

FINAL REPORT

DEVELOPMENT OF HIGH ENERGY DENSITY

PRIMARY BATTERIES

by

S. G. Abens, W. C. Merz, and C. R. Walk

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTR

(THRU

FACILITY FORM 602

00

CONTRACT NAS 3-7632

LIVINGSTON ELECTRONIC LABORATORY

NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: AFSS-A Washington, D. C. 20546

NASA CR - 72331

FINAL REPORT

22 June 1965 to 21 March 1967

DEVELOPMENT OF HIGH ENERGY DENSITY PRIMARY BATTERIES

by

S. G. Abens, W. C. Merz, and C. R. Walk

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS 3-7632

Technical Management NASA Lewis Research Center Cleveland, Ohio Space Power Systems Division Mr. William A. Robertson

HONEYWELL, INC. Livingston Electronic Laboratory Montgomeryville, Pennsylvania

DEVELOPMENT OF HIGH ENERGY DENSITY PRIMARY BATTERIES

by

S. G. Abens, W. C. Merz, and C. R. Walk

ABSTRACT

Studies of the CuF₂-Li system for the development of high energy density primary batteries were undertaken. The solubility of CuF₂ in LiClO₄ electrolytes increased with increasing water content. Solubility was reduced by replacing Li⁺ with Na⁺ or K⁺ in PF₆⁻ and AsF₆⁻ electrolytes. CuF₂ reduction efficiency of over 70% at 0.5 mA/cm² was obtained with LiClO₄, LiAsF₆, LiBF₄, NaClO₄, NaAsF₆, and KAsF₆ solutes in propylene carbonate. CuF₂-Li cells with methyl formate-LiClO₄ electrolyte were discharged with 60 - 70% cathodic efficiency at 10 - 20 mA/cm². With LiClO₄-propylene carbonate electrolyte, wet shelf life of four weeks was obtained at -15°C.

TABLE OF CONTENTS

•

PAGE	NO.

	ABSTR	ACT			
	SUMMA	RY			i
1.	INTRO	DUCTION.			1
2.	LOW R	ATE BATT	ERY STUDY		2
	2.1.	Electro	lyte Studie	es	2
		2.1.1.	Solvent Pu	urification	2
			2.1.1.1. 2.1.1.2.	Distillation of "As Received" Butyrolactone and Propylene Carbonate . Distillation of Lithium Treated Butyrolactone and Propylene Carbonate .	3 5
		2.1.2.	Lithium S	tability Tests	7
			2.1.2.1. 2.1.2.2.	Effect of Water Content	7 7
			2.1.2.3.2.1.2.4.	Effect of Other Solutes in Propylene Carbonate	8 9
		2.1.3.	CuF ₂ Stab	ility Tests	9
			2.1.3.1. 2.1.3.2. 2.1.3.3.	Effect of Water and Solute Concentration	12 19 19
		2.1.4.	Pulse Load	d Tests	22
			2.1.4.1. 2.1.4.2.	Effect of Electrolyte Salts	26 26
		2.1.5.	Specific (Conductance Measurements	26
		2.1.6.	Purificat	ion of Salts	33
	2.2.	Copper	Fluoride S	tudies	36

TABLE OF CONTENTS (CONTINUED)

	2.2.1. 2.2.2.	CuF ₂ Drying Studies Decomposition of Cu	F ₂ •2H ₂ O	••••	•••	•	•	•	36 37
2.3.	Experime	ntal Cell Tests		••••	•••	•	•	•	41
	2.3.1.	Effect of Dried CuF	2 On Shelf Li:	fe	• •	•	•	•	43
		2.3.1.1. Effect of 2.3.1.2. Effect of	Vacuum Drying Argon Drying	g 	•••	•	•		43 46
	2.3.2.	Evaluation of Therm	ally Decompos	ed CuF ₂ •	2H ₂ ()	•	•	46
	2.3.3.	Effect of CoF ₃ , SbF	$_3$, and MnF $_3$			•	•	•	60
	2.3.4.	Filter Mat CuF ₂ Ele Studies	ctrode Constru	uction		•	•	•	67
		2.3.4.1. Ratio of 2.3.4.2. Effect of	CuF ₂ To Addit Vacuum Impre	ives . gnation	•••	•	•	•	67 72
	2.3.5.	Pasted CuF ₂ Electro	de Tests .		•••		•	•	75
		2.3.5.1. Effect of 2.3.5.2. Effect of 2.3.5.3. Effect of	Binder and C Argon Drying Sulfur	onductor 	 	•	• •	• •	75 75 77
	2.3.6.	Performance of CuF ₂ Various Discharge F	-Li Cells At ates		•••	•	•	•	78
	2.3.7.	CuF ₂ Electrode Cons	truction Test	s	•••	•	•	•	81
	2.3.8.	Effect of LiClO ₄ Co	oncentration		•••	•	•	•	81
	2.3.9.	Effect of Solute Or	Capacity .		•••	•	•	•	82
	2.3.10.	Cell Performance Wi	th Various So	lvents	•••	•		•	84
	2.3.11.	Cell Tests With Na(ClO ₄ -PC Electr	olyte .		•	•	•	88
	2.3.12.	Ag ₂ O ₂ -Li Cell Tests	5			•	•	•	90
HIGH	RATE BAT	ERY STUDY			•••	•	•	•	94
3.1.	Electro	vte Studies							94

3.

PAGE NO.

TABLE OF CONTENTS (CONTINUED)

4

4.

•

.

PAGE NO.

	3.1.1.	Lithium Stability Tests	4
	3.1.2.	CuF ₂ Stability Tests	5
3.2.	Positiv	ve Limited Cell Studies	5
	3.2.1.	Pasted Electrode Composition Study 90	5
	3.2.2.	Conductive Material Study	1
	3.2.3.	Effect of CuF_2 Water Content on Discharge Performance	4
	3.2.4.	Discharge Performance of $CuF_2 \cdot 2H_2O$ Active Material	4
	3.2.5.	Effect of Electrolyte Concentration 10	7
		3.2.5.1. "Open" Cells at -15°C 10"	7
		Room Temperature	7
3.3.	Seven-P	Plate Cell Tests	1
APPEN	DIX		i

LIST OF TABLES

4

ŧ,

••••

TABLE	Ι	Distillation of Butyrolactone	3
TABLE	II	Distillation of Propylene Carbonate	4
TABLE	III	Rate of Water Removal in Propylene Carbonate and Butyrolactone	5
TABLE	Iγ	Vacuum Distillation of Lithium Treated Butyrolactone	6
TABLE	V	Vacuum Distillation of Lithium Treated Propylene Carbonate	6
TABLE	VI	Solubility of CuF ₂ In Propylene Carbonate Electrolyte	13
TABLE	VII	Solubility of CuF_2 In Butyrolactone Electrolyte	16
TABLE	VIII	CuF_2 Stability in PC Electrolytes	20
TABLE	IX	Stability of ${\rm CuF}_2$ in ${\rm LiClO}_4{\rm and}~{\rm KAsF}_6$ Solutions	21
TABLE	X	Effect of Electrolyte Salt on CuF ₂ -Li Cell Performance	27
TABLE	XI	Effect of Solvent on CuF_2 -Li Cell Performance	33
TABLE	XII	Recrystallization From Mixed Solvents	34
TABLE	XIII	Recrystallization From A Single Solvent	35
TABLE	XIV	Water Content of CuF_2	36
TABLE	XV	Major Peak Intensities of Various Compounds In Copper Fluoride Samples	38
TABLE	XVI	Decomposition of $CuF_2 \cdot 2H_2O$, Lot A, Sealed Chambers	39
TABLE	XVII	Decomposition of $CuF_2 \cdot 2H_2O$, Lot B, Argon Sweep	40
TABLE	XVIII	Self-Discharge In CuF ₂ -Li Cells	44
TABLE	XIX	Self-Discharge In CuF ₂ -Li Cells	45

LIST OF TABLES (CONTINUED)

PA	GE	NO.

TABLE XX	Self-Discharge in CuF2-Li Cells	47
TABLE XXI	Self-Discharge in CuF ₂ -Li Cells	48
TABLE XXII	Performance of Cells Having Thermally Decomposed $CuF_2 \cdot 2H_2O$ Cathodes and Li Anodes in LiClO ₄ -PC Electrolytes	56
TABLE XXIII	Open Circuit Potentials of Cells Having Thermally Decomposed $CuF_2 \cdot 2H_2O$ and Lithium in $LiClO_4$ -PC Electrolytes.	57
TABLE XXIV	Discharge Performance of CuF ₂ -Li Cells Containing Additives	61
TABLE XXV	Open Circuit Potentials of CuF ₂ -Li Cells Containing Additives	62
TABLE XXVI	Filter-Mat CuF_2 Electrode Tests, 2000 Discharge	68
TABLE XXVII	Filter-Mat ${\rm CuF}_2$ Electrode Tests, 1000 Discharge	69
TABLE XXVIII	Effect of Additive Concentration on Performance Of CuF ₂ Electrodes	73
TABLE XXIX	Performance of Pasted CuF_2 Electrodes	76
TABLE XXX	Performance of Pasted CuF ₂ Electrodes After Argon Drying	77
TABLE XXXI	Performance of CuF_2 Electrodes With Sulfur	78
TABLE XXXII	Performance of CuF ₂ -Li Cells At Various Discharge Rates	79
TABLE XXXIII	Composition of Hot-Pressed CuF_2 Electrodes	82
TABLE XXXIV	Effect of ${\rm LiClO}_4$ Concentration on Cell Performance	83
TABLE XXXV	Effect of Solute on CuF ₂ -Li Cell Performance In PC	85
TABLE XXXVI	CuF_2 -Li Cell Tests With Various Solvents \ldots .	89

ψ,

LIST OF TABLES (CONTINUED)

۴

٠

- -

TABLE	XXXVII	Evaluation of $NaClO_4$ In PC 90
TABLE	XXXVIII	Performance of Ag_2O_2 -Li Cells With LiClO ₄ -PC Electrolyte
TABLE	XXXIX	Solubility of ${\rm CuF}_2$ In MA and MF Electrolytes 95
TABLE	XL	Conductive Material Evaluation
TABLE	XLI	Discharge Performance of Dried CuF_2 In MF-LiClO ₄ Cells
TABLE	XLII	Performance of CuF_2 and $CuF_2 \cdot 2H_2O$ in $LiC10_4/MF$ Electrolyte
TABLE	XLIII	Effect of $LiC10_4$ Concentration on CuF_2 -Li Cell Performance in Methyl Formate
TABLE	XLIV	Effect of $LiC10_4$ Concentration on Sealed $Li-CuF_2$ Cell Performance in Methyl Formate \ldots \ldots \ldots 112
TABLE	XLV	Performance of Seven-Plate Cells
APPEND	DIX	
TABLE	A-1	Lithium Stability in Propylene Carbonate Solutions (+25°C)
TABLE	A-2	Lithium Stability in Propylene Carbonate Solutions (+25°C)
TABLE	A-3	Lithium Stability in Propylene Carbonate Solutions (+35°C)
TABLE	A-4	Lithium Stability Tests In 1.0 M Propylene Carbonate
TABLE	A-5	Lithium Stability in Various Electrolytes 125
TABLE	A-5(A)	Lithium Stability in Methyl Formate
TABLE	A-5(B)	Lithium Stability in Methyl Formate

LIST OF TABLES (CONTINUED)

TABLE	A-5(C)	Lithium Stability in 1.0 M Solutions 13	0
TABLE	A-5(D)	Compatibility of Various Electrolytes With Metallic Lithium	1
TABLE	A-5(E)	CuF_2 Solubility in Methyl Acetate Solutions \hdots 13	3
TABLE	A-6	Prismatic Electrode Construction By Filter-Press Method	4
TABLE	A-7	Specific Conductance Measurements	5
TABLE	A-8	X-Ray Analysis of CuF_2	9
TABLE	A-9	Performance of CuF ₂ -Li Cells With Butyrolactone Electrolyte	0
TABLE	A-10	Effect of Cathode Paste Composition On Cell Performance	1
TABLE	A-11	List of Materials	4

LIST OF FIGURES

FIGURE 1	Effect of Solute on Lithium Stability 1	.0
FIGURE 2	Effect of Solvent on Lithium Stability 1	1
FIGURE 3	Components of Two-Plate Pulse Load Cells 2	23
FIGURE 4	Two-Plate Cell Assembly for Pulse Load Tests 2	24
FIGURE 5	Circuit Diagram of Sine Wave Pulse Current Tester . 2	25
FIGURE 6	Performance of CuF ₂ -Li "R" Cell in 1M LiClO ₄ /PC Electrolyte	28
FIGURE 7	Performance of CuF ₂ -Li "R" Cells in 1M NaClO ₄ /PC Electrolyte	29
FIGURE 8	Performance of CuF ₂ -Li "R" Cells in 1M LiBF ₄ /PC Electrolyte	30

LIST OF FIGURES (CONTINUED)

•

1

• •

۴

FIGURE 9	Performance of CuF ₂ -Li "R" Cells in 1M LiAsF ₆ (m) Electrolyte
FIGURE 10	Performance of CuF_2 -Li "R" Cells in 1M NaAsF ₆ (m) Electrolyte
FIGURE 11	CuF ₂ -Li Test Cell Components $\ldots \ldots \ldots \ldots 42$
FIGURE 12	Cell Discharge Test Rack
FIGURE 13	Performance of CuF ₂ -Li Cells After 2 Hours Wet Stand at +35°C
FIGURE 14	Performance of CuF ₂ -Li Cells After 2 Hours Wet Stand at +35°C
FIGURE 15	Performance of CuF ₂ -Li Cells After 2 Weeks Wet Stand at -15°C
FIGURE 16	Performance of CuF ₂ -Li Cells After 4 Weeks Wet Stand at -15°C
FIGURE 17	Performance of CuF ₂ -Li Cells After 6 Weeks Wet Stand at -15°C
FIGURE 18	Capacity Loss in CuF ₂ -Li Cells After Wet Stand \ldots 54
FIGURE 19	Discharge Performance of Cells With CuF ₂ •2H ₂ O Decomposition Products
FIGURE 20	Open Circuit Potentials of Cells With $CuF_2 \cdot 2H_2O$ Decomposition Products on Wet Stand
FIGURE 21	Open Circuit Potentials of CuF_2-Li Cells With CoF_3, SbF_3, and MnF_3 Additives on Wet Stand 63
FIGURE 22	Open Circuit Potentials of CuF $_2$ -Li Cells With CoF $_3$, SbF $_3$, and MnF $_3$ Additives on Wet Stand 64
FIGURE 23	Initial Performance of CuF_2 -Li Cells With CoF_3 , SbF ₃ , and MnF ₃ Additives \ldots \ldots \ldots \ldots 65
FIGURE 24	Performance of CuF ₂ -Li Cells With CoF ₃ , SbF ₃ , and MnF ₃ Additives After 8 Days of Wet Stand at 35°C

LIST OF FIGURES (CONTINUED)

PAGE	NO.
	_

FIGURE	25	Performance of Filter-Mat Electrodes	70
FIGURE	26	Performance of Filter-Mat Electrodes	71
FIGURE	27	Performance of CuF ₂ -li Cells At Various Discharge Rates	80
FIGURE	28	Performance of CuF ₂ -Li Cells With PC and Various Solutes	86
FIGURE	29	Performance of CuF ₂ -Li Cells With PC and Various Solutes	87
FIGURE	30	Cell Tests With NaClO ₄ -PC Electrolyte	91
FIGURE	31	Pasted CuF_2 Electrode Test Cell Components	97
FIGURE	32	Pasted CuF_2 Electrode Test Cell	97
FIGURE	33	Cell Discharge Rack	98
FIGURE	34	Performance of Pasted CuF_2 Electrodes	99
FIGURE	35	Performance of Pasted CuF_2 Electrodes 1	00
FIGURE	36	Discharge Performance of Pasted CuF_2 Electrodes 1	.03
FIGURE	37	Performance of Sealed Methyl Formate Cells 1	15
FIGURE	38	Performance of Sealed Methyl Formate Cells 1	16
FIGURE	39	Performance of Sealed Methyl Formate Cells 1	.17
FIGURE	40	Performance of Seven-Plate Methyl Formate Cells 1	.19

SUMMARY

The purpose of this program was to develop high energy density primary batteries. Studies of electrode and electrolyte materials and evaluation of electrode and cell construction methods were undertaken.

A. Low Rate Battery Study

Work was performed toward development of batteries capable of 200 wh/lb at the 100 - 1000 hour discharge rate. The system of main interest indicated by earlier work was the CuF_2 -Li couple with $LiClO_4$ -propylene carbonate (PC) electrolyte.

1. Electrolyte Studies

Studies of solvent purification, and stability of electrolytes to lithium and CuF_2 attack were performed. Most of the work was performed with the $LiClO_4$ -PC electrolyte system.

(a) Solvent Purification. Solvents were purified by fractional distillation, and/or by lithium powder treatment followed by redistillation. Water content of solvents could be substantially reduced by fractional distillation, but no changes in physical properties between fractions were detected (PC and butyrolactone were studied). With lithium powder treatment, water content could be reduced to below 20 ppm (limit of Karl Fischer test sensitivity).

(b) Lithium Stability Tests. Reduction of water content in $LiClO_4$ -PC and $LiClO_4$ -BL (butyrolactone) electrolytes from 1000 - 2000 ppm to 200 - 400 ppm and increase of $LiClO_4$ concentration from 2.3 to 4.7M improved lithium stability. Of other solutes in PC, $LiBF_4$ gave best stability. Potassium and sodium compounds showed more discoloration than their lithium counterparts. Among solvents studied, purified PC and DMSO gave best results.

(c) CuF_2 Stability Tests. Increasing H₂O content and LiClO₄concentration increased the rate of dissolution of CuF_2 into PC and BL electrolytes. Copper fluoride was less soluble in solutions of K-and Na-salts in PC than in Li-salt electrolytes. With KAsF₆ solute, DMSO gave the highest CuF_2 solubility (>4400 ppm in 24 days), and PC and nitromethane (NM) the lowest (~100 ppm in 24 days). Acetic anhydride (AA) reacted with CuF_2 .

(d) Pulse Load Tests. Two-plate CuF_2 -Li cells were discharged with pulse current in various electrolytes. Reference electrode readings showed capacity to be limited by CuF_2 electrode polarization in all electrolytes tested. Reduction efficiencies of 64 and 54% were obtained in LiClO₄-PC and LiAsF₆-PC electrolytes, respectively. Other solvents (DMSO, AA, NDA [N-nitroso dimethylamine], NM, and MA) gave poorer results than PC.

2. Copper Fluoride Studies

Methods for removal of water from CuF_2 were studied. Both vacuum oven drying and sweeping with dry argon produced CuF_2 with water below 0.3% (sensitivity of X-ray analysis), but the latter method was faster. Heating of $\text{CuF}_2 \cdot 2\text{H}_2\text{O}$ (major impurity) produced $\text{CuOHF} \cdot \text{CuF}_2$ and CuOHF as well as a compound having a major peak intensity at 4.15 Å.

3. Experimental Cell Tests

Three-plate CuF_2 -Li cells having a nominal cathode capacity of 4 - 5 AH were tested. The cells were considered positive limited, since Li capacity was ca. 8 AH. The working area of the cells was 29 cm². Microporous rubber separations and heat sealed polyethylene envelopes were employed.

(a) Effect of CuF_2 on Shelf Life. Wet shelf life of cells was improved by drying of the CuF_2 . After four weeks stand at -15°C, cathode utilization with dried CuF_2 in two cells was 56 and 62% vs. 15 and 21% with the same material undried. Prolonged argon drying reduced capacity before and after wet stand. Use of thermally decomposed $\operatorname{CuF}_2 \cdot 2\operatorname{H}_2 0$ instead of normal CuF_2 improved wet stand considerably, but greatly increased cell polarization at 0.5 mA/cm².

(b) Effect of Additives to CuF_2 . Effect of CoF_3 , MnF_3 , and SbF_3 added to CuF_2 (ca. 4 mol %) on shelf life was tested. Addition of SbF_3 was detrimental while the other additives showed no effect.

(c) Copper Fluoride Electrode Construction. Most of the work was performed with filter-mat CuF_2 electrodes. The optimum composition was in the range of 4 - 8g paper fiber and 8 - 20g graphite per 100g of CuF_2 . Cathodic utilization with PC-LiClO₄ electrolyte was up to 80% at 0.5 mA/cm². Vacuum impregnation of cells with electrolyte was not beneficial. Pasted electrodes using polystyrene or cellulose acctate binder and carbon black conductor also gave CuF_2 reduction efficiencies of 80% at 0.5 to 0.7 mA/cm².

(d) Effect of Discharge Rate. The 3-plate CuF_2 -Li cells were discharged thru various resistive loads. With 200Ω load (ca. 250 hour rate), cathode efficiency was 73%. With 100Ω (ca. 100 hour rate) the efficiency dropped to 58%, while with 500 and 1000Ω , this figure was 47 and 24%, respectively (ca. 400 hour rate with both loads). The cells showed evidence of copper dissolution in the 500 and 1000Ω discharge cells.

(e) Effect of $LiClO_4$ Concentration. Capacity and shelf life of CuF_2 -Li cells with 10 and 20g of $LiClO_4/100$ ml PC were tested. The lower electrolyte concentration gave improved wet shelf life at 0°C. (74 vs 59% efficiency after 10 days wet stand).

(f) Effect of Solute. Performance of CuF_2 -Li cells using propylene carbonate solutions of $LiClO_4$, $NaClO_4$, $LiPF_6$, KPF_6 , $LiAsF_6$, $KAsF_6$, $NaAsF_6$, and $LiBF_4$ was compared. Cathode efficiencies of over 70% were obtained with all solutes except KPF_6 and $LiPF_6$.

(g) Effect of Solvent. Performance of CuF_2 -Li cells with $LiClO_4$ and KAsF6 solutions in PC, DMSO, AA, NDA, NM and MA (methyl acetate) was compared. In these discharges, only $LiClO_4$ -PC electrolyte gave cathode efficiency of over 70%.

B. High Rate Battery Study

Work was performed toward development of batteries capable of 50 wh/lb at the 1 hour rate and operable at the 1 - 10 hour rate. The system under study was the CuF_2 -Li couple with $LiClO_h$ -methyl formate (MF) electrolyte.

1. Electrolyte Studies

The solvents MF and MA were purified by lithium powder treatment and distillation. Lithium treatment improved stability of Li in the $LiClO_4$ -MF electrolyte but showed no effect on CuF_2 solubility in $LiClO_4$ -MF and $LiClO_4$ -MA electrolytes. Changes in $LiClO_4$ concentration showed no effect on Li stability.

2. Positive Limited Cell Studies

Pasted CuF_2 electrode composition was evaluated in 3-plate positive limited CuF_2 -Li cells. One gram of cellulose acetate and 10 - 15 grams of graphite/100g of CuF_2 was an optimum composition. CuF_2 reduction efficiencies were 50 - 70% at 5 - 15 mA/cm² to a 2.0VF cut-off. Increasing electrode thickness from 0.025" to 0.050" decreased the efficiency. Electrodes having less than 0.5% water in the CuF_2 could not be discharged at 10 mA/cm² in MF-LiClO₄ electrolyte. $\text{CuF}_2 \cdot 2\text{H}_2\text{O}$ gave equal performance to CuF_2 having 2% water. Optimum electrolyte concentration was 50g LiClO₄/100 ml MF.

3. Seven-Plate Cell Tests

Three 7-plate CuF_2 -Li cells with 4 - 5 AH nominal capacity were built and tested. Discharge performance was about equal to that obtained with 3-plate cells at the same current densities. To a cut-off of 2.0 volts, 67% CuF_2 reduction was obtained at the 4 hour rate, and 69% at the 5 hour rate. One cell was tested after 4 weeks of dry storage under argon at room temperature and gave 58% CuF_2 reduction at the 4 hour rate.

1. INTRODUCTION

The purpose of this program is development of high energy density primary batteries suitable for space flight applications.

High energy battery development was initiated at Livingston Electronic Laboratory in 1963 under Contract NAS 3-2775 and continued under Contract NAS 3-6004. The goal of these programs was to develop batteries capable of delivering 200 watt hours per pound, <u>i.e.</u>; to at least triple the energy density available with the existing state of the art.

On these earlier programs, the CuF_2 -Li couple was identified as the most promising system. The high energy density potential of this system was demonstrated in laboratory cell discharge tests, where energy-to-weight ratios of over 500 wh/lb of active material weight and over 200 wh/lb of cell weight were obtained. The most difficult problem associated with the CuF_2 -Li system was its almost total lack of wet stand capability at room temperature.

The present report describes work performed under Contract NAS 3-7632, which is a direct continuation of the two previous contracts. Development of two types of batteries was pursued, namely: (1) batteries operating at the 100 - 1000 hour discharge rate, and (2) batteries capable of being discharged at the 1 - 10 hour rate.

For the low rate system the major effort was expended toward identification of causes for lack of wet stand capability in CuF_2 -Li cells, and on efforts to make improvements in this area. For the high rate battery, the major portion of the work was expended toward increasing the discharge rate capability of the CuF_2 -Li system.

LOW RATE BATTERY STUDY

2. 1. Electrolyte Studies

2.

The purpose of the electrolyte studies pursued under this phase of the contract was to identify solvents and solutes best suited for a long life CuF_2 -Li cell. The candidate solvents of primary interest identified by previous work, were butyrolactone and propylene carbonate. With the latter solvent, good test cell performance had been obtained.

The solute of primary interest from results of previous work was $LiClO_4$. Other electrolyte systems were studied in later phases of the program to search for electrolytes which would enhance wet shelf life of the CuF_2 -Li couple.

2. 1. 1. Solvent Purification

The general approach to solvent purification under this contract was as follows:

1. The highest purity level materials obtainable were analyzed for water by Karl Fischer titration.

2. The solvents were agitated with lithium powder dispersion in hexane until no rise in pressure in the containers could be observed.

3. The liquids were filtered and batch distilled, usually at lowered pressure.

Some modifications to the above procedure were used for investigative purposes, or where required by presence of high water concentration. In this case, lithium treatment was preceded by distillation or by chemical drying, usually by calcium oxide, or dolomitic lime (50% CaO, 50% MgO).

2. 1. 1. 1. Distillation of "As Received" Butyrolactone and Propylene Carbonate.

Butyrolactone was batch distilled under reduced pressure thru a Vigraux column. Four fractions of the distillate were taken off, and analyses were performed with results as shown below:

TABLE I

DISTILLATION OF BUTYROLACTONE

Source: Matheson, Coleman & Bell Pressure: 17 mm Hg

	Fractions					
	Initial	1		3	4	
Volume, cc	250	99	103	43	5	
Boiling Range, °C		89	89-90	90-92	92+	
Color	White	White	White	White	Brown	
Refractive Index	1.433	1.434	1.434	1.434		
Water, ppm	510	180	140	390		

Propylene carbonate from the same source was distilled similarly, and results of two runs were as shown in Table II, page 4.

The sensitivity of the analyses performed was too low to yield any indication that the distillate fractions differed in any way except water content. Variations in temperature during distillation were probably caused by malfunctioning of the pressure regulator.

The total water recovered was always less than in the original solvent indicating that all of the water was not condensed. The water content appears to be high in the initial portion of the distillate, although high water was also observed in the last 20% in distillation of butyrolactone. These results indicated that the rejection of the first and last 10% of the distillate should be adequate.

TABLE II

DISTILLATION OF PROPYLENE CARBONATE

Source: Matheson, Coleman & Bell Pressure: 10 mm Hg

Run No. 1

			FRACTIONS	5	
	<u>Initial</u>	1	2	3	4
Volume, cc	250	100	110	35	5
Boiling Range, °C		108	107	106	
Color	White	White	White	White	Brown
Refractive Index	1.420	1.420	1.422	1.422	
Water, ppm	580	120	140	180	
	Ru	un No. 2			
Volume, cc	230	25	200	5	
Boiling Range, °C		107	107		
Color	White	White	White	Reddish Yellow	
Refractive Index	1.420	1.420	1.422		
Water, ppm	580	380	120		

4

2. 1. 1. 2. Distillation of Lithium Treated Butyrolactone and Propylene Carbonate.

The method of agitating a solvent in the presence of lithium metal as a means of reducing trace water concentration and decomposing other possible impurities which would otherwise tend to attack the lithium electrode of the cell was studied extensively on this program. In this test, the solvents were agitated at room temperature with 1.0g of Li powder/100 grams of solvent in sealed containers. The pressure generated in the containers was relieved periodically, and agitation was continued until no additional pressure build-up was observed. The water content of the solvents was monitored at various intervals by the Karl Fischer analysis, and the results are presented in Table III.

TABLE III

Butyro	lactone	Propylene	Carbonate
Agitation <u>time, Hrs.</u>	Water Content,	Agitation time, Hrs.	Water Content,
0	470	0	270
6	280	5	140
15	140	17	50*
27	40*	30	23**
50	23**		

RATE OF WATER REMOVAL IN PROPYLENE CARBONATE AND BUTYROLACTONE

*No further pressure build-up. **Limit of K. F. analysis sensitivity.

The excess powdered lithium and the solid reaction products were removed by vacuum filtration through a fine gas washing tube. The insoluble decomposition products had the appearance of a gray, gelatinous mass, and gravitated to the bottom of the liquid phase (the powdered lithium floats). After removal of the decomposition products and excess powdered lithium, the solvents were vacuum distilled, and the fractions were analyzed.

Results of typical distillation runs for butyrolactone and propylene carbonate are presented in Tables IV and V. The lithium treatment had caused no observable change in the system; <u>i. e.</u>; the physical behaviour of the treated solvents upon distillation was not significantly different from that of the untreated material. The only difference in behaviour which could be observed for the Li treated material was a brief period of effervescence at the beginning of the vacuum distillation (possibly caused by the release of dissolved hydrogen).

These tests showed that solvents having very low water contents (below 20 ppm) can be produced by the lithium treatment and vacuum distillation method.

TABLE IV

VACUUM DISTILLATION OF LITHIUM-TREATED BUTYROLACTONE

	Boiling C	g Range mm Hg	Percent Volume	Water, ppm	Color
Undistilled			100	23*	Off White
Forerun	21-50	8	0		Gas
Fraction I	68-72	8-10	4.2	1400	White
Fraction II	79-80	10	89.9	23*	White
Fraction III			5.9		Brown liquid Gray solids

TABLE V

VACUUM DISTILLATION OF LITHIUM-TREATED PROPYLENE CARBONATE Percent Boiling Range Water, °C Volume mm Hg Color ppm**Undistilled** 100 23* Off White _ _ _ _ 0 Forerun 23-50 10-15 ____ Gas Fraction I 96-108 6-10 7.4 230 White Fraction II 106-108 10 89.3 23* White Fraction III Brown liquid 3.3 Gray solids

* Limit of sensitivity.

2. 1. 2. Lithium Stability Tests

The rate of attack on a Li test strip immersed in a solvent or an electrolyte solution was employed as a qualitative measure for the suitability of a candiate electrolyte for use in CuF_2 -Li cells. While this method yields no quantitative measure of the rate and nature of the lithium decomposition reactions, it is direct and simple, and does indicate which electrolytes have good stability (i. e.; show no visible changes).

2. 1. 2. 1. Effect of Water Content

The effect of water contamination level on the stability of lithium samples in BL and PC and in LiClO_{\pm} solutions in the same solvents was observed by performing a comparative test on several materials at room temperature. Each of the two solvents was used with two water contamination levels (2000 and 390 ppm for butyrolactone, 710 and 180 ppm for propylene carbonate). The lithium perchlorate water content after vacuum drying was about 0.04 percent (400 ppm). The lithium test piece was a ribbon, $1/2 \ge 1/16 \ge 1''$, which had the petrolatum used for protection during storage removed by rinsing with heptane. One side of each strip was abraded before immersion to expose fresh metal. Tests were assembled under argon.

The detrimental effect of water on the stability of lithium in these solvents was clearly demonstrated by the more rapid discoloration of lithium in the higher water content solutions, but the presence of $LiClO_4$ appeared to be beneficial. It would appear, therefore, that presence of Li^+ ions has a stabilizing effect on lithium in BL and PC electrolytes.

Visual observations made during the stability test are listed in the Appendix, Tables A-1 and A-11.

2. 1. 2. 2. Effect of Treatment With Lithium Dispersion

A stability test similar to that described above was assembled to study the effect of pretreatment of propylene carbonate with powdered lithium dispersion. The untreated solvent was distilled at 10 mm Hg, and the water content was ascertained to be below 25 ppm. A portion of this solvent was retained, and the remainder was agitated for 40 hours with powdered lithium, filtered, and redistilled. Lithium test strips were cut to size $1 \ge 1/2 \ge 1/16$ inch, and one side of each strip was abraded to expose fresh metal. The strips were then placed in test tubes containing 5 ml of solvent or 1M LiClO₄ solution under argon. The tubes were sealed and stored at 35° C, and the appearance of the lithium samples was recorded periodically.

In both lithium treated and untreated solvents, presence of 1M LiC104 enhanced chemical stability. In the solvent containing no solute, lithium treatment appeared to improve stability, but this could also be a result of a lower water contamination level, since additional drying probably occurs during lithium treatment. In the 1M LiC104 solutions, the stability was not significantly different with the treated and untreated solvents, indicating that impurities which are not removed by distillation are not particularly reactive with metallic lithium. However, lithium treatment was later used in the preparation of PC electrolytes for cell tests, since this procedure reduces water contamination levels effectively for solvents having high initial water content.

Observations made during these lithium capatibility tests are listed in the Appendix, Table A-3, page 123.

2. 1. 2. 3. Effect of Other Solutes in Propylene Carbonate

The effect of a number of solutes on the stability of lithium in propylene carbonate solutions was evaluated. Some of the solutions in this test series were prepared by reaction between a perchlorate and a potassium salt, resulting in precipitation of potassium perchlorate. These solutions, therefore, were saturated with $KC10_4$ and are identified with the suffix (m).

Lithium stability tests were assembled as described above. The concentration of the electrolyte solutions was 1 mol of solute/liter of solvent, except where indicated otherwise. Propylene carbonate was lithium treated and distilled, and all salts were vacuum dried before preparation of solutions.

The electrolytes included in this test series, and their water contents (ppm) as determined by Karl Fischer analyses were as follows: $LiClO_4$, 90; $NaClO_4$, 72; KPF_6 , 97; $KAsF_6$, 61; KBF_4 ,¹ 97; $LiBF_4$ (m),² 169; $LiPF_6$ (m), 104; $LiAsF_6$ (m), 258; $NaAsF_6$ (m), 161; and $LiBF_4$, 129.

After an exposure time of four weeks at 35°C, the lithium tetrafluoroborate solution was adjudged the most stable electrolyte. No change in appearance of test strip or solution could be observed. Lithium perchlorate caused dulling of lithium surfaces after 21 days of exposure.

All of the anions used in this test series $(C10_4, PF_6, AsF_6, BF_4)$ have good stability to lithium and differences in apparent rate of attack are probably due to varying levels of impurities and water content. However,

¹ Saturated.

² Metathetically prepared.

of the three cations (Li⁺, Na⁺, and K⁺), lithium definitely shows the least amount of activity. Potassium electrolytes always gave a characteristic blackening of the lithium, particularly near and slightly above the liquid surface. No other evidence of chemical activity accompanied this phenomenon - the solutions remained clear. The darkening may thus be just a physical change (amorphization) of the lithium surface, although the difference in potential between potassium and lithium in some electrolytes may be sufficient to cause the displacement reaction to take place.

The sodium electrolyte gave a yellowish (organic) growth on the lithium, and some precipitate was formed in the tubes. Thus it would appear that sodium catalyzes some PC decomposition reaction on the metal surface.

Photographs taken of the best stability tests after 28 days of exposure are shown in Figure 1, page 10, while a complete description of visual observations is given in the Appendix, Table A-4, page 124.

2. 1. 2. 4. Effect of Solvent

In this lithium stability test series, propylene carbonate (PC), dimethylsulfoxide (DMSO), acetic anhydride (AA), N-nitroso dimethylamine (NDA), and nitromethane (NM) were evaluated. The solutes selected for these tests were $LiClO_4$ and $KAsF_6$.

About equal stability was indicated with both solutes, except for the characteristic darkening of the lithium surface observed in the KAsF, electrolyte Propylene carbonate and DMSO gave the least amount of evidence of reaction, while nitromethane was decomposing rapidly, especially in the presence of LiClO.

Photographs of the above tests taken after 21 days of exposure at 35° C are presented in Figure 2, page 11, while a verbal description of the appearance of the samples after 7, 14, and 21 days of stand are given in the Appendix, Table A-5, page 125.

2. 1. 3. CuF₂ Stability Tests

A necessary requirement for electrolytes used in CuF_2 -Li cells is their chemical compatibility with the positive and negative active materials. To evaluate the stability of CuF_2 in the electrolyte, it was decided to use a test for dissolved copper as the stability criterion.

Effect of Solute on Lithium Stability

10

Fig. 2

11

2. 1. 3. 1. Effect of Water and Solute Concentration

A series of CuF_2 solubility tests were performed in PC and BL with LiClO₄ as the solute. The solvents were prepared by agitating with excess amounts of lithium powder until no further hydrogen pressure was produced; at this point, the residual water in both solvents was below the sensitivity of the Karl Fischer test (20 ppm). The lithium treatment was followed by distillation, rejecting the first and last 10 volume percent of the distillate.

The lithium perchlorate used in these tests was vacuum-dried at 110° C for 24 hours, and water content (Karl Fischer analysis) was approximately 600 ppm. Anhydrous CuF₂ was used as received from Ozark-Mahoning Company. X-ray analysis showed the water level in this material to be about 0.33 percent (3300 ppm).

Serum bottles (60 mi volume) equipped with hermetic stoppers were filled with 40 ml of solvent, 1.0g of CuF₂, and 4.0, 8.0, or 12.0 grams of LiClO₄. Distilled water was added to the bottles in quantities calculated to produce total water contents in the range of 150 to 5000 ppm. The samples were agitated on a laboratory shaker with interruptions timed to allow the solid phase to settle. The samples were then compared for color, and the concentration of Cu⁺⁺ in solution was determined by the thiosulphate titration. To minimize the effect of changes in laboratory temperature, all compatibility tests were performed concurrently

Results of the copper ion determinations and the observed solution colors are listed in Tables VI and VII, pages 13 and 16. At equal LiClO₁ concentration, increasing water content increased the copper concentration in the For example, increasing water content from 180 ppm to 5000 ppm increased the copper concentration after 1000 hours of agitation from 710 ppm to 7300 ppm. The effect of LiClO₁ on the solubility of CuF₂ was much less pronounced than that of water contamination level. The solubility of CuF₂ was found to be larger in butyrolactone than in propylene carbonate electrolytes.

The above results further demonstrate the need for very low water concentration in the CuF_2 -Li system in order to minimize loss of capacity during wet shelf life of the cells. The solubility tests may prove of value for evaluation of CuF_2 drying methods, since the X-ray examination is of limited utility where low water contents are encountered. To make this approach practical, a method for decreasing the time required for the analysis would have to be developed.

TABLE VI

SOLUBILITY OF CuF2 IN PROPYLENE CARBONATE ELECTROLYTE

<u>Materials</u>: Propylene Carbonate, MC & B, Li dried and distilled; H₂O <20 ppm. Lithium Perchlorate, Foote Mineral Co., vacuum dried at 110°C for 24 hours; H₂O = 600 ppm. Cupric Fluoride, Ozark Mahoning Co., as received; H₂O = 3300 ppm.

Series A – 10	gm .	LiC10./	'100 n	ml PC	; Solution	Density	÷ 1,25	5 gm/n	n1,
---------------	------	---------	--------	-------	------------	---------	--------	--------	-----

Water Content, ppm	Agitation Time, <u>Hours</u>	Copper (II) C µ moles/ml	oncentration ppm	Solution Color
120	25	2.5	125	Off White
	125	6.6	335	Off White
	290	7.0	335	Off White
	650	12.5	635	Light Tan
	1000	12.5	635	Tan
400	25	5,5	280	Off White
	125	7 . 0	355	Off White
	290	11.5	585	Off White
	650	14.2	720	Light Tan
	1000	15,0	765	Tan
810	25	6.0	305	Off White
	125	11.0	560	Off White
	290	15.7	800	Off White
	650	20.0	1015	Light Yellow Green
	1000	25.0	1270	Yellow Green
2200	25	18.0	915	Light Green
	125	32.5	1650	Light Green
	290	40.0	2030	Olive Green
	650	40.0	2030	Olive Green
	1000	52.0	2640	Olive Green
6050	25	101	5100	Blue Green
	125	113	5750	Green
	290	118	6000	Green
	650	145	7400	Green
	1000	175	8900	Green

TABLE VI (Continued)

SOLUBILITY OF CuF 2 IN PROPYLENE CARBONATE ELECTROLYTE

Materials:	Propylene Carbonate, MC & B, Li dried and distilled;
<u> </u>	$H_2O < 20 \text{ ppm}.$
	Lithium Perchlorate, Foote Mineral Co., vacuum dried
	at 110°C for 24 hours; $H_0 O = 600$ ppm.
	Cupric Fluoride, Ozark Mahoning Co., as received;
	$H_2O = 3300 \text{ ppm}$

<u>Series B</u> - 20 gm. $LiC10_{4}/100$ ml PC; Solution Density = 1.30 gm/ml.

Water	Agitation			
Content,	Time,	Copper (II) Con	ncentration	Solution
ppm	Hours	μ moles/ml	ppm	Color
150	25	4.6	224	Off White
	125	6 . 2	303	Off White
	290	6.5	317	Off White
	650	12.5	610	Light Tan
	1000	13.0	635	Light Tan
430	25	5.0	245	Off White
	125	6.8	333	Off White
	290	99.5	465	Off White
	650	17.5	855	Tan
	1000	17.0	830	Tan
960	25	4.7	230	Off White
	125	8.5	416	Off White
	290	15.6	765	Off White
	650	25.0	1220	Olive Yellow
	1000	24.5	1200	Olive Yellow
1760	25	4.8	235	Off White
	125	24.6	1210	Very Light Green
	290	36	1770	Light Green
	650	39.0	1900	Olive Green
	1000	38.8	1890	Olive Green
4960	25	32	1570	Light Blue Green
	125	90	4400	Green
	290	100	4890	Green
	650	135	6600	Green
	1000	135	6600	Green

TABLE VI (Continued)

Ē

SOLUBILITY OF CuF₂ IN PROPYLENE CARBONATE ELECTROLYTE

Materials: Propylene Carbonate, MC & B, Li dried and distilled; $H_2O < 20$ ppm. Lithium Perchlorate, Foote Mineral Co., vacuum dried at 110°C for 24 hours; $H_2O = 600$ ppm. Cupric Fluoride, Ozark Mahoning Co., as received; $H_2O = 3300$ ppm.

Series C - 30 gm. $LiC10_4/100$ ml PC; Solution density = 1.30 gm/ml.

Water	Agitation			
Content	Time,	Copper (II) Con	ncentration	Solution
ppm	Hours	µ moles/ml	ppm	Color
180	25	4.9	232	Off White
	125	7.8	370	Off White
	290	9.4	446	Off White
	650	15.5	735	Light Tan
	1000	15.0	710	Light Tan
430	25	4.5	214	Off White
	125	7.8	370	Off White
	290	11.0	525	Off White
	650	17.5	830	Tan
	1000	17.5	830	Tan
980	25	4.5	214	Off White
	125	9.4	446	Off White
	290	15.5	740	Very Light Green
	650	25.0	1185	Olive Yellow
	1000	24.5	1160	Olive Yellow
2000	25	5.2	247	Off White
	125	32.0	1530	Very Light Green
	290	29.0	1860	Light Green
	650	50.0	2370	Olive Green
	1000	49.0	2320	Olive Green
5000	25	70	3330	Light Green
	125	104	5000	Green
	290	121	5800	Green
	650	155	7300	Green
	1000	155	7300	Green

TABLE VII

SOLUBILITY OF CuF₂ IN BUTYROLACTONE ELECTROLYTE

Materials:Butyrolactone, MC & B, Li dried and distilled;
H2O < 20 ppm.</th>Lithium Perchlorate, Foote Mineral Co., vacuum dried
at 110°C for 24 hours; H2O = 600 ppm.Cupric Fluoride, Ozark Mahoning Co., as received;
H2O = 3300 ppm.

Series A - 10 gm. LiC10₄/100 ml BL; Solution Density = 1.18 gm/ml.

Water	Agitation			
Content,	Time,	Copper (II)	Concentration	Solution
ppm	Hours	μ moles/ml	ppm	Color
120	25	5.9	305	Off White
	125	8.4	435	Off White
	29 0	12.6	655	Pale Yellow
	650	14.7	790	Yellow Green
	1000	14.5	780	Yellow Green
430	25	4.0	215	Off White
	125	4.5	240	Off White
	290	10.0	540	Pale Yellow
	650	14.0	755	Yellow Green
	1000	18.5	995	Light Olive
850	25	5 . 0	270	Off White
	125	8.8	475	Very Light Green
	290	17.9	965	Light Yellow Green
	650	22.7	1220	Yellow Green
	1000	29.0	1560	Olive
2340	25	18.0	970	Light Green
	125	31.0	1670	Green
	290	53.0	2850	Green
	650	90	4850	Green
	1000	115	6180	Green
6440	25	113	6100	Blue Green
	125	125	6730	Blue Green
	290	162	8700	Dark Green
	650	226	12200	Emerald Green
	1000	285	15300	Emerald Green

TABLE VII (Continued)

SOLUBILITY OF CuF2 IN BUTYROLACTONE ELECTROLYTE

Materials:	Butyrolactone, MC & B, Li Dried and Distilled;
	$H_2O < 20 \text{ ppm}$.
	Lithium Perchlorate, Foote Mineral Co., vacuum dried
	at 110°C for 24 hours; H_2O - 600 ppm.
	Cupric Fluoride, Ozark Mahoning Co., as received;
	H_2O = 3300 ppm.

.

<u>Series B</u> - 20gm. LiC10₄/100 ml BL; Solution Density = 1.22 gm/ml.

Water Content, ppm	Agitation Time, <u>Hours</u>	Copper (II) µ moles/ml	Concentration ppm	Solution Color
160	25	4.8	250	Off White
	125	8.0	415	Pale Yellow
	290	15.0	785	Yellow Green
	650	21.4	1115	Olive Yellow
	1000	24.0	1250	Olive Yellow
460	25	5.6	290	Pale Yellow
	125	10.8	565	Pale Yellow Green
	290	21.2	1105	Yellow Green
	650	34.5	1800	Olive
	1000	40.5	2110	Olive
1020	25	8.0	415	Pale Yellow
	125	16.8	875	Yellow Green
	290	38.0	1980	Green
	650	60.0	3120	Olive Green
	1000	68.0	3540	Olive Green
1870	25	12.8	665	Pale Green
	125	54	2810	Green
	290	75.0	3910	Dark Green
	650	76.0	3960	Dark Green
	1000	120	6250	Dark Green
5260	25	73	3800	Green
	125	165	8600	Emerald Green
	290	230	12000	Emerald Green
	650	235	12200	Emerald Green
	1000	240	12500	Dark Emerald Green

TABLE VII (Continued)

SOLUBILITY OF CuF₂ IN BUTYROLACTONE ELECTROLYTE

Materials:Butyrolactone, MC & B, Li dried and distilled;
H20 < 20 ppm.</th>Lithium Perchlorate, Foote Mineral Co., vacuum dried
at 110°C for 24 hours; H20 = 600 ppm.Cupric Fluoride, Ozark Mahoning Co., as received;
H20 = 3300 ppm.

Series C - 30gm. LiClO₄/100 ml BL; Solution Density = 1.27 gm/ml.

Water	Agitation						
Content,	Time, Hours	Copper (II) Concentration		Solution			
ppm		μ moles/ml	ppm	Color			
190	25	6.5	325	Pale Yellow			
	125	10.9	545	Pale Yellow Green			
	290	16.0	800	Yellow Green			
	650	24.0	1200	Olive			
	1000	27.5	1375	Olive			
460	25	7.2	360	Light Yellow Green			
	125	12.8	640	Light Yellow Green			
	290	21.6	1080	Yellow Green			
	650	27.0	1350	Olive Green			
	1000	43.0	2150	Olive Green			
1040	25	9.3	465	Light Yellow Green			
	125	23.6	1180	Light Green			
	290	39.0	1960	Green			
	650	50.0	2500	Olive Green			
	1000	84.0	4200	Dark Olive Green			
2100	25	16.9	845	Yellow Green			
	125	70	3500	Green			
	290	79.0	3960	Dark Green			
	650	89.5	4480	Dark Green			
	1000	135	6750	Dark Green			
5250	25	64	3200	Green			
	125	177	8860	Emerald Green			
	290	215	10750	Emerald Green			
	650	250	12500	Dark Emerald Green			
	1000	250	12500	Dark Emerald Green			

2. 1. 3. 2. Effect of Electrolyte Salts

It was believed that decomposition of CuF_2 in the LiClO₄ electrolytes probably proceeds according to the reaction

$$CuF_2 + 2 LiClO_4 \rightarrow Cu(ClO_4)_2 + 2 LiF_4$$

and that the low solubility of LiF acts as the driving force for this reaction to proceed nearly to completion. To test this assumption, a number of other candidate electrolyte salts were compared to LiC10_4 in CuF_2 stability tests. (With some exceptions, the same salts were evaluated in the lithium stability tests described in Section 2.1.2.3).

Electrolyte solutions with the concentration of 1 mol of salt per liter of solution were prepared using lithium-treated and distilled PC and vacuum dried salts. Forty milliliters of solution and 1.0 gram of CuF_2 were placed on the laboratory shaker, agitated, and analyzed iodometrically at one week intervals for copper II content. Results of these analyses as well as water concentrations (Karl Fischer) and specific conductance of the solutions are shown in Table VIII, page 20.

The most significant trend displayed by these tests was the high solubility of CuF_2 with lithium as compared to potassium and sodium electrolytes. This would suggest that, for improved wet shelf life, a salt of the latter two alkali metals rather than one of lithium should be selected. Apparantly, NaF and KF have a higher solubility in propylene carbonate than does LiF, thereby reducing the rate of the double decomposition reaction.

2. 1. 3. 3. Effect of Solvent

This test series was designed to evaluate the effect of various solvents on the stability of CuF_2 in the presence of $LiClO_4$ and $KAsF_6$. Stability tests were performed as described in the previous section. All solvents were lithium treated and distilled, except for nitromethane which was not distilled because of the potential explosion hazard involved.

The two solutes were selected for the tests to further study the effect of the lithium and potassium ion on the stability of CuF_2 . Also, $KAsF_6$ appeared to be more uniformly soluble than KPF_6 in the solvents studied. Concentrations (except where indicated) were 1 mol solute/liter of solvent.

Specific conductance, Karl Fischer water content, and results of the iodometric analyses for Cu II are presented in TABLE IX, page 21.

In the acetic anhydride electrolytes, a chemical reaction between the solvent and CuF_2 took place as indicated by a blue voluminous precipi-
TABLE VIII

CuF2 STABILITY IN PC ELECTROLYTES

1.0 Molar Solutions Room Temperature

	µg H ₂ O/mI of	L _{s,}	Cu	++ Concent	ration	
Salt	Electrolyte	$\Omega^{-1} \mathrm{cm}^{-1}$	7 days	14 days	21 days	28 days
LiC104	90	5.4 x 10 ⁻³	364	492	536	660
NaC10	72	5.6	32	64	96	160
KPF ₆	97	7.8	71	70	90	77
KAsF ₆	61	8.1	83	64	192	96
LiBF4(m)*	170	6.4	800	896	1110	1056
LiPF ₆ (m)	105	6.4	500	691	1343	1600
LiAsF ₆ (m)	260	6.2	960	905	1322	1152
NaAsF ₆ (m)	160	8.2	51	192	77	64
LiBF ₄	129	2.9	320	320	557	544

* The solutions designated with the suffix (m) were prepared by mixing 2 M solutions of $LiClO_4$ and of the required potassium salt and filtering off the precipitated $KClO_4$.

TABLE IX

STABILITY OF CuF2 IN LIC104 AND KASF6 SOLUTIONS

A. LiC104 Solutions

t

	KFA	Ls	Cu I	I CONCENTRA	ATIONS	
Solvent	μ g H ₂ O/m1	Ω^{-1} cm ⁻¹	3 days	10 days	<u>17 days</u>	24 days
PC	180	5.2 x 10 ⁻³	806	384	384	557
DMSO	175	11.6	>6400	**		
AA*	125	10.6	64	<32	160	96
NDA	185	15.7	>6400	<u> </u>		
NM	1000	7.4	>6400	**		
			<u>7 days</u>	<u>14 days</u>	21 days	28 days
MA	76	1.4	331	384	511	692

* Saturated (% 0.5M)
** Solutions having Cu II concentrations in excess of 6400 µg/ml after 3 days were dropped from the program.

				Cu II CON	CENTRATION	
B. KAs F	6 Solutions		<u>3 days</u>	10 days	17 days	24 days
PC	155	8.1	38	96	<30	96
DMSO	75	11.6	1830	3600	3610	4430
AA	45	13.6	145	160	154	192
NDA	75	22.3	215	138	960	384
NM	1365	10.8	64	<30	96	102
			7 days	<u>14 days</u>	21 days	<u>28 days</u>
MA	90	10.9	64	96	160	83

tate formed in the serum bottles. The copper content in these solutions was low.

With all solvents, LiClO₄ produced considerably higher CuF₂ solubilities than did KAsF₆. This was particularly evident with nitromethane solutions, where LiClO₄ produced over 6400 ppm Cu II after 3 days of contact, while KAsF₆ produced only 100 ppm after 24 days of agitation. Both solutes gave low copper concentration in AA, but as stated before, this is due to a chemical reaction yielding an insoluble product.

If solubility of CuF_2 is the main impediment to wet shelf life for the CuF_2 -Li system, improved stand properties should result with $KAsF_6$ or other solutes giving low Cu II concentrations. This needs to be verified in cell tests.

2. 1. 4. Pulse Load Tests

To correlate results of electrode stability tests with cell performance with the various electrolytes, two-plate CuF_2 -Li cells were constructed and discharged. The lithium electrodes were constructed by pressing 1/16 inch thick lithium ribbon onto expanded silver. Copper fluoride electrodes were prepared by a filter press technique using cellulose fibers as binders, or by hot press molding with powdered polyethylene binder. The construction techniques are described in detail in the Appendix, Table A-6, page 134.

Cells were constructed with electrodes measuring $1.5 \ge 0.5$ in. and separated by 0.03 inch thick microporous rubber. Glass slides were used for external cell support with rubber bands supplying compression. Activation was accomplished by lowering the cells into 1.0 inch I. D. test tubes containing sufficient electrolyte (5 ml) to cover about 1/4 of the electrode height. A silver wire or lithium reference electrode was dipped in the electrolyte solution. The cell components and the assembled cell is pictured in Figure 3, page 23, and Figure 4, page 24.

In order to determine the individual electrode potential and the IR drop in the electrolyte, a discharge circuit similar to that described by Kordesch and Marko³ was employed. A particularly attractive feature of this test method is that reference electrode positioning is not critical, since the potential reading is taken only during the current-off half cycle of the load profile. A circuit diagram of the equipment constructed and employed is shown in Figure 5, page 25.

³ K. Kordesch and A. Marko: <u>J. Electrochemical Society</u>, 107, 480 (1960).

FIGURE 5

2. 1. 4. 1. Effect of Electrolyte Salts

Cells were constructed as described on page 22, and activated with electrolytes having 1 mol of salt/liter of PC. The solutes in this series were LiClO₄, NaClO₄, KPF₆, KAsF₆, LiPF₆(m), ⁴ LiBF₄, LiAsF₆(m), and NaAsF₆(m). Discharge of the cells was commenced at 0.6 mA/cm² two hours after addition of the electrolyte. All tests were performed at 35° C.

Construction and discharge data for the cells are summarized in TABLE X, page 27. Voltage-time data for the best cell in each replicate set are shown in Figures 6 to 10, pages 28 to 32, (except for LiPF_6 and KPF_6 cells which gave less than 10 hours discharge to 2.0 VF).

The potential of the silver wire reference electrode was not entirely stable in the electrolytes used, becoming more positive during the course of the discharge. However, the measurements obtained do show cell capacity to be limited by polarization of the CuF_2 electrode. The highest CuF_2 reduction efficiencies were obtained in $LiClO_4$ (64%) and $LiAsF_6$ (54%). Practically no capacity could be obtained with $LiPF_6$ or KPF_6 solutes.

2. 1. 4. 2. Effect of Solvent

Other two-electrode cells were constructed as described before and tested for discharge performance in $LiClO_4$ and $KAsF_6$ solutions in PC, DMSO, AA, NDA, NM and MA. In this series, the reference electrodes were lithium pressed onto expanded silver, but other test parameters, including electrolyte concentration, were as described in the previous section. Results of these tests are shown in Table XI, page 33.

The best discharge performance was obtained with the $LiClO_4$ -PC electrolyte (67.5% CuF₂ reduction efficiency). Both DMSO and NDA cells gave CuF₂ reduction efficiencies around 30% with $LiClO_4$ solute. Results with KAsF₆ electrolytes were generally poorer. Reference electrode measurements taken at various times during the discharge again showed capacity to be limited by cathode polarization.

2. 1. 5. Specific Conductance Measurements

Specific conductance of electrolyte solutions was determined during various phases of this investigation. The results of most of these measurements are presented together with other data in the appropriate sections of the report.

⁴ The suffix (m) indicates solution prepared by double decomposition.

TABLE X

•

EFFECT OF ELECTROLYTE SALT ON CuF2-Li PERFORMANCE IN PC

	Av. Discharge	Potential to	2.0 VF, Volts	2.93	2.89	2.79	2.46	2.63	2.59	2.81	2.64	2.98	2.86	2.74	2.65	2.95	2.99	2.79	2.75
of Solvent		CuF ₂ Reduction	Eff., %	64.4	62.8	10.4	13.3	2.04	1.97	0.18	38.1	30.8	39.6	3.9	4.7	43.7	53.7	0.4	31.0
ol Solute/L mA/cm ²		:0 2.0 VF	- HH	0.289	0.261	0.061	0.210	0.016	0.013	0.144	0.156	0.143	0.180	0.029	0.018	0.167	0.243	0.021	0.255
ation: 1 mc C.D.: 0.6 ature: 35%		Discharge t	Hours	96.4	87.0	20.2	70.0	5.3	4.2	0.48	52.0	47.5	60.0	9.5	5.9	55.6	81.0	7.1	85.0
e Concentr Temner		Initial	OCV	3.43	3.52	3.39	3.56	3.38	3.50	3.39	3.40	3.42	3.55	3.44	3.50	3.44	3.42	3.41	3.49
Electrolyt		Theo. Cu F_2	Cap., AH	0.434	0.387	0.413	0.452	0.526	0.509	0.387	0.386	0.434	0.431	0.542	0.319	0.348	0.418	0.392	0.640
			Solute	LiCIO,	-	$NaC10_{4}$	-	KPF	0	KAs F _c	=	$LiBF_{4}$		LiPF _(m)	0 =	LiAsF ₆ (m)	, =	NaAsF ₆ (m)) =
		Cell	No.	1	2	3	4	ഹ	6	7*	8	6	10	11	12	13	14	15*	16

* Cell failed due to external short circuit.

FIGURE 6

FIGURE 9

FIGURE 10

TABLE XI

EFFECT OF SOLVENT ON CuF2-Li CELL PERFORMANCE

Electrolyte Concentration: 1 mol Solute/Liter of Solvent Current Density: 0.6 mA/cm² Temperature: 35°C

				Theo.	Time to	Cap. to	
Cell				CuF ₂ Cap.	2.5 VF.	2.5 VF.	Efficiency
No	Solvent	Solute	11σ H _o O/ml	ΔΗ	Hours	ΔH	Dercent
<u></u>		001000	<u>µg 11207 m1</u>		110413		rercent
1	PC	LiClo.	69	396	89 0	0 267	67 5
2	PC	11	60	707	65.0 65.0	0.104	C7.5
2	FC DVGO		09	. 303	05.5	0.190	51.5
3	DMSO		109	.270	29.5	0.088	32.5
4	DMSO	11	109	.309	32.0	0.096	31.1
5	NDA	LiC10,	99	.296	24.0	0.072	29.3
6	NDA	11 4	99	.504	28.5	0.085	29.8
7	NM	**	241	.296	1.5	0.005	1.7
8	NM	11	241	.313	1.5	0.005	1.6
					2.10		1.0
9	AA	LiC10,	150	.566	42.8	0.128	22.6
10	PC	KAsF.	245	. 374	20.5	0.056	17.6
11	DMSO	···· 6	110	.583	41.0	0.123	21 1
12	DMSO	11	110	305	30 5	0.002	70 1
14	DHOU		110	. 505	50.5	0.092	30.1
17	NDA	KA cE	146	266	25 5	0.076	20 F
1.5	NDA	KASF ₆	140	.200	25.5	0.076	20.5
14	NDA		146	.422	34.5	0.104	24.7
15	NM	71	121	.305	14.0	0.060	14.6
16	AA	**	114	.305	20.0	0.092	19.7
						. –	

To facilitate reference to the conductivity values, all measurements contained in the various sections of the report have been summarized in Table A-7, page 135, of the appendix. This table also contains conductivity measurements which were obtained in the course of contract work but have not been included in the body of the report.

2. 1. 6. Purification of Salts

Some studies of solute purification methods were undertaken in this program. The following two methods were used for the purification of electrolyte salts by reprecipitation:

Method 1: (Table XII)

The salts were dissolved in a polar solvent and any insoluble impurities were removed by filtration. The desired salt was reprecipitated from the filtrate by the addition of a non-polar solvent. The crystals were filtered off, washed with the non-polar solvent and dried.

Method 2: (Table XIII, page 35)

The salts were dissolved in the minimum amount of hot solvent from which the desired salt would recrystallize on cooling. The most desirable solvents are ones which give large increases in salt solubility with increasing temperature. After cooling to room temperature, the crystals were filtered off, washed with a small amount of the crystallizing solvent and dried.

The methods for crystallization of $KAsF_6$ shown in Table XII gave a solventfree product consisting of colorless regular crystals. Recrystallization of LiClO₄ from acetic anhydride yielded a disolvate which could not be converted to the unsolvated salt by heating under hard vacuum. (Decomposition was indicated by discoloration of the material). Recrystallization of $(C_2H_5)_4NF$ from acetonitrile did not reduce the water content of the salt. Although the appearance of this material was improved("as received" material was yellowish-brown, while the reprecipitated salt was white), it was still decomposed by heating in a vacuum oven $(50^{\circ}C)$, as evidenced by a strong odor of triethylamine.

TABLE XII

RECRYSTALLIZATION FROM MIXED SOLVENTS

Solute	Weight Solute g	Recrystallization System	Insoluble Impurities	Yield 	Remarks
KAsF ₆ *	5	Acetone (5 ml) - Dioxane or Toluene (5 ml).	25 mg	3.9	Dried at 110°C and hard vacuum.
KAsF ₆	5	Acetone (5 ml) - Dioxane (1 ml).	25 mg	2.2	Crystals formed over a period of 3 days by the slow evapora- tion of acetone.

(Method 1)

*H₂O content before and after purification less than 100 μ g/g.

TABLE XIII

RECRYSTALLIZATION FROM A SINGLE SOLVENT

(Method 2)

Solute	Weight Solute g	Recrystallization Solvent	Yield g	Remarks
KAsF ₆ *	1	Ether (25 ml)		Insufficiently soluble.
KAsF ₆	1	Ethyl Acetate (25 ml)		Insufficiently soluble.
LiClO ₄ **	г	Ether (2 ml)		No precipitation by cooling or by the addition of non- polar solvents.
LiClO ₄	1	Ethyl Acetate (2 ml)		No precipitation by cooling or by the addition of non- polar solvents.
LiClO ₄	1	Acetone (2 m1)		No precipitation by cooling or by the addition of non- polar solvents.
LiClO ₄	S	Acetic Anhydride (25 ml)	12.5	Material is a disolvate of Ac ₂ 0. Decomposes on heating.
(C2H5) 4NF	25	Acetonitrile (50 ml)	11.5	Decomposes on heating.
* Water ** Water *** Water	content less th content less th content 6500 µg	an 100 μg/g before purifica an 3000 μg/g before purific /ml before and after purifi	ation. cation. ication.	

2. 2. Copper Fluoride Studies

Since copper fluoride was the cathode material of major interest in this program, some investigations of its purity and methods for improvement of same were undertaken.

As received from the manufacturer⁵, CuF_2 typically contained between 0.5 and 5.0% water in the form of $CuF_2 \cdot 2H_2O$. Solubility data obtained for CuF_2 in electrolyte solutions, indicated that much lower water contents may be required.

2. 2. 1. CuF_2 Drying Studies

It has been reported in the literature⁶ that $CuF_2 \cdot 2H_2O$ decomposes with formation of CuOHF when heated at 132°C. Assuming that this reaction proceeds to completion, a simple analysis for water appears possible by heating the material and determining weight loss. Such analyses were performed with materials received from the suppliers and the results were compared to those of X-ray analyses. Results of these tests are listed in Table XIV.

TABLE XIV

WATER CONTENT OF CuF₂

	Water	c Content, %
Lot No.	X-Ray	Weight Loss
2	3.9	3.3
3	1.0	0.8
4	5.8	3.6
6	2.8	2.6

As can be seen from these figures, the weight loss method gives low results compared to X-ray analysis.⁷ The agreement becomes even poorer when samples of more than a few grams are heated, indicating difficulty of water removal.

Removal of water from CuF_2 to be used for cathode construction was of

⁵ Material from A. D. McKay and Ozark-Mahoning Co., was used on this program.

⁶ C. M. Wheeler and H. M. Haendler; J. <u>Amer. Chem. Soc.</u>, <u>76</u>, 263, (1954).

⁷ Details of X-ray analysis for $CuF_2 \cdot 2H_2O$ are given in the Appendix, Table A-8.

major importance in this program, since the detrimental effect of water on the solubility of CuF_2 had been demonstrated. Two basic procedures were employed for drying of CuF_2 . The first method involved heating of the material under vacuum, while the second consisted of placing the material in a vertical tube heated by a constant temperature bath and continuously purging the tube with dry argon.

To study the effect of the various drying conditions, seven batches of anhydrous CuF_2 (Lot 7) were treated. The method of treatment and the X-ray patterns obtained before and after drying are presented in Table XV, page 38. The relative concentration of each material in the samples is proportional to the peak intensity (counts/second), but the actual percentage figures can only be calculated for the materials which are available in pure form for calibration (CuF_2 and $CuF_2 \cdot 2H_2O$).

It can be seen from examination of Table XV, that the main decomposition products which result from heating the salt are $CuOHF \cdot CuF_2$ and CuOHF. An unknown compound having a major peak intensity at 4.15 Å is also produced. Its concentration increases with drying time and with temperature.

2. 2. 2. Decomposition of $CuF_2 \cdot 2H_2O$

Since decomposition of $CuF_2 \cdot 2H_20$ is of importance in removing water from CuF_2 , this reaction was studied further in a series of decomposition tests performed on the dihydrate. In the first series of experiments, 50 grams of dihydrate were heated in a sealed vacuum oven having a volume of 6.5 L from which air was evacuated prior to application of heat. Results of the X-ray analyses of the initial and resulting material are given in Table XVI, page 39.

A second series of tests was performed by heating the dihydrate in a tube while purging with argon as described in the previous section; results of these runs are presented in Table XVII, page 40.

It can be seen from the X-ray data that the main decomposition products obtained by both methods are CuOHF and a compound having a major peak intensity at 4.15 Å, the latter becoming more predominant with longer decomposition time and higher temperature. Thus it seems possible to control the composition of the product.

Some solubility tests with the resultant materials in $LiClO_4$ -PC electrolyte were attempted and no Cu II could be detected in the solutions. Cathodes with these materials were constructed and evaluated in cell discharge tests described in the following section.

TABLE XV

MAJOR PEAK INTENSITIES OF VARIOUS COMPOUNDS IN

COPPER FLUORIDE SAMPLES

Compound	As <u>Rec'd</u>	16 Hrs 70°C Oven	16 Hrs 130°C Argon Sweep	16 Hrs 130°C Argon Sweep	16 Hrs 130°C Argon Sweep	113 Hrs 130°C Argon Sweep	16 Hrs 180°C Argon Sweep	16 Hrs 152°C Argon Sweep
CuF ₂	1840	1760	1248	1264	1440	1184	1408	1376
$CuF_2 \cdot 2H_2O$	178	108	13	11	12	N.D.	N. D.	24
CuOHF	N.D*	N.D.	16	12	28	24	12	N.D.
CuOHF • CuF ₂	N.D.	N.D.	72	72	12	16	104	100
Cu0	N.D.	N.D.	12	12	N.D.	N.D.	N.D.	N.D.
Cu ₂ 0	N.D.	N.D.	N.D.	12	N.D.	N.D.	N.D.	N.D.
Cu	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
4.15 Å	N.D.	N.D.	4 0	40	52	120	60	52

% water from

CuF₂•2H₂O 2.2 1.3

*None detected.

TABLE XVI

٩

.

DECOMPOSITION OF CuF2.0H20, LOT A, SEALED CHAMBER

55-7

B54-1

44-1

 $CuF_2 \cdot 2H_2O$, Lot A Untreated

Sample No.

	Time Tempe Chamb	rature er Pressure				32 Hrs. 150°C Vacuum*	20 Hrs. 150°C 0.1 Atm.	20 H 135° Abs. 1 At	rs. C m.Abs.	
Compound	սըս Vajue A	Relative Intensity	Counts/ Second	Relative Intensity	Counts/ Second	Relative Intensity	Counts/ Second	Relative Intensity	Counts/ Second	Relative Intensity
CuF ₂ •2H ₂ 0	4.78 3.71 2.71	100 25 45	2400 600 1080	100 25 45	320		24		256	100
cu0HF•CuF ₂	4.22 3.54 3.45	100 85 70					68		320 392	
CuOHF	4.68 2.55 1.97	100 40 35	8 1 6 8 1 6 8 6 7 8		120		2496 1044 576	100 42 23	1584 768 352	100 48 22
Unknown	4.15 2.77 2.75				1136 560 320	100 49 28				
* Vacuum p	ump was	connected	 to chambe	r for 16 ho	urs at wh	ich time ch	 amber was	sealed.		

** Line is obscured by CuOHF line.

XVII	
TABLE	

ARGON SWEEP
B,
LOT
•2H ₂ 0,
CuF ₂
Ы
DECOMPOSITION

59-5

57-1

57-1

55-9

CuF₂•2H₂O, Lot B Untreated

Sample No.

	lime Cemperat	ure			50 13	Hrs. 1 5°C 1	l5 Hrs. l50°C	10 Hrs. 2 165°C 1	0 Hrs. 85°C	
Compound	"D" Value Å	Relative Intensity	Counts/ Second	Relative Intensity	Counts/ Second	Relative Intensity	Counts/ Second	Relative Intensity	Counts/ Second	Relative Intensity
$CuF_2 \cdot 2H_2 O$	4.78 3.71 2.71	100 25 45	1696 464 800	100 27 47						
cuoHF•CuF ₂	4.22 3.54 3.45	100 85 70	124 124 100	100 100 81					328 264 164	100 80 50
CuOHF	4.68 2.55 1.97	100 40 35	100 64 76	100 64 76	2272 1008 424	100 44 19	1360 672 232	100 49 17	344 224 80	100 65 23
Unknown	4.15 2.77 2.75				128 56 46	100 44 36	448 308 172	100 69 38	370 180 	100 49

2. 3. Experimental Cell Tests

At various points in the program, three-plate experimental cells were constructed and tested to study the many variables affecting the performance of the CuF_2 -Li system. Construction of these cells was essentially as described in reports on earlier work performed at this laboratory.⁸

The two lithium electrodes were prepared by pressing 1/16 inch thick ribbon (Foote Mineral Co.) onto expanded silver. The petrolatum used to protect the lithium during shipment and storage, was dissolved with heptane before construction of the cells. The electrodes measure 1.5 x 1.5 inches and had about 7.8 AH of theoretical anode capacity.

The CuF_2 electrodes were usually prepared by a filter press technique using paper fibers as the binder and graphite as the conductive component. A heptane slurry having the desired composition was prepared and filtered on a laboratory paper sheet mold. The filter mat was then cut to size, pressed onto expanded silver, and the heptane was removed by drying in vacuum.⁹ Some tests were also performed with pasted electrodes made with polystyrene binder, and with hot pressed electrodes containing powdered polyethylene.

The theoretical reduction capacity of the CuF_2 electrodes (0.526 AH/g CuF_2) was generally in the range of 3 - 5 AH. Since this is only about 50% of the theoretical Li capacity (7.8 AH), the cell capacity was taken as a measure of positive electrode performance. The working area of the cells was 2 x 1.5 x 1.5 inches, or about $29cm^2$.

The experimental cell components before assembly are shown in Figure 11, page 42. The separation used for these cells was 0.03 inches thick microporous rubber, and a heat sealed polyethylene envelope served as the external case. The cells were generally supported between blocks held together with bolts as shown in Figure 12, page 42.

During both discharge and stand tests, the assembly was placed in a hermetically sealed container to avoid contamination with moisture from the air.

⁹ Further details on this method are given in the Appendix, Table A-8.

⁸ See, for example, NASA CR-54803, pp. 67-72.

Figure 12

Cell Discharge Test Rack

¢

2.3.1.

Evaluation of wet stand capabilities of CuF_2 -Li cells with $LiClO_4$ -PC electrolyte was conducted. The main variable in this study was the water content of the CuF_2 used for making the positive electrodes. The three-plate cells were built with filter mat positive electrodes having the composition:

CuF_2	82%
Graphite	12%
Paper Fiber	6%

The separation was commercial microporous rubber 0.03 inches thick, and the electrolyte solution had the concentration 15g solute/100 ml solvent. The water content of the electrolyte was in the order of 500 ppm.

2. 3. 1. 1. Effect of Vacuum Drying

In this test, two groups of 22 cells, identical except for treatment of CuF_2 before construction of electrodes, were built and tested. For one group of cells, CuF_2 having a water content of 2.8 percent (X-ray analysis) was used, while for the second group the same material was dried at 70°C for 16 hours under vacuum (100 - 200 microns). The water content of the dried material was not determined, but other drying tests on the same material indicated that the water content was in the range of 1 - 2 percent after drying.

After the test cells had been filled with the electrolyte, four cells from each group were put in discharge through 200Ω resistors at 35° C, while the remaining cells were stored at 35° C, -15° C, and -55° C. It was originally intended to discharge groups of two cells from each of the test environments after a stand of 1 month, 3 months, and 6 months; however, these intervals were changed to 2 weeks, 4 weeks, and 6 weeks after a rapid open circuit potential decay was observed in many cells after a stand of only 2 weeks.

Construction and discharge data for the test cells are summarized in Tables XVIII and XIX, pages 44 and 45. As expected, poor capacity retention was exhibited by the cells which had been on stand at 35° C at -15° C and -55° C, capacity retention was in the order of 80 percent after 4 weeks of stand for the cells built with the vacuum-dried CuF₂. After 6 weeks of stand, less capacity was retained by cells at -15° C than at -55° C.

Inspection of the cells after discharge showed the lithium slab electrodes to be in good condition except for the reduction in thickness which results from discharge. The inside surfaces of the lithium electrodes (those facing the CuF_2 electrode) showed green deposits which were more pronounced in cells which had the poorest shelf life.

TABLE XVIII

SELF-DISCHARGE IN CuF2-Li CELLS

Undried CuF₂: 2.8% H₂O Electrolyte: 15g LiClO₄/100 ml PC Electrode Area: 29 cm² Load: 200 Ω

	Stand	i tions				Average	
Cell No	Temp. °C	Time, wks	Theo CuF ₂ Cap., AH	Hrs to 2 OVF	Capacity to 2.0 VF, AH	Potential Volts	Cathode Eff.,%
3-1			3.74	135	1.88	2.77	50
3-2			3.46	127	1.79	2.82	52
3-3			3,78	131	1.83	2.79	49
3-4			3.52	132	1.89	2.86	54
3-51	+35	2					
3-61	+35	2	****				
3-71	+35	2					
3-81	+35	2					* -
3-91,2	+35	2					
3-10 ²	+35	2		<6			
3-11	-15	2	3.64	42	0.55	2.61	15
3-12	-15	2	4.04	64	0.85	2.65	21
3-13	-15	4	4.66	49	0.49	2.76	11
3-14	-15	4	4.03	43	0.56	2 - 62	14
3-15 ¹	-15	6	4.18				
3-16	-15	6	369	<12			
3-17	-55	2	4.05	101	1.42	2.81	35
3-18	-55	2	4.04	65	0.92	2.81	23
3-19	-55	4	3.65	88	1.20	2.72	33
3-20	-55	4	4.12	99	1.32	2.65	32
3-21	-55	6	4.23	56	0.74	2.64	17
3-221	-55	6	3.32				

Cell potential below 2 volts after stand.
 Cell had 5000 ohm load across terminals during stand.

TABLE XIX

SELF-DISCHARGE IN CuF₂-Li CELLS

 CuF_2 Dried at 70°C for 16 Hours Electrolyte: 15g LiClO₄/100 ml PC Electrode Area: 29 cm² Load: 200Ω

	Sta Condi	nd tions				Average Discharge	
Cell	Temp.	Time.	Theo, CuF ₂	Hrs. to	Capacity to	Potential	Cathode
No.	°C	wks.	Cap., AH	2.0VF	2.0 VF, AH	Volts	Eff., %
							·
3-1			3.88	166	2.44	2.94	63
3-2			4.23	198	2.89	2.91	68
3-3			3.88	161	2.32	2.88	60
3-4			4.17	175	2.59	2.96	62
3-5 ¹	+35	2					
$3-6^{1}$	+35	2					
3-7	+35	2	3.82	33	0.41	2.45	11
3-8 ¹	+35	2					
z 0 ¹ 2	. 75	2					
3-3 3 7 102	+ 33	2	7 09		0.28	2 71	7
5-10-	+35	2	3.90	24	0.28	2,34	/
3-11	-15	2	3.98	155	2.19	2.83	55
3-12	-15	2	3.74	147	2.07	2.82	55
3-13	-15	4	3.74	147	2.09	2.85	56
3-14	-15	4	3.84	164	2.38	2.90	62
				70	1 01	2.00	20
3-15	-15	6	3.64	12	1.01	2.80	28
3-165	-15	6	3.64	48	0.64	2.6/	1/
3-17	-55	2	3.53	101	1.41	2.79	40
3-18	-55	2	4.15	87	1.30	2.99	31
3-19	-55	4	3 87	148	2.09	2.81	54
3-20	-55	4	4.10	148	2.10	2.84	51
7 01		6	4 77	160	2 77	2 82	55
3-21	- 33	D C	4.33	100	2.37	2.02	55 61
3-22	-22	ъ	4.00	192	2.05	2.00	01

¹ Cell potential below 2 volts after stand. ² Cell had 5000 ohm load across terminals during stand. ³ 2.52 VF.

•

2. 3. 1. 2. Effect of Argon Drying

A second test series was conducted using CuF_2 dried in a stream of argon. One lot of the material was dried at 130°C for 16 hours, while the second lot was dried under the same conditions for 113 hours. Subsequent X-ray analyses showed the water content of the treated materials to be below 0.3%. The stand temperatures for this series of cells were 35°C and -15°C, while the discharges again were conducted at 35°C thru 200 Ω loads.

Without open circuit stand, capacity was somewhat higher for the cells which had CuF_2 dried for the shorter period (16 hours), indicating that some decomposition of CuF_2 may have resulted from the argon drying. After a two week stand at 35°C, only two of the six cells with each type of CuF_2 had any significant capacity above 2.5 volts. After stand periods of 2, 4, and 6 weeks at -15°C, cell performance was not significantly different than had been obtained from cells which had received no open circuit stand. Results of the discharge tests are summarized in Tables XX and XXI, pages 47 and 48. The voltage-time data for the cells are presented in Figures 13 to 17, pages 49 to 53, and the extent of shelf discharge under the various test conditions for the highest performance cell in each group is displayed graphically in Figure 18, page 54.

Inspection of the cells at the end of the test did not reveal clearly why the cells failed to discharge after the open circuit stand period at 35°C. All cell components appeared to be in good condition, and no evidence of short-circuiting could be found. However, the unabsorbed portion of the electrolyte had disappeared during the stand period, and an ester-like odor was always evident in the constant temperature chamber. This suggests loss of solvent by decomposition and evaporation, which contributes to the loss of capacity after stand. Also, the loss of electrolyte is more pronounced in the cells which show more extensive capacity loss during stand. This factor requires further study with hermetically sealed cell assemblies.

2. 3. 2. Evaluation of Thermally Decomposed CuF2•2H2O

For this test, the positive active material was prepared by heating $CuF_2 \cdot 2H_2O$ in a tube swept by argon for 57 hours at 180 - 188°C. The resulting material showed a 23 percent weight loss from the dihydrate and the composition was shown by X-ray analysis to be:

TABLE XX

SELF DISCHARGE IN CuF2-Li CELLS

$\rm CuF_2$ Dried 16 Hours at 130°C Under Argon

Electrolyte:	15g LiC10 ₄ /100 m1	PC
Electrode Area:	29 [°] cm ²	
Load:	200Ω	

	Sta Condi	nd tions				Average Discharge	
Cell No.	Temp.	Time, wks	Theo. CuF ₂ Can. AH	Hours to 2 5 VF	Capacity to	Potential	Cathode Fff %
<u></u>	<u> </u>	<u></u>	Gaptylai		2,5 11, 11		LILL, U
3B-1		-	3.72	170	2.64	3.10	71
3B-2		-	3.98	201	3.16	3.14	79
3B-3		-	3.93	108	1.65	3.06	42
3B-4		-	4.18	184	2.85	3.09	68
3B-5	+35	2	3.83	7			
38-6	+35	2	3.39	0			
3B-7	+35	2	3.97	12			~ -
3B-8	+35	2	3.80	18	0.25	2.76	7
3B-9	+35	2	4.20	12			
3B-10	+35	2	4.04	42	0.59	2.81	15
7R_11	_15	2	3 90	82	1 25	3 05	32
3B-12 ¹	-15 -15	2	4.32	46	0.75	3.25	17
3B-13	-15	4	3.52	141	2.16	3.06	61
3B-14	-15	4	3.50	107	1.64	3.05	47
3B-15	-15	6	4.00	138	2.06	3.03	52
3B-16	-15	6	3.44	138	2.08	3.07	61

¹ Cell had internal short circuit.

TABLE XXI

SELF-DISCHARGE IN CuF₂-Li CELLS

${\rm CuF}_2$ Dried 113 Hours at 130°C Under Argon

Electrolyte: 15g LiClO₄/100 ml PC Electrode Area: 29 cm² Load: 200Ω

	S	tand				Average	
Cell	Temp.	Time,	Theo. CuF ₂	Hours to	Capacity to	Discharge Potential	Cathode
<u>No</u>	<u> </u>	<u>wks.</u>	Cap., AH	2.5 VF	2.5 VF, AH	Volts	<u>Eff., %</u>
3B-17			4,67	170	2.64	3.10	57
3B-18			4,58	170	2.50	2.94	55
3B-19			4.77	202	3.15	3.11	66
3B-20			4.24	122	1.80	2.94	42
3B-21	+35	2	4.79	41	0.58	2.81	12
3B-22	+35	2	4.42	2			
3B-23	+35	2	4.83	12	0.17	2.77	3
3B-24	+35	2	4.84	0			
3B-25	+35	2	4.36	12			
3B-26	+35	2	4.58	12			
3B-27	-15	2	4.20	168	1.62	3.11	39
3B-28	-15	2	4.04	156	2.40	3.07	59
3B-29	-15	4	4.11	155	2.40	3.09	58
3B-30	-15	4	4.27	173	2.65	3.05	62
3B-31	-15	6	4.81	180	2,72	3.06	57
3B-32	-15	6	4.62	159	2.35	2.99	51

FIGURE 14

LTA # 640 - 3B _Cell #11 Discharge Conditions: 2000; +35°C **___**Cell #12 3 Cell Potential, Volts Theoretical \mbox{CuF}_2 Capacity: #11 3.90 AH #12 4.32 AH 100 150 200 250 50 0 Time, Hours _Cell #27 _Cell #28 3 ``` Cell Potential, Volts Theoretical CuF_2 Capacity: #27 4.20 AH #28 4.04 AH 0 50 100 150 200 250 Time, Hours <code>PERFORMANCE OF CuF_2-Li CELLS AFTER 2 WEEKS WET STAND AT -15°C</code>

FIGURE 15

FIGURE 16

LTA #640 - 3B Discharge Conditions: 2000; +35°C _Cell #15 Cell #16 3 Cell Potential, Volts 2 Theoretical \mbox{CuF}_2 Capacity: 1 #15 4.00 AH 3.44 AH #16 200 50 100 150 250 0 Time, Hours Cell #31 -Cell #32 3 Cell Potential, Volts 2 Theoretical CuF₂ Capacity: #31 4.81 AH #32 4.62 AH 1 50 100 150 200 250 0 Time, Hours <code>PERFORMANCE OF CuF_2-Li CELLS AFTER 6 WEEKS WET STAND AT -15°C</code>

FIGURE 17

CAPACITY LOSS IN CuF2-Li CELLS AFTER WET STAND

Unknown Material*	63%
CuOHF	28%
CuOHF•CuF ₂	12%
Total	103%

*Major peak intensity at 4.15 Å.

Filter mat electrodes were prepared by the method described previously: 10 The mix composition was

Active Material	104
Graphite	14
Paper Fiber	7

Twelve 3-plate CuF_2 -Li test cells were constructed and activated with 15g LiClO₄/100 ml propylene carbonate electrolyte (water 50 ppm by Karl Fischer analysis). Groups of four cells were assembled and sealed (with cell terminals protruding) in polyethylene containers measuring 4 x 4 x 3 inches. Four cells were put on discharge thru 200 Ω loads at 35°C, while the remaining cells were discharged under the same conditions after open circuit stand periods of 9 and 30 days at 35°C.

Discharge data for the cells are summarized in Table XXII, page 56, and cell open circuit potentials during stand are given in Table XXIII, page 57. Voltage-time data during discharge and open circuit stand have been plotted for the best cell in each group in Figures 19 and 20, pages 58 and 59.

In comparison to the normal CuF_2 , the decomposed $CuF_2 \cdot 2H_20$ produced higher cell polarization with the 200Ω loads. All cells, except Cell #1, fell to below 2.5V after 4 hours of discharge (because of the distinctly green electrolyte color in Cell #1, it was suspected that this cell had been contaminated with water, possibly thru the use of an improperly dried hypodermic syringe). The positive active material utilization efficiency was likewise reduced, being about one-half of that obtainable from normal CuF_2 . Open circuit potential during stand, and capacity after stand were significantly improved, however. The average discharge potential of cells after 30 days of stand was higher than for cells which had no stand, with only a slight reduction in active material utilization.

The decomposed $CuF_2 \cdot 2H_2O$ appears to be reducible in the LiClO₄ propylene carbonate electrolyte, but its low solubility does not permit the normal

¹⁰See page 41.
H
H
\times
~
[1]
_
\mathbf{m}
\triangleleft

PERFORMANCE OF CELLS HAVING THERMALLY DECOMPOSED CuF2+2H20 CATHODES

AND LI ANODES IN LICIO4,-PC ELECTROLYTE

		Percent Efficiency	47	39	40	35		t 1	30	30	32	1	32	1	76	0 1	15
		AH to 2.0VF	1.84	1.58	1.72	1.37			1.19	1.19	1.05	-	1.29	1	VV L	1.44	.44
	Average Discharge	Potential Volts	2.85	2.33	2.32	2.30		1	2.20	2.21	7 18) • •	2.63	6 1 1	<u>, 1</u> , 1	71.7	2.27
: +35°C 1: +35°C, 200Ω		Discharge Time 2.0 VF, hours	129	136	148	119		< 30	108	108	06	5	98	<12		104	43
nd Temperature arge Conditior	D	0.C.Voltage after stand	1	1 	 			3.42	3.56	3.56	2 57	J.J.	3.33	3.52		3.33	3.53
Star Disché		O.C.Stand Time,days	0			0	•	6	6	σ	, c	ת	30	30	5	30	30
		Initial 0.C.Voltage	3 5 <i>7</i>	2.05 7 70	2.04 7.7.7 7.7	3.52		3.52	3 52	2.04 CU C	0.0 101	5.52	3.52	7 57	10.0	3.53	3.52
		Theo. CuF ₂ Cap.,AH*	2 06			4.33 7 96		4 08	2 00	00.5	000	5.25	4.03	2 70	61.0	3.97	3.73
		Cell No.	-	-	4 1	0 <	t	Ľ	יי) (-	×	σ	, c	1 U	11	12

*The equivalent weight for the material is assumed to be the same as for $\mbox{CuF}_2(51)$.

.

TABLE XXIII

OPEN CIRCUIT POTENTIALS OF CELLS HAVING THERMALLY DECOMPOSED CuF2·2H2O

CATHODES AND LITHIUM ANODES IN LIC104-PC ELECTROLYTE

			<u>Cell</u>	Numbe	rs			
Days		6	_7	8	9	10		12
0	3.52	3.52	3.52	3.52	3.52	3.52	3.53	3.52
3	3.59	3.59	3.59	3.58	3.59	3.59	3.60	3.58
4	3.58	3.58	3.58	3.57	3.58	3.58	3.59	3.57
5	3.58	3.57	3.58	3.56	3.57	3.57	3.58	3.56
6	3.57	3.56	3.57	3.55	3.56	3.57	3.57	3.56
7	3.56	3.56	3.56	3.54	3.55	3,56	3.56	3.55
9	3.42	3.56	3.56	3.54	3.55	3.56	3.56	3.55
11					3.52	3.55	3.42	3.54
12					3.51	3.53	3.37	3.53
13					3.51	3.53	3.36	3.50
18					3.50	3.50	3.30	3.52
19					3.50	3.52	3.40	3.52
20					3.45	3.52	3.42	3.52
25					3.35	3.53	3.45	3.52
26					3.37	3.55	3.37	3.52
30					3.33	3.52	3.33	3.53

Temperature: 35°C

ſ

•

•

FIGURE 19

FIGURE 20

 200Ω discharge. The significantly better shelf life observed with this material can likewise be explained in terms of its lower solubility in the electrolyte solution. Further studies on this material are required to fully evaluate its properties and possible advantages over normal CuF₂ as the active material of the cell.

2. 3. 3. Effect of CoF₃, SbF_3 and MnF_3

Evaluation of additives to filter mat CuF_2 electrodes was undertaken in order to study methods for improving shelf life of CuF_2 -Li cells having propylene carbonate electrolyte. Since it had been demonstrated that presence of water is detrimental to shelf life, materials which are known to react with water were selected for addition to CuF_2 during preparation of the electrodes. It was hoped that these additives would decompose the water released by CuF_2 during stand, thus reducing its solubility in the electrolyte solution and improving capacity retention of the cells.

The additives selected for testing were CoF_3 and MnF_3 at a concentration of 4 grams/100 gram of CuF_2 , and SbF_3 at 6 grams/100 gram CuF_2 (the concentration of additive being roughly proportional to its molecular weight). These were added to CuF_2 prior to jar milling with graphite under heptane. The filter mat composition for construction of the electrodes was 100 parts CuF_2 , 14 parts graphite, and 7 parts paper fiber, plus additive. Electrodes were prepared as described previously¹¹ by pressing 1.5 x 1.5 in. sections of the filter mat onto expanded silver and removing the residual heptane by vacuum drying. Three-electrode cells with outside lithium electrodes and MPR separation were constructed and tested for performance with LiClO₄-PC electrolyte (15 grams salt/100 ml solvent).

Six cells with each type additive, along with six having no additive, were constructed and tested. Two cells from each group were discharged thru 200Ω at 35°C after one day of open circuit stand at 35°C; the remaining cells were discharged after stand periods of 8 and 14 days at 35°C.

Construction and discharge data for the cells are summarized in TABLE XXIV, page 61, while the open circuit potentials of cells during stand are listed in Table XXV, page 62. Voltage-time data for the best cell in each group are presented in Figures 21 to 24, pages 63 to 66.

¹¹ See appendix, Table A-9, page 140.

TABLE XXIV

.

DISCHARGE PERFORMANCE OF CuF2-Li CELLS CONTAINING ADDITIVES

Load: 2000 Discharge Temperature: 35°C

Electrode Area: 29 cm² Electrolyte: 15g LiClO₄/100 m1 PC

ge rge ial AH to Cathode ts 2.5 VF Eff.,%	3.15 80	3,14 79	2.86 70	2.69 68	2.12 52	1.87 48	2.56 61	2.88 77	1.27 34	1.53 42	1.22 31	0.59 16	 	4 1 1 1	1.19 33	1.72 45	0.55 15	0	0	0.57 14	0	0	0 48 16	
Avera Discha Ime Potent rs. Vol	3.12	3.11	3.05	3.04	2.95	2.84	3.00	3.03	2.89	2.94	2.83	2.95			2.83	2.91	2.81			2.76	 		2.73	
Discharge T to 2.5VF, h	202	202	187	177	144	132	157	190	88	104	86	40	0	0	84	118	39	0	0	41	0	0	35	
Stand Time @ +35°C days	1	F	. –	1	1	1	1	1	8	8	8	8	8	8	8	ø	14	14	14	14	14	14	14	
Theo. CuF ₂ Cap., AH*	3.97	3 96	4.08	3.97	4.12	3.89	3.84	3.74	3.77	3.66	3.88	3.63	4.13	3.70	3.63	3.80	3.69	3.66	3.70	3.93	3.84	4.13	3.07	
Grams Additive 100g CuF ₂	I	1	4	4	9	9	4	4	1	ſ	4	4	6	6	4	4	ı	I	4	4	6	9	4	
Additive	1 1 1		CoF 3	CoFo	SbFa	SbF 3	MnFa	MnF ₃			CoF 3	CoF3	SbF_3	SbF_3	MnF ₃	MnF ₃	1 1 1	1 	CoF3	CoF 3	SbF_3	SbF_3	MnF ³	
Cell No.	[C 7 7	2-4	3-5 -5	3-6	4-1	4-2	1-5	1-6	2-1	2-2	3-3	3-4	4-3	4-4	1-3	1-4	2-5	2-6	3-1	3-2	4-5	

Based on \mbox{CuF}_2 only.

*

	OF CuF2-Li CELLS CONTAINING ADDITIVES	e: 15g LiClO ₄ /100 ml PC e: 35°C	Potential days <u>9 days 11 days 12 days 13 days 14 days</u>		E AFTER 1 DAY OF WET STAND				30	25	20	30 CELLS PUT IN DISCHARGE AFTER 8 DAYS OF	50	35 WET STAND	20	10	30 3.27 3.36 3.34 3.30 3.30	05 3.08 3.01 3.03 2.27 1.63	20 3.18 3.10 2.99 2.85 2.59	85 2.92 3.36 3.31 3.28 3.35	85 3.03 2.48 2.32 2.18 2.02	85 2.98 3.11 3.11 3.02 2.92	15 3.08 3.14 3.21 3.13 3.18	15 3.17 3.27 3.27 3.23 3.28
	ING ADDIT		2 days 1		ND							ARGE AFT		TAND			. 34	.03	. 66	.31	.32	. 11	.21	. 27
	LLS CONTAIN	4/100 ml PC	<u>11 days 1</u>		OF WET STAI						:	UT IN DISCH		WET S			3.36 3	3.01 3	3.10 2	3.36 3	2.48 2	3.11 3	3.14 3	3.27 3
17F VV	JF2-Li CE	15g LiC10 35°C	ntial 9 days		TER 1 DAY							CELLS P					3.27	3.08	3.18	2.92	3.03	2.98	3.08	3.17
	ALS OF CI	olyte: ature:	uit Poter 8 days		HARGE AF'				3.30	3.25	3.20	3.30	2.50	2.35	3.20	3.10	3.30	3.05	3.20	0.85	2.85	2.85	3.15	3.15
	POTENTI	Electr Temper	pen Circ 7 days		, IN DISC				3.35	3.30	3.28	3.22	2.70	2.61	3.26	3.17	3.31	3.24	3.30	3.01	2.94	2.87	3.20	3.13
	CIRCUIT		0 6 days	·	ELLS PUT				3.35	3.34	3.30	3.32	2.66	2.80	3.24	3.21	3.33	3.30	3.30	3.23	2.63	2.88	3.25	3.17
	OPEN		4 days		D				3.35	3.38	3.37	3.42	3.13	3.21	3.31	3.32	3.41	3.42	3.38	3.40	3.19	3.13	3.53	3.34
			<u>1 day</u>	3.63 3.64 3.71	3.71	3.58 3.61	3.66	3.67	6 1 6	6 5 6 1	L 1 1	1 1 1	1	1 	 		 	 		 		 	 	
			0 day	3.69 3.68 3.73	3.74	3.68 3.68	3.74	3.74	3.69	3.67	3.63	3.71	3.67	3.67	3.72	3.73	3.64	3.65	3.73	3.71	3.67	3.67	3.70	3.70
			Additive	 CoF.,	CoF ₃	SbF ₃ SbF ₃	MnF_{3}	MnF ₃	P 1 1 8	 	CoF3	CoF3	SbF_{3}	SbF_{3}	MnF3	MnF ₃	1 1 1	 	CoF 2	CoF 3	SbF_{2}	SbF_{3}	MnF3	MnF_{3}
			Cell No.	1-1 1-2 2-3	2-4	3-5 3-6	4-1	4-2	1-5	1-6	2-1	2-2	3-3	3-4	4-3	4-4	1-3	1-4	2-5	2-6	3-1	3-2	4-5	4-6

TABLE XXV

FIGURE 21

FIGURE 23

FIGURE 24

Addition of SbF₃ had a clearly detrimental effect on both discharge capacity and capacity retention after stand. Addition of CoF_3 and MnF_3 appeared to have no significant effect on the characteristics of the cells. These cells suffered an average capacity loss of about 50 percent after 8 days stand at 35°C. After 14 days at the same temperature, only half of the cells had retained any capacity above a load potential of 2.5 volts. Inspection of the cells after discharge indicated that dissolution of the CuF_2 had taken place, which appears to be the main cause of capacity loss during stand.

2. 3. 4. Filter Mat CuF_2 Electrode Construction Studies

A series of cell discharge tests were performed to study the effect of filter mat composition and method of electrolyte addition on cell performance. The quantity of CuF_2 per unit electode area was held at approximately 1.8 gram CuF_2/sq . in., while the weights of graphite and paper fiber were varied. Electrode and cell construction were as described previously.¹²

2. 3. 4. 1. Ratio of CuF₂ To Additives

In this test series, cells were activated with electrolyte consisting of 15 grams of $LiC10_4$ dissolved in 100 ml of propylene carbonate. The water content of the electrolyte solution as determined by Karl Fischer analysis was 140 ppm, while the CuF_2 used for preparing the filter mat electrodes contained 1.2 percent of water as determined by X-ray analysis.

After activation with the electrolyte solution, the cells were allowed to stand on open circuit for four hours, and were then put in discharge at 35°C thru 200 or 100 ohm loads. Construction data and performance of the cells to a final voltage of 2.5 volts are presented in Tables XXVI and XXVII, pages 68 and 69. (The variation in theoretical CuF_2 capacity was caused by non-uniformities in filter mat thickness). Voltage-time curves for some typical discharges are shown in Figures 25 and 26, pages 70 and 71.

Inspection of the cells at the end of discharge showed that, in a number of cells the CuF_2 electrode matrix had not been completely penetrated by the electrolyte solution. This condition was more prevalent in cells which had a high weight ratio of graphite to paper fiber in the CuF_2

¹² See page 41.

TABLE XXVI

FILTER-MAT CuF₂ ELECTRODE TESTS, 200-OHM DISCHARGE

Electrode Area: 29 cm² Electrolyte: 15g LiClO₄/100 ml PC Temperature: 35°C

	um CuF ₂ • Efficiency <u>le</u> %	57	53	72	67	65	65	69	58	;	61	63	57	73	76	72	81	69	67	72	78	81	61	CL
,	A-min/gra Positive Electrod	16.7	16.3	20.6	19.4	18.0	18.9	18.1	15.1		17.3	17.8	15.6	18.9	19.6	17.9	20.1	18.9	18.5	19.1	20.6	20.3	15.2	с
· · · · · · · · · · · · · · · · · · ·	Average Discharge Potential	3.01	3.05	3.13	3.10	3.11	3.10	3.11	2.82	 	3.10	3.00	3.17	3.14	3.14	3.12	3.18	3.14	3.08	3.11	3.12	3.13	3.00	
	Electrolyte Volume, cc	5.0	6.5	6.0	5.5	6.0	5.5	6.0	7.5	5.5	4.0	6.5	5.5	6.5	7.0	6.5	6.5	6.0	6.5	6.0	5.5	7.0	5.0	Ċ
	Theo. Cap., AH	4.42	4.13	3.92	4.54	3.75	3.76	3.92	3.80	5.05	3.67	4.34	4.75	3.90	3.41	4.44	4.13	4.35	5.03	4.13	3.70	4.19	3.26	
ive	g CuF ₂ Paper Fiber	7	0	5	7	2	2	2	2	4	4	4	4	4	4	4	4	8	8	8	8	8	8	4
Addit	grams/1001 Graphite	2	5 -	14	4	8	80	14	14	4	4	8	8	14	14	20	20	4	4	8	8	14	14	
	Cell No.	5-1		6-1 6-1	<u>6-3</u>	7-1	7-3	8-1	8-3	9-1	9-3	10-1	10-3	11-1	11-3	12-1	12-3	13-1	13-3	14-1	14-3	15-1	15-3	

68

,

TABLE XXVII

١

,

FILTER-MAT CuF2 ELECTRODE TESTS, 100-0HM DISCHARGE

29 cm² 15g LiClO₄/100 m1 PC 35°C Electrode Area: Electrolyte: Temperature: Add:++

DOG C DOG C Pa e Fi
2 4.45
2 3.55
2 4.16
2 4.10
2 3.76
2 4.00
2 3.94
2 3.71
4 4.61
4 3.29
4 3.39
4 3.77
4 4.17
4 3.67
4 3.86
4 4.47
8 4.85
8 4.31
8 3.38
8 3.52
8 3.58
8 4.18
8 4.23
8 4.28

eș,

electrode matrix. The variation in electrolyte volume figures presented in Tables XXVI and XXVII, probably reflects the poor wetting properties of the graphite and probably affected the discharge performance of some cells.

With the 200Ω discharge loads (ca. 0.5 mA/cm^2) efficiency of the CuF_2 electrode was as high as 81 percent to a final cell voltage of 2.5 volts, while with 100Ω load the highest efficiency figure recorded was 65%. Optimum fiber concentration appeared to be in the range of 4 to 8 grams per 100g of CuF_2 , and the best graphite level was in the range of 8 - 20 grams per 100g of CuF_2 . However, some efficient discharges did occur with cells having additive levels outside the above described ranges.

2. 3. 4. 2. Effect of Vacuum Impregnation

To study the effect of cathode wetting on cell performance, several cathode compositions and vacuum impregnation of cells with the electrolyte were studied.

In this series, four test cells for each positive electrode composition were constructed and tested. The filter mat electrodes were prepared as described previously, and the graphite and paper pulp concentrations were varied over the range of 4 - 16 and 2 - 8 grams/100g CuF₂(0.5% H₂O), respectively. The test cells had the usual sandwich construction with one filter mat CuF₂ electrode, and two lithium slab electrodes separated by 0.03 in. microporous rubber.

After addition of the electrolyte (15g $LiC10_4/100$ ml PC, 50 ppm water), two cells in each group were placed in a desiccator and maintained under vacuum until no further gassing from the electrodes and separators could be observed. The vacuum was then released, and the electrolyte levels in the cells were adjusted to the previous height. The remaining two cells in each group were filled by the normal procedure. Discharges were then started at a constant current of 21 mA and a temperature of 35°C. A summary of construction and discharge data for the cells is given in Table XXVIII, page 73 and 74. Electrolyte volume for cells 1-1 thru 3-4 was not obtained because leaks in the polyethylene envelopes caused an undetermined amount of loss during filling.

Considerable variation in CuF_2 reduction efficiency among replicate cells was encountered over the entire composition range. The highest efficiencies were obtained with cells having the highest graphite content (16g/100g CuF₂). However, increasing the paper fiber content appeared to affect the performance adversely, which may be an indication that this material (S & S filter paper pulp, acid washed) causes some contamination in the cell. It may be possible to replace some of the filter paper pulp with another, preferrably conductive, fibrous material (such as graphite fibers).

н
ΙΙΛΧΧ
TABLE

۲

,

 \mathbb{N}

EFFECT OF ADDITIVE CONCENTRATION ON PERFORMANCE OF CuF2 ELECTRODES

	2 Reduc.	8 1 1 1	71	73	60	78	51	30	79	84	81	68	46	1	48	68	75	44	79	80		
1 PC	ap. to CuF . <u>5VF,AH</u> Eff	1 1 9 8 9 8 9 8	2 °90	2.90	2.29	3.15	2.02	1.18	3.15	2.82	3.36	2.50	1.76	1	1.87	2.69	2.90	1.89	3.27	2 _• 84		
LiCIO ₄ /100 m	Average Potential to 2.5VF, C Volts 2		2 ° 73	2.85	2.82	3 ° 00	2.94	2.78	3.08	3.01	2.97	3.00	2.59		2.91	2.87	2 °89	2.83	2 ° 99	2.92		
rte: 15g mA	Time to 2.5 VF Hours	00	138**	138**	109	150	96	56	150	134	160	119	84***	<12	89	128	138	06	165	135		
Electroly Load: 21	Electrolyte Volume, cc	* * 	\$ \$ [8	* 1	*	6 6 6	6 8 6	* 1 1	*		1 1	8.8*	7 ° 7*	6.5	6 • 5	7.5*	7.7*	6.5	6,5		
rea: 29 cm ² 1re: 35°C	Theo ^c CuF ₂ Cap. , AH	3.80 3.68	4.08	3.96	3.82	4 °03	3.96	3.92	4 _° 00	3.36	4.16	3.68	3.83	4.15	3.92	3.97	3.85	4 _° 30	4.12	3.57	t 12 hours.	nours
ctrode Aı Temperatı	% CuF ₂ in mix	94 94	94	94	16	91	91	16	85	85	85	85	93	93	93	93	89	89	89	89	for firs1	V at 24]
Ele	ls //100g CuF ₂ Paper Fiber	7 0	10	2	2	7	2	2	2	2	2	7	4	4	4	4	4	4	4	4	sgnated. below 2.5V	ge below 2.5
	Gram Additive <u>Graphite</u>	হ হ	4	4	ø	8	8	8	16	16	16	16	4	4	4	4	8	œ	ø	ø	acuum împre oad voltage	Load volta
	Cell No	1-1	1-3	1-4	2-1	2-2	2-3	2-4	3-1	3-2	3-3	3-4	4-1	4-2	4-3	4-4	5-1	5-2	5-3	5~4	* V: ** Lc	***

(Continued)	
ΙΙΙΛΧΧ	
TABLE	

EFFECT OF ADDITIVE CONCENTRATION ON PERFORMANCE OF CuF2 ELECTRODES

	dditive,	/100g CuF ₂	% CuF ₂	Theo, CuF	Electrolyte 2 Volume,	Time to 2.5 VF,	Potential to 2.5VF,	Cap, to	CuF ₂ Reduc.
	aphite	Paper Fiber	in mix	Cap., AH	СС	Hours	Volts	2. SVF, AH	Eff, %
	16	4	83	4,52	9 ° 6*	165	2 °93	3.22	71
	16	4	83	3 - 72	8.2*	0		1	i. I
	16	4	83	3.28	6°5	139	2 , 91	2.92	89
	16	4	83	3 ° 21	6.5	123	3.01	2.58	81
	4	8	89	3.69	6°0*	71	2 , 89	1,49	40
_	4	ø	89	3.78	6°0*	92	2 ° 84	1,93	51
	4	80	89	4 . 45	7.0	138**	2.89	2.84	64
ŗ	4	ø	89	3.85	6°6	95**	2 ° 73	1.99	52
	ø	ø	86	4.38	7.0*	64***	2 ° 75	1.97	45
	ø	ø	86	4.45	7 ° 0*	95	2.93	1.99	45
	ø	8	86	3.62	6.5	98	3.01	2,06	57
	×	8	86	4.18	7°0	98	2.98	2.06	49
	16	8	81	4.18	7 ° 5*	89	2.87	1.87	45
	16	8	81	4 . 27	7 ° 5*	106	3.09	2,23	56
	16	ø	81	3.96	7.0	<36	6 8 6 8		!
	16	80	81	4.07	6 ° 5	45	2.90	0.95	23

74

,

**Load voltage below 2.5V for first 12 hours.
***Load voltage below 2.5V at 24 hours.

Vacuum impregnation of the cells during activation increased the total volume of electrolyte absorbed, but in most groups of cells, a decrease rather than the expected increase in capacity was observed. This may be at least partially due to disruption of the filter mat cathode structure, since some gassing was always observed upon application of vacuum.

2. 3. 5. Pasted CuF₂ Electrode Tests

In order to develop an alternate CuF_2 electrode construction method - one which does not require the use of cellulose fibers - some tests with pasted CuF_2 electrodes were conducted.

 CuF_2 and graphite or carbon black were micropulverized together for 15 sec. in a "Hi-Speed" blender. The binder was cellulose acetate dissolved in 90% ethyl acetate - 10% ethanol mixture, or polystyrene dissolved in toluene. The binder solution was added to the dry mix until a stiff paste resulted, which was then applied to expanded silver grids cut to 1.5 x 1.5 in. size. After drying the plates under vacuum, 3-plate test cells were built and tested as described before.

2. 3. 5. 1. Effect of Binder and Conductor

In this test, eight cells with various cathode compositions were constructed and tested. The cells were activated with $LiClO_4/PC$ electrolyte, 15g solute/ 100 ml solvent, and discharged at 20 mA (0.7 mA/cm²) and 35°C after an activated stand of 4 hours. Cathode composition and discharge performance for these cells are shown in Table XXIX, page 76.

Carbon black gave better discharge performance than graphite, and polystyrene gave better results than cellulose acetate. The CuF_2 content in this electrode composition was 95%, which is higher than the 83% commonly used in filter mat preparation. Since the discharge efficiency was equally good, the pasted electrode construction would appear to offer a weight advantage over the filter mat construction. A disadvantage may be the more difficult wetting of these electrodes with the electrolyte solution.

2. 3. 5. 2. Effect of Argon Drying

Four cells were constructed and tested to evaluate the effect of argon drying of cathodes after the normal vacuum drying. The paste composition for these cells was

CuF ₂		100
Graphite		10
Cellulose	Acetate	1

	Grams of	. Additive	e/100 grams o	f CuF2			Cap. to	Average Discharge	
Cell Vo.	Graphite*	Carbon Black**	Cellulose Acetate***	Poly-**** Styrene	Theo. CuF ₂ Cap., AH	Hours to 2.5 VF	2.5 VF, AH	Potential, Volts	% Cathode Efficiency
1	5	I	0.8	6 1 1	3.26	54.1	1.08	2.80	33
2	S	I	0.8	1	3.17	52.4	1,04	2.72	33
3	I	5	0.8	 	3.81	55.9	1.12	2.83	40
4	ı	5	0.8	 	2.64	80.8	1.61	3.06	61
ប	Ŋ	ı		0.4	2.77	62.6	1.25	2.54	45
9	S	I	 \$ 	0.4	2.94	65.4	1.31	2.88	45
7	ı	S	1	0.4	2.65	92.0	1.84	2.98	69
8	ı	S	1	0.4	2.52	98.8	1.98	3.03	79
> د			Toroch Div	م 1 م ثمین میں					

TABLE XXIX

PERFORMANCE OF PASTED CuF₂ ELECTRODES

15g LiClO4/100 ml PC 20 mA (0.7 mA/cm²) 35°C 4.0 Hours Electrolyte: Current: Temperature: Stand Time:

Air-Spun Graphite, The Joseph Dixon Crucible Co. Conductex SC, Columbian Carbon Co. * *

*** 2% Solution in 90% ethyl acetate - 10% ethanol. ****1% Solution in toluene.

.

and discharge performance thru 200Ω loads at 35° C is shown in Table XXX.

Drying of the electrodes at 130° C before construction of cells appeared to improve the capacity for this group of cells. The effect that this may have on wet shelf life should be worth studying in future work.

TABLE XXX

PERFORMANCE OF PASTED CuF2 ELECTRODES AFTER ARGON DRYING

		Temp Elec	Load: erature: trolyte:	200Ω (0.5 mA/ 35°C 15g LIC10 ₄ /100	cm ²) ml PC	
Cell No.	Cathode Drying	Theo. CuF ₂ Cap., AH	Discharge Time, 2.5 VF, Hours	Average Discharge Potential, Volts	AH to 2.5 VF	Efficiency, Percent
1	16 hrs., 130°C	3.88	188	3.12	2.93	76
2	16 hrs., 130°C	4.04	192	3.14	3.01	75
3	16 hrs., 24°C	3.86	170	3.14	2.67	69
4	16 hrs.,	4.07	156	2.99	2.33	57

2. 3. 5. 3. Effect of Sulfur

24°C

Thin-pasted CuF_2 electrodes containing sulfur were tested with Li-anodes in PC-LiClO₄ electrolyte. A dry mix having the composition

CuF ₂	20 g
Dixon Graphite	2 g
Sulfur (sublimed)	1 g

was ground for 15 seconds in the "Hi-Speed" blender. A 1% solution of polystyrene in toluene was used to prepare a paste; the amount of polystyrene added by this solution was about 0.1g/20g of CuF₂. Electrodes were pasted to a thickness of about 0.03 inches on expanded silver and dried

overnight at hard vacuum. Three-plate cells were constructed using 0.03 in. MPR separation. Results of the discharge test are shown in Table XXXI.

Although comparable cells without sulfur were not tested in this series, addition of this material to the CuF_2 paste appears to produce no significant effect on cell performance. This is probably due to the relative insolubility of sulfur in the organic electrolyte.

TABLE XXXI

PERFORMANCE OF CuF₂ ELECTRODES WITH SULFUR

Temperature: $35^{\circ}C$ Electrolyte: $15g \text{ LiC10}_{4}/100 \text{ ml PC}$ Load: $20 \text{ mA} (0.7 \text{ mA/cm}^2)$

Ce: No	11 	Theo. Cathode Capacity	Active Stand Time, (Hrs.)	Discharge Time to 2.5 VF, (Hours)	Ave Disc Pote Vc	erage charge ential, olts	AH to 2.5 VF	Cathode Eff., %
1		1.26	138	0	-		0	0
2		1.05	138	0.16	-		0	0
3		1.22	72	12.2	2	2.56	0.25	20
4		1.07	72	20.5	2	2.75	0.41	38
5		1.10	24	26.8	2	2.84	0.54	49
6		1.15	24	32.9	2	2.87	0.66	57
7		1.01	1	36.9	3	3.15	0.74	73
8		1.13	1	34.9	3	3.17	0.70	62
				•				
2.	3.	6.	Performance	of CuF ₂ -Li	Cells A	t Variou	s Discharge	Rates

In order to characterize the performance capabilities of the low-rate CuF_2 -Li system, discharge performance of cells having the usual filter-mat electrode construction (14 grams of graphite and 7 grams of paper fiber per 100 grams of CuF_2) was determined at various discharge loads. The electrolyte was 15g LiClO₄/100 ml of propylene carbonate, and microporous rubber separation and slab lithium electrodes were employed as before. The geometric electrode area of the three-plate (1 CuF_2 electrode, 2 Li electrodes) cell was 29 cm². Discharges were conducted at 35°C thru resistive loads of 100, 200, 500 and 1000 ohms. The construction and discharge data

are summarized in Table XXXII, and voltage-time curves for the best cell at each discharge rate are presented in Figure 27, page 80.

In terms of CuF_2 reduction efficiency, the best performance was obtained from cells discharged thru 200 ohm loads (ca. 250 hour discharge); the highest reduction efficiency in this group (best of three cells) was 73% at an average discharge potential of 3.04 volts to a cut-off voltage of 2.5 V. With 100 ohm loads (ca. 100 hour discharge), the best efficiency was 58 percent at 2.90 V average discharge potential. With lower discharge rates, the performance decreased, the best-of-three-cells figures being 47 percent efficiency at 3.20 V average thru 500 ohm load (ca. 400 hour discharge), and 23 percent efficiency at 3.14 V average thru 1000 ohm load (ca. 400 hour discharge).

Inspection of discharged cells showed copper-colored deposits on the lithium, particularly in the cells which were discharged thru 1000Ω . Dissolution of CuF₂ was again evident in this test series, and probably contributed to the decreased performance of the cells with increasing discharge time.

TABLE XXXII

PERFORMANCE OF CuF₂-Li CELLS AT VARIOUS DISCHARGE RATES

(LEL Test No. 640-16)

Electrolyte: 15g LiClO₄/100 ml PC Electrode Area: 29 cm² Temperature: 35°C

		Time to	Average Discharge		
Theo. CuF_2	Load.	2.5 VF.	Potential.	Cap. to	Eff
Cap., AH	Ω	Hours	Volts	2.5VF, AH	%
6.13	1000	192	3.11	0.60	10
5.98	1000	360	3.18	1.14	10
5.95	1000	432	3.14	1.35	23
5.67	500	432	3.14	2.68	47
5.92	500	360	3.07	2.21	37
5.52	500	408	3.20	2.62	47
5.89	200	172	2.89	2.49	42
5.33	200	258	3.04	3.90	73
5.42	200	247	3.04	3.72	69
5.42	100	108	2.90	3.14	58
5.24	100	79	2.79	2.20	42
6.15	100	17			
	Theo. CuF ₂ Cap., AH 6.13 5.98 5.95 5.67 5.92 5.52 5.89 5.33 5.42 5.42 5.42 5.42 5.24 6.15	$\begin{array}{c c} Theo. \ CuF_2 \\ \underline{Cap., AH} \\ \hline \Omega \\ \hline \\ 6.13 \\ 5.98 \\ 1000 \\ 5.95 \\ 1000 \\ \hline \\ 5.95 \\ 1000 \\ \hline \\ 5.95 \\ 5.00 \\ \hline \\ 5.92 \\ 5.00 \\ \hline \\ 5.52 \\ 500 \\ \hline \\ 5.52 \\ 500 \\ \hline \\ 5.42 \\ 200 \\ \hline \\ 5.42 \\ 200 \\ \hline \\ 5.42 \\ 100 \\ \hline \\ 5.24 \\ 100 \\ \hline \\ 6.15 \\ 100 \\ \hline \end{array}$	$\begin{array}{c c c} \mbox{Theo. } \mbox{CuF}_2 & \mbox{Load}, & \mbox{2.5 VF}, \\ \mbox{AD} & \mbox{Mours} \\ \hline \mbox{6.13} & \mbox{1000} & \mbox{192} \\ \mbox{5.98} & \mbox{1000} & \mbox{360} \\ \mbox{5.95} & \mbox{1000} & \mbox{432} \\ \hline \mbox{5.67} & \mbox{500} & \mbox{432} \\ \mbox{5.92} & \mbox{500} & \mbox{436} \\ \mbox{5.89} & \mbox{200} & \mbox{172} \\ \mbox{5.33} & \mbox{200} & \mbox{258} \\ \mbox{5.42} & \mbox{200} & \mbox{247} \\ \hline \mbox{5.42} & \mbox{100} & \mbox{108} \\ \mbox{5.24} & \mbox{100} & \mbox{79} \\ \mbox{6.15} & \mbox{100} & \mbox{17} \\ \hline \end{array}$	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

FIGURE 27

·80

2. 3. 7. CuF₂ Electrode Construction Tests

It appeared desirable to evolve an alternate CuF_2 electrode construction method which would not require incorporation of cellulose fibers, since these may be reactive with some of the solvents to be evaluated in cell tests (possibly DMSO). For this reason, construction of electrodes by adding Microthene FN 500 polyethylene powder to CuF_2 and graphite (or carbon black) was studied.

Small batches of CuF_2 , graphite and Microthene FN 500 (USI Chemical) were dry-blended in a micro-pulverizer. The charge was then transferred to a 1.5 in. square steel compression mold which was placed in a hydraulic press, with platens preheated to 400°C. After 15 minutes (to allow the mold to reach 400°C), 5000 lbs of force were applied for 30 seconds. Since no mold release was used, initial attempts resulted in cathodes which stuck fast to the mold faces. This difficulty was eliminated by applying adhesive-backed Teflon film to the mold base and plunger face.

Twelve cells listed in Table XXXIII, page 82, were built with CuF_2 electrodes prepared by the above method. Three-plate lithium-anode test cells were built with mixes 1 - 4, while two-plate cells were constructed for the remaining compositions. The cells were activated with 15g LiClO₄/ 100 ml PC electrolyte, and discharged at 1.0 (mixes 1 - 4) or 0.67 (mixes 5 - 8) mA/cm² at 35°C.

The highest CuF_2 utilization efficiency was obtained with mix #6 (72 and 85% to 2.5 VF); which is about equivalent to the best results obtained with filter-mat construction. The dry press method, therefore, appears to be suitable for construction of CuF_2 electrodes.

2. 3. 8. Effect of LiClO₄ Concentration

The effect of $LiClO_4$ concentration in PC on cell performance and wet stand capabilities was studied at concentrations of 10 and 20 grams of solute per 100 ml of solvent. The CuF electrodes were prepared by the filter mat technique and had the composition

CuF ₂	100
Graphite	14
Paper Fiber	7

TABLE XXXIII

Cell No.	<u>CuF2</u>	<u>C. B.</u>	Graphite	Binder	C. D. $\frac{mA/cm^2}{}$	Cathode Eff., %
1	10	1		0.2	1.0	38
2	10	1		0.1	1.0	16
3	10	0.5		0.1	1.0	16
4	10	0.5		0.05	1.0	42
5	9		0.9	0.18	.67	68
6	9		0.9	0.18	.67	75
7	9		0.9	0.088	.67	85
8	9		0.9	0.088	.67	72
9	9	0.9		0.088	.67	70
10	9	0.9		0.088	.67	63
11	9	0.44		0.088	.67	67
12	9	0.44		0.088	.67	70

COMPOSITION OF HOT-PRESSED CuF₂ ELECTRODES

Three-plate test cells with Li negatives and 0.03 in. MPR were constructed and were assembled in groups of three cells in hermetically sealed glass jars. Construction and discharge data for these cells are summarized in Table XXXIV, page 83.

Before stand, discharge capacity was about equal with both electrolyte concentrations. After wet stand at 0°C, the lower concentration gave markedly better results. This may be explained in terms of lower reaction rates between $LiClO_4$ and CuF_2 in these cells.

2. 3. 9. Effect of Solute on Capacity

Since the lack of shelf life of the CuF_2 -Li system appeared to be the result of chemical action of the solute on CuF_2 , cell performance tests with solutes other than $LiClO_4$ were conducted. Although shelf life tests were of major interest, only initial capacity studies could be performed within the available time period.

Electrolyte salts for which compatibility tests with CuF_2 and Li in PC solution had been performed (see Section 2. 1.; Electrolyte Studies) were

TABLE XXXIV

.

EFFECT OF LICIO4 CONCENTRATION ON CELL PERFORMANCE

.

.

	Eff.,%	73	52	75	75	62	75	73	77	71	54	62	. 09	I I	19	58	1	1	1
	AH to 2.5 VF	2.66	1.58	2.38	2.16	1.80	2.40	2.97	2.71	2.82	2.00	1.61	1.75	1 1 1	.59	1.99	 	 } 	 1
).7 mA/cm ²)	Average Discharge Potential Volts	3.10	2.91	2.82	2.96	2.90	2.93	3.04	3.04	2.99	2.82	2.91	2.95		2.74	2.80		1 1 1	1
te: 35°C tt: 20 mA ((Discharge Time to 2.5 VF Hours	133	62	119	108	06	120	148.5	135.5	141	100	80.5	87.5	<u>^</u>	29.5	99.5	<1	<1	<1
Temperatur Curren	0.C. stand, days at 0°C	1	2	1 1	1	6 1	1 1	10	10	10	10	10	10	24	24	24	24	24	24
	Initial 0.C.V.	3.58	3.58	3,58	3,55	3.55	3,55	3,59	3.59	3.59	3.50	3.55	3.55	3.59	3.59	3.59	3.59	3.58	3.35
	Theo. CuF ₂ Cap., AH	3.66	3.06	3.19	2.90	2.92	3.21	4.10	3.51	3.98	3.80	2.62	2.58	4.00	3.12	3.44	2.87	3.71	3.68
	LiClO ₄ conc. g/100 ml PC	· 10	10	10	20	20	20	10	10	10	20	20	20	10	10	10	20	20	20
	Cell No.	1	7	ы	4	പ	6	13	14	15	16	17	18	25	26	27	28	29	30

selected for these tests. The electrolyte solutions were prepared with lithium-dried and distilled propyelene carbonate at a concentration of 1.0 mol solute/liter of solvent. Some of the solutions were prepared by a double decomposition reaction between the corresponding salts to yield the insoluble KClO_4^{13} and the desired salt in solution. These solutions were, therefore, saturated with respect to KClO_4 and are designated in the tables with the suffix "m".

The CuF_2 electrodes were prepared using the filter mat technique and had the composition

CuF ₂	(0.7%	H ₂ O)	100
Graph	ite		14
Paper	Fiber		7

Three-plate CuF_2 -Li cells were constructed, activated with the corresponding electrolyte solutions, and discharged at 35°C thru 200 Ω loads (0.5 mA/cm²). Construction and discharge data for these cells are presented in Table XXXV, page 85, and voltage-time data for some discharges are shown in Figures 28 and 29, pages 86 and 87.

Of the electrolytes tested in this series, only KPF_6 and LiPF_6 produced consistently poor discharge performance. With the other electrolytes, rather poor replication occurred, but with each of these electrolytes at least one cell gave CuF_2 reduction efficiency of over 70%. This indicates that a high solubility of CuF_2 in the electrolyte is not required for good reduction efficiency, since some of the salts in this test (e.g. NaClO_4) showed very low tendency to react with CuF_2 in direct compatibility tests (see Section 2. 2. 3.). The effect of CuF_2 solubility on the wet shelf life of cells remains to be studied.

2. 3. 10. Cell Performance With Various Solvents

As a further attempt to correlate the results of electrolyte compatibility and cell discharge data, CuF_2 -Li cells with various electrolyte solvents were built and discharged.

Propylene carbonate (PC), dimethylsulfoxide (DMSO), acetic anhydride (AA), N-nitroso dimethylamine (NDA), nitromethane (NM), and methyl acetate (MA) were the solvents selected for this test series.

¹³ Precipitated KC10₄ was weighed and the stoichiometric quantity was recovered.

TABLE XXXV

۰

•

EFFECT OF SOLUTE ON CuF2-Li CELL PERFORMANCE IN PC

29 cm² 35°C 200 ohms Electrode Area: Temperature: Load:

	CuF ₂	Reduc.	Eff	6 ∕°		75.1	77.8	84 D	76.7	1 4	1.72		01./	1.4		79.2	53.2	2.0	80.4	73.7	1.7	46.7	80.9	83.2
	CuF ₂	Cap. to	2.5 VF.	AH		3.37	3.70	3.51	3.88	0.07	1 17	1 C	2.98	0.07		3.87	2.60	0.09	3.54	3.12	0.08	1.67	3.52	4.07
	Average	Current	to	2.5 VF		15.1	15.0	15.0	16.0	13.7	14.7	1 - L -	1.01	14.9	. 	15.3	14.4	13.6	15.2	15.1	13.9	15.9	15.6	15.6
	Average	Potential	to 2.5 VF	Volts		3.01	2.99	2.99	3.09	2.74	2.83	2012	20.0	2.97		3.06	2.87	2.71	3.03	3.01	2.77	3.18	3.12	3.11
	Dischg.	Time to	2.5 VF,	Hours		223	247	234	242	ъ	100	107	161	ഹ		253	181	7	233	207	9	105	226	261
				OCV		3.55	3.60	3.55	3.59	3.53	3.45	2		3.53		5:52	3.48	3.51	3.50	3.60	3.49	3.58	3.50	3.56
	Theo.	CuF_2	Capa.	AH		4.49	4.76	4.20	5.06	4.88	4.28	7 8 V		4.90		4.89	4.89	4.84	4.41	4.24	4.36	4.37	4.36	4.90
		Electrolyte	Volume	သ		8.8	7.4	8.6	8.4	9.2	9.4	0 0		6.9	2 2	0.0	6.3	7.2	7.5	8.0	7.6	0.0	8.6	8.3
	Specif.	Condc.	mho/cm	x10 ³		5.4	5.4	5.6	5.6	7.8	8.1	9 6		6.4	<i>с</i> 7	7.0	8.2	7.8	8.1.	2.9	6.4	6.2	8.2	-
31c'lyte	water	content	µg/ml	sol'n		06	06	72	72	97	61	129		105	760	2007	160	97	61	129	105	260	160	
I				Solute		LICIO4	$LiC10_4$	NaC104	NaC104	KPF ₆	KAsF ₆	LiBF.		(m) ⁹ 4417	liAcE (m)		NaAsF ₆	KPF ₆	KAsF ₆	$LiBF_4$	LiPF ₆ (m)	LiAsF ₆ (m)	NaAsF ₆	NaAsF ₆ (m)
			Cell	No.	•	-	7	ю	4	ഹ	6	7	c	20 20	σ	,	10	11	12	13	14	15	16	17

FIGURE 28

FIGURE 29

The solvents were lithium treated and distilled as described for propylene carbonate. Nitromethane was filtered after lithium treatment rather than distilled because of the potential explosion hazard. The solutes $LiClO_4$, and $KAsF_6$ were selected for these tests. Cell construction and discharge conditions were as described in the previous section.

Results of the discharge tests for these cells are shown in Table XXXVI, page 89. In all, results of these discharges were disappointing in that only the "standard" cells - those with $LiClO_4/PC$ electrolyte gave the expected performance (70 - 80% CuF₂ utilization). The reason for the poor performance of the other cells could not be determined, and no conclusions about the significance of these results can therefore be drawn.

2. 3. 11. Cell Tests With NaClO₄-PC Electrolyte

Comparative cell tests with LiClO₄ and NaClO₄ electrolyte solutions in propylene carbonate were performed. The salts were dried under hard vacuum at 110°C for 16 hours and 1 molar solutions were prepared in lithium-dried, redistilled PC. Karl Fischer analysis showed 52 and 55 ppm H_2O for the LiClO₄ and NaClO₄ electrolyte, respectively.

Filter-mat CuF₂ electrodes having the composition

CuF ₂	160g
Graphite	16g
Paper Fiber	4g

were prepared. Three-plate cells with lithium anodes and MPR separation were constructed under argon and activated with the electrolyte. Three cells with each electrolyte were discharged immediately at 20 mA and 35°C, while the remaining cells were given a 5-day O. C. stand at 35°C before being discharged at the same load and temperature.

Construction and discharge data for the cells are shown in Table XXXVII, page 90.

Voltage-time data for the best of three cells in each group are plotted in Figure 30, page 91.

Although the wet stand properties of the cells with both electrolytes were poor, replacing of the lithium ion with sodium did appear to increase the residual capacity after stand. These results, although inconclusive, indicate the possibility of using Na or K electrolytes with the CuF_2 -Li cells for better shelf life characteristics. TABLE XXXVI

CuF2-Li CELL TESTS WITH VARIOUS SOLVENTS

200 ohms

Load:

29 cm² 35°C

Electrode Area: Temperature:

Cathode Eff., % $\begin{array}{c} 0.1 \\ 0.5 \\ 0.7 \\ 3.1 \\ 7.4 \end{array}$ 2.9 3.8 0.5 9.1 3.2 9.0 6.1 18.6 10.5 13.5 9.2 9.1 13.4 3.7 4.1 76 20 Cap. to 2.0 VF, AH .01 .03 .03 .35 .16 .13 .20 .02 .15 .48 .28 .23 .89 .48 .49 4.07 3.74 .20 1 .64 Discharge to 2.0 VF Potentia1 Average 3.033.11 ----* * - - - * CuF₂ Cap. AH 5.23 4.89 $\begin{array}{c} \mathbf{4.58} \\ \mathbf{5.23} \\ \mathbf{5.38} \\ \mathbf{5.38} \\ \mathbf{5.38} \\ \mathbf{5.38} \\ \mathbf{5.37} \\ \mathbf{5.37} \\ \mathbf{5.37} \end{array}$ 5.33 4.08 5.16 2.18 4.35 4.724.38 4.725.38 4.274.17 5.41 4.53 4.80 4.91 7.82x10⁻³ 1.6x10⁻² 4.3x10⁻³ 1.1x10⁻² 1.2x10⁻² 7.7x10⁻³ 2.1x10⁻² 7.3x10⁻³ 1.0x10⁻² 1.0x10⁻² 1.5x10⁻² Specific Conduc. mho/cm Electrolyte µg/ml Sol'n water 110 146 '' 150 150 114 495 241 117 109 66 :-121 1 1 Solute LiC104 KAsF6 LiCl0₄ KAsF6 LiCl0₄ KAsF6 KAsF6 LiCl0₄ KAsF6 LiCl0₄ LiCl0₄ KAsF₆ Solvent DMSO NDA NDA PC = : : : :: <u>N</u>: : : : : : : MA Cell No. 18 19 20 22 23 23 24 25 26 10 102113111 0 8 4 6 9 6 8 6

*Cells immediately dropped below cut-off of 2.0V. **Purified by recrystallization in AA.

TABLE XXXVII

EVALUATION OF NaClO4 IN PC

Discharge	Condition:	+35°C,	20 mA	(0.7	mA/cm^2)
Stand	Condition:	+35°C			

Cell <u>No.</u>	Electrolyte	O. C., Stand, Time, Days	Theo. CuF ₂ Capa., AH	Discharge Time to 2.5 VF, Hours	Cap. to 2.5 VF, 	Eff., %
1	NaClO ₄	0	5.08	75.0	1.50	30
2	11	0	5.04	115.5	2.31	46
3	11	0	4.67	135.0	2.70	58
4	· •	5	5.50	<1		
5	**	5	5.10	<1		
6	**	5	3.71	<1		
7	LiC10	0	4.38	134.0	2.68	61
8	11 4	0	5.31	94.0	1.89	36
9	**	0	4.18	135.0	2.70	65
10	**	5	5.60	<1		
11	11	5	4.30	<1		
12	**	5	4.70	<1		

2. 3. 12. Ag₂O₂-Li Cell Tests

Since the solubility of CuF_2 in $LiClO_4$ -PC electrolyte appeared to contribute adversely to the wet stand capability of the CuF_2 -Li cells, selfdischarge tests with cells having Ag_2O_2 instead of CuF_2 in the positive electrode were performed. Silver oxide was chosen for these tests because it was presumed to have a very low solubility in the electrolyte, thus allowing evaluation of the remaining cell construction for wet stand capability without the complication of a dissolved species (Cu⁺⁺) attacking the lithium electrode from solution.

The Ag_2O_2 electrodes were prepared by the filter-mat technique. The composition of the filter-mat was:

90 .

FIGURE 30
Ag_2O_2	83
Graphite	7
Paper Fiber	3

X-ray analysis of the Ag_2O_2 showed the material to contain more than 99 percent of divalent silver.

Three-plate test cells with microporous rubber separation and lithium anodes were constructed and activated with 1.5 M $LiClO_4$ -PC electrolyte. Some cells were put in discharge thru 200 ohms at 35°C, while the remaining cells were allowed to stand on open circuit at the same temperature before discharge was started.

Construction data and discharge results are summarized in Table XXXVIII, page 93. Cathode reduction efficiencies of over 40% were obtained both with and without 0. C. stand, but reproducibility of performance was erratic. The cells which had only polyethylene envelope seals (Cell Nos. 1 - 6) appeared dry after the 2-week stand, indicating electrolyte loss.

Additional cells with Ag_2O_2 active material were constructed and tested. These cells had polyethylene-coated cellulose rather than paper fibers in the cathode mix. Performance of these cells was poor.

It did not appear at the conclusion of these tests that Ag_2O_2 will yield energy densities as high as CuF_2 does. Its only advantage may be a better wet shelf life potential, which may warrant further studies of this material in future work. TABLE XXXVIII

.

PERFORMANCE OF Ag202-Li CELLS WITH LiCIO4-PC ELECTROLYTE

Discharge Temperature: 35°C Stand Temperature: 35°C Load: 200 ohms Electrode Area: 29 cm²

1 Ag202 Capa. Hours to to 2.5 VF Potential Cathode AH 2.5 VF AH Volts Eff., % Remarks 2.90 86 1.25 2.89 43 1 2.75 92 1.14 2.48 42 1 2.75 92 1.14 2.48 42 1 2.75 92 1.14 2.48 42 1 2.75 1.6 1 2.48 42 1 2.66 3 0.41 2.75 16 1 2.66 3 - 1 2.66 74 1.12 2.75 16 1 2.69 74 1.12 2.75 2 1 1 2.54 <12 - 1 1 1 2.69 74 1.12 2.89 42 1 1 2 2.30 <t< th=""><th>i</th><th>Theoretical</th><th>:</th><th>Capacity</th><th>Average Discharge</th><th>•</th><th></th></t<>	i	Theoretical	:	Capacity	Average Discharge	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ag202 Capa. AH	Hours to 2.5 VF	to 2.5 VF AH	Potential Volts	Cathode Eff., \$	Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.90	86	1.25	2.89	43	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.75	92	1.14	2.48	42	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.88	4		9 5 9 9	6	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.62	30	0.41	2.75	16	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.66	ы	1 1 1 1		:	I
2.61 <12		2.44	M	8 8 8 8	 	1	I
2.34 <12		2.61	< 12 <			!	2
2.69 74 1.12 2.89 42 3.09 65 1.13 2.91 37 2.92 78 1.13 2.90 39 2.38 2.33		2.34	< 12	F 1 1 1	1	1	
3.09 65 1.13 2.91 37 2.92 78 1.13 2.90 39 2.38 2,3		. 2.69	74	1.12	2.89	42	
2.92 78 1.13 2.90 39 2.38 2.3		3.09	65	1.13	2.91	37	
2.38 2.3		2.92	78	1.13	2.90	39	
		2.38	ł	8		1	2,3

1 Cells sealed in polyethylene envelopes.
2 Cells sealed in glass jars.
3 Broken terminals at 18.5 hours.

HIGH RATE BATTERY STUDY

3. 1. Electrolyte Studies

To obtain sufficiently high current density for high energy cell performance at the 1 to 10 hour discharge rate, electrolytes having sufficient conductance and low viscosity are required. Under the previous contract (NAS 3-6004) of this program, the methyl formate-LiClO₄ electrolyte was tested for use with the CuF₂-Li couple. In this work, the maximum conductivity of the MF-LiClO₄ electrolyte was found to be 26 x 10^{-3} ohm⁻¹ cm⁻¹ at a concentration of 30g solute/100 ml of solvent. The stability of this electrolyte in the presence of Li and CuF₂ electrodes appeared adequate for reserve-activated cells. Because no other electrolyte appeared to present equally good promise for use in high rate CuF₂-Li cells, nearly all of the work on the present contract was performed for the development of cells using the MF-LiClO₄ electrolyte system.

3. 1. 1. Lithium Stability Tests

Attempts to improve the stability of the MF-LiClO₄ electrolyte included agitation of the solvent with powdered lithium. However, a gas producing reaction made this method difficult and dangerous to apply. An attempt was made to apply the lithium treatment method by preceding it with drying the solvent with CaO and distillation in order to remove most of the moisture before the introduction of Li powder into the solvent. Methyl acetate was also included in the investigation because of earlier indications that this solvent may have superior stability to lithium compared to MF.

The solvents were agitated for 3 days with 5g of CaO/100 ml of solvent, filtered, and distilled rejecting the first and last tenth of the distillate. The solvents were then agitated for 3 days with 1g of Li powder/ 100 ml of solvent, filtered, and distilled rejecting the 1st 10 - 20% of the solvent.

Lithium perchlorate solutions were prepared from methyl acetate and methyl formate in concentrations of 25 and 50g of solute/100 ml of solvent. Strips of bright lithium ribbon were placed in these solutions and the lithium stabilities were compared with those of the untreated solvents. The observations from these tests are listed in the Appendix, Table A-10.

3.

The lithium treatment improved stability of the MF electrolyte, but appeared to be of no consequence with the methyl acetate. Lithium stabiltiy did not appear to be affected by solute concentration in this test.

3. 1. 2. CuF₂ Stability Tests

Copper fluoride solubility tests in solvents treated as described in the previous section were conducted as described in Section. 2. 1. 3. 1. Forty ml of the electrolyte were agitated with 1.0g of CuF_2 for a period of 8 days. At the end of this period, samples of the solution were withdrawn and Cu II content was determined colorimetrically results of these analyses are shown in Table XXXIX.

TABLE XXXIX

SOLUBILITY OF CuF₂ IN MA AND MF ELECTROLYTES

Solvent	Treatment	g LiC10 ₄ /100 m1 solvent	Cu ⁺⁺ , ppm
MA	CaO	25	31
MA	CaO	50	75
MA	CaO-Li	25	140
MA	CaO-Li	50	145
MF	CaO	25	170
MF	CaO	50	123
MF	CaO-Li	25	70
MF	CaO-Li	50	105
МА	None	25	33
MF	None	25	150

The above analyses did not show any clear effect from the lithium treatment of either solvent. Solubility of CuF_2 was low in either solvent compared to other electrolyte systems tested in this program.

Positive Limited Cell Studies

Because of the relatively low current densities available with organic electrolytes (compared to aqueous systems), a thin-plate CuF_2 -Li cells is needed for efficient discharge at the 1 - 10 hour rate. Since little difficulty was visualized in producing thin lithium electrodes (0.015 in. sheet is available commercially), work on this program was aimed at developing thin, efficient CuF_2 electrodes.

3. 2. 1. Pasted Electrode Composition Study

3. 2.

Electrodes were prepared by pasting a mixture of CuF₂, graphite, and cellulose acetate wetted with 90% ethyl acetate - 10% ethyl alcohol solution onto expanded silver grids. The resulting electrodes had a thickness of about 0.025 in. and an area of about 30 cm (1.5 x 1.5 in.) when assembled with two negative electrodes in three-plate cells. To insure positive limitation, the lithium electrodes had a combined theoretical capacity of about 4 ampere hours compared to 0.5 - 1.0 ampere hour in the CuF₂ electrode. The "standard" separation in these cells was 0.02 in. thick glass fiber mat, and 50g LiCl0₄/100 ml methyl formate was employed as the electrolyte. The cells had polyethylene outside cases, and were placed between blocks for lateral support. The cell components, an assembled cell, and a number of cells assembled for discharge are pictured in Figures 31 to 33, pages 97 and 98.

Discharge tests were performed at current densities of 5 - 15 mA/cm². Test temperature was generally -15°C in order to minimize solvent loss during discharge. Some typical voltage-time curves for these discharges are presented in Figures 34 and 35, pages 99 and 100. A summary of construction and discharge data is given in the Appendix, Table A-10, page 141.

To a final cell voltage of 2.0 volts, electrochemical efficiencies in the range of 50 - 70% were obtained for the CuF_2 electrodes. The initial and average discharge potential of the cells increased with increasing graphite content of the paste. As expected, increasing the current density from 10 to 15 mA/cm² decreased the discharge potential; however, the electrochemical efficiency was not significantly affected over the current density range of 5.0 to 15.0 mA/cm². Increasing the thickness of the electrodes from 0.025 in. to 0.050 in. decreased both the discharge potential and the electrochemcial efficiency. Lithium perchlorate added to the paste in amounts of 3.0 to 12.0g/100g of CuF_2 showed no noticeable effect on the discharge properties of the electrodes.

It may be seen from the tabulation of cell construction data that the theoretical capacity of $1.5 \times 1.5 \times 0.025$ in. CuF₂ electrodes increases as the graphite content in the paste is decreased, while the electrolyte

Pasted CuF2 Electrode Test Cell Components

Figure 32

Pasted CuF2 Electrode Test Cell

Cell Discharge Rack

98

Figure 33

FIGURE 34

FIGURE 35

_ _-

volume required for the cell remains essentially the same. Therefore, the theoretical energy density of the cell changes with CuF_2 electrode composition. This has to be considered, in addition to the efficiency of CuF_2 utilization, in the evaluation of the mix composition. In these tests, one gram of cellulose acetate and 10 - 20 grams of graphite per 100 grams of CuF_2 represented an optimum composition range for the discharge rates employed.

3. 2. 2. Conductive Material

To evolve CuF_2 electrodes for high energy density, high rate cells, the ratio of active to inactive material in the electrodes must be high. For electrodes operating at relatively high current densities, this may not be achieved at the expense of conductivity of the matrix. Thus, additives which lend good conductance when added in small concentrations, are desired for such electrodes.

Three conductive materials were compared in cell tests with Dixon air spun graphite, which had been used in most cell tests. The conductors evaluated were Conductex SC and SA-40-220 (Columbian Carbon Company) and alkaline battery type nickel flake (Electric Storage Battery Company).

Pasted CuF₂ electrodes were prepared as described in Section 3. 2. 1. The mix composition was 20 grams CuF₂ (Lot 7, H₂O content ca. 1.5%), 1 gram conductive material, and 0.2 gram cellulose acetate. After blending the dry components in a micronizer blender, pastes were prepared using the 10% alcohol - 90% ethyl acetate pasting solvent, and pasted onto expanded metal. After vacuum drying of the electrodes, three-plate cells with two lithium electrodes and glass fiber separation were assembled, activated with LiClO₄/MF electrolyte (50g salt/100 ml solvent), and discharged at 10 mA/cm² at -15°C. Construction data and discharge results for the cells are listed in Table XL, page 102, and voltage-time data for the best of the three cells in each group are plotted in Figure 36, page 103.

In this test series, the cells which had carbon black in the CuF_2 paste mix gave better discharge performance than those with either graphite or nickel flake at the same concentration. Cell performance replication was comparatively poor, except for cells which had nickel flake additive. Also, the poor performance of cells having graphite conductor had not been characteristice to this paste composition in earlier tests. However, the best cells with carbon black additive gave CuF_2 reduction efficiencies as high as 65% at the ca. 2 hour discharge rate. Since the active material in these electrodes is in the order of 80 - 90% including the weight of the silver grid, high energy densities should be possible with this electrode construction.

XL	
TABLE	

CONDUCTIVE MATERIAL EVALUATION

300 mA/cell (10 mA/cm²) -15°C Discharge Current: Temperature:

			110	Unen	ni cr	harre	Canacity	'n
Cell	Conductive	Dry paste	Capacity	Circuit	Pote	ntial	to 2.0 VF	Cathodic
No.	Material*	Wt., gms	AH	Potential	Initial	Average	AH	Eff., %
A-1	Conductex SC ¹	2.33	.997	3.56	2.86	2.70	.616	61.8
A-2	Conductex SC	2.75	1.205	3.54	2.95	2.71	.777	64.4
A-3	Conductex SC	2.60	1.131	3.55	2.06	2.08	.087	7.7
B-1	SA-40-220 ²	2.54	1.101	3.53	3.09	2.74	.717	65.0
B-2	SA-40-220	2.45	1.056	3.53	3.09	2.74	.693	65.6
B-3	SA-40-220	2.10	.931	3.53	2.89	2.61	.516	55.5
C-1	Graphite ³	2.60	1.131	3.45	Rev.	1 		8 1 1
C-2	Graphite	2.59	1.126	3.55	2.64	2.64	.087	7.7
C-3	Graphite	2.70	1.180	3.54	2.66	2.32	.351	29.7
D-1	Ni Flake ⁴	3.00	1.330	3.52	2.96	2.65	.562	48.6
D-2	Ni Flake	· 2.71	1.185	3.51	2.92	2.57	.567	48.0
D-3	Ni Flake	3.00	1.330	3.46	3.02	2.62	.642	48.2

* 5 grams/100 g CuF2
1 Columbian Carbon Company
2 Columbian Carbon Company
3 Dixon Airspun
4 E. S. B. Company, Alkaline Battery Division.

FIGURE 36

Since the water content of CuF_2 was known to affect its solubility in the organic electrolytes, tests were performed to evaluate the effect of CuF_2 water content on discharge performance of the positive electrode.

Three-plate cells with pasted CuF_2 and sheet lithium electrodes were constructed as previously described. The CuF_2 electrodes were about 0.040 in. thick and had a theoretical capacity of about 1.0 AH. The paste composition was 100 parts CuF_2 , 10 parts graphite, and 1 part cellulose acetate, with 10 percent ethyl alcohol - 90 percent ethyl acetate as the pasting solution. A glass fiber mat, 0.02 in. thick, was used for electrode separation. Discharge tests were perfromed at 300 mA (10 mA/cm²) at -15°C in LiClO₄-methyl formate electrolyte (50g salt/100 ml solvent), and the results obtained with the various materials are shown in Table XLI, page 105.

Performance of the cells can be related directly to the amount of water contained by the CuF_2 used to prepare the electrodes. Material from Lot 7 performed as expected from previous tests when the water content was above one percent. However, after argon stream drying to a water content below 0.3 percent, cell polarization was sufficiently severe to reverse polarity of the cells upon closing of the discharge circuit. Material from Lot 9, which had a water content of about 0.4 percent as received from the manufacturer, gave equally poor results.

The results indicate that completely dehydrated CuF_2 is too insoluble in the $LiClO_4$ -MF electrolyte to allow discharge at 10 mA/cm². A water content of one percent seems to be required for discharge at the 1 - 10 hour rate. For a reserve-activated system, this water content does not appear to be prohibitively high.

3. 2. 4. Discharge Performance With CuF2·2H2O Active Material

To evaluate possible methods of manipulating the discharge properties of the CuF_2 electrodes, tests with $CuF_2 \cdot 2H_2O$ as an additive to CuF_2 were performed. The pasted positive electrodes, and 3-plate cells were prepared as described in Section 3. 2. 1. Discharge tests were performed at 10 mA/cm² and -15°C; results of the discharge tests are tabulated in Table XLII, page 106.

The CuF_2 - $CuF_2 \cdot 2H_20$ mixture produced electrodes having about the same discharge characteristics as have been observed with electrodes made from CuF_2 as received from the manufacturer and having an equivalent total water

TABLE XLI

4

DISCHARGE PERFORMANCE OF DRIED CuF2 IN MF-LiC104 CELLS

Electrolyte: 50g LiClO₄/100 ml MF Current: 300 mA (10 mA/cm²) Temperature: -15°C

			I					-
Cell No.	CuF ₂ Treatment	% H ₂ 0 by X-Ray	CuF ₂ Capacity AH	Open Circuit Potential	Disc Pote Initial	charge ential Average	Capacity to 2.0 VF AH	Cathodic Eff., %
3 7 1	Lot 9B, untreated Lot 9B, untreated Lot 9B, untreated	0.4 0.4 0.4	.982 1.08 1.11	3.55 3.50 3.56	1.90	2.72	.455 .051 	46.3 4.7
4	Lot 7, 16 hours, vacuum, room temp.	1.5	1.05	3.57	2.71	2.73	.732	69.7
Ŋ	Lot 7, 16 hours, vacuum, room temp.	1.5	0.910	3.54	3.00	2.75	.615	67.7
O -	Lot 7, 16 hours, vacuum, 70°C	1.5	0.873	3.55	2.97	2.69	.555	63.7
7	Lot 7, 16 hours, vacuum, 70°C	1.2	0.925	3.50	2.56	2.68	.615	66.5
œ	Lot 7, 16 hours, vacuum, 70°C	1.2	0.934	0.02	Rev.	-	-	
g	Lot 7, 16 hours, vacuum, 70°C	1.2	1.00	3.55	2.91	2.70	. 663	66.3
10	Lot 7, 23 hrs, argon sweep, 152°C	<0.3	0.958	3.56	Rev.	1 		6 1 1
11	Lot 7, 23 hrs, argon sweep, 152°C	<0.3	0.934	3.57	Rev.		8 8 1 1	
12	Lot 7, 23 hrs., argon sweep, 152°C	<0.3	0.967	3.57	Rev.	-	1 1 1	

TABLE XLII

PERFORMANCE OF CuF_2 and $CuF_2 \cdot 2H_2O$ IN $LiC10_4/MF$ ELECTROLYTE

Electrolyte:

Cathodic Eff., Capacity to 2.0 VF 0.520 0.558 0.845 0.702 0.475 AH Average 2.76 2.69 2.76 2.42 2.76 50g LiClO₄/100 m1 MF 300 mA (10 mA/cm²) -15°C Discharge Potential Initial 2.94 2.94 2.98 2.54 Rev. 2.91 Potential Circuit Open 1.50 3.63 3.63 3.61 3.613.61 Current: Temperature: CuF₂ Capacity 0.998 AH 1.23 0.89 0.97 1.07 1.01 Water 1.3* *%* 26 : : : = 95% CuF₂, 5% CuF₂•2H₂0 95% CuF₂, 5% CuF₂·2H₂0 95% CuF₂, 5% CuF₂·2H₂O Active Material 100% CuF₂•2H₂0 100% CuF₂·2H₂0 100% CuF₂·2H₂0 Cell No. 9 -2 З 4 S

*Calculated.

106

1 1 1

44.4

70.4

65.3

6.99

%

68.7

content (ca. 2 percent). Electrodes made from 100 percent $CuF_2 \cdot 2H_20$ gave similar discharge potential and electrochemical efficiency as the $CuF_2 \cdot 2H_20$ - CuF_2 mixture.

The above results further demonstrate that (1) water in the range of 1 - 2 percent may be necessary for rapid discharge of CuF₂, and (2) the water may be present as an impurity in the original CuF₂, or it may be added in the form of CuF₂·2H₂O.

3. 2. 5. Effect of Electrolyte Concentration

To determine the best LiClO₄ concentration for the MF electrolyte, a series of 3-plate test cells were built and discharged. Concentrations over the range of 20 to 70g LiClO₄/100 ml MF were used, and the cells were discharged at 20, 8.3 and 3.0mA/cm² (600, 250, and 90 mA).

3. 2. 5. 1. "Open" Cells at -15°C

Electrodes and cells were prepared as described in Section 3. 2. 1. The positive paste composition was CuF₂-100 parts; graphite - 10 parts; cellulose acetate - 1 part. The discharge tests were performed at -15°C to minimize loss of methyl formate by evaporation.

Results of these discharge tests are summarized in Table XLIII, page 108 to 110. For the discharge conditions used, an optimum electrolyte concentration of 50 - 60g $\text{LiClO}_4/100$ ml MF is indicated.

3. 2. 5. 2. Hermetically Sealed Cells At Room Temperature

To study the effect of room temperature and hermetic sealing on the performance of the CuF_2 -Li system in methyl formate, a series of test cells were built and discharged in glass compatibility tubes. The tubes had an I. D. of about 1.0 in. and a volume of ca. 85 ml, and were equipped with terminal plates for connections to the electrodes.

The lithium electrodes were prepared by pressing a strip of $1/2 \ge 1/16$ inch ribbon onto expanded silver support. The CuF₂ electrodes were made by pasting a mix having the composition

CuF_2 (1.5% H ₂ O)	19
Graphite	2
Cellulose Acetate	0.2

onto expanded silver. The cross-sectional area of both electrodes was 6.0 cm^2 . Separation was provided by 0.02 inch thick glass filter-mat.

Г
Г
H
XL
LE
g
TA

EFFECT OF LICIO4 CONCENTRATION ON CuF2-Li CELL

		Cathodic Eff., %	30 29	33 32	44 43	55 55	57 56	8.5 6.7
	Алегаре	Discharge Potential to 2.0 VF	2.26 2.23	2.14 2.46	2.46 2.40	2.42 2.43	2.29 2.24	2.08 2.10
FORMATE	mA/cm^2)	AH to 2.0 VF	0.37 0.34	$0.37 \\ 0.36$	0.48 0.51	0.59 0.67	0.63 0.65	$0.11 \\ 0.08$
IN METHYL	600 mA (20 -15°C	Time to 2.0 VF Hours	0.62 0.57	0.61 0.59	0.79 0.84	0.98	1.05 1.08	$0.19 \\ 0.14$
PERFORMANCI	Current: Temperature:	Electrolyte Volume	3.4 5.0	5.0 4.2	4.9	4.3 4.2	4.1 4.3	4.0 4.1
	·	Electrolyte Conc. g LiClO4/100 ml MF	20 20	30 30	40 40	50.	60 60	70 70
		Theo. CuF ₂ Capacity AH	1.24 1.17	1.12 1.12	1.07 1.17	1.08 1.21	1.10 1.16	1.29 1.29
		Cell No.	1	6 4	o م N	8 1	9 10	11 12

TABLE XLIII (Continued)

EFFECT OF LICIO4 CONCENTRATION ON CuF2-Li CELL

PERFORMANCE IN METHYL FORMATE

Current: 250 mA (8.3 mA/cm²) Temperature: -15°C

Cathodic Eff., %	32 33	48 48	52 55	70 73	76 72	69 52
Average Discharge Potential	2.55 2.52	2.49 2.60	2.62 2.70	2.70 2.65	2.58 2.56	2.31 2.22
AH to 2.0 VF	0.34 0.43	0.55 0.54	0.61 0.60	0.82 0.87	0.89 0.79	0.79 0.63
Time to 2.0 VF Hours	1.34 1.73	2.20 2.17	2.42 2.41	3.29 3.49	3.57 3.15	3.16 2.50
Electrolyte Volume	5.0 5.0	5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 4.8
Electrolyte Conc. g LiClO ₄ /100 ml MF	20 20	30	40	50	60 60	70 70
Theo. CuF ₂ Capacity AH	1.04 1.31	1.14 1.12	1.16 1.10	1.17 1.20	1.18 1.10	1.15
Cell No.	7 1	4 3	ور ما	8	9 10	11 12

(Continued)
XLIII
TABLE

EFFECT OF LICIO4 CONCENTRATION ON CuF2-Li CELL

PERFORMANCE IN METHYL FORMATE

Current: 90 mA (3 mA/cm²) Temperature: -15°C

Cathodic Eff., %	13 14	25 24	38 31	46 49	62 57	11* 65	
Average Discharge Potential to 2.0 VF	2.64 2.58	2.29 2.35	2.64 2.67	2.70 2.67	2.67 2.71	2.34 2.66	scharge
AH to 2.0 VF	0.16 0.16	$0.27 \\ 0.27$	$0.47 \\ 0.37$	0.53	0.83 0.68	$0.13 \\ 0.84$	t post-di
Time to 2.0 VF Hours	$1.77 \\ 1.77$	3.01 3.01	5.17 4.15	5.87 6.60	9.26 7.58	1.43 0.29	nd clean at
Electrolyte Volume	5.2 5.0	5.0	5.0	3.0 2.8	3.5 4.0	3.0 4.0	Separator dry an
Electrolyte Conc. g LiClO ₄ /100 ml MF	20 20	30	40 40	50	60	70 70	hsorh electrolvte.
Theo. CuF ₂ Capacity AH	1.20 1.17	1.09 1.12	$1.21 \\ 1.22$	1.15 1.20	1.35 1.20	1.22 1.29	l failed to al
Cell No.	1	ю 4	6 5	8	9 10	11 12	لم] *

Cell failed to examination.

The electrodes and separation were assembled into 3-plate cells between glass slides held together by rubber bands. About 0.5 in. of the glass mat separation was allowed to be exposed below the bottom of the glass slides. The assembly was then lowered into the glass compatibility tube containing 5 ml of electrolyte solution, allowing the exposed separation to dip into the liquid; the tubes were then sealed.

Cell discharges were performed at 35° C and current densities of 20, 8.6 and 3.2 mA/cm^2 . An open circuit stand time of 15 - 20 minutes was allowed for the cathode and separation to become fully wet with the electrolyte. Results of the discharge are summarized in Table XLIV, pages 112 to 114, and selected voltage-time data have been plotted in Figures 37 to 39, pages 115 to 117.

Both discharge potential and electrochemical efficiency of the CuF_2 electrode were higher in these tests than had been obtained in the envelope cells at -15°C. The electrolyte concentration of 50g LiClO₄/100 ml MF appeared to be the best compromise over the discharge rate range tested. Lower electrolyte concentrations performed better at the lower discharge rate (10 - 15 hour rate), while the higher rates (ca. 1 - 2 hour rates) appeared to benefit from higher LiClO₄ concentration.

The pressure in all tubes remained below 5 psig during the discharge, indicating that internal pressure should not present a problem with methyl formate batteries at ambient temperatures. In a separate test at 74°C, the vapor pressure above the 50g $LiClO_4/100$ ml MF electrolyte was found to be 10 psig.

3. 3. Seven-Plate Cell Tests

To study the problems associated with scaling up the 3-plate test cells used for cathode studies to cells having 4 - 5 AH capacity and more nearly balanced Li and CuF_2 theoretical capacities, 7-plate cells were constructed and tested.

Copper fluoride electrodes were made by applying paste having the following composition

CuF ₂	44.0	g
Dixon Graphite	4.4	g
Cellulose Acetate (2% solution in	0.44	g
90 ethyl acetate/10 ethyl alcohol)		-

to silver grids in a $1.5 \times 2 \times 0.03$ in. polypropylene mold.

TABLE XLIV

EFFECT OF LICIO₄ CONCENTRATION ON SEALED Li-CuF₂

CELL PERFORMANCE IN METHYL FORMATE

Current: 250 mA (20 mA/cm²) Temperature: 35°C

Electrochemica	Efficiency	<i>0\0</i>	42	46	42	63	47	40	52	53	35	49	53	40	26	18	0	0
Cap. to	2.Ô VF,	AH	.33	.35	.32	.47	.33	. 35	.38	.40	.30	. 36	.34	.31	.22	.16	0	0
arge	tiäl	Average	2.66	2.53	2.34	2.49	2.52	2.50	2.59	2.65	2.35	2.48	2.42	2.38	2.29	2.27	0	0
Disch	Poten	Initial	2.72	2.79	2.63	2.76	2.64	2.77	2.85	2.85	2.65	2.65	2.65	2.58	2.50	2.20	0	0
	CuF ₂ Capacity	AH	.78	.77	.77	.74	.72	.86	.73	. 78	. 87	.75	.65	.79	.86	.89	.94	.75
	Electrolyte	H_20 , ppm	2110	2110	1770	1770	3100	3100	1130	1130	3300	3300	1700	1700	1200	1200	490	490
e LiClOh	100 ml,	MF	20	20	30	30	40	40	50	50	60	60	70	70	80	80	06	06
	Cell	No.	٦	2	2	4	س	9	- 2	00	10	11	12	13	14	15	16	17

TABLE XLIV (Continued)

,

EFFECT OF LICIO4 CONCENTRATION ON SEALED LI-CuF2 CELL PERFORMANCE IN METHYL FORMATE

Current: 104 mA (8.6 mA/cm²) Temperature: 35°C

Electrochemica Efficiency %	58	58	69	71	81	81	78	83	68	74	65	64	74	56	74	65
Cap. to 2.0 VF, AH	.16	.46	.54	.60	.58	.62	.54	.59	.51	.57	.51	.46	.49	.36	.54	.43
charge ential <u>Average</u>	2.55	2.54	2.67	2.76	2.78	2.80	2.69	2.71	2.66	2.67	2.60	2.64	2.50	2.60	2.53	2.54
Disc Pote Initial	2.94	2.96	2.96	3.03	3.05	3.06	3.02	3.04	2.88	2.85	2.77	2.70	2.57	2.56	2.43	2.48
CuF ₂ Capacity AH	.80	. 79	.79	.84	.72	.77	.69	.71	.75	.77	.80	.72	.66	.64	.74	.66
Electrolyte H ₂ 0, ppm	2110	2110	1770	1770	3100	3100	1130	1130	3300	3300	1700	1700	1200	1200	490	490
g LiClO ₄ 100 ml, MF	20	20	30	30	40	40	50	50	60	60	70	70	80	80	06	06
Cell No.	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

113

ı

TABLE XLIV (Continued)

EFFECT OF LICIO₄ CONCENTRATION ON SEALED LI-CuF₂

CELL PERFORMANCE IN METHYL FORMATE

Current: 38 & 42 mA (3.2 & 3.5 mA/cm²)* Temperature: 35°C

Electrochemical Efficiency %		70	72	74	74	72	70	67	66	46	55	48	53	42	49	41	46
Cap. to 2.0 VF, AH		.53	.64	.53	.64	.53	.52	.61	.65	.48	.60	.35	.43	.35	.33	.38	.38
charge ential Average		2.66	2.68	2.78	2.76	2.77	2.87	2.77	2.92	2.92	2.92	2.89	2.91	2.94	2.75	2.58	2.83
Disc Pote Initial		3.00	3,00	3.02	3.04	3.14	3.18	3.18	3.20	3.12	3.16	3.02	2.90	2.64	2.28	1.80	2.30
CuF ₂ Capacity AH		.76	. 89	.71	71	.85	.93	.72	.91	.77	.79	.83	.81	.83	.68	.94	.82
Electrolyte H ₂ O. pom	1 1 6 7	2110	2110	1770	1770	3100	3100	1130	1130	3300	3300	1700	. 1700	1200	1200	490	490
g LiClO _t 100 ml, MF		20	20	30	30	40	40	50	50	60	60	70	70	80	80	06	06
Cell No.		36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

*Cells 36 -39 were discharged at 42 mA. Remaining cells were discharged at 38 mA.

FIGURE 37

Ĩ15

FIGURE 39

Dry ingredients were ground in the "Hi-Speed" mixer after which the resin solution was added to make the paste. The plates were dried under hard vacuum overnight before cell assembly. Anodes were fabricated by pressing $2 \times 1.5 \times 0.015$ in. lithium sheets onto one or both sides of 1.5×2 in. expanded silver grids. Two single-sided and two double-sided anodes were made for assembly in the 7-plate cell configuration.

Three cells were assembled with three cathodes, two double anodes, and two single anodes per cell so that each cathode surface faced an anode surface. The plates were separated by 0.02 in. thick glass filter mat and sealed in 2 in. wide polyethylene envelopes.

The cells were assembled in a wooden test rack enclosed in a polyethylene bag. The assembly was placed in -12° C freezer three hours prior to activation with 50g LiClO₄/100 ml MF electrolyte, pre-cooled to -12° C.

Two cells were activated after one day of storage under argon, and after 15 minutes of wet stand discharged through resistive loads of 2.74 or 3.53 ohms. The third cell was stored at room temperature under argon for a period of four weeks, at which time it was activated and discharged under the same conditions as cell #1 (2.74 ohms at $-12^{\circ}C$).

Results of the discharges and construction data are presented in Table XLV, page 118. Voltage-time curves for the three cells are given in Figure 40, page 119.

The results obtained with these cells are about equivalent to those obtained with the 3-plate elements in previous tests. No scale-up problems appear to exist for building 4 - 5 AH cells with the present construction. Also, the cells appear to be storable under argon prior to activation for at least the 4-week period used in this test.

TABLE XLV

PERFORMANCE OF SEVEN-PLATE CELLS

Electrolyte: 50g LiClO₄/100 ml MF Electrode Area: 116 cm² Temperature: -15°C

			Discharge				
	Dry	Theo.	Time to		Average		
Cell	Stand	Capa.	2.0 VF	Load	Discharge	AH to	Cathodic
No.	Time	AH	(hours)	Ω	Potential	2.0 VF	Eff., %
1	l day	5.42	3.96	2.74	2.51	3.63	67
2	l day	5.46	5.07	3.53	2.62	3.76	69
3	28 days	5.33	3.68	2.74	2.35	3.09	58

FIGURE 40

BLANK

LITHIUM STABILITY IN PROPYLENE CARBONATE SOLUTIONS (+25°C)

H ₂ O = 390 ppm 15g LiClO4/100 ml	No visible attack.	No visible attack.	No visible attack.	No attack on shiny Lı, however, amorphous surface is now white	No further changes.
H ₂ O = 390 ppm No Solute	No visible attack.	Cut Li is blackened.	Cut Li black; degreased sur- face blackened	Degreased Lı completely black	Lı completely black; and curling
H ₂ O = 1900 ppm 15g LiC104/100 m1	Tarnishing of cut Li.	Film covering shiny Li; Gela- tinous material in the liquid.	Heavy gelatinous material in liquid.		
H2O = 710 ppm No Solute	Li surfaces black.	No further changes.	Same		
Exposure Time (hrs.)	10	25	100	300	200

APPENDIX

121

PRECEDING PAGE BLANK NOT FILMED.

<u>(</u>)	H ₂ O = 190 ppm 15g LiClO ₄ /100 m1	No visible attack.	No visible attack.	No visible attack.	No visible attack.	No vîsîble attack.
REGINATE SOLUTIONS (+25'	$H_20 = 180 \text{ ppm}$ No Solute	Li tarnishing.	Cut surfaces black.	Degreased Li black.	2/3 of degreased Li black.	Li completely black and curling; white, gelatinous material in liquid.
31LITY IN PROPYLENE CAI	H ₂ O = 660 ppm 15g LiClO ₄ /100 ml	No visible attack.	No visible attack.	Tarnishing of cut surfaces and white gelatinous material in liquid.	No change.	
LITHIUM STAL	$H_2O = 710 ppm$ No Solute	Cut surfaces black; degreased surfaces tarnîshing.	Translucent film covering most of the Li; white gelatinous material in liquid.	White material increasing. Dull and curling.	No change.	
	Exposure Time (hrs.)	10	25	100	300	500

,

.

LITHIUM STABILITY IN PROPYLENE CARBONATE SOLUTIONS (+35°C)

	Propylene Carbonate distillation alon	purified by ne.	Propylene Ca lithium trea	rbonate purified by tment & distillation.
Time, Hours	No Solute H ₂ O + (25 <u>+</u> 20)ppm	1M LiC10 ₄ H ₂ O = 175 ppm	No Solute H ₂ O <25ppm	$\frac{1M \text{ LiC10}_4}{H_2O} = 150 \text{ ppm}$
15	Cut Li surfaces tarnished.	No attack.	Li surface tarnished.	No attack.
45	Li surface black.	No attack.	Same	No attack.
70	No changes.	No attack.	No changes.	No attack.
160	No changes.	No attack.	Same	No attack.
210	No changes.	Li slightly tarnished.	Same	Cut Li surface tarnishing.
330	Gelatinous mate- ríal in bottom of tube.	Gelatinous material in bottom of tube.	Same	Same
540	Same	No change.	Same	Trace of gela- tinous material in bottom of tube.
1250	Gelatinous mate- rial & some crys- talline white material in bottom of tube; liquid turbid. Li surfaces black.	All surfaces dulled; gela- tinous mate- rial in bottom of tube.	Li surface dulled & tarnished; gelatinous material in bottom of tube.	Some gelatinous material in bottom of tube; liquid phase clear & colorless; cut sur- face very shiny.

Time, Lithium Solutions Solution Days 7 Bright Clear LiC104 Bright Clear 14 21 Du11 Clear White gel ppt. 7 Black growth NaC10 14 Black growth Brown gel ppt. Brown & black growth 21 Voluminous ppt. 7 Etched Clear KPF₆ 14 Etched Clear 21 DullClear KAsF₆ 7 Etched Clear 14 Black Clear 21 **Black** Clear 7 $LiBF_4(m)^1$ Dull black Clear, pale yellow Dull black 14 Clear, pale yellow Dull black 26 Clear, pale yellow $LiPF_6(m)^1$ 7 Dull black Clear, pale yellow 14 Dull black Clear, pale yellow 26 Black Clear, pale yellow $LiAsF_{6}(m)^{1}$ 7 Dull black Clear Dull black 14 Clear 26 Dull black Clear $NaAsF_{6}(m)^{1}$ 7 Dull black, gassing Clear, white ppt. 14 Dull black, yellow growth Clear, white ppt. 26 Dull black, yellow growth Clear, white ppt. $LiBF_4(F)^2$ 7 Clear Bright 14 Bright Clear 26 Bright Clear $LiBF_4(F)^2$ 7 Bright Clear 14 Bright Clear Clear 26 Bright

LITHIUM STABILITY TESTS IN 1.0 M PROPYLENE CARBONATE

¹ Metathetical preparation.

² Supplied by Foote Mineral Co.

LITHIUM STABILITY IN VARIOUS ELECTROLYTES

Electrolyte *	Time, Days	Lithium	Solution
LiC10,/PC	7	Bright	Clear
4.	14	Dull	Clear
	21	Dull & Black	Clear
KAsF ₆ /PC	7	Bright	Clear
	14	Du11	Clear
	21	Dull & Black	Clear
LiC10 ₄ /DMSO	7	Bright	Clear
·	14	Dull & Black	Clear
	21	Dull & Black	Clear
KAsF ₆ /DMSO	7	Bright	Clear
0	14	Dull	Clear
	21	Dull	Clear
LiC10,/AA	7	Gray deposits	Clear, white ppt.
4	14	Gray deposits	Clear, white ppt.
	21	Gray deposits	Clear, white ppt.
KAsF ₆ /AA	7	Dull	Clear
0	14	Gray deposits	Clear, white ppt.
	21	Gray deposits	Clear, white ppt.
LiC10,/NNDA	7	Dull	Clear
Т	14	Flesh colored deposits	Clear
	21	Flesh colored deposits	Clear
KAsF ₆ /NNDA	7	Dull	Clear
0	14	Dull & Black	Clear
	21	Dull & Black	Clear
LiClO _L /NM	7	Decomposed	Dark brown ppt.
Ŧ	14	Decomposed	Dark brown ppt.
	21		
KAsF_/NM	7	Black, coating	Clear
р	14	Black, coating	Clear
	21	Black, coating	Clear

* 1 mole of salt/L of solvent.

.

믠	50g LiC10 ₄ /100 m1 H ₂ 0: 350 ppm	Sol'n clear yellow. Li strip covered with white flocullant material.	Li completely covered with a thick, white film. Sol'n clear, yellow, brown tinge. Some flocullant white material on bottom of test tube.	Sol'n light brown. Heavy white film on Li surface.	Sol'n black. Li black viscous mass.
LITHIUM STABILITY IN METHYL FORMA	CaO Treated 25g LiClO4/100 ml H2O:350 ppm	Sol'n light yellow. Li strip covered with white crystalline material.	Li completely covered with white film. Sol'n clear, light yellow.	Heavy white film on Li surfaces. Sol'n very light yellow & clear.	Sol'n light yellow. Li strip covered with flocullant white material.
	Untreated 25g LiClO4/100 ml	Pressure buildup. Li coated with white film, solution yellow and turbid.	Li completely covered with a thick white film. Sol'n brownish- yellow and turbid.	Sol'n & Li one solid white mass.	Sol'n & Li strip one white solid mass.
	Exposure Time	11 days	14 days	17 days	48 days

TABLE A-5(A)

i

TABLE A-5(A) (Continued)

ľ

٠

`

LITHIUM STABILITY IN METHYL FORMATE

•

ated	Sol'n dark brown. Li strip	Sol'n almost black. Li covered	Sol'n black, viscous mass. Li	Sol'n & Li strip black gel.
50g LiC104/100 ml, H20:350 ppm	grey. No gel.	with fine hairlike crystals.	covered with black gel.	
Ca0-Li Tree	Sol'n dark brownish black. Li surface	Li covered with a brown gel. Sol'n	Sol'n black viscous mass. Li covered	Li covered with brown gel. Sol'n black.
25g LiC104/100 ml, H20:500 ppm	covered with yellowish brown gel.	dark brown.	with black gelled mass.	
Exposure Time	11 days	14 days	17 days	48 days
TABLE A-5(B)

LITHIUM STABILITY IN METHYL ACETATE

Exposure Time	Untreated 25g LiClO ₄ /100 m1	CaO Treated 25g LiClO4/100 ml H ₂ O: 800 ppm	50g LiClO ₄ /100 ml H ₂ 0: 1000 ppm
11 days	Sol'n clear light brownish yellow, Li surface clean § bright.	Sol'n light clear yellow. Li surface bright, very slight white film on sur- face.	Sol'n color light brownish yellow. Li strip clean & bright. No decomposition.
14 days	Li clean & bright. Sol'n clear light yellow.	Sol'n color same. Li clean & bright, some crys- talline ppt on bottom of test tube.	Sol'n color same. Li clean & bright. Gel on bottom of test tube.
17 days	Li clean & bright. Sol'n clear light yellow.	Sol'n color same. White film on surface of Li strip, gel on bottom of test tube.	Sol'n color unchan- ged. White film on surface of Li. Gel on bottom of tube.
48 days	Sol'n light brown, Li covered with white film, white ppt. on bottom of test tube.	Sol'n yellowish brown, Li white, gel clinging to surface. Gel on bottom of tube.	Sol'n yellowish brown, Li unchanged, white film on surface, gel on bottom of tube.

128

Ï

Ì

Ì

TABLE A-5(B) (Continued)

٩

4

LITHIUM STABILITY IN METHYL ACETATE

d 50g LiC104/100 m1; H ₂ 0: 3700ppm	Sol'n light, clear yellow Li surface bright, very slight white film on surface.	Some yellow spots on surface of Li, also a fine white film. Sol'n bright opaque.	Li covered with white film. Yellow spots on Li surface. Gel on bottom of test tube.	Li covered with fine white film, small amount of gel on bottom of tube. Li not heavily attacked.
CaO-Li Treated 25g LiClO ₄ /100 ml; H ₂ O: 3100 ppm	Sol'n light brownish yellow. Li etched & bright below surface of liquid. White film on surface of Li above sol'n, some white particles suspended in sol'n.	Sol'n clear, same color Li bright with some flaky. Crystalline particles on surface.	Li covered with white film. Sol'n light brown. Gell in suspension & on bottom of test tube.	Sol'n light brown, Li grey-white with gel clinging to surface. Gel on bottom of tube.
Exposure Time	11 days	14 days	17 days	48 days

130

TABLE A-5(C)

LITHIUM STABILITY TESTS IN 1.0 M SOLUTIONS

Solution	Time	Observation
LiC10,/PC	l day 19 days	Li bright, electrolyte clear. No change in appearance.
LICIO ₄ /MA	l day 19 days	Li bright, solution clear. Stopper popped, Li strip corroded.
KC104/PC (sat.)	l day 19 days	Li bright, solution clear. Li 40% black, solution has yellow tinge.
KC10 _→ /MA (sat.)	l day 19 days	Li bright, solution clear. Li 90% black, sol'n water white.
NaC1O;,/PC	l day 19 days	Li bright, solution clear. One side of Li black, other side covered with bubbles. Ppt. on bottom of test tube.
NaClO _, /MA	l day 19 days	Li bright, sòl'n clear. Gel part- icles on Li surface & tube surface Li tarnished.
KPF _t /PC	l day 19 days	Li bright, sol'n clear. Li tarnished on fifth day, solution clear. No change to 19 days.
KPF ₆ /MA	l day 19 days	Li tarnished, sol'n clear. After 3 days, Li completely black; 5 days some ppt; & no change from 5 days to 19 days.
LiBr/PC	l day 19 days	Li bright, sol'n clear. Li bright, no attack, sol'n water white, cloudy.
LiBr/MA	l day 19 days	Li bright, sol'n clear. White coating on Li in 2 days; Li covered with gel particles in 3 days; white crystals on Li in 8 days. Sol'n color light yellow.

TABLE A-5(D)

٠

•

COMPATIBILITY OF VARIOUS ELECTROLYTES WITH METALLIC LITHIUM

Solute	Solvent	15 Minutes	<u>3-1/2 Hours</u>	24 Hours
KC10 ₄	PC	No effect.	Tarnishing slightly.	No noticeable change.
KC10 ₄	BL	No effect.	Tarnishing slightly.	Li moderately tarnished.
KC10 ₄	DMSO	No effect.	No noticeable change.	No noticeable change.
KC10 ₄	AN	Gel adhering to cut area.	Yellow gel; Li badly corroded.	Solid yellow gel in tube.
KC10 ₄	MN	Cut area dark.	No noticeable change.	Black coating on Li.
KPF 6	B1	No effect.	Li dark above liquid.	Black coating on Li.
KPF ₆	DMSO	No effect.	No noticeable change.	No noticeable change.
KPF ₆	AN	Cut area dark.	Yellow gel; Li badly corroded.	Solid yellow gel in tube.
KPF ₆	MN	Scraped area dark; bright area gray.	No noticeable change.	Li black with yellow coating on sides.
LiBr	PC	No effect.	No noticeable change.	No noticeable change.
NaBr	PC	No effect.	No noticeable change.	Li tarnishing slightly.
KBr	PC	No effect.	No noticeable change.	Li tarnishing slightly.
KF•2H ₂ 0	PC	Bubbles on Li surface.	Li turning slightly black.	White powdery surface on Li.
KA1F ₆	PC	Cut area dark, rest of strip slightly tarnishe	Li turning black. d.	Li deep black.

131

.

TABLE A-5(D) (Continued)

COMPATIBILITY OF VARIOUS ELECTROLYTE WITH METALLIC LITHIUM

Solute	Solvent	15 Minutes	3-1/2 Hours	24 Hours
None	MN	Cut area; slightly tarn- ished.	No noticeable change.	Lí moderately tarníshed.
None	AN	Yellow gel on cut surface.	Liquid bubbling. Yellow spots.	Yellow gel in tube.
None	DMSO	No effect.	No noticeable change.	No noticeable change.
None	MA	Cut area black; bubblíng.	Deep grey coating, bubbling.	Li grey-white.
None	BL	No effect.	Scraped area slightly dark.	Li grey.
None	PC	No effect.	No noticeable change.	Cut area dark.
None	AN*	Yellow gel on Li surface.	Liquid gassing.	Yellow gel.

* Treated with molecular sieve.

.

TABLE A-5(E)

CuF₂ SOLUBILITY IN METHYL ACETATE SOLUTIONS

		Time, Days, µg/ml	[Cu ⁺⁺]	
Solute	7			28
LiC10 ₄	331	384	511	692
NaClO ₄	76	115	96	115
KPF ₆	403*	1410	640	896
KAsF ₆	64	96	160	83
KBF 4	<19*	<32	<32	<32
$LiAsF_6(m)^1$	128	128	224	237
NaAsF ₆ (m) ¹	64	320	<32	<32
LiBF ₄ (F) ²	51	160	64	124

* Saturated solutions, others 1 mol solute/liter of solvent.

¹ Metathetical preparation.

.

² Supplied by Foote Mineral Co.

PRISMATIC ELECTRODE CONSTRUCTION BY FILTER-PRESS METHOD

A. Preparation of Materials

- 1. Fiber (S & S Paper Pulp): dry overnight at full vacuum.
- 2. Conductor (Dixon Graphite): dry overnight under vacuum.
- 3. Vehicle (Fisher Heptane, laboratory grade): use as received.

B. Size Reduction

- 1. Charge mill jar (Size 00) to 1/3 level with grinding media.
- 2. Fill to about 1/2 level with vehicle; record volume, cc.
- 3. Add specified weight of active material and conductor.
- 4. Place jar on rollers for specified period.

C. Filter-Mat Construction

- 1. Transfer charge to 800 ml beaker and remove grinding media.
- 2. Transfer to "Osterizer" blender and add specified weight of fiber. Dilue with additional heptane.
- 3. Agitate on "low" for 30 seconds and on "high" for 60 seconds.
- 4. Filter immediately through shark skin paper in sheet mold at 10 in. vacuum.
- 5. Press pad between blotter paper sheets at 60 lbs./sq. in. of sheet area.

D. Electrode Construction

- 1. Cut wet fiber pad to size, 1.5 x 1.5 in.
- 2. Assemble in steel mold with expanded metal connector.
- 3. Compress at 500 lbs./sq. in. of electrode area.
- 4. Place electrodes in Mason jar and dry under vacuum overnight or until no heptane odor can be detected.

E. Storage of Electrodes

- 1. Store electrodes in hermetically sealed Mason jars.
- 2. Label jars with test number, batch number, operator, and date of preparation.

f

.

.

SPECIFIC CONDUCTANCE MEASUREMENTS

(Room Temperature)

Remarks	Slight haze, 97 ppm H ₂ 0	Approx. 90% dissolved, 61 ppm H ₂ 0	Approx. 30% dissolved, 97 ppm H ₂ 0	Light Tan, 170 ppm H ₂ 0	Tan, 105 ppm H_20^{-2}	Clear, 260 ppm H ₂ 0	Clear, 160 ppm H_{2}^{2} O	7						Solution green	Solution green)		
Specific Conductance (2 ¹ cm ⁻¹)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.1×10^{-3}	9.7×10^{-3} 0.21×10^{-3}	6.4×10^{-3}	6.4×10^{-3}	6.2×10^{-3}	8.2×10^{-3}	3.2×10^{-6}	8.1×10^{-6}	3.4×10^{-5}	8.8 x 10^{-3}	3.0×10^{-4}	2.1×10^{-4}	1.3×10^{-4}	5.7×10^{-5}	2.6×10^{-4}	3.3×10^{-5}	6.33 x 10 ⁻⁶
Grams Solute Liter of Solvent	250 250 184	228	250 126	94	152	196	212	250	250	250	250	250	250	250	250	250	250	250
Solute	KCIO4 KPF K ₂ Z ⁶ F ₆ KPF ₆	KAsF ₆	KASF ₆ KBF ₄	$\times \text{LiBF}_{h}(m)^{1}$	×LiPF ₆ (m)	×LiAsF ₆ (m)	×NaAsF ₆ (m)	LiF	NaF	KF	LiBr	NaBr	KBr	${ m Li}_{2}{ m Cr0}_{ m L}$	$K_2 \tilde{C}rO_4$	KA1F ₆	KCRF ₆	K ₂ TiF ₆
Solvent	PC * PC PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC

¹ Metathetical. × These salts were prepared by reacting LiClO₄ with the potassium derivative of the desired anion.

(Continued)
A-7
TABLE

l

i

ļ

Ì

SPECIFIC CONDUCTANCE MEASUREMENTS

(Room Temperature)

Remarks	Colorless solution. Dark Tan, 2500 hours agitation	Colorless solution. Pale yellow, 2500 hrs. agitation	76 ppm H_2^0 76 ppm H_2^0 Saturated sol'n, 110 ppm H_2^0	Pale yellow, saturated sol'n, 90 ppm H ₂ O	Only slightly soluble Light tan, 290 ppm H ₂ O Light tan, 270 ppm H ₂ O	tive of the desired anion.
Specific Conductance (a ⁻¹ cm ⁻¹)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8×10^{-7} 2 x 10^{-6}	1.4 x 10^{-3} 5.0 x 10^{-3} 5.9 x 10^{-3}	10.9 x 10 ⁻³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	with the potassium derivat
Grams Solute Liter of Solvent	250 250 60 60	0.2	106 122 184	228	250 126 212 250 250 250 250 250	by reacting LiClO ₄
Solute	KC104 KPF6 K2ZrF6 CuF2(3.9% H ₂ 0) CuF2(3.9% H ₂ 0)	CuF ₂ (3.9% H ₂ 0) CuF ₂ (3.9% H ₂ 0)	LiClO ₄ NaClO ₄ ' KPF ₆	KAsF ₆	KASF ₆ KBF ₄ ×LiAsF ₆ ×NaAsF ₆ LiF NaF LiBr NaBR	ts were prepared t
Solvent	BL* BL BL BL BL	BL BL	MA * MA MA	MA	MA MA MA MA MA MA MA	×These sal

136

		Remarks			175 ppm H ₂ 0 75 ppm H ₂ 0		1000 ppm H ₂ O 1366 ppm H ₂ O
CTANCE MEASUREMENTS	[emperature]	<pre>Specific Conductance</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.4×10^{-7} 3.4×10^{-7}	10.1×10^{-3} 11.3×10^{-3} 2.9×10^{-5} 11.6×10^{-3} 11.6×10^{-3}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5 x 10 ⁻³ 2.7 x 10 ⁻³ 2.2 x 10 ⁻⁵ 7.4 x 10 ⁻³ 10.8 x 10 ⁻³
SPECIFIC CONDUC	(Room T	Grams Solute Liter of Solvent	250 250 250 250 250	250 250	250 250 250 228	250 250 250	250 250 106 228
		Solute	KBr Li2CrO4 K2CrO4 KAIF6 KCI04 KCrF6 KCrF6	K ₂ Tiř ₆ K ₂ ZrF ₆	KCIO ₄ KPF ₆ K ₂ ZrF ₆ LiCIO ₄ KAsF ₆	KC104 KPF ₆ K ₂ ZrF ₆	KPF KCIÕ ₄ K ₂ ZrF ₆ LiCIO ₄ KASF ₆
		Solvent	MA MA MA MA MA	MA MA	DMSO* DMSO DMSO DMSO DMSO	AN* AN AN	* WN MN MN NN

TABLE A-7 (Continued)

6

•

TABLE A-7 (CONTINUED)

SPECIFIC CONDUCTANCE MEASUREMENTS

(Room Temperature)

Remarks	185 ppm H ₂ 0 75 ppm H ₂ 0	125 ppm H ₂ 0 75 ppm H ₂ 0
Specific Conductance (0 ⁻¹ cm ⁻¹)	15.7×10^{-3} 22.3 × 10^{-3}	10.6 x 10 ⁻³ 13.6 x 10 ⁻³
Grams Solute Liter of Solvent	106 228	106 228
Solute	LiClO ₄ KASF ₆	LiClO ₄ KAsF ₆
Solvent	NDA* NDA	AA* AA

*

* PC - Propylene Carbonate BL - γ-Butyrolactone MA - Methyl Acetate DMSO - Dimethyl Sulfoxide AN - Acetonitrile NM - Nitromethane NDA - N, N-dimethylnitrosoamine AA - Acetic Anhydride

X-RAY ANALYSIS OF CuF₂

A. Preparation of Sample

About 10g of the material to be analyzed is delivered under argon into a "Hi-Speed" micronizer blender and ground for ca. 20 seconds. The material is then transferred to a polyethylene envelope, and the latter is heat sealed.

Prior to mounting on the diffractometer, the powder is pressed by hand into a 1/16 inch thick aluminum die which has been taped to a microscope slide. A second slide is then taped to the opposite side of the die, and the original slide is removed leaving a smooth plane of compacted material.

B. Analysis

A Phillips Model 12045B/3 X-ray generator is used in conjunction with Phillips No. 12096 Control Panel and No. 52090 Minneapolis-Honeywell Strip Chart Recorder. The sample is rotated from 80° to 10° Bragg angle at the rate of 1 degree/minute under monochromatic CuK α radiation ($\lambda = 1.5418$ Å).

C. Calculation

1. $CuF_2 \cdot 2H_20$

The highest amplitude on the chart between the limits of 18.4 and 18.6 degrees is selected, and percent $CuF_2 \cdot 2H_2O$ is calculated

 $CuF_2 \cdot 2H_20 = \frac{counts/second (unknown)}{counts/second (pure CuF_2 \cdot 2H_20)} \times 100$

2. Cu0

. . .

The highest amplitude between the limits of 38.6 and 38.8 degrees is selected, and percent CuO is calculated

PERFORMANCE OF CuF2-Li CELLS WITH BUTYROLACTONE ELECTROLYTE

		Ele(Dis(Ele(ctrolyte: 15g L charge Temperatu ctrode Area: 29	.iClO ₄ /100 n tre: 35°C) cm ²	nl BL Water Dischi Separi	Content: 150 arge Load: 200 ation: 0.0	ppm ohms 3'' MPR
Cell No.	Star Condit Temp.	nd tions Time, wks.	Theo. CuF ₂ Capacity, AH	Hours to 2.5 VF	Capacity to 2.5 VF, AH	Average Discharge Potential Volts	% Cathode Efficiency
1 * 2 *			3.71 4.18	70 76	1.07 1.17	3.05 2.99	29 28
1 % 4		1 1	3.59 3.44	74 75	1.16	2.92 3.01	30 34
**0	 	ı	3.90	64	1,00	3,12	26
ر 10**		ı	4.50	70	1.10	3.13	24
11** 12**		1 1	4.67 4.60	62 59	0.96	3.08 3.13	21 20
ىن ا	+35	-	3.92	1			
*9	+35		4.10	1	 		ł
13** 14**	+35 +35		4.82 4.58	1 <1	8 1 8 1 9 1 1 1	1 1 1 1 1	1
7* 8*	-15 -15	5 7	4.26 4.12	118 90	1.80 1.36	3.05 3.03	42 33
15** 16**	-15 -15	0 0	4.62 4.71	95 97	1.45 1.45	3.06 3.00	31
°°°°	pen Circ uF ₂ : Dr uF ₂ : Dr	uit Volt ried in s ried in s	tage <l after="" s<br="" v="">argon for 16 hou argon for 113 ho</l>	tand. irs at 130°C urs at 130°			

٠

Ì

EFFECT OF CATHODE PASTE COMPOSITION ON CELL PERFORMANCE

			Remarks			Apparent internal short.	MPR Separation.	MPR Separation.	MPR Separation.			MPR Separation, .040" pos.	MPR Separation, .040" pos.					Room temp. sealed.	Room temp. sealed.	MPR Separation - room temp.	MPR Separation - room temp.				Leak upon activation.							2.35 M Electrolyte.	2.35 M Electrolyte.
		Flectrochemical	Efficiency, %	67	69	40	45 \	38	50	67	60	33	ł	58	68	65	66	ر 99	51 (55 (ر 75	66	59	62	33	37	62	60	54	66	58	17	25
		Canacity to	2.0 VF, AH	0.37	0.34	0.28	0.25	0.24	0.32	0.64	0.55	0.33	1	0.44	0.57	0.47	0.50	0.51	0.38	0.38	0.54	0.43	0.44	0.43	0.28	0.31	0.58	0.49	0.39	0.50	0.45	0.15	0.20
		scharge	1 Average	2.67	2.67	2.52	2.24	2.27	2.24	2.56	2.56	2.25	2.00	2.63	2.67	2.72	2.65	2.73	2.65	2.50	2.66	2.70	2.72	2.66	2.48	2.50	2.59	2.58	2.59	2.65	2.60	2.45	2.46
	10		Initia	2.91	2.88	2.86	2.49	2.74	2.46	2.82	2.78	2.39	2.00	2.89	2.76	2.85	2.81	2.81	2.82	2.58	2.53	2.76	2.76	2.58	2.69	2.58	2.58	2.72	2.67	2.73	2.69	2.70	2.61
-15°C	c	Upen Circuiit	Potential	3.53	3.55	3.52/3.35	3.53	3.53	3.53	3.53	3.53	3.51	3.51	3.37	3.49	3.49	3.48	3.54	3.52	3.52	3.57	3.51	3.51	3.51	3.51	3.51	3.51	3.47	3.47	3.47	3.47	3.37	3.21
Temperature:		Electrolyte	CC	3.0	3.0	2.7	2.9	3.4	3.3	3.5	2.1	3.7	4.5	2.8	2.8	3.0	2.8	2.5	2.7	2.5	2.6	2.5	2.5	2.5	Leak	2.5	3.0	3.0	3.0	3.0	3.0	4.0	3.6
300 mA 0 mA/cm ²)		Cur2 Capacity	AH	0.55	0.49	0.61	0.56	0.62	0.63	0.95	0.91	0.98	0.92	0.76	0.84	0.73	0.76	0.77	0.74	0.69	0.72	0.65	0.73	0.69	0.84	0.84	0.94	0.81	0.72	0.76	0.77	0.86	0.81
h. Current:		Dmr nocto	Wt., gms.	1.27	1.13	1.40	1.30	1.42	1.44	2.20	2.10	2.26	2.12	1.62	1.77	1.54	1.60	1.63	1.57	1.47	1.53	1.32	1.47	1.40	1.70	1.69	1.90	1.59	1.41	1.50	1.52	1.69	1.59
ess: 0.02 II	itive/100g	112 Callulosa	Acetate	2	2	2	7	2	2	2	2	2	2	2	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
rode Thickn	Grams add		Graphite	20	20	20	20	20	20	20	20	20	20	10	10	10	10	10	10	10	10	'n	S	S	S	S	S	2.5	2.5	2.5	2.5	2.5	2.5
Elect		1100	No.	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	3-1	3-2	3-3	3-4	3-5	3-6	4-1	4-2	4-3	4-4	4-5	4-6

	Remarks																				Very noisy discharge.								
	Electrochemical Efficiency, %	61	64	63	64	58	58	59	60	50	54	51	53	54	50	52	52	60	62	59	40	59	58	54	57	60	60	53	58
	Capacity to 2.0 VF, AH	0.32	0.38	0.34	0.37	0.38	0.38	0.41	0.46	0.41	0.38	0.47	0.42	0.50	0.48	0.50	0.50	0.34	0.36	0.32	0.23	0.43	0.45	0.43	0.47	0.50	0.60	0.52	0.49
	large ntial Average	2.70	2.64	2.64	2.69	2.70	2.66	2.68	2.63	2.68	2.66	2.67	2.68	2.63	2.64	2.57	2.62	2.68	2.70	2.61	2.59	2.68	2.67	2.58	2.64	2.65	2.67	2.63	2.62
	Discl Poter Initial	2.84	2.81	2.75	2.78	2.73	2.77	2.74	2.65	2.64	2.58	2.57	2.60	2.32	2.29	2.25	2.35	2.94	2.94	2.90	2.82	2.64	2.58	2.61	2.61	2.41	2.49	2.43	2.43
-15°C	Open Circuit Potential	3.58	3.56	3.57	3.57	3.52	3.56	3.58	3.56	3.50	3.50	3.52	3.51	3.48	3.51	3.49	3.49	3.50	3.53	3.54	3.54	3.48	3.48	3.53	3.49	3.42	3.42	3.48	3.48
²) Temperature:	Electrolyte Volume cc	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
: 300 mA (10 mA/cm	CuF ₂ Capacity AH	0.52	0.59	0.54	0.56	0.65	0.66	0.70	0.77	0.82	0.70	0.93	0.79	0.92	0.96	0.96	0.96	0.57	0.58	0.54	0.58	0.73	0.77	0.80	0.83	0.83	1.01	0.98	0.85
1. Current	Dry paste Wt., gms.	1.20	1.36	1.24	1.29	1.36	1.39	1.47	1.62	1.64	1.40	1.86	1.58	1.80	1.88	1.88	1.88	1.29	1.32	1.23	1.31	1.51	1.61	1.66	1.73	1.65	2.01	1.96	1.70
<u>ss</u> : 0.J2 ir tive/100g	F2 Cellulose Acetate	1		Ч	- 1	1			-	н	1	1	1	1	1	I	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ode Thickne. Grams addit	of Cu Graphite	20	20	20	20	10	10	10	10	ъ	S	S	S	2.5	2.5	2.5	2.5	20.	20	20	20	10	10	10	10	S	ъ	S	S
Electro	Cell No.	5-1	5-2	5-3	5-4	6-1	6-2	6-3	6-4	1-1	7-2	7-3	7-4	8-1	8-2	8-3	8-4	9-1	9-2	9-3	9-4	10-1	10-2	10-3	10-4	11-1	11-2	11-3	11-4

TABLE A-10 CONTINUED

EFFECT OF CATHODE PASTE COMPOSITION ON CELL PERFORMANCE

142

CONTINUED

i

.

.

1

EFFECT OF CATHODE PASTE COMPOSITION ON CELL PERFORMANCE

			Electrochemical Efficiency, % Remarks	50	47	47	43	53)	2.9	68	69 3g LiCl0,/100g CuF,	70 20 20 20 20 20 20 20 20 20 20 20 20 20	65	43 .050" cathode.	39 .050" cathode.		50 7	50	55	55 7 6g LiCl0"/100g CuF,	49 5 mA/cm^2	55 J 5 mA/cm ²	59	57 15 mA/cm ²	54)	57	58 9g LiCl0 ₄ /100g CuF,	58	53 5 mA/cm ²	55^{7} 5 mA/cm^2	64	58 15 mA/cm ²	55 ~	57	55 / 12e LiCl0"/100e CuF ₂	54	N
			Capacity to 2.0 VF, AH	0.45	0.38	0.45	0.40	0.40	0 57	0.48	0.46	0.49	0.56	0.72	0.65		0.38	0.44	0.41	0.47	0.40	0.48	0.51	0.51	0.45	0.44	0.50	0.46	0.44	0.47	0.50	0.48	0.38	0.46	0.41	0.37	
		tharge	ential Average	2.62	2.54	2.58	2.55	2.72	2 76	2.69	2.74	2.71	2,69	2.53	2.54		2.70	2.52	2.75	2.72	2.73	2.78	2.54	2.62	0.69	0.69	2.71	2.72	2.80	2.73	2.62	2.57	2.62	2.62	2.64	2.58	
		Disc	Pote Initial	1.88	1.88	1.95	1.93	2.79	2.78	2.55	2.61	2.67	2.67	2.13	1.99		2.88	2.82	2.87	2.87	3.06	3.08	2.64	2.58	2.88	2.90	2.89	2.89	3.14	3.14	2.67	2.63	2.73	2.70	2.72	2.70	
ture: -15°C		Open	Circuit Potential	3.37	3.36	3.42	3.36	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	!	3.45	3.45	3.45	3.45	3.47	3.49	3.56	3.49	3.51	3.51	3.51	3.51	3.56	3.56	3.56	3.56	3.50	3.50	3.50	3.50	
mA Temperat		Electrolyte	Volume cc	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.8	3.8	. 1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
rent: 300 n (10 mA/0	,	CuF,	Capacity AH	06.0	0.78	0.95	0.94	0.76	0.83	0.71	0.67	0.70	0.86	1.69	1.70		0.76	0.88	0.75	0.86	0.81	0.88	0.87	0.89	0.83	0.77	0.86	0.79	0.83	0.85	0.78	0.83	0.69	0.80	0.74	0.69	
G			Dry paste wt., gms	1.74	1.50	1.84	1.82	1.63*	1.78*	1.53*	1.45*	1.51*	1.85*	3.63*	3.65*		I.66*	1.93*	1.65*	1.89*	1.78*	1.93*	1.92*	1.95*	1.88*	1.73*	1.94*	1.79*	1.86*	1.91*	1.76*	1.87*	1.60*	1.84^{*}	1.71*	1.58*	
<u>ss</u> : 0.02 in.	tive/100g	CuF ₂	Cellulose Acetate	0.5	0.5	0.5	0.5	1	1	1	1	1	1	I	1		-	1	1	I	1	1	1	1	1	1	1	H	1	г	1	1	1	-1	1	1	t of LiCl04.
ode Thickne	Grams addi	of	Graphite	2.5	2.5	2.5	2.5	10	10	10	10	10	10	10	10		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	udes weigh
Electro			Cell No.	12-1	12-2	12-3	12-4	13-1	13-2	13-3	13-4	13-5	13-6	13-7	13-8		14-1	14-2	14-3	14-4	14-5	14-6	14-7	14-8	15-1	15-2	15-3	15-4	15-5	15-6	15-7	15-8	16-1	16-2	16-3	16-4	* Inc]

	Cell Compor	nents	
<u>Material</u>	Supplier	Catalogue No.	Description
Lithium Ribbon	Foote Mineral Co.	f 6 1 3	1/2 x 1/16 in.
Lithium Metal Ribbon	Foote Mineral Co.	6 8 9	2 x .015 in.
Lithium Metal Powder	Foote Mineral Co.	4 4 1	98.5% Li
Graphite	Jos. Dixon Crucible Co.	1	Air-Spun Graphite
Carbon Black	Columbian Carbon Co.	1 1 1	Conductex SC
Paper Pulp	S & S	289	Ash Free
Cellulose Acetate	Eastman Organic Chem.	4644	ASTM Visc. 3
Calcium Oxide	G. & W. H. Corson	8 1 1	Hi Calcium Quick Lime
Microporous Rubber	American Hard Rubber Co.		0.030 in.
Glass Mat	Reeve Angel	934-AH	
Silver Grid	Ex-Met Corp.		5Ag14-1/0
Silver Grid	Ex-Met Corp.	1 1 1	5Ag8-1/0

LIST OF MATERIALS

144

Î

Ì

B

TABLE A-11 (Continued)

۲

LIST OF MATERIALS

Cathode Oxidants

<u>Material</u>	Supplier	Cata. No.	Description
cuF_2	Ozark-Mahoning	S-66	99.5% Min.
CuF ₂	A. D. Mackay	1 1 1	96% Min.
$\operatorname{CuF}_2 \cdot 2\operatorname{H}_2 0$	0zark-!lahoning	S-71	99% Min.
$Ag_{2}0_{2}$	City Chemical	S-261	Purified
CoF ₃	Matheson, Coleman & Bell	CX1835	1 1 1
SbF ₃	Fischer Scientific	A-854	Tech.
MnF ₃	Harshaw Chemical	1 3 1 1	
S	Matheson, Coleman & Bell	SX1225	Sublimed, N.
TICA	FMC	CDB-85	100%
NaDICA	FMC	CDB-60	100%
K DICA	FMC	CDB-59	100%
TCM	Matheson, Coleman & Bell	TX1105	Pract.

Г**т**.

	IABLE A-11 (LONT	cinuea)	
	LIST OF MATERI	IALS	
	Electrolyte Sol	lvents	
Material	Supplier	Cata. No.	Description
γ -Butyrolactone	Matheson, Coleman 🖁 Bell	BX2185	
γ -Butyrolactone	General Aniline & Film Corp.	4 8 1	
Propylene Carbonate	Matheson, Coleman & Bell	PX1705	
Acetic Anhydride	J. T. Baker	0018	Reagent
Nitromethane	Matheson, Coleman & Bell	NXA615	Spectroquality
N-nitrosodimethylamin e	Eastman	7370	1 1 1 1
Dimethylsulfoxide	Fisher Scientific	D-128	Reagent
Methyl Formate	Matheson, Coleman & Bell	MX1040	Spectroquality
Methyl Acetate	Matheson, Coleman 🖣 Bell	MX625	Chromatoquality
Nitromethane	Eastman	S189	Spectroquality

4 L TARI 146

>

TABLE A-11 (Continued)

LIST OF MATERIALS

Electrolyte Solutes

Material	Supplier	Cata. No.	Description
Lithium Perchlorate	G. F. Smith	221	Reagent
Sodium Perchlorate	G. F. Smith	91	Reagent
Potassium Perchlorate	G. F. Smith	80	Reagent
Potassium Hexafluorophosphate	Matheson, Coleman & Bell	PX1425	98-100%
Potassium Hexafluoroarsenate	Alfa Inorg.	AS105	97-99%
Potassium Hexafluoroarsenate	Ozark-Mahoning	S-206	98% Min.
Sodium Hexafluoroarsenate	Ozark-Mahoning	S-566	
Lithium Tetrafluoroborate	Foote Mineral Co.		\$66
Lithium Chloride	Mallinckrodt	5852	Reagent
Lithium Chloride	J. T. Baker	0498	Anal. Reagent
Lithium Chloride	Mallinckrodt	3147	Anal. Reagent
Lithium Chloride	Matheson, Coleman & Bell	AX684	Reagent

	LIST OF MATERIA	ALS	
	Supplemental Mate	<u>erials</u>	
Material	Supplier	Cata. No.	Description
$Na_2S_2O_3$	Hellige	R-1231C	0.1 N
KFR	Harleco	3786	Stabilized Sol'n
Methanol	Matheson, Coleman & Bell	MX475	Spectroquality
KF Water Std.	Harleco	1849	
KI	J. T. Baker	3164	Reagent
Acetic Acid	Fischer Scientific	A-38	Reagent
Tetrahydrofuran	Matheson, Coleman & Bell	TX278	Chromatoquality
Ethyl Acetate	J. T. Baker	9280	Reagent
Ethanol	Publicker Industries	1 3 1	U.S.P., 200 Proof

TABLE A-11 (Continued)

LIST OF MATERIALS

148

DISTRIBUTION LIST

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Dr. B. Lubarsky (MS 500-201)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: H. J. Schwartz (MS 500-201)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Dr. J. S. Fordyce (MS 6-1)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: J. E. Dilley (MS 500-309)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Technology Utilization Office (MS 3-19)

National Aeronautics & Space Admin. (2) Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: W. A. Robertson (MS 500-201)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Library (MS 60-3)

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: V. Hlavin, ODPP (MS 3-14) National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Report Control (MS 5-5)

National Aeronautics & Space Admin. Scientific and Technical Information Facility College Park, Maryland 20704 Attn: NASA Representative Send 2 copies plus 1 reproducible

National Aeronautics & Space Admin. Washington, D. C. 20546 Attn: RNW/E. M. Cohn

National Aeronautics & Space Admin. Washington, D. C. 20546 Attn: FC/A. M. Greg Andrus

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Gerald Halpert, Code 735

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Thomas Hennigan, Code 716.2

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: E. R. Stroup (Code 636.2)

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Joseph Sherfey, Code 735

National Aeronautics & Space Admin. Langley Research Center Instrument Research Division Hampton, Virginia 23365 Attn: John L. Patterson, MS-234 National Aeronautics & Space Admin. Langley Research Center Instrument Research Division Hampton, Virginia 23365 Attn: M. B. Seyffert, MS 112

National Aeronautics & Space Admin. Langley Research Center Langley Station Hampton, Virginia 23365 Attn: S. T. Peterson/Harry Ricker

National Aeronautics & Space Admin. Geo. C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Philip Youngblood

National Aeronautics & Space Admin Geo. C. Marshall Space Flight Center Huntsville, Ala. 35812 Attn: Richard Boehme Bldg. 4487-BB

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: William R. Dusenbury Propulsion & Energy Systems Branch Bldg. 16, Site 1

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Richard Ferguson (EP-5)

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Robert Cohen Gemini Project Office

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Forrest E. Eastman (EE-4)

National Aeronautics & Space Admin Washington, D. C. 20546 Attn: Office of Technology Utilization National Aeronautics & Space Admin. Ames Research Center Pioneer Project Moffett Field, California 94035 Attn: Arthur Wilbur/A. S. Hertzog

National Aeronautics & Space Admin. Ames Research Center Moffett Field, California 94035 Attn: John Rubenzer Biosatellite Project

National Aeronautics & Space Admin. Electronics Research Center 575 Technology Square Cambridge, Mass. 02139 Attn: Dr. Sol Gilman

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, Calif. 91103 Attn: Mr. Aiji Uchiyama

Department of the Army Commanding Officer U.S. Army M.B. Equip. Rsch. & Dev Ctr Energy Conversion Research Lab. Ft. Belvoir, Virginia 22060 Attn: Electrical Power Branch

Commanding General U.S. Army Weapons Command Attn: AMSWE-RDR, Mr. G. Reinsmith Rock Island Arsenal Rock Island, Illinois 61201

U.S. Army Research Office Box CM, Duke Station Durham, N. C. 27706 Attn: Dr. Wilhelm Jorgensen

U.S. Army Research Office Chief, R&D Department of the Army 3D442, The Pentagon Washington, D. C. 20546

U.S. Army Natick Laboratories Clothing and Organic Materials Div. Natick, Mass. 01760 Attn: G. A. Spano

Page 3

Commanding Officer U.S. Army Electronics R&D Labs. Fort Monmouth, N. J. 07703 Attn: Power Sources Div. (SELRA/PS)

Army Materiel Command Research Division AMCRD-RSCM-T-7 Washington, D. C. 20315 Attn: John W. Crellin

Army Materiel Command Development Division AMCRD-DE-MO-P Washington, D. C. 20315 Attn: Marshall D. Aiken

U.S. Army TRECOM Fort Eustis, Va. 23604 Attn: Dr. R.L. Echols (SMOFE-PSG)

U.S. Army TRECOM Fort Eustis, Va. 23604 Attn: Leonard M. Bartone (SMOFE-ASE)

U.S. Army Mobility Command Research Division Warren, Mich. 48090 Attn: O. Renius (AMSMO-RR)

Harry Diamond Laboratories Room 300, Bldg. 92 Conn. Ave. & Van Ness St., N.W. Washington, D. C. 20438 Attn: Nathan Kaplan

Department of the Navy Office of Naval Research Washington, D. C. 20360 Attn: Head, Power Branch, Code 429

Office of Naval Research Department of the Navy Washington, D. C. 20360 Attn: H. W. Fox (Code 425)

Naval Research Laboratory Washington, D. C. 20390 Attn: Dr. J. C. White, Code 6160

U.S. Navy Special Projects Division Marine Engineering Laboratory Annapolis, Md. 21402 Attn: J. H. Harrison Naval Air Systems Command Department of the Navy Washington, D. C. 20360 Attn: Milton Knight (Code AIR-340C)

Commanding Officer (Code QEWE, E. Bruess/H. Schultz) U.S. Naval Ammunition Depot Crane, Ind. 47522

Naval Ordnance Laboratory Department of the Navy Corona, Calif. 91720 Attn: Wm. C. Spindler (Code 441)

Naval Ordnance Laboratory Silver Spring, Md. 20910 Attn: Philip D. Cole (Code 232)

Commander, Naval Ship Systems Cmd. Department of the Navy Washington, D. C. 20360 Attn: C. F. Viglotti (Code 66605)

Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360 Attn: Whitewall T. Beatson (Code RAAE-52)

Commander, Naval Ship Systems Cmd. Department of the Navy Washington, D. C. 20360 Code Attn: Bernard B. Rosenbaum (03422)

Department of the Air Force Flight Vehicle Power Branch Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433 Attn: James E. Cooper/Wayne Bishop

AF Cambridge Research Lab Attn: CRFE L. G. Hanscom Field Bedford, Mass. 01731 Attn: Dr. R. Payne

AF Cambridge Research Lab. Attn: CRE L. G. Hanscom Field Bedford, Mass. 01731 Attn: Francis X. Doherty Edward Raskind (Wing F) Headquarters, U.S. Air Force (AFRDR-AS) Washington, D. C. 20325 Attn: Major G. Starkey

Headquarters, U.S. Air Force (AFRDR-AS) Washington, D. C. 20325 Attn: Lt. Col. Wm. G. Alexander

Rome Air Development Center, ESD Attn: Frank J. Mollura (RASSM) Griffis AFB, N. Y. 13442

Space Systems Division Los Angeles Air Force Station Los Angeles, Calif. 90045 Attn: SSSD

Other Government Agencies

National Bureau of Standards Washington, D. C. 20234 Attn: Dr. W. J. Hamer

National Bureau of Standards Washington, D. C. 20234 Attn: Dr. A. Brenner

Office, Sea Warfare System The Pentagon Washington, D. C. 20310 Attn: G. B. Wareham

U.S. Atomic Energy Commission Auxiliary Power Branch (SNAP) Division of Reactor Development Washington, D. C. 20325 Attn: Lt. Col. George H. Ogburn, Jr.

Lt. Col. John H. Anderson Advanced Space Reactor Branch Division of Reactor Development U.S. Atomic Energy Commission Washington, D. C. 20325

Mr. Donald A. Hoatson Army Reactors, DRD U.S. Atomic Energy Commission Washington, D. C. 20545 Bureau of Mines 4800 Forbes Ave. Pittsburgh, Pa. 15213 Attn: Dr. Irving Wender

Clearing House for Scientific & Technical Information 5285 Port Royal Rd. Springfield, Va. 22151

Private Organizations

Aerojet-General Corporation Chemical Products Division Azusa, Calif. 91702 Attn: Wm. H. Johnson

Aerojet-General Corporation Von Karman Center Bldg. 312, Dept. 3111 Azusa, Calif. 91703 Attn: Mr. Russ Fogle

Aeronutronic Div. of Philco Corp. Technical Information Services Ford Road Newport Beach, Calif. 92663

Aerospace Corporation P.O. Box 95085 Los Angeles, Calif. 90045 Attn: Library Acquisition Group

Aerospace Corporation Systems Design Division 2350 East El Segundo Boulevard El Segundo, Calif. 90246 Attn: John G. Krisilas

Allis-Chalmers Mfg. Co. 1100 South 70th Street Milwaukee, Wisconsin 532 Attn: Dr. P. Joyner

A.M.F. Attn: Dr. Lloyd H. Shaffer 689 Hope St. Springdale, Conn., 06879 Page 5

American University Mass. & Nebraska Ave., N.W. Washington, D. C. 20016 Attn: Dr. R. T. Foley, Chemistry Dept.

Arthur D. Little, Inc. Acorn Park Cambridge, Mass. 02140 Attn: Dr. Ellery W. Stone

Atomics International Division North American Aviation, Inc. 8900 DeSota Ave. Canoga Park, Calif. 91304 Attn: Dr. H. L. Recht

Battelle Memorial Institute 505 King Ave. Columbus, Ohio 43201 Attn: Dr. C. L. Faust

Bell Laboratories Murray Hill, N. J. 07971 Attn: U. B. Thomas

The Boeing Company P.O. Box 3868 Seattle, Washington 98124 Attn: Sid Gross, MS 85-86

Borden Chemical Company Central Research Lab. P.O. Box 9524 Philadelphia, Pa. 19124

Burgess Battery Company Foot of Exchange Street Freeport, Ill. 61033 Attn: Dr. Howard J. Strauss

C & D Batteries Div. of Electric Autolite Co. Conshohocken, Pa. 19428 Attn: Dr. Eugene Wollihnganz

Calvin College Grand Rapids, Michigan 49506 Attn: Prof. T. P. Dirkse

Amicon Corporation 25 Hartwell Ave. Lexington, Mass. 02173 Catalyst Research Corporation 6101 Falls Road Baltimore, Maryland 21209 Attn: Dr. H. Goldsmith

ChemCell Inc. 150 Dey Road Wayne, N. J. 07470 Attn: Peter D. Richman

Cubic Corporation 9233 Balboa Ave. San Diego, Calif. 92123 Attn: Librarian, Mrs. Judy Kalak

Delco Remy Division General Motors Corporation 2401 Columbus Ave. Anderson, Indiana 46011 Attn: Dr. J. J. Lander

Douglas Aircraft Company, Inc. Astropower Laboratory 2121 Campus Drive Newport Beach, Calif. 92663 Attn: Dr. George Moe

Dynatech Corporation 17 Tudor Street Cambridge, Mass. 02139 Attn: R. L. Wentworth

E. I. DuPont De Nemours & Co. Explosives Department Repauno Development Laboratory Gibbstown, N. J. 08027 Attn: Mr. R. W. Prugh (Contract NASw-1233)

Eagle-Picher Company P.O. Box 47 Joplin, Missouri 64801 Attn: E. P. Broglio

Electric Storage Battery Inc. Missile Battery Division 2510 Louisburg Rd. Raleigh, N. C. 27604 Attn: A. Chreitzberg

Electrochemical & Water Desalination Technology 13401 Kootenay Drive Santa Ana, Calif. 92705 Attn: Dr. Carl Berger Electric Storage Battery Inc. Carl F. Norberg Research Center 19 West College Ave. Yardley, Penna. 19067 Attn: Librarian

Electrochimica Corporation 1140 O'Brien Drive Menlo Park, Calif. 94025 Attn: Dr. Morris Eisenberg

Electro-Optical Systems, Inc. 300 North Halstead Pasadena, Calif. 91107 Attn: Martin Klein

Elgin National Watch Co. 107 National St. Elgin, Illinois 60120 Attn: T. Boswell

Emhart Corp. Box 1620 Hartford, Conn. 06102 Attn: Dr. W. P. Cadogan

Engelhard Industries, Inc. 497 Delancy Street Newark, N. J. 07105 Attn: Dr. J. G. Cohn

Dr. Arthur Fleischer 466 South Center Street Orange, N. J. 07050

General Electric Company Schenectady, N.Y. 12301 Attn: Dr. R.C.Osthoff/Dr. W.Carson Advanced Technology Lab.

General Electric Company Missile & Space Division Spacecraft Department P. O. Box 8555 Philadelphia, Pa. 19101 Attn: E. W. Kipp, Room U-2307

General Electric Company Battery Products Section P.O. Box 114 Gainsville, Florida 32601 Attn: W. H. Roberts Dr. R. L. Hadley General Electric Company Research and Development Center P.O. Box 8 Schenectady, N. Y. 12301 Attn: Dr. H. Liebhafsky

General Motors-Defense Research Labs. 6767 Hollister St. Santa Barbara, Calif. 93105 Attn: Dr. J.S.Smatko/Dr. C.R.Russell

General Telephone & Electronics Labs. Bayside, N. Y. 11352 Attn: Dr. Paul Goldberg

Globe-Union, Inc. 900 East Keefe Ave. Milwaukee, Wisconsin 53201 Attn: Dr. Warren Towle

Globe-Union, Inc. 900 East Keefe Ave. Milwaukee, Wisconsin 53201 Attn: Dr. C. K. Morehouse

Globe-Union Incorporated P.O. Box 591 Milwaukee, Wisconsin 53201 Attn: Mr. J. D. Onderdonk V.P. Marketing

Gould-National Batteries, Inc. Engineering & Research Center 2630 University Ave. S.E. Minneapolis, Minnesota 55418 Attn: D. L. Douglas

Gulton Industries Alkaline Battery D vision 212 Durham Ave. Metuchen, N.J. 08840 Attn: Dr. Robert Shair

Grumman Aircraft OPGS, Plant 35 Bethpage, Long Island, N.Y. 11101 Attn: Bruce Clark

Hughes Aircraft Corporation Centinda Ave. & Teale St. Culver City, Calif. 90230 Attn: T. V. Carvey Hughes Aircraft Corporation Bldg. 366, M.S. 524 El Segundo, Calif. 90245 Attn: P. C. Ricks

Hughes Research Labs. Corp. 3011 Malibu, Calif. 90265 Attn: T. M. Hahn

ITT Federal Laboratories 500 Washington Ave. Nutley, N. J. 07110 Attn: Dr. P. E. Lighty

ITT Research Institute 10 West 35th St. Chicago, Ill. 60616 Attn: Dr. H. T. Francis

Institute for Defense Anslyses R&E Support Division 400 Army-Navy Drive Arlington, Va. 22202 Attn: Mr. R. Hamilton

Institute for Defense Analyses R&E Support Division 400 Army-Navy Drive Arlington, Va. 22202 Attn: Dr. G. Szego

Idaho State University Dept. of Chemistry Pocatello, Idaho 83201 Attn: Dr. G. Myron Arcand

Institute of Gas Technology State and 34th Street Chicago, Ill. 60616 Attn: B. S. Baker

International Nickel Co. 1000-16th St., N.W. Washington, D. C. 20036 Attn: Wm. C. Mearns

John Hopkins University Applied Physics Laboratory 8621 Georgia Ave. Silver Spring, Md. 20910 Attn: Richard E. Evans Johns-Manville R & E Center P.O. Box 159 Manville, N. J. 08835 Attn: J. S. Parkinson

Leesona Moos Laboratories Lake Success Park, Community Dr. Great Neck, N.Y. 11021 Attn: Dr. H. Oswin

Lockheed Missiles & Space Co. 1111 Lockheed Way Sunnyvale, Calif. Dept. 62-33 Bldg. 154 Attn: R. E. Corbett

Lockheed Missiles & Space Co. Dept. 62-30 3251 Hanover St. Palo Alto, Calif. 94304 Attn: J. E. Chilton

Lockheed Missiles & Space Co. Technical Information Center 3251 Hanover Street Palo Alto, Calif. 93404

Mallory Battery Company Broadway & Sunnyside Lane North Tarrytown, N. Y. 10591 Attn: R. R. Clune

P. R. Mallory & Co., Inc. Northwest Industrial Park Burlington, Mass. 01803 Attn: Dr. Per Bro

P. R. Mallory & Company, Inc. Technical Services Laboratory Indianapolis, Ind. 46206 Attn: A. S. Doty

P. R. Mallory & Co., Inc. 3029 E. Washington St. Indianapolis, Indiana 46206 Attn: Technical Librarian

Marquardt Corporation 16555 Saticoy St. Van Nuys, Calif. 91406 Attn: Dr. H. G. Krull Martin Co. Electronics Research Dept. P.O. Box #179 Denver, Colorado 80201 Attn: Wm. B. Collins, MS 1620

Material Research Corp. Orangeburg, N. Y. 10962 Attn: V. E. Adler

Mauchly Systems, Inc. Fort Washington Industrial Park Fort Washington, Penna. Attn: John H. Waite

Melpar Technical Information Center 7700 Arlington Blvd. Falls Church, Va. 22046

Metals & Controls Division Texas Instruments, Inc. 34 Forrest Street Attleboro, Mass. 02703 Attn: Dr. E. M. Jost

Midwest Research Institute 425 Volker Boulevard Kansas City, Missouri 64110 Attn: Physical Science Lab.

Monsanto Research Corporation Everett, Mass. 02149 Attn: Dr. J. O. Smith

North American Aviation, Inc. 12214 Lakewood Boulevard Downey, Calif. 90241 Attn: Burton M. Otzinger

North American Aviation, Inc. Rocketdyne Division 6633 Cancga Ave. Canoga Park, Calif. 91303 Attn: Library

Ozark Mahoning Company 1870 S. Boulder Ave. Tulsa, Oklahoma 74119 Attn: Dr. James Beal

North American Aviation Co. S&ID Division Downey, Calif. 90241 Attn: Dr. James Nash Oklahoma State University Stillwater, Oklahoma 74075 Attn: Prof. Wm. L. Hughes School of Electrical Eng.

Dr. John Owen P.O. Box 87 Bloomfield, N. J. 07003

Power Information Center University of Pennsylvania 3401 Market St., Rm. 2107 Philadelphia, Penna. 19104

Prime Battery Corp. 15600 Cornet St. Santa Fe Springs, Calif. 90670 Attn: David Roller

RAI Research Corp. 36-40 37th St. Long Island City, N. Y. 11101

Philco Corporation Div. of the Ford Motor Co. Blue Bell, Penna. 19422 Attn: Dr. Phillip Colet

Radio Corporation of America Astro Corporation P.O. Box 800 Hightstown, N.J. 08540 Attn: Seymour Winkler

Radio Corporation of America AED P.O. Box 800 Princeton, N. J. 08540 Attn: I. Schulman

Radio Corporation of America 415 S. Fifth St. Harrison, N. J. 07029 Attn: Dr. G. S. Lozier, Bldg. 18-2

Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78206 Attn: Library

Sonotone Corporation Saw Mill River Road Elmsford, N. Y. 10523 Attn: A. Mundel

Page 9

Thomas A. Edison Research Lab. McGraw Edison Company Watchung Ave. West Orange, N. J. 07052 Attn: Dr. P. F. Grieger

Texas Instruments, Inc. P.O. Box 5936 Dallas, Texas 75222 Attn: Dr. Isaac Trachtenberg

TRW Systems, Inc. One Space Park Redondo Beach, Calif. 90278 Attn: Dr. A. Krausz, Bldg 60, Rm 147

TRW Systems, Inc. One Space Park Redondo Beach, Calif. 90278 Attn: Dr. Herbert P. Silverman

TRW, Inc. 23555 Euclid Ave. Cleveland, Ohio 44117 Attn: Librarian

Tyco Laboratories, Inc. Bear Hill Hickory Drive Waltham, Mass. 02154 Attn: Dr. A. C. Makrides

Unified Sciences Associates, Inc. 826 S. Arroyo Parkway Pasadena, Calif. 91105 Attn: Dr. S. Naiditeh

Union Carbide Corporation Development Laboratory Library P.O. Box 6056 Cleveland, Ohio 44101

Electromite Corp. Attn: R. H. Sparks, Gen. Mgr. 562 Meyer Lane Redondo Beach, Calif. 90278

Union Carbide Corp. Parma Laboratory Parma, Ohio 44130 Attn: Dr. Robert Powers University of California Space Science Laboratory Berkeley, Calif. 94720 Attn: Dr. C. W. Tobias

University of Pennsylvania Electrochemistry Laboratory Philadelphia, Penna. 19104 Attn: Prof. John O'M. Bockris

University of Toledo Toledo, Ohio 43606 Attn: Dr. Albertine Krohn

Westinghouse Electric Corp. Research & Development Center Churchill Borough Pittsburgh, Penna. 15235

Whittaker Corp. Narmco R&D Division 3540 Aero Court San Diego, Calif. 92123 Attn: Dr. M. Shaw

Whittaker Corporation 3850 Olive St. Denver, Colorado 80233 Attn: Borch Wendir

Yardley Electric Corp. 40 Leonard Street New York, N. Y. 10013 Attn: Dr. Geo. Dalin

Whittaker Corporation 3850 Olive Street Denver, Colo. 80237 Attn: J. W. Reitzer

Western Electric Co. Suite 802, RCA Bldg. Washington, D. C. 20006 Attn: R. T. Fiske

Westinghouse Electric Corp. Research & Development Center Churchill Borough Pittsburgh, Pa. 15235 Attn: Dr. A. Langer