
- .- 

GPO PRICE 

X-644-67-595 
PREPRl NT 

sw TY 143/0J' 

GEOCHEMISTRY OF LANTHANIDES 
IN BASALTS OF CENTRAL JAPAN 

A K I M A S A  MASUDA 

$ 
.-,----y 

f ,  * CFSTl PRICE(S) $ 
~ '\, , _. 

DECEMBER 1967 
Hard copy (HC) c -  L 7 - Z  

Microfiche (MF) d 6 . l '  1 ,  

'! 
ff 653 July 65 ', 

\ 

GODDARD SPACE FLIGHT CENTER . . - _  
. 

GREENBELT, MARYLAND 
- 

(THRU) 
(ACCESSION NUMBER) 

PI 
8 I 

?Y 3 cw 

E 

/ 
0, (PAGES) 

= 2 OiTMX OR AD NUMBER) 
- 3/07 



X-644-6 7 -59 5 

GEOCHEMISTRY OF LAPU’TIIANIDES IN 

IIASALTS OF CENTRAL JAPAN 

Akiinasa Masuda 

December 1967 

GODDARD SPACE FLIGHT CENTER 
Greenbelt, Maryland 



GEOCI-IEMlSTIIY 0 1 4 '  LANTHANIDES IN 

13ASAL'L'S OF CENTRAL JAPAN 

Akimasa NIasuda 

A 1; S T R A C: T 

Lanthanides in six basal ts  f r o m  Central Japan have been de- 

tcwxinccl hy 3 s ln l ) le  isotopc dilution method. The chondritc- 

normalized lanthanide patterns are discussed in terms of partition 

coefficients estimated by NIasuda aiid NIatsui (1). An areal  rela- 

tionship was found in Xvhich the uniform enrichment factor ,  esti- 

inated from the ltuithanitle pattern, appears to decrease  from the 

Pacific O ( w m  side towards the Japan Sea side. Cerium in Japanese 

1):isnlts is c1q)leted somctinies I J ~  a factor of about lX;[ in relation 

to the sniootti cur\ (:s. '1'0 examine the heterogeiieity of lanthanide 

clistril)ution i n  rather sin:ilI samples,  two different portions of 

tlirw rock sixcimcns w r e  nnalysed. 
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INTRODUCTION 

The Japanese Islands a r e  part of the circum-Pacific orogenic zone; they 

are situated off the eastern margin of the Eurasian continent, and separate the 

Japan Sea from the Pacific Ocean. Japanese petrologists, including Tomita (2) ,  

Kuno ( 3 ,  4) and Sugimura (5) established that Japan and its surrounding area 

could be divided into two o r  three petrographic provinces. Roughly, the Japan 

Sea side of Japan belongs to an alkali rock province, whereas the Pacific Ocean 

side belongs to a tholeiitic province. Kuno (4) suggests that high-alumina basalts 

occur along the intermediate belt between these two provinces. 

The contours of earthquake depth ( 3 ,  5) gravity isostatic anomaly (6) and 

heat flow (7) appear to  run approximately parallel with the elongation of the 

island a r c  of Japan. Based on the parallelism between petrographic boundaries 

and contours of intermediate and deep seismic foci, Kuno (3) postulated that the 

depth of source of magmas below Japan increases  f rom the Pacific Ocean to the 

Japan Sea s ide,  namely, towards the continent. Taneda (8) Katsui (9) and Ishi- 

kawa and Katsui (10) have shown the tendency for  the Quarternary volcanic rocks 

in Japan to be more alkaline towards the continent. 

Recently, the prescnt author (1  1) investigated the lanthanide abundance in 

seven basalts f rom Japan, but not much attention was directed to the a rea l  fea- 

tures  of lanthanide geochemistry. One of the purposes of the prescnt work is 

to study possible areal  variations of lanthanide geochemistry, in addition to the 

interpretations of the lanth,anide patterns.  
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Six rocks were analysed in this study; three of them were analysed previously 

(11) with inferior precisions. The lanthanide determinations were carr ied out 

by a mass spectrometric isotope dilution method, with precisions of l e s s  than 

3r$, (probably 1% in most cases) .  The resul ts  of the analyses are summarized 

in Table 1; sample locations a r e  shown in Fig. 1. To examine the heterogeneity 

of lanthanide distribution in ra ther  small samples ,  two different portions of 

three rock specimens were analysed. 100 to 300 mg of rock I)owder were used 

per analysis. 

PAT 'I' li: R N  A NA L \'SI S 

The first procedure in performing a pattern analysis of lanthanides is to 

normalize their abundances against chondritic abundances (12 ,  13). For the 

purpose of normalizing the obscrved :il)Luidances in the Japanese hasalts, the 

abundances in the Modoc chondrite (analysed by the author) a r c  employed in 

order  to minimize the systematic errors for chondrite-normalized values. Thus, 

thc effect of the possible experimental e r r o r s  in the calibration of spike solutions 

can be completely eliminated from the chondrite-normalized values so long as 

the comparison is made between resul ts  obtained using the same spike solutions. 

'l'he tliffcrencc in absolute concentrations between the average chondritc ( I  8)  

and Modoc is less than 5%, on an average. A study on Norton County (unyublished) 

showed that the lanthanum abund'ance in Modoc 0.374 ppm is somewhat too high 

to give Norton County a very smooth chondrite-normalized pattern passing 
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through a point f o r  La; a lower "chondritic" abundance of 0.325 ppm gives a 

smoother pattern. The rat io  based 011 the latter value is represented by a 

triangle in the diagrams. 

In an attempt to analyse the chondrite-normalized lanthanide pattern, the 

partition coefficients for  fractional solidification play an important role .  Inas- 

much as all of the patterns considered below show no sharp inflections over the 

whole range of La through Lu, and appear to be smooth as a whole, excepting 

fine structure or minor deviations. they will be dealt with in light of the parti- 

tion coefficients for  non-inflectional lanthanide patterns (1) as presented in 

Table 2 .  

It would be bet ter  to note that the partition coefficients in Table 2 were 

estimated for a solidification process as a total effect, not for  particular niin- 

e r a l s .  It is a big problem how the partition coefficient. as  a total effect, is 

controlled in a solidification process.  It is possible that partition coefficients 

between some definite mineral species and the coexisting melt a r e  approximately 

constant, and that the partition coefficient for the total solid during solidification 

is given subsidiarily a s  a sum of the mutually independent fractional effects of 

constituent minerals.  I t  is also conceivable, however, that the partition coeffi- 

cient for a total solidification process under some conditions may be controlled 

primarily as a whole, so that the partition coefficients for constituent mineral 

species a r e  not always mutually independent. (These problems are thought to 

be related with the atomic-scale mechanism of solidification.) Above 211, in a 
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case  where the formation of an initial solid involves an intermediate amorphous 

or  low-crystallinity s ta te ,  and the ear ly  stage plays a decisive role  in fixation 

of minor elements f rom thc melt , the idea of strictly defined mineral would be 

restr ic ted in its applicability. No doubt the partition coefficient (19) as esti- 

mated from phenocrysts in a rock are extremely significant, and it is desirable 

that more  such information be obtained. On the other hand, however, seeing 

that there can be  problems , difficult to understand in t e rms  of present knowledge, 

the partition coefficients estimated by a phenomenological and mathematical, 

treatment of data on gross  rocks can have its own meri t ,  because they can rep- 

resent the averaged total effect involving some factors which may not he realized 

o r  understood at  the present t ime. Needless to say,  the method by NIasuda and 

NIatsui (1) belongs to this kind of approach. The author has no intention of main- 

taining that the partition coefficients in Table 2 are the only reliable se r i e s  of 

partition coefficients, but he thinks that they can be the most basic ones as an 

explnnation of chondrite-normalized lanthanide pattern with no inflection. 

A characterist ic of this series of partition coefficients is that they form an 

arithmetical progression from La through Lu. In cases where the differential 

fractionation of lanthanides takes place under the control of this series of par- 

tition coefficients, if  the abundances of lanthanides in ear th ' s  original oxide 

material  were similar to those in chondrites , then the chondrite-normalized 

patterns of remnant liquids at various stages should have a common feature Of 

being logarithmically l inear  in the type of diagram employed here .  A s  a matter  
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of course ,  the solid phase whicli w;is separated from these liquids under the 

influence of the same parti lion cocfiicic:rts should have different patterns than 

those in the liquids. Also, a pnrtial remelting of quenched liquid gives rise to 

another type of pattern. However, these modified patterns can also be discussed 

very often, although not always, in  connection with the logarithmic linearity and 

the partition coefficients underlying it.  

In this paper ,  the chondrite-normalized values are plotted against the equi- 

differential scale. According to the author 's  interpretation, this cqui-differential 

scale  should be understood, physically! as representing the reciprocal ionic 

radius.  An equi-tlifl'ereiitial sc>alc of reciprocal ionic radius proposed by Masuda 

(14) is shown in Fig. 8. Foi. practical use ,  however, an arbi t rary scale (Lm 

scale) is more convenjent. because it is affected neither by any corrective shift 

in  the absolute magnitude of ionic radius nor  by any modification in the inter- 

pretation of the function of the equi-differential scale ,  in the future. The Lm 

scale  at the top of abscissa.(cf. Fig. 8) is set in such a way that the position of 

lanthanum, which corresponds to reciprocal ionic radius = 0 .820k1 , is arbi- 

t rar i ly  taken as zero ,  and the unit quantity of this Lm scale could correspond to 

the difference in reciprocal ionic radius, of O.0171A 
- 1  

according to Masuda (14). 

The c1:issificatioii belo\i of rock types is 'after Kuno (4: private communication) , 

Alkali basalt .  Kiso district  

A s  seen in Fig. 2 ,  the pattern of this rock (open symlmls) is slightly concave 

up\vards, but the pattern (solid symholsj resil!tir,g from muiltiplication by the 
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partition coefficients is logarithmically l inear ,  This suggests that the alkali 

basal t ,  Kiso dis t r ic t ,  was produced by partial  melting of a quenched liquid as 

represented by solid symbols. 

High-alumina basalt ,  Mishima, a lava of Fuji Volcano ---_ 
This rock has a logarithmically linear pattern as seen in Fig. 3 .  

Tholeiitic Imsalt , Tanna Basin 

Jn contrast with the a1k:tli basalt ,  Kiso dis t r ic t ,  this tholcbiitic Iiasalt (o!)en 

symlx~ls  in Fig. 4) has a slightly convex upwards lanthanide pattern. Dividing 

the ol>scrvcd values by the partition coefficiciits , howevcr , produces a logarith- 

mically linear pattern (solid symbols in Fig. 4). This fact suggests that this 

rock could rcpresent a solid system separated from a liquid as represented by 

solid symbols in  Fig. 4. 

‘~holeiitic! I)as;il t ,  O-shini:i 
,. 

Of  ;L rock specimen nvai1;tble (8  I$) , outer portion a (4.7 g )  and inner portion 

I, (1.2 g)  were  amlysed. Except La, the lantlianitle abundaiccis arc substantially 

the s f m e  for both portions; Fig. 5 is drawri Imsed on portion a. The c1iar:icter- 

is t ic  of the 1:tnthanide pa 

basalt from Tnnnri T3asin 

I~ollowingl~y, this pattern 

tern in this rock is quite s imilar  to that i n  tholeiitic 

(cf. Fig. 4) , putting aside tlie absolute abundanccs. 

is not inconsistent wit11 the interpretation that this lava 

was producctl by body melting of solid phase system which was selmxted once 

from t tic. cyuilihi*ated liquid phuse. 



High-alumina b:isalt, Nii-jima 

Of a given rock spccirncii (8 .3g) ,  homogeneous-looking main portion a (6.7g) 

and somewhat heterogeneous-looking rini  portion (1.6 g) were analysed. A s  seen 

in  Table 1, there  a r c  small  differences between the two portions in lanthanide 

abundances, and the relative difference appears to become bigger for the heavier 

lanthanides; Fig. 6 is drawn based on the data on portion a. The wide deviation 

of lanthanum from the general smooth trend is apparent; a s imilar  deviation is 

seen for the tholeiitic hasalt from 6-shima. This deviation is not thought to be 

due to experimental e r r o r ,  because the redetermination of La for the same rock 

powder showed good agreement with the previous one. It is difficult to account 

for  this peculiarity in ternis  of partition coefficients in fractional solidification. 

Secondary local mobilization of lanthanum may be a cause of this peculiarity, and 

a relatively big difference in La  between portions a and b may endorse this 

speculation. In this connection, the especially high value of the solubility prod- 

uct of lanthanide hydroxide (15) may be worth pointing out. 

Tholeiitic basal t ,  Hachijo-jima 

Two portions of a specimen (10 g) of I-Iachij6-jinia tholeiite were analysed 

(a: 7g.  and b ?  1 g) . A s  seen i n  Fig. 7 ,  there  is a considerable difference between 

their  lanthanide concentrations. The curvature of the convex upwards l'anthanide 

pattern for portion a (represented by open symbols with vertical bars atop in  

Fig. 7) is s imilar  to those f o r  tholeiitic hasalts f rom Tanna Basin and 0-shima,  
4 

whereas the curvature for  poriim b ( represated by nper? symbols with vertical 
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h r s  bencath) is bigger thxn the others.  It appears that portion b happens to 

represent some peculiar phase or phase system. The lanthanide pattern for 

this portion can be interpreted in three ways as mentioned below. 

I A s  seen in Fig.  7 ,  division of the chondrite-normalized values for  portion 
I 

11 by squares  of the partition coefficients happens to produce a log:irithinically, 

I almost linear pattern (half-solid symbols in Fig. 7 ) .  Apparently, this result is 

not inconsistent with an interpretation that the genetic history of this portion 

involved two stages of separation as solid phase systems. If the co-existence 

of portions a and b is understood not to be a fortuitous one, however, the above 

i n t e q ~ r e t n t i ~ n  would be judged not to be vcry reasonable. 

A sccond interprc4atioii of portion h i s  that both of portions ;i and b were 

separated from the s a m c  liquid at a certain stage of development history,  and 

I that the portion 11 reflects variants of partition coefficients, whereas the portion 

a reflects "the commonest" lxwtition coefficients kp as presented in Table 2.  

If so ,  the varied partition c.oc~l ticients kb for portion b are estiiiiated to be k 

tiriics thc concbentration ratio of portion b to a. The resul t  of the calculation is 

shown in Fig. 8 .  (If this calc~ti1;rtion i s  significant, the l imit  s ize  (16) pertinent 

to  k '  i s  estimated to be Lm = -1.3, i .e. ,  reciprocal ionic radius = 0.798 

(=- 1/1.25) A - l  . Needless to say ,  the different l imit  size means the different 

curvature for chondrite-normalized lanthanide pattern for  solid phase system.) 

I 

P 

I 

P 

I A third intcrprctation i s  that tlic portion 11 under question happens to involve 

a sclcctive aggwgnte of crystals  formed in the lava. 
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AREA L F EAT Ll I3 E S 

A s  shown above, the lanthanide pattern var ies  f rom rock to rock,  reflecting 

different genetic settings or hisiory. Nevertheless, obvious character is t ics  per- 

taining to  locality are revealed by the basalts investigated, 

According to an extrapolation, the ser ies  of partition coefficients in Table 2 

reaches n value of 1 .OO on a Lm scale 24.5. This means that fractional solid- 

ification controlled by this series of partition coefficients does not cause either 

enrichment or  depletion for the  hjpothetical element corresponding to Lm = 24.5, 

In  other words,  if the lanthanide abundances in the initial liquid were s imilar  to 

those in chondrites and their differenti ation was developed under the control of 

the partition coefficients employed he re ,  then extrapolation of a logarithmically 

l inear  pattern. whether it is directly observed o r  indirectly estimated, should 

reach unity at Lni 24.5. However, the study hy Schmitt et a l .  (18) on calcium- 

ri<:h achondrites showed that t hew is ,an effect which gives rise to su1)stantially 

uniform enrichment of all the h t h a n i d e s .  This is interpreted as indicating that 

the piiltitiun coefficients f o r  1 anthanides are very small  under certain conditions 

of crystallirc,,ntion, I t  is r:onsicleretl likely that a similar  effect was operating in- 

side the ear th .  If‘ so, the ex1r:ipolation of a logarithmically l inear line does not 

pass unity near Lm - 24.5 .  Anyway it  would be interesting to see the chondrite- 

nor mal ized vmlue reached I)y an extrapolated, logarithmically l inear line at 

Lm = 24.3.  The value thus obtnincd will be called uniform enrichment factor. 

(This fwtoi- can also be calculated without extrapo1ation.j 



The resul ts  of such extrapolation, that is, the uniform enrichment factor is 

presented in Fig. 1 .  For rocks ,  two portions of which were cvlalysed, lhe esti- 

mation \+’as made basc~l on their 1)ortions a ,  bec:iuse these reprcscnt thr. tn:ijor 

portions of the samples studied. It i s  shown here that the unifortu enrichment 

fwtor i s  grea tc r  than unit)‘ for d l  thcl Iiasalts studied. Aside from the mecha- 

nism ~*cs l~~ns i l ) l c  lor uniforin Cwi’ichnwnt, we can realiw an intriguing fact that 

the unifornl c w i c h  nicnt lactors :ire' c . l o s c ~  10 each other lor  basalts ~ I ’ O I H  close> 

1oc:ili tics . i n  sl)ite of diflciwicc~s in typc of pattcl-n , ‘I’his fact iritliciates strongly 

t1i:tt the. proc*c:ss of  uni1‘ot.m r.ni.ichiiwnt prc?cc&xl tlw <liflc.rc.nti:itiott I ) I * ~ C V ~ S S  

wliic*h o c ~ . u ~ . r c t l  under t h o  control of thc partition cotlfficients 1wcsentcd in 

Table 2.  

Attention sliould be also clra\vii lo the fact that ,  as fa r  as the samplcs studied 

arc.  concei~nc~cl, the uniform enric:li tneid iactor appc:ws to decrease (see Fig. 1) 

stcadily from the Pacific. Oc(un side, 15, towards the J:q:,am Sea co;ist, 3.2. I t  

woitld bc w o r t h  mentioning that t h c k  s imi la r  eiirichinent f:ictors lo r  t \ v o  alkali  

olivine* Ix~s;il ts occurring near t h e  J;~p:iii Sea coast of western cJap;~n \\ cre Iwt\i c ’ ( s t i  

1 and 2 ( 1  1 ) .  (‘lhe same factor for alkali basalt from Southern NIanchuria (un- 

pul)lislietl) i s  :ilso close to unity.) Although Ihc tlnt:i ol)tained here is iiiore or 

l e s s  oi)en tu prudent shc~l ) t ic i sn i  al)out \I t i e ther  c) i ic . l i  ol‘ the rock s1)cbc.i tnc’ns 

s t u d i d  (*:ui rel)rtlscnt t h e  cbnornious Inass o f  rclc~vant l)asalt, this tculcwc~y 01 

stciacly (Icci-o:isc~ 01  t h t l  uniCoi*ni c~ni.ichnicmt f;ictor from thc Pacific. O c ~ , : i n  sit l l .  

to\v:ircls t h ( \  c l : i ~ ) : ~ i i  Scb:i s i t l c  (i)c>rh:tl)s tow:ii-ds thci continent) is thought to lw 



closely associated with a change in the nature of mantle material  below Japan. 

Naturally, this fact  is rcgarcled a s  being related with the geophysical and petro- 

logical observations described in  the introduction. 

ADDITIONAL COh4MENTS 

Four of six basalts studied sliom apparcnt depletion of cerium compared 

with the smoothed curired defined 1))' the slmndances of most of the other lantha- 

nides.  and the extent 01 the cerium ctepletion is about 3 37 on an average for four 

hasal ts .  This corrohoratcs thc p i ~ v i o u s  observation (11) . 

'1 hc. ;tuthoi. has  attciii])tccl to ciiiploy a liquid fraction value fw to estimate 

the depth of a magma SOUI'CC ( 1  5') , tIe thinks that,  ii' the calculation is applied 

to less fractionated. comnion roclxi. the r u s u l  ts can be significant so long a s  

they a r e  donlt with statistically. In  the prcvious paper (11) allout luiithanides in 

cJapru~esc 11ns:il I s ,  I i o \ i c ~ \  e r  , onl), the el'lect (namely, the diminution of liquid vol- 

uime) having ;wcoinjmiicti the dittcrential enrichment of 1,ulthanides \ \ ;IS taken 

into :ic.cwunt in such calc.ulalions, The results of the prcsent study suggcst that 

the c.flcct accompanying the uniform c~nrichineiit should also be talccn into ac- 

couilt , Su1jl)ose that t he rate 01 diminution of liquid volume having acconipmied 

I h e  cliffercntial cnricliinent i s  flY :ind the uniform enrichment factor is <lJ. then 

thc diminution of liquid t-olunw should be nearly fw /'?I, because the  partition co- 

efficiciits rtlsponsible for uniform enrichment a r e  inferred to be much l e s s  than 

0.1, 
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Table 1 
Lanthanide concentration (ppmr in Japanese  lxmalts and in the RIodoc chondriie 

- - -______ __ - __ - - - 

6-s hi ma 6- shi  ma Kiso mlt. l'UJi Tanna Basin 
(a) 0-4 

La 23.6 9.03 1.46 2.99 3.63 

Ce 42.1 19.2 3.74 6.81 6.46 

Nd 25.9 16.3 4.35 7.24 7 . l 9  

Sm 2.50 4.16 1 . 3 3  2.46 2.47 

E U  1 .s7 1 . 2 h  0.583 0.810 0.762 

C k l  5 .2 0 4.33  2.12  3.28 3.28 

DY 4.71 124 s.r,c! 4.02 4.04 

i . d  2.31 L . . )d 1,: 1- - r r ,  - ..>o 

1% 2.09 2.14 1 .m 2.63 2.5(j 

', .> 6 ,  .) *1 P 

I,u 0.300 0.259 0.410 0 A00 _--_- 

Nii-jima 
( 4 

.. 

La 6 . 3 2  

C e  10.3 

Nd 9.14 

sn1 2.72 

E U 0.99 I 

c; d 3.11; 

Dy 3.66 

E 1' 2.24 

1% 2 .3  6 

LLI 0 .:: .i 2 

5.90 

1 -3 .8 

1 (i.2 

S.GO 

1.72 

'7 .34 

s.71 

5 .2 -1: 

r, .45 

0 .SBO 

1 .i 

2.74 

9.05 

13.1 

5.12 

1.60 

7.13 

8.70 

5.12 

5.15 

0 .757  

0.374 

0.835 

0.702 

0 2 1 6  

0.070 

0,377 

0 .:E9 

0.2OR 

0.222 

0 .O ?A7 



Table 2 
Partition coefficients k estimated Masuda and Matsui (1) 

~- 

Nd Pm Sm Eu Gd 

0.1 19 0.155 0.191 

Tb DY I 1 0  

____-. 

0.407 0.443 0.479 
- . .- -. _ _  _- . - 

0.227 0.263 0.299 0.335 0.37 1 
-______ _ _ _ _ ~ _ _  

E r Tm Yb Lu 

. .  

.. 



FIGURE: CAPTIONS 

Fig. 1. 

Fig. 2 .  

Fig. 3.  

Fig. 4 .  

Fig. 5. 

Yig. 6 .  

k'ig, 7.  

Fig. H. 
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