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ABSTRACT

Optically thick planetary atmospheres in radiative-convective equilibrium
have been investigated by the use of models which have an adiabatic temperature
gradient in the troposphere. The gray stratospheric solution employs the
discrete ordinate method to match correctly the tropopause boundary condition in
which the tropopause location is found by temperature continuity. The models
show that convection may increase the surface gray infrared opacity requirements by
as much as an order of magnitude in greenhouse type theories as applied, for
eXample, to Venus.

A more approximate, analytical solution is also presented which generally
agrees with the more elaborate treatment quite well. One of the major differences
between the two types of solutions is the temperature gradient discontinuity at the

tropopause predicted by the more exact theory.
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I. INTRODUCTION

The study of the greenhouse effect on planets such as Venus and Jupiter
requires the knowledge of optically thick planetary atmospheres. Almost all
of the calculations performed for optically thick planetary atmospheres have
assumed radiative equilibrium (for a purely convective calculation, see Sagan and
Pollack, 1964). This assumption allows a simple and theoretically concise
problem and the solution affords much insight into the structure of the atmo-
sphere. The Earth, however, has an atmosphere that is optically thin and
generally in convective equilibrium. Other planets may possess optically
thick convective type atmospheres. Hence it seems desirable to see under what
conditions an optically thick atmosphere is convective and what are the effects
of such convection on atmospheric behavior.

For the Venus problem, Teiger (1965) has constructed radiative-convective
model atmospheres which are optically thick. Teiger's gray opacity dependence on
pressure followed the dependence empirically observed in the Earth's atmosphere;
this dependence is based almost entirely on the variable concentration of water
vapor with height. Such opacity variations may not be appropriate for a planet
such as Venus. More general opacity dependences are thus needed.

As a step towards understanding convective atmospheres, the present paper
will investigate the behavior of gray, optically thick atmospheric models in
radiative-convective equilibrium when changes in a reasonable infrared opacity
dependence on pressure are made. The use of gray opacities allows a minimum of
parameters to be used in the calculations. Hence an opportunity is afforded for
greater physical insight into convective planetary atmospheres and comparisons
with analytic solutions are possible. This is a logical step to take before

the non-gray transfer problem is solved.
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I1. PHYSICAT, CONCEPTS AND ASSUMPTIONS

In the absence of convection an atmosphere transporting heat flux up-
wards into space would be in radiative equilibrium since all gases are very
poor conductors of heat. Thus the atmospheric structure would be determined
by the distribution of opacity (i.e. by the opacity pressure dependence) and
by the infrared radiative flux, which, for example, would be constant in a
conservative atmosphere. As emphasized by Goody (196k), a convective layer
will always form above the planetary surface. The height of this convective
layer will depend on the stability of the bulk of the atmosphere to convection.
A radiative-convective atmosphere thus occurs. The radiative layer which
occupies the upper part of the atmosphere, the convective layer above the
surface, and the transition region between the two layers are usually
referred to as the stratosphere, troposphere and tropopause, respectively.

The boundary conditions that pre?ail at a radiative-convective interface
are 1.) continuity of the net radiative flux or, equivalently, of the radiative
intensity (from the radiative transfer equation) and 2.) temperature continuity
(from the convective stability requirement). These two conditions are necessary
and sufficient conditions for the solution of the stratosphere and for the loca-
tion of the tropopause in the atmosphere. Thus the tropospheric temperature
profile can aglso be determined uniquely if an adiabatic troposphere temperature
gradient is assumed. These boundary conditions have proved effective for the
Earth's atmosphere (Goody, 1964).

In a real atmosphere, solar flux will be absorbed throughout the entire

atmosphere as well as at the surface. In order to study convective atmospheres
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ﬁsing a minimum number of parameters, the atmosphere is assumed to be con-
servative. Implications about non-conservative solutions will be presented
in the discussion.

Several general assumptions should be stated. Local thermodynamic
equilibrium, pure absorption, and time independent solutions are assumed.
Diurnal variations of solar flux, latitude effects, and the consequences of
global convection are considered averaged. These rather restrictive
assumptions still allow local atmospheric structure to be determined
although quantitative results must be interpreted carefully due to lack

of inclusion of global effects. The atmosphere is treated as plane parallel.

IIT. MODEL CONSTRUCTION

The basic strategy employed in the calculations will first be outlined
and then discussed in greater detail. The model construction employs the
discrete ordinate method to achieve, in the stratospheric solution, constancy
of the net radiative flux. In fhe tropospheric solution, an adiabatic
temperature profile is assumed and this profile is used to compute the specific
intensities which emerge from the troposphere. These intensities are the
boundary conditions that produce an unique stratosphere. The opacity dependence
that has been chosen allows a complete solution without prior specification of
the surface temperature. The tropopause location is determined by the require-
ment of temperature continuity.

The stratospheric solution employs the discrete ordinate approximation to

the gray radiative transfer equation for a plane parallel, purely absorbing




atmosphere. The method and solution have becen given by Chandrasekhar.
Eight ordinates are used in each hemisphere. The solution to the equation

of radiative transfer has been obtained from equation (3-14) of Chandrasekhar

(1960), and can be written as:

-k.T +k. T
I(rpy) = = T2 E:l e
(Tip‘i —;T_TS

j
j=1

= 4 /
1+“ikj + 1'“ikj +Q +(T+p,i)b

i=41, ..., N , (1)

where ¢ 1s the Stefan-Boltzman constant, Ts is the temperature at the
surface, ( p&_> 0 ) are the discrete ordinates (zeroes of the appropriate
Legendre polynomials), N is the number of ordinates per hemisphere, and
the kj are given by equation (3-7), Chandrasekhar (1960). The constants
L3 s L:j , b/, and Q" are the (2N) constants of integration to be
determined by the boundary conditions. These are the specific intensities
that enter the stratosphere from above and from below: I (O, - My ) = 0,
representing the lack of thermsl radiation from space; and I (Trr s M)

1

representing the specific intensity at the tropopause ( T,I ) which originates from
the convective troposphere. In solving for the radiative solution, the co-
efficients of the 2N constants of integration are considered as a matrix.

Inversion of this matrix and multiplication by the intensities which come from

the convective layer results in a correctly matched radiative solution above

the troposphere. Calculation has shown that eight ordinates per hemisphere

produce a net radiative flux constancy in the stratosphere of 0.1% or better

for all models. Thus the specific Intensities, temperature and other atmospheric




parameters can be found in the stratosphere as functions of optical depth.

For example, the radiative temperature is given as:

N-1 k. T kJ.T
T (v)=T Q'+ b’ T+ I e J 4+ 1, e
T S El< j j ’ (2)
J:

where equation (2) has been obtained from equations (11-30, 31) of Chandra-
sekhar (1960).

The tropospheric temperature profile is determined by the behavior of
the mass absorption coefficient and by thermodynamical considerations.
The definition and pressure dependence of the mass absorption coefficient K

used in the calculations, is:

= -Kpep) = - K, &)o@ (3)
where Py is a reference parameter, a 1is the opacity power dependence
parameter, and K, is defined as K (PO). The particular pressure dependence
of the mass absorption coefficient was chosen to approximate the Rosseland
mean absorption behavior of many gases. The small temperature dependence
of the mass absorption coefficient normally observed for gases is further
reduced by the slow variation of temperature with pressure in planetary
atmospheres. Hence temperature dependence will be ignored in this paper.

In most planetary atmospheres, heat transport by convection is so
efficient that the true temperature gradient in a convective region never
becomes superadiabatic by any significant amount (for example, see Sagan 1960) .

Thus the temperature dependence on optical depth will be determined by the
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adiabatic condition, equation (3), the equation of state (ideal gas), and the

equation of hydrostatic equilibrium, and is given by
= Ll =
T(7) = TS (T/Ts) 5 L= Cp (fa +1) , (4)

where Cp is the molar gaseous specific heat at constant pressure in units

of R, Tg is the surface infrared optical depth and ¢ can convenlently be
called the instebility parameter. The corresponding temperature gradient is

equal to.

VT mg

adiabatic ~ Cp R ° . (5)

where m is the mean molecular weight of the gases, g is the local acceleration
of gravity, and R is the gas consftant. These formulas are only valid in the

troposphere.
The equation of transfer in integral form gives the intensities at the

top of the troposphere:

T

-(r - T ° (7T ) e g
.)=$T4e s THTLy ir-"1"4('1")e TridT
1 W S ™ I.L.l

Lr o w , (6)

T

where the first term on the right hand side represents the contribution to the
intensity from the surface, assumed here to emit iscotropically. The surface

reflection term has been neglected. Equations (4) and (6) indicate that

o 4

p Ts can be factored out of the convective intensity. Thus, in

this case, the radiative constants can be obtained without the prior specifica-

tion of Ts. The surface temperature 1is then determined by the relation
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’Tiff = 4/3 b"Ti , obtained from Chandrasekhar (1960), equation
(3-39) where Teff is the effective temperature which characterizes the net
radiative flux of the stratosphere. The Simpson quadrature used for the
above computations was compared to the algebraic equivalent (at v = L);
error was negligible.

The stratospheric and tropospheric solutions have been determined;
however the two solutions must be made consistent with each other by choosing
the correct tropopause optical depth. This is accomplished by the convective
stabllity requirement that the convective tropopause temperature as determined
by equation (h) be equal to the radiative tropopause temperature as determined
by equation (2). An interpolative routine is used for this procedure. Con-
vergence is so rapid that a negligible tropopause temperature discontinuity
(O.OO1OK) is obtained without any appreciable sacrifice of computation time.

The calculation of the net radiative flux in the atmosphere is straight-
forward. The required formula is (Chandraéekhar, 1960, equation (1-98)),

T

s T
Fy=2| Ity e (v-nar -2 ST ) E, (t- ) dr
r T 2 ™ 2
T 0
g _4
+=T E, (v -7T) ,
™ s 3" s (7)
where EN(T) is the exponential integral function of order N. The term

on the far right represents the surface contribution to the net radiative flux.
The quadrature used for the above integration is of the gaussian type with
divisions and Christoffel numbers (weights which correspond to the divisions)
determined for E2 as the weighting function. (For the calculation of these

numbers, see Chandrasekhar (1960); the numbers and method used here come from
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Mihalas 1966). The quadratures are accurate to one part in 101L (Mihalas 1966).
All of the above calculations were performed on the Princeton IBM TO94 computer.

It is interesting to compare the theory outlined above with a simple
analytical solution such as is presented in Appendix A. The less complicated
solution may often be useful for qualitative results.

Boundary optical depths, temperatures, temperature gradients and net radia-
tive fluxes are the most fundamental of the physical parameters which describe
an atmosphere, from the radiative transfer point of view. These quantities
depend only on  vwhen the surface temperature and effective temperature of
the planet are specified. This is seen explicitly in the equations of this

section and those of Appendix A. Values of Ty = 700%K and T op = 235%

f
have been assumed. These values are consistent with those used by other

authors (e.g. see Sagan 1962).

IV, RESULTS

The results of a number of models are shown in Figures 1-6. Figures 1-3
indicate the effects of changes in the instability parameter and the effects
of the transition from a radiative to a convective type atmosphere. Figures
L-6 display atmospheric profiles of models for several different values of the
instability parameter.

Surface optical depth and tropopause optical depth are plotted as functions
of the instability parameter in Figure 1. The solid lines indicate the results
of this paper; the dotted lines indicate the Eddington-Schwarzschild approxima-
tion (hereinafter called the E-S approximation). The Eddington solution and
the more exact theory both give almost equal surface optical depths for purely

radiative atmospheres. This value of surface optical depth is seen to be the
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minimum surface optical depth. For convective atmospheres, the surface opacity
increases and the tropopause opacity decreases as the instability parametér
increases. The two solutions behave in a similar fashion, although the
E-S approximation has larger surface and tropopause optical depths than the
theory of this paper.

Figure 2 displays the surface temperature, tropopause temperature, and
boundary temperature for the same models and under the same conditions as
in Figure 1. The E-S approximation predicts a fixed boundary temperature
that is higher than the almost constant boundary temperature associated with
the more exact theory. The rapid change in the tropopause temperature with

L , observed near = 4, is a consequence of the rapid change in T,. observed

T
in Figure 1 near = 4. The more exact theory shows that T deviates from

T

Ts before a convective type atmosphere occurs (see insert, Figure 2).
This separation is caused by the convective layer just above the surface,
which exists even in stable atmospheres because of the surface boundary (see
Goody 196k, chapter 8).

In Figure 3 the tropopause radiative temperature gradient, normalized
to the adiabatic gradient, and the surface net radiative flux, normalized to
the stratospheric flux, are plotted as functims of + . For radiative type
atmospheres, the radiative temperature gradient at the tropopause is sub-
adiabatic and decreases linearly to zero as . approaches zero. The magnitude
of the tropopause temperature gradient discontinuity in this paper's theory
increases with an increase in t .

In radiative type atmospheres, the small convective layer adjacent to the

ground produces, in the context of this paper, a decrease in the surface flux

at the ground. At this point, the contribution to the net flux that would
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occur because of hotter layers below is absent. As expected, larger values of
v are associated with smaller values of surface net radiative flux.

Figure 4 shows temperature atmospheric profiles plotted for three values
of the instability parameter: vt = 3.5 which corresponds to a radiative type
atmosphere, = 6 which corresponds to a moderately convective atmosphere,
and .+ = 8 which corresponds to a highly convective atmosphere. The difference
between the temperature profiles for different values of the instability para-
meter is apparent. The results of this paper and the E-S approximation agree
quite well.

In Figure 5, temperature gradient profiles are shown for the same
models as above. The progression from isothermality at the upper boundary
to an adiabatic gradient in the convection zone is smocoth except for the dis-
continuity in the temperature gradient at the tropopause associated with the
more exact theory. The differences between the two solutions are more
apparent in this Figure than in Figure k.

Net radiative flux profiles for the three models listed above are dis-
played in Figure 6. The E-S approximation flux curves agree very well with the
more exact flux curves in this Figure. The discontinuity seen in the slope of the
E-5 flux curves at the tropopause is not present in the more exact theory,
however. It can be shown that continuity of temperature implies continuity
of the first derivative of the net radiative flux across a boundary. Hence the
discontinuity in the E-S flux slope at the tropopause is due to the approxima-
tion used.

The theory presented in this paper predicts that the surface radiative
flux will be smaller than the radiative flux a few optical depths away from the

surface; this is consistent with Figure 6. The change in flux near the surface
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appears discontinuous on the Figure due to the logarithmetic scale. The
two solutions match very well in the interior of the atmospheres.
This is to be expected since Eddington type approximations are most valid

away from outside boundaries.

DISCUSSION

The most important result derived from the radiative-convective
atmospheric models presented in this paper is the large surface infrared
opacity requirements in atmospheres whose gaseous constituents produce con-
vective instabilities. In optically thick planetary atmospheres, these
instabilities lower the atmospheric temperature gradient and thus cause
energy transport from the surface to the top of the atmosphere to occur
by convection as well as by radiation. The larger opacity requirement in
such atmospheres is a direct result of the more efficient transport of
energy by the atmosphere. Only that part of the atmosphere which is trans-
porting energy mostly by convection is able to increase the surface opacity
over the radiative minimum surface opacity. Hence it is reasonable to
assert that the stability of the upper parts of the atmosphere to convection,
or the presence of clouds in only the upper parts of the atmosphereéggj;zi
alter the surface opacity requirements appreciably. These remarks are borne

out by calculations performed with more complex atmospheric models.

The effect of solar energy deposition in the atmosphere can best be
understood by referring to Figure 6. For time independent solutions, con-
servation of energy inthe atmosphere demands that the upward net thermal

flux Jjust equal the downward solar flux at each atmospheric level. In a
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vurely radiative atmosphere the non-conservative solution that would result
when energy deposition is included would increase surface opacity requirements.
In a radiative-convective atmosphere, the surface opacity requirements will

be increased only if the (non-constant) upward net flux is less than the

net infrared radigtive flux at that level. In such a case the atmosphere would
become radiative at that point and the sub-adiabatic temperature gradients

that result would decrease the temperature below. According to Figure 6,
however, smaller amounts of atmospheric energy deposition would still leave

the convective zone convective; hence no change in the temperature profile or

in the surface opacity requirement would occur.

According to Figure 1, gray infrared opacities of over 1000 are needed
for an atmosphere whose opacity depends on the square of the pressure. Most
optically deep planetary atmospheres will have such an opacity dependence on
pressure. In these cases, the opacity dependénce will result from the absorption
line wings; their dependence follows a square law (cf. Goody 1964, chapter 3).
Deeper in the atmosphere, collision-induced transitions may occur; these also
have a square law dependence associated with them (cf. Welsh, Crawford and
Locke, 1949). This high opacity reguirement would mean that, for example,
only one part in 1OhOO of the radiant energy at the planetary surface can
escape to space in order for a Greenhouse effect to work on Venus! It must
be emphasized that the above statement applies only to the gray case. Can
such high opacities occur on Venus? Although there still is debate about the
amount of water in the Cytherean atmosphere, observations (cf. Spinrad, 1962)

generally do not allow a sufficient amount of water to achieve the required
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opacity (Venus 4, however, has reported 1 percent HQO). In addition, Ho, Kaufman
and Thaddeus (1966) limit the total surface pressure from consideration of the
microwave spectrum. It is probable that, with the above limitation on pressure,
an opacity of 1000 cannct be reached by the inclusion of N2 and CO2 alone
(Danielson and Solcmon, 1966). While dust may play a role in atmospheric
absorption, Samuelson (1967) has found dust alone to be insufficient to cause the
high surface temperatures observed on Venus (if the correct planetary albedo is
used). Non-gray models will probably be required before a satisfactory greenhouse
explanation of the Cytherean surface temperature will evolve.

A remark is appropriate concerning the two methods of solving the radiative-
convective atmospheres described in this paper. The excellent agreement
between the E-S approximation and the theory presented in this paper on most
of the atmospheric parameters shows that the use of temperature and temperature
gradient continuity at the tropopause and the use of the Eddington approximation
for the stratosphere appear Jjustified. This agreement was not fully anticipated
before detailed comparison was made as evidenced by the results. The more
exact theory, however, produces a temperature gradient discontinuity at the
tropopause (see Figures 3 and 5). Observations from airplanes in the Earth's
atmosphere indicate a sharp change in the temperature gradient at the Earth's
tropopause. Hence, it is believed that non-gray models or allowance for a
reasonable mixing-length theory of convection would not result in tropopause
temperature gradient continuity. |

If the tropopause is optically deep in the atmosphere the temperature
gradient discontinuity should become negligible since then the Eddington-type

diffusivity relation (see Appendix A) should be valid. This relation requires temperature
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gradient continuity at a boundary by virtue of net radiant flux continuity at
the boundary. Figure 3 indicates that atmospheres with deep tropopauses do
have negligible tropopause temperature gradient discontinuities in the more
exact theory.
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APPENDIX A
The Eddington approximation, which is for a gray, plane parallel
atmosphere in radiative equilibrium and the Schwarzschild criterion for
convective instability can be used to obtain an approximate solution to the
radlative-convective atmosphere. The radiative temperature gradient is
fundamental to this approximation; it is calculated from equation (3), the

derivative of the Eddington approximation and the ideal gas law:

4T (@+1)gT

3
dz TT16 R(1/2+3/4T) (8)

radiative

This is to be compared with formula (5) for the adiabatic temperature gradient.

Equality of the two gradients allows determination of 7., , the tropopause

T
optical depth in this approximation,
Tp = (v < 4)
L =Cp(a+l) . (9)

The above equations indicate that the point ¢ = L is the transition point
from a radiative type atmosphere to a convective type atmosphere (i.e. from an
infinitely deep tropopause to a finitely deep tropopause). Thus the designation
of U as the instability parameter in Section III. The atmosphere is generally
considered to be finite in extent and a definite, finite surface temperature
1s usually desired. In this case T may not exceed the radiative T, which
is determined by the Eddington solution, and the transition value of ¢ 1is
given by:

8

L .= +4 |

Cranci

ransition  3(r ) 4. e (10)
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The surface optical depth is found from the Eddington solution or from

equation (4) as:

—'/4

= 2y == 5 1 : v>e, )Y, Q1)
TS TT (TT> 3 v - 4 2 - 4 Teff tr.

Relations similar to some of the above have been derived previously by
Sagan and Pollack (196k4).

The calculation of the net radiative flux in this approximation uses
the ratio of the flux at a point in the convective region with the flux at
the tropopause. The net radiative flux is calculated from the diffusivity
relation which exists between the net radiative flux and the temperature
gradient, obtained if the approximations of Eddington apply. The relation
is:

_ 160'1rT3VT
r ~ 3 k(p)p (12)

(compare with equation (5-158), Chandrasekhar (1957)). The temperature

gradients at the two points are equal due to adiabaticity; fal
approximation is used for T (1) . The final result for the net radiative
flux is:
F(T)=°'T4 (L= or T =<7
r eff

)
%/_{ tr T .
6
F(r)=¢ Tiﬁ % © 3(v -4)] (>0, ifT= Tor) (13)
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FIGURE CAPTIONS

Figure 1. Surface infrared optical depth and tropopause infrared optical depth
for radiative-convective atmospheric models. The visible surface optical depth
is zero in these models. The independent vagriable + is the instability para-
meter, defined in the text. The solid curves refer to the theory outlined in

Section III; the dotted curves refer to the Eddington-Schwarzschild spproxima-

tion.

Figure 2. Surface temperature, tropopause temperature, and upper boundary
temperature for radiative-convective atmospheric models. The independent

variable ¢ is the instability parameter, defined in the text. The solid
curves refer to the theory outlined in Section III; the dotted curves refer

to the Eddington-Schwarzschild approximation.

Figure 3. Tropopause radiative temperature gradient, normalized to the
adiabatic gradient, and surface net radiative flux, normalized to the strato-
spheric flux, for radiative-convective atmospheric models. The independent
variable ¢ 1is the instability parameter, defined in the text. The solid
curves refer to the theory outlined in Section I1I; the dotted curves refer

to the Eddington-Schwarzschild approximation.

Figure 4. Temperature profiles for radiative-convective atmospheric models with
three values of the instability parameter. The independent variable is the infrared
optical depth in the atmosphere. The solid curves refer to the theory outlined

in Section IIT; the dotted curves refer to the Eddington-Schwarzschild approximation.
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Figure 5. Temperature gradient profiles for radiative-convective atmospheric
models with three values of the instability parameter. The temperature gradients
are normalized to the adiabatic temperature gradient. The independent variable
is the infrared optical depth in the atmosphere. The solid curves refer to

the theory outlined in Section III; the dotted curves refer to the Eddington-

Schwarzschild approximation.

Figure 6. Net radiative flux profiles for radiative-convective models with
three values of the instability parameter. The net radiative fluxes are
normalized to the stratospheric flux. The independent variable is the infra-
red optical depth in the atmosphere. The solid curves refer to the theory

outlined in Section III; the dotted curves refer to the Eddingbon-Schwarzschild

approximation.
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