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BOUNDS FOR THE EIGENVALUES OF A MAT=* 

By Kenneth R. Garren 
Langley Research Center 

SUMMARY 

This paper provides a listing of techniques used to determine the eigenvalue bounds 
of a matrix defined over either the real o r  complex fields. Theorems concerning the 
condition of eigenvalues as a function of the related matrix are stated. Known theorems 
which determine the bounds a r e  derived. Closed-form solutions are expressed in te rms  
of (1) the matrix elements, (2) matrix norms, and (3) vectors and the eigenvalues of 
related matrices. Extensions of several results are made to infinite matrices. A com­
parison is made in te rms  of the relative size of the areas of eigenvalue inclusion for  the 
various solutions. Examples in terms of eigenvalue bounds for particular matrices are 
given. 

INTRODUCTION 

In various applications of operator theory, it is often required to determine the 
spectrum a(A) of an operator A, that is, all scalars X for which A - X has no 
inverse. For the n-dimensional operator, this problem is to determine those scalars X 
for  which there exists an associated nonzero vector x such that A x  = Ax. Solutions in 
this case can be assumed by requiring the vanishing of the determinant of the associated 
operator A - XIn  for the n-dimensional identity matrix In. Expansion of this determi­
nant yields an nth degree polynomial, the roots of which are the eigenvalues of the 
matrix A. The roots of the general polynomial of degree n can be determined directly 
(that is, solvable by radicals (ref. 1))if  and only if  n 5 4. However, various techniques 
do exist for determining upper and lower bounds for  eigenvalues and very often this 
information is sufficient to solve various types of problems. 

This paper is concerned with listing known techniques which determine eigenvalue 
bounds and with comparing their relative accuracies. These bounds are expressed in 
terms of (1)the elements of the matrix itself, (2) matrix norms, and (3) vectors and 

*Part of the information presented herein was offered as a thesis in partial ful­
fillment of the requirements for  the degree of Master of Arts in Mathematics, College of 
William and Mary, Williamsburg, Virginia, 1965. 
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eigenvalues of related matrices. Extensions of several results are made to infinite 
matrices. 

SYMBOLS 

aij gij,tij ,b* elements of a matrix, occupying ith o r  kth column and jth o r  kth row 


II* II matrix norm of A 


Aij,A,B,B,,G 

H, T,U, D 1 matrices defined over complex field 


SUP [ 1 ai 
equal to x ~ ! 2 j  

/IAij  I /  x#O I1 xIl"j 
II AijXll ai vector norm evaluated in subspace ai 

diag(a1,. ..,an) diagonal matrix with al, . . ., an down the main diagonal 

kth derivative evaluated at X = 0 

e column vector, all of whose components a r e  1 

i element for which its square is equal to -1 

In identity matrix of order n 

Ji ith Jordan block corresponding to X i  
co 


2 1  set  of all vectors x = XI, x2, . . . for which it is true that 1/xil < 00 

i=1 
P polynomial 

P permutation matrix 

pk numerically equal to c 
j= l  
j#k 
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q(x) = ­(x9Ax) or Rayleigh’ s quotient
(x,x) 

IIXI1 nj vector norm evaluated in  subspace 52j 

X,h,x,y,z, v vectors 

x,’xitxi,yi7yj;) components of vectors or vectors themselves 
J 

e r ro r  


eigenvalue 


eigenvalue of matrix A 


Jordan canonical or normal form of matrix 


spectrum of A; i.e., the set of all complex numbers X for which 

A - X has no inverse 

set  whose elements a re  inverse of elements of 


equal to det(A - XI) 


subspace 


determinant 


infimum or  greatest lower bound 


maximum value 


minimum value 


supremum or least upper bound 


modulus or absolute value 


equal to < , > for a vector 


o(A) 
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’
< s  


E 

Subscripts: 


i,j,k,z,n 


max 


min 


Superscripts: 


A,B,B, ,H 

T 

oqk 

* 

-

complex scalar product 

belongs to a set 

integers 

maximum 

minimum 

matrices 

matrix transpose 

real numbers 

conjugate transpose 

complex conjugate 

WELL-KNOWN THEOREMS FOR EIGENVALUES 

Some well-known results concerning the eigenvalues of particular types of matrices 
a r e  given in table I. Other results which a r e  less well known than those i n  table I, but yet 
of some importance are: 

(1) If A is a positive real  matrix, that is, aij > 0, then there exists a real, posi­
tive eigenvalue which is simple and such that its absolute value is greater than that of 
any other eigenvalue. (See ref. 8.) 

(2) If A is a nonnegative irreducible real  matrix, that is, a i j  2 0, then there exists 
a real  positive eigenvalue. (See ref. 9.) 

(3) If there exists a k such that Ak is a positive real  matrix, then there exists 
an eigenvalue of A such that it is real, and its absolute value is greater than any other 
eigenvalue. If, in addition, k is an odd integer, then this eigenvalue is positive. (See 
ref. 10.) 
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TABLE I.- EIGENVALUE THEOREMS 

Condition of A Notation Condition of X References 
~~ 

Nonzero operator A r(A) is a nonempty, closed, 
and bounded subset of 
complex numbers 

r(p(A)) = p(cr(A)) where p is 
a polynomial 

A - ~  exists 

Hermitian A = A* All X are real 

Real symmetric A = AT All X are real 

Skew hermitian A = -A* All X are imaginary 

Real skew symmetric A = -AT All X are imaginary 

lsometry A*A = I I X j I  = 1 

= I l"jl = 1Orthogonal A ~ A  

Triangular, that is, 

"11 0 - - - 0 

a21 a22 ' * * 
0 

A =  hj = ajj 

aril "n2 
o r  

Permutation, that is, 
-

0 1 0 . . . 0  0 
0 0 1  . . .  0 0 
. . .  . .  

A =  A = P. . .  . .  

. . .  . .  for j = 0, 1, . . ., n - 1 

o o o . . . o  1 

1 0 0 . . . 0  0- ­

2 

3 

3 

4, 5, 6 

4, 5 
4 

4 

4, 6 
4 

5 

7 
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THEOREMS FOR EIGENVALUE BOUNDS 

The bounds for eigenvalues may be determined by various techniques. In general, 
these techniques express the bounds in te rms  of (1)the elements of the matrix itself, 
(2) matrix norms, and (3) vectors and eigenvalues of related matrices. Although the 
eigenvalues may be approximated by considering the roots of the characteristic equations, 
the necessary procedures (Newton's method, Graffe's method, etc.) require a "first 
guess" of the roots combined with successive iterations. These relations do not lend 
themselves to closed-form solutions of eigenvalue limits. In this paper, only those types 
of relations listed a r e  investigated. 

A.- Bounds by Matrix Elements 

An important relationship giving the eigenvalue bounds in te rms  of the matrix ele­
ments and matrix order is provided by the following theorem. (See ref. 11.) 

Theorem A1.- Let A be a complex matrix of order n. Define 
1G = S(A -+ A*) 

Let 

Then 

and 

or 
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Then 

or 

Likewise 

or  

<x,Ax> + <x,A*x> = (a!+ ip)<x,x> + (a!- ip)<x,x> 

<x,(A + A*)x> = ~ & x , x >  

<x,Gx> = Q<X,X> 

<x,Tx> = ip<x,x> 

-i<x,Tx> = p<x,x> 

By the Cauchy-Schwarz inequality, 

where the x te rms  a r e  normalized so  that <x,x> = 1. Thus IXI Ina. Proceeding i n  
a similar manner since 

&X,X > = <x,Gx > 
yields 

ng 

Likewise, since p<x,x > = -i<x,Tx >, 

IpJZnnt 

Bendixson (ref. 11) found a bound for the imaginary par t  for a real  matrix A. 

-Theorem A2.- Let A be a real  matrix of order n, 

T =+(A - AT) 

X = a ! + i p  
Then 
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Proof: Since Ax = )ur for x = y + iz, 

A b  + iz) = (a+ i p ) b  + iz) = (ay - pz) + i (az  + m) 
Equating real and imaginary parts yields 

Ay = CUY- PZ 

A z = a z + p y  

so that 

<y,Az > = <y,az > + <y,m > 

-<z,Ay> = - < z , ~ Y >+ > z , ~ z >  

and by adding 

<y,Az> - <z,Ay> = p(<y,y> + <z,z>) 

Now 

or  by definition of T, 

Therefore 

n n n n 
2 2 1 IQjI IYiZj  - ZiYjI 5 t 1 1 lyizj - ZiYjl 

i=l j=i+l i=l j = i + l  

where t = max It i j  I and squaring the preceding equation yields 

n 
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where llyll2 = <y,y >. By the arithmetic-geometric mean inequality, for  real  num­
bers ri, 

2 2 2 
+ . . . + rm) 5 m ( r l  + . . . + rm) 

There a r e  n2 elements in the matrix; the diagonals do not appear in  this sum since 
tii = 0. For every two elements of the matrix, one combination is used in the summa­

n2 - ntion. Thus, there are -
2 

or  n(n
2 
- ') combinations. Thus by the arithmetic-

geometric mean inequality, 

Consider now 

By Lagrange's identity, 

Thus 

Substituting this result  into equation (1)yields 

2 

i=lj=i+l 

Thus p2 < t 2  n(n 
2 
- 1)= . 

The importance of these two theorems lies in their ability to determine an upper 
bound for the real  and imaginary components separately. However, the following theorem 
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proven by Levy-Hadamard-Gerschgorin (ref. 12) gives an even more basic result and 
has since been used as a cornerstone for many more theorems of eigenvalue bounds. 

Theorem A3.- Every eigenvalue of a matrix is contained in at least one of the n 
disks whose centers are aii and whose radii are 

(i = 1, . . .,n) 

k#i 

Proof: Let. B be a matrix of order n. The system of equations Bx = 0 has a 
nontrivial solution if and only if  det B = 0. Let Xk be the dominant component of 
x = (xl, . . ., xn), that is, lxkl 2 lxil for all i. Then, the kth equation is 

b&Xk = - f bkmXm 
m=l  
m#k 

or -n 

m#k 

and thus 

m#k 

Let B = A - XI,  where X is such that det(A - XI) = 0, the "eigenvalue problem." 
Therefore 

m = l  
m#k 

This theorem can be generalized to countably infinite dimensional operators which have 
a summable matrix representation; that is, 

10 




Corollary A3: If A is a summable matrix whose eigenvectors x = (x1,x2, . . 9 
a r e  in Z l  and x = (x1,x2, . . .) is in  Z1 means that 

the results of theorem A3 hold. 

Proof: For  all eigenvectors x of A, x in Z l  implies that there exists a com­
ponent, say jik of x, for which X, is a dominant component (that is, lxkl 2 lxil for 
all i). The kth equation is then 

b&Xk = - bkmXm 
m=l  
m#k 

where bij = a.. for i # j and bii = aii - X so that, as before,
11 


m=l  
m #k 

Thus all eigenvalues a r e  bounded by 

m#k 

Theorem A4.- The following theorem is of interest  with respect to the preceding 
corollary. For a summable matrix, an eigenvector is in  ZI i f  and only i f  it has a 
finite dominant component. 

Proof: From A x =  Ax, 

(i = 1, 2, . . .) 

so that 

Therefore 
m I 1 0 0 a, 
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if xk is a dominant component and X f 0. Thus, 1Ixi1 < 03 and x E Z1. 
i=1 

Clearly, for x E Z 1 ,  x has a dominant component 

Corollary A4 (Frobenius): An almost immediate consequence of theorem 4 is the 
well-known "Theorem of Frobenius." 

n 

m=1 

\ k#m / 
Proof: 

so that from the preceding inequalities 

m=l  m=l 
m#k 

Also 

so that 

m#k 

Also, since det A = det AT, 

c
m=l  
m#k 

may be replaced in  theorem A3 and its corollary A3 by 

nc lamkl 
m=1 
m #k 
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Thus, the centers of the circles containing the eigenvalues will remain unchanged even 
though their radii will be changed. 

Theorem A5.- A s  a further refinement of corollary A3, Alfred Brauer (ref. 13) 
was able to restrict  the regions containing the eigenvalues by means of the "ovals of 
Cassini'' in this theorem. Each eigenvalue of A lies in at least one of the n(n

2 
- 1) 

ovals of Cassini 

and in at least one of the ovals 

(i = 1, 2, . . ., n) 

I X - %I 

and 

Theref ore 
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so that 

which proves the theorem. 

Similarly, it may be shown that all eigenvalues of A a r e  contained in  at least  one 
of the ovals 

There a r e  n elements aii which, in  part, form the ovals. The number of distinct sub­
sets with two elements that can be chosen from this se t  of n elements is 

n! - n(n - l)(n - 2)! - n(n - 1)- ­
2! (n - 2)! 2(n - 2)I 2 

Thus, there a r e  n(n
2 
- ovals. 

Theorem A6.- Another inequality (ref. 14) giving the regions in  which the eigen­
values a r e  contained is presented in the following theorem. For the matrix A = (%j)n, 

Proof: As was shown in theorem A3 and corollary A3, for  the determinant of 
A - A I  to vanish, the following inequalities must be satisfied: 

n 
I A  - aii1.2 2 Iaijl 

j = l
j# i  

1’ - aiil z f ”ki 
k=l  
i#k 
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Thus, 

whenever 0 5 a! 5 1. 

Corollary A6(a): Two simple corollaries to this theorem a r e  presented, 

All for 0 Ia I1. The corollaries and theorem hold likewise for a = 1 - p, 1 - a! = p 
where 0 5 p 5 1. 

Corollary A6(b): Corollary A6(b) is a direct consequence of theorem A5. For 
each 04 0 5 a! 5 1, every eigenvalue of A lies in at least one of the 2 ovals, 

For a! = 0 or a! = 1, this relation reduces to theorem A5. 
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Theorem A7.- As a further extension of theorem A5, the largest eigenvalue may be 
bounded from the results of reference 13. Each eigenvalue h; satisfies 

where 
n 

'k= 	 1l%jl 
j = l
j #k 

since 
Pr 2 0 

Ps 2 0 

From the corollary A6(b), 

16 




and 

v 

Part (1) 

v 

Part (2) 

Thus, either Part (1)2 0 and Part (2) i0 o r  Part (1)5 0 and Part (2) 2 0. How­
ever, since 

I r) 

then it must be true that Part (1)5 0 5 Part  (2). Thus from part  (l),it follows that 

In addition, if  a third condition is satisfied, namely, 

lak.kajjl > PkPj 

then a similar type of lower bound for the modulus of the eigenvalues of A can be 
formulated (ref. 13). 

Theorem A8.- If 

(k, j = 1 , 2 , .  . . ,n)  

17 



then 

Proof: As was shown in the proof of theorem A7 

or 

Assume that m is attained where k = y, j = 6, s o  that 

Note that all the previous theorems have given bounds only for the modulus of the 
eigenvalues. However, for  a particular case, more definite information may be implied 
from exact information regarding the values of the elementary symmetric functions of 

AI, X2, . . ., An. Several important results concerning these functions a r e  given by the 
following theorem. 

Theorem A9.- For an arbitrary matrix A = (%j), 

n n2 h i =  1aii 
i=l i=l 
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n 
ll X i  = det A 

i=l 
and 

if  A is real. 

Proof: Let 

*(A) = det(A - XI) 

By a Maclaurin's ser ies  expansion of +(x), the coefficient of Xk-1 is 

= (k - l)!(all + . . . +a,) 

Also by the fundamental theorem of algebra, 

+(XI =(XI- X ) ( X ~  - X) . . (An - A) 

where the XI, . . ., Xn a r e  the eigenvalues of A. Then 

Thus 

f Xi = f aii = Trace of A 
i=l i=l 

Also for = det(A - Xr) 

n 
and for *(X) = ll X i  - A 

i=l 
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Thus II hi = det A. Likewise, the other elementary symmetric functions are the corre­
sponding coefficients of the characteristic equation. 

Since the multiplicity of in  A is the same as the multiplicity of hk in  Ak , 
then 

n 
Trace of Ak = 1A: 

i=l 

(Note, if all h = 0, then +(A) = Xn = det(A - AI) = det A = 0.) Let k = 2 so that 

T raceA2  = A l2 + . . . +An2 

Also 

i#k 

n n n n n 
T r a c e A  A = C&=C a?.+ 2 Ca:k11 


k=l  i=l i=l 	 k=l i=l 
k#i 

2 2Since aik + % 2 2aikaki’ then 

Trace A2 5 Trace ATA 

Thus 

k=l i=lk=l  

B.- Bounds by Matrix Norms 

In this section, the eigenvalue bounds. are determined in te rms  of matrix norms. A 
matrix norm 11 All of a square matrix A is any bounded real-valued function for which 
the following matrix norm properties a r e  true: 

20 
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(Property (3) implies that the norm is a continuous function of A; that is, 

lllAl1 - IlAnll I c E f o r  any E ,  whenever IIA - An11 is sufficiently small. ) 
The following is a listing of several possible norms for an arbitrary matrix 

A = (aij)n: 

IlAll E = i w = Square root of sum of squares of A (Euclidean) 

IlAll e = Maximal row (column) sum of (I aijl) n 

llAl I = Maximal row (column) sum of 
eT 

where 

G any nonsingular matrix 

IIAl I any matrix norm 

I/AllI = ,,max 1141 which is the induced norm 
xlJ=l 

A relation between the eigenvalue bounds and the value of powers of the matrix is given 
in  reference 15. 

-Theorem B1.- All eigenvalues AA of the matrix A are contained within the unit 
circle if and only if  

lim = o 
n-­
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Proof (1): . Assume that all eigenvalues of A are contained within the unit circle. 
Then choose an arbi t rary E > 0 so that 

It is now desirable to find a matrix norm with 

for by property (4) of matrix norms, it follows that 

If [IAI]< 1, then 

This relation implies that 

By the contrapositive of property (1) of matrix norms and norm continuity 

implies that 

lim An = 0 
n-­

so that the sufficiency portion would be proven. 

A desired matrix actually does exist. Define ((AI(g to be the maximal row sum of 
absolute values of G-'AG. 

Let A be the Jordan canonical o r  normal form of A so  that A = T- 1AT. Then 
A is an upper triangular matrix. Let P = diag(6-n,61-n,62-n,...) where 6 > 0. Then 

-
6 0 . . .  0 

X i  6 . .  . 0 
. . .  0 

P- 1AP = . . .  
. . .  
. . .  
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Thus I/P-’APlle 5 IXAlmax + E since the value of its maximal row sum may be made 

sufficiently close to IAAlm, by choosing 6 small enough. Transforming the e 
norm by P, that is, P e  = g, yields 

Therefore, by defining the norm IlAll IlAll ’ the sufficiency portion is proven.g 

Proof (2): Let lim An = 0. NOW 
n-* 

n 
~n = (T- AT) = ( T % T ) ~ ( T - ~ A T ) ~. . . ( T - ~ A T ) ~= T - ~ A ” T  

Therefore, 	 lim An = 0 implies
nd­

lim T - ~ A ~ T= o 
n-­

o r  

o = T-l(n-m )lim A ” T  

Thus 

1im A ” = O  
n-* 

Then each element naij of the Jordan matrix An must be such that 

lim [naij = o 
n--a, 

for all i , j .  

Let A be partitioned into block diagonal form where each block corresponds to a 
distinct eigenvalue of A. That is, 

23 
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where 

1 
X i  

Then 

JS 

J;:I 

n n-1(JA 

J.n = 
1 


0 


where 

Thus, in particular, 

lim A: = o 
n--a, 

s o  that 1 A i l  < 1 for all i. The importance of this relation is obvious when iterative 
(numerical) techniques defining the matrix A as the e r ro r  in the approximate solution 
are considered. 
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Theorem B2.- One of the most significant and generalized results is given by the 
following theorem (ref. 15). For an arbitrary matrix A, the largest possible eigenvalue~modulus is l ~ 6 IlAll ~ for  anyl matrix~ norm of A. 

Proof: Let IlAll = CY, a real scalar. Also define BE = -A where E is 
positive. (a+E )  

Consider 

for all E > 0, that is, llBEll < 1. By the proof of theorem B1 (proof (I)), IlB~ll< 1 
implies that lim BF = 0, which, by the result of theorem B1, implies that for all eigen­

n--.o 

values of BE, A:', it is t rue that l X B E l  < 1. If A? is any eigenvalue of A, there 
will exist a corresponding eigenvalue of B such that 

From this relation, since 1A:'I < 1 for all eigenvalues of BE,  then 

o r  

Therefore 5 IlAll since the relation is true for all E > 0. By using this 
result, a more precise bound is established. (See ref. 2.) 

Theorem B3.-

Proof: From previous theorems, 

and 

XA" = (*A)" 


Thus for all n 



so that 

and thus 

By theorem B1, lXBlmm < 1 implies lim(IBnll = 0, so for  all n > N, IIBnl/ < 1 and 
n-* 

IIBnlll'n < 1. Thus, 

and 

Then for arbitrary A and E > 0, let C = (IXAlmax + e)-lA so that lXclmax < 1 and 

Therefore 

Combining inequalities (2) and (3) yields 

Theorem B4.- If A is Hermitian, then lIA]II = sup(1AI :Xeo(A)l. The proof of this 
~~ 

theorem is given in reference 3. 

If the matrix is partitioned such that each diagonal submatrix is square, then, 
eigenvalue bounds may be determined by procedures similar to those used in the sec­
tion "A.- Bounds by Matrix Elements." 
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Let A be any matrix order n, which is partitioned as 

A11 

A =  II; 
where the diagonal submatrices Aii are square of order ni. Define the matrix norm 
by 

SUP lI4jxllai
IIAijll 9 XGQ~ 

x+o Ilxllaj 

for an arbitrary vector norm over the subspace ak.  If the diagonal submatrices Aii 
are nonsingular and i f  

kitj 

then the matrix A is said to be "block strictly diagonally dominant." (See ref. 16.) 

Theorem B5.- For every partitioning of the matrix A, each eigenvalue XA 
satisfies 

k+j 

whenever the (Ajj - XIj)-' exist. 

Proof: Assume that A - X I  is singular. Then there exists a nonzero partitioned 

vector X =  r] such that 

Xn 

(A - XI)X= 0 

Consider A - X I  in its partitioned form; this relation implies 
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Let Xr be the largest component of X, that is, 

IIxrll 2 IIXjII (1 2 j ZN) 

Divide X by IIXrll. Then from equation (4) 

From the Cauchy-Schwarz inequality, the left-hand side of equation (5) is such that 

since 

l = x  ll jllII rll - x  
by the division of X. 

Let Zrr = (Arr - .Ir)Xr. Then 

since 

The first part  of the inequality follows from the fact that 

28 




From this equality and continuity of the norm, if B is singular, the definition 

llB-lll-l = 0 is obtained. Then from equations (5), (6), and (7) 

n 

- ur)- l f l - l  g CllArjll 
j = l
j#r 

If, in  theorem A5, IX - %il is replaced by the general form 
and 

j=l
CIbj 
j #k 

is replaced by 

l#i  

then an identical proof (ref. 16) will give the following corollary. 

Corollary B5: All eigenvalues of A, AA, l ie in the union of the Nw2 - l) point 
sets defined by 

where 
1 Z i  

j Z N  

i # j  

In a similar manner, if  these substitutions are made in theorem A6, and an identical 
proof is used, the result will be the following corollary. (See ref. 16.) 

Corollary B5: For any a! with 0 5 a 5 1, each eigenvalue of A satisfies 

for at least one j, 1 S j 5 N. 
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C.-Bounds by Vectors and Related Matrices 

This section determines eigenvalue bounds in  t e rms  of vectors or in  te rms  of the 
eigenvalues of related matrices. Most of the following proofs depend upon the quadratic 
form of a matrix combined with simple geometric inequalities. 

Bendixson proved the following result  for a real matrix A = (aij)n; it was extended 
by Hirsch (ref. 11)to the complex case. 

~(A+A*) +A+A*)1 
Theorem C1.- If XA = a + ip, and Xmax and Xmin a r e  the largest and 

~ 

smallest eigenvalues of ;(A + A*), then 

Proof: Let H be an arbitrary Hermitian matrix and U be the unitary trans­
formation such that U*HU is a diagonal matrix. If the equality 

<x,Hx> = cJ<x,x> 

is satisfied by a nontrivial x, then 

H HXmax 2 u P Xmin 

For 

If <x,Hx>= u<x,x>, then 

Thus 

i=l 
o r  

i=l i=1 i=l 

30 
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Xmin 

Theref ore 

A s  was shown in theorem A1 when XA = CY + i p  and x is an eigenvector corresponding 
to XA 

+ Sji)SiXj = (Y<x,x> 

so that 
Q ~(A+A*)nL(A+A*) 

2 CY z XginG a x  

Corollary C1: Since A - A*-2i  is also Hermitian and since 

then 

L(A-A*> -(A-A*)1 
2i  

'max 2 p 2 2i  

Just as in the proof of theorem C1, related vectors may be used to define eigenvalues and 
their bounds. 

If X i  is an eigenvalue with a corresponding eigenvector X i  for the complex 
matrix A, Axi = XXi; thus 

<xi,Axi > = < X i , x X i  > = h<xi,xi > 

or 

In the more general form, this quotient 

< x  Ax>q(x) = <;7x> 

for arbitrary vector x is called the Rayleigh's quotient. 

If A is Hermitian, there exists a unitary matrix U such that U*AU is a 
diagonal matrix and U*U = I. Then 

< x , A x >  = <Uy,AUy> = <y,U*AUy> = <y,(diag X)y> 
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Also if <x,x> = 1, 

1= <x,x> = <x,u*ux>= <ux,ux> = <y,y> 

Thus the values assumed by <x,Ax> on <x,x> = 1 are equal to the values assumed 
by <y,(diag A&> on <y,y> = 1. However, 

and 

Thus 

Theorem C2.- A relation which gives eigenvalue bounds of the matrix A in te rms  
of eigenvalues of the related matrix A*A is 

Xmin 5'" A*AA*A SIXi~2I 
Proof: Let xi be an eigenvector corresponding to the eigenvalue X i  of A so 

that Axi = XiXi and 
. .  

<AXi,AXi > = <Xixi,Xixi > 

2 <xi,A*Axi>
Thus / X i /  = , and by the same reasoning as that of theorem C1 

<Xi ,Xi  > 

Corollary C2(a): 
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Corollary C2(b): If the matrix A is real, then 

The largest eigenvalue cannot only be bounded by considering related vectors but, in 
fact, can be approximated as closely as desired. This result is due to Collatz. (See 
ref. 12.) 

Theorem C3.- For a matrix A of order k, with k distinct modulus eigenvalues 
and for an arbitrary E > 0, there exists an N > 0 such that 

Proof: Let v = plyl + p2y2 + . . . + pnyn where y1,y2, . . ., yn a r e  the 
linearly independent eigenvectors, and let xipiyi so that v = x1 + x2 + . . . + xn. 
Assume that the eigenvalues of A a r e  ordered such that 

n 
Anv = + (z)x2 + . . . + ( z r x d  

As n approaches m, then ($) approaches 0 for  all i. Thus, 

Several theorems which give eigenvalue bounds in terms of eigenvalues of related 
matrices were shown by Wittmeyer. (See ref. 17.) Some of these theorems a re  given 
below. 

Theorem C4.-

A ( ~ ~ )*(AB) A*A’B*B 
max “max max 

Proof: Let 
h = BX 

z = A h  

s o  that z =ABx. Then 
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AB 

A*A 
<z,z> = <h,A*Ah> = <y,(diag hi)Y> = cXiyifi S lhmaxl <y,y> 

where 

so that 

and 

Thus, 

Let x be the eigenvector of (AB)*(AB) corresponding to A,, (AB)*(AB); that is, 

Let z1 = ABxl. Then 

Thus, let z = z1 so that 

Corollary C4: It follows from theorem C2 and its corollary that

I AB I [ (AB)*(AB~]
'max 'max 

and also 

'maxB*B)~/'I 'max 1 ( A ~ * ~ r / 2 (max 

In a manner similar to that of theorem C4, 
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so that 

Let x be such that (AB)*(AB)xl = Amin(AB)*(AB)xl so that for  z1 = ABxl results in 

Theorem C5.- Letting z = z1 in  the preceding equation yields 

and thus proves 

(AB)*(AB) A * A ~ B * B  
',in "min min 

Corollary C5: In a similar manner the relationships 

and 

min min 
a r e  proved. 

Theorem C6.- Another theorem which follows from a somewhat different geometric 
consideration if  A and B are normal matrices is 
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Proof: Consider 

< x , ~ * ~ >  
= m a (  

+ <X,B*BX> + <X,B*AX> + <X,A*BX> 
x <x,x> <x,x > <x,x> <x,x > ) 

< x , A * e  + <X,B*BX>+ max <x,B*Ax > <X, A*BX > 
9 max <x,x> X <x,x> X <x,x > + max <x,x>X 

- A*A B*B B*A A*B 
- 'max + 'max + 'max + 'max 

By the corollary to theorem C4 is 

A*A B*B B*A A*B A*A B*B ( BB* +*A)'/' ( u*.p*B)'/'
'ma, + 'max + 'ma, + 'max "max + 'max + 'max max + 'max max 

Thus 

Corollary C6: 

Theorems C4 to C6 with their respective corollaries may be repeated as corol­
lar ies  for the special case where A and B a r e  real  matrices and the transposed 
conjugate is replaced by the transpose. 

COMPARISON AND COMPUTATION 

From the results of the preceding sections, it is seen that there a r e  many ways to 
compute the bounds for eigenvalues. However, certain theorems give more precise 
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eigenvalue bounds in all cases than 
others. Comparison is now made 
between the inclusion regions of * - - -, . 
eigenvalues for several theorems of -- Gerschgorin circles 

Ovals of Cassini 
the section "A.- Bounds by Matrix 

I 

Elements .It 
\ 

\ 
\Since \ 

,,'\ n . - _ _ - =  

max 1laijl s nlmax %jl
i Figure 1.- Comparison of inc lus ion region for matrix A 

j = l  us ing  Gerschgorin c i rc les (theorem A3) and ovals of 
j # l  Cassini (theorem A5). 

Corollary A3 gives a smaller region than theorem A1 does in  all cases. 

Theorem A5 (ovals of Cassini) give a smaller region than theorem A3 since every 
point of the oval l ies i n  at least one of the two circles which form it. An example of this 
condition is seen in figure 1 and is proven as follows: 

If z is contained in the ovals of Cassini, then 

j=1
j#k 

and 

Thus, every point within the oval l ies  within at least one of the circles which form it. 
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Figure 2.- Regions wh ich  can be excluded from containing eigenvalues by 
us ing  the results of theorem A6 for matrix A. 

Theorem A6 gives a smaller inclusion region for all 0 2 Q! 5 1 than theorem A3. 
The area  which can be excluded by using values of Q! = 0, 1/2, 1 is shown as the shaded 
area  in figure 2 for  the matrix A whose approximate eigenvalues a r e  30.55, 10.07, 
and 0.38 (theorem A6). 

If 

then choose the larger  of the two summations, 

j#i  k#i 

Suppose it is 
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then 

Hence, 

Hence, the region of inclusion for eigenvalues for  theorem A6 (and hence its corollary) 
is contained within the region of inclusion for eigenvalues for  corollary A3. Figure 2 
contains the region of the first two eigenvalues only. (See ref. 14.) The region obtained 
by using theorem A3 corresponds to Q! = 1. 

Theorem B5 reduces to theorem A3 in the special case where each submatrix is a 
single element of the matrix. For  an example of a case in which theorem B5 gives a 
better result than theorem A3, consider the partitioned matrix (ref. 16) 

A21 i A22 I 

with eigenvalues X = 1, 3, 5, 7 and where the vector norm is taken as 

t t  XI1 E ( A l X i r r  

for x = (x1,x2) and 
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+ 4 - 8(4 - A) 
X l X 2  

X 	 x12 + x22 
-

Now 	-a x1x2 = 0 and -a x1x2 = 0 for  x1 = x 2  and x1 = -x2. 
8x1 x12+x22 8x2 x12 + x22 

For h < 4, the infimum occurs at 
x1 = x2. For h > 4, the infimum occurs 
at x1 = -x2. At x1 = x2, the theorem 

requires IA - 21 5 1 and at x1 = -x2, 

it requires IX - 6 I 2 1. 

A comparison between theorem B5 
Figure 3.- Comparison of inc lus ion regions for  matrix A by

(whose inclusion region is shaded) and us ing  theorem 85 (hatched area) and theorem A3. 

theorem A3 is given in figure 3. 
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APPLICATIONS 

Questions relating to the convergence of se r ies  and sequences of matrices arise in 
many situations. The eigenvalue bounds of the related matrices can give sufficiency 
conditions for convergence. For example, consider the system of linear equations 
Ax = y where A is a n X  n nonsingular matrix of coefficients and x and y are 
n dimensional vectors. (See ref. 18.) Let G be an approximate inverse of A so  
that the approximate solution is z = Gy. It can be shown by induction that for any 
integer k 

k 
x = C (I - G A ) " ~  + (I - G A ) ~ + %= z + f Dmz +Dk+'x 

m=O m=l  

Denote the e r r o r  in z by E = x  - z and let D = I  - GA. Thus 

X - Z = E =  f D m Z + Dk+lX 

m=l  

If lhEax/  < 1, the lim Dk = 0. Thus 
k+* 

E =  Dmz 
m=l  

places a bound on the e r r o r  E .  As another example, consider the equation Ax = m 
where A is nonsingular. (See ref. 19.) If x represents the solution and xk is the 
kth approximation, let vk = x - xk and yk = m - Axk = Avk. Then lim vk = 0 if and 

k-* 
only i f  lim yk = 0 and in either case lim xk = x. To determine an iteration on the 

k-* k-* 
set  of xk terms, let A = A1 + A2 with A1 nonsingular. Define the kth iteration by 

v , for convergence of the iteration, itxk = A; 1m - A;1A2~k-l. Since Alvk+l = -A 2 k  
is necessary and sufficient that all eigenvalues of A1 - A2 be contained in the unit 
circle of the complex plane. 

Iterative schemes may be established to give close approximations to all the eigen­
values of a matrix. A survey of these techniques together with comparative accuracy 
and computation time is given by White. (See ref. 20.) 
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CONCLUDING REMARKS 

A listing of techniques which determine the eigenvalue bounds of a matrix defined 
over either the real  or complex fields is presented. The condition, modulus, or numeri­
cal value of eigenvalues as a function of the corresponding matrices are listed without 
proofs for several well-known types of matrices. Other known theorems which deter­
mine the bounds have been proven in detail. These results have been expressed in t e rms  
of (1)the matrix elements, (2) matrix norms, and (3) vectors and the eigenvalues of 
related matrices. Also extensions of several results have been made to countably infi­
nite matrices. 

A comparison has been made in terms of the relative size of the areas  of eigen­
value inclusion for several solutions. This comparison has shown that some solutions 
give better results in all cases than other solutions. Examples in terms of eigenvalue 
bounds for  particular matrices have been given. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 13, 1967, 
126-62-02-03-23. 
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