64	< < Z 2	
62	[F([ZS.6T.]) SGB([.]) = SGB([.]) + SACASC([.]2S.1) Tritt 1 + 1 + 2 501/121/ - 501/121/ - 501/121/1		213
44	LTLLLET . SGTTLET - GGTTLET - GGTTLET - GGCTLET . L		214
	CONTINUE	A Z	215
) 9 9	CONTINUE	٩N	216
	REWIND 10	V N	217
	WRITE(9) IRS, IRF, IZS, IZF, IEL, IND, DGM, WTGM, (NLM(M), DNM(M), MEL,	IEL) NA	
	•(ID(I)•I=1.12)		
	Charlen (Control of the control of t		1.0 1.0
			2 1 0
~	() () () () () () () () () () () () () (22
		A N	22
	00 70 K=1.117	٩Z	225
70	SG([,,,,K) = 0.0	٩Z	22
	NPROB e NPROU+1	Z	
	IF (IND.EQ.]) GO TO 14	۲.	
	WRITE(6+1050) NPROB	A Z	
	REWIND 9	4 2 2	
	RETURN		1 (1 (1 (
	FORMAT(13HOELEMENT NU. 13+18H IS NUT IN LIBHARY) Formations		3. 1 2 2 2 2
	F URMAI (2413) F DEMAT (6612.5)		
900	FOHMAT(13.4E12.5.10X.A6)	٩N	235
800	FORMAT (/74HIPROMPT FISSION AND FISSION PROD. DECAY SPECTRA AN	D GANA	236
	GAMMA UUSE CUNSIANISI Eadhatisaali		
015	FORMAT (8X++E10=5)	N N	553

K

249 245 246 240 250 253 242 2 4 3 245 252 253 254 256 257 25Å 259 260 262 ŝ 0.0 ------241 251 24] 261 NAG ٩z Z Z Z Z ۲ Z Z Z Ž X Z Z Z × Z Z ۲ 1016 FORMAT(52H0REGION PARAMETERS(IS+IF+JS+JF+NO. OF ELEM.+CUNTROL)//6INA A6//71H CROSS SECTIONS (ELASTIC SCATTER AND GAMMA RAY ENERGY ABSORPNA Z SEPERATE REGION PROBLEMS) SUBROUTINE NAG3 (R+2+RSF+RS+ZS+VOLR+VOLZ+SC+TEMP+SG+UNU+CHI+ SFPS, SFDS, DNM, SA, SF, SIN, SS, SAS, SINS, AMU, ESS, ENA, SA2200, LABEL, SNA, FORMAT(13H0ELEMENT N0.=14.13H NO. DENSITY=1PE12.4.13H ELEMENT ID ABS. ٠ [DKG(I8)+RS(I13)+ZS(I14)+V0LR(I1)+V0LZ(I3)+SC(I1+I3)+TEMP(I15)+ • 55NA(15+19)+ECOS(16+19)+DK(15)+DE(15)+DU(15)+SAG(18+19)+75G(18) 6RI(12), ZI(14), SGT(12,3), SGB(12,3), SGL(14,3), SGR(14,3), IC(12), 2ECOS+DK+DE+DU+SAG+TSG+RI+ZI+SGB+SGT+SGL+SGR+RSN+ZSN+DKG+STC+ DIMENSION HSF([]3).25F([]4).R([]0).2([]2).RSN([]3).2SN([]4). 451NS(18.17.19).AMU(19).ESS(19).ENA(19).SA2200(19).LABEL(19). FORMAT(4H GAM6X6HA.M.U.6X9H(1.-AL)/23X8H(Q(N.AL)4X19HSIGMA COMMON NCD+NBIN+NLIB+NEX+NEX1+ISTART+JSTART+NPUN +ZREF+JCO 256(I13+I14+I17)+UNU(I5)+CHI(I5)+SFPS(I8)+SFDS(I8)+DNM(I9)+ EII • FORMAT(14H1REGION OUTPUT//55(2H .)/19X12A6/55(2H .)/) COMMON ICT.ICM.JCT.JCM.NGN.NFAST.NI.NGG.NEL.IND.NTYPE 354(15+19)+SF(15+19)+SIN(17+19)+SS(16+19)+SAS(18+19)+ • I12 FORMAT (30HILIBRARY DATA FOR ELEMENT NO. 13 /) FORMAT (1H09X27HMASS ABSORPTION COEFFICIENT/) FORMAT (23HINAGS IV HAS PROCESSED 15. 25H 111 FORMAT(1H01X23HLETHARGY WIDTH BY GROUP) FORMAT (1H01X22HNEUTRON DUSE CONSTANTS) NAME) FORMAT (1H01X21HENERGY WIDTH BY GROUP) DECK . NODD . M94/2 . XR7 FORMAT([4.4X.]PBE12.4/(8X.8E12.4)) FORMAT(1H0.5X.17HGRP Q(N.N#.GAMMA)) FORMAT(214,1P8E12,4/(8x,8E12,4)) 3IC.JC.NID.NLM.II.I2.I3.I4.I5.I6. 117 • 110 ELEMENT/4H ID 43X16H(2200 M) FORMAT (14.4X.1P4E12.4.2X.46) FORMAT (1H09X10HQ (N.6AMMA)) ALPHA . SYSUT3 . REW FORMAT (/ (8X, 1PBE12.4)) • 116 FORMAT (14+4X+3E12+4/) 61 • NOLIST. FORMAT (13+E12.4) FORMAT (55 (2H.)) • 115 • 18 25TF . STI SIBFTC NAGS3 110N) END 5114 417 \$0RIGIN 1018 038 048 1026 1028 030 400 036 042 040 1014 022 024 032 040 440 1050

	5	20		2	č. S	1 2	5	9. 5	N	82	5. 5	30	JE	N	Ū.	1	ŝ	90	5		50	4	4	N.	17) 4	4		-01 -4	¥	10 4	5	20	ŝ	25	ŝ	1 5	55	20	S	÷ B S	6 i G
-											-		•																												
9₹	AG	Ø€	0	90	9₹	9 C	9¢	90	9	0	D C	0	9	0	Ø	90	Ø	90	D.	9¢	V	9 V	¶G I∎G	9¥	JAG	J N O N	Ø₹	N G	AG AG	Ø₹	JAG	94	D	A G	AG		₽C		A G	A G	AG
Ż	Z	Z	Z	Z	Z	Z	Z	Z	2	: Z	2	Z	Z	: Z	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
			1 E I	, ,			Ĵ	2	;																																
							3	-	, ,																																
			H H				5 6L		1																																
			Î				Ë	2	•																																
			Ĩ				•																																		
			ò	1			17)																																
			£	•			1.																			•															
1			X)			i II																																		
2			Z				-		3																																
905		~	U.S.	, ,			12																																		
	•	2.2					25.		2																																
		611	N C	, ,				-	Ì																																
لت ار))					•																					_											
11		E					a	• 0	0,-	-									2	1	r.			5	5	ı				2	•		~							Ľ	1
		19.1	• - لب 5				1 • 5		- <u>.</u>	1 1									ď	ŭ				N	Ň					DLZ			102	,							
5	0			4			ă												V OL					NON N	202					>*	,		OLI	ŀ						Ŷ	
10	Ĩ									E									*					*		54				(e			>								
6	S			4 6 5			2	H	בר	Ē									1		- - -			5	5	12				7			(E	•			5	•		1	
	•	e d	50)			-			-									1	E E				JR (ر بر	ĥ	•			1) (• •			7 (SG	[2]
N N	161		р 	•			5											_	+ 50	S.	2 • •			÷50	: \$ \$	Z]) }	-		ູ້ຈ	2	71	Ľ	, ,			l S S	L S		٠	SG
		. +			ù	_	5		n i	Ē								0		2			12	1	2			17	2	•			SG	} }	a		**	>	•	ŝ	-
61)	5	ว อี																		81			Z 5.	E		E L	į	25.	ŝ	E	1 B	17			5.1				· ^	so.	
10	•	Z	Ē	• 1	1 4 La	_ <u>i</u> a) U		ຼິ							-	• U	0.5) a	c	, m	SG.	000	N	6		, 1	RS			5			712		<u> </u>	•	, j , j	9.1
~	6					4 +		-];	È								2 8 2 10 2 10					; - -	ā	2	, n			я 	Ņ	-	• ¬	2		-	-	5		¥		150
14		, ž			5			2	24	`ر + _	_	29			- 0		- 1	. 4	• 0					Ĭ	Ē	3	?=	à) at	, -			ŝ) -) L	• •	4 4 -		1 ×	
		- 1			- 0		1 7 7 7 7 7		50	n) () () (じじ	2 1 1 1 1 1	ם ב מים מים	1 - 1 5 (7	- 3 9 U	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20	- ほう して	S C C	i Sa		SGR	SGL	2.5F				ŝ			ZSI	i õ						156	1 S
•	- 0	נ ד	ſ	v -				•	(V	,		-	-	-		-		-			4	•	-			4	D		α	2		01	> •						2	5

60	19	9	69	4	ê Q	99	67	69	69	70		2	2	1	15	16	17	76	5~	80				1	60	90	28	88	60	0.0	6	00	5	4 •	S .			001	>>4
NAG	NAG	NAG	NAG	0 V V	NAG	0 V N	NAG	NAG	0 V V	DAN	DAN	NAG	NAG	0 V N	NAG	NAG NAG	DAN	NAG	NAG	NAG	NAG	DAN	DAN	UNN	U V U	NAG	DN	DN	NAG	0 V N	0 V N	NAG	NAG	NAG	D V D	NAG	シーマン		JEZ
															1.14.)IC	•			G10N																		
															2.13	, I	META				ل ت ع																		
															11.1	• •	Z				I Z																		
															• 1 2 •		TIES			NO19	I OX	z																	
															RI.Z	 	INAU		z	ш Ж Ш	EATI	EGI0								CHES									
															. H .				EG10	I I Z	E C	HE: N		S	ŝ		SI			žiu	J								
															I) dj	[S]	PF A		₩ ₩	11 97	BRATI	1		I NCH	INCH	ပ္ပ ပ	OGRAI			180	is/c								
									÷						• SG	RS.	NO		T N	ATIN	NTE	SEA (Z	Z	GMS	KIL C			Z	TAN								
															T(1)	1.1	LAT		5 NG	JI NO	NO	IL AF		NOI	NOI	Z	IN.	ē		NOI	Z				Ŷ				
											-	_	-		• 56E	5.12	ALCU	1	EATI	UTRO	LOH	IONA	NOI	NENS	MENS	RIAL	RIAL	# # Z		REG	RATE				.961				
											0L 7 Z	OL TZ	OL TR	OLTR	T(1)	1.12	· []		I NO	₩ N N N	LUS	SECT	REG	E OI		MATE	MATE	LBS/	LBS	1 H	UNI			1	* 20			MC	Ē
		~			_		R/TS		15	1	SA+V	SA*V	SA#V	SA*V	SGR.	5.1R	I SI	5	PHOT	RATE	a NO	055	THE H	Z L	Ż	Ö	6	Z	Z		HEAT					~ 1	100	à	1
		H II			2()		/OLTF		12/		111	11/	11	11/	(1)	.IR	Z O	INIT!	EO I	UTEGI	UTR	ž.	5	E SH	E SH	۲ <u>۲</u> ۲	I HO	YII?	GHT	LCM N								TGM	
	IRI.	101+		• I Z 1	JOV.	. IR]	*	• I Z]			T(1)	10	10	P []	SGLI	.11	ECTI	U HS	GRAT	Ľ L	L NE	DIAL	1GH1	A A	ے ب	DEN		DENG	WE1	N N N	101	1	I I I	171	20		Ş		8
•	=IRS	OL TR	•	=125	0L12	= IRS	RS (1	=125	(r) S	SVO	= SGL	=SGR	=SGB	#561	SET (ell.	S ON	I JON	INTE	TOTA	TOTA	E RA		RADI	AIXA	L L	HHE H	THE	THE	S H	H H H H	1	EIRS	= 125			1 / / / / / / / / / / / / / / / / / / /		í n
TR=0	4	TR=V	12=0	16 J	12=1	18		ت 20			T(1)	1(1)	1(1)		IS SI	.112	INO		THE	THE	THE	5 1H	S TH	HH HH	Η̈́́	5	SI N	SI	8 1 2	11			22 1	22	· · ·			ן או	
, Joy	00	ζο Γ	VOL	00	, Jor	00	RSC	00	ZS (.	TSA	SGL.	SGR	SGB.	5671	CAL	0110	FOL	XIW	• (1)	(2)	S	ii œ	1 21	S I	S	MOO	w TGI	OLB	WTL	ΥOL VOL	ISE	3	0	8	205				御たー
		4			¢		æ		C	1						~~	۳ ۳	9	5	505	10	٦	5	L.	L.										2				

ા

š

^e 7

76 183 184 177 178 179 180 182 20 68 69 15 181 SS 50 13 1 4 94 9 (9 4 (4 50 53 1 5 5 60 ŝ 0 **†**0 50 9 60 5 120 9 NAG **NAG** NAG NAG NAG NAG NAG NAG NAG **NAG** NAG ٩ 3 ٩ ٩ ٩ NAG S V V Z Ž Ž ₹ z Ž WRITE(6.1040) R(IRF),RIN.SGRT(1),SNR.Z(IZF),ZIN.SGTP(1),SNT WRITE(6,1040) RI(I),RSF(I),RS(I),RSK,Z(IZF),ZIN,SGTP(1),SNT WRITE(6+1040) R(IRF)+RIN+SGRT(1)+SNR+ZI(J)+ZSF(J)+ZS(J)+ZSK (SG(I,J,3),I#ISTAR,ISTOP) (6.1012) (ICP.ICP=ISTAR.ISTOP) WRITE(6,1042) Z(1ZF), ZIN, SGTP(1), SNT WRITE(6,1040) R(IRF).RIN.SGRT(1).SNR WRITE(6+1042) ZI(J)+ZSF(J)+ZS(J)+ZSK #RITE(6,1040) RI(I),RSF(I),RS(I),RSK WRITE (6+1032) (10(1)+1=1+12) IF(ISTOP.EQ.ISTOP1) G0 T0 42 IF(ISTOP.EQ.IRT) G0 T0 36 IF (IP.6T.ISTOP1) G0 T0 40 * 10 STOP= MINO (ISTOP . IRI) DO 46 ISTAREIRS, IR1,6 ŝ F(IP.GT.ISTOP1) G0 20 00 32 IS=IP+ISTOP1 TSBI D0 38 J5=IP.ISTOP1 25k=25(J) *T581 RSK = RS(I) + TSBI 5 0.0 IF(IND.EQ.1) GO I=IRS,IRI J=125.121 J=125.121 (6+1038) WRITE(6.1008) ZSK=ZS(J)+TSBI STOP=ISTAR+5 # (I)SH # H K=1•3 SG(1+J+K) T+dI = d CONTINUE 60 10 44 CONTINUE GO TO 44 I+dI= dI I+dI=d WRITE 94 00 WRITE ~~~=~ [+]=[「キフヨフ [+]# 【+つ=つ RSK 00 g 8 5 0 4 0 5 4 4 4 25 80 C 4 36

228	229	230	231	232	23J	234	250					239	240	241	24.2	243	24) I 4 7 7 7			250	251	252	253	52	255	250	257	258	25 <u>6</u> 52	260	261	262	• 	-	ŝ	. M i	•	
NAG	9 N N O	NAG NAG	NAG	NAG	NAG	NAG	TNAG				SAN.	NAG	NAG	NAG	DNDD	NAG	NAG NAG	NAG				9 E N		9 V N G	9 V V O	TNAG	NAG	9 N	NAG	NAG	NAG	NAG	NAG	NAG	NAG		NAGS	NAGS	NAGS		カシミン
		/ •	//.	/•			700L) / /6		- INGTONG		NECINON) · E	к./	HOUR .//)					• `	. •	• `			EGION IN												UNU+CHI+	HEL . SNA.		5
	~~~	VCM++W	C##NI/S	LOGRAMS	SOND	LOWATTS.	LEM. CON		I DWATTS!			N/HOUR	115/GM	TTS/CM++			ł 1 1			75	15	TION	TION		. ~	.5/27H0R	) ; ;	~										TEMP, SG.	A2200.LA	しょしょう	
	5/55 (2H	PX . 1 1 HGM	2X+11HL8	IXHII X	X . 11HPO	IXHII •X	10. OF E		TYNKT			18H11•X2	X . LIHWA	X+11HWA	X+11HBT	X+14HBT	- - 	//.	F INI FT	ABSOLU	ABSOLU	ISTRIBU	ISTRIBU	KF (R	KF (2	E=1PE15	) ) )	(AUOH-6.			( 6							10LZ + SC +	S.ENA.S		JONONO NO
	19X12A6	F10.6.2	F10.6.2	PE14.6.2	PE14.6.2	PE14.6.2	15.JF.		0F14 . 6 . 2			E14.6.2	E14.6.2	E14.6.2	E14.6,2	E14.6.2	, ,	BUTIONS	BON COD		1 14	I NOI	a Noll			AY SOURC		##NI/11##	:12•3•4X	( [:12.3 )	4X+F12.						(R7	S.VOLR.V	S+AMU+ES		900 3900
3.5)	5 (2H .)	SITY		GHT 11	I	1	SUSIF		1									DISTRIE	HES IS	RELATIV	RELATIV	ISTRIBUT	ISTRIBUT	F (R)	F (Z)	GAMMA RI		TION (E	1 • X • • • • 0	0 • 4 • 4 X • F	X+F10+4						(+2/\$6W*	SF+RS+2	SAS, SIN		シク・ビシク・
X+1P3E1	TPUT//5	IAL DEN		IAL WET		NG DATA	RAMETER											HEATING	UNI NI	SNO	SZ			, ,		TEGRAL	5)	<b>ISTRIBU</b>	4 • 2 X • F 1	4.2X.F1	F10.4.2					3 • RE W	CK+NODD	Z+RSF+Z	51N . 55 .		17.14.0
6X+A6+5	GION OU	BHMATER		H MATER		H HEATIC	GION PA										•12A6/)	LATIVE	MENSION	DIMENSI	IMENSIO			(INCHES	(INCHES	OLON IN	S =E15.	ATING D	ZX.F10.	2X+F10.	0 • 4 • 2 X •	P8E12.4	-			A.SYSUT	51. DE	AG4 ( R.	+SA+SF+		
(7X+13+	(14H1RE	IXEOH1)	•22X•	• 3X+17	•20X•	+ 3X+19	(52HORE)	•	(22X.					• X 2 2 •	•22X•	•22X •	X2+1H1)	(32HORE)	XIAL DI	RADIAL	AXIAL D			(CM.)	(CH • )	(34HORE)	FISSION	C44HOHE	(F10.4.	F10.4.	(54X+F1	(/(8X+)	(55 (2H.			ALPH	NOL I	TINE N	FDS . DNM		V 102 100
FORMAT	FORMAT	FORMAT		A1	~		FORMAT	( + )	FORMAT				•				FORMAT	FORMAT	A7H A	140	1456	H\$5	554H	554H	754H	FORMAT	LEGRAL I	FORMAT	FORMAT		FORMAT	FORMAT	FORMAT	RETURN	END	Z	C NAGS4	SUBROU	SFPS, SI		
1022	1020	1026			• 1	-	1028		1030	) ) ;	1	-			ر ب	-	1032	1034		• • •			<b>ر</b> ل	•	,-	1036		1038	1040		1042	1044	1046	64		SORIG1	518FT(			•	•





<b>P</b> •	301		10		-N-	Ē	+	51	9 <b>1</b>	~		<b>6</b> (	2.4	5			ŝ	91 N	2			2		Nid Million	ر <b>ال</b> م ۱	4 il 179 1	<b>n</b> .		<b>~</b> •<	0 i0 7 f	7 1 7 1			- <b>4</b>	•	۰ <b>۹</b>	4		0.1 4 -
NAGS	NAGS	NAGS	NAGS	NAGS	NAGS	NAGS	NAGS	NAGŚ	NAGS	NAGS	NAGS	NAGS	N D C N	NDGS NDGS	NAGS	NAGS	NAGS	NAGS	NAGS	NAGS	NAGS	N 9 C N	NAGS	NAGS	NAGS	NAGS	NAGS	NAGS	NAGU	NAGU NAGU	NAGU		NAGS	NAGS	NAGS	NAGS	NAGS		NDEN
٠					•				8),	•				19161			( 7 * ٢ )	1,3)																					
ET			• 100	1141.	PIIS	. (6		.(6]).	<b>TSG(I</b>	C(12)							( ( 261	1) . [=																					
•		TYPE	. ZREF	. 75N (	3) • TEM	DNM ( ]	• (6	, LABEL	8,19),	I+(E++							·(11) ·	IRS, IF																					
112		Nº UNI	NDUN	N (113		S (18)	(18.19	(61)0	SAG(1)	SGR (14	21)						•K=l•	=I•(7																					
•		3.NEL .	START.	20.10		3) • SFD	91 • 5 A S	SA220	1(15) •	• ( E • • )	.BUF (		(3)	ATGM.			5+121)	5GT (I+																					
• 11	-	NI - NGC	ART J	1.7.1		FPS(1)	(16.19	A (19)	15)•D(	• 26L (	LE (12)	•	• 5GTP	• DGM • 1			· J= I Z:	1.1.1														(1)0							LZ (J)
110	117	JE AST.	121-13			151.5	55.(0)	19) EN	5) • DE (	(12.3)	1110(0		<b>381 (3)</b>	EL + I ND			5. IR1)	(1568)	EL)													•							•
•	•	- NGN -				CH1		ESS	DK (1	. SGR	10(1	11(19)	(3) • 5(	ZF • 16			• 1=1R	1.3).	I. THH.														X 1 1 0						L (J•K
61	116	N OF T		11 . 755	A11-2		12.10	(61) N	(61.9)	(12.3	(6I)W	) • S	• SGRT	1.22.1			()+()	1) ·L=	(W) I 19																				• 26
•	- 								FC05 ( ]	1.56	<b>IV</b> • (61	STF (19	6LT (3)	S, 18F1	1 4 6 /	<b>4</b>	( ( 56 ( ]	125.12	F (M) • S		9		e	•	•0	•	•			:	RS IR	ы 1 1 1 1 1 1					22.12	<b>و</b>	6LT (K)
. 18						-114-		B 17 -	191	.71(1	N I D (	• (6	S NOI	9) IR		175			H) + ST	0.0	=1 • NG	<b>0 • 0 =</b>			0 = (	•	0 #	0.0	0•0	• 0			n u n 1 2 3			0.0	1 1 7	×	S = ()
17	116				コピンド・シント	0 T - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0				31(12)		• STC ( I	SNEWS	READ (		H 121	READ	568 (J.	• (STC (	VOL T =	00 4 1	1 SG (1)	00 6 1	56LT (1	SGRT (1	SGTP(]	568T (1	TS # C	TSF= C	TSNE (	00 10	00 8 ×				RS(1)	D0 14	00 12	sgLT (F
4		ר ה		-		- C	ù r	n 4	ľ	i J	5	- 00	_	ີ້	4			-	• 1	;		4				- •	Ð	- I					(	C		10	•		

510 ⊂:€:®:√:€:@:@:@:@:@:@:@:@ < 0 0 0 0 0 0 0 0 0 0 0 11 C 1 ŝ しこうこ ちらしこう のこう 80 50 90 900 SI I 5 NAGS NAGS NAGS NAGS NAGS NAGS NAGS NAGŠ NAGS NAGS NAGŠ NAGŠ NAGS (r) ZJOV NOLZ (J) VOLR (1) VOLR (1) SGR (J+K) * VOLZ (J) * VOLR(1) RS(I) + 56(I+J+K) + VOL2(J) SG(1,J+K)+V0L1 * * * VOL J V0L] SG(1.J+K+2) TSF + 56(1,J+K+1) 56(1+J+K+2) 1++---56(1+J+K) T0 30 V0LTZ IF (TSF.LE.0.0) 60 TO 28 HSN(])=RSN(])+VOLTR/TSN AS(]) =RS(]) +VOLTR/TS RSF(I)=RSF(I)+VOLTH/TSF 56(1) 18 • J• K+2 10 16 GO TO 20 56(1+J+K+1 = VOLR(1) + VOL2(J) •N66) 60 TO ٠ VOL T2=VOL TZ+VOLZ (J) VOLTR=VOLTR+VOLR(I) I JOA IF(TSF.LE.0.0) G0 ZSF(J) = ZSF(J) + SGRT (K) E IRS, IRI •NE•NGG) GO = 125,121 = IZS,IZI = IRS, IR SG ( I + (C)S7 = = TS + TSG(K) RSF(I) ZSF (J) ( C) NS7 = 156(K) = 156(K)RSN(I) 00 20 I=IRS,IR1 00 20 J=IZS,IZ1 00 26 J=125,121 DO 28 I=IRS.IR1 D0 30 J=125.121 00 24 1=IRS,IR1 D0 22 K#1.NGG K=1 • NGG VOLT + (K•NE•NGG) • 0.0 0.0 2SN()=0.0 ZSF (J) =0.0 . 1SN **TSF** 14 VOLTR=0.0 VOL T 2=0.0 DO 18 Ja 56PT (K) R Ħ 2SF (J) D0 20 () NSZ 16 RSF (I 00 18 RSN(I) ZS(J) (1) 57 Q  $\widehat{\boldsymbol{x}}$ RS(I) VOL T VOL I VOLT ISN SF 00 00 1 S 4 2 16 4 æ 20 25 34 26 28 ÷,





	ZSN()) = ZSN()) + VOLTZ / TSN	NAGS	<b>1</b> 6
0 6	25(J)=25(J)+V0(T2/T5	NAGS	92 92
נ		NAGS	<b>m</b> i <b>o</b>
	TE(K.EQ.1) TSA = TS /VOLT	NAGS	<b>*</b>
	TF(K.EQ.2) TSA = TSF/VOLT	NAGS	90 9
	TE(K.FO.2) TSA = TSN/VOLT	NAGS	96
	SGI T (K) = SGI T (K) / (TSA*VOLTZ)	NAGS	6
	SGRT(K) = SGRT(K) / (TSA*VOLTZ)	NAGS	9
	SGAT(K) = SGAT(K) / (TSA*VOLTR)	NAGS	5
	SGTP(K)=SGTP(K)/(TSA*VOLTR)	NAGS 1	0
32	CONTINUE	NAGS 1	
	CALL SISET(SGL1,SGR1,SGB1,SG1P,R,M1,Z,Z1,1],1Z,13,14,1]0,112,113,		
		1 294N	
	IF (15F. LE. 0. 0) 00 10 34 CALL STSFT(SGLT.SGHT.SGHT.SGTP.R.RI.Z.Z.I.I.I.Z.I3.I4.I10.I12.I13	NAGS	50
	114.1RS.1R1.1ZS.1Z1.2PRSF.2SF)	NAGS 1	90
	CALL SISET (SGLT, SGRT, SGBT, SGTP, R, RI, Z, ZI, II, IZ, I3, I4, I10, I12, I13,	NAGS 1	20
	114.1RS.IR1.1ZS.1Z1.3.RSN.ZSN)	NAGS 1	80
C THE	FOLLOWING SECTION IS THE CALCULATION OF ALL PERTINENT SOURCE DATA	NAGS 1	6
C AND	THE PRINTING OF SUCH	NAGS 1	0.
34	WRITE (6+1000) (10(1)+1=1+12)	NAGS	
1000	FORMAT(1H1.2X.12A6/)	NAGS NAGS	
i	WRITE(6,1002) IRS,A(IHS),IRF,R(IRF),IZS,Z(IZS),IZF,Z(IZF)	NAGS	
1002	FORMAT(1H02X,23H REGION MESH BOUNDARIES//4X8HLEFTI3.10X.F13.5/	NAGU	
	4X8HRIGHTI3.10X.FI3.5/	NAGS	
	4X8HB0TT0M13+10X+F13.5/	NAGS	0*
	4X8HT0P13.10X.13.5/		
		NAGS N	
	#RITE(6.1004) IEL	NAGU NAGU	
1004	FORMAT(1H02X.19H NO. OF ELEMENTS13/)	NAGU I	
		N9CN	
1006	FORMAT ([HOJX+ ]OZHELEMENI NO+ NAME A JOH UENSLIY UENSLIY		
	REIGHI CAPTURES FISSIONS INACATER /04484 CAM		
			1 ( 1 (
	00 40 Mm] / IEL		
	DO 36 NELINEL		
	IF (NID (N) - NLM (M) ) 36, 38, 36	N D C N	
36	CONTINUE		
	GO TO 40		<b>)</b> -
38	RHO = AMU(N) + DNM(M) / 0 • 60248	NAGU	<b>n</b> - (
	WT = VOLT * RHO	NAGU	ų. 7

H0.2X.19H REGION WEIGHT E14.5 1012) TS.TSF.TSN H0.2X.18H REGION INTEGRATED//4X18H NEU ON SOURCE BY GROUP(INTEGRATED AND A CON SOURCE BY GROUP(INTEGRATED AND A C) SOURCE BY C) SOURC	NAGS 135 NAGS 135 NAGS 136 NAGS 136 NAGS 136 NAGS 136 NAGS 136 NAGS 140 NAGS 140 TRON SOURCE1PE14 NAGS 140 TRON SOURCE1PE14 NAGS 140 NAGS 140		. (SGBT(K).K=1.3) NAGS 155 NAGS 155 NAGS 156 NAGS 156 NAGS 156 NAGS 156 NAGS 156 NAGS 156 NAGS 156 NAGS 156 NAGS 156	ZF) • (SGTP(K) • K=1 • 3) NAGS 162 NAGS 163 NAGS 165 NAGS 165 NAGS 166 NAGS 166 NAGS 166 NAGS 166 NAGS 166 NAGS 166 NAGS 166 NAGS 166 NAGS 166	ZS(J) • ZSF(J) • ZSN(J) NAGS 172 25(J) • ZSF(J) • ZSN(J) NAGS 173
	1010) VOLT.WTT H0.2%.19H REGION VOLUME1PE14.5 H0.2%.19H REGION WEIGHTE14.5 1012) TS.TSF.TSN H0.2%.18H REGION INTEGRATED//4%18H H0.2%.18H REGION INTEGRATED//4%18H NFISSIONSE14.5./4%18H NEU	<pre>(#1.NGG (K)/VOLT (K)/VOLT (K)/VOLT (A)1014) K.ISG(K).TST (9%13.1P2E14.5) (1000) (1D(1).1=1.12) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022) (1022)</pre>	AX0([RT.1ZT) 1024) R(IRS).(SGLT(K).K=1.3).Z(IZS) = 1.1STOP 185 = 1 125 = 1 125 = 1 1024) RI(1).RS(1).RSF(1).RSN(1).ZI( = 1 = 1	• EQ. ISTOP1) GO TO 56 • EQ. IRT) GO TO 50 • 1 • 1 • 1 • I • ISTOP1) GO TO 48 • ISTOP1) GO TO 68 • ISTOP1] • IS	1024) R(IRF) + (SGRT(K) + K=1+3) + Z1(J) +

Astronuclear Laboratory



NAGS NAGS	0 / A / A
りりてて	
NAGS	1
NAGS	
N A G S	0.1
NAGS	
NAGS NAGS	
N D C N	
NAGS	186
NAGS	187
NAGS	
	190
NAGS	16
NAGS	192
NAGS	19.0
NAGS	194
NAGS	195
NAGS	96 <b>(</b>
シピタン	201
NAGS NAGS	202
NAGS NAGS	200
NAGS	5
NAGS	204
NAGS	202
NAGS	200
NAGS	000
	200
NAGS	2
NAGS	
NAGS	213
200 200 200 200 200 200 200 200 200 200	
N D C N	
う う く 乙	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

247 239 238 240 248 217 218 219 220 226 228 229 23Ú 51 410 00 0 9 9 0 0 0 0 0 0 0 236 241 <u>م</u> 252 11 200 ***** 4 4 1 * 250 25 NAGS NAGS NAGS NAGS NAGS NAGŚ NAGS NAGS NAGS NAGŚ NAGS NAGS NAGŠ NAGŠ NAGS NAGS NAGS NAGŠ NAGŠ NAGS NAGS NAGS NAGS NAGS NAGŠ NAGŜ NAGS NAGŠ NAGŜ NAGS NAGS NAGS NAGŠ NAGS NAGŜ JCO BY (NEX1+ICM+NEX) HAS BEEN WRITINAGS ~ 15) IF (NPUN.EQ.]) CALL SCOUT (SC.RI,ZI,I],I3,I2,I4,K,18HNEUTRON SOURCE IF (NPUN.6T.1) CALL SCOUT (SC.RI.ZI.II.I3.I2.I4.K.18HPHOTON SOURCE 11. BΥ 1020 FORMAT (52H GEOMETRY FOR TAPE WRITE IS TO LARGE FOR STORAGE 1022 FORMAT (42H0RELATIVE SOURCE AND FISSION DISTRIBUTIONS •// NEUTRON NEUTRON F (R) F (Z) 522X+13HDISTRIBUTIONS+19X+22X+13HDISTRIBUTIONS // FORMAT (54X + F10 + + 2X + F10 + 4 + 2X + F10 + 4 + X + F12 + 4 1024 FORMAT(F10.4.2X.F10.4.2X.F10.4.4X.F12.4.4X WRITE (9) ((SC(I+J)+I=1+IRMAX)+J=1+IZMAX) F10.4.2X.f10.4.2X.f10.4.4X.F12.4 FISSION F (R) F(Z) FORMAT (65H THE FIXED SOURCE SC(IL+)#SG(I+L+NGT)#FMPY • GO TO 66 FMPY = 1 GO TO 64 FORMAT(/(8X.]P8E12.4)) PHO10N PHOTON F (R) F(Z) NGT FORMAT (55 (2H. )) = SFDS(K) #RITE (6. 1018) -IF (NPUN.EQ.1) IF (NPUN.EQ.2) IF (NPUN.EQ.2) IF (NPUN.EQ.2) I•[ # FMPY = CHI(K) J = I + NEX1 254H RADIUS HEIGHT NGT = NGG+2 (CH.) (CM.) IEN ON TAPE) NGT = NGG+1 **6**6 REWIND 9 00 68 68 RETURN G0 T0 FMPY 354H 754H 654I END 00 SENTRY 1026 1028 **UEU** 72 **9**9 68 1018 \$DATA 49 20