

N68-i8020

ANALYTICAL INVESTIGATION OF SUPERSONIC TURBOMACHINERY BLADING

I - Computer Program for Blading Design
by Louis J. Goldman and Vincent J. Scullin
Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - MARCH 1968

ANALYTICAL INVESTIGATION OF SUPERSONIC TURBOMACHINERY BLADING I - COMPUTER PROGRAM FOR BLADING DESIGN

By Louis J. Goldman and Vincent J. Scullin

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTENTS

Page
1
SUMMARY
1
INTRODUCTION
INTRODUCTION 2
SYMBOLS
4
METHOD OF ANALYSIS
4
4
Blade Description
8
8
Blade Design
8
8
Circular ares
Circular ares
10
10
Lower transition arcs
Lower transition arcs
14
14
Upper transition arcs
Upper transition arcs
14
14
Geometric parameters
Geometric parameters
16
16
Design Limitations
Design Limitations
16
16
Supersonic starting
Supersonic starting 20
Flow separation
23
DESCRIPTION OF INPUT
23
DESCRIPTION OF OUTPUT
30
PROGRAM DESCRIPTION
30
30
Main Program
36
36
Subroutine ROOT
Subroutine ROOT
37
37
Subroutine START
Subroutine START
39
39
Subroutine MSSTAR
Subroutine MSSTAR
39
39
Subroutine SIMPS1
Subroutine SIMPS1 40
Function Subprograms
Function Subprograms
42
PROGRAM LISTING
REFERENCES 61

ANALYTICAL INVESTIGATION OF SUPERSONIC TURBOMACHINERY BLADING
 I - COMPUTER PROGRAM FOR BLADING DESIGN
 by Louis J. Goldman and Vincent J. Scullin
 Lewis Research Center

SUMMARY

A FORTRAN IV computer program for the design of supersonic blading based on establishing vortex flow within the blade passage is presented. The method of characteristics, as applied to the two-dimensional isentropic flow of a perfect gas, was utilized for the blade design. The equations necessary for the design are developed. The information required for the program consists of an inlet flow angle, specification of the inlet, outlet, and lower- and upper-circular-surface Mach numbers, and the specific-heat ratio. The program output consists of the blade coordinates and, if desired, a printer plot of the blade profile and flow passage. In addition, supersonic starting and flow separation calculations are performed by the program and obtained as output. An example is included to indicate the use of the program and the results obtainable.

INTRODUCTION

Supersonic compressors and turbines are employed in special circumstances because of their simplicity and low weight. A recent application for a supersonic turbine involves the hydrogen-fueled open-cycle auxiliary space power system descrived in reference 1. If the highest practical efficiency is to be obtained from supersonic compressors or turbines, proper design methods must be available.

A method for designing supersonic blade sections based on two-dimensional isentropic flow is given in reference 2. The method consists of converting the uniform parallel flow at the blade inlet into a vortex flow field, turning the vortex flow, and reconverting to a uniform parallel flow at the blade exit. The application of this design procedure involves specification of the inlet and outlet Mach numbers, the lower- (or concave) surface Mach number, the upper- (or convex) surface Mach number, the inlet flow
angle, and the specific-heat ratio of the working fluid. In general, a wide range of designs is possible by selection of these parameters. Guidance in the selection of a blade design is obtained by considering blade shape, solidity, and supersonic starting and flow separation problems. In reference 2 the effect of some of the design parameters for low Mach numbers and a specific-heat ratio of 1.4 is examined,

In view of the interest in hydrogen-fueled auxiliary space power systems, an analysis was conducted to gain a better understanding of the effects of the design parameters on the resulting blade geometry and to extend the results of reference 2 to levels of interest for such systems. In reference 3, the effect of surface Mach numbers, inlet flow angle, and specific-heat ratio on the geometric characteristics of supersonic impulse turbine-blade sections is investigated over an inlet Mach number range of 1.5 to 5.0 . Blade design limitations resulting from supersonic starting and flow separation problems are also considered. In the present report, a description and a FORTRAN IV listing of a computer program for the design of blading applicable for any supersonic Mach number level and specific-heat ratio are presented. Supersonic starting and flow separation calculations are also performed by the program. An example is included to indicate the use of the program and the results obtainable. The report is organized so that those persons desiring to use the program need only read the sections METHOD OF ANALYSIS, DESCRIPTION OF INPUT, and DESCRIPTION OF OUTPUT. All necessary information pertaining to the program itself is contained in the sections DESCRIPTION OF INPUT, DESCRIPTION OF OUTPUT, and PROGRAM DESCRIPTION.

SYMBOLS

```
A area, ft }\mp@subsup{}{}{2}(\mp@subsup{m}{}{2}
a speed of sound, ft/sec (m/sec)
C reduction in maximum weight flow due to two-dimensional flow (eq. (34b))
C* dimensionless blade chord, chord/r*
f(R*) function defined by eq. (10b)
G* dimensionless blade spacing, spacing/r*
g
h blade height, ft (m)
j index for upper surface of blade
K* dimensionless vortex constant defined by eq. (23)
```

$\mathrm{K}_{\max }^{*}$	value of K^{*} for which weight flow is maximum
k	index for lower surface of blade
M	Mach number, V/a
M*	demensionless velocity or critical velocity ratio, $\mathrm{V} / \mathrm{V}_{\mathrm{cr}}$
$\left(\mathrm{M}_{\mathrm{i}}^{*}\right)_{\max }$	maximum inlet velocity ratio for supersonic starting
$\left(\mathrm{M}_{\mathrm{l}}^{*}\right)_{\min }$	minimum lower-surface velocity ratio from separation criterion
$\left(\mathrm{M}_{\mathrm{u}}^{*}\right)_{\text {max }}$	maximum upper-surface velocity ratio from separation criterion
m	slope of Mach line
$\overline{\mathrm{m}}$	slope of wall segment
p	static pressure, $\mathrm{lb} / \mathrm{ft}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
$\left(\mathrm{p}_{2}\right)_{\max }$	maximum lower-surface static pressure from separation criterion
Q	vortex flow parameter (eq. 34a))
R	radius in vortex field, ft (m)
R*	dimensionless radius in vortex field, R/r*
r*	radius of sonic velocity streamline in vortex field, $\mathrm{ft}(\mathrm{m})$
V	velocity, $\mathrm{ft} / \mathrm{sec}(\mathrm{m} / \mathrm{sec})$
V_{cr}	critical velocity, $\mathrm{ft} / \mathrm{sec}(\mathrm{m} / \mathrm{sec})$
w	weight flow, $\mathrm{lb} / \mathrm{sec}(\mathrm{kg} / \mathrm{sec}$)
${ }^{\mathbf{w}}$ max	maximum weight flow, $\mathrm{lb} / \mathrm{sec}(\mathrm{kg} / \mathrm{sec})$
X*	dimensionless X -coordinate of blade (fig. 1), $\mathrm{X} / \mathrm{r}^{*}$
x*	dimensionless x -coordinate of transition arc (fig. 1), $\mathrm{X} / \mathrm{r}^{*}$
Y^{*}	dimensionless Y-coordinate of blade (fig. 1), Y/r*
y*	dimensionless y-coordinate of transition arc (fig. 1), $\mathrm{y} / \mathrm{r} *$
α	circular arc turning angle, rad
β	flow angle outside blade passage, rad
γ	specific-heat ratio
θ	total flow turning angle, rad
μ	Mach angle, rad

METHOD OF ANALYSIS

Blade Description

The design of supersonic blade sections described herein is based on establishing vortex flow within the blade passage by a procedure analogous to that given in reference 2. The blade so designed consists essentially of three major parts: (1) inlet transition arcs, (2) circular arcs, and (3) outlet transition arcs. A typical blade, with pertinent nomenclature noted, is shown schematically in figure 1. The inlet transition arcs

Figure 1. - Typical supersonic blade section. (All coordinates are made dimensionless by dividing by r^{*})
(lower and upper) are required to convert the assumed uniform parallel flow at the blade inlet into vortex flow. The concentric circular ares turn and maintain the vortex flow. Finally, the outlet transition arcs reconvert the vortex flow into uniform parallel flow at the blade exit. Straight-line segments parallel to the inlet and outlet flow directions complete the blade profile. Methods for creating a finite thickness at the leading and trailing edges are given in reference 2.

In general, the inlet lower transition arc reduces the Mach number from its value at the blade inlet M_{i} to a preselected value of the lower-surface Mach number M_{l}, whereas the inlet upper transition arc increases the Mach number to a preselected value

Figure 2. - Surface Mach number variation for typical blade section.
of the upper-surface Mach number M_{u}. The surface Mach numbers remain constant, at these preselected values, on the lower and upper circular arcs. At the outlet region the procedure is reversed. The surface Mach number variation is shown in figure 2 for a typical blade.

The amount of flow turning produced by either the lower or upper surface of the blade consists, in general, of two parts (fig. 1): (1) the turning produced by the transition arcs and (2) the turning produced by the circular arcs. When isentropic flow turning at supersonic speeds is considered, it is convenient to introduce the Prandtl-Meyer angle ν, which is defined as the angle through which the flow must turn from Mach 1 to the required Mach number. The flow turning produced by a transition arc is then equal to differences in Prandtl-Meyer angles and is $\nu_{i}-\nu_{l}$ and $\nu_{o}-\nu_{l}$ for the inlet and outlet lower transition arcs and $\nu_{u}-\nu_{i}$ and $\nu_{u}-\nu_{o}$ for the inlet and outlet upper transition arcs, respectively. The turning produced by the inlet or outlet transition arcs cannot exceed the inlet or outlet flow angle β_{i} or β_{0}, respectively. The relation between Prandtl-Meyer angle ν and Mach number M is given by the following equations (ref. 4):

$$
\begin{equation*}
\nu=\frac{\pi}{4}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right)+\frac{1}{2}\left\{\sqrt{\frac{\gamma+1}{\gamma-1}} \arcsin \left[(\gamma-1) \mathbf{M}^{* 2}-\gamma\right]+\arcsin \left(\frac{\gamma+1}{M^{* 2}}-\gamma\right)\right\} \tag{1}
\end{equation*}
$$

where the dimensionless velocity or critical velocity ratio M^{*} is

$$
\begin{equation*}
\mathrm{M}^{*}=\left(\frac{\frac{\gamma+1}{2} \mathrm{M}^{2}}{1+\frac{\gamma-1}{2} \mathrm{M}^{2}}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

This relation is shown in figure 3 for specific-heat ratios of $1.3,1.4$, and 1.66. As the Mach number approaches infinity, ν approaches an upper limit of $\frac{\pi}{2}[\sqrt{(\gamma+1) /(\gamma-1)}-1]$.

Figure 3. - Variation of Prandtl-Meyer angle with Mach number for different specific-heat ratios.

Blade Design

The method of characteristics as applied to the two-dimensional isentropic flow of a perfect gas is utilized in the design of the supersonic blade sections. A description of the method of characteristics is given in references 4 and 5 , and its application to the design of supersonic blade sections is given in references 2 and 6 . For purposes of calculation, the flow field is considered to be divided into small regions, in each of which the flow properties are assumed to be constant. If adjacent regions are to differ slightly in properties, then the boundary between the regions must be characteristic lines and can also be shown (ref. 5) to be Mach lines. Therefore, each region is, in general, bounded either by a Mach line or a physical boundary. In figure 4 the flow field for a

Figure 4. - Characteristic network within blade passage.
typical blade passage is divided by characteristic lines into a finite number of regions. The vortex-flow region is bounded by the circular arcs and the outermost vortex characteristics AE and CE. The transition arcs are composed of straight-line segments, and within each region bounded by these segments the flow is constrained to follow the wall direction. The mathematical equations necessary to define the blade are developed in the following sections.

Circular arcs. - Within the concentric circular arcs, vortex flow exists; therefore,

$$
\begin{equation*}
\text { VR }=\text { Constant } \tag{3}
\end{equation*}
$$

where V is the velocity and R is the radius in the vortex field. In this report, dimensionless parameters are used whenever possible; if this procedure is followed, equation (3) can be rewritten as

$$
\begin{equation*}
\left(\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{cr}}}\right)\left(\frac{\mathrm{R}}{\mathrm{r}^{*}}\right)=\frac{\text { Constant }}{\mathrm{V}_{\mathrm{cr}} \mathrm{r}^{*}} \tag{4}
\end{equation*}
$$

where V_{cr} is the critical velocity and r^{*} is the radius of the sonic velocity streamline in the vortex field. At $R=r^{*}, V=V_{c r}$; therefore, the constant is $\mathrm{V}_{\mathrm{cr}} \mathrm{r}^{*}$. Equation (4) then becomes

$$
\begin{equation*}
\mathrm{M}^{*} \mathrm{R}^{*}=1 \tag{5}
\end{equation*}
$$

where $M^{*}=V / V_{C r}$ is the dimensionless velocity and $R^{*}=R / r^{*}$ is the dimensionless radius in the vortex field. The Prandtl-Meyer angle ν is related to M^{*} through equation (1). Therefore, once ν_{l} and ν_{u} are specified, M_{l}^{*} and M_{u}^{*} are fixed, and the circular arc radii R_{l}^{*} and R_{u}^{*} are determined from equation (5). The amount of lower circular arc turning for the inlet and outlet portions of the blade $\alpha_{l, \mathrm{i}}$ and $\alpha_{l, \mathrm{o}}$, respectively, are

$$
\begin{equation*}
\alpha_{l, \mathrm{i}}=\beta_{\mathrm{i}}-\left(\nu_{\mathrm{i}}-\nu_{l}\right) \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{l, o}=\beta_{\mathrm{o}}+\left(\nu_{\mathrm{o}}-\nu_{l}\right) \tag{6b}
\end{equation*}
$$

Angles measured in the counterclockwise direction are considered positive. With this convention, the inlet flow angle β_{i} is positive, and the outlet flow angle β_{o} is negative. Similarly, for the upper circular are

$$
\begin{equation*}
\alpha_{\mathrm{u}, \mathrm{i}}=\beta_{\mathrm{i}}-\left(\nu_{\mathrm{u}}-\nu_{\mathrm{i}}\right) \tag{7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{u, o}=\beta_{\mathrm{o}}+\left(\nu_{\mathrm{u}}-\nu_{\mathrm{o}}\right) \tag{7b}
\end{equation*}
$$

The circular arcs are completely described by specification of $\nu_{\mathrm{i}}, \nu_{\mathrm{o}}, \nu_{l}, \nu_{\mathrm{u}}$, and β_{i}.

The outlet flow angle β_{o} does not have to be specified because it can be related to M_{i}, M_{0}, and β_{i} from the following consideration.

Because the inlet and outlet blade spacing is the same, the inlet and outlet blade passage areas A_{i} and A_{o}, respectively, are related by geometry (see fig. 1) according to the equation

$$
\begin{equation*}
\frac{\mathrm{A}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{o}}}=\frac{\cos \beta_{\mathrm{i}}}{\cos \beta_{\mathrm{o}}} \tag{8}
\end{equation*}
$$

The area ratio A_{i} / A_{o} can be obtained from the continuity equation (ref. 5) with the result that equation (8) becomes

$$
\begin{equation*}
\beta_{o}=-\arccos \left\{\left[\frac{M_{i}}{M_{o}}\left(\frac{1+\frac{\gamma-1}{2} M_{o}^{2}}{1+\frac{\gamma-1}{2} M_{i}^{2}}\right)^{(\gamma+1) / 2(\gamma-1)}\right] \cos \beta_{i}\right\} \tag{9}
\end{equation*}
$$

Lower transition arcs. - The lower surface is composed of an inlet and outlet transition arc and a circular arc (fig. 1). For symmetric blades (i.e., $\nu_{\mathrm{i}}=\nu_{\mathrm{o}}$), the two transition arcs are identical, and, therefore, only one needs to be calculated. For asymmetric blades, the two arcs are not identical, one being smaller (less turning) than the other. However, the smaller transition arc corresponds to a portion of the larger arc, and, consequently, only the larger arc need be calculated. If ν_{i} is greater than ν_{o}, the inlet transition arc is the larger of the two arcs. For simplicity, the inlet transition arc is assumed to be the larger arc in the following discussion.

In figure 5, the lower transition arc is shown, and the nomenclature used in the computer program is indicated. The calculations are performed with respect to the nondimensional axes x^{*} and y^{*} (where the x - and y-coordinates are made dimensionless by dividing by r^{*}). The transition arc coordinates are generated in a sequential manner (starting at $\mathrm{x}^{*}=0, \mathrm{y}^{*}=\mathrm{R}_{l}^{*}$) by obtaining the intersection of the straight-line wall segments and straight Mach lines for a specified small change in flow turning. The Mach lines are determined from the outermost or major vortex-expansion characteristic, and the wall segments are determined from the flow direction. After the transition arc coordinates are calculated, they are rotated through an angle of $\alpha_{\imath, \mathrm{i}}$ to obtain the coordinates of interest in the blade design (see fig. 1).

For the vortex region, it can be shown (ref. 2) that the velocity direction φ and the dimensionless radius R^{*} are related along the characteristic line by the equation

Figure 5. - Nomenclature used for calculation of inlet lower transition arc.

$$
\begin{equation*}
\varphi= \pm \frac{1}{2} \mathrm{f}\left(\mathrm{R}^{*}\right)+\text { Constant } \tag{10a}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(R^{*}\right)=\sqrt{\frac{\gamma+1}{\gamma-1}} \arcsin \left(\frac{\gamma-1}{\mathrm{R}^{* 2}}-\gamma\right)+\arcsin \left[(\gamma+1) \mathrm{R}^{* 2}-\gamma\right] \tag{10b}
\end{equation*}
$$

Two families of characteristics exist: the positive sign in equation (10a) gives the expansion lines, and the negative sign gives the compression lines. The major vortex-expansion-characteristic equation is

$$
\begin{equation*}
\varphi=\frac{1}{2}\left[\mathrm{f}\left(\mathrm{R}^{*}\right)-\mathrm{f}\left(\mathrm{R}_{l}^{*}\right)\right] \tag{11}
\end{equation*}
$$

since the boundary condition at $x^{*}=0$ is that $\varphi=0$ and $R^{*}=R_{l}^{*}$. If the flow field is divided into small regions, the flow direction at any point along the characteristic line (as given by eq. (11)) may be considered to be equal to the flow direction within the adjacent flow region, as indicated in figure 5 . For k transition arc segments, each of which produces $\Delta \nu$ degrees of turning, the flow direction within any flow segment $\varphi_{\mathrm{k}, \mathrm{i}}$ is given by

$$
\begin{equation*}
\varphi_{\mathrm{k}, \mathrm{i}}=\nu_{\mathrm{i}}-\nu_{l}-(\mathrm{k}-1) \Delta \nu=\varphi_{\mathrm{k}+1, \mathrm{i}}+\Delta \nu \tag{12}
\end{equation*}
$$

where k is an integer that varies from 1 to $\left[\left(\nu_{\mathrm{i}}-\nu_{l}\right) / \Delta \nu\right]+1$. At $\mathrm{k}=\left[\left(\nu_{\mathrm{i}}-\nu_{l}\right) / \Delta \nu\right]+1$, the flow direction is 0 , and at $\mathrm{k}=1$, it is $\nu_{\mathrm{i}}-\nu_{l}$. Equating equations (11) and (12) and eliminating $f\left(R_{l}^{*}\right)$ through equations (1), (5), and (10b) result in

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{R}_{\mathrm{k}, \mathrm{i}}^{*}\right)=2 \nu_{\mathrm{i}}-\frac{\pi}{2}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right)-2(\mathrm{k}-1) \Delta \nu \tag{13}
\end{equation*}
$$

which relates the dimensionless radius R^{*} to the incremental flow turning $\Delta \nu$ along the major vortex-expansion characteristic. At $\mathrm{k}=\left[\left(\nu_{\mathrm{i}}-\nu_{l}\right) / \Delta \nu\right]+1, \mathrm{R}_{\mathrm{k}, \mathrm{i}}^{*}=\mathrm{R}_{l}^{*}$; as k is decreased, $R_{k, i}^{*}$ decreases and is obtained by the simultaneous solution of equations (10b) and (13) by an iterative procedure. Since $R_{k, i}^{*}$ can be determined for any value of k, the x^{*}, y^{*} coordinates along the major expansion characteristic can be obtained from

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}, \mathrm{i}}^{*}=-\mathrm{R}_{\mathrm{k}, \mathrm{i}}^{*} \sin \varphi_{\mathrm{k}, \mathrm{i}} \tag{14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{y}_{\mathrm{k}, \mathrm{i}}^{*}=\mathrm{R}_{\mathrm{k}, \mathrm{i}}^{*} \cos \varphi_{\mathrm{k}, \mathrm{i}} \tag{14b}
\end{equation*}
$$

These coordinates are also points on the straight Mach lines. The equation specifying the Mach line is therefore determined once the slope is obtained, which is easily accomplished because the Mach line is inclined at the Mach angle μ to the velocity direction (see fig. 5). The Mach line, therefore, makes an angle of $\varphi+\mu$ with respect to the x^{*} axis. It is possible to define the Mach line at the mean Mach angle to the mean flow direction (ref. 5) so that the slope of the Mach line $m_{k, i}$ is given by

$$
\begin{equation*}
\mathrm{m}_{\mathrm{k}, \mathrm{i}}=\tan \left(\frac{\varphi_{\mathrm{k}, \mathrm{i}}+\varphi_{\mathrm{k}+1, \mathrm{i}}}{2}+\frac{\mu_{\mathrm{k}, \mathrm{i}}+\mu_{\mathrm{k}+1, \mathrm{i}}}{2}\right) \tag{15a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{\mathrm{k}, \mathrm{i}}=-\arcsin \left(\frac{1}{\mathrm{M}_{\mathrm{k}, \mathrm{i}}}\right)=-\arcsin \left[\sqrt{\left(\frac{\gamma+1}{2}\right) \mathrm{R}_{\mathrm{k}, \mathrm{i}}^{* 2}-\left(\frac{\gamma-1}{2}\right)}\right] \tag{15b}
\end{equation*}
$$

The equation of the Mach line is therefore

$$
\begin{equation*}
\mathrm{y}^{*}=\mathrm{m}_{\mathrm{k}, \mathrm{i}}\left(\mathrm{x}^{*}-\mathrm{x}_{\mathbf{k}, \mathrm{i}}^{*}\right)+\mathrm{y}_{\mathrm{k}, \mathrm{i}}^{*} \tag{16}
\end{equation*}
$$

where k varies from 1 to $\mathrm{k}_{\max }=\left(\nu_{\mathrm{i}}-\nu_{l}\right) / \Delta \nu$. The equation of the transition arc segment is more easily determined since each segment is a straight line parallel to the velocity direction φ. The slope of the wall segment $\overline{\mathrm{m}}_{\mathrm{k}, \mathrm{i}}$ is then

$$
\begin{equation*}
\overline{\mathrm{m}}_{\mathrm{k}, \mathrm{i}}=\tan \varphi_{\mathrm{k}+1, \mathrm{i}} \tag{17}
\end{equation*}
$$

and the equation for the wall segment is

$$
\begin{equation*}
y^{*}=\bar{m}_{k, i}\left[x^{*}-\left(x_{l}^{*}\right)_{k+1, i}\right]+\left(y_{l}^{*}\right)_{k+1, i} \tag{18}
\end{equation*}
$$

where k varies from 1 to $\mathrm{k}_{\max }$ and x_{l}^{*} and y_{l}^{*} are the lower transition arc coordinates. The values of x_{l}^{*} and y_{l}^{*} are known at $\mathrm{k}=\left(\nu_{\mathrm{i}}-\nu_{l}\right) / \Delta \nu+1=\mathrm{k}_{\max }+1$, where $\mathrm{x}_{l}^{*}=0$ and $\mathrm{y}_{l}^{*}=\mathrm{R}_{l}^{*}$. The remaining transition coordinates are generated by finding the intersection of the Mach lines with the wall segments starting at $k=k_{\text {max }}$ and sequentially decreasing k until $k=1$. The intersection of the two straight lines is given by

$$
\begin{equation*}
\left(x_{l}^{*}\right)_{k, i}=\frac{\left[\left(y_{l}^{*}\right)_{k+1, i}-\bar{m}_{k, i}\left(x_{l}^{*}\right)_{k+1, i}\right]-\left(y_{k, i}^{*}-m_{k, i} x_{k, i}^{*}\right)}{m_{k, i}-\bar{m}_{k, i}} \tag{19a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(y_{l}^{*}\right)_{k, i}=\frac{m_{k, i}\left[\left(y_{l}^{*}\right)_{k+1, i}-\bar{m}_{k, i}\left(x_{l}^{*}\right)_{k+1, i}\right]-\bar{m}_{k, i}\left(y_{k, i}^{*}-m_{k, i} x_{k, i}^{*}\right)}{m_{k, i}-\bar{m}_{k, i}} \tag{19b}
\end{equation*}
$$

The transition arc coordinates obtained from equation (19) are rotated through an angle $\alpha_{l, \mathrm{i}}$ resulting in the $\mathrm{X}^{*}, \mathrm{Y}^{*}$ coordinates of interest in the blade design. The rotated coordinates X_{l}^{*} and Y_{l}^{*} are obtained from

$$
\begin{equation*}
\left(\mathrm{x}_{l}^{*}\right)_{\mathrm{k}, \mathrm{i}}=\left(\mathrm{x}_{l}^{*}\right)_{\mathrm{k}, \mathrm{i}} \cos \alpha_{l, \mathrm{i}}-\left(\mathrm{y}_{l}^{*}\right)_{\mathrm{k}, \mathrm{i}} \sin \alpha_{l, \mathrm{i}} \tag{20a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathrm{Y}_{l}^{*}\right)_{\mathrm{k}, \mathrm{i}}=\left(\mathrm{x}_{l}^{*}\right)_{\mathrm{k}, \mathrm{i}} \sin \alpha_{l, \mathrm{i}}+\left(\mathrm{y}_{l}^{*}\right)_{\mathrm{k}, \mathrm{i}} \cos \alpha_{l, \mathrm{i}} \tag{20b}
\end{equation*}
$$

Upper transition arcs. - The upper surface (like the lower surface) is composed, in part, of an inlet and outlet transition arc, only one of which must be calculated. For simplicity, it is again assumed that the inlet transition arc is the larger of the two arcs. (For the upper arc, this requires that ν_{o} be greater than ν_{i}.) The upper transition arc is shown schematically in figure 6, and the pertinent nomenclature is noted. The procedure employed to calculate the upper transition arc is analogous to that used for the lower transition arc; the resulting equations which are of similar form are not repeated herein. The subscript j is used to represent the upper transition arc coordinates where j varies from 1 to $\mathrm{j}_{\max }=\left(\nu_{\mathrm{u}}-\nu_{\mathrm{i}}\right) / \Delta \nu$.

Geometric parameters. - After the blade calculations have been performed, a number of blade parameters of interest, including blade solidity, spacing, chord, and total

Figure 6. - Nomenclature used for calculation of inlet upper transition arc.
flow turning angle, are calculated. The blade spacing G^{*} and chord C^{*} are obtained from the blade coordinates, and the solidity is obtained from the ratio $\mathrm{C}^{*} / \mathrm{G}^{*}$. The total flow turning angle θ is obtained from the inlet and outlet flow angles. The blade coordinates are also translated by G^{*} so that coordinates for two complete blades are obtained.

Design Limitations

The design limitations (i.e., the constraints on the choice of ν_{l} and ν_{u} for specified $\nu_{\mathrm{i}}, \nu_{\mathrm{o}}, \beta_{\mathrm{i}}$, and γ) imposed by consideration of supersonic starting and flow separation problems have been discussed in reference 3 . These limitations are calculated by the procedure described in the following paragraphs and are given as output from the computer program presented herein.

Supersonic starting. - The problem of establishing supersonic flow on startup is discussed in reference 7 for supersonic compressors. For supersonic turbines, the resulting design limitations due to starting are presented in reference 2, where it is assumed that a normal shock wave spans the blade inlet at the instant of startup. Under this condition it is necessary to ensure that the weight flow can pass through the turbine. The maximum value of the inlet Prandtl-Meyer angle $\left(\nu_{\mathrm{i}}\right)_{\max }$ is determined by first finding the maximum weight flow through the blade passage, while taking into account the normal shock losses. This maximum weight flow is then equated to the flow rate after the shock has passed through the passage.

The weight flow through the passage is obtained by integrating the continuity equation in the vortex region

$$
\begin{equation*}
\mathrm{w}=\mathrm{h} \int_{\mathrm{R}_{\mathrm{u}}}^{\mathrm{R}_{l}} \rho \mathrm{~V} \mathrm{dR} \tag{21}
\end{equation*}
$$

where ρ is the density, V is the velocity, and h is the blade height. The density can be written as (ref. 2)

$$
\begin{equation*}
\rho=\rho_{\mathrm{i}, \mathrm{~d}}^{\mathrm{R}}\left[1-\left(\frac{\gamma-1}{2}\right)\left(\frac{\mathrm{V}}{\mathrm{a}_{\mathrm{i}, \mathrm{~d}}^{\prime}}\right)^{2}\right]^{1 /(\gamma-1)} \tag{22}
\end{equation*}
$$

where $\rho_{\mathrm{i}, \mathrm{d}}^{\prime}$ and $\mathrm{a}_{\mathrm{i}, \mathrm{d}}^{\prime}$ are the density and the speed of sound, respectively, just downstream of the shock, and are evaluated at total conditions. For perfect gases, the total
temperature is constant through a normal shock so that $a_{i, d}^{\prime}=a_{i}^{\prime}$. Utilizing equation (3) and the definition

$$
\begin{equation*}
\mathrm{K}^{*}=\sqrt{\frac{\gamma-1}{2}}\left(\frac{\mathrm{VR}}{\mathrm{a}_{\mathrm{i}}^{\prime} \mathrm{R}_{l}}\right) \tag{23}
\end{equation*}
$$

results in equation (21) in the following form:

$$
\begin{equation*}
\mathrm{w}=\mathrm{ha} \mathrm{i}_{\mathrm{i}}^{\prime} \rho_{\mathrm{i}, \mathrm{~d}}^{\prime} \mathrm{R}_{l} \sqrt{\frac{2}{\gamma-1}} \int_{\mathrm{R}_{\mathrm{u}}}^{\mathrm{R}_{l}}\left(1-\frac{\mathrm{K}^{* 2} \mathrm{R}_{l}^{2}}{\mathrm{R}^{2}}\right)^{1 /(\gamma-1)} \frac{\mathrm{K}^{*}}{\mathrm{R}} \mathrm{dR} \tag{24}
\end{equation*}
$$

Differentiating equation (24) with respect to K^{*} and setting the result equal to 0 give the value of K^{*} (denoted as $\mathrm{K}_{\max }^{*}$) for which the weight flow is a maximum. This procedure gives

$$
\begin{align*}
& \frac{d w}{d K^{*}}=h_{i}^{\prime} \rho_{\mathrm{i}, \mathrm{~d}^{\top} \mathrm{R}_{l}} \sqrt{\frac{2}{\gamma-1}} \int_{\mathrm{R}_{\mathrm{u}}}^{\mathrm{R}_{l}}\left[\left(1-\frac{\mathrm{K}_{\max }^{* 2} \mathrm{R}_{l}^{2}}{\mathrm{R}^{2}}\right)^{1 /(\gamma-1)}\right. \\
&\left.-\frac{2}{\gamma-1}\left(\frac{\mathrm{~K}_{\max }^{*} \mathrm{R}_{l}}{\mathrm{R}}\right)^{2}\left(1-\frac{\mathrm{K}_{\max }^{* 2} \mathrm{R}_{l}^{2}}{\mathrm{R}^{2}}\right)^{(2-\gamma) /(\gamma-1)}\right] \frac{\mathrm{dR}}{\mathrm{R}} \equiv 0 \tag{25}
\end{align*}
$$

Changing the variable from R to M^{*} gives, for equation (25),

$$
\begin{gather*}
\int_{M_{l}^{*}}^{M_{u}^{*}}\left[1-\left(\frac{K_{\max }^{*}}{M_{l}^{*}}\right)^{2} M^{* 2}\right]^{1 /(\gamma-1)} \frac{\mathrm{dM}^{*}}{\mathrm{M}^{*}} \\
 \tag{26}\\
=\frac{2}{\gamma-1} \int_{M_{l}^{*}}^{M_{u}^{*}}\left(\frac{\mathrm{~K}_{\max }^{*}}{\mathrm{M}_{l}^{*}}\right)^{2\left[1-\left(\frac{\mathrm{K}_{\max }^{*}}{\mathrm{M}_{l}^{*}}\right)^{2} \mathrm{M}^{* 2}\right]^{(2-\gamma) /(\gamma-1)} \mathrm{M}^{*} \mathrm{dM}^{*}}
\end{gather*}
$$

Integrating the right side of equation (26) results in

$$
\int_{M_{l}^{*}}^{M_{u}^{*}}\left[1-\left(\frac{K_{\max }^{*}}{M_{l}^{*}}\right)^{2} M^{* 2}\right]^{1 /(\gamma-1)} \frac{\mathrm{dM}^{*}}{\mathrm{M}^{*}}=\left(1-\mathrm{K}_{\max }^{* 2}\right)^{1 /(\gamma-1)}-\left[1-\mathrm{K}_{\max }^{* 2}\left(\frac{\mathrm{M}_{\mathrm{u}}^{*}}{\mathrm{M}_{l}^{*}}\right)^{2}\right]^{1 /(\gamma-1)}
$$

Similarly, equation (24) in terms of M^{*} becomes

$$
\begin{equation*}
\mathrm{w}_{\max }=\mathrm{r}^{*} h a_{\mathrm{i}}^{\prime} \rho_{\mathrm{i}, \mathrm{~d}}^{\gamma} \sqrt{\frac{2}{\gamma-1}} \int_{\mathrm{M}_{l}^{*}}^{\mathrm{M}_{\mathrm{u}}^{*}} \frac{\mathrm{~K}_{\max }^{*}}{\mathrm{M}_{l}^{*}}\left[1-\left(\frac{\mathrm{K}_{\max }^{*}}{\mathrm{M}_{l}^{*}}\right)^{2} \mathrm{M}^{* 2}\right]^{1 /(\gamma-1)} \frac{\mathrm{dM}^{*}}{\mathrm{M}^{*}} \tag{28}
\end{equation*}
$$

The value of $\mathrm{K}_{\text {max }}^{*}$ is determined from equation (27) by an iterative procedure (for given values of M_{l}^{*} and M_{u}^{*}), and then the maximum weight flow is obtained from equation (28). After the shock has passed through the turbine, the weight flow can again be obtained from equation (21), which is rewritten by substituting $\mathrm{VR}=\mathrm{V}_{\mathrm{Cr}} \mathrm{r}^{*}$ and changing the variable from R to M^{*} to give

$$
\begin{equation*}
\mathrm{w}=\mathrm{r} * \mathrm{~h} \int_{\mathrm{M}_{l}^{*}}^{\mathrm{M}_{\mathrm{u}}^{*}} \rho \mathrm{~V}_{\mathrm{cr}} \frac{\mathrm{dM}^{*}}{\mathrm{M}^{*}} \tag{29}
\end{equation*}
$$

Substituting the following relations (ref. 5) into equation (29)

$$
\begin{equation*}
\rho=\rho_{\mathrm{i}}^{\prime}\left(\frac{2}{\gamma+1}\right)^{1 /(\gamma-1)}\left(\frac{\gamma+1}{2}-\frac{\gamma-1}{2} \mathrm{M}^{* 2}\right)^{1 /(\gamma-1)} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{V}_{\mathrm{cr}}=\mathrm{a}_{\mathrm{i}}^{\mathrm{j}} \sqrt{\frac{2}{\gamma+1}} \tag{31}
\end{equation*}
$$

gives

$$
\begin{equation*}
\mathrm{w}=\mathrm{r}^{*} \mathrm{ha}_{\mathrm{i}}^{\prime} \rho_{\mathrm{i}}^{\top} \sqrt{\frac{2}{\gamma+1}}\left(\frac{2}{\gamma+1}\right)^{1 /(\gamma-1)} \int_{\mathrm{M}_{l}^{*}}^{\mathrm{M}_{\mathrm{u}}^{*}}\left(\frac{\gamma+1}{2}-\frac{\gamma-1}{2} \mathrm{M}^{* 2}\right)^{1 /(\gamma-1)} \frac{\mathrm{dM}^{*}}{\mathrm{M}^{*}} \tag{32}
\end{equation*}
$$

where the term multiplying $r^{*} h_{i}^{\prime} \rho_{i}^{\prime}$ is defined as the weight-flow parameter. Equating the two weight flows, equations (28) and (32), results in

$$
\begin{equation*}
\frac{\mathrm{Q}}{1-\mathrm{C}}=\frac{\rho_{\mathrm{i}, \mathrm{~d}}^{\prime}}{\rho_{\mathrm{i}}^{\prime}}=\frac{\mathrm{p}_{\mathrm{i}, \mathrm{~d}}^{\prime}}{\mathrm{p}_{\mathrm{i}}^{\prime}} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathrm{M}_{l}^{*} \mathrm{M}_{\mathrm{u}}^{*}}{\mathrm{M}_{\mathrm{u}}^{*}-\mathrm{M}_{l}^{*}} \int_{\mathrm{M}_{l}^{*}}^{\mathrm{M}_{\mathrm{u}}^{*}}\left(\frac{\gamma+1}{2}-\frac{\gamma-1}{2} \mathrm{M}^{* 2}\right)^{1 /(\gamma-1)} \frac{d \mathrm{M}^{*}}{\mathrm{M}^{*}} \tag{34a}
\end{equation*}
$$

and

$$
\begin{equation*}
C=1-\sqrt{\frac{\gamma+1}{\gamma-1}}\left(\frac{\gamma+1}{2}\right)^{1 /(\gamma-1)}\left(\frac{M_{u}^{*}}{M_{u}^{*}-M_{l}^{*}}\right) \int_{M_{l}^{*}}^{M_{u}^{*}} K_{\max }^{*}\left[1-\left(\frac{K_{\max }^{*}}{M_{l}^{*}}\right)^{2} M^{* 2}\right]^{1 /(\gamma-1)} \frac{d M^{*}}{M^{*}} \tag{34b}
\end{equation*}
$$

The parameter C has been shown in reference 2 to be the reduction in maximum flow rate caused by two-dimensional flow. The quantity $p_{i, d}^{\prime} / p_{i}^{\prime}$ is the total pressure recovery for a normal shock and is given by (ref. 5)

$$
\begin{equation*}
\frac{\mathrm{p}_{\mathrm{i}, \mathrm{~d}}^{\prime}}{\mathrm{p}_{\mathrm{i}}^{\prime}}=\left(\mathrm{M}_{\mathrm{i}}^{*}\right)_{\max }^{2 \gamma /(\gamma-1)}\left[\frac{1-\left(\frac{\gamma-1}{\gamma+1}\right)\left(\mathrm{M}_{\mathrm{i}}^{*}\right)_{\max }^{2}}{\left(\mathrm{M}_{\mathrm{i}}^{*}\right)_{\max }^{2}-\frac{\gamma-1}{\gamma+1}}\right]^{1 /(\gamma-1)} \tag{35}
\end{equation*}
$$

The maximum inlet velocity ratio $\left(M_{i}^{*}\right)_{\max }$ is obtained (for given values of M_{l}^{*} and $\mathrm{M}_{\mathrm{u}}^{*}$) by simultaneous solution of equations (33) and (35), by using the definition in equations (34a) and (34b), and by obtaining $\mathrm{K}_{\max }^{*}$ from equation (27). The maximum inlet Prandtl-Meyer angle for supersonic starting $\left(\nu_{\mathrm{i}}\right)_{\max }$ is then obtained from equation (1).

Flow separation. - Analysis of supersonic blade sections (ref. 3) has shown the desirability of maintaining high surface Mach numbers to alleviate the problem of supersonic starting. Under these conditions, however, adverse pressure gradients created on the blade surfaces would be expected to cause flow separation and, consequently, poor performance. Experimental investigation of simple shapes with incompressible flow at fairly high pressure gradients (ref. 8) has indicated that if the coefficient of pressure recovery (defined as the ratio of the pressure rise to the dynamic pressure at the initial point) is less than about $1 / 2$, flow separation may be avoided. This criterion was used in the analysis presented in reference 3 to give some indication of the design restrictions due to flow separation. For supersonic velocities the separation value of the coefficient of pressure recovery may be less than $1 / 2$. The calculational procedure is as follows.

Flow separation can occur on both the lower and upper surfaces of the blade, but since the calculational procedure is similar for both cases only the derivation for the lower surface is presented. The flow separation criterion can be written as

$$
\begin{equation*}
\frac{\left(\mathrm{p}_{l}\right)_{\text {max }}-\mathrm{p}_{\mathrm{i}}}{\frac{\rho_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}^{2}}{2 \mathrm{~g}_{\mathrm{c}}}}=\frac{1}{2} \tag{36}
\end{equation*}
$$

where $\left(p_{l}\right){ }_{\max }$ is the maximum lower-surface pressure possible (for given inlet conditions) without causing separation. Equation (36) can be rewritten in the form

$$
\begin{equation*}
\frac{\left(\mathrm{p}_{\mathrm{l}}\right)_{\max }}{\mathrm{p}_{\mathrm{i}}^{\prime}}=\frac{\mathrm{p}_{\mathrm{i}}}{\mathrm{p}_{\mathrm{i}}^{\prime}}\left[1+\frac{1}{2}\left(\frac{\frac{1}{2 \mathrm{~g}_{\mathrm{c}}} \rho_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{2}}{\mathrm{p}_{\mathrm{i}}}\right)\right] \tag{37}
\end{equation*}
$$

where the equation has been divided by the inlet total pressure $\mathrm{p}_{\mathrm{i}}^{\prime}$. Substituting the following relations (ref. 9) into equation (37)

$$
\begin{equation*}
\frac{\mathrm{p}}{\mathrm{p}^{\prime}}=\left(1-\frac{\gamma-1}{\gamma+1} \mathrm{M}^{* 2}\right)^{\gamma /(\gamma-1)} \tag{38a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\frac{1}{2 g_{c}} \rho V^{2}}{p}=\frac{\frac{\gamma}{\gamma+1} M^{* 2}}{1-\frac{\gamma-1}{\gamma+1} M^{* 2}} \tag{38b}
\end{equation*}
$$

and simplifying result in

$$
\begin{equation*}
\left(\mathrm{M}_{l}^{*}\right)_{\min }=\sqrt{\frac{\gamma+1}{\gamma-1}}\left\{1-\left(1-\frac{\gamma-1}{\gamma+1} \mathrm{M}_{\mathbf{i}}^{* 2}\right)\left[1+\frac{1}{2}\left(\frac{\frac{\gamma}{\gamma+1} \mathrm{M}_{\mathrm{i}}^{* 2}}{1-\frac{\gamma-1}{\gamma+1} \mathrm{M}_{\mathrm{i}}^{* 2}}\right)\right]^{(\gamma-1) / \gamma}\right\}^{1 / 2} \tag{39}
\end{equation*}
$$

Similarly, applying the same criterion to the upper surfaces gives

$$
\begin{equation*}
\mathrm{M}_{\mathrm{o}}^{*}=\sqrt{\frac{\gamma+1}{\gamma-1}}\left\{1-\left[1-\frac{\gamma-1}{\gamma+1}\left(\mathrm{M}_{\mathrm{u}}^{*}\right)_{\max }^{2}\right]\left[1+\frac{1}{2}\left(\frac{\frac{\gamma}{\gamma+1}\left(\mathrm{M}_{\mathrm{u}}^{*}\right)_{\max }^{2}}{1-\frac{\gamma-1}{\gamma+1}\left(\mathrm{M}_{\mathrm{u}}^{*}\right)_{\max }^{2}}\right)\right]^{(\gamma-1) / \gamma}\right\}^{1 / 2} \tag{40}
\end{equation*}
$$

The corresponding Prandtl-Meyer angles $\left(\nu_{l}\right)_{\min }$ and $\left(\nu_{u}\right)_{\max }$ are obtained from equation (1).
TABLE I. - INPUT FORMAT FOR FORTRAN COMPUTER PROGRAM

The input for the computer program consists of an inlet flow angle, several Prandt1Meyer angles, the specific-heat ratio γ, and an angular increment. In addition, three optional switches must be set which regulate the content and form of the output. All the input parameters, except γ and the switches, must be specified in degrees. The input variables are as follows:

BETAN inlet flow angle, β_{i}
DELV flow turning increment (recommended value, 0.1), $\Delta \nu$
GAM specific-heat ratio, γ
IPRINT a value of 0 will result in printing of rotated blade coordinates X^{*} and Y^{*}; a value of 1 will cause both rotated and unrotated coordinates X^{*}, Y^{*} and x^{*}, y^{*} (see fig. 1) to be printed
ISTART a value of 0 will cause both starting and blade design calculations to be printed out; a value of 1 will cause only starting calculations to be performed and printed out
NPLOT a value of 0 will cause blade profile and flow passage to be plotted; a value of 1 will suppress the plot

VIN inlet Prandtl-Meyer angle, ν_{i}
VLOW lower-surface Prandtl-Meyer angle, ν_{l}
VOUT outlet Prandtl-Meyer angle, ν_{0}
VUP upper-surface Prandtl-Meyer angle, ν_{u}
The flow turning increment $\Delta \nu$ must be specified so that $\left(\nu_{\mathrm{i}}-\nu_{l}\right) / \Delta \nu,\left(\nu_{\mathrm{o}}-\nu_{l}\right) / \Delta \nu$, $\left(\nu_{\mathrm{u}}-\nu_{\mathrm{i}}\right) / \Delta \nu$, and $\left(\nu_{\mathrm{u}}-\nu_{\mathrm{o}}\right) / \Delta \nu$ are all integers. Table I shows a sample input card.

DESCRIPTION OF OUTPUT

An example of the output obtained from the program is shown in table II. The output corresponds to the input data shown in table I and consists of tables of coordinates for the description of two blade sections, supersonic starting and flow separation parameters, and a plot of the blade profile and flow passage. This example required approximately 0.2 minute of computer running time. Each section of the output has been numbered to correspond to the following description:
(1) The first output of the program is a listing of the supersonic starting parameters.

If ISTART $=0$, the program will continue with the blade design calculations. If ISTART=1, no further output is obtained.
(2) The next output is a listing of all the input data plus the value of the calculated outlet flow angle.
(3) If IPRINT=1, the following tables are printed:
(a) Unrotated coordinates of the lower- and upper-surface transition arcs
(b) Coordinates of the lower- and upper-surface circular arcs
(c) Coordinates of the upper-surface straight-line segments

This output is, in general, not of interest except for debugging purposes and may be omitted by setting IPRINT=0.
(4) The next output is tables of the rotated coordinates of the lower and upper transition arcs. In addition, these coordinates are translated by the value of the blade spacing so that coordinates for two blade sections are obtained. Every tenth calculation point is printed if $\Delta \nu<0.2^{\circ}$; otherwise every calculation point is printed.
(5) The next output is a listing of miscellaneous parameters including
(a) Inlet, outlet, and surface dimensionless velocities or critical velocity ratios and Mach numbers
(b) Dimensionless blade spacing, chord and solidity
(c) Separation limitation for the lower- and upper-surface Prandtl-Meyer angles
(6) If NPLOT=0, the final output is a printer plot of the blade profile and the flow passage. If NPLOT=1, this output is omitted.

TABLE II. - Continued. SAMPLE OUTPUT

TABLE II. - Contimued. SAMPLE OUTPUT
UPPERSURFACE
UNRCLTATEL IRANSITIUN ARCS

Y* (up)	X* (UP)	Dutiel
0.4833	-0.	241
0.4831	0.0166	231
0.4827	0.0326	221
0.4821	0.0481	211
0.4812	C. 0631	201
C. 4800	0.0778	191
0.4187	0.0921	181
0.4771	c. 106^{n}	171
0.4753	0.1197	161
0.4733	0.1331	151
C. 4711	0.1462	141
0.4687	0.1591	131
0.4662	0.1718	121
0.4634	0.1843	111
0.4605	0.1967	101
c.4573	0.2089	91
0.4540	0.2209	81
0.4505	0.2328	71
0.4468	C. 2446	61
0.4429	0.2563	51
0.43 H8	0.2678	41
0.4345	0.2193	31
C. 4301	0.2900	21
0.4254	0.3019	11
0.42 Cb	0.3130	1

mbitatel anu thanslated thansitign arcs

* 1 UP1-G*
C.ES7
C.EESS
C.E744
C.tes0
C.と517
C.E4CO
C.ecse
C.etid
C.tc 78
0.7565
0.7 eti
C.7753
C. 7640
C.7530
C. 743 C
C. 1222
C.7el3
c.7165
C.tess
c.eteg
C.t775
C.etes
C.tes 3
6.t441

Y (UP) j. 3433
C. 3315
C. 3200
C. 3486
C. 2752
$\begin{aligned} & c .2043 \\ & i .2534 \end{aligned}$
0.4317
C. 210
C. 2102
C. 1994
$\begin{aligned} & C .1886 \\ & 0.1778 \\ & 0.1070 \end{aligned}$
C. $1<32$
$\begin{aligned} & \text { C. } 1121 \\ & \text { C. } 1009 \end{aligned}$
C.C784

X + (UP)	OUFLEI J
0.3402	241
0.3518	231
0.3629	221
0.3735	211
0.3835	201
0.3931	191
0.4023	181
6.4111	171
0.4190	161
0.4277	151
0.4355	141
0.4430	131
0.4502	121
0.4571	111
0.4638	101
0.4703	91
0.4705	81
0.4825	71
0.4882	61
0.4938	51
0.4991	41
0.5042	31
0.5691	21
0.5139	11
0.5184	1

TABLE II．－Continued．SAMPLE OUTPUT			
$\int x *(U)$	Y＊Clue）	$x \neq$（iup）	Y＊し（ ${ }^{\text {（P）}}$＋G＊
－c．3417	0.3411	－0．2417	c.escl
－u．3307	0.3476	－0．335．	c．scec
－0．32\％	0.3534	－0．3ese	c．s．le
－6．3234	U． 5591	－0．3834	C．S．15
－0．3171	0.3647	－0．3171	c．sisi
－i．31－6	0．3702	－6． 1106	C．Scest
－0．3041	0.3756	－0．3C41	C．S．ac
－0． 0975	U． 38046	－0．2572	C． 5352
－0．csous	U． 3600	－c．csct	c．Sat 3
	0.3410	－0．2E41	c． 5454
－－ 2172	0.3453	－－aita	c．cesc
－c．crue	0.4007	－6．27ca	C． 5 ES
－0．2631	U．4033	－0．etze	C．SES 7
－0．2361	0.4098	－C．estel	
－0．<489	0.4142	－C． 446 ¢	C．ctet
－0．0．410	U．4103	－0．241t	C．Sアジ
－U．2345	U．4227	－0．4342	C． 5771
－ U .2207	U．420？	－C．ces	C．St11
－ 0.2194	0.4308	－0．2154	c．sted
－0．0117	0.4344	－0．2115	C．feg 7
－V．couz	0.4380	－＜．ccta	C．cses
－0．1966	0.4415	－0．1ste	C． 5 css
－0．1806	0.4444		i．ssiz
－w．tydu	0.4481	－0．1816	1．cces
－0．1732	U．4312	－c．1732	1．ccst
－0．1033	U．4341	－0．1t52	1．cces
－0．1ヶ73	0.4509	－0．1513	l．cils
－0．14y3	0.4596	－0．1493	1．c14
－v．i4is	0.4526	－0．1413	1．cies
－0．13s	0.4546	－0．1532	1．ctes
－0．1＜bl	J．4068	－0．1＜ 51	1．cala
－0．110y	0.4089	－u．11ts	1．ces ${ }^{\text {c }}$
－0．1ubs	0.4709	－0．ice：	＋． 6×5
－u．cuvs	$0.41<7$	$-\mathrm{C} .106$	1．cill
－u．uside	0.4744	－c．csea	1．lくty
－0．0034	0.4759	－0．ce3	1．C3C」
－c．crso	0.4713		1． 1.17
$-6 . \operatorname{co7} 3$	c．4786	－6．ctiz	1． 312
－C．csond	0.4141	－U．Cbes	1．≤ 44
－u，ubus	0.4826	－0．cecs	1．6350
－v． 3461	0.4014	－ $0.0 .44<1$	1．6：5t
－vousit	a．4act	－0．6こ3	1．c3ts
－－U．203	1.4020	－C．Cく5	1．c3ic
－v．0109	U．403c	－0．cies	1.1374
－u．lent	3．4032	－C．ccos	1．ctic
0.0000	0.4333	c．ccoc	1．6：\％
U． 0084	0.4354	U．CC84	1．csit
U．410：	0.4334	o．cies	1．6314
c．023s	0.4820	G．6く5	l．C．ic
U．0337	0.4021	O．C：	1．636
－6．4．1	U．4514	U．C4．1	1．C3st
L．uncs		C．Csct	1．csec
c．6say	0.4787	C．CEes	1．0．341
－．co 7 ）	U．4180	o．cets	
1．073c	U．4773	c．cise	1．63i7
c．cosy	U．4124	0．ce3s	1．6．4．
4．07C	0.4744	C．C54	1．C2er
1．－bides	0.4127	c．lus	1．6くil
U．ivar	0.4104	C．1矿	1．ces ${ }^{\text {d }}$
0.1109	U．4505y	－．11es	$1.6<23$
－．1くら1	1．4．0an	C．lics	1．tels
0.1304	0.4146	0.13312	l．（1es
6．141s	10．4022	0.1413	1．Cles
10.1445	0.4240	c．1453	1．ti4
0.1513	19.4504	0.1572	1－613
L． 1633	0.4341	6．165	1．cces
U．1732	0.4512	0.1714	1．cust
u．1610	0.4461	0.1816	1．Cくくり
U．lats	0.4448	O．1eze	L．Sss，
－1960	0.4415	U．lste	C．Css
0.60142	0.4300	U．くC4a	c．esen
0.2114	10.4344	$0 . c 115$	c． cte 7
U． 2144	0.4300	C． 2154	C．St5
0.2204	0.4201	c．asts	C．cell
0.6343	3.4247	0．＜こ4：	C．5771
$0 \cdot<410$	0.4105	U．＜4it	C．Stes
C．240\％	0.4142	c．ects	C．¢¢te
0.2501	0.4040	C．cets	1．5e42
0.2632	0.4053	C．cela	C．5s57
4.2702	0.4007	c．zic：	i． 5 ¢ 6
\％．217	0.3954	0.2315	－5secs
0.2041	0.3910	0.2841	C． 5454
C． 4.40	0.3400	0.2568	C． 54 Cz
	0.3000	0.2575	C． 935
0.3041	U． 3754	4.3041	c．S．cc
C． 3100	U．3742	0.31 ce	C． 5×40
U．3171	0.3047	0.2171	c．s．151
U． 3,14	0.3591	0.3234	C．5135
$4.3<40$	0.3034	c． 32×8	6．sc7e
$\begin{aligned} & 0.3357 \\ & 6.3402 \end{aligned}$	$\begin{aligned} & 0.3476 \\ & 0.3433 \end{aligned}$	0.335%	c． 5 Ec 2 0.4517

TABLE II. - Concluded. SAMPLE OUTPUT

PROGRAM DESCRIPTION

Main Program

The main program generates a table of the inlet and outlet transition arcs of the upper, lower, and translated curves. It also computes several parameters which are pertinent to the blade description, such as Mach numbers and radii, and, as an option, plots a blade profile and flow channel. The plotting is done by subroutine PLOTMY, (ref. 10). The program variables are

ALPH fixed angle
ALPHLN rotation angle for lower-curve inlet transition arc, $\alpha_{l, \text { i }}$
ALPHLO rotation angle for lower-curve outlet transition arc, $\alpha_{l, \text { o }}$
ALPHUI rotation angle for upper-curve inlet transition arc, $\alpha_{u, i}$
ALPHUO rotation angle for upper-curve outlet transition arc, $\alpha_{u, o}$
ALPHUP temporary storage
ALPLOW temporary storage
ANGLE logical switch
BETAN see INPUT
BETAT outlet flow angle, β_{o}
CONVER conversion factor for degrees to radians
COSALN cosine of ALPHLN
COSALO cosine of ALPHLO
COSAUI cosine of ALPHUI
COSAUO cosine of ALPHUO
CSTAR blade chord, C*
DALPH angle increment
DELF see subroutine ROOT
DELV see INPUT
DELXI $\quad 1 / 15$ length of straight-line portion of upper-curve inlet arc
DELXO $\quad 1 / 15$ length of straight-line portion of upper-curve outlet arc
EMJ Slope of Mach lines, m_{j}

EMK slope of Mach lines (eq. (15)), m_{k}
EMWJ slope of wall segments, \bar{m}_{j}
EMWK slope of wall segments (eq. (17)), $\overline{\mathrm{m}}_{\mathrm{k}}$
$F(V, F N) \quad$ internally defined function (eq. (13)), $f\left(R^{*}\right)$
FLO see subroutine START
FN floating point index
FOFX see subroutine ROOT
FUP see subroutine START
GAM ratio of specific heats, γ
GAMEXP $\quad 1 /(\mathrm{GAM}-1)$
GAMM1 (GAM - 1)/2
GAMP1 $\quad(\mathrm{GAM}+1) / 2$
GRTY dummy name
GSTAR blade spacing, G^{*}
I counter
IPRINT see INPUT
ISTART see INPUT

J
JJ variable index
JDEX variable index
JMAXN number of points on upper-curve inlet transition arc
JMAXO number of points on upper-curve outlet transition arc
JMN maximum of JMAXO and JMAXN
JN variable index
JNDEX number of upper-curve transition arc points to be printed
JNN variable index
JO variable index
JOO variable index
K variable index for lower curve

KK	variable index
KKK	array required by PLOTMY (see ref. 10)
KDEX	variable index
KMAXN	number of points on lower-curve inlet transition arc
KMAXO	number of points on lower-curve outlet transition arc
KMN	maximum of KMAXN and KMAXO
KN	variable index
KNDEX	number of lower-curve transition arc points to be printed
KNN	variable index
KO	variable index
KOO	variable index
KOUNT	counter
L	counter
LLL	$\mathrm{NP} 1+\mathrm{NP} 2$
LSTORE	number of points saved per 5° of turning
LSTR	temporary storage
M	counter
MAXN	integer constant
MAXO	integer constant
N	variable index
NPER	variable governing selective storage
NPLOT	see INPUT
NP1	number of points on lower curve which have been saved for plotter
NP2	number of points on translated lower curve which have been saved for plotter
NP3	number of points on upper curve which have been saved for plotter
NSUM	total number of points which have been stored for plotter
NUM	counter
P	array required by PLOTMY (see ref. 10)
PERM	$[(\mathrm{GAM}+1) /(\mathrm{GAM}-1)]^{1 / 2}$

PHIJ flow direction, φ_{j}
PHIJP1 previous value of PHIJ, φ_{j+1}
PHIK flow direction (eq. (12)), $\varphi_{\mathbf{k}}$
PHIKP1 previous value of PHIK, $\varphi_{\mathrm{k}+1}$
R
array for storing radii of major vortex-compression-characteristic points, R_{j}^{*}
RA
RECONV conversion factor for radians to degrees

RIN $1 /$ SSMIN
RLOW radius of circular arc of lower curve as calculated in JOKOS, R_{l}^{*}
ROUT 1 /SSMOUT
RUP radius of upper-curve circular arc, $\mathrm{R}_{\mathrm{u}}^{*}$
SAME see subroutine START
SIGMA blade solidity, σ
SINALN sine of ALPHLN
SINALO sine of ALPHLO
SINAUI sine of ALPHUI
SINAUO sine of ALPHUO
SM temporary storage for Mach numbers, M
SMIN inlet Mach number, M_{i}
SMLOW lower-surface Mach number, M_{l}
SMOUT outlet Mach number, M_{o}
SMS
temporary storage for velocity ratio, M^{*}
SMUP upper-surface Mach number, M_{u}
SSMIN inlet velocity ratio, $\mathrm{M}_{\mathrm{i}}^{*}$
SSMLOW lower-surface velocity ratio, M_{l}^{*}
SSMOUT outlet velocity ratio, $\mathrm{M}_{\mathrm{o}}^{*}$
SSMUP upper-surface velocity ratio, M_{u}^{*}
TANBI tangent of BETAN
TANBO tangent of BETAT

TEMP	temporary storage
TEMPP	temporary storage
TEMPPP	temporary storage
THETA	total flow turning angle, θ
TR	temporary storage for radii
TX	temporary storage for unrotated x^{*}-coordinates
TXLO	temporary storage for values of XLOW(I)
TXUP	temporary storage for values of XUP(I)
TY	temporary storage for unrotated y^{*}-coordinates
TYLO	temporary storage for values of YLOW(I)
TYUP	temporary storage for values of YUP(I)
UMJ	Mach angle, μ_{j}
UMJP1	previous value of $\mathrm{UMJ}, \mu_{\mathrm{j}+1}$
UMK	Mach angle (eq. (15)), μ_{k}
UMKP1	previous value of UMK, $\mu_{\mathrm{k}+1}$
V	temporary storage for Prandtl-Meyer angles, ν
VIMAX	see subroutine START
VIN	see INPUT
V LOW	see INPUT
VLSPMN	```minimum lower-surface Prandtl-Meyer angle from separation criterion, (\nu}\mp@subsup{l}{\mathrm{ min}}{m```
VNL	VIN-VLOW
VOL	VOUT-VLOW
VOUT	see INPUT
VUI	VUP-VIN
VUMAX	$\frac{\pi}{2}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right)$
VUP	see INPUT

VUSPMX

VUT
X0
X1
X2
XCG
XCLOW
XCUP
XDOWN
XINTL
XLOW

XLOWN

XLOWO

XMLOW
XMUP temporary storage for values of -XUP(I)
XSIN $\quad X^{*}$-coordinate of a point on inlet straight-line portion of upper curve
XsOUT
XUP

XUPN

XUPO

YACRS1
YACRS2
maximum upper-surface Prandtl-Meyer angle from separation criterion, $\left(\nu_{\mathrm{u}}\right)_{\text {max }}$
VUT VUP-VOUT
X0 see subroutine ROOT
see subroutine ROOT
see subroutine ROOT
X^{*}-coordinate of a translated-curve circular arc point
X^{*}-coordinate of a lower-curve circular arc point
X^{*}-coordinate of an upper-curve circular arc point
array for storing X^{*}-coordinate of points to be plotted
see subroutine ROOT
array for storing x^{*}-coordinate of unrotated lower transition arc points, ${ }_{\left(x_{l}^{*}\right)}{ }_{k}$
array for storing X^{*} - coordinate of lower-curve rotated inlet transition arc points, $\left(X_{l}^{*}\right)_{k, i}$
array for storing X^{*}-coordinate of lower-curve rotated outlet transition arc points, $\left(X_{l}^{*}\right){ }_{k, o}$
temporary storage for values of -XLOW(I) X* coordinate of a point on outlet straight-line portion of upper curve array for storing x^{*}-coordinate of unrotated upper transition arc points, $\left(\mathrm{x}_{\mathrm{u}}^{*}{ }_{\mathrm{j}}\right.$
array for storing X^{*}-coordinate of upper-curve rotated inlet transition arc points, $\left(X_{u}^{*}\right)_{j, i}$
array for storing X^{*}-coordinate of upper-curve rotated outlet transition arc points, $\left(X_{\mathrm{u}}^{*}\right)_{\mathrm{j}, \mathrm{o}}$
array for storing Y^{*}-coordinates of points for plotter
array for temporary storage of Y^{*}-coordinate of translated lower-curve points for plotter

YCG $\quad \mathrm{Y}^{*}$-coordinate of a translated-curve circular arc point
YCLOW Y^{*}-coordinate of a lower-curve circular arc point
YCUP $\quad Y^{*}$-coordinate of an upper-curve circular arc point
YLASTI Y^{*}-coordinate of first point on inlet side of upper curve
YLASTO Y^{*}-coordinate of first point on outlet side of upper curve
YLOW array for storing y^{*}-coordinate of unrotated lower transition arc points, $\left(y_{l}^{*}\right){ }_{k}$

YLOWN array for storing Y^{*}-coordinate of lower-curve rotated inlet transition arc points, $\left(\mathrm{Y}_{l}^{*}\right){ }_{\mathrm{k}, \mathrm{i}}$
YLOWO array for storing Y^{*}-coordinate of lower-curve rotated outlet transition arc points, $\left(\mathrm{Y}_{l}^{*}\right)_{\mathrm{k}, \mathrm{o}}$
YNG
temporary storage for Y^{*}-coordinate of a point on translated-curve inlet transition arc

YSIN $\quad Y^{*}$-coordinate of a point on inlet straight-line portion of upper curve
YSNG $\quad Y^{*}$-coordinate of a point on inlet straight-line portion of translated upper curve

YSOUT $\quad \mathrm{Y}^{*}$-coordinate of a point on outlet straight-line portion of upper curve
YSTG $\quad \mathrm{Y}^{*}$-coordinate of a point on outlet straight-line portion of translated upper curve

YTG temporary storage for Y^{*}-coordinate of a point on translated-curve outlet transition arc

YUP array for storing y^{*}-coordinate of unrotated upper transition arc points, $\left(y_{u}^{*}\right)$
YUPN array for storing Y^{*}-coordinate of upper-curve rotated inlet transition arc points, $\left(\mathrm{Y}_{\mathrm{u}}^{*}\right)_{\mathrm{j}, \mathrm{i}}$
YUPO array for storing Y^{*}-coordinate of upper-curve rotated outlet transition arc points, $\left(\mathrm{Y}_{\mathrm{u}}^{*}\right)_{\mathrm{j}, \mathrm{o}}$

Subroutine R00T

Subroutine ROOT is a general routine for finding the roots of equations and is derived from the "half-interval search" method described in reference 11. This method
depends on successively halving an interval which is known to contain the desired root. Subroutine ROOT is used to calculate R^{*} from equation (10b).

A call to ROOT has the form CALL ROOT (X0, X2, XINTL, FOFX, FUNC, X1), where the elements of the call vector are

X0 lower bound of initial root interval
X 2 upper bound of initial root interval
XINTL initial estimate of value of root
FOFX given value of dependent variable
FUNC externally defined function
$\mathrm{X} 1 \quad$ value of root
Other program variables are
A FOFX-F2
DELF convergence criterion
F0 function FUNC evaluated at XX0
F2 function FUNC evaluated at XX2
FX function FUNC evaluated at X
KOUNT count of number of iterations performed
X temporary storage for present estimate of root
XX0 present value of lower bound of root interval
XX2 present value of upper bound of root interval

Subroutine START

Subroutine START is used to compute the maximum value of the inlet Prandtl-Meyer angle (ν_{i}) ${ }_{\text {max }}$ for supersonic starting for various lower- and upper-surface PrandtlMeyer angles. Several other parameters of interest are computed by START and are printed as output. Among these parameters are the vortex constant for maximum weight flow $\mathrm{K}_{\text {max }}^{*}$, the reduction in weight flow due to two-dimensional flow C , and the maximum value of the inlet velocity ratio for supersonic starting $\left(\mathrm{M}_{\mathrm{i}}^{*}\right){ }_{\max }$.

A call to START has the form CALL START (VLOW, FLO, VUP, FUP, VIMAX), where the elements of the call vector are

VLOW lower-surface Prandtl-Meyer angle, ν_{l}

FLO eq. (10b) evaluated at R_{l}^{*}
VUP. upper-surface Prandtl-Meyer angle, ν_{u}
FUP eq. (10b) evaluated at R_{u}^{*}
VIMAX maximum inlet Prandtl-Meyer angle for supersonic starting, (ν_{i})
Other program variables are
BINTGR value of integral (eq. (27b))
C reduction in maximum weight flow due to two-dimensional flow (eq. (34b))
CINTGR value of integral (eq. (32))
FINTL eq. (27) evaluated at $\mathrm{K}_{\text {max }}^{*}=$ XINTL
F0 eq. (27) evaluated at $K_{\text {max }}^{*}=X 0$
F2 eq. (27) evaluated at $\mathrm{K}_{\text {max }}^{*}=\mathrm{X} 2$
FOFX eq. (27) evaluated at $K_{\text {max }}^{*}=$ XAMK
Q eq. (34a)
RATIO ratio of Q to $1-\mathrm{C}$
RLOW radius of circular portion of lower curve, R_{l}^{*}
RUP radius of circular portion of upper curvt, R_{u}^{*}
SAME square of ratio of XAMK to SSMIOW
SLOPE slope of line
SSMIAX maximum value of entering velocity ratio for starting, (M_{i}^{*})
SSMLOW lower-surface velocity ratio, M_{l}^{*}
SSMUP upper-surface velocity ratio, $\mathrm{M}_{\mathrm{u}}^{*}$
WSTAR weight-flow parameter (eq. (32))
XAMK vortex constant for maximum weight flow, $\mathrm{K}_{\max }^{*}$
XINTL initial estimate of a parameter
X0 lower bound of a parameter
$\mathrm{X} 2 \quad$ upper bound of a parameter
YINCPT y-intercept of a line

Subroutine MSSTAR

Subroutine MSSTAR is used to determine the minimum lower-surface Prandtl-Meyer angle and the maximum upper-surface Prandtl-Meyer angle from separation considerations. This subroutine uses ROOT and ADSTR in the calculation of these angles.

A call to MSSTAR has the form CALL MSSTAR (M, N, VSSTAR), where the elements of the call vector are
$\mathrm{M} \quad$ inlet or outlet dimensionless velocity, $\mathrm{M}_{\mathrm{i}}^{*}$ or $\mathrm{M}_{\mathrm{O}}^{*}$, respectively
$\mathrm{N} \quad$ variable switch
VSSTAR Prandtl-Meyer angle from separation criterion, $\left(\nu_{l}\right)_{\min }$ or $\left(\nu_{u}\right)_{\max }$ The other variables used by MSSTAR are

A	$\frac{\pi}{4}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right)$
B	$\frac{1}{2} \sqrt{\frac{\gamma+1}{\gamma-1}}$
C	$\gamma-1$
D	$\gamma+1$
MS	velocity ratio from separation criterion, $\left(\mathrm{M}_{l}^{*}\right)_{\text {min }} \quad$ or $\left(\mathrm{M}_{\mathrm{u}}^{*}\right){ }_{\max }$
X0	see subroutine ROOT
X2	see subroutine ROOT
XINTL	see subroutine ROOT
FOFX	see subroutine ROOT
SQRDMS	(MS) ${ }^{2}$

Subroutine SIMPSI

This function subprogram is used to perform numerical integration of explicit functions of one variable. The integration is performed by a modification of Simpson's rule, in which a sufficient number of intervals is used to assure six or more significant figures in the result.

A call to SIMPS 1 has the form ANSWER = SIMPS1 (XMIN, XMAX, FUNC1, KER), where the elements of the call vector are

XMIN lower limit of integration
XMAX upper limit of integration
FUNC1 externally defined function of a single variable
KER storage for flagging result if necessary
Other program variables are
A array for storing functional values at certain partition points
ANS sum of subapproximations
B array for storing functional values at certain partition points
C array for storing functional values at certain partition points
E array for storing difference terms
FRAC variable tolerance used for subapproximations
H distance between successive points of partition
K variable index
$\mathrm{N} \quad$ counter
NE equivalent to E
NTEST equivalent to TEST
P array for storing successive subapproximations
Q sum of difference terms
SIMPS1 value of desired integral
TEST tester for subapproximations
T tolerance for difference terms
V array for storing partition points of interval

Function Subprograms

The following function subprograms are used intermittently throughout the main program and subroutines:

FUNCTION ALFUNC (A, B, Y), defined by ALFUNC where

$$
\text { ALFUNC }=\frac{1}{\mathrm{Y}}\left(\mathrm{~A}-\mathrm{BY}^{2}\right)^{1 /(\gamma-1)}
$$

FUNCTION CFACT (Y), defined by CFACT where

$$
\mathrm{CFACT}=\frac{1}{\mathrm{Y}}\left[1-\left(\frac{\mathrm{K}_{\mathrm{max}}^{*}}{\mathrm{M}_{l}^{*}}\right)^{2} \mathrm{Y}^{2}\right]^{1 /(\gamma-1)}
$$

FUNCTION QFACT (Y), defined by QFACT where

$$
\text { QFACT }=\frac{1}{\mathrm{Y}}\left(\frac{\gamma+1}{2}-\frac{\gamma-1}{2} \mathrm{Y}^{2}\right)^{1 /(\gamma-1)}
$$

FUNCTION FRAT (Y), defined by FRAT where

$$
\text { FRAT }=\frac{2 \gamma}{\mathrm{Y}^{\gamma-1}}\left(\frac{\frac{\gamma+1}{2}-\frac{\gamma-1}{2} \mathrm{Y}^{2}}{\frac{\gamma+1}{2} \mathrm{Y}^{2}-\frac{\gamma-1}{2}}\right)^{1 /(\gamma-1)}
$$

FUNCTION FOFRS (X), defined by FOFRS where

$$
\text { FOFRS }=\sqrt{\frac{\gamma+1}{\gamma-1}} \arcsin \left(\frac{\gamma-1}{\mathrm{x}^{2}}-\gamma\right)+\arcsin \left[(\gamma+1) \mathrm{X}^{2}-\gamma\right]
$$

FUNCTION FKMAX (Y, L), defined by FKMAX where

$$
\operatorname{FKMAX}=\int_{\mathrm{M}_{l}^{*}}^{\mathrm{M}_{\mathrm{u}}^{*}}\left[1-\left(\frac{\mathrm{Y}}{\mathrm{M}_{l}^{*}}\right)^{2} \mathrm{Z}^{2}\right]^{1 /(\gamma-1)} \frac{\mathrm{dZ}}{\mathrm{Z}}+\left[1-\mathrm{Y}^{2}\left(\frac{\mathrm{M}_{\mathrm{u}}^{*}}{\mathrm{M}_{l}^{*}}\right)^{2}\right]^{1 /(\gamma-1)}-\left(1-\mathrm{Y}^{2}\right)^{1 /(\gamma-1)}
$$

and L is an optional switch.
FUNCTION ADSTR (X), defined by ADSTR where

$$
\operatorname{ADSTR}=\sqrt{\frac{\gamma+1}{\gamma-1}}\left\{1-\left[1-\left(\frac{\gamma-1}{\gamma+1}\right) \mathrm{X}^{2}\right]\left[1+\frac{1}{2}\left(\frac{\frac{\gamma+1}{\gamma+\mathrm{X}^{2}}}{1-\frac{\gamma-1}{\gamma+1} \mathrm{X}^{2}}\right)\right]^{(\gamma-1) / \gamma}\right\}^{1 / 2}
$$

PROGRAM LISTING

```
        COMMON/EXPALF/GAMEXP
        COMMON/ROOTS/DELF
        COMMON/FACTOR/PERM,SAME,GAM,GAMM1,GAMP1,SSMLOW,SSMUP,RECONV,GRTY
        DIMENSION R(800),RA(800),XLOW(800),YLOW(800),XLOWN(800),YLOWN(800)
    1,XUP(800), YUP(800),XLOWO(800), YLOWO(800), XUPN(800), YUPN(800),
    2XUPO(800), YUPO(800)
        DIMENSION XDOWN(400),YACRS1(400),YACRS2(200),KKK(14),P(20)
        LOGICAL ANGLE
    EXTERNAL FOFRS
    F(V,FN) = (2.*V) - ((3.14159265/2.)*(PERM-1.)) - (2.*(FN-1.)*DELV)
    INPUT AND TITLE
        ISTART=0 FOR STARTING AND DESIGN ISTART=1 FOR STARTING UNLY
        NPLOT=0 IF PLOT IS DESIRED NPLOT=1 IF PLOT IS NOT DESIRED
        IPRINT=0 PRINT ROTATED COORDINATES ONLY IPRINT=1 PRINT UNROTATED
                                    AND ROTATED COORDINATES
        1 READ (5,11) VIN,VOUT,BETAN,VLOW,VUP,DELV,GAM,ISTART,NPLOT,IPRINT
        11 FORMAT ( 7(F6.2,2X),3(I1,2X) )
        WRITE (6.99)
    99 FORMAT (1HI,3RX,53HD E S I GN D F S UPERSSONICCBLA
        1 D E S)
    CONVERSION FACTORS AND CONSTANTS
    CONVER = . 174532925E-01
    RECONV = 57.2957796
        ONE POINT WILL BE PRINTED FOR EVERY NPER POINTS CALCULATED
        IF (DELV .GE. 0.2) GO TO l2
    NFER = 10
    GO TO 13
12 NPER = 1
13 GAMP1 = (GAM + 1.)/2.
    GAMM1 = (GAM-1.)/2.
    GAMEXP = 1./(GAM-1.)
    PERM = SQRT(GAMP1/GAMM1)
    DELF = 0.000001
    X0 = 1./PERM
    *2 = 0.999999999
    XINTL = (X0 + X2)/2.
    LSTORE = (5.0/DELV)/FLOAT(NPER)
    DALPH = 1.0*CONVER
    ANGLE = .TRUE.
    IF (VLOW .LE. AMINI(VUP,VIN,VOUT)) GO TO 120
    WRITE (6,119)
```

```
    119 FORMAT (//31X,7OHV(LOW) MUST BE LESS THAN OR EOUAL TO THE MINIMUM
        lOF V(UP),V(IN),V(OUT))
            ANGLE =.FALSE.
    120 IF (VUP .GE. AMAXI(VIN,VOUT)) GO TO 118
        WRITE (6,117)
    117 FORMAT (//33X,GGHV(UP) MUST BE GREATER THAN OR EQUAL TO THE MAXIMU
    IM OF V(IN),V(OUT))
            ANGLE =.FALSE.
    118 VUMAX = (3.14150265/2.)*(PERM-1.)*RECONV
        IF (VUP .LE. VUMAX) GO TO 116
        WRITE (6,115) VUMAX
    115 FORMAT (//41X,37HV(UP) MUST BE LESS THAN V(UP)(MAX) =,F9.4,4H DEG
        1)
            ANGLE =.FALSE.
    116 IF (.NOT. ANGLE) GO TO 1
CC PARAMETERS FOR STARTING
            VLOW = VLOW*CONVER
            FLO = F(VLOW,1.0)
            VUP = VUP#CONVER
            FUP = F(VUP,1.0)
            CALL START (VLOW,FLO,VUP,FUP,VIMAX)
            IF (ISTART .NE. 0) GO TO I
            WRITE (6,97)
    97 FORMAT (//58x,17HDESIGN PARAMETERS)
CC MISCELLANEOUS CALCULATIONS
            DELV = DELV*CONVER
            FN=1.
            V = VIN*CONVER
            00 4 I=1,2
            FOFX = F(V,FN)
            CALL ROOT (XO,X2,XINTL,FOFX,FOFRS,XI)
            IF (I .EO. 2) GO TO 4
    RIN = XI
    V = VOUT*CONVER
    4 CONTINUE
    ROUT = XI
    SSMIN = 1./RIN
    CALL MSSTAR (SSMIN,O,VLSPMN)
    SSMOUT = l./ROUT
    CALL MSSTAR (SSMOUT,1,VUSPMX)
    SMS = SSMIN
    I = 1
    16 SM = SQRT(((1./GAMP1)*SMS*SMS)/(1.-(GAMM1/GAMP1)*SMS*SMS))
    GO TO (17,18,19,20),I
    17 SMIN = SM
    SMS = SSMOUT
```

```
        I = 2
        GO TO 16
    18 SMOUT = SM
        TEMP = (((GAMM1*SMOUT*SMOUT)+1.)/((GAMM1*SMIN*SMIN)+1.))**(GAMP1
    1/(2.*GAMM1))
        BETAN = BETAN*CONVER
        BETAT = -ARCOS(COS(BETAN)*(SMIN/SMOUT)*TEMP)
        BETAT = BETAT*RECONV
        BETAN = BETAN*RECONV
        DELV = DELV*RECONV
CC PRINT ALL DESIGN PARAMETERS
    WRITE (6,95) BETAN,VIN,VUP,VOUT,BETAT
    95 FORMAT (/2X,11HBETA(IN) = F7.4,4H DEG,4X,8HV(IN) = F7.4,4H DEG,
    16X,8HV(UP) =,F8.4,4H DEG,7X,9HV(OUT) = ,F7.4,4H DEG,4X,12HBETA(OU
    2T) =,F8.4,4H DEG)
        WRITE (6,94) DELV, VLOW, GAM
        94 FORMAT (/20X,1OHDELTA V = ,F7.4,4H DEG,llX,9HV(LOW) = F7.4,4H DEG
    1,llX,8HGAMMA = ,F7.4)
CC CONVERT FROM DEGREES TO RADIANS
        VIN = VIN*CONVER
        VOUT = VOUT*CONVER
        VUP = VUP*CONVER
        VLOW = VLOW*CONVER
        BETAN = BETAN*CONVER
        BETAT = BETAT*CONVER
        DELV = DELV*CONVER
CC CHOOSE LONGEST TRANSITION ARC OF LOWER SURFACE
    VNL = VIN - VLOW
    KMAXN = (VNL/DELV) + 0.5
    VOL = VOUT - VLOW
    KMAXO = (VOL/OELV) + 0.5
    KMN = MAXO(KMAXN,KMAXO)
    V = AMAXI(VIN,VOUT)
CC CALCULATE R*(LOW)=RLOW, M*(LOW)=SSMLOW, M(LOW)=SMLDW
        IF (VLOW .EQ. 0.O) GO TO 2
        FN = KMN + l
        FOFX = F(V,FN)
        CALL ROOT (XO,X2,XINTL,FOFX,FOFRS,RLOW)
        GO TO 3
        2 RLOW = 1.0
        3 SSMLOW = 1./RLOW
        SMS = SSMLOW
        I = 3
        GO TO 16
    19 SMLOW = SM
CC SFT INITIAL POINTS FOR LOWER ARC CALCULATIONS
    KNDEX = KMN/NPER
    KDEX = KNOEX
    RA(KDEX+1) = RLOW
    XLOW(KDEX+1) = 0.0
    YLOW(KDEX+1) = RLOW
```

```
    PHIKPI = -(V-VLOW) + FLOAT(KMN)*OELV
    UMKPI = ARSIN(SQRT(GAMPI*RLOW*RLOW - GAMMI))
    TXLO = XLOW (KDEX+1)
    TYLO = YLOW(KDEX+1)
    ALPHLN = VNL - BETAN
    ALPHLO = - (VOL +BETAT)
    IF (ALPHLN .LE. 0.0 .AND. ALPHLO .GE. 0.0) GO TO 110
    ANGLE = .FALSE.
        WRITE (6,111)
    111 FORMAT (//27X,79HV(LOW) MUST BE GREATER THAN OR EQUAL TO V(IN) - B
        lETA(IN) AND V(OUT) + BETA(OUT))
CC CHOOSF LONGEST TRANSITION ARC OF UPPER SURFACE
    110 VUT = VUP - VOUT
            JMAXO = (VUT/DELV)+0.5
            VUI = VUP - VIN
            JMAXN = (VUI/DELV)+0.5
            JMN = MAXO(JMAXO,JMAXN)
            V = AMINI(VOUT,VIN)
CC CALCULATE R*(UP)=RUP, M*(UP)=SSMUP, M(UP)=MUP
            FN=-(JMN+1)+2
            FOFX=F(V,FN)
            CALL ROOT (XO,X2,XINTL,FOFX,FOFRS,RUP)
            SSMUP = 1./RUP
            SMS = SSMUP
            l = 4
            GO TO 16
        20 SMUP = SM
CC SET INITIAL POINTS FOR UPPER ARC CALCULATIONS
            JNDEX = JMN/NPER
            JDEX = JNDEX
            R(JDEX+1) = RUP
            XUP(JDEX+1)=0.0
            YUP(JDEX+1) = RUP
            PHIJPI = -(VUP-V) + FLOAT(JMN) &DELV
            UMJP1 = ARSIN(SORT(GAMP1*RUP*RUP - GAMM1))
            TXUP = XUP(JDEX+1)
            TYUP = YUP(JDEX+1)
            ALPHUI = VUI - BETAN
            ALPHUO = - (VUT+BETAT)
            IF (ALPHUI .LE. 0.0 .AND. ALPHUO .GE. O.O) GO TO 112
            ANGLE = .FALSE.
            WRITE (6,113)
    113 FORMAT (//28X,75HV(UP) MUST BE LESS THAN OR EQUAL TO V(IN) + BETAI
            IIN) AND V(OUT) - BETA(OUT))
    112 IF (.NOT. ANGLEI GO TO l
    IF IVIN.EQ. VLOW .AND. VLOW.EQ. VOUT) GO TO 100
C**%CALCULATE COORDINATES FOR LOWER TRANSITION ARC - UNROTATED
    KDEX = KNDEX + 1
    NUMM = O
```

```
    V = AMAXI(VIN,VOUT)
    DO 30 KK=1,KMN
    K = (KMNN+1)-KK
    NUM = NUM + 1
    PHIK = PHIKPI - DELV
    FN=K
    FOFX = F(V,FN)
    CALL ROOT (XO,X2,XINTL,FOFX,FOFRS,TR)
    TX = TR*SIN(PHIK)
    TY = TR*COS(PHIK)
    EMWK = TAN(-PHIKPI)
    UMK = ARSIN(SQRT(GAMPI*TR*TR - GAMMI))
    EMK = -TAN((PHIK+UMK+PHIKP1+UMKP1)/2.)
    TEMP = TYLO - EMWK*TXLO
    TEMPP = TY - EMK*TX
    TEMPPP = EMK - EMWK
    TXLO = (TEMP - TEMPP)/TEMPPP
    TYLO = ((EMK*TEMP) - (EMWK*TEMPP))/TEMPPP
    PHIKPl = PHIK
    UMKPI = UMK
CC SAVE EVERY =NPER-TH= POINT
    N = NUM - (NUM/NPER)#NPER
    IF (N .GT. O) GO TO 30
    KDEX = KDEX - 1
    RA(KDEX) = TR
    XLOW(KDEX) = TXLO
    YLOW(KDEX) = TYLO
    30 CONTINUE
C***#CALCULATE COORDINATES FOR LOWER TRANSITION ARC - RDTATED
    100 KDEX = KNDEX + 1
        KMN = KMN + 1
        SINALN = SIN(ALPHLN)
        COSALN = COS(ALPHLN)
        SINALO = SIN(ALPHLO)
        COSALD = COS(ALPHLO)
        KN = (KMAXN/NPER) + 2
        KO = (KMAXO/NPER) + 2
        DO 40 KK=1,KDEX
        K = (KDEX+1) - KK
        KN = KN - 1
        KO = KO - 1
        IF (KN .LE. O) GO TO 401
        XLOWN(KN) = YLOW(K)*SINALN + XLOW(K)*COSALN
        YLOWN(KN) = YLOW(K)*COSALN - XLOW(K)*SINALN
    401 IF (KO .LE. O) GO TO 40
        XLOWO(KO) = YLOW(K)*SINALO - XLOW(K)*COSALO
        YLOWO(KO) = YLOW (K)*COSALO + XLOW (K)*SINALO
        40 CONTINUE
            IF IVIN.EQ. VUP .AND. VUP .EQ. VOUTI GO TO 200
C****CALCULATE COORDINATES FOR UPPER TRANSIIION ARC - UNROTATFD
```

```
        JDEX = JNDEX + 1
        NUM = 0
        V = AMINL(VOUT,VIN)
        DO 41 JJ=1,JMN
        J = (JMN+1) - JJ
        NUM = NUM + 1
        PHIJ = PHIJPI - DELV
        FN=-J + 2
        FOFX= F(V,FN)
        CALL ROOT (XO,X2,XINTL,FOFX,FOFRS,TR)
    TX = TR*SIN(PHIJ)
    TY = TR*COS(PHIJ)
    EMWJ = TAN(-PHIJPI)
    UMJ = ARSIN(SQRT(GAMP1*TR*TR - GAMMI))
    EMJ = TAN((-PHIJ+UMJ-PHIJPl+UMJP1)/2.)
    TEMP = TYUP - EMWJ*TXUP
    TEMPP = TY - EMJ*TX
    TEMPPP = EMJ - EMWJ
    TXUP = (TEMP - TEMPP)/TEMPPP
    TYUP = ((EMJ*TEMP) - (EMWJ*TEMPP))/TEMPPP
    PHIJPI = PHIJ
    UMJPI = UMJ
            SAVE EVERY =NPER-TH= POINT
    N = NUM - (NUM/NPER)*NPER
    IF (N.GT. O) GO TO 41
    JDEX = JDEX - l
    R(JDEX) = TR
    XUP(JDEX) = TXUP
    YUP(JDEX) = TYUP
    41 CONTINUE
C***CALCULATE COORDINATES FOR UPPER TRANSITION ARC - ROTATED
    200 JDEX = JNDEX + 1
        JMN = JMN + l
        SINAUI = SIN(ALPHUI)
        COSAUI = CUS(ALPHUI)
        SINAUO = SIN(ALPHUO)
        COSAUO = COS(ALPHUO)
        JN = (JMAXN/NPER) + 2
        JO = (JMAXO/NPER) + 2
            DO 47 JJ=1,JDEX
            J = (JDEX+1) - JJ
            JO= J0-1
            JN=JN - 1
            IF (JO.LE. 0) GO TO 471
            XUPO(JO) = YUP(J)*SINAUO - XUP(J)*COSAUO
            YUPO(JO)= YUP(J)*COSAUO + XUP(J)*SINAUO
    471 IF (JN .LE. 0) GO TO 47
            XUPN(JN) = YUP(J)*SINAUI + XUP(J)*COSAUI
            YUPN(JN) = YUP(J)*COSAUI - XUP(J)*SINAUI
    4 CONTINUE
cc calculate G* - the oimensionlfss blade spacing
            TANBI = TAN(BETAN)
            YLASTI = YUPN(1) + TANBI*(XLOWN(1) - XUPN(1))
```

```
        GSTAR = YLOWN(1) - YLASTI
CC TITLES
    WRITE (6,93)
    93 FORMAT (///54X,25HL O W E R S UR F A C E)
        IF (IPRINT .EQ. 0) GO TO 844
        WRITE (6,88)
    88 FORMAT (/54X,25HUNROTATED TRANSITION ARCS)
        WRITE (6,87)
    87 FORMAT (//2X,8H INLET K,4X,8HX*(LOW) , 3X,8HY*(LOW) ,68X,8HY*(LOW)
    1,3X,8HX*(LOW) ,2X,8HOUTLET K)
C##%#PRINT COORDINATES FOR LOWER TRANSITION ARC - UNROTATED
        KDEX = KNOEX + 2
        DO 5l KK=1,KMN,NPER
        K = (KMNN+1) - KK
        KN = (KMAXN+2) - KK
        KO = (KMAXO+2) - KK
        KDEX = KDEX - 1
        XMLOW = -XLOW(KDEX)
        IF (KN .GT. O .AND. KO .GT. O) GO TO 5l0
        IF (KN .LE. O) GO TO 511
        WRITE (6,861) KN,XLOW(KDEX),YLOW(KDEX)
    861 FORMAT (4X,I4,5X,F8.4,3X,F8.4)
        GO TO 51
    511 WRITE (6,863) YLOW(KDEX),XMLOW,KO
    863 FORMAT (100X,FR.4,3X,F8.4,5X,I4)
        GO TO 51
    5 1 0 ~ W R I T E ~ ( 6 , 8 6 0 ) ~ K N , ~ X L O W ( K D E X ) , Y L O W ( K D E X ) , ~ Y L O W ( K D E X ) , ~ X M L O W , K O ~
    860 FORMAT ( }4\textrm{X},\textrm{I}4,5\textrm{X},\textrm{FB}.4,3X,F8.4,68X,F8.4,3X,F8.4,5X,I4
        51 CONTINUE
CC TITLES
    844 WRITE (6,92)
        92 FORMAT (1HL, 46X,38HROTATED AND TRANSLATEO TRANSITION ARCS)
        WRITE (6,84)
        84 FORMAT (//2X,8H INLET K,6X,7HX*(LOW),7X,7HY*(LOW),6X,10HY*(LOW)-G*
            1,28X,10HY*(LOW)-G*,5X,7HY*(LOW),7X,7HX*(LOW),5X,8HUUTLET K)
C***%PRINT COORDINATES FOR LOWER TRANSITION ARC - ROTATED
        M = l
        XDOWN(M) = XLOWN(1)
        YACRSI(M) = YLOWN(1)
        YACRS2(M) = YLOWN(1) - GSTAR
        M = M + l
        XDOWN(M) = XLOWO(1)
        YACRSI(M) = YLOWO(1)
        YACRS2(M) = YLOWO(1) - GSTAR
CC STORE POINTS FOR PLOTTER - ONE POINT FOR EVERY FIVE DEGRFES OF TURNING
        MAXN = (KMAXN/NPER) + 1
        MAXO = (KMAXO/NPER) + 1
        KNN = MAXN + 1
        KOO = MAXO + 1
        I = 0
```

```
    DO 55 KK=1,KMN,NPER
    KN = (KMAXN+2) - KK
    KO = (KMAXO)+2) - KK
    KNN = KNN - 1
    KOO = KOO - l
    I = I + l
    LSTR= LSTORE*I
    IF (KN.GT. O .AND. KO .GT. O) GO TO 550
    IF (KN .LE. 0) GO TO 551
    IF (LSTR .GT. MAXN) GO TO 559
    M = M + 1
    XOOWN(M) = XLOWN(LSTR)
    YACRSI(M) = YLOWN(LSTR)
    YACRS2(M) = YLOWN(LSTR) - GSTAR
559 YNG = YLOWN(KNN) - GSTAR
    WRITE (6,831) KN,XLOWN(KNN),YLOWN(KNN),YNG
831 FORMAT (4X,I4,7X,F8.4,6X,F8.4,6X,F8.4)
    GO 10 55
551 IF (LSTR .GT. MAXO) GO TO 557
    M = M + 1
    XDOWN(M) = XLOWO(LSTR)
    YACRSI(M) = YLOWO(LSTR)
    YACRS?(N) = YLOWO(LSTR) - GSTAR
557 YTG = YLOWO(KOO) - GSTAR
    WRITE (6,833) YTG,YLOWO(KOO), XLOWO(KOO),KO
833 FORMAT (81X,F8.4,6X,F8.4,6X,F8.4,7X,I4)
    GO TO 55
550 YNG = YLOWN(KNN) - GSTAR
    YTG = YLOWO(KOO) - GSTAR
    IF (LSTR .GT. MAXN) GO TO 558
    M = M + l
    XDOWN(M) = XLOWN(LSTR)
    YACRSI(M) = YLOWN(LSTR)
    YACRS2(M) = YLOWN(LSTR) - GSTAR
558 IF (LSTR .GT. MAXOI) GO TO 556
    M = M + 1
    XOOWN(M) = XLOWO(LSTR)
    YACRSI(M) = YLOWO(LSTR)
    YACRS2(M) = YLOWO(LSTR) - GSTAR
    556 WRITE (6,830) KN,XLOWN(KNN),YLOWN(KNN),YNG,YTG,YLOWO(KOO), XLOWO(KO
    10),KO
    830 FORMAT ( }4\textrm{X},\textrm{I}4,7\textrm{X},\textrm{F}8.4,6\textrm{X},\textrm{F}8.4,6\textrm{X},\textrm{FR}.4,30X,F8.4,6X,F8.4,6X,F8.4,7X
    1I4)
    55 CONTINUE
    M=M+1
        XDOWN(M) = XLOWN(MAXN)
        YACRSI(M) = YLOWN(MAXN)
        YACRS2(M) = YLOWN(MAXN) - GSTAR
        M=M + 1
        XDOWN(M) = XLOWO(MAXO)
        YACRSI(M) = YLOWO(MAXO)
        YACRS2(M) = YLOWO(MAXO) - GSTAR
C*CIRCULAR ARC (LOWER)
    IF (IPRINT .EQ. O) GO TO &10
```

```
                            WRITE (6.81)
            81 FORMAT (//60X,13HCIRCULAR ARCS//40X,8HX*C(LOW),3X,8HY*C(LOW),16X,
            1 8HX*C(LOW), 3X,11HY*C(LOW)-G*)
        810 M = M + 1
            XDOWN(M) = 0.0
            YACRS1(M) = RLOW
            YACRS2(M) = RLOW - GSTAR
            THETA = (BETAN - BETAT)#RECONV
            ALPH = ALPHLO + DALPH
            ALPLOW = ALPHLN
            KOUNT = O
        60 XCLOW = RLOW*SIN(ALPLOW)
            YCLOW = RLOW*COS(ALPLON)
            XCG = XCLOW
            YCG = YCLOW - GSTAR
            KOUNT = KOUNT + l
            IF (KOUNT .NE. LSTORE) GO TO 601
            KOUNT = O
            M = M + l
            XDOWN(M) = XCLOW
            YACRSI(M) = YCLOW
            YACRS2(M) = YCG
        601 IF (IPRINT .EQ. 0) GO TO 800
            WRITE (6,80) XCLOW,YCLOW,XCLOW,YCG
        80 FORMAT ( 39X,F8.4,3X,F8.4,16X,F8.4,3X,F8.4)
    800 ALPLOW = ALPLOW + DALPH
            IF (ABS(ALPH-ALPLOW).LE. 0.001) GO TO 56
            IF (ALPHLO .LT. ALPLOW .AND. ALPLOW .LT. ALPH) ALPLOW = ALPHLO
            GO TO 60
CC StORE the translated lower arc for plotter
        56 NP1 = M
            DO 2000 I=1,NPI
            M = M + l
            XDOWN(M) = XDOWN(I)
    2000 YACRS1(M) = YACRS2(I)
    NP2 = NP1
CC TITLFS
    WRITE (6,79)
        79 FORMAT (1Hl,53X,25HU P P E R S UR F A C E)
            IF (IPRINT.EQ. 0) GO TO 700
            WRITE (6,74)
        74 FORMAT (/54X,25HUNROTATED TRANSITION ARCS)
            WRITE (6,73)
        73 FORMAT (//2X,8H INLET J, 3X,8H X*(UP), 3X,8H Y*(UP),68X,8H Y*(UP)
            1,3X,8H X%(UP), 3X,8HOUTLET J)
C****PRINT COORDINATES FOR UPPER TRANSITION ARC - UNROTATED
    JDEX = JNDEX + 2
    DO 65 JJ=1,JMN,NPER
    J = (JMN+1) - JJ
    JO = (JMAXO+2) - JJ
```

```
        JN = (JMAXN+2) - JJ
        JDEX = JDEX - 1
        XMUP = -XUP(JDEX)
        IF (JN.GT. O .AND. JO .GT. O) GD TO 650
        IF (JN.LE. O) GO ro 651
        WRITE (6,720) JN,XUP(JDEX),YUP(JDEX)
    720 FORMAT ( }4\textrm{X},14,5\textrm{X},\textrm{FB}.4,3\textrm{X},\textrm{FR}.4
        GO TO }6
    651 WRITE (6,723) YUP(JDEX),XMUP,JO
    723 FORMAT (100X,F8.4,3X,F8.4,5X,14)
        GO TO 65
    650 WRITE (6,721) JN,XUP(JDEX), YUP(JOEX),YUP(JDEX),XMUP,JO
    721 FORMAT ( }4\textrm{X},\textrm{I}4,5\textrm{X},\textrm{F}8.4,3X,F8.4,68X,F8.4,3X,F8.4,5X,I4
    6 5 \text { CONTINUE}
CC TITLFS
    700 WRITE (6,78)
        78 FORMAT (1HL, 46X,38HROTATED AND TRANSLATED TRANSITION ARCS)
        WRITE (6,70)
        70 FORMAT (//2X,8H INLET J,6X,7H X*(UP),7X,7H Y*(UP),6X, 9HY*(UP)+G*,
        129X,9HY*(UP)+G*,6X,7H Y*(UP),7X,7H X*(UP),5X,8HOUTLET J)
            L}=NP1+NP
C****PRINT COORDINATES FOR UPPER TRANSITION ARC - ROTATED
CC STORE POINTS FOR PLOTTER - ONE POINT FOR EVERY FIVE DEGREES OF TURNING
            L}=L+
            XDOWN(L) = XUPN(1)
            YACRSI(L) = YUPN(1)
            L = L + l
            XDOWN(L) = XUPO(1)
            YACRSI(L) = YUPO(1)
            MAXO = (JMAXO/NPER) + 1
            MAXN = (JMAXN/NPER) + 1
            JOO = MAXO + l
            JNN = MAXN + 1
            I}=
            DO 303 JJ=1,JMN,NPER
            JO = (JMAXO+2) - JJ
            JN = (JMAXN+2) - JJ
            JOO = JOO - 1
            JNN = JNN - 1
            I = I + I
            LSTR = LSTORE*I
            IF (JN.GT. O .AND. JO.GT. OI GO TO 3030
            IF (JN .LE. O) GO TO 3031
            IF (LSTR .GT. MAXN) GO TO 688
            L=L+L
            XDOWN(L) = XUPN(LSTR)
            YACRSI(L) = YUPN(LSTR)
    688 YNG = YUPN(JNN) + GSTAR
    WRITE (6,68) JN,XUPN(JNN), YUPN(JNN),YNG
    68 FORMAT ( }4\textrm{X},\textrm{I}4,7\textrm{X},\textrm{FB}.4,6X,F8.4,6X,F8.4
            GO TO 303
    3031 IF (LSTR.GT. MAXO) GO TO 689
```

```
        L = L + L
            XDOWN(L) = XUPO(LSTR)
            YACRSI(L) = YUPO(LSTR)
        689 YTG = YUPO(JOO) + GSTAR
        WRITE (6,683) YTG,YUJPO(JOO), XUPO(JOO),JO
        683 FORMAT (81X,F8.4,6X,F8.4,6X,F8.4,7X,I4)
            GO TO 303
    3030 YNG = YUPN(JNN) + GSTAR
            YTG = YUPO(JOO) + GSTAR
            IF (LSTR .GT. MAXN) GO TO 670
            L=L+l
            XDOWN(L) = XUPN(LSTR)
            YACRSI(L) = YUPN(LSTR)
    670 IF (LSTR .GT. MAXO) GO TO 671
            L=L+L
            XDOWN(L) = XUPO(LSTR)
            YACRSI(L) = YUPO(LSTR)
    671 WRITE (6,680) JN, XUPN(JNN), YUPN(JNN),YNG,YTG,YUPO(JOO), XUPO(JOO),
            1J0
    680 FORMAT ( 4X,I [ , 7X,F8.4,6X,F8.4,6X,F8.4, 30X,F8.4,6X,F8.4,6X,F8.4,7X,
    3 0 3 ~ C O N T I N U E
            L=L+1
            XDOWN(L) = XUPN(MAXN)
            YACRSI(L) = YUPN(MAXN)
            L = L + I
            XDOWN(L) = XUPO(MAXO)
            YACRSI(L) = YUPO(MAXO)
C****CIRCULAR ARC (UPPER)
            IF (IPRINT .EQ. 0) GO TO 6700
            WRITE (6,67)
        67 FORMAT (//60X,13HCIRCULAR ARCS//40X,8HX*C(UP), 3X,8HY*C(UP), 16X,
            l 8HX*C(UP) , 3X,1OHY*C(UP)+G*)
6700 L = L + l
            XDOWN(L) = 0.0
            YACRSI(L) = RUP
            ALPH = ALPHUO + DALPH
            ALPHUP = ALPHUI
            KOUNT = 0
    305 XCUP = RUP*SIN(ALPHUP)
            YCUP = RUP&COS(ALPHUP)
            XCG = XCUP
            YCG = YCUP + GSTAR
            KOUNT = KOUNT + 1
            IF (KOUNT .NE. LSTORE) GO TO 672
            KOUNT = 0
            L = L + L
            XDOWN(L) = XCUP
            YACRSI(L) = YCUP
    6 7 2 ~ I F ~ ( I P R I N T ~ . E Q . ~ 0 ) ~ G O ~ T O ~ 6 6 0 ~
```

```
            WRITE (6,66) XCUP,YCUP,XCUP,YCG
        66 FORMAT ( 39X,F8.4,3X,F8.4, 16X,F8.4,3X,F8.4)
    6 6 0 ~ A L P H U P ~ = ~ A L P H U P ~ + ~ D A L P H ~
        IF (ABS(ALPH-ALPHUP).LE. 0.001) GO TO 306
        IF (ALPHUO .LT. ALPHUP .AND. ALPHUP .LT. ALPH) ALPHUP = ALPHUO
        GO TO 305
C****CALCULATE COORDINATES FOR STRAIGHT LINE PORTION OF UPPER ARC
CC FIFTEEN POINTS ARE CALCULATEO FOR PLOTTING PURPOSES
    306 IF (IPRINT .EQ. O) GO TO 3070
            WRITE (6,307)
    307 FORMAT (//59X,14HSTRAIGHT LINES//5X,8H X*S(IN),5X,8H Y#S(IN), 3X,
            110HY*S(IN)+G*,54X,11HY*S(OUT)+G*, 2X,8HY*S(OUT),5X,8HX*S(OUT))
3070 KOUNT = -1
    DELXI = (XUPN(1) - XLOWN(1) )/15.
    DELXO = ( XLOWO(1) - XUPO(1) )/15.
    XSIN = XUPN(1)
    YSIN = YUPN(1)
    XSOUT = XUPO(1)
    YSOUT = YUPO(1)
        TANBO = TAN(BETAT)
        GO TO 309
    310 XSIN = XSIN - DELXI
            XSOUT = XSOUT + DELXO
            YSIN = YUPN(1) + TANRI*(XSIN - XUPN(1))
            YSOUT = YUPO(1) + TANBO*(XSOUT - XUPO(1) )
    309 YSNG = YSIN + GSTAR
    YSTG = YSOUT + GSTAR
    IF (XSIN .LE. XLOWN(1) ) GO TO 312
    KUUUNT = KOUNT + l
    N = KOUNT - (KOUNT/3)*3
        IF (N .GT. O) GO TO 673
        L}=L+
        XDOWN(L) = XSIN
        YACRSI(L) = YSIN
    673 IF (IPRINT .EQ. O) GO TO 3133
    WRITE (6,313) XSIN,YSIN,YSNG
    313 FORMAT (5X,F8.4,4X,F8.4,4X,F8.4)
3133 IF (XSOUT .GE. XLOWO(l) ) GO TO 310
        IF (N.GT. O) GO TO 674
        L = L + L
        XDOWN(L) = XSOUT
        YACRSI(L) = YSOUT
    674 IF (IPRINT .EQ. 0) GO TO 310
        WRITE (6,315) YSTG,YSOUT,XSOUT
    315 FORMAT (1H+,93X,F8.4,4X,F8.4,4X,F8.4)
        GO TO 310
    312 IF (XSOUT .GE. XLOWO(1), GO TO 311
        IF (IPRINT.EO. O) GO TO 310
        WRITE (6,321) YSTG,YSOUT, XSOUT
    321 FORMAT (94X,F8.4,4X,F8.4,4X,F8.4)
        gO TO 310
    311NP3 = L - (NP1 + NP2)
        NSUM = NP1 + NP2 + NP3 + 1
```

```
    XDOWN(NSUM) = 0.0
    YACRSI(NSUM) =0.0
C****MISCELLANEOUS CALCIILATIONS
    WRITE (6,622)
    622 FORMAT (//54X,24HMISCELLANEOUS PARAMETERS//)
            YLASTO = YUPO(1) + TANBO*(XLOWO(1) - XUPO(1))
            CSTAR = SORT( ((XLOWO(1) - XLOWN(1))#*2) + ((YLOWO(l) - YLOWN(1))
            1**21)
                    SIGMA = CSTAR /GSTAR
            WRITE (6,999) VLSPMIN,VUSPMX
    999 FORMAT (17X,84HTHE MINIMUM LOWER SURFACE PRANOTL-MEYER ANGLF PREDI
            ICTED BY SEPARATION CONDITIONS IS ,F9.4,4H DEG//17X,84HTHE MAXIMUM
            ZIIPPER SURFACE PRANDTL-MEYER ANGLE PREDICTED BY SEPARATIUN CONDITIO
            3NS IS ,F9.4,4H DEG)
            WRITE (6,1000) SSMIN,SMIN,SMOUT,SSMOUT
    1000 FORMAT (/25X, 9HM*(IN) =,F8.4,2X,9H M(IN) =,F8.4,10X,9HM(OUT) =
            1,F8.4,5X,10HM*(OUT) = F8.4)
            WRITE (6,1001) RLOW,SSMLOW,SMLOW,SMUP,SSMUP,RUP
    1001 FORMAT (/2X,9HR*(LOW) =,F8.4,5X,1OHM*(LOW) = ,F8.4,2X,9HM(LOW) = ,
            1F8.4,10X,9H M(UP) = ,F8.4,5X,10H M*(UP) =,F8.4,2X,9HR*(UP) = ,
            2F8.4)
            WRITE (6,1002) THETA,GSTAR,CSTAR,SIGMA
    1002 FORMAT (/11X,8HTHETA = F8.4,4H DEG, 12X,5HG* = ,F8.4,13X,5HC* = ,
            1F8.4,11X,8HSIGMA =,F8.4)
            IF (NPLOT .NE. O) GO TO I
CC IF plotmy is not available, remuve the following cards
C****MULTIPLE PLOT - START
    LLL = NP1 + NP2
    CALL SORTXY (XDOWN(1),YACRSI(1),NPI)
    CALL SORTXY (XDOWN(NP1+1),YACRS1(NP1+1),NP2)
    CALL SORTXY (XDOWN(LLL+1),YACRSI(LLL+1),NP3)
    P(1) = 5.0
    P(3)}=12.
    P(4)=20.0
    P(11) =((1. - AMIN1(YACRS1(1),YACRS1(NP1+1),YACRS1(LLL+1)))/100.)*
    1(10.***4)
            P(6) = 2.0
            P(7) = AMIN1( XDOWN(1),XDOWN(NP1+1),XDOWN(LLL+1) ) *(10.**4)
            P(8) = P(11)*(5./3.)
            P(9) = 2.0
            P(10) = AMIN1(YACRS1(1),YACRS1(NP1+1),YACRS1(LLL+1))*(10.**4)
            KKK(1) = 55
            KKK(2) = 4
            KKK(3) = NF1
            KKK(5) = NP2
            KKK(7) =NF3
            KKK(9) = 1
            DATA KKK(4),KKK(6),KKK(8)/1H*,1H*,1H+/,KKK(10)/1HO/
            CALL PLOTMY (XDOWN,YACRSI,KKK,P)
C####MULTIPLE PLOT - STOP
    GO TO I
    END
```

```
$IBFTC ROO LIST
```

 SUBROUTINE ROOT (\(X 0, \times 2, X I N T L, F O F X, F U N C, X 1\))
 COMMON/ROOTS/DELF
 DOUBLE PRECISIIJN \(x, \times \times 0, \times \times 2\)
 WE ARE SEEKING AN \(X\) SUCH THAT FUNC \((X)=\) FOFX WHERE FOFX IS A KNOWN
 C FUNCTIONAL VALUE
C
C
C
C
1 LOCATE FOFX IN (FO,FX) OR (FX,F2) WHERE FX IS THE PREVIOUS
APPROXIMATION TO FDFX
2 LET $x=1 / 2(x \times 0+x)$ OR $x=1 / 2(x+x \times 2)$
3 IS FUNC $(X)=F O F X=$ IF NOT, REPEAT PROCEOURE
$x \times 0=x 0$
$x \times 2=x 2$
$F 0=\operatorname{FUNC}(X \times 0)$
$F 2=F$ UNC $(X \times 2)$
IF (FOFX . LT. FO .AND. FOFX . LT. F2 . OR . FOFX .GT. FO .AND.
IFOFX.GT. F2, GO TO 1005
IF ($A B S(F O F X-F O)$.LE. DELF) GO TO 1007
IF (ABS (FOFX-F2). LE. DELF) GD TO 1008
$X=X I N T L$
KOUNT $=0$
$1000 \times 1=\mathrm{X}$
KOUNT $=$ KOUNT +1
$A=F O F X-F 2$
$F X=F \operatorname{UNC}(X)$
IF (KOUNT.GE. 60) WRITE $(6,1004)$ KOUNT, X,FX,FOFX
1004 FORMAT $11 \mathrm{HL}, 9 \mathrm{H}$ KOUNT ,G16.9,9H X ,G16.9,9H FX ,Gl6.9,
19 H FOFX,G16.9)
IF (ABS (FX-FOFX) LEE. DELF) RETURN
IF (KOUNT .EQ. 75) GO TO 1002
IF $(A *(F X-F O F X) \quad$ LT. O.) GO TO 1001
$x \times 0=x$
$x=(x+x \times 2) / 2$.
GO TO 1000
$1001 \times 2=x$
$x=(x \times 0+x) / 2$.
$F_{2}=F X$
GO TO 1000
1002 WRITE $(6,1003)$
1003 FORMAT $(/ / 30 X, 62 H 7 S$ ITERATIONS HAVE BEEN PERFORMED WITHOUT CONVERG
IING TO A ROOT)
RETURN
1005 WRITE $(6,1006)$ FOFX
1006 FORMAT $(/ / 10 X, 7 H F(X)=, G 16.9,31 H$ IS OUTSIDE OF SPECIFIED LIMITS)
RETURN
$1007 \times 1=\times 0$
RETURN
$1008 \times 1=\times 2$
RETURN
END

```
$IBFTC STARTT LIST
    SUBROUTINE START (VLOW,FLO,VUP,FUP,VIMAX)
    COMMON/FACTOR/PERM,SAME,GAM,GAMM1,GAMP1,SSMLOW,SSMUP,RECONV,BINTGR
    EXTERNAL CFACT, DFACT,FRAT,FOFRS,FKMAX
    X0 = 1./PERM
    X2 = 0.999999999
    XINTL = (X0 + X2 )/2.
    IF (VLOW .EO. O.0) GO TO 70
    CALL ROOT (XO,X2,XINTL,FLU,FOFRS,RLOW)
    GU TO 71
70 RLOW = 1.0
71 SSMLOW = 1./RLOW
    CALL ROOT (XO,X2,XINTL,FUP,FOFRS,RUP)
    SSMUP = 1./RIIP
    IF (SSMLOW .EO. SSMUP) GO TO 40
C FKMAX(X) IS LINEAR IN A NEIGHBORHOOD OF X WHEN X IS SUCH THAT FKMAX(X)=0
C USE GOOD INITIAL ESTIMATE PLUS LINEARITY TO FIND X SUCH THAT FKMAX(X)=0
    XINTL = (1./PERM)*SORT( SSMLOW/SSMUP )
    XO = XINTL - 0.005
    FO = FKMAX (XO,O)
    X2 = XINTL + 0.001
    F2 = FKMAX (X2,0)
    SLOPE = (F2 - F0)/(X2 - X0)
    FINTL = FKMAX(XINTL,0)
        YINCPT = FINTL - SLOIPE*XINTL
        XAMK = -YINCPT/SLOPE
        FOFX = FKMAX(XAMK,1)
        IF (ABS(FOFX) .GT. 0.00009) WRITE (6,60) FOFX,XAMK
60 FORMAT (//29X,35HSEARCH FOR ROOT FAILED) F(X)=,G16.9,7H X
    l=,Gl6.9)
        SAME = (XAMK/SSMLOW)*(XAMK/SSMLOW)
        C = 1. - PERM*(GAMP1**(1./(GAM-1.)))*(SSMUP/(SSMUP-SSMLOW))*XAMK*
    IBINTGR
        CINTGR = SIMPSI(SSMLOW,SSMUP,OFACT,K)
        0 = (SSMLOW*SSMUP/(SSMUP-SSMLOW))*CINTGR
        RATIO = O/(l. - C)
        GO TO 50
    40 XAMK = 1./PERM
        RATIU = SSMUP*SSMUP*QFACT(SSMUP)
        C = 0.0
        0}=0.
50 X0= 1.0
    x2 = PERM
    XINTL = (x0 + X2)/2.
    CALL ROOT (XO,X2,XINTL,RATIO,FRAT,SSMIAX)
    VIMAX = (3.14159265/4.)*(PERM-1.) + (PERM/2.)*ARSIN(2.#GAMMl*
    l SSMIAX*SSMIAX - GAM) + 0.5*ARSIN(2.*TAMPI/(SSMIAX*SSMIAX) - GAM)
```

```
    VIMAX = VIMAX*RECONV
    VLOW = VLOW*RECONV
    VUP = VUP*RECONV
    WSTAR = ((1./GAMP1)**(GAMP1/(2.*GAMMI)))*CINTGR
    WRITE (6,10)
10 FORMAT (//48x,3GHCALCULATIONS FUR SUPERSONIC STARTING)
    WRITE (6,90) WSTAR
90 FORMAT (/50X,24HWEIGHT-FLOW PARAMETER = ,F9.4)
    WRITE (6,20) XAMK,C,Q,SSMIAX
20 FORMAT (/20X,10HK*(MAX) =,F9.4,5X,5HC=,F9.4,5X,5HQ =,F9.4,5X,
    113HM*(I(MAX)) = ,F9.4)
        WRITE (6,30) VIMAX,VLUW,VUP,GAM
30 FORMAT (/4X,38HTHE MAXIMUM DESIGN VALUE FOR V(IN) IS,F9.4,2IH DEG
    1 WHEN V(LOW) IS,F9.4,16H OEG, V(UP) IS ,F9.4,16H DEG, GAMMA IS
    2,F7.4)
        RETURN
        END
```

```
$IBFTC MSS LIST
    SUBROUTINE MSSTAR (M,N,VSSTAR)
    COMMON/FACTOR/PERM,SAME,GAM,GAMMI,GAMP1,SSMLOW,SSMUP,RECONV,D
    REAL M,MS
    EXTERNAL ADSTR
    A = 0.785398162*(PERM -1.)
    B = 0.5*PERM
    C = GAM -1.
    D = GAM + 1.
    IF(N.NE. O) GO TO l
    MS = ADSTR(M)
    IF (MS .LT. 1.) GO TO 3
    GO TO 2
    1 }\times0=1
    X2 = PERM
    XINTL = (X0 + X2)/2.
    FOFX = M
    CALL ROOT (XO,X2,XINTL,FOFX,ADSTR,MS)
2 SORDMS = MS*MS
    VSSTAR = (A + B*ARSIN(C*SQRDMS-GAM) + 0.5*ARSIN(D/SQRDMS-GAM) )*
    l RECONV
    RETURN
3 VSSTAR = 0.
    RETURN
    END
```

```
$IBFTC SIMPS LIST
            FUNCTION SIMPSI(XMIN, XMAX, FUNC1,KER)
            DIMENSION V(200),H(200),A(200),B(200),C(200),P(200),E(200),NE(200)
            EOUIVALENCE (E,NE),(TEST,NTEST)
            T=3.0E-5
            V(1)=XMIN
                            H(1)=0.5*(XMAX-XMIN)
    A(1)=FUNC1(XMIN)
    B(1)=FUNC1(XMIN+H(1))
    C(1)=FUNC1(XMAX)
    P(1)=H(1)*(A(1)+4.0*3(1)+C(1))
    E(1)=P(1)
    ANS=P(1)
    N=1
    FRAC=2.0*T
    1 FRAC=0.5*FRAC
    2 TEST=ABS(FRAC*ANS)
        K=N
    3 DO 7 I =1,K
    4 \mp@code { I F ~ ( N T E S T - I A B S ( N E ( 1 ) ) ) ~ 5 , 5 , 7 }
    5N=N+1
        V(N)=V(I)+H(I)
        H(N)=0.5*H(I)
        A(N)=B(I)
        B(N)=F(UNCl(V(N)+H(N))
        C(N)=C(I)
        P(N)=H(N)*(A(N)+4.0*B(N)+C(N))
        Q=P(I)
        H(I)=H(N)
        B(I)=FUNCl(V(I)+H(I))
        C(I)=A(N)
        P(I) =H(I)*(A(I)+4.0*B(I)+C(I))
        O=P(I)+P(N)-Q
        ANS = ANS +Q
        E(I)=0
        E(N)=0
    6 ~ I F ~ ( N - 2 0 0 ) ~ 7 , 1 3 , 1 3 ~
    7 CONTINUE
    IF (N-K) 9,9,2
    90=0.0
    10 DO 11 I=1,N
    110=O+E(I)
    12 IF (ABS(Q)-T*ABS(ANS)) 14,14,1
    KER=KER+1
    14 ANS=0.0
    15 DO 16 I=1,N
    16 ANS=ANS+P(I)
        SIMPS 1=(ANS+2/30.0)/3.0
    17 RETURN
        END
```

```
$IBFTC ALLFUN
    FUNCTIUN ALFUNC (A,B,Y)
    COMMON/EXPALF/GAMEXP
    COMMON/FACTOR/PERM,SAME,GAM,GAMMI,GAMPI,SSMLOW,SSMUP,RECONV,GRTY
    ALFUNC = (1./Y)*((A - B*Y*Y)**GAMEXP)
    RETURN
    END
$IBFTC BAKE
    FUNCTIUN CFACT (Y)
    COMMON/FACTOR/PERM,SAME,GAM,GAMM1,GAMP1,SSMLOW,SSMUP,RECONV,GRTY
    EXTERNAL ALFUNC
    CFACT = ALFUNC(1.,SAME,Y)
    RETURN
    END
$IBFTC CHARL
    FUNCTIUN QFACT(Y)
    COMMON/FACTOR/PFRM,SAME,GAM,GAMMI,GAMP1,SSMLOW,SSMUP,RECONV,GRTY
    EXTERNAL ALFUNC
    OFACT = ALFUNC(GAMPI,GAMM1,Y)
    RETURN
    END
\$IRFTC DOGG
FUNCTION FRAT(Y)
COMMON/FACTOR/PERM, SAME,GAM, GAMMI, GAMP1, SSMLOW, SSMUP, RECONV, GRTY EXTERNAL OFACT,ALFUNC
FRAT \(=(Y * *(\) GAM /GAMM1) ) \(\%\) QFACT \((Y) /\) ALFUNC \((-G A M M 1,-G A M P 1, Y)\)
RETURN
END
```

```
$IRFTC FELI
    FUNCTION FOFRS (X)
    COMMON/FACTOR/PERM, SAME,GAM,GAMMI,GAMPI,SSNLOW,SSMUP,RECONV,GRTY
    DOUBLE PRECISION X
    ARG1 = 2.*GAMMI/(X*X) - GAM
    ARG2 = 2.*GAMP1*X*x - GAM
    IF (ABS(ARG1) .GT. 1.0 .OR. ABS(ARG2) .GT. 1.0) WRITE (G,1) ARGI
    1,ARG2
    l FORMAT (//14X,GIHARGUMENT OF ARCSIN IS OUTSIDE DOMAIN OF DEFINITIO
    IN ARGI = ,G16.9:1H ARG2 = ,G16.9)
    FOFRS = PERM*ARSIN(ARG1) + ARSIN(ARG2)
    RETURN
    END
$IBFTC GERT
    FIJNCTION FKMAX(Y,L)
    COMMON/FACTOR/PERM,SAME,GAM,GAMMI,GAMP1,SSMLOW,SSMUP,RECONV,RINTGR
    EXTERNAL ALFIJNC,CFACT
    SAME = (Y/SSMLOW)*(Y/SSMLOW)
    K = O
    FKMAX = SIMPSI(SSMLOW,SSMUP,CFACT,K)
    IF (K .EO. 1) WRITE (6,1)
    l FORMAT (/lox,2GHFAILIJRE TO INTEGRATE CFACT)
    IF (L .EN. 1) BINTGR=FKMAX
    FKMAX = FKMAX + SSMUP*CFACT(SSMUP) - ALFUNC(1.,Y*Y,1.)
    RETURN
    ENO
```

```
$IRFTC STARM
    FUNCTIUN AOST<(MSTAR)
    COMMMIN/FACTOR/PFRM,SAMF,GAM,GAMMI,GAMP1,SSMLOW,SSMUP,RECONV,D
    RFAL MSTAR,M
    C=GAM - 1.
    F=C/1)
    G = C / G A M
    H=GAM/D
    M=MSTAR*MSTAR
AUSTR = PERM*SORT( (1.-(1.-F*M)*((1.+0.5*((H*M)/(1.-F*M)))**G)) )
RETURN
ENO
```

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, October 6, 1967, 128-31-02-25-22.

REFERENCES

1. Vanco, Michael R.: Thermodynamic and Turbine Characteristics of HydrogenFueled Open-Cycle Auxiliary Space Power Systems. NASA TM X-1337, 1967.
2. Boxer, Emanuel; Sterrett, James R.; and Wlodarski, John: Application of Supersonic Vortex-Flow Theory to the Design of Supersonic Impulse Compressor-Turbine-Blade Sections. NACA RM L52B06, 1952.
3. Goldman, Louis J.: Analytical Investigation of Supersonic Turbomachinery Blading. II - Analysis of Impulse Turbine-Blade Sections. NASA TN D-4422, 1968.
4. Liepmann, Hans Wolfgang; and Puckett, Allan E. : Introduction to Aerodynamics of a Compressible Fluid. John Wiley and Sons, Inc., 1947.
5. Shapiro, Ascher H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. I. Ronald Press Co., 1953.
6. Colclough, C. D. : Design of Turbine Blades Suitable for Supersonic Relative Inlet Velocities and the Investigation of Their Performance in Cascades: Part I Theory and Design. J. Mech. Eng. Sci., vol. 8, no. 1, Mar. 1966, pp. 110-123.
7. Kantrowitz, Arthur: The Supersonic Axial-Flow Compressor. NACA Rep. 974, 1950.
8. Schubauer, G. B.; and Spangenberg, W. G.: Forced Mixing in Boundary Layers. Rep. No. 6107, National Bureau of Standards, Aug. 8, 1958.
9. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135, 1953.
10. Dellner, Lois T.: A Set of Fortran IV Subroutines for Generating Printed Plots. NASA TM X-1419, 1967.
11. Kuo, Shan S.: Numerical Methods and Computers. Addison-Wesley Publishing Co., 1965.
