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PREFACE 

The purpose of this study has been to examine various features of the 

global stratospheric circulation, utilizing the TIROS VI1 15-micron temper- 

ature data, especially with respect to stratospheric sudden warmings at 

high latitudes and the possible relation of tropical stratospheric anti- 

cyclones to them. 

Before interpreting the 15-micron data it was considered necessary to 

gain experience in applying the data to synoptic analysis. Hence this 

final report consists of two separate and self-contained studies. The 

first contains the results of our statistical verification of the TIROS 

data with appropriate radiosonde data and the second paper is a study of 

the sudden warmings which occurred during the year 1963-1964, for which 

15-micron data were available. A s  it is intended to publish these papers 

separately in scientific journals, each is here presented in a self-contained 

format with separate abstracts and figures grouped at the end of eqch paper: 

COMPARISON OF TIROS VII, 15-MICRON J 
ANTARCTIC STRATOSPHERIC WARMINGS DURING J 

Paper I: 

DATA WITH RADIOSONDE TEMPERATURES 

Paper 11: 

1963 REVEALED BY TIROS VII, 15-MICRON 

DATA 

. 
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ABSTRACT 

Temperatures derived from the 15-micron carbon dioxide channel of the 

radiometer carried aboard the TIROS VI1 satellite were compared to the 

radiosonde temperatures at 100, 70, 50, 30, 20 and 10 mb at 97 stations 

in the northern hemisphere f r o m  20 January to 17 February 1964. The 15- 

micron temperature is rarely colder than the 30-mb temperature, and it 

generally falls between the 10- and 30-mb temperature. The highest corre- 

lation between 15-micron and radiosonde temperatures was 0.7 at both 30 mb 

and 20 mb, near the level of maximum weight which applies to the 15-micron 

radiance weighting function profile. 
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I. introduction 

. 

Extensive observation of temperature in the stratosphere on a quasi- 

global scale began with the launch of the TIROS VI1 satellite on June 19, 

1963. One of the five channels of the radiometer carried aboard the 

satellite measured the thermal radiation at wavelengths ranging from 14.8 

to 15.5 microns which is strongly emitted by carbon dioxide. A s  the temper- 

ature of the carbon dioxide can be assumed to be the same as the air in 

which it is located, the intensities can be interpreted in terms of a 

weighted-mean, equivalent blackbody temperature over the mid- and lower 

stratosphere. Radiative transfer theory shows that the radiation in this 

spectral range is mainly emitted in the region from 15 to 35 krn (Nordberg et 

al, 1965). The maximum contribution at low nadir angles generally originates 

at about 23-25 km. 

heights from day-to-day, as the temperature at various levels changes. How- 

ever, as the pressure surfaces vary in phase with the temperature (i.e. rise 

when temperature increases), there is reason to expect better correlation of 

15-micron temperature with constant pressure than with constant height surfaces. 

The 15-micron temperature’ corresponds to different 

According to Nordberg (1966) cloudiness below 5 krn does not affect the 

15-micron temperatures, but radiation from thick high clouds, such as over 

large thunderstorms, may cause 15-micron temperature decreases of 5 to 1OC. 

Clouds raise the peak of the weighting function profile which means the 

effective 15-micron temperature represents a higher layer in the atmosphere 

than without the cloud layer. In this limited study, however, the effect 

of cloudiness could not be considered. 

In this report the temperatures derived from the 15-micron channel radia- 
tion intensities will be referred to as 15-micron temperatures. 

l 
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The TIROS VI1 orbits were nearly circular with a mean height of 635 km. 

The aperture angle of the radiometer was approximately five degrees; thus, 

the instantaneous area viewed on the earth's surface when the radiometer 

was directed straight down was a circular spot of about 55 km in diameter. 

The inclination of the orbital plane was 58' resulting in data coverage to 

about 60N and 60s when the nadir viewing angles were restricted to the 

range from 0' to 40°. Readings were taken at the rate of 16 per second. 

This method of obtaining quasi-global temperatures is potentially a very 

useful means for studying stratospheric phenomena both synoptically and 

climatologically. Nordberg et a1 (1965) , Warnecke (19661, and Teweles (1966) 

have demonstrated that the 15-micron temperature pattern can reflect certain 

large-scale thermal events in both space and time in the middle and lower 

stratosphere. 

However, because the 15-micron temperatures are weighted mean tempera- 

tures over an indefinite height range in the stratosphere, the question 

which the stratospheric meteorologist raises is "which pressure level or 

height do these temperatures really represent, or can one, in fact, inter- 

pret them at all in terms of temperature at a single pressure level or 

height?" The purpose of this report is to compare the 15-micron tempera- 

tures with radiosonde data to determine at which pressure level there is 

optimum correspondence. 
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11. Data 

. 

The 15-micron channel of the TIROS VI1 medium resolution radiometer 

changed in response after going into orbit, as did all channels of previous 

instruments flown on TIROS satellites. Soon after launch it became apparent 

that a different type of deviation from the original preflight calibration 

had occurred in the 15-micron channel in addition to the deviations experi- 

enced from previous satellites. The radiometer which alternatingly views 

the earth through either the floor or wall of the satellite showed that a 

consistently lower response occurred on the wall side when both viewed the 

same general target within a few minutes. Although the cause of this floor- 

wall difference can not be explained fully, the amount and its pattern has 

been determined allowing corrections to be made to the data. All of the 15- 

micron data used in this report were corrected by the method reported by 

Staff Members (1965). Even after corrections are applied, there are some 

uncertainties in the absolute and relative magnitudes of the derived temper- 

atures. These uncertainties, however, are believed to be small, especially 

in the relative magnitudes over short periods of time; and the implications 

drawn from the distribution of the temperature patterns are not appreciably 

affected. 

The 15-micron channel data were characterized also by random noise of 

an RMS amplitude of about 5C due to a small signal-to-noise ratio (Kennedy, 

1966). 

wave perturbations due to this noise component. Spatial averaging of the 

observations and smoothing of the map analysis reduced the noise component 

to a large extent. 

The data in this report were not filtered to eliminate the short 



The TIROS d a t a  were s u b j e c t e d  to  two o t h e r  impor t an t  r e s t r i c t i o n s .  F i r s t ,  

t o  avoid  g r o s s  m i s l o c a t i o n  of t h e  da ta  by t h e  computer,  i t  was i n s t r u c t e d  t o  

r e j ec t  a l l  s cans  w i t h  minimum nad i r  a n g l e s  g r e a t e r  t h a n  38O o c c u r r i n g  w i t h i n  

t h e  scan.  This  r e s t r i c t i o n  e l imina ted  most of t h e  a l t e r n a t i n g  open mode and 

c l o s e d  mode d a t a  and r e t a i n e d  only  t h e  open mode d a t a  t h a t  can  be a c c u r a t e l y  

l o c a t e d  by t h e  computer. Second, t he  computer was i n s t r u c t e d  t o  r e j ec t  a l l  

i n d i v i d u a l  measurements w i t h i n  a scan wi th  n a d i r  a n g l e s  g r e a t e r  t h a n  40° t o  

minimize t h e  e f f e c t  of s h i f t i n g  the h e i g h t  of t h e  peak emiss ion  i n  t h e  15- 

micron r e g i o n  upward. When t h e  data were mapped, t h e s e  two r e s t r i c t i o n s ,  

p l u s  t h e  o r b i t a l  geometry,  produced s e v e r a l  gaps i n  t h e  coverage.  

The sampling r a t e  of t h e  r a d i a t i o n  d a t a  was chosen t o  permi t  over lapping  

of one-ha l f  f o r  success ive  scan  s p o t s  each  of which i s  a t  l e a s t  55 km i n  

d iameter .  The geographic  coord ina te s  f o r  t h e  c e n t e r  of each scan  s p o t  a r e  

determined.  When t h e  d a t a  a r e  mapped, t h e  computer averages  a l l  of i n d i -  

v i d u a l  v a l u e s  t h a t  a r e  loca t ed  wi th in  a r e c t a n g u l a r  a r e a .  For  t h e  1 t o  40 

m i l l i o n  Mercator  map used t o  map t h e  15-micron t empera tu res  i n  t h i s  r e p o r t ,  

t h e  s i z e  of t h e  r e c t a n g u l a r  area was c o n s t a n t  a t  5 deg rees  of l ong i tude  i n  

t h e  zona l  d i r e c t i o n  and v a r i a b l e  in  t h e  mer id iona l  d i r e c t i o n ,  r ang ing  from 

5 degrees  a t  t h e  equa to r  t o  approximately 2.5 deg rees  a t  60 deg rees  l a t i -  

tude.  A s  a r e s u l t  each g r i d - p o i n t  tempera ture  r e p r e s e n t e d  an  average  of up 

t o  about  200 i n d i v i d u a l  obse rva t ions .  I f  a g r i d - p o i n t  average r e s u l t e d  from 

10 o r  less s i n g l e  o b s e r v a t i o n s ,  the v a l u e  was n o t  i nc luded  i n  t h e  i so the rma l  

a n a l y s i s  . 

TIROS d a t a  f o r  i n d i v i d u a l  o r b i t s ,  observed w i t h i n  about  1 2  hour s  of t h e  

rad iosonde  o b s e r v a t i o n  t i m e  (1200 GMT) were p l o t t e d  on d a i l y  maps. The 
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o r b i t s  f o r  t h i s  pe r iod  g e n e r a l l y  happened t o  CCC'JT on a s i z g l e  c a l e n d a r  day. 

A t  t h e  beginning  of t h e  p e r i o d  these  o r b i t s  u s u a l l y  occur red  from 0 t o  12 

hour s  a f t e r  t h e  map r e f e r e n c e  t i m e  and wi th  each succeeding  day t h i s  12 hour 

pe r iod  occur red  e a r l i e r  so  t h a t  by t h e  l a s t  day 17 February ,  t h e  8 d a i l y  

o r b i t s  were a lmost  c e n t e r e d  around t h e  noon r e f e r e n c e  t i m e .  I so the rms  were 

drawn t o  produce a 15-micron thermal  f i e l d  which was smoothed over  a 12 hour 

p e r i o d  and e x t r a p o l a t e d  a c r o s s  d a t a  gaps.  

had r easonab le  coverage du r ing  t h e  pe r iod  20 Janua ry  through 17 February ,  

1964, v a l u e s  of t h e  smoothed 15-micron i so the rms  were r e a d  a t  l o c a t i o n s  f o r  

which rad iosonde  tempera tures  were a l s o  a v a i l a b l e .  

From t h e  24 ana lyzed  maps which 

The b e s t  a v a i l a b l e  comparat ive rad iosonde  d a t a  were those  used f o r  t h e  

d a i l y  n o r t h e r n  hemisphere s t r a t o s p h e r i c  map ser ies  prepared  by t h e  Environ-  

men ta l  Sc ience  S e r v i c e s  Adminis t ra t ion .  Temperatures  were e x t r a c t e d  a t  97 

s t a t i o n s  over  North America and Europe and t h e  v a l u e s  a t  100, 70, 50, 30, 

20 and 10 mb t aken  a t  1200 GMT were used i n  t h i s  s tudy .  These rad iosonde  

t empera tu res  were c o r r e c t e d  f o r  r a d i a t i o n  by t h e  method g iven  by F inge r  e t  

a 1  (1965).  
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111. Resuits 

a. Correlations 

Warnecke (1966) found a high correlation between the 30-mb and the 

15-micron temperatures. Using preliminary, uncorrected 15-micron data for 

one day, his findings showed correlation coefficients of 0.90 for 247 values 

in the northern hemisphere and 0.94 for 234 values in the southern hemi- 

sphere. His scatter diagrams showed that the temperatures were distributed 

parallel to a line through the origin with a slope of one indicating that 

the 15-micron temperature was systematically warmer than the 30-mb tempera- 

ture by ll.0C and 5.1C for the northern and southern hemispheres, respec- 

tively. After his comparison was made, factors were derived by Staff Members 

(1965) to correct the 15-micron temperatures for instrumental degradation. 

Using corrected 15-micron data and radiosonde data from 97 northern 

hemisphere stations for 24 days from 20 January through 17 February 1964, 

correlations were computed between the 15-micron temperatures and the 

temperaturesat six pressure levels from 100 to 10 mb. Data for 31 January 

and 9 through 12 February were not used because the 15-micron temperature 

coverage was too sparse to permit an isotherm analysis. The resulting 

coefficients are given in Table 1. The 20 and 30 mb levels show the high- 

est coefficients of 0.71 and 0.72, respectively. The mean radiosonde 

temperature naturally varies greatly from level to level, and its standard 

deviation varies slightly, while the 15-micron means and deviations vary 

only with sample size. The maximum correlations occur at levels of mini- 

mum variability of the radiosonde temperatures. The difference between 
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the average 30-mb and the average 15-micron temperature is -8.6C; whereas 

the difference is only -6.5C at 20 mb although the correlations are nearly 

equal. At 10 mb the average temperatures are almost equal, but the standard 

deviation is greater and the correlation less. 

The correlation coefficients were plotted as a function of height and 

compared to the weighting function which applies to the 15-micron outgoing 

radiance (Figure 1). Only the weighting functions for the tropical and the 

high latitude winter-cold atmosphere are shown as these curves represent 

the upper and lower limits of the peak weights. Note the similarity of the 

shape of the curves. The height of the maximum correlation, approximately 

25 km, is very near the heights of the maximum 15-micron weights, between 

20 and 25 km. A slight over-correction of the 15-micron temperatures could 

easily result in this small difference in height of the maximum correlation 

and maximum weight. This adds confidence, however, that the 15-micron 

temperature should be more representative of the 20 to 30 mb temperatures 

than temperatures at other levels. 

Scatter diagrams of the 20-and 30-mb temperatures versus the 15-micron 

temperature were plotted (Fig. 2a, b) using the total population of 1078 

and 1229 points, respectively. These diagrams are presented to demonstrate 

that it would be difficult to conclude that there is a systematic difference 

between the radiosonde and the 15-micron temperature at either level. Al- 

though there is considerable scatter, one can see that the two temperatures 

are more nearly the same at high values but the difference becomes progres- 

sively greater for lower values. Nordberg (1966) has shown by radiative 
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transfer theory that the 15-micron temperatures will change by varying 

amounts depending upon where the actual temperature changes occurs in re- 

lation to the weighting functions (Fig. lb). Thus, one would not expect a 

one-to-one correspondence between the radiosonde temperature changes at any 

level and the 15-micron temperature change. 

b. Time cross-sections 

Time cross-sections of radiosonde temperatures between 100 and 10 mb 

were plotted for 19 stations varying in latitude from 16N to 52N. Only three 

are shown here in Figs. 3a, b and c. Each section covered 8 days from 24 

through 31 January 1964. On these sections, the height corresponding to the 

15-micron temperature for that location was marked. These sections show 

that the 15-micron temperatures correspond to the radiosonde temperatures 

that fall between the IGand 30-mb level, and not lower than the 30-mb 

leve 1. 

It is also interesting to note that the 15-micron temperature 

follows the trend of the radiosonde temperature as a function of time. The 

sudden warming in the stratosphere reported by Nordberg (1965) that occurred 

over the Caspian Sea (Fig. 3a) shows that the 15-micron temperature increases 

as the radiosonde temperature changes in the 10 to 30 mb range. However, 

the 15-micron values increase less than the radiosonde temperatures, as would 

be expected considering the vertical and horizontal averaging represented by 

the former. 
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c. Longitudinal comparison of radiosonde and 15-inicron temperatures 

To further illustrate that the 15-micron temperature pattern corres- 

ponds to and changes as the radiosonde temperature pattern, the lO-mb, 30-mb, 

and 15-micron temperatures were plotted as a function of longitude for the 

60N, 50N, and 40N latitude circles (Fig. 4 )  for 27 January 1964 when there 

was a strong longitudinal temperature gradient at these latitudes. The 15- 

micron temperature curve is seen to follow the same general trend as both 

the 10-and 30-mb temperature curve in all cases. In addition, the phase of 

the 15-micron temperature curve is more nearly in phase with the 30-than the 

10-mb temperature curve, although the magnitude of the 15-micron temperatures 

correspond better t o  the 10-mb temperature. The amplitude of the 15-micron 

temperature curve is from 70 to 100 per cent of the 30-mb temperature curve, 

whereas, it is only 70 to 80 per cent of the 10-mb temperature curve. 

The important points t o  be made from Fig. 4 are that (1) the 15- 

micron temperatures are capable of detecting stratosphere temperature changes, 

( 2 )  the 15-micron temperatures are seldom colder than the 30-mb temperatures 

and generally fall between the 10-and 30-mb temperatures, and (3) the phase 

and amplitude of the 15-micron temperature curves are more nearly coinci- 

dent with the 30-than the 10-mb temperature curve. From theory one would 

not expect the amplitude of the 15-micron temperature curve to be exactly 

the same as either of the radiosonde temperature curves; but it is signifi- 

cant that the phase and amplitude correspond better at 30 mb as this is 

nearer the height of maximum 15-micron emission. 
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d. Longitudinal comparison of the 10-and 30-mb heights with the 15- 

micron temperatures 

The heights of the 10-and 30-mb surfaces and the 15-micron tempera- 

tures were plotted as a function of longitude (Fig. 5) to determine the re- 

lationship between pressure changes and the vertical mean temperature repre- 

sented by the 15-micron temperature. There is a good relationship; where 

the 10-and 30-mb pressure surfaces are high the 15-micron temperature is 

high, and vice versa. However, the 15-micron temperature minimum lags by 

about 40° to 60° of longitude west of the height curves in all cases. 

e. Longitudinal comparison of thickness and the 15-micron temperatures 

The next obvious question is "how well do the 15-micron temperatures 

correspond to the thickness between two pressure levels at heights near the 

maximum 15-micron radiance?" The thickness between 100 and 10 mb and the 

15-micron temperature were plotted as before as a function of  longitude 

(Fig. 6 ) .  In all cases there is good agreement in the phase of the two 

curves which is better than the previous relationship with height curves. 

A comparison of the amplitudes is not possible as the units are different. 

It would seem possible that one could obtain thickness patterns from the 

15-micron temperatures and by graphical addition to the contour pattern of 

a lower level obtain a contour pattern at a higher level. This constitutes 

a study of its own and will not be persued in this report. 

An attempt was also made to determine if the 15-micron temperatures 

were better correlated to warm high-pressure systems and cold low-pressure 
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systems t h a n  t o  t h e  t o t a l  popula t ion .  The rad iosonde  t empera tu res  f o r  each  

of t h e  s i x  p r e s s u r e  levels were d iv ided  i n t o  16 groups  by f i r s t  s e l e c t i n g  

f o u r  h e i g h t  i n t e r v a l s  and subdiv id ing  t h e s e  h e i g h t  i n t e r v a l s  i n t o  f o u r  

tempera ture  i n t e r v a l s .  No sys t ema t i c  p a t t e r n  cou ld  be found i n  t h e  c o r r e -  

l a t i o n  f o r  t h e s e  16 c l a s s e s  t h a t  would i n d i c a t e  t h a t  w a r m  h ighs  o r  c o l d  

lows were b e t t e r  c o r r e l a t e d  t o  t h e  15-micron t empera tu res  than  t h e  popula-  

t i o n  a s  a whole. However, t h i s  i ncons i s t ency  may be due t o  t h e  smal l  sample 

s i z e  of each group,  and should be t e s t e d  w i t h  a l a r g e r  popula t ion .  
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IV. Summary 

The 15-micron temperature is a weighted mean temperature over an indef- 

inite height range of the middle and lower stratosphere. Temperatures 

between 20 and 25 km are weighted most heavily with very little contribu- 

tion coming from below 10 or above 35 km. Correlation coefficients between 

15-micron temperatures and the temperatures at 6 pressure levels between 100 

and 10 mb show that the highest correlations of .72 and .71 occur at levels 

of maximum 15-micron temperature weights; i.e., 30 and 20 mb with an average 

temperature difference of about 8 or 6 C ,  respectively. The 15-micron 

temperature is seldom colder than the 30-mb temperature, and it generally 

falls between the 10-and 30-mb temperature. Plots of the 10-mb, 30-mb, and 

15-micron temperatures versus longitude, along three high latitudes, show 

that the phase and amplitude of the 15-micron temperature curve is more 

nearly coincident with the 30-mb than the 10-mb temperature curve. 

The evidence presented here indicate that the 15-micron temperatures 

correspond better to the 20 and 30 mb temperatures than any of the other 

commonly plotted pressure levels in the middle and lower stratosphere. One 

should use caution in interpreting the 15-micron temperatures as an equiva- 

lent of the 20 or 30 mb temperatures, however, as no evidence can be found 

of a systematic difference between the satellite and radiosonde values, 

nor should there be. The 15-micron temperature will change by varying 

amounts depending upon where the actual temperature change occurs in re- 

lation to the weighting function, although the 15-micron temperature change 

is more sensitive to the actual temperature change at the height where the 

radiance weighting function has its maximum. 
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Figure 3a Time-height section of radiosonde temperature for Orenburg (52N, 55E) 
for the period from 24 through 31 January 1964. 15-micron temperatures 
are plotted at heights corresponding to the same radiosonde temperature 
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Figure 3b Time-height section of radiosonde temperature for B. Elan (47N, 143E) 
for the period from 24 through 31 January 1964. 15-micron temperatures 
are plotted at heights corresponding to the same radiosonde temperature 



3( 
n 
E 

5( 

7c 

IOC 
24 25 26 27 28 29 30 31 

JANUARY 
(1964) 
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ABSTRACT 

TIROS VI1 15-micron radiation data were used to study southern hemisphere 

stratospheric warmings during the winter of 1963,ov~r-'regions which-.had 

1 7  n 'imxl-data." Three significant warmings could be mapped despite 

the latitudinal limit of 60s. The first, from 20 July to 13 August, and 

the second from 26 August to 16 September each reached a maximum in the 

Australian sector,wi&h--&empe-e increases of-IOC and 24C near C a m p b e l l  

-wam&r=tgs moved ectskward-fr-efft-hstralia and the South Indian 

 ea+^- The third, or final warming, occurred in the Western South Pacific 

from 16 October to 10 November,with EP tempexatuse i+rrrease--of-.2YC. This 

warming travelled southeastward toward the South Atlantic Ocean. TW's-- 

s P i r + - d e ~ + h e  validity and usefulness of single-day satellite 

da tz6 '  It is -suggested that future observations of the same, 

rrTt%%!~w carbon dioxide band be carefully processed to filter out only the 

random time fluctuations in order that this system's potentially high reso- 

lution in time and space can be realized. This waveband can indeed provide 

mid-stratospheric temperature data over the major portion of the globe which 

now has no upper-air observational networkra%-& Only a E-ru$y polar orbit 

would further provide such data over the central polar regions where this 

atmospheric layer experiences dramatic changes and is of most interest. 

I- 
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I. Introduction 

Following the discovery of stratospheric sudden warmings by Scherhag, 

(1952), numerous reports (for example, Finger and Teweles, 1964; Wilson 

and Godson, 1962) have appeared describing their behavior and character- 

istics in the northern hemisphere. Several warmings of various intensity 

usually occur each winter. In addition to these, in the springtime, there 

is a final warming which is associated with the seasonal reversal of meri- 

dional thermal gradient and the replacement of the cold polar vortex by a 

warm anticyclone. They affect not only the circulation but also the density 

distribution in the lower stratosphere. Similar events have been observed 

in the southern hemisphere (Godson, 1963). However, the sparseness of 

observations, particularly in the southern oceans, makes analysis and sub- 

sequent description of stratospheric events difficult. 

The 1963 stratospheric warmings of the southern hemisphere were first 

pointed out by Nordberg et a1 (1965) using 15-micron data. 

a warm region over the southeastern Indian Ocean persisted throughout the 

winter and then spread to make one half of the hemisphere almost 15OK 

warmer than the other. However, no details of the warming were given. 

Phillpot (1964) discussed the 1963 final warming in the Antarctic region 

using radiosonde data. Teweles (1966) compared the TIROS 15-micron temper- 

atures with the radiosonde temperatures at two stations and indicated that 

there existed two stratospheric warmings. Briggs (1965) using rocketsonde 

data found the final warming in the spring but failed to detect the mid- 

winter warmings. Quiroz (1966) reanalyzed Briggls data and demonstrated 

They found that 
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that a major warming occurred i n  Zuly-August, and conciuded that the same 

warming was delayed until September at lower levels. 

The problem of evaluating the southern hemisphere warmings can be im- 

proved by using more detailed satellite radiometric measurements from the 

15-micron carbon dioxide emission band. The sensor characteristics and 

theoretical evaluation of the 15-micron temperatures' have been described 

by Nordberg, et a1 (1965) and Bandeen, et a1 (1965). These temperatures 

are vertically weighted mean temperatures; 65 per cent of the radiative 

energy in the band centered at 15-microns originates from15 to 35 km. The 

maximum emission at low nadir angles is at 23-25 km. In a companion paper 

in this report, it is shown that the 15-micron temperatures can be inter- 

preted a s  equivalent to the 20- or 30-mb temperatures. The near global 

coverage from 60N to 60S, of these stratospheric temperatures makes them 

an important source for studying southern hemispheric and oceanic events. 

The purpose of this paper is to investigate the features of the sudden 

warnings in the southern hemisphere winter and spring of 1963 revealed by 

the TIROS VI1 15-micron temperatures. 

'In this report the temperatures derived from the 15-micron channel radiative 
intensities will be referred to a s  15-micron temperatures. 
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11. Data 

Three d i f f e r e n t  sets of 15-micron t empera tu re  maps were used. One set  

was t h e  10-day mean maps compiled by Kennedy (1966) which were s p a t i a l l y  

f i l t e r e d  and had i so the rms  drawn by a computer. Two s p a t i a l  f i l t e r s  were 

used  t o  r e t a i n  t h e  l o n g e s t  waves unchanged i n  amplitude and phase,  bu t  t o  

e l i m i n a t e  s h o r t  waves. The f i l t e r s  e f f e c t i v e l y  e l i m i n a t e d  waves s h o r t e r  

t h a n  about  20° i n  t h e  zonal  d i r e c t i o n ,  and from 20' t o  l o o  i n  t h e  mer id iona l  

d i r e c t i o n  from 0 t o  60° l a t i t u d e .  The advantage of ave rag ing  over  time and 

space  was t o  smooth t h e  random noise  of t h e  r a d i a t i o n  s i g n a l  and t o  e x t r a -  

p o l a t e  over gaps  between o r b i t a l  paths and r e g i o n s  n o t  covered by the  

s a t e l l i t e .  A l l  o b s e r v a t i o n s  t h a t  a r e  l o c a t e d  i n  a r e c t a n g u l a r  a r e a  a r e  

averaged  and t h e  average  v a l u e  app l i ed  t o  t h e  c e n t e r  of t h e  area. For t h e  

1 :40  m i l l i o n  Mercator map used f o r  t h i s  set of maps, t h e  l e n g t h  of t h e  

r e c t a n g l e  i s  c o n s t a n t  a t  5' of long i tude ,  bu t  t h e  width v a r i e s  from about 

5 O  of l a t i t u d e  a t  t h e  equa to r  t o  2.5' of l a t i t u d e  a t  60 degrees .  A 10-day 

p e r i o d  c o n s o l i d a t e s  20 t o  70 o r b i t s  and, as a r e s u l t ,  each  g r i d - p o i n t  average  

g e n e r a l l y  c o n t a i n s  s e v e r a l  hundred o b s e r v a t i o n s .  I f  t h e  g r i d - p o i n t  average 

c o n t a i n e d  l e s s  t h a n  40 obse rva t ions  i t  was d i sca rded  from t h e  automated 

i so the rm a n a l y s i s .  A disadvantage  of t h e  10-day maps i s ,  of cour se ,  t h a t  

t empera tu re  v a r i a t i o n s  w i t h  pe r iods  less t h a n  10 days are  averaged out .  

To r ecove r  some of t h e  l o s t  in format ion  from t h e  10-day maps, s ing le-day  

maps  were examined. 

The second set  was a group of 50 u s a b l e  i n d i v i d u a l  day maps over a 127  

day p e r i o d  from 15 J u l y  t o  19 November. The maps were t h e  normal Mercator 
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g r i d - p r i n t  maps of 1 t o  40 m i l l i o n  s c a i e  d e s c r i b e d  by S t a f f  Members ( i 9 6 2 )  

and t h e  same a s  used  i n  t h e  f i r s t  s e t  of maps above. On t h e s e  maps, i so the rms  

were drawn by hand, t o  t h e  g r id -po in t  average  i f  i t  con ta ined  10 o r  more ob- 

s e r v a t i o n s .  The d a t a  f o r  t h e s e  maps  were n o t  f i l t e r e d .  

The t h i r d  se t  c o n s i s t e d  of 7 s ing le-day  maps s e l e c t e d  from t h e  127 day 

p e r i o d  of se t  two, t o  show t h e  temperature  minima and maxima b e f o r e  and 

du r ing  t h e  t h r e e  warmings, and they a r e  reproduced i n  t h i s  paper .  These 

maps were p l o t t e d  and ana lyzed  using t h e  same computer program t h a t  pro-  

duced t h e  10-day mean maps wi th  t w o  excep t ions :  g r i d - p o i n t  ave rages  from 10 

o r  more o b s e r v a t i o n s  were r e t a i n e d ,  and t h e  i so therms were i n  increments  of 

5C i n s t e a d  of 2C. 

A l l  of t h e  t empera tu res  were c o r r e c t e d  f o r  i n s t r u m e n t a l  deg rada t ion  by 

methods g iven  by S t a f f  Members (1965). Although each map ex tends  from 

approximate ly  60N t o  60s t h e r e  are c e r t a i n  s i l e n t  a r e a s  and d a t a  coverage 

depended upon t h e  number and loca t ion  of  o r b i t s  which were a v a i l a b l e  f o r  

s i n g l e  days.  The number of o r b i t s  p e r  day v a r i e d  from 4 t o  8. For  t h e  

remainder  of t h i s  r e p o r t ,  "15-micron temperatures11 w i l l  be  unders tood  t o  

be from t h e  10-day mean maps un le s s  i n d i v i d u a l  day maps a r e  s p e c i f i c a l l y  

r e f e r r e d  t o .  
\ 

Radiosonde d a t a ,  which covered t h e  A u s t r a l i a n  s e c t o r  p l u s  fou r  Antarc-  

t i c  s t a t i o n s ,  were ob ta ined  from t h e  Environmental  Sc ience  Services Admin- 

i s t r a t i o n .  Only a few of t h e  soundings extended beyond 70 mb and t h u s  

a n a l y s i s  of t h e s e  tempera tures  was r e s t r i c t e d  t o  70 mb. A d d i t i o n a l  d a t a  

were e x t r a c t e d  from publ i shed  r e p o r t s  by P h i l l p o t  (1964) ,  Briggs (1965) and 

Teweles ( 1966). 
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IIX. SGuthern hemisphere warnings 

The 15-micron temperatures at 60S, 170E, taken from the 10-day mean 

maps were plotted as a function of time as shown in Fig. 1. The plotted 

point applies to the mid-day of the 10-day period. Since the data were 

smoothed by averaging and filtering they do not show the short quasi- 

periodic oscillations demonstrated by Teweles (1966). 

longer period waves. Fig. 1 also contains a time plot of 15-micron 

temperatures for the same geographic point taken from the single-day maps, 

as well as for 50S, 170E for every other day from 15 July to 12 November 

except for a period from 30 July to 15 August when complete data were not 

available. Both of these curves show short-period oscillations that are 

not found in the 10-day mean time plot. The 30-mb radiosonde temperatures 

for Campbell Island (53S, 169E) taken from Fig. 1 of Teweles (1966) paper 

are included to verify that the short-period temperature waves found in 

the single day maps are real and not a result of the random noise of the 

radiation signal. These single-day 15-micron values thus permit a more 

accurate determination of the warming period than the 10-day means. 

They retain only 

Fig. 1 shows three major temperature waves from July to November 1963. 

The approximate dates of the warnings at 60S, 170E are: 

First warming 

Second warming 

Third warming 

20 July - 13 August 
26 August - 16 September 
16 October - 10 November 
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F i r s t  (mid-winter)  warming 

A s  t h e  sou the rn  hemisphere win ter  progressed ,  t h e  s t r a t o s p h e r i c  temper- 

a t u r e s  decreased ,  e s p e c i a l l y  i n  the A n t a r c t i c  r e g i o n ,  due t o  t h e  seasona l  

r e d u c t i o n  of s o l a r  hea t ing .  A very s t r o n g  c y c l o n i c  v o r t e x  developed nea r  

t h e  South Pole .  

From t h e  middle  of June t o  e a r l y  August t h e  10-day mean maps show t h a t  

t h e  i so therms sou th  of 40s were p r a c t i c a l l y  p a r a l l e l  t o  l a t i t u d e  c i r c l e s  

w i th  t h e  c o l d e s t  t empera tures  a t  high l a t i t u d e s .  S l i g h t  d e v i a t i o n s  from a 

z o n a l  p a t t e r n  occur  i n  t h e  isotherms i n  the  e a s t e r n  South P a c i f i c  and south  

I n d i a n  Oceans. These a r e a s  a r e  somewhat c o o l e r  than  ad jacen t  a r e a s .  The 

P a c i f i c  co ld  t rough i s  much more p e r s i s t e n t  than  t h e  one i n  t h e  I n d i a n  Ocean. 

It w i l l  be seen  l a t e r  t h a t  t h e  western s i d e  of t h e  P a c i f i c  co ld  t rough i s  

t h e  s i t e  f o r  t h e  s t r a t o s p h e r i c  warmings i n  t h i s  year .  F ig .  2 shows t h e  

t y p i c a l  s t r a t o s p h e r i c  thermal  p a t t e r n  f o r  t h e  sou the rn  hemisphere w i n t e r  on 

15 J u l y .  By e a r l y  August,  it appears  t h a t  a warm a i r  pocket had developed 

and by 12-13 August a d e f i n i t e  warm a r e a  was loca ted  over t h e  Australia-New 

Zealand s e c t o r  a s  shown i n  F ig .  3 .  

During t h i s  mid-winter warming of e a r l y  August,  t h e  warm a i r  r e g i o n  ex-  

panded eas tward  and appa ren t ly  southward. It  was cen te red  a t  40S, 170E on 

t h e  10-day mean i so therm map of 9-18 August. Meanwhile, t h e  southern  v o r t e x  

s h i f t e d  t o  t h e  Weddel Sea and t h e  warm pocket i n t e n s i f i e d  r each ing  i t s  peak 

v a l u e s .  Af te rwards ,  t h e  sou the rn  v o r t e x  r e t r o g r e s s e d  t o  t h e  South P a c i f i c  

and t h e  warm c e n t e r  weakened. This warming reached i t s  f i n a l  s t a g e  by t h e  

18-27 August map per iod .  
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The 15-n?icror! t e rnpe ra twe  chmge determined from t h e  10-day mean maps 

du r ing  a n  18 day pe r iod  from 26 Ju ly  t o  13 August,  i s  s u m a r i z e d  i n  F ig .  4. 

The 15-micron tempera ture  inc reased  1OC nea r  t h e  c e n t e r  l oca t ed  n e a r  45S, 

170W. The warming i s  predominantly zona l  a long  45s.  

warming ex tended  a s  f a r  e a s t  a s  Argent ina,  and west t o  Marion I s l a n d .  On 

t h e  o t h e r  hand, no s i g n i f i c a n t  temperature  i n c r e a s e  i s  seen equatorward of 

30s.  

The p e r i p h e r y  of t h e  

Although t h i s  f i r s t  warming was n o t  a s  remarkable  as  t h e  more i n t e n s e  

warming observed w i t h  t h e  15-micron d a t a  i n  t h e  n o r t h e r n  hemisphere i n  

January  1964 (Nordberg,  1965),  t h e  r a t e  of warming, n e v e r t h e l e s s ,  w a s  appre-  

c i a b l e .  The 10-day mean 15-micron t empera tu res  a t  60S, 170E reached  a mini -  

mum -64C on 26 J u l y  as shown i n  Fig. 1. The t empera tu res  inc reased  t o  -55C 

on 9 August,  a mean warming of 9C. By 27 August t h e y  had r e t u r n e d  t o  t h e  

o r i g i n a l  level of  -64C, sygges t ing  t h a t  t h e  warming was dynamic i n  n a t u r e ,  

a s s o c i a t e d  wi th  wave p e r t u r b a t i o n .  

The s ing le -day  tempera ture  curve i n  F ig .  1 shows a n  i n c r e a s e  of 16C from 

20 J u l y  t o  13 August a t  t h e  same l o c a t i o n  and a subsequent  c o o l i n g  of  20C 

by 26 August. 

168E), t empera ture  d a t a  i n d i c a t e s  t h a t  t h e  warming was g r e a t e s t  a t  30 km, 

perhaps  40C from mid-July t o  mid-August acco rd ing  t o  Quiroz (1966) .  T h i s  

mid-winter  warming was a l s o  observed by rad iosonde  a t  Macquarie (55S, 159E) 

and Wilkes  (66S, 111E) i l l u s t r a t e d  i n  F ig .  5.  The 70 mb tempera tures  a t  

Macquarie show t h e  warming occurr ing  i n  two waves w i t h  an  i n c r e a s e  of 6C 

from 21 J u l y  t o  4 August and a subsequent decrease  of 9C i n  t h e  nex t  n i n e  

According t o  Rocketsonde measurements a t  McMurdo Sound ( 7 8 S ,  
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days w i t h  ano the r  surge  of warm a i r  t h a t  i n c r e a s e d  t h e  tempera ture  8 C  from 

13 August t o  18 August. The s ingle-day  15-micron t empera tu res  a t  50S, 170E 

a l s o  show t h i s  warming t o  occur  i n  two waves a s  t h e  tempera ture  i n c r e a s e d  by 

12C from 28 J u l y  t o  13 August;  decreased by 6C t o  17 August,  t h e n  i n c r e a s e d  

a g a i n  by 5C t o  22 August. There were no d a t a  a v a i l a b l e  a t  Wilkes  between 18 

J u l y  and 2 August,  bu t  a f t e r  t h i s  t i m e ,  t h e  tempera ture  a t  70 mb dec reased  

by 9C t o  8 August,  a f t e r w a r d s  a n  inc rease  of 12C occur red  by 2 3  August.  A t  

50 mb ( n o t  shown) t h e  tempera ture  inc reased  by 14C from 8-23 August.  A l -  

though t h e  10-day mean 15-micron tempera tures  i n d i c a t e  t h a t  some i n c r e a s e  

of t empera tu res  should have occurred a t  Hobart (43S, 147E), t h e  rad iosonde  

d a t a  does n o t  show a n  i n c r e a s e  during l a t e  J u l y  and e a r l y  August. Unfor- 

t u n a t e l y ,  t h e r e  w e r e  i n s u f f i c i e n t  s i n g l e  day 15-micron d a t a  a t  t h i s  t i m e  and 

p l a c e  t o  h e l p  c l a r i f y  t h e  s i t u a t i o n .  A s i g n i f i c a n t  warming of 14C, however, 

occu r red  e a r l i e r ,  between 16-22 Ju ly ,  and may be t h e  same one which appeared 

abou t  10 days l a t e r ,  some 20° eastward and downstream of Hobart .  The on ly  

d a t a  i n  t h e  i n t e r i o r  of t h e  A n t a r c t i c  c o n t i n e n t  i s  f o r  70 mb a t  Amundsen- 

S c o t t  ( F i g .  5 )  which shows no warming. 

F i g .  6 shows t h e  t r a j e c t o r y  of t h e  warm a i r  pockets  f o r  a l l  t h r e e  warm- 

i n g s  of 10-day mean pe r iods .  The s o l i d  cu rve  shows a r easonab ly  r e l i a b l e  

t r a j e c t o r y  and t h e  dashed curve  an  e x t r a p o l a t e d  t r a j e c t o r y .  The f i r s t  warm- 

i n g  o r i g i n a t e d  i n  t h e  A u s t r a l i a n  r eg ion ,  and moved eas tward  from t h e  end of  

J u l y  t o  mid-August. It disappeared by 18 August. By 9 August a n o t h e r  warm 

pocket  had formed a lmost  h a l f  way around t h e  g lobe  nea r  t h e  sou the rn  I n d i a n  

Ocean. Th i s  b i p o l a r  tempera ture  wave a f f i r m s  Godsonls (1963) c l imato logy  

t h a t  b i p o l a r i t y  over  t h e  sou the rn  oceans,  b u t  n o t  over  t h e  A n t a r c t i c ,  may 
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accompany t h e  f i n a l  warming. This  d u a l  warm s t r a t o s p h e r i c  wave was e v i d e n t  

i n  t h e  10-day maps from t h i s  t i m e  t o  t h e  end of t h e  f i n a l  warming a t  mid- 

l a t i t u d e s .  Only a s i n g l e  wave w a s  e v i d e n t ,  however, around t h e  60s l a t i -  

tude  c i rc le .  

Second warming 

The 15-micron tempera tures  a t  60S, 170 E reached  a minimum of  -64C as 

shown by t h e  10-day mean map cen te red  a t  28 August.  The middle  s t r a t o s p h e r e  

had warmed t o  -4OC a t  t h i s  l o c a t i o n  by t h e  map t i m e  cen te red  a t  16 Septem- 

b e r ,  a warming of 24C. The same maps show a warming of 15C and 9C a t  50S, 

170E and 40S, 170E, r e s p e c t i v e l y .  The s i n g l e  day map of 26 August shown i n  

Fig.  7 i n d i c a t e s  t h a t  t h e  15-micron t empera tu res  a t  60S, 170E had exper ienced  

a c o n s i d e r a b l e  decrease  from 12-13 August r each ing  v a l u e s  less  t h a n  -73C, 

much below what they  were b e f o r e  t h e  warming i n  J u l y .  This  c o o l i n g  i s  ver i -  

f i e d  by t h e  30-mb tempera tures  a t  Campbell I s l a n d  i n  F ig .  1. F ig .  8 shows 

t h a t  t h e  middle  s t r a t o s p h e r e  a t  t h i s  same l o c a t i o n  had warmed to about  -38C 

by 15 September,  a warming of 35C. 

The 10-day mean maps r e v e a l  t h a t  a d e f i n i t e  warm c e n t e r  had developed 

nea r  40S, 75E by 18 August. It moved s o u t h e a s t  u n t i l  16 September when i t  

was l o c a t e d  n e a r  52S, 150E; t h e n  i t  vee red  t o  t h e  n o r t h e a s t  and by 20 Sep- 

tember t h e  w a r m  c e n t e r  was l o c a t e d  n e a r  35S, 165E; i t  then  d isappeared .  

F ig .  9 shows t h a t  t h e  maximum 15-micron tempera ture  change from t h e  10-day 

maps from 28 August t o  20 September w a s  +24C a t  60S, 170E. I n c r e a s e s  of 8 C  

o r  more occur red  a s  f a r  n o r t h  a s  35s i n  t h e  New Zealand a r e a .  S i g n i f i c a n t  

warmings, however, occur red  almost  e n t i r e l y  around t h e  globe a t  60s.  It  
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s h o ~ l d  be made clear that this is not the final warzing when the strato- 

spheric circulation pattern changes to a summer pattern. The 15-micron 

temperature maps demonstrate that substantial cooling occurred over most 

of the southern hemisphere before the final warming reached a climax in mid- 

November. However, this second warming may be considered a preliminary 

surge of the final warming because its final temperature was warmer than 

its initial value. 

From the limited number of radiosonde stations available, the 70 mb 

temperature change chart (Fig. 10) places the center of maximum warming, 

26C, toward Macquarie Island (55S, 159E). 

southwest of the center indicated by the 15-micron temperatures. One would 

have expected Campbell Island (53S, 169E) to show the maximum warming to be 

consistent with the locations of the 15-micron temperature changes. This 

small inconsistency may be due to the different levels in the atmosphere 

represented by the two temperatures. It is possible that the maximum 

warming occurred further to the southeast at levels above 70 mb which would 

be represented better by the 15-micron temperatures. It may be too that 

the maximum warming of the 10-day average 15-micron temperatures would 

shift the center slightly from the single day observation at 70 mb. Con- 

sidering these reasons, and in view of the radiosonde confirmation, the 15- 

micron mean temperatures still established the location of the maximum warm- 

ing with excellent accuracy. 

This center is slightly to the 

The 24C warming of the 15-micron temperatures and the 26C warming at 

70 mb for Macquarie Island indicate that a much larger warming may have 
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occurred at higher levels. The change of t13C in the 70 mb temperature at 

Campbell Island is exceeded only slightly at the 15 mb level (Fig. 5), in- 

dicating that almost equal warming occurred through a deep layer to low 

levels. On the other hand, Wilkes, which is much farther from the indicated 

maximum warming center than Campbell Island and beyond the 15-micron temper- 

ature coverage, had a warming of 56C at 10 mb compared to only 5C at 70 mb. 

Wilkes and Campbell Island were the only two stations available that had 

enough data above 70 mb to permit discussion of the vertical structure of 

the warming. From this limited data, one might conjecture that the warming 

reached considerably lower altitudes at its northernmost excursion, but 

was confined to much higher altitudes at its southern extreme. 

It,is interesting to note that Quiroz, 1966, interpreted the McMurdo 

rocket data as showing a high-level warming from mid-July to mid-August, 

and a delay of this same warming until September at 20 km. He also says 

"It is interesting to conjecture that if the warming at 20 km were examined 

without benefit of the higher-altitude rocket data, it could easily be con- 

strued as the beginning of the final' (springtime) warming". 

tion that is made here of the 15-micron temperatures which depict the thermal 

events very near 25 km, is that the July-August (first) warming took place 

at lower latitudes than McMurdo, and that the mid-September (second) warm- 

ing was in fact the beginning surge of the springtime warming. 

The interpreta- 

Third warming 

The third warming may be considered as the last phase of the final warm- 

ing of the 1963 southern hemisphere winter. The second and third warmings 
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r e p o r t e d  h e r e  a r e  cons ide red  t o g e t h e r  a s  t h e  f i n a i  warming fo i iowing  t h e  

d e s c r i p t i o n  of t h e  s p r i n g  warmings by Godson (1963).  

Mieghem (1964) ,  on t h e  o t h e r  hand, s t a t e  t h a t  t h e  A n t a r c t i c  f i n a l  warmings 

s t a r t  a f t e r  t h e  s p r i n g  equinox; by t h e i r  c r i t e r i o n ,  t h e  t h i r d  warming d i s -  

cussed  h e r e  would be t h e  f i n a l  warming and t h e  second would no t  be a p a r t  

of i t  but  a mid-winter warming. I n  t h e  opin ion  of t h e  a u t h o r s ,  t h e  second 

warming i s  one surge of two t h a t  c o n s t i t u t e s  t h e  f i n a l  warming because t h e  

c o o l i n g  t h a t  occu r red  a f t e r  t h e  peak of t h e  second warming d i d  no t  produce 

t empera tu res  as  low as  they were before  t h e  o n s e t  of t h e  second warming. A t  

60S, 170E, t h e  15-micron tempera tures  from t h e  10-day map decreased  from 

-4OC t o  -5OC from 16 September t o  14 October b e f o r e  t h e  o n s e t  of t h e  t h i r d  

warming. A f t e r  14 October t h e s e  tempera tures  i n c r e a s e d  by 19C r e a c h i n g  a 

maximum of - 3 1 C  on 15 November. 

Maenhout and Van 

The s ing le -day  15-micron temperature map f o r  1 October i s  p r e s e n t e d  i n  

F ig .  11. The thermal  p a t t e r n  shows t h a t  warm a i r  had spread  i n t o  t h e  South 

A t l a n t i c  and wes te rn  I n d i a n  Oceans by 1 October,  and t h e  warm a i r  over t h e  

wes te rn  South P a c i f i c  had been r ep laced  wi th  r e l a t i v e l y  c o o l  a i r .  

no zona l  symmetry i n  t h e  i so the rms  now and l i t t l e  sou th - to -nor th  t e m p e r a t u r e  

g r a d i e n t .  Neve r the l e s s ,  it appears  t h a t  t h e  s p r i n g  r e v e r s a l  has  n o t  occur red  

a s  t h e r e  i s  some g e n e r a l  c o o l i n g  around t h e  g lobe  a t  t h e  h ighe r  sou the rn  

l a t i t u d e s  u n t i l  14-15 October ( F i g .  12). A t  60S, 170E and 50S, 170E t h e  

t empera tu res  dec reased  by 16C and 15C, r e s p e c t i v e l y ,  from t h e  1 October 

s i n g l e  day map. The map f o r  19 November i s  g iven  i n  F i g .  13,  which shows 

t h a t  t h e  s p r i n g  r e v e r s a l  i s  complete and t h e  i so the rms  have become organized  

There i s  
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i n  a symmetrical  p a t t e r n  a long  l a t i t u d e  c i rc les  except  over  t h e  a r e a  west 

of t h e  A l e u t i a n  c h a i n  which, a s  u sua l ,  remains warmer than  e l sewhere  a t  i t s  

l a t i t u d e .  The tempera ture  a t  h igh  s o u t h e r n  l a t i t u d e s  i n c r e a s e d  t o  v a l u e s  of 

-23C t o  -33C. The s t r a t o s p h e r e  cooled by about  5C a f t e r  t h i s  t i m e ,  and then  

ma in ta ined  i t s  normal summer p a t t e r n  i n d i c a t i n g  t h a t  t h e  f i n a l  warming of 

t h e  w i n t e r  had occurred.  

The t h i r d  warming fo l lowed t h e  p a t h  shown i n  F ig .  6. Again,  t h e  s o l i d  

cu rve  i n d i c a t e s  t h e  t r a c k  e s t a b l i s h e d  by t h e  15-micron t empera tu res ,  and t h e  

dashed curve  i s  i t s  e s t i m a t e d  c o n t i n u a t i o n  determined by e x t r a p o l a t i n g  t h e  

15-micron tempera ture  p a t t e r n  southward of i t s  f i e l d  of view, and supple-  

mented t h e  a v a i l a b l e  rad iosonde  s t a t i o n s  on t h e  A n t a r c t i c  c o n t i n e n t .  A 

warm c e n t e r  appears  t o  have developed nea r  55S, 70E by 25 September. It 

moved eas tward ,  t hen  no r theas tward ,  u n t i l  by 28  October it was l o c a t e d  60S, 

100E, t h e  sou the rn  l i m i t  of s a t e l l i t e  coverage. I n d i c a t i o n s  a r e  t h a t  t h e  

c e n t e r  cont inued  t o  move t o  t h e  sou theas t  a s  it was near  75S, 130W on 30 

November, t h e  l a t e s t  d a t e  t h a t  t h e  w a r m  c e n t e r  could  be l o c a t e d  from a v a i l a -  

b l e  d a t a .  

F i g .  14 g i v e s  t h e  15-micron temperature change from t h e  10-day mean map 

c e n t e r e d  a t  14 October t o  t h e  one cen te red  a t  2 1  November. Between t h e s e  

d a t e s ,  a maximum warming of 21C occurred a t  60S, 170W. S u b s t a n t i a l  w a r m -  

i n g  had t aken  p l a c e  almost around the sou the rn  hemisphere by t h i s  t ime, 

e x c e p t  i n  t h e  e a s t e r n  South A t l a n t i c  and s o u t h e a s t e r n  I n d i a n  Oceans. The 

10-day mean maps show t h a t  t h e  l a t t e r  a r e a ,  which was w a r m e r  i n i t i a l l y  than  
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the AGstraIian sector, did not reach its maximum temperature until the map 

centered at 5 December when a -27C isotherm ran along the 605 latitude circle 

between about 30E and 60W. 

The 70 mb temperature change chart between 15 October and 20 November 

(Fig. 15) is strikingly similar to the 15-micron temperature change chart. 

At 70 mb the maximum warming extended along the 180th meridian from the pole 

to 65 or 70s. The location of the warming north of 60s is in good agreement 

with the location established by the 15-micron temperatures. From the sta- 

tions along the Antarctic coast, it is quite obvious that the eastern South 

Atlantic and southwestern Indian Oceans had not obtained their maximum 

temperature by this time and subsequent warming occurred which is in agree- 

ment with the 15-micron temperatures. In a review of Antarctic final warm- 

ings, Godson (1963) states !'it is general observation that temperatures tend 

to be warmer and final warmings to be earlier in the Australian sector than 

in South Atlantic sector!'. 

that Antarctic stratospheric final warmings propagate across the South Pole 

from the Antarctic coast opposite Australia up to the Antarctic coast 

opposite South America. The year 1963 appears to be no exception. 

Maenhout and Van Mieghem (1964) also conclude 
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IV. Comparison of t h e  two hemispheric v o r t i c e s  

During t h e  w i n t e r  months, t h e  s t r a t o s p h e r i c  p o l a r  c i r c u l a t i o n  i s  domi- 

n a t e d  by an i n t e n s e  c y c l o n i c  vo r t ex  c e n t e r e d  c l o s e  t o  t h e  pole .  The forma- 

t i o n  of t h e  c o l d  c y c l o n i c  v o r t e x  i s  t h e  d i r e c t  r e s u l t  of r e d u c t i o n  and 

wi thdrawal  of s o l a r  r a d i a t i o n .  The c i r c u l a t i o n  i s  predominately w e s t e r l y .  

The a n t a r c t i c  and a rc t i c  v o r t i c e s  a r e  s i m i l a r  i n  n a t u r e  bu t  n o t  i n  d e t a i l .  

S a t e l l i t e  15-micron. tempera ture  measurements make it p o s s i b l e  t o  fo l low t h e  

v a r i a t i o n  of mean t empera tu res  i n  t h e  mid- and lower s t r a t o s p h e r e  from w i n t e r  

t o  summer a t  h igh  l a t i t u d e s  (60O) from which i n f e r e n c e s  can be made about 

t h e  p o l a r  c i r c u l a t i o n .  

The d i s t r i b u t i o n  of t h e  s a t e l l i t e  t empera tu res  i n  an a n t a r c t i c  v o r t e x  

i s  shown i n  Fig.  16,  which w a s  der ived  from t h e  10-day mean tempera tures  

e s t a b l i s h e d  by Kennedy (1966).  

45s southward toward t h e  po le .  The t r u e  p o l a r - n i g h t  c i r c u l a t i o n  t a k e s  p l a c e  

sou th  of 45s. Another f e a t u r e  of i n t e r e s t  i s  a w a r m  b e l t  between 15-458. 

A l a rge  tempera ture  g r a d i e n t  i s  seen from 

Two w a r m  c e n t e r s  a r e  p r e s e n t  i n  t h i s  w a r m  b e l t  du r ing  August 9-18, 1963, 

one n e a r  New Zealand and ano the r  i n  t h e  sou th  A t l a n t i c  and I n d i a n  Oceans. 

The warm b e l t  s h i f t s  w i t h  season  and t h e  warm a i r  pockets move predominately 

t o  t h e  e a s t .  

To compare t h e  s t r a t o s p h e r i c  po la r  v o r t i c e s  i n  t h e  n o r t h e r n  and southern  

hemispheres,  two p e r i o d s ,  January-June 1964 and July-December 1963, were 

examined. The 10-day mean s a t e l l i t e  t empera tu res  a long  60N and 60s from 

w i n t e r  t o  summer were p l o t t e d  r e s p e c t i v e l y  i n  F i g s .  17 and 18. 

s e v e r a l  i n t e r e s t i n g  d i f f e r e n c e s  between a n t a r c t i c  and a r c t i c  w i n t e r  c i r c u l a t i o n s :  

There were 
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(I) In early winter the antarctic vortex is symmetrical while the 

arctic vortex is predominately asyrranetrical to the pole. 

temperature along a latitude is insignificantly small in the southern hemi- 

sphere and large in the northern hemisphere along 60 degrees. The latter is 

as large as the temperature difference between summer and winter at 60N, 180° 

The variation of 

longitude. 

( 2 )  In mid- and late winter, warm centers occur near New Zealand and 

in the southern Indian Ocean. The southern polar vortex shifts toward the 

Weddel Sea. The asymmetry of the southern polar vortex is evident from in- 

creasing longitudinal temperature difference (10-12C at 60s). However, the 

degree of asymmetry of the antarctic vortex is always weaker than that of 

the arctic vortex. The asymmetry of the antarctic vortex of 1966 was also 

observed by the Nimbus I1 satellite (Nordberg et al, 1966). Furthermore, 

no bipolar pattern of the antarctic vortex was observed along 60s during 

the whole period. 

(3) The antarctic vortex was more persistent throughout the winter than 

the arctic one. In 1963, the breakdown of the southern vortex took place 

9 weeks after the spring equinox (i.e. the end of November). 

hand, the breakdown of the arctic vortex occurred only one week after the 

spring equinox. The difference in timing may be due to stronger baro- 

clinicity of the arctic vortex and the greater annual variability of final 

warmings in the northern hemisphere. 

On the other 

( 4 )  The distribution of the summer stratospheric temperatures along 60s 

is uniform. This pattern is similar to the temperature pattern along 60N 
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l a t i t u d e .  However, i n  t h e  southern  summer, coo l ing  of about  8C occurred  

a f t e r  t h e  peak of t h e  f i n a l  warming i n  l a t e  November, whereas i n  t h e  

n o r t h e r n  summer no coo l ing  i s  observed a f t e r  t h e  s p r i n g  warming i n  t h i s  

yea r  and t h e  h igh  tempera tures  p e r s i s t e d  through June. Data from Engberg 

and Belmont (1964) demonstrate  t h a t  i n  some y e a r s  such tempera ture  drops  

a r e  observed t h e r e  a l s o .  
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V. Conclusions and recommendations 

Rocketsonde, radiosonde and 15-micron temperature data show that during 

the 1963 winter the antarctic area experienced two mid-winter warmings in 

addition to the final one. Although the preliminary satellite values in 

uncorrected form have already been used to show one apparent warming in the 

antarctic, this is the first application of the corrected TIROS VI1 15-micron 

data to investigate the nature of the three warmings in some detail. This 

study also demonstrates the validity and usefulness of single-day satellite 

data. It is strongly suggested that future observations of the same, narrow 

carbon dioxide band be carefully processed to filter out only the random 

time fluctuations with frequencies less than a few seconds and not to filter 

data spatially, in order that this system's potentially high resolution in 

time and space can be realized. This waveband can indeed provide mid- 

stratospheric temperature data over the major portion of the globe which 

now has no upper-air observational network at all. Only a truly polar orbit 

would further provide such data over the central polar regions where this 

atmospheric layer experiences dramatic changes and is of most interest. 
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stations and pressure  levels. 
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