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FEASIBILITY STUDY FOR CONDUCTING BIOLOGICAL EXPERIMENTS
ABOARD A PIONEER SPACECRAFT

SUMMARY

A study was conducted to determine the feasibility and practicality
of conducting biological experiments aboard a Pioneer spacecraft in
heliocentric orbit. Among the biological problems amenable to study on
such a vehicle is the question of the stability of circadian systems
divorced from geophysical cues. Seven experiments suggested by NASA
supported investigators were identified as representative biological
payloads. This study was undertaken in cooperation with NASA/Ames,
the Principal Investigators, and TRW Systems, Incorporated, representing
the Pioneer spacecraft. The study included experiment definition;
conceptual design of experiment hardware; where necessary, studies of
the susceptibility of biological material to simulated launch stresses;
identification of requirements for monitoring devices to characterize
the physical environment during biological experimentation; cost and
development schedule estimates for individual experiments; and selection
of representative combinations of biological and physical sciences
payloads. The study was specifically directed toward engineering feasi-
bility and not to an evaluation of the scientific merit of candidate

experiments.

The results of the study demonstrated the practicality of implement-
ing biological experiments aboard a Pioneer spacecraft and recommend a
follow-on study for program definition preparatory to initiation of a

BioPioneer Program.



INTRODUCTION

Purpose

This study was undertaken to determine the feasibility and practicality
of conducting biological experiments in heliocentric orbit aboard a Pioneer
spacecraft. It was desirable that the biological experiments take advantage
of the relatively long orbital life of the Pioneer and be complemented by
physical sciences experiments useful to the interpretation of the biological
data.

Need

Development of space technology has provided access to new" environ-
ments in which to study the functioning of fundamental life processes,
and concurrently has introduced the question of the consequences of pro-
longed space residence on man. There are, however, relatively few space
vehicles available for, or compatible with, biological research. At
present, there are no vehicles available for biological experimentation
out of earth orbit. There are important biological problems which should
be studied via space probes. Among them is the question of the stability

of circadian systems divorced from geophysical cues.

Biological research requires a precision of environmental control
which is normally not available on spacecraft developed for other purposes.
This is one reason for the special development of the earth-orbiting
Biosatellite. Before design of a similar vehicle for non-orbital studies
is undertaken, it is important to determine the degree to which space
probes originally developed for other programs can be utilized to imple-
ment biological research. The Pioneer spacecraft is a promising candidate
with proven performance and reliability and a potential experiment payload
capability of 50-100 1b.




Scope

Definition of potential payloads for a "BioPioneer" was accomplished
by Northrop Corporate Laboratories in cooperation with TRW Systems,
Incorporated representing the Pioneer spacecraft, and various principal
investigators, identified by NASA, representing specific candidate experi-
ments. The study was specifically directed toward engineering feasibility
and not to an evaluation of scientific merit of the candidate experiments.
The study included conceptual design of hardware to implement candidate
experiments aboard a Pioneer spacecraft; identification of required
experiments and/or monitoring devices to characterize the physical environ-
ment during biological experimentation; and when necessary, determination
through laboratory testing of the biological tolerances to stresses imposed
by launch or spacecraft conditions. The laboratory tests supplemented
data supplied by various principal investigators who were encouraged to
participate in all aspects of experiment definition. Estimated cost and

development plans were prepared for each experiment.

Identification of Experiments for the Feasibility Study

The purpose of this study was to demonstrate in an engineering sense
the practicality of utilizing the Pioneer spacecraft as a platform on
which to accommodate biological experiments. Circadian periodicity experi-
ments were chosen to demonstrate this objective because they share common
requirements for removal of geophysical influences and relatively long study
periods. Candidate experiments were identified by NASA/ARC from experi-
ments proposed by NASA sponsored investigators currently working in the
field of biorhythms research (Table 1).

The study ﬁakes no attempt to establish the relative scientific merit
of individual experiments. Treatment of the experiments in this study
does not imply acceptance by the various NASA scientific evaluation com-
mittees, but the study does establish the feasibility of accomplishment
if the program is undertaken and, using the experiments as an example, strongly

endorses the Pioneer as a carrier for biological experiments.



TABLE 1. CANDIDATE

EXPERIMENT

Potato Respiration

Bean Leaf Movement

Fiddler Crab
Activity and
Metabolism

Cockroach
Activity and
Metabolism

Vinegar Gnat
Eclosion

Pocket Mouse
Temperature,
Heart Rate,
and Activity

C Mouse
Temperature,
Heart Rate,
and Activity

EXPERIMENTS TO STUDY CIRCADIAN PERIODICITY

INVESTIGATOR

W. Pince

A. Brown

Yokoyama

B. Hufham

H. Barnwell

S. Pittendrigh
G. Lindberg

S. Pittendrigh
G. Lindberg

G. Lindberg
S. Pittendrigh

Halberg
C. Pitts

Cooper

INSTITUTION
Space Defense Corporation
Northwestern University

NASA/ARG

Space Defense Corporation

University of Chicago

Princeton University

NCL

Princeton University
NCL

NCL

Princeton University

University of Minnesota
University of Virginia

General Electric Company




The Scientific Objectives of a BioPioneer Mission.- All candidate

experiments share the common objective to study the stability of circadian
systems when all geophysical variables are either removed or sensed by

organisms at periods other than 24 hours.

Significance of Experiment Data.- The significance of the proposed

BioPioneer Program is that study of the persistence and stability of cir-

cadian systems divorced from the physical environment of earth will:
e Provide insight into a most fundamental characteristic of life

e Test the dependency of circadian periodicity on the geophysical

environment

e Provide data pertinent to evaluation of the risks associated

with extended space flight by man

e Provide data pertinent to the design of future space biology
experiments, particularly with regard to the adequacy of

ground controls for flight experiments.

Rationale.~ The ubiquitous nature of periodic functions in biological
material suggests that rhythmicity is a fundamental quality of life. Evi-
dence from plant research has demonstrated that upsetting the normal pattern
of rhythmicity by manipulation of the photoperiod can cause serious physio-
logical consequences. Biomedical research on humans has revealed periodicity
of many clinical indicators ranging from fluctuations in body temperature
to cation excretion, each of which signals changes in physiological state.
Evidence is now strong that the life process involves a system of rhythmic
events, likened to a system of oscillators, which couple to produce periodici-
ties of various lengths. Thus cyclic biochemical events that account for
the spontaneous discharge of neurons may couple to produce rhythmic bursts
with a period of seconds, while the events associated with thermoregulation
couple to produce a cycle of change in body temperature that may approxi-

mate 24 hours.

The class of biological rhythmicity which has a period of about 24

hours is referred to as diurnal, or more popularly circadian. The fact



that this period approximates the length of an earth day raises the
question as to whether this kind of periodicity is a manifestation of
physiological processes that have evolved in an earth environment or
whether there is a circadian "cue" resulting from some geophysical event
that entrains the biological system. If indeed geophysical phenomena are
responsible for circadian periodicity, then it is reasonable to assume
their involvement in longer cyclic events such as tidal, lunar, and
seasonal periodicity in biological material., Proponents of the theory
that biological periodicity or "time keeping" is controlled primarily by
internal or endogenous factors modified by environmental cues have demon-
strated the stability of biological periodicity in spite of changing geo-
physical forces and argue that it is unnecessary to postulate an undefined
geophysical phenomenon to interpret their data. Proponents of an external
or exogenous timekeeper appear willing to accept the concept of endogenous
rhythmicity but argue that the correlation of circadian, tidal, lunar and
seasonal periodicity with geophysical events is prima facie evidence for

an external '"timekeeper,"

The study of biorhythms in space will permit resolution of the ques-
tion as to whether terrestrial stimuli indeed set the period or simply
change its phase. The question can be partially studied in earth orbit.
However, ultimate resolution of the question must be attacked in deep
space probes. Both missions are important. If a circadian periodicity
persists in earth orbit but decays in distant solar orbits, we would
have direct evidence available from no other combination of experiments
that geophysical periodicities are essential inputs for maintenance of

circadian organization.

The value of the research is more than academic for if the circadian
rhythms of man are in any way coupled with terrestrial cues, the proba-
bility of his satisfactory performance on prolonged space missions would
be low. Within this context, studies of circadian rhythms in mammals

in space must have high priority. The anticipated new knowledge is not




limited to space applications. For example, it is suspected that clock
mechanisms play an enormously important role in human health and disease.
Scores of rhythms have been identified in the human. Some are thought

to be primary, including the cyclic release of hormones and enzymes, the
cyclic physiologic events such as the activity of spontaneously contractile
heart and gut tissue, and the cyclic electrical discharge of nervous
tissue. Others are suspected to be secondary (derived from the primary)
such as rhythmic patterns of metabolism, body temperature variation and
reproductive cycles, producing in turn all the hundreds of tertiary be-
haviorial and physiologic adjustments which allow us to successfully

adapt to our environment.

It is not clear of course what role these rhythms play in health
and disease; all that is known is that these cycles are profoundly dis-
turbed during illness. Another specific problem is the loss of mental
and physical effectiveness suffered by passengers and crew members when
exposed to rapid geographic translocation by high speed jet aircraft.
Fatigue, nausea, irritability, a feeling of dissociation and other symptoms
are commonly reported and are thought to be directly related to the re-
phasing of primary and secondary biorhythms due to rapid movement to new
time zones. These problems relate to both civilian and military effective-
ness. It is clear that better understanding of clock mechanisms could

have direct application to human well-being.
Experiment Descriptions

The following sections summarize the scientific objectives and experi-
ment requirements for seven biological experiments recommended by NASA/ARC.
Each principal investigator was requested to complete NASA Experiment
Proposal Form 1346 as the requested information applied to execution of
the experiment aboard a Pioneer spacecraft. The completed form provided

a point of departure and evolved into the summary requirements that follow.

It should be noted that while all seven experiments considered were
directed toward the study of the stability of circadian systems in space,

none of the experiments is truly redundant, nor do they preclude identification



of more definitive experiments at a later date. Each experiment looks
at the phenomenon of periodicity in a different manner. It is doubtful
that the results of any single experiment will satisfy the scientific
community. Therefore, it is highly desirable that several experiments
be done together, and preferably on more than one species on more than
one space flight. The subject of experiment mixes is dealt with in the
section entitled "Experiment Integration."

The seven sections on particular experiments are followed by dis-
cussions of the requirement for physical-science experiments, Pioneer
spacecraft characteristics, tests and analyses for experiments, and
experiment integration. General conclusions and recommendations are

given in the final section.

It is apparent that in some cases several investigators can derive
meaningful data from the same organism or experiment preparation. However,
the short duration of the study coupled with a desire to demonstrate the
variety of experiments that could be accommodated on the Pioneer spacecraft
resulted in the individual treatment accorded each candidate experiment.
Hopefully, a BioPioneer program will become a reality and its final objec-
tives and implementation reflect the combined efforts of the scientific

community.



CIRCADIAN PERIODICITY OF POTATO RESPIRATION

Principal Investigator: B, W. Pince, Space Defense Corporation
Co-Investigator: ‘ F. A, Brown, Jr., Northwestern University

Engineering Support: Space Defense Corporation

Technical Information

Objective. - The objective of this experiment is to determine whether
the rhythmicity of oxygen consumption by a sprouting potato remains the
same, is modified, or disappears in space relative to control specimens
on earth. The rhythm of potato respiration is a well documented phenomenon.
The data derived from this proposed deep space experiment will augment data
to be gained from a similar earth orbital experiment now contemplated for
1969 (AAP). Together these data may provide either meaningful answers to
biological questions of a most fundamental nature or point the way to def-

initive experiments for the future.

Experiment Approach. - There are two major hypotheses now current which

account for timing of biological clocks. One is that these '"clocks" are
driven by an autonomous oscillator of some kind inside the organism. The
other is that the timer is dependent upon an exogenous rhythmic input,

possibly geophysical in source,

Prior to the advent of a National Space Program, no way had been found
either to fully deprive an organism of all information about its rhythmic
geophysical environment, or even to be reasonably assured that the organism
was truly in an environment with no cues to which it was sensitive (however

subtle) as to the Earth's natural periods,

In light of the two alternative hypotheses, accounting for the timing of

all additional phase-labile biological rhythms, we propose to place potato
sprouts with well-established biologic rhythms into deep space while main-
taining a control set on Earth under identical experimental conditions of

light, temperature, total pressure, and partial pressures,

A flight package consisting of six respirometers containing six sprout-

ing potato plugs will be placed on a BioPioneer deep-space orbiting vehicle,



The oxygen consumption of each potato plug will be measured by monitoring
actuation of the O2 solenoid valve for seven days preflight and for 90 days
of the BioPioneer mission, from launch onward., Measurements of the particu-
late and/or force field environments, as measured by the BioPioneer's on-
board instrumentation, will be useful for data interpretation. Ephemeris

data are required for correlation.

Simultaneously, two sets of six respirometers will be placed in opera-
tion at Space Defense, Birmingham, Michigan. Oxygen consumption will be
measured for the duration of the experiment. One set will be rotated at a
rate identical to the spin rate of BioPioneer; the second set will be at

rest, relative to the Earth.

If space permits, it is feasible to double the number of respirometers with
half located in an acceleration field of 1 G and half at 1/2 G or less,
This latter option will permit study of the effect of reduced gravitational

fields on the stability of the circadian system in space.

Base Line or Control Data. - The most extensive knowledge available

concerning extrinsic metabolic rhythmicity is based on the sprouting potato.
On the basis of a more than l1l-year study in Evanston, Illinois, these
rhythms have been characterized as they persist in constancy of such factors
as light, temperature, humidity and ambient pressure. Among these character-
istics are large seasonal changes not only in the form of the daily cycles,
but also in the mean daily rate. As a consequence, there is an extensive
amount of information available which can be used as a basis for comparison
with data that will accrue from the relatively long-term, space-vehicle ex-

periment proposed,

The data derived from flight and ground control experiments will be compared
using computer facilities at Wayne State University, probably using Univer-
sity of Minnesota programs now available, We are confident that statist-
ically significant comparisons can be made using intra-specimen data (with
each subject serving as its own control). Further, six specimens allow
valid statistical intragroup comparisons to be made if small sample correc-
tions (like Yates or others) are employed. In addition, intergroup (experi-
ment vs control) comparisons can be made with fair credibility with the

sample size.
P
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Engineering Information

Equipment Description. - A sprouting potato in the dark consumes

oxygen and produces CO2 in a well documented rhythm. The equipment de-
scribed below represents a closed environmental control system designed to

detect small variations in oxygen consumption (respirometer).

The respirometer (1) maintains an oxygen partial pressure of approxi-
mately 150 mm Hg at a total pressure of 760 + mm Hg water saturated at
75°F; (2) removes carbon dioxide; (3) maintains thermal balance; (4) maintains
total pressure and composition of the respiratory atmosphere; (5) provides

water; and (6) maintains incident visible light below 0.1 lumens.

Temperature control can be achieved by passive techniques to maintain
the specimen temperature at 23.8 +1,1°C. Depending on spacecraft tempera-
ture deviation from this value, control will be accomplished conventionally,

using resistance heating and, if necessar thermoelectric cooling.
g ’ Y, g

Carbon dioxide is removed via a CO2 selective semipermeable membrane

and potassium hydroxide particles,

Makeup oxygen is provided to the "zero" leak system from a two stage

100% oxygen source,

The first-stage bottle (high pressure) contains a 90-day 0, supply. An
integral regulator controls first-stage outlet pressure of 820 mm Hg (abs).
The second-stage bottle (low pressure) has an outlet pressure of 760 mm Hg
(abs), nominal for specimen chamber pressure. A solenoid valve controls the
flow between the bottles, A variable reluctance differential pressure trans-
ducer, between the specimen chamber anc second stage generates a 0.0 to 5.0 V
dc signal representing a differential pressure range of 17.2 mm Hg. This
output modulates a subcarrier oscillator (20-kHz double bandwidth at 72-kHz
center frequency). The same signal triggers a switch controlling the solenoid
valve when the pressure differential between the specimen chamber and the
second stage approaches zero. The opened valve allows gas to flow from the
first stage to the second stage until the 17,2-mm Hg differential between
second stage and specimen chamber has been re-established, Thus, constant
pressure is maintained in the specimen chamber, and simultaneously, the rate
of pressure change in the second stage is correlated to specimen consumption.
The amount of oxygen (about 0.25 ml STP) which must be metabolized to cause a

full scale change in output signal permits acute discrimination, allowing

11



differentiation at the level of about 1.25 x 10"5 ml per unit time. Signal
frequency change in output signal permits acute discrimination, allowing dif-
ferentiation at the level of about 1.25 x 10'5 ml per unit time., Signal fre-
quency change is monitored by a frequency counter and can be recorded by

digital or analog methods.

As presently conceived, a minimum experiment utilizes six potato sprouts.
The sprouts are housed in individual respirometers., Two respirometers and
the associated oxygen supply and electronics are packaged into a single assem-
bly (Assemblies la, 1b, 1c). Thus the entire experiment consists of three
respirometer assemblies and one experiment interface unit (Assembly 2), Fig-
ure 1. It is entirely feasible to package the respirometers in many different
combinations. The described approach was selected to meet the constraints of

Pioneer spacecraft dynamics and experiment platform geometry.

(a) Required equipment. An experiment unit is comprised of three assem-

blies (la, lb, 1c). Each assembly contains two potatoes. The following

equipment is estimated to be required to implement the flight experiment:

Test Hardware
Design Verification Test Assemblies

Qualification Test Assemblies

2
1
Mass Mockup Assembly 1
Flight Prototype Mockup Assembly 1

1

Flight Equipment Simulator Unit

Flight Equipment

Flight Unit 1
Flight Backup Unit 1
Control Unit 2

The total hardware requirement is therefore estimated at four complete

flight units; one simulator unit; and five assemblies (including two mockups).

At the launch siﬁe, potatoes, a few special tools, a supply of breathing
oxygen, appropriate pneumatic, hydraulic and electrical gauges and assorted
spare parts, both mechanical and electrical, will be provided by the contrac-
tor. A laminar flow laboratory bench, a refrigerator, and an air-conditioned

laboratory with access to a regulated power supply are required as GFE.

12
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(b) Equipment status. The respirometer equipment is well advanced and

requires only reconfiguration for adaptation to BioPioneer. Under Contract
NASw-870 the basic respirometer unit was developed and has been collecting
laboratory baseline data for over two years (Figure 2). In addition, under
the same contract, a multicell unit (12 potatoes) was developed and is now
in the final stages of checkout and test before being put into bench service
(Figure 3). This unit shows great promise because of its ability to measure
single potato consumption as well as the summative consumption of all the
specimens. Under Contract NAS9-7172 a flight configuration for Apollo Appli-
cation Program (Earth orbital) is in the Program Definition Phase. Flight
hardware design employing a two-cell respirometer has been approved (Septem-

ber 1967) and mockups and flight equipment simulators have been delivered
(December 1967).

Envelope. - The experiment hardware proposed for a Pioneer mission
consists of three identical assemblies each containing two respirometers
(Figure 4), and one experiment interface unit (Figure 5). The respirometer
assemblies are independent in every way. Each assembly contains: one first
stage oxygen supply and regulators; two interstage solenoid valves; two
differential pressure transducers and appropriate electronics; and two
potato chambers with scrubbers. Weight, volume and area requirements are

given in Table 2,

TABLE 2. WEIGHT AND VOLUME REQUIREMENTS FOR A SIX POTATO EXPERIMENT

Area on

Assembly Weight Volume Dimensions S/GC Floor
Description Number  (kg) (emd) (cm) Shape (cm?)
Respirometer
Assembly 3

Stored (each) 2.50 3375 15.0 x 15.0 x 15.0 Cube na

Operational (each) 1.37 1700 10.2 x 11.8 x 14.0 Box 143
Interface Unit 2.04 2100 10.4 x 16.0 x 12.7 Box 167
Totals 6.2 7200 na na 596

Power.- Power requirements are given in Table 3.

14




Figure 2.

Potato respirometer, single specimen.
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Figure 3. Potato respirometer, multiple specimen.
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TABLE 3. POWER REQUIREMENTS FOR A SIX POTATO EXPERIMENT (W)

Instrumentation Power

. Standby Average Maximum
Assembly la ’ 0.7 0.93 3.0

Assembly 1b 0.7 0.93 3.0
Assembly lc 0.7 0.93 3.0
Assembly 2 1.6 1.6 1.6
Total Power* 3.7 4.4

* Assuming no power required for thermal control

Thermal control power requirement.- It is proposed that thermal

control be achieved through a controlled heat path to the experiment plat-
form. This approach is feasible but may limit the choice of mounting
locations. 1In the event of a requirement for active temperature control,
heating can be provided by a resistance and a thermoswitch. In the worst
case (spacecraft ambient at -1.0°C), 0.225 W is needed. This requirement
1s attenuated at the expected higher spacecraft temperature. If planned
passive cooling techniques are not completely successful, a thermoelectric
cooling device could be utilized to maintain the specified temperature
when the spacecraft temperature approaches 90°F. At this temperature, a
cooling rate of 0.16 W would be required. In view of Pioneer's excellent

thermal characteristics, the latter requirement is not thought to be likely.

Spacecraft Interface Requirements.-

(a) Required location. The individual respirometer assemblies

(Assemblies la, 1b, and lc) must be centered on a common radius which has
a G load of 1.0 or less when the spacecraft is spun up. Location along
the cicle described by this radius is not critical. Location of the

Experiment Interface Unit is not critical.

(b) Mounting requirements. Twelve bolt holes or tapped holes on the
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floor plate are required. The mounting location must be such that the
acceleration produced by spacecraft rotation is parallel to the long

axis of the assemblies.

(c) Power and telemetry. No structural modifications are required;

power, a TM lead, and an experiment interface unit are required.

(d) Plumbing. Maximum gas pressure is 165 psia. There are no mobile
fluids. The only fluid is 5 g of water held in a wick at the base of
each potato chamber. It does not move significantly once the atmosphere
is saturated. Cabling can be arranged at the spacecraft system engineers'

convenience.

(e) Dynamics. The geometric center of each assembly approximates
the center of mass. The biological specimen does not move but there are

slight changes in the distribution and weights of consumable supplies.

Each specimen maximally consumes 0.3 ml 02/hr or 7.2 ml/day. The
six specimens combined will use about 43.0 ml/day maximum, or about 3900
ml over the contemplated 90 day experimental period. Each dual specimen
assembly will therefore utilize 1300 ml, or about 18.8 g of 02. The
potato's respiratory quotient (vol. COz/vol. 02) varies from 0.45 to 1.02
but a reasonable mean is 0.8. Thus, the 18.8 g O, will be converted into

2
about 20.4 g of CO_, which in turn will react with the KOH in the CO

scrubber to produci K2003 and water. The latter reaction is stoichiometric.
The result is the movement, over 90 days, of 18.8 of 02 from the regulators
through the potato (which loses about 2 g of weight in the metabolic process)
and thence as 20.4 g of COZ’ into the scrubber, where it converts 24.3 g

of KOH into the same amount of KZCO3 and water. Since the KOH or the
reaction products don't move in the process, the net movement is the weight
of the CO, or 20.4 g, per dual specimen assembly, incrementally, per 90

2
days. The distance moved is about 2 in. parallel to the spacecraft radius.

Environmental Constraints.-

(a) Constraints on the experiment package. The limiting constraints

are these imposed by the biological specimens. Potato sprouts mounted in

experiment hardware breadboards have survived simulated Pioneer launch
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stresses with no detectable change in the stability of their circadian
system. (See section entitled "Environmental Tests".) The package contains
an independent.ECS'but is dependent upon external thermal control. Without

specimen it may be stored between -48°C and 70°C, with specimen -1°C -30°C.

Anticipated ambient levels of radiation, EMI, and RFI aboard the
spacecraft are considered acceptable for execution of the experiment, but

both their leads and periodicities must be known.

(b) Interference. This is essentially a "silent" package. With the

exception of opening and closing of minute regulator valves, there is no
mechanical motion and no significant resultants. The valves are actuated

by tiny solenoids of low electrical energy (40 mA).

Data Measurement Requirements.- Oxygen is supplied to the potato

plant by a servo system which is controlled by ambient pressure. As the
potato consumes oxygen ambient pressure decreases to l4.7 psia, at which
time pressurized oxygen is added to the system until pressure is increased
to 15.0 psia and the cycle repeats. An estimate of the rate of oxygen
consumption can be obtained from the times of limit-cycle operation;
however, more precise data can be obtained if the ambient pressure is
continuously monitored. A typical pressure-time curve for the highest

consumption rate expected is shown in Figure 6.
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Figure 6. Typical rate of oxygen consumption by sprouting potato,
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A pressure measurement is desired every minute. If pressure is sampled
and digitized to six bits every minute, a total of 8.640 bits of daily data
would be obtained for each potato, and the pressure at the time of each
sample would be known within a resolution of approximately 1.6%. Total
daily data bits for four potato plants would require 34,560 bits, which
is large in comparison to the storage capacity of a Pioneer data storage
unit (DSU) but would not present a problem during real-time transmission.
Less data will, in general, result in reduced accuracy; however, if the
change in pressure between measurements is transmitted, rather than the
pressure reading itself, the quantity of data bits can be reduced without
a significant reduction in accuracy. One approach is to sample pressure,
A/D convert the sample, and subtract from the previous measurement. Only
the most significant bits of the difference need be transmitted. These
would be determined by the maximum rate of change expected. For example,
assuming a maximum rate of change of 0.03 psia per minute, the slope
between one minute measurements could be determined to be 0.03, 0.02,

0.01, or 0.00 psia/min using only two bits for each measurement. An
alternate approach would be to use four bits per measurement and make

the measurements every two minutes, or six bits every three minutes, etc.
In addition to the measurements for pressure slope, the time of actuation
of the recharge cycle may be desired. Assuming 24 recharges per day and

15 bits per time reading, a total of 360 bits per day would be required.
Using the slope monitoring approach supplemented by time of recharge, total
data bits are reduced by a factor of almost three in comparison with the
pressure monitoring approach. Data requirements for the slope monitoring
approach are summarized in Table 4, and engineering data requirements are

summarized in Table 5.

TABLE 4. BIOLOGICAL DATA REQUIREMENTS PER POTATO

Parameter Range Bits per sample Samples per day Bits per day
Pressure Slope 0.00 - 0.03 psia/min 2 1440 2880
Recharge Time Time of day 15 24 360

Total 3240
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TABLE 5. ENGINEERING DATA REQUIREMENTS PER POTATO

Parameter Range Bits per Sample Samples per Day Bits per Day

Ambient
Temperature -1 to 30°C 6 24 144

The data requirements as discussed above have been significantly
reduced by inclusion of a large circuit in each package to perform the
following function. When an interstage solenoid valve opens, signifying
a second stage oxygen supply recharge (a function of the rate of oxidative
metabolism), the valve event will be stored in the logic circuit if it
occurs during a 6-minute period. If not, '"mo event" is also recorded.
Thus, ten bit/hour/potato or 240 bits/day/specimen or 1440 bits/day/six
specimens will be required. The data can be pulled off the logic circuit
using carrier currents and time intervals most convenient to BioPioneer
requirements. The temperature will be determined over each hour using a
six-bit word and a range of 50 to 82°F (+0.5°F). This will require 144
bits/day per potato module. The total bit requirement for all measure-
ments is 1872 bits/day. Total data measurement requirements for a six

potato experiment are summarized in Table 6.

Operational Requirements

Pre-launch Support.- The principal investigator (PI) will deliver

experiment to Kennedy Space Center 21 days prior to launch, establish a
Field Laboratory, perform post-delivery acceptance tests and 15 days prior
to launch will install and calibrate specimens. At the direction of the
SPO, the PI will install the experiment in the spacecraft when power is
established on the pad, and monitor respiration from the launch control

center until a satisfactory signal is obtained. Facilities and equipment
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Table 6. Summary Data Measurement Requirements for
Potato Respiration Experiment

Parameter to be Respirometer Temperature
Measured Valve Event
Equipment Item Used 1A 1B 1C
Spec | Spec | Spec |Spec | Spec | Spec 1A 1B
1 2 3 4 5 6
Units on/ °F
Expected off
Value of Average na .
Parameters
Range on/ | 50~ -
of f 82
How Often 6 1 .
min hr T
Measurement Duration continuous _ | point
Characteristics| of Each monitoring ™| sample -
Total Numbe¢r 21,600 12,960
in Mission ——l— :
Type Digital -
Frequency na
Range
Amplitude 0-
Output —
Signal of Range 10V
Instrument Instrument| on/ +0.5
Resolution| off —=| OoF -
No, of 1
Channels -
Sampling 0.003 0.0017
Readout Rate BPS = BPS -
Requirements Telemetry Yes
Data Yes if continuous real-time .
Storage telemetry is not available o
Method Experiment'§ clock
Time
Identification Accuracy +1 min -
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previously described are required. No GFE/AGE will be required; one

bottle of breathing-quality oxygen is required as service item.

Flight Operational Requirements.- Ready access by the PI to early

data is desirable to determine experiment function status and to assess

immediate effect of launch and orbit, if any, upon the specimens.

Data Support.- Preflight data will be collected at Kennedy Space

Center 15 days prior to flight using contractor-furnished equipment. A
reliable regulated power supply is needed. It may be desirable to plug
into spacecraft data system to determine continued system compatibility.
No real time data are required, except for "early look" (not "quick look™")
at data. Raw data from spadecraft should be converted from analog to
digital if required, time correlated, and ephemeris correlated. The PI
will treat reduced data with his own computer program. If possible, it

is desirable to know of any events occurring in the spacecraft which may

have cyclic characteristics.
Resources Requirements

The following material was prepared by Space Defense Corporation and
represents the current best estimate of both schedule and budget require-
ments to accomplish the proposed experiment. A firm bid must await defini-
tion of requirements to be established by the Pioneer Project Office.
Depending upon specific requirements, both the schedule and budget may be
readily reduced or increased. The time and money requirements outlined
below represent a realistic program optimized for attainment of scientific

objectives, systems reliability, and fiscal responsibility.

Phase One, Program Definition.- The current Experiment Feasibility

Study (NAS2-4526) has preempted some of the classic PDP functions. Those

that remain include development of:
1. Preliminary Experiment Implementation and Program Plan
2. Reliability Program Plan

3. Design Verification Test Plan
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Qualification Test Plan
Failure Mode Effect and Criticality Analysis
Design

a. Design Analysis and Design
b. Preliminary Drawings and Bill of Materials

c. Specifications
Hardware

a. Mass Mockup Assembly (one)
b. Flight Prototype Mockup Assembly (one)
c. Flight Equipment Simulator Unit (one)

Phase Two.- Hardware Development, Test, and Fabrication

Fabricate Design Verification Test Hardware. The equivalent of two

respirometer assemblies in components must be provided.
Perform Design Verification Tests
Design Modification and Final Design Review

Fabricate Qualification Test Hardware. One assembly and selected

spares are required.
Perform Qualification Tests
Prepare Production Drawings and Specifications

Fabricate Flight Hardware (one flight unit; one flight backup; two

control units)
Perform Predelivery Acceptance Test
Deliver Flight Hardware

Perform Post Delivery Acceptance Test

Phase Three.- Operations

Prepare Operations Documentation
a. Field Laboratory Requirements Plan
b. Detailed Experiment Implementation Plan

26
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c. Checkout and Count Down Document

d. Reporting Plan

Establish Kennedy Space Center Field Laboratory
Establish Flight and Backup and Control Units at KSC.

Assist in installation, checkout, countdown and launch of Experiment

in BioPioneer.

Collect Flight Experiment Data
Reduce and Treat Data

Phase Four.- Reporting and Support

Prepare and submit monthly, annual and phase interim reports and a

final report.

Analyze and report the experimental results to the government and the

scientific community.

Perform baseline studies in the contractor's laboratory and at North-

western University.

Provide management to assure completion of the work in a timely and

cost-effective manner.

The schedule for accomplishing this program is estimated at 30 months

(Figure 7). The estimated cost of accomplishing the program is $338,900
(Figure 8).
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BIORHYTHMICITY OF BEAN LEAF MOVEMENT

Principal Investigator K. Yokoyama, NASA/ARC

Engineering Support: Northrop Corporate Laboratories

’

Technical Information

Objectives.- The purpose of this experiment is to observe whether or
not the criteria established for normal movements of plants under controlled
terrestrial environments would be different if it were possible to remove
the geophysical influences of the earth. The significance of conducting an
extra-terrestrial experiment to test our current interpretations has broad
fundamental implications, not only on reevaluation of our experimental pro-
cedures and interpretations, but upon all future extra-terrestrial biological

flight experiments.

Experiment Approach.- A self-contained package, preferably divided into

several smaller modules located in different areas on the flight vehicle will
be flown and the leaf movement telemetered back to earth. Sufficient oxygen,
nitrogen, carbon dioxide, humidity, nutrient, light and proper sensing ap-
paratus will be included within this package. Readings taken at regular
intervals can be stored aboard the spacecraft and periodically relayed to

a_receiving station.

A strain gauge will be used to measure the changes in leaf position.
The measurements will be converted to degrees of petiole-pulvinus-blade angle.
The amplitude and the cycle of leaf movement will be plotted and compared to

several ground-based controls operated simultaneously with the flight.

Loss of power, sudden drastic pressure and temperature changes are a few
of the possible causes of ma jor failures, However, subtle erroneous reading
of thermisters or resistance of strain gauges are possible causes of errors
which should be anticipated and compensated for by either redundant circuitry

or methods to check or correct the readings.

Baseline or Control Data.- It is highly desirable to have the following

controls:

(a) A complete stationary vehicle with the experiments and vehicle GMA system
in operation under a controlled environment.

(b) A controlled chamber in which the modules can be placed, monitored and

made to follow the flight spacecraft temperature profile.
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(c) A controlled chamber with plants placed exactly as in a normal laboratory
condition.

(d) A controlled chamber within which the plant modules are held under a con-
stant condition.

(e) A controlled chamber with all conditions held constant with the modules
placed on a clinostat.

All the above controls should be monitored and data recorded simultaneously as

with the data from flight and plant specimens used from the same cultural stock.

Engineering Information

Equipment Description.- The minimum Bean Leaf experiment consists of one

Specimen Chamber (Assembly 1) containing four individually instrumented leaves;
one A/D Converter (Assembly 2); one Central Electronics Unit (Assembly 3); and

an Experiment Interface Unit (Assembly 4). Assembly 2 is not required in the

event of continuous real time data transmission., It is highly desirable to
have up to three specimen chambers (Assemblies la, 1lb, lc) mounted to experi-

ence different G-levels on the experiment platform.

Four bean leaves will be rooted in a bed of nutrient media and sealed in
the specimen chamber in an atmosphere of 20% oxygen, ca 80% nitrogen, ca 0.5%
carbon dioxide, and normal inert gases at a pressure of 14.7 psi. Relative
humidity should range between 40-70%, but 95% is acceptable., Atmosphere con-
trol will be achieved through the photosynthetic respiration functions of the

plant leaves.

The leaves will be constantly illuminated by a fluorescent light (3500-
8000 A) at an intensity of approximately 100 EKG at the leaf surface. Tem-
peratures of 77° + 5°F will be maintained by controlled heat paths to the cold

experiment platform.

A strain gauge mounted across each leaf and stem holder will be used to
monitor the periodicity of leaf movement. As an optimal feature, another
strain gauge may be placed adjacent to each leaf and used in a bridge circuit

to compensate for changes in strain gauge resistance caused by temperature

fluctuations,

The requirement for leaf illumination could be met either with "artifi-
cial" light or sunlight piped to the specimen chambers via fiber optics. A
comparison of power, weight and geometry.in terms of the experiment require-
ment beginning at the time of loading favored the use of fluorescent light
(Table 7). The primary consideration was the difficulty of maintaining proper

illumination prior to actuation of the spacecraft solar cells.
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TABLE 7.

FLUORESCENCE AND LIGHT-PIPE COMPARISON

- One 4-leaf One t4-leaf
Module Module
Fluores- Light Fluores- Light
cent Pipe cent Pipe
Illumination * 3.4 -- 6.8 --
g Intensity Monitor -- 0.5 -- 0.5
W Central Electronics 1.3 1.3 2.3 1.3
E A/D Converter 2.5 2.5 2.5 2,5
R DSU -- -- 0.1 0.1
Interface Unit 1.6 1.6 1.6 1.6
W) Total 8.8 5.9 13.3 6.0
W Specimen Chamber 9.4 *% 8.4 18.8%* 16.8
Central Electronics 0.5 0.5 0.8 0.8
E s .
I Inverter (including above) -- --
G Light Pipes 7.0 14.0
H A/D Converter 1.5 1.5 1.5 1.5
T DSU - -- 2.2 2.2
Interface Unit 4.5 4.5 4.5 4.5
(1b.) Total 18.9 21.9 27.8 39.8
F S Specimen Chamber 63 63 63 63
L P General Electronics 4 4 6 6
0 A A/D Converter 8 8 8 8
0C Interface Unit -- -- 26 26
R E Total 75 75 103 103
2
(in.”)
1. Illu- 1. High | Same as Same as
mination intensity | for one for one
conveni- light module module
ently source with with
R controlled | required | fluores- |light
E prior to prior to cent pipes.
M launch. launch, lighting.
A 2. Several | 2. 1Illu-
R hours of mination
K battery available
S power 30 min
required after
after launch.
launch.

* Includes inverter and ballast losses,

*%k
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A block diagram for a two-chamber (8-1leaf) experiment is given
in Figure 9. As shown, a second DSU is required if real time telemetry is not
available. Strain gauge outputs and ambient temperature* from each specimen
chamber are sampled and converted by a time-shared analog-to-digital (A/D)
converter, then shifted to the Experiments Interface Unit (EIU). Pressure
Go/No Go signals are stored in a centrally located N-bit register and also
shifted to the EIU.

Synchronization, identification, and time-of-acquisition information for
the acquired data will be provided as part of the main-frame in the downlink

data transmission.

Elevation of the bean plant leaf will be measured by monitoring the out-
put of a strain gauge fixed at one end to the stem holder and attached at the
other end to the mid-rib of the leaf. Leaf elevation is illustrated in Figure
10. The output from the strain gauge is small and will be amplified by elec-
tronics located in the specimen module. The leaf angle will be sampled once
every 10 minutes and digitized to six bits, providing a resolution of approxie-
mately 3° over a 180° range. Three bits would probably be adequate to deter-
mine the circadian period of the leaf, but it is desirable also to be able to

detect the smaller variations in movement which occur during this period.

o 150° =~

)

=]

o

<

@]

2

o

< o

110
e 23 to 28 hours >
Time

Figure 10. Typical leaf angle movement,

* Since the ambient temperature data rate is low, the temperature signal
could bypass the experiment A/D converter. However, since the leaf angle
data rate, although high enough to require an A/D converter, is low with

respect to achievable conversion rates, nothing would be gained in doing so.

33



sjuswjaadxe Jeo] ueag 103 wexZelp }O01q SOFUOCIIOATH

*6 2an314g

£179ue 193 1y 103 paatnbax JON xx
£1jsu@T93 Iy 10 Judwiaadxs jesl 4 103 peainbax JON «x

4AMOd OdA 82
¥AMOd d4LvINody
09-0N/ 09 |
NSS4
(v XTENASSY) Y (€ XTERASSY) q1 XTERISSV)
TOWINOD (€ ATAWISSY) nmzma STAVET ¥ -\
m*:om ‘
TN + ONTHLL ) antonss | T
LIND avat|
SOINO¥LOIT
AOMono _ Y1¥d TVIINID —
+ ONIWIL TV1I91a "104LNGI TANSSTUd —
» » + ONIKWIL
(e] ATNASSY
_<§,5 LINA 09-0N/09 »*4TLATANOD I 5SV)
- I5VANIINT TANSSTU TVIIONA |<—=={ SEAVET % [
TVIIOIA |} INIWIYAIXE ol dWIL
MMAUZ¢ YAIHVHO |-
- O0TVNV |- NAWIDEdS
T viva TV1IOId AVIT
(S XATIWISSY)
»LINN
FOVIOLS
viva
e |
1avV¥030ovds| INIWI¥IIXE

34




(a) Required equipment,

(1) Design verification unit

(1) Prototype (also used as the laboratory control unit)

(6) Flight units
(1) Qualification test
(1) Backup
(1) Flight
(3) Control (temperature,

(1) Set of Ground Support Equipment (GSE) to be used for loading
and testing of flight units, and thermal control and data
monitoring of loaded units. Also required as GSE are five

plant-controlled chambers and a clinostat.

(b) Egquipment status. The experiment itself is well established, but

the status of incorporating this experiment into a flight vehicle is by defi-
nition, in a conceptual stage. However, from our experience in the prepara-
tion and development of biological experiments for flight on the Biosatellite,

we can state with confidence that this experiment is well beyond the concep-

tual stage.

Weight and Size.- Weight and size requirements are given in Table 8.

Power.- Power requirements are shown in Table 9.

Envelope.- Geometrical sketch of a typical Specimen Chamber (Assembly 1)
containing four leaves is shown in Figure 11. A sketch of the Central Elec-

tronics Units (Assembly 3) is shown in Figure 12,

Spacecraft Interface Requirements.,-

(a) Location: If one Specimen Chamber (Assembly 1) is flown, it should be
mounted so that all four leaves experience approximately 1 G acceleration
during flight. If more than one Specimen Chamber is flown, they should be
placed to permit study of the effects of different levels of G. There are
no special requirements for Assemblies 2,3 or 4.

(b) Mounting requirements should be sufficient to permit thermal control as
well as mechanical support.

(c) Spacecraft subsystem support requirements include electrical power as
stated above; telemetry link with or without data storage; no special gui-

dance or uplink commands.
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TABLE 8.

WEIGHT AND SIZE OF A FOUR-LEAF EXPERIMENT

I
{ oh { Vol Dimensions
Assembly Weight | olume (in.)
[
1 9.4 545 8.25 x 7.15 x 9.25
2 1.5 ‘ 16 4 x 2 x 2
3 0.5 16 2x2x4
4 4.5 i 130 4.1 x 6.3 x 5
|
Totals 15.9 701
TABLE 9. POWER REQUIREMENTS FOR A FOUR-LEAF EXPERIMENT
Assembly Standby Average Maximum
1 4,2 4,2 4.2
5 e e
2 0.0 2.5 i 2.5
3 0.5 0.5 | 0.5
. o
E
4 1.6 1.6 : 1.6
- e o - e
F
Totals 6.3 8.8 | 8.8
!
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Figure 12. Bean Leaf experiment central electronics unit (assembly 3).
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(d) Power switching is required.

Ambient temperature in each module will be monitored once per hour and
digitized to six bits, providing a resolution of approximately 1.6%. A pres-
sure indicator, which indicates when the pressure within the module has de-
creased below 13 psia, will also be monitored once per hour. Biological and

engineering data requirements are summarized in Tables 10 and 11, respectively.

TABLE 10, BIOLOGICAL DATA REQUIREMENTS PER MODULE

Bits Samples Bits
Parameter Range Per Sample Per Day Per Day
Leaf No. 1 Angle 90 - 180° 6 144 864 I
Leaf No. 2 Angle 90 - 180° 6 144 864 |
Leaf No. 3 Angle 90 - 180° 6 144 864 {
Leaf No. 4 Angle 90 - 180° 6 144 864 i
5 Totals 24 3456 !

TABLE 11, ENGINEERING DATA REQUIREMENTS PER MODULE

Bits Samples Bits
Parameter Range Per Sample Per Day Per Day
1
Ambient Temperature 50 - 90°F 6 24 144 !
Ambient Pressure* Go/No-Go 1 24 24 E
— —
Totals 7 168 :

ke

* Desirable, but not required.
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Environmental Constraints.- '

(a) Constraints on the experiment package. The limiting constraints

are those imposed by the biological specimens. Bean leaves mounted in ex-
periment hardware breadboards have survived simulated Pioneer launch stres-
ses with no detectable change in the stability of their circadian system
(See section entitled, "Environmental Tests"). The package contains an in-
dependent ECS, but is dependent upon external thermal control. With speci-
mens, it should be stored at 77 + 1.5°F, with an acceptable range of 56-90°F.

(b) The plant package is clean and self-contained with no anticipated

output of contaminant, RFI or EMI.

Data Measurement Requirements.-

Requirements are shown in Table 12,
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Operational Requirements ' '

Spacecraft Orientation Requirements.- The experiment as described is

specifically "sized" for a "typical" Pioneer mission, the basic elements of

which are acceptable to experiment execution.

There are three specific requirements, all of which appear to be achiev-
able on a Pioneer spacecraft.

(a) The spacecraft must leave the Earth field as rapidly as possible.

(b) There must be no periodic event aboard the spacecraft, such as
acceleration, noise, vibration, etc. which occurs at frequencies which en-
train biological rhythm,

(c) Data must be retrieved either continuously or intermittently for
60 days.

Prelaunch Support.- Preliminary installation and checkout will be done

on each module with live specimens after loading into the vehicle. During
installation and checkout, all environmental parameters required by the plant
material must be kept in acceptable ranges. Growth chambers and standard
laboratory equipment will be required at the launch site to maintain stock
cultures, maintain ground controls for the flight experiment, and to conduct

post flight analysis.

Flight Operational Requirements.- Transmission of data will be via te-

lemetry system., In-flight temperature information is required and must be
returned to the launch site to allow proper settings for ground controls.
All other information should be returned to the PI. With the exception of
the temperature data, all other data should be processed within 60 to 90

days after launch.

Data Support Requirements.- All data are anticipated to be processed

and printed out at Goddard Space Flight Center or at Ames Research Center.

Resources Requirements

Development Schedule.~- The development schedule is shown in Figure 13.

Estimated Funding Requirements.- Funding requirements are shown in

Figure 14.
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BIORHYTHMICITY OF FIDDLER CRAB ACTIVITY AND RESPIRATION

Principal Investigator: James Hufham, Space Defense Corporation
Co-Investigator: Frank Barnwell, University of Chicago

Engineering Support: Space Defense Corporation

Technical Information

Objectives.- The experimental objective is to determine whether
removal from the earth's rhythmic geophysical environment will affect the
well-known tidal rhythm and metabolic rhythm of the fiddler crab, Uca.
Whether these periodicities remain the same, are modified, or completely
disappear, provides insight as to whether this rhythm is timed by an

autonomous, endogenous oscillator system, or whether it is dependent upon

an exogenous rhythmic input.

Experiment Approach.- Until the advent of the national space program

and its promised opportunity to make observations in vehicles moving out
of the earth's sphere of influence, no way could be found to remove
effectively the biological specimens from the cues of its geophysical
environment., In light of the two diametrically opposed alternative
hypotheses which could account for the timing of these biological rhythms,
we propose a space flight of the fiddler crab, Uca, which has known and
well-studied daily, tidal, monthly and annual biorhythms. We postulate
that only if the rhythms persist essentially unaltered (from their earth-
bound controls) while in the geophysical environment of space, can one be

assured of the actual autonomy of the organisms rhythmicity,

The rhythmic patterns of locomotor activity and respiration in the
fiddler crab, Uca, have been selected as the assay system of choice be-

cause:
(1) These activities of the fiddler crab are easily recorded.

(2) The small size (2-5 g) permits relatively large samples to be
tested,

(3) The crabs may be kept for long periods of time with very little
food,
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(4) The activity patterns of these crabs exhibit both day-related
and tide related components and would allow the study of two major natural

frequencies and the interaction of the two cycles, '

(5) There is already a large body of information concerning these
cycles in the crab, and this information is helpful in accumulating base-

line data and experiment.design.

Under contract with NASA (NAS 2-4517) a highly sensitive device has
been developed for recording the locomotor activity of the fiddler crab.
The instrumentation is simple, sensitive, and compact. The movements of
each crab are measured as digital events making interpretation direct and
uncomplicated. These digital readouts would define the periods of activity
and of inactivity, which are the important experimental parameters. The
digital outputs obtained will be in a form suitable for transmission to
ground station and programming as time series data for computer analysis
at Wayne State University, or elsewhere. The structure of the activity
rhythm will be examined by computer for changes in amplitude, period,

rate of phase shifting, and any other effects which may become evident.

Since it will be necessary to provide regulated oxygen for the crabs,
and there is little additional system penalty associated with oxygen
monitoring, we will measure the integrated oxygen consumption rate of the
“six-crab population utilizing a respirometer developed under NASA Contracts
NASw-870 and NAS9-7172., Since their oxygen consumption is a function of
their activity, this measurement will allow a confirmation of the locomotor
activity as determined by the actograph, as well as providing important

information concerning the metabolism of the crabs during space flight.

The in-flight experiment length proposed is limited by the survival
time of the biological specimens., As long as the life support needs of
the crab are supplied, we expect the experiment to last at least 60 days.
These life support needs consist of food, water, oxygen provision, carbon
dioxide removal and thermal and barometric control. The crabs can be
expected to survive for 30 to 40 days following the exhaustion of their
food supply, which will probably occur in 15 to 20 days if supplied
ad libitum. The maximum oxygen consﬁmption is about 0.5 ml/hr/crab or
approximately 75 ml per day for six crabs or a total of 4500 ml in a 60-day
experiment. Supplying this quantity of oxygen presents no problem. The
water will be sealed into each individual chamber and will not require

changing or filtering.,
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Baseline or Control Data.- Two actograph-respirometers, identical

to those flown in the spacecraft, will be established at Space/Defense

Corporation in order to build a statistical base for comparison with the
data from the spacecraft respirometer. Both the oxygen consumption and
the locomotor activity will be monitored automatically. One control unit
will rotate at the rate of spin of the BioPioneer spacecraft while the
other will be fixed relative to the earth., These data will be compared

with these obtained from the spacecraft and that obtained from other flight

and control experiments.
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Engineering Information

Equipment Description.- The minimum experiment consists of three

specimen chambers (Assemblies la, 1lb, lc); one oxygen supply unit (Assembly
2); and one Experiment Interface Unit (Assembly 3). Each specimen chamber
contains two fiddler crabs individually housed and individually instru-
mented to monitor activity. Oxygen utilization is monitored for the
population, (Figure 15).

It is significant to note that the proposed configuration was chosen
to optimize integration with the Pioneer spacecraft. The modular design
of the experiment package is amenable to many configurations to permit use

of larger numbers of animals or to interface better with the spacecraft.

Each crab is contained in a sealed enclosure with 20% O 80% N

’
atmosphere at 14.7 psi, Carbon dioxide and other gaseous coitaminanzs are
removed by chemical absorbents, Humidity is not controlled and remains
close to saturation because of the presence of a small amount of sea water
in each chamber, High humidity is required for the well-being of the
organism, Oxygen is supplied to the animal at ambient pressure on demand.
Thermal control is achieved by controlled heat paths to the cold experiment
platform, The bottom of each crab enclosure is a diaphragm through which
animal activity is monitored., Circuitry is provided for collecting experi-
ment and engineering data for presentation to the Pioneer Data Handling

system and relay to the ground.

A functional block diagram for a typical one crab system is shown in

Figure 16.

(a) Required Equipment. An experiment unit consists of three specimen

chambers (Assemblies la, 1b, lc) and one Oxygen Supply Unit (Assembly 2).
The following equipment is estimated to be required to implement the flight

experiment:

Test Hardware

Design Verification (Assembly 1 and Assembly 2) 1

Qualification Test (Assembly 1 and Assembly 2) 1

Mass Mock-up Unit 1

Flight Equipment Simulator Unit 1
Flight Hardware

Flight Unit 1

Flight Unit Back-up 1
Control Unit 2
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Figure 15. Assemblies for Fiddler Crab experiment.
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Crabs, a small crab vivarium, a few special tools, a supply of oxygen,
appropriate pneumatic and electrical gauges and manometers, assorted
mechanical and electrical spare parts, artificial sea water, and crab
food will be provided by the contractor. A laminar flow laboratory bench,
a regulated power 28 Vdc supply and refrigerator in an air-conditioned

laboratory at Kennedy Space Center will be required.

(b) Equipment Status. Problems of actograph development have been
dealt with during NASA Contract NAS2-4517, now being conducted by Space/

Defense Corporation. A breadboard configuration of the actograph unit is
now being used to collect motor activity data from single specimens and a
multispecimen actograph is under construction. The actograph maintains a
salt-water environment, provides a food supply, maintains adequate illumi-
nation, and maintains the themmal balance. No problems are anticipated
in combining the respirometer and actograph into a single experimental
package. Temperature control will be achieved by a combination of active
and passive techniques to maintain the specimen temperature at 24,0 +
0.5° C,

The respirometric equipment is well advanced and only requires re-
configuration for adaptation to BioPioneer. Under Contract NASw-870 the
basic respirometer unit was developed and has been collecting laboratory
baseline data from potatoes for over two years. In addition, under the
same contract, a multicell unit (12 potatoes) was developed and is now in
the final stages of checkout and test before being put into bench service.
Under Contract NAS 9-7172 a flight configuration for Apollo Applications
Program Flight #3 is in the Program Definition Phase. Flight hardware
design employing a two-cell respirometer has been approved (September 1967)
and two mock-ups and two flight equipment simulators were delivered
(December 1967).

Weight, Size, and Area.- Weight, size, and area are shown in Table 13.

* .
Power .- Power requirements are shown in Table 14.

Envelope.- Hardware for this experiment is illustrated in Figure 17.

*A1l power requirements are in the form of 28 Vdc (nominal).
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Spacecraft Interface Requirements.-

(a) Location. The actographic assemblies must be placed at a
position such that, after spinup and rotation of the unit, the floor of
the individual actographs sustains a G load of not less than 0.9 nor more
than 1.1, The oxygen supply unit (Assembly 2) may be placed anywhere in

the spacecraft,

(b) Mounting Requirements. Fifteen bolt holes or tapped holes on the

floor plate are required. No special stressing or supports are thought to
be required. Smaller tapped holes to accept tiedown U-loops for wiring and

oxygen lines will also be necessary.

(c) Subsystem Support Requirements. No structural modifications are

required. Power and TM leads are required.

(d) Plumbing. Maximum gas pressure is 2000 psia. No fluids will be
moved. Cabling requirements are not demanding. Routing of these may be
.by the most convenient path, Oxygen leads from the regulator assembly to
the actograph assemblies should be routed as short paths as possible to

minimize dead space and vibration,

(e) Dynamics. Assume geometric center of each unit to be the center
of gravity. Location of moveable objects can be derived from Figure 17.
The pattern of crab movement is circular, around perimeter of individual
actograph. The crabs weigh 3.0 to 4.0 g. The longest possible distance
separating two crabs in an actograph assembly is 4 in.; 1 in. is the least

distance, The chronotropicity of movement patterns is unpredictable.

Food is located in a niche in the side of the individual actograph
and weighs 2.0 g per crab. For each crab, 25 ml of water (weighing about
25 g) will be provided, for a total of 150 g. The water, before and during
boost, will collect at the lower edge of the individual actographs. Upon
spinup, the water will be evenly distributed over the diaphragmatic floor
of the actograph., The water will not be pumped and will only be given

motion by the crab,

Solid wastes are generally distributed over the "floor" of each

actograph (the diaphragm serving as the floor when the spacecraft is

rotating). Oxygen i8 converted by oxidative metabolism into carbon dioxide

at a known ratio, This respiratory quotient (RQ) for the crab is
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0.8 002/02. Since each crab consumes no more than 0.5 ml O2 (STP) /hr,
total consumption for the proposed configuration is 72 ml/day or about
4320 ml 02 at STP for a 60-day mission. This amounts to 0.103 g of O2
per day (or 6.2 g for 60 days), or 0.113 g of CO2 per day (or 6.8 g for

60 days). This CO2 is, in turn, converted into potassium carbonate by
reaction with potassium hydroxide. However, this reaction is stoichio-
metric and furthermore occurs in the CO2 scrubber shared by both crab

in an actographic assembly. Thus, the net mass movement is from the oxygen
storage bottle (of 0,033 g 02/day) to each of six individual actographs
where the 02 is converted to CO2 (by the crabs! metabolism) and thence to

KZCO3° However, the latter two conversions produce no major change in

center of mass, occurring as they do within an inch of one another.

Environmental Constraints.-

(a) Constraints on the Experiment Package. The limiting constraints

are these imposed by the biological specimens. Crabs mounted in experi-
ment hardware breadboards have survived simulated Pioneer launch stresses
with no detectable change in the stability of their circadian system.

(See section entitled "Environmental Testing'") The package contains an
independent ECS. Without specimen it may be stored between -48°C and 70°C;
with specimen -1°C to 30°C.

Anticipated ambient levels of radiation, EMI, and RFI aboard the
spacecraft are considered acceptable for execution of the experiment, but

both their leads and periodicities must be known.

(b) Interference. This is essentially a "silent" package. With the

exception of opening and closing of minute regulator valves, there is no
mechanical motion and no significant resultants., The valves are actuated

by tiny solenoids of low electrical energy (40 mAd),

Data Management Requirements.- The oxygen consumption of the crabs,

the activity of each individual crab, and the experiment package tempera-
ture will be combined electronically so that all the data can be collected,
stored and fed to the BioPioneer DSU in a compatible mode. Oxygen con-

sumption will be monitored by sensing whether the solenoid (which recharges
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the second stage oxygen supply) has been activated and the event stored
in a logic circuit. Every 6 minutes, the circuit will be read and fed to
the BioPioneer DSU, requiring a total of 240 bits/day of DSU capacity.
Crab motor activity will be monitored as the occurrence or nonoccurrence
of a select number of motion events occurring in a 6-minute period and
recorded on the logic circuit as a single event. This circuit also will
be read and fed to the BioPioneer DSU every 6 minutes. Since there are
six crabs, a total of 1440 bits/day of DSU capacity is required for

activity measurement, (See Table 15.)

The temperature will be determined over each hour using a six-bit
word and a range of 50 to 82°F (+ 0.5°F). This will require 144 bits
per day. The total for all three measurements is 1824 bits per day.

Operational Requirements

Spacecraft Orientation Requirements.- There are no orientation

requirements.

Prelaunch Support.- The Principal Investigator (PI) will deliver

the experiment to Kennedy Space Center 12 days prior to launch and 9 days
prior to launch will install and calibrate specimens. At direction of the
SPO, the PI will install experiment in spacecraft when power is established
on the pad, and monitor respiration and activity from the control center
until a satisfactory signal is obtained. Facilities and equipment as
described above are required. No GSE/AGE will be required as a service

item,

Flight Operational Requirements.- Ready access by the PI to early

data is desirable to determine experiment function status and to assess

immediate effect of launch and orbit, if any, upon the specimens.

Data Support.- Preflight data will be collected at Kennedy Space

Center nine days prior to flight using contractor furnished equipment.
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It may be desirable to plug into spacecraft data system prior to space-
craft installation to determine continued system compatibility. No real
time data are required, except for "early look" (not "quick look") at
data. Raw data from spacecraft should be converted from analog to digital
if required, time correlated, and ephemeris correlated. The PI will treat
reduced data with his own computer program., If possible, it is desirable
to know of any events occurring in the spacecraft which may have cyclic

characteristics,
Resources Requirements

The following material was prepared by Space Defense Corporation and
represents the current best estimate of both schedule and budget require-
ments to accomplish the proposed experiment. A firm bid must await defini-
tion of requirements to be established by the Pioneer Project Office.
Depending upon specific requirements, both the schedule and budget may be
readily reduced or increased. The time and money requirements outlined
below represent a realistic program optimized for attainment of scientific

objectives, systems reliability, and fiscal responsibility.

Development Schedule.-

(a) Phase One, Program Definition.- The current Experiment Feasibility

Study (NAS2-4526) has preempted some of the classic PDP functions. Those

that remain include development of:

l. Preliminary Experiment Implementation and Program Plan.
2. Reliability Program Plan.

3. Design Verification Test Plan.

4, Qualification Test Plan.,

5. Failure Mode Effect and Criticality Analysis.

6. Design.
a. Design Analysis and Design
b. Preliminary Drawings and Bill of Materials

c. Specifications
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7. Mockup and Simulator Hardware

a. Mass Mockup. One respirometer and one actograph assembly will be
provided.

b. Flight Prototype Mockup. One respirometer assembly and one

actograph assembly will be provided.

c. Flight Equipment Simulator Unit. One respirometer assembly and

three actograph assemblies (comprising one "flight unit") will be
provided.
(b) Phase Two.- Flight Hardware Development, Test, and Fabrication.

1. Fabricate Design Verification Test Hardware. The equivalent of two
respirometer assemblies and two actograph assemblies in components must be

provided,
2. Perform Design Verification Tests,
3. Design Modification and Final Design Review.

4, Fabricate Qualification Test Hardware. One respirometer assembly, one

actograph assembly and selected spares are required,
5. Perform Qualification Tests,

6. Prepare Production Drawings and Specifications. The schedule for
accomplishing this program is estimated to be 24 months (Figure 18). The
estimated cost of accomplishing this program is estimated to be $292,800
(Figure 19).

7. Fabricate Flight Hardware. One flight unit, one flight back-up unit

and two control units will be provided.
8. Perform Predelivery Acceptance Test.
9. Deliver Flight Hardware.

10, Perform Post Delivery Acceptance Test.

(c) Phase Three.- Operations.

l. Prepare Operations Documentation.
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a. Field Laboratory Requirements Plan.
b, Detailed Experiment Implementation Plan.
c. Checkout and Count Down Document.

d. Reporting Plan.
2. Establish Kennedy Space Center Field Laboratory.
3. Establish Flight and Backup and Control Units at KSC.

4, Assist in installation, checkout, countdown and launch of Experiment

in BioPioneer.
5. Collect Flight Experiment Data.
6. Reduce and Treat Data.
(d) Phase Four., Reporting and Support.

1. Prepare and submit monthly, annual and phase interim reports and a

final report.

2. Analyze and report the experimental results to the government and the

scientific community.

3. Perform baseline studies in the contractor's laboratory and at the

University of Chicago.

4, Provide management to assure completion of the work in a timely and

cost-effective manner.
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CIRCADIAN PERIODICITY OF COCKROAGH ACTIVITY AND RESPIRATION

Principal Investigator Colin S. Pittendrigh, Princeton University
Coinvestigator R. G. Lindberg, Northrop Corporate Laboratories
Engineering Support Northrop Corporate Laboratories

Technical Information

Objectives.- The purposes of this experiment are to (1) examine the
persistence and precision of the circadian period of cockroach activity and
metabolic rate, and (2) examine the phenomena of temperature compensation of
circadian periodicity when all geophysical variables other than light and
temperature are either removed or sensed by the organism at periods other
than 24 hours. The two experiment objectives strike directly at the
fundamental arguments in favor of geophysical events governing the length of
circadian periods. If the circadian period and the phenomenon of temperature
compensation are unaffected by removal of terrestrial stimuli, the argument

in favor of pervasive geophysical forces 1is significantly weakened.

Experiment Approach.- If both experiment objectives are undertaken

simultaneously, two groups of cockroaches containing three individually
monitored roaches each will be held at two different temperatures

(15°C and 25°C) and the frequency of activity will be monitored at ten
minute intervals. The data upon retrieval will be examined to determine
the precision and persistence of the circadian period as a function of
temperature. The data will be compared with ground based control data
for evidence of entrainment to a precise 24-hour period. In the event
that both objectives cannot be undertaken simultaneously, a minimum of
three cockroaches will be flown at a constant temperature and the per-
sistence and precision of their circadian period will be studied for
approximately one year. This latter approach is not a compromise and

1s particularly significant in view of laboratory data which has revealed
that animals maintained in a free running condition for several months

will often display desynchronized periodicities.

Baseline or Control Data.- Since the objective of the experiment

is to test for undefined "pervasive geophysical forces," it is essential

that ground controls be run simultaneously with the flight experiment.
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The use of cockroach activity to study circadian periodicity in
insects is classical. Roach data are routinely collected in the laboratory
in the same manner proposed for the experiment. The computer program is
in operation for statistical analysis of the laboratory data. It is
intended that the same computer program be used in reducing the space

flight experiment.
Engineering Information

Equipment Description.-

(a) Functional description. The cockroach experiment will consist

of as many as six modules, each containing one cockroach (Assemblies la
through 1£); a Central Electronics Module (Assembly 2); and an Experi-
ment Interface Unit (Assembly 3). Gross motor activity will be continu-
ously monitored and read out once every ten minutes for a period of one
year. Engineering data, consisting of ambient temperature and ambient

ﬁressure, will be sampled once per hour.

The environmental control system for the package requires no external
power. Thermal requirements will be met passively through a controlled
heat path to the spacecraft platform. Careful selection of materials for
the conductive path coupled with the small change in platform temperature
will yield a very stable system with change in experiment temperature

following platform variation.

A "leak proof" experiment housing will contain a 14.7 psi atmosphere
consisting of 20% oxygen and 80% nitrogen. The control of atmospheric
composition will utilize a lithium hydroxide bed for 002 control and a
demand 02 regulator coupled with a high pressure 02 source to supply
make up 02. Activated charcoal and boric acid crystals will be utilized

as required for odor control.

The gross motor activity of each cockroach will be monitored by
counting the number of half-revolutions of an activity wheel, which
doubles as the animal holding area, during consecutive ten minute periods.
The six most significant counter bits will be stored at the end of each
ten minute period, thereby providing a measure of average activity during

the counting period.
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Illumination in each cell will be controlled by an onboard programmer
which can be deactivated by ground command. A low power electrical heater
will provide thermal balancing during low heat periods. As an optional

feature, a respirometer can be provided and monitored as a backup activity

measurement.

An electronics block diagram is shown in Figure 20. The number of
activity wheel half-revolutions are counted in digital counters, and
serially shifted to the Pioneer data system via the experiment interface
unit every 10 minutes. Ambient pressure and temperature for each specimen
chamber is sampled directly at least once per hour by the Pioneer analog
multiplexer. Total activity and engineering data bits per day for a three-
cockroach experiment are 2592 and 864 respectively, exclusive of timing,
synchronization, and parity bits, or 3672 bits including time-of-day. This

data can be handled by the existing Pioneer data system with one DSU.

(b) Equipment required.

(1) Design verification module
(1) Prototype: Mass mockup and prototype mockup are optional.
(8) Flight units
(1) Qualification test
(1) Backup
(3) Flight
(3) Control
(1) Set of Ground Support Equipment to be used for loading and
testing of flight units, and thermal control and data

monitoring of loaded units.

(c) Egquipment status. The equipment described herein is in a stage

of preliminary design. A wheel similar to one to be used in the flight
configuration is currently being used in laboratory research at Princeton.

No new techniques or components beyond those currently in use are required.

Envelope.- A sketch of a typical Assembly 1, which contains the
specimen, is given in Figures 21 and 22. Outline dimensions for Assembly 2,
the Central Electronics Module, and Assembly 3, the Experiment Interface

Unit, are given in Figures 23 and 24 respectively.
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Figure 22, Cockroach experiment assembly 1,
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Weight and Size.- Weight and size are shown in Table 16.

TABLE 16. WEIGHT AND SIZE OF A THREE COCKROACH EXPERIMENT

WEIGHT VOLUME DIMENSIONS

ASSEMBLY (1b) (in.3) L' x W' x H" SHAPE

1A 2.0 132 5.05 x 5.05 x 6.72 Cylinder

1B 2.0 132 5.05 x 5.05 x 6.72 Cylinder

1C 2.0 132 5.05 x 5.05 x6.72 Cylinder

2 3.0 98 4 x 3% x 7 Rectangular

3 4.5 128 6.3 x 4.1 x 5 Rectangular
Total 13.5 622

Power.~ Power requirements are shown in Table 17.

TABLE 17. POWER REQUIREMENTS FOR A THREE COCKROACH EXPERIMENT

ASSEMBLY STANDBY AVERAGE MAXIMUM
1A 0.7 0.7 0.7
1B 0.7 0.7 0.7
1C 0.7 0.7 0.7
2 0.6 0.6 0.6
3 1.6 1.6 1.6

Total Power (W) 4.3 4.3 4.3

Spacecraft Interface Requirements.-

(a) Location. It is required that each of the three specimen
chambers be located where the force of gravity is simulated by rotation

of the spacecraft.

(b) Mounting. Mounting shall be sufficient for thermal control as

well as mechanical support.
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(c) Support. Support requirements are 28 VDC power and switching,
data storage and downlink transmission, uplink commands, and thermal
control. It is required that the specimens not be subjected to thermal

cycling.

(d) Linkages and control. No special mechanical linkages or controls

are required except power switching.

(e) Dynamics. Shifts in location of expendable supplies is shown

in Figure 25.

Environmental Constraints.-

(a) Constraints. The limiting constraints are those imposed by the
biological specimens. Test specimens survived simulated Pioneer launch

stresses with no apparent after effects.

The experiment does require a stable environment with no periodic

stimuli capable of entraining biological rhythms.

(b) Interference. There are no known sources of interference in

this experiment.

Data Measurement Requirements.- Requirements are shown in Table 18.

Operational Requirements

Spacecraft Orientation Requirements.- The experiment as described

is specifically sized for a "typical Pioneer spacecraft mission, the

basic elements of which are acceptable to experiment execution.

There are three specific requirements, all of which appear to be

met on Pioneer.
a)  The spacecraft must leave the earth field as rapidly as possible.

b) There must be no periodic event aboard the spacecraft, such as
acceleration noise, vibration, etc., which occurs at frequencies which

entrain a biological rhythm.

c) Data must be retrieved either continuously or intermittently for

a minimum of 120 days.
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TABLE 18.

DATA MEASUREMENT REQUIREMENTS FOR A THREE-COCKROACH EXPERIMENT

Ambient Ambient
Parameter to be Measured Activity Temperature Pressure
Equipment Item Used 1 2 3 1 2 3 1 2 3
(specimen chamber)
Expected Value | Units Levelp > o > psia .
of Parameter e
Nominal
Range 0- 64,4~ 13, 2+
63 > 75.2 > |16.3 >
Measurement How Often 10 o 1 _
Characteristics min o hour -
Duration 10 Point
min > SampTF >
Total in [52,56p ~|8,760]
Mission o T
Output Signal Type Pulse] _ fnalog] R
of Instrument e o
Frequency TBD - DC .
Range
Amplitude 0- 0- X
Range 5V —> |3V —
Resolution| 1 - 2°F ~|0.03 _
count o ~ |psia -
Readout No. of 1 -
Requirements Channels o
Sampling ]0.010 0.001f
Rate BPS - BPS >
Telemetry s >
Required e o
Storage yes,|if rgal tige telc;metr is net available
Required
Time Method
Identification Expefimengs clogk >
Accuracy +1
min >
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Prelaunch Support.- Shipping and handling procedures for the experi-

ment hardware will follow usual procedures for equivalent flight items.
Addition of oxygen, specimen food and water, and the experimental organism

will be at the launch site as close to time of launch as is operationally

feasible.

The assemblies containing the experimental organisms will go through
all necessary checkout to insure the integrity of the package prior to
installation in the spacecraft. Experiments will receive a prelaunch
checkout by procedures to be defined. The principal support requirement
in this category is for thermal control. The proposed experiment achieves
temperature control passively through its mounting on the experiment plat-
form. All other functions are self contained or need not become operational

prior to prelaunch checkout and/or launch.

A combination office/laboratory space will be required to accommodate
up to 24 experimental animals, the flight hardware and associated backups
and ground controls. This is estimated to require approximately 400 square
feet of air conditioned work space, a desk, an electronics bench, one or
two tables and an animal rack. Both 120 V and 28 V power will be required.
The space should be available continuously from 30 days prior to launch to
30 days after completion of the flight experiment. It is entirely feasible

to accommodate total experiment support in a suitable trailer.

Flight Operational Requirements.- There are no special flight opera-

tional requirements.

Data Support Requirements.- Control data will be collected on magnetic

tape at the launch site. Flight data will be recovered from the NASA
communication net on computer compatible magnetic tape and relayed to
Princeton University for analysis. Flight data may be retrieved either
in real time or intermittently from a data storage unit, depending upon

operational constraints.
Resources Requirements

Development Schedule.- The development schedule is shown in Figure 26.

Estimated Funding Requirements.- Funding requirements are shown in

Figure 27.
75




*juswrxadxs Yoeoaxyd0)H 3yl jo Juauysijdwodde 103 IINPaYIS paJewIIsy

9z 2an31y4

jJo a
I8]

Yy
aen

pu

o)
|

8714 4‘

bd£3030]

& 4

aesk 1
uo13jeaIng JusWiIadXy
s1sA1euy eleq Y3114
uoyr3onpay eIeq IYII14
% 33oddng uolssiy
uorzexedaag Y8114

axempaey
Y3114 3o £19AT13Q

pa3edTIqey s3itun IY3Tid

9391duwoyn
Suirjsa] uojlEOIJITEND

poaaa11ag ad£3o030xyg
@3a1dwo) 4aq
9391dwon uldisaq
@391dwoy (oI
3o'aI3jUO0) dIEBMpaA®H

uoT3IOV qdIASK

JLITIRWOD dId

€ [4

€

4

€

[4

s133jxend

sIajaend

»

siajaend

S9UO0JSO[IN
xofey

€ Xd

¢ A4

T Ad

76




.Amoﬂ x ¢§) juswraadxa yoeroaxd0nH 9yl ysridwooose o3

3500 polBWIISYH

*/Z @2an314

£9%

1B30] pueaH paJBWIISY

Lz

8%

A4

971

siejo] Aijaesy

61

91

uor3jedIIqng
pue sisdleuy ejeQq

011

11

$3103334
uotrlejuswaTdur I9Y3lQ
pue satpnig Surjaoddng

9¢1

129

9

0t

€1

(seaeds pue
s3Tun 3Yy81714) Lasatrieq
pue 3s3] ‘uorjeOoTaqEj

8L1

91

e

6C

1¢

1C

LT

LT

(3uswudinbs jxoddns pue
‘sodAj030ad ‘sdn-yoou)
31s3] ‘uoriedTaqEg
‘jquswdoranaqg ‘ul8rsoq
‘paeoqpeaag ‘uorlTUIIA(Q

s1e3o]

71 €

4

€

4

5 4

€

[4

sI93aenp

sI93aEeNnY

sI9jaend

sa33aenp

7 Ad

£ Xd

¢ Ad

T Ad

iichy

77



CIRCADIAN PERIODICITY OF VINEGAR GNAT ECLOSION

Principal Investigator: C. S. Pittendrigh, Princeton University
Coinvestigator: R. G. Lindberg, Northrop Corporate Laboratories

Engineering Support: Northrop Corporate Laboratories:

Technical Information

Objectives.- The purpose of this experiment is to examine the phenomenon
of "temperature compensation!" of the circadian periodicity of an insect
during spaceflight. Specifically the question being asked is whether the
circadian rhythm of eclosion of Drosophila pupae is changed when all geo-
physical variables other than light or temperature are either removed or

sensed by the organisms at periods other than 24 hours.

The experiment strikes directly at one of the fundamental arguments
in favor of geophysical events governing the length of the circadian
period. If the circadian period and temperature compensation are unaffected
by removal of terrestrial stimuli, the argument in favor of "pervasive

geophysical forces!" is significantly weakened.

Experiment Approach.-

(a) Premise. The proposed experiment will test the premise that
some 'pervasive geophysical force" does entrain the circadian periodicity
of organisms and that as a consequence circadian systems removed from
terrestrial stimuli will degrade. The proposed experiment will study
both the precision of the circadian period in space andtemperature compensa-
tion of the period in space. (In case of power or weight restrictions it
is not essential that both questions be attacked simultaneously.) The

end point to be monitored is the frequency of Drosophila eclosion.

(b) Experiment. Development of a Drosophila pupa is precisely
controlled by its circadian system. After the system has been held in
constant dark, a light flash is sufficient to entrain the circadian system
and the time of hatching following the light flash can be predicted with

great precision. However, there are periods during the organism's subjective
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day when the pupa is refractory and does not entrain to the light flash
but continues its development according to the prevailing circadian
period. By subjecting newly formed pupae to light flashes at different
times of its subjective day the circadian period stays constant but the
phase shifts to varying degrees depending upon the time at which the light
flash is administered. These phase shifts have been intensively studied
and reported in the literature. The proposed experiment is therefore an

application of a very thoroughly studied phenomenon and technigue.

The experiment consists of two populations of pupae developing at
different ambient temperatures with each population further divided into
sub-populations of 500 pupae each. The chambers once loaded will be held
in constant dark under 100% nitrogen at 14.7 psi. This treatment will
hold the pupae dormant until initiation of the experiment in space ten to
twenty days later. At initiation of the experiment the ambient tempera-
ture of one pair of pupal populations will be gradually raised to approxi-
mately 26°C and the other pair of populations will be gradually lowered to
17°C. When the temperature has stabilized, oxygen will be added to the
experiment chambers to reconstitute a 20% oxygen 80% nitrogen atmosphere
at 1 psi. One population of pupae at the high temperature and one popula-
tion of pupae at the low temperature will receive a flash of white light at
this time. Twelve hours later the remaining population at the high tempera-
ture and the low temperature will receive a similar flash of white light.
The rate of eclosion will be monitored by optical scanning of the pupae
chambers. Upon retrieval the data will be examined in terms of the pre-
cision of the circadian period, phase shifts as functions of ambient
temperature and/or time of white light stimulus. The results will be
compared with ground controls and previous laboratory data in an effort
to resolve degradation of the circadian period and changes in the anticipated

temperature compensation of the circadian period.

It is proposed that one ground control experiment be run concurrently
at the launch site with the flight experiment. Housekeeping data (ambient
temperature, atmospheric pressure) will be required to document the con-

sistency of the environment which the experiment requires.
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(c) Validity of technique. Drosophila eélosion rhythm is the best
studied circadian system of any organism. Techniques fully developed at
Princeton University permit the selection of a pupal population that would
emerge in, e.g., three or four successive peaks of activity separated by a
precise circadian period. The pupae can be stored in a dormant state under
nitrogen and only released into activity long after the system had entered
either solar orbit. Experimental studies are presently underway at Prince-
ton to determine more precisely how long and at what temperatures the pupae
can be kept dormant., Vibration is known to influence the rate of eclosion.

Studies to determine the threshold of this effect are underway.

Baseline or Control Data.- Since the objective of the experiment is

to test for unknown "pervasive geophysical forces," it is essential that
ground controls be run at the launch site simultaneously with the flight
experiment., Baseline data from which to design the proposed experiment

are well in hand. Drosophila eclosion is the most intensively studied
circadian system in the literature. A key reference is Pittendrigh, C.S.,
"On the Mechanism of the Engrainment of a Circadian Rhythm by Light Cycles,”
in Circadian Clocks, pp 277-297. North Holland Pub. Co., Amsterdam 1965.

Engineering Information

Equipment Description.-

(a) Functional description. The fruit fly experiment will consist

of four populations of 500 pupae each housed in two separate compartments

of two populations each (Assembly 1), and an Experiment Interface Unit
(Assembly 2). Prior to activation of the experiment the pupae will be held
dormant in 100% nitrogen in constant dark. The experiment will be initiated
by reestablishing a 20% oxygen 80% nitrogen atmosphere and establishing an

8 to 10°C temperature differential between compartments., The modules will
be individually strobed with white light at different times and the hatch-
ing rate will be observed. Infrared light, to which the flies are insensi-
tive, will be used at 15-minute intervals for monitoring. These data,
along with engineering data sampled once per hour, will be transferred to

the Pioneer spacecraft data system.
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Thermal control will be via a conductive path to the thermally regu-
lated spacecraft platform, and a low-power electrical heater. The two
packages will be stacked with the lower package the coolest. Prior to
activation of the experiment the packages will be essentially at platform
temperature. Upon activation, with resulting power input, the package
temperatures will rise until equilibrium is reached through the heat flow
paths. Since the two packages are at different temperatures and are
sealed, a pressure difference will occur. This has been eliminated by
the incorporation of a small bleed port between the two packages. The
0, required for activation of the experiment is stored at the same pressure

2

as the N_ in the package (14.7 psi) in a container equal to approximately

2
20% of the combined volumes. Upon activation a solenoid is activated to
puncture a diaphragm between the containers, thus allowing the gases to
mix. The relative humidity will be established at the time of package

closure. Absorbents are not required.

Each pupa will be mounted on a fiber optic "light pipe.!" When the
pupae hatch, the pupa will become transparent and can be sensed by a photo-
diode. The cells will be illuminated in groups by gallium arsenide light
sources at the time of counting. The gallium arsenide light requires
approximately 65 milliwatts of power and produces light in a frequency

which the developing pupae cannot sense.

Each module of 500 pupae will be scanned once every 15 minutes. The
total number of pupae which have hatched will be counted in a binary
counter. After the count has been made the contents of the counter will
be shifted to the experiment interface unit (EIU). The counter will then
be used to count hatched pupae in the next module, etc., until all four
modules have been scanned. Engineering data will also be periodically
monitored. A block diagram of the electronics is shown in Figure 28. A

section view of a typical cell is shown in Figure 29.

Several electronic monitoring approaches were considered: (1) "fuses"
which are broken by the fly upon hatching, thereby providing an electrical
indication, (2) a weak opaque film which is broken upon hatching, thereby
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providing an optical indication, (3) an electronic memory device or counter
which is triggered when the fly interrupts, or fails to interrupt, a
photodiode-sensed light beam, and (4) a carbon black film which is eaten

by the fly and photodiode-sensed.

The broken fuse and opaque film approaches do not appear to be as
dependable as the photodiode-sensed approaches since they require that the
fly be strong enough to break the indicating material. Any of the photodiode-
sensed approaches would provide reliable indications of hatching; the
principal investigator has had favorable experience with the carbon black
and Northrop has performed informal tests which established the feasibility

of photodiode sensing.

Monitoring of hatched pupae can be accomplished with several different
combinations of lamp and diode scanning. Any of these approaches is usable
with or without carbon black, where the approach without the carbon black
would be that of (3) above.

These approaches are compared in Table 19. The combination lamp-
diode scanning approach seems to offer the best features of either lamp or
diode scanning and is the recommended mechanization. Included in the
estimates of Table 19 are power regulation and all electronics except

timing and control common to all approaches.

For a 2000 pupae experiment, 3744 bits of daily storage would be re-
quired for biological, timing, and engineering data. Assuming only one
downlink dump per day, it is feasible to use the existing capability
available for biological experiments on a Pioneer spacecraft with one DSU

and physical experiments.

(b) Equipment required.

(1) Design verification module

(1) Prototype - Mass mockup and prototype mockup are optional.

(6) Flight Units &
(1) Qualification test
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(1) Backup
(2) Flight
(2) Control

(1) Set of Ground Support Equipment to be used for loading and
testing of flight units, and thermal control and data monitoring of loaded

units.

(c) Equipment status. The equipment status is conceptual design,

except that a breadboard of the photodiode-sensing circuit has been

successfully tested by Northrop.

Envelope.- A sketch of Assemblies 1A and 1B is shown in Figure 29.
Outline dimensions for Assembly 2, the experiment interface unit, are

shown in Figure 30.

Weight and Size.- Weight and size are shown in Table 20.

TABLE 20. WEIGHT AND SIZE OF VINEGAR GNAT EXPERIMENT

WEIGHT VOLUME DIMENSIONS
ASSEMBLY (1b) (in.3) L' x W" x H" SHAPE
1A 10.3 247 8.2 x6.2x6.2 Cylindrical
1B for both 247
2 4.5 128 6.3 x 4.1 x5 Rectangular
Total 15.0 622

Power.- Power requirements are shown in Table 21.

TABLE 21. POWER REQUIREMENTS FOR VINEGAR GNAT EXPERIMENT

ASSEMBLY STANDBY AVERAGE MAX IMUM
1A 0.6% 2.5 6 .5%%
1B 0.3* 1.1 5.1%%*
2 0.5% 1.6 1.6

Total 1.4% 5.2 9,2%*

* Allows continuous temperature sensing and 0.3 duty cycle for heater.
%% 4 watts activated once per mission for approximately 50 ms.
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Spacecraft Interface Requirements.-

(a) Location. It is required that the two specimen chambers be
mounted in a location which simulates the force of 1-G by spacecraft

rotation.

(b) Mounting. Mounting shall be sufficient for thermal control as

well as mechanical support.

(c) Support. Support requirements are 28 V dc power and switching,
data storage and downlink transmission, uplink commands, and thermal
control. It is required that the specimens not be subjected to thermal

cycling.

(d) Linkages and Control. No special mechanical linkages or controls

are required except power switching.

(e) Dynamics. The package center of gravity is estimated at the
geometrical center of the stacked configuration. (See Figure 29.) There

are no movable components.

Environmental Constraints.-

(a) Constraints. The limiting constraints are those imposed by the
biological specimens. Test specimens in experiment hardware configuration
have been subjected to simulated Pioneer launch stresses. (See section

"Environmental Test.") The package will require vibration dampening.

(b) Interference. There are no known sources of interference in

this experiment.

Data Measurement Requirements.- In addition to the periodic data

requirements shown in the following table, time of activation of the
following events is required. '

1) Release of 0, into both specimen chambers.

2) Application of white light to Chamber 1.

3) Application of white light to Chamber 2.

General requirements are shown in Table 22.
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TABLE 22, DATA MEASUREMENT REQUIREMENTS FOR VINEGAR GNAT EXPERIMENT

Ambient
Parameter To Be Measured Number of Pupae Hatched Temperature
Equipment Item Used 1 2 .1 2
(specimen chamber) Module A|Module{Module[Module ModulesiModu es|
' B - C §+ D | AaB
Expected Value | Units Count - °r i
of Parameter )
Nominal Not
Value Applicable e ~77 ~64
0- 75- 62,6-
Range > :
ang 500 > [|*78.8 |66
Measurement 15 1
Characteristics How Often min > hour +—>
Duration Paint >
Sample
Total in N
Mission 450 g 120 4—
Output Signal _
of Instrument Type Pulse —>- Analogp—>
Frequency |[Not - DC
Range Applicable el T
Amplitude 0-
Range 5V > 0-34 4
Resolution L — 2°F et
count
Readout No. of 1 R
Requirements Channels g
Sampling 5.010 0.0017
Rate BPS > BPS T
Telemetry
Required yes >
Storage yes, of contiguous rqal tim¢ telemdtry
Required is not |available
Time
Identification Method Experigents Clock —
Accuracy +1
min >
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Operational Requirements

Spacecraft Orientation Requirements.- The experiment as described

is specifically sized for a '"typical'" Pioneer spacecraft mission, the
basic elements of which are acceptable to experiment execution. There

are three specific requirements, all of which appear to be met on Pioneer.
a) The spacecraft must leave the earth field as rapidly as possible.

b) There must be no periodic event aboard the spacecraft, such as
acceleration noise, vibration, etc., which occurs at frequencies which

entrain a biological rhythm.

c) Data must be retrieved either continuously or intermittently for

a minimum of 30 days.

Prelaunch Support.- Shipping and handling procedures for the experi-

ment hardware will follow usual procedures for equivalent flight items.
_ Culture of the experimental organism will be at the launch site and loading
of experiment hardware will occur as close to time of launch as is opera-

tionally feasible.

The assemblies containing the experimental organisms will go through
all necessary checkout to insure the integrity of the package prior to
installation in the spacecraft. Experiments will receive a prelaunch
checkout by procedures to be defined. The principal support requirement
in this category is for thermal control. The proposed experiment achieves
temperature control passively through its mounting on the experiment plat-
form. All other functions are self-contained or need not become operational

prior to prelaunch checkout and/or launch.

A combination office/laboratory space will be required to accommodate
the flight hardware and associated backups and ground controls. This is
estimated to require approximately 400 square feet of air conditioned work
space, a desk, an electronics bench, and one or two tables. Both 120 V ac
and 28 V dc power will be required. The space should be available continu-

ously from 30 days prior to launch to 30 days after completion of the
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flight experiment. It is entirely feasible to accommodate total experi-

ment support in a suitable trailer.

Flight Operational Requirements.- There are no special flight

operational requirements.

Data Support Requirements.- Control data will be collected on magnetic
tape at the launch site. Flight data will be recovered from the NASA

comnunication net on computer compatible magnetic tape and relayed to
Princeton University for analysis. Flight data may be retrieved either
in real time or intermittently from a data storage unit depending upon

operational constraints.
Resources Requirements

Development Schedule.- The schedule is shown in Figure 31.

Estimated Funding Requirements.- Funding requirements are shown in

Figure 32.
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CIRCADIAN PERIODICITY OF POCKET MOUSE TEMPERATURE, HEART RATE AND ACTIVITY

Principal Investigator: R.G. Lindberg, Northrop Corporate Laboratories
Coinvestigator: C.S. Pittendrigh, Princeton University

Engineering Support: Northrop Corporate Laboratories
Technical Information

Objectives.- The purpose of the experiment is to determine whether
prolonged space flight will affect the circadian periodicity of a mammalian
system. Specifically, the question to be asked is: whether the circadian
rhythm of body temperature, heart rate and activity in pocket mice changes
when all geophysical variables other than light or temperature are either

removed or sensed by the animals with periods other than 24 hours.

Experiment Approach.-

(a) Premise. The proposed experiment will test the premise that some
"pervasive geophysical force" does entrain the circadian periodicity of
organisms and that, as a consequence, circadian systems removed from terres-
trial stimuli will degrade. The experiment studies the persistence and
precision of the circadian period in a mammal. Specifically, the question
to be asked is whether the circadian rhythm of body temperature, heart rate,
or activity changes when all geophysical variables are either removed or
sensed by the animals with a period other than 24 hours. The only impressive
evidence of control of circadian organization by an unknown periodic variable
will come from the observation of an animal'!s free-running self-sustaining
oscillation (circadian period) equal to 24 hours, after the animal has been
entrained to periods not equal to 24 hours. Statistical constraints in
determining significant shifts in circadian periods and the presence of
precise 24-hour components in the data point to the desirability of an
experiment lasting for as long as possible (2 to 3 weeks minimum). This,
coupled with the need to place the experiment away from any residual
coupling to the earth's cycles, points to the desirability of a spacecraft
placed in solar and/or lunar orbit as well as earth orbit. If a circadian
periodicity persists in earth orbit but decays in distant solar orbits, we

would have direct evidence, available from no other combination of experi-
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ments, that geophysical periodicities are essential inputs for maintenance

of circadian organization,

(b) Experiment. A minimum of three pocket mice individually housed
will be flown in conditions of constant darkness and temperature (21°C)
for a minimum of 100 days, after having been entrained to a period of 22.5
hours in the laboratory. Their body temperature, heart rate and activity
will be monitored at 10-minute intervals continuously for the duration of

the experiment,

Digital data will be collected and stored, broadcast to earth on
command, recollected on magnetic tape and the tape, after some degree of
manipulation, will be processed by an existing computer program for data

reduction,

The resulting length and precision of the circadian period of each
end point from each animal will be compared with the period of that same
animal established prior to space flight. The data will be examined for
evidence of entrainment to a‘precise 24-hour period by a sophisticated
frequency spectral analysis. The computer prbgram is presently written
for high statistical confidence and dictates a minimum requirement for 21

days of continuous data.

It is proposed that two ground "control" groups be run concurrently
with the flight experiment, One group would be in-flight hardware, and

the second group in an animal holding facility.

Housekeeping data (ambient temperature, atmospheric pressure and
partial pressure of oxygen) will be required to document the consistency

of the environment which the experiment requires.

(c) Validity of Technique. The techniques of monitoring changes in

body temperature in small mammals via implanted transmitters, and the

reduction of these data to meaningful studies of circadian rhythm phenome-
non via computer analysis, have been well proven in the laboratory by both
coinvestigators. The pocket mouse has been demonstrated to be a suitable

experimental subject by both investigators.
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Baseline or Control Data.- The precision and length of the circadian

period must be established with high statistical confidence for each animal
selected for this study. This requires a minimum study of 30 days pre-
launch. Since the objective of the experiment is to test for unknown
"pervasive geophysical forces," it is essential that ground controls be

run simultaneously with the flight experiment. However, it should be
understood that because of the variation in periodicity between individuals,
any changes that should occur will in all probability be of different
magnitudes and possibly different direction. The controls may therefore

provide more qualitative than quantitative data.

Two control groups are anticipated. The first is a handling control
with three to six pocket mice in flight hardware modules; the second will

be six mice undisturbed in the animal holding facility.

Baseline circadian rhythm data for pocket mice as well as their life
support requirements have been intensively studied both at Northrop
Corporate Laboratories and Princeton University. The data are summarized

in the following contract reports and publications,

(a) Contract Reports.

1. "Investigation of Perognathus as an Experimental Organism for
Research in Space Biology," NASr-91 Final Report, Aug 1963
NASw-812 Progress Report, Dec 1964
Dec 1965
Dec 1966
2. '"Development and Flight Qualification of a Biosatellite Experi-
ment Package to Study Circadian Rhythems in Pocket Mice,"
MASw-1191 (June 1966)
3. Contract NASr-223 between NASA and Princeton Univ. No title,
Annual Report 1 February 1965 - 31 January 1966 and 1 February
1966 - 31 January 1967.

(b) Publications,
1. "Circadian Rhythm of Metabolic Rate in Pocket Mice," R.M. Chew,
R. G. Lindberg and P, Hayden, J. Mammalogy 46:477-494, 1965.
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2. "Temperature Regulation, Hibernation and Aestivation in the
Little Pocket Mouse Perognathus longimembris," G. A. Bartholo-
mew and T. J. Cade, J. Mammology 38:60-71, 1957,

3. "Diurnal Torpidity in the California Pocket Mouse," V,A. Tucker,
Science 136:380-381, 4 May 1962,

Engineering Information

Equipment Description.-

(a) Functional Description., The pocket mouse experiment will consist

of three pocket mice in separate modules (Assembly la, 1b, lc), a Central
Electronics Module (Assembly 2), and an Experiment Interface Unit (Assembly 3).
Biological data will be sampled every 10 minutes and engineering data will

be sampled every hour for the duration of the experiment, which is expected

to be between 90 and 120 days.

The envirommental control system for the package requires no external
power. Thermal requirements will be met passively through a controlled
heat path to the spacecraft platform. Careful selection of materials for
the conductive path, coupled with the small change in platform temperature
will yield a very stable system with change in experiment temperature
following platform variation. Illumination will be controlled by an on-

board programmer which can be deactivated by ground command.

A "leak proof" experiment housing will contain a 14.7-psi atmosphere
consisting of 20% oxygen and 80% nitrogen. The control of atmospheric
composition will utilize a lithium hydroxide bed for 002 control and a
demand 02 regulator coupled with a high pressure 02 source to supply make
up 02. Activated charcoal and boric acid crystals will be utilized as
required for odor control. As an optional feature, activation of the 02
regulator, may be monitored to document changes in respiratory rate of the

mouse.

(b) Monitoring Approach.~- It is desirable to retrieve data which

are essentially identical to the raw data transmitted by implanted

telemeters. The telemetered data consist of short bursts of RF., The
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average repetition rate of the bursts is a function of mouse body tempera-
ture, periodic jitter of a burst provides an indication of a heart beat,

and abrupt changes in RF signal strength indicate activity. This approach
has been proven in tests conducted by Northrop and is currently being used

in laboratory research.

Idealized telemeter pulse rate output as a function of body tempera-

ture is shown in Figure 33,
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Figure 33 Idealized telemeter output.

Using a ten-bit counter and counting for a period of 2.56 seconds
limits the maximum monitoring error to +0.039°C. Assuming this to be an
acceptable error, the bits required for downlink data transmission can be
reduced to nine since the temperature range of interest is approximately
20°C to 40°C. This will be accomplished by resetting a nine-bit counter to
zero after a count of 511 is reached and counting for a period of 2.56

seconds,

The approach to monitoring heart rate will be essentially the same
as that for monitoring body temperature: pulses will be counted for a

given period of time. The heart rate of interest is between 40 and 500
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beats per minute (BPM). Since the lower limit to the range of interest
is low with respect to the upper limit, not much is gained by resetting
the counter; therefore, this complexity is not recommended. The approach
will be to count heart beats for a l-minute period. This will require
nine bits per sample, the maximum error will be + one BPM, and the range
covered will be 0 to 511 BPM,

Activity will be monitored continuously by accumulating an activity
count in a binary counter. The counter contents will be periodically
shifted out and the count reset to zero prior to the next counting period.
The count accumulated during each period will provide an indication of

relative activity during that period.

Since body temperature and heart rate each require nine bits, and the
standard Pioneer data word is six bits, the activity count will be allocated
six bits. If more than six bits are required to count activity during the
monitoring period, only the six most significant bits will be sent down-
link, -Six bits will provide 63 discrete levels of relative activity.

(c) Electronics Functional. Body temperature, heart rate, and

activity will be sampled once every ten minutes and transferred to the
Pioneer data system via the Experimental Interface Unit (ETU). Engineering
data consisting of ambient temperature, ambient pressure, and partial oxygen
pressure will be sampled every hour and transferred to the Pioneer data
system via the EIU, An electronics block diagram is shown in Figuré 34,

Each cell has an independent antenna and receiver system,

The Pioneer data system provides 9 six-bit main frame words for
biological data. The Pioneer data system with physical experiments aboard
is capable of sampling each of these words every 8.5 minutes for a period
of 9.5 hours each day. This provides a total storage capacity of approxi-
mately 3600 bits, which is only adequate for storage of biological data
for one mouse. A second DSU will therefore be required for a three-mouse

experiment unless continuous real-time telemetry is available.

The Pioneer data system with physical experiments aboard provides six

submultiplexed analog words for engineering data. This system is capable
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of sampling each of these words every 15 minutes during realtime telemetry
operation. Values of three engineering data parameters will be sampled
every hour. Assuming six bits per sample, which would provide a resolution
of approximately 1.6% 432 bits of storage per mouse, or a total of 1296
bits for a three-mouse experiment, would be required to buffer-store

engineering data until downlink transmission.

Biological data must be time-tagged with sufficient accuracy to allow
time-of -acquisition correlation within +1 minute. Timing and control

signals for data acquisition are also required from the EIU,

Assuming a three-mouse experiment and noncontinuous telemetry, a
total DSU storage of 12,636 bits would be required for biological, timing
and engineering data. The remaining bits in the second DSU would be avail-
able for use by other experiments, or to obtain additional data (e.g. events)
on the pocket mouse experiment. This storage estimate is exclusive of
parity bits and synchronization words to be supplied by the Pioneer data
system, which brings the daily bit total to 18,144,

(d) Equipment Required.

(1) Design verification test unit
(1) Prototype - Mass mockup and prototype mockup are optional
(8) Flight units
(1) Qualification test
(1) Backup
(3) Flight
(3) Control - modified to interface with Ground Support
Equipment
(1) Set of Ground Support Equipment to be used for loading and
testing of flight units, thermal control of loaded units,

and data monitoring.

(e) Equipment Status. The equipment status is conceptual design, by

definition. However, Northrop's previous experience under contracts NASr-91,
NASw-812 and NASw-1191 provides confidence beyond that of the conceptual
design stage. The biotelemetry proposed is now a standard monitoring system

both at Northrop Corporate Laboratories and at Princeton University.
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The circadian periodicity of pocket mice has been studied in a demand
type oxygen system similar to the one proposed herein with good success.
In addition, the periodicity of pocket mice has been monitored for 30 days
while the gaseous enviromment of the animals has been maintained with a
superoxide system. Despite good biological data, this promising approach
to environmental control was abandoned in favor of the demand-type oxygen
system because the variations in atmospheric constituents observed in the

superoxide system were not acceptable to the Principal Investigator.

Envelope.- Figures 35 and 36 summarize the conceptual design of
Assembly 1, which contains the specimen, Outlined dimensions for Assembly
2, Central Electronics Module, and Assembly 3, the Experiment Interface
Unit, are given in Figures 37 and 38 respectively.

Weight and Size.- Weight and size are given in Table 23.

TABLE 23, WEIGHT AND SIZE OF A THREE POCKET MOUSE EXPERIMENT

Assembly Weight Volume Dimensions Shape
1b in3 L" x W' x H"
1A 8.7 407 5.25 x 8,50 x 9.12 rectangular
1B 8.7 407
1C 8.7 407
2 4,0 126 4 x 3 x 10%
3 6.7% 208 6.3 x 4,1 x 8
Total 34,8 1555

*Assumes inclusion of a supplementary core memory for buffer
data storage (2.2 1lb; 78 in3; D.1.W)
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Power.- Power requirements are shown in Table 24.

TABLE 24, POWER REQUIREMENTS FOR A THREE POCKET MOUSE EXPERIMENT

Assembly Standby Average Maximum
1A 1.4 1.4 1.4
1B 1.4 1.4 1.4
1C 1.4 1.4 1.4
1.3 1.3 1.3
1.7 1.7 1.7
Total Power(W) 7.2 7.2 7.2

Spacecraft Interface Requirements.-

(a) Location. It is required that each of three specimen chambers
be mounted in a location such that the specimen be subjected to a l g

acceleration force,

(b) Mounting. Mounting must meet the requirements for thermal control

and mechanical support,

(c) Support. Support requirements are 28 Vdc power and switching,
data storage and downlink transmission, uplink commands, and thermal
control. It is required that the specimens not be subjected to thermal

cycling,

(d) Linkages and Control. No special mechanical linkages or controls

are required.

(e) Dynamic, Shifts in location of expendable material is summarized
in Figure 39,

Environmental Constraints.-

(a) Constraints. The limiting constraints are those imposed by the
biological specimens, Test specimens have survived simulated Pioneer
launch stresses with no detectable change in the stability of their

circadian system (See section entitled "Environmental Tests").
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(b) Interference. The implanted biotelemeters produce a weak

magnetic field. Interference from the telemeters will be prevented by
shielding of the specimen chambers, Vibration, noise, light, and radia-
tion will present no problems. The specimen chamber will be shielded

against RFI, and against EMI and grounding will be controlled.

Data Measurement Requirements.- Data measurement requirements are
given in Table 25,

Operational Requirements

Spacecraft Orientation Requirements.- The experiment as described

is specifically sized for a "typical" Pioneer spacecraft mission, the
basic elements of which are acceptable to experiment execution. There are
three specific requirements, all of which appear to be met on Pioneer.
a) The spacecraft must leave the earth field as rapidly as possible.
b) There must be no periodic event aboard the spacecraft, such as
acceleration noise, vibration, etc., which occurs at frequencies which
entrain a biological rhythm.

c) Data must be retrieved either continuously or intermittnetly for
120 days.

Astronaut Training and/or Participation.- Special training or

participation are not required.

Prelaunch Support.- Shipping and handling procedures for the experi-
ment hardware will follow usual procedures for equivalent flight items.
Addition of oxygen, chemical absorbents, specimen food, and the experimental
organism will be at the launch site as close to time of launch as is
operationally feasible.

The assemblies containing the experimental organisms will go through
all necessary checkout to insure the integrity of the package prior to
installation in the spacecraft. Experiments will receive a prelaunch
checkout by procedures to be defined. The principal support requirement
in this category is for thermal control., The proposed experiment achieves

temperature control passively through its mounting on the experiment
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platform. All other functions are self contained or need not become

operational prior to prelaunch checkout and/or launch.

A combination office/laboratory space will be required to accommodate
up to 24 experimental animals, the flight hardware and associated backups
and ground controls. This is estimated to require approximately 400
square feet of air conditioned work space, a desk, an electronics bench,
one or two tables and an animal rack. Both 120 V and 28 V power will be
required. The space should be available continuously from 30 days prior
to launch to 30 days after completion of the flight experiment. It is
entirely feasible to accommodate total experiment support in a suitable

trailer.

Data Support Requirements.- Control data will be collected on mag-

netic tape at the launch site., Flight data will be recovered from the NASA
communication net on computer compatible magnetic tape and relayed to
Princeton University for analysis, Flight data may be retrieved either

in real time or intermittently from a data storage unit depending upon

operational constraints,
Resources Requirements

Development Schedule.- The schedule is shown in Figure 40.

Estimated Funding Requirements.- Requirements are shown in Figure 41,
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CIRCADIAN PERIODICITY OF C-MOUSE TEMPERATURE,
HEART RATE AND ACTIVITY

Principal Investigator: F. Halberg, University of Minnesota
Coinvestigator: G. Pitts, University of Virginia
Engineering Support: General Electric Company

Technical Information

Objective.- The objective of this experiment is to assess any systematic
terrestrial and/or lunar influences upon circadian rhythms in telemetered body
core temperature, gross motor activity, and in heart rate, of a small homeo-

thermic mammal with objectively quantified rhythms.

Experimental Approach.- Since we predict neither the abolition of rhythms

nor their unaltered persistence, i.e., since we anticipate small effects, we
believe it is essential to test each of several endpoints of rhythms in more
than one circumstance. Since the effects are anticipated to be subtle, it is
particularly important that the biological rhythmicity of the experimental
organisms be well documented. We believe the inbred strain of C-mouse meets
this criterion best. It is intended that the flight experiment consist of

four C-mice implanted with suitable instrumentation to permit monitoring core

body temperature, activity, and heart rate at 10-minute intervals continuously
for approximately 120 days. The animals will be maintained at 1 g on various
light regimes in space and, when suitably entrained, the light regimes will be
changed. The time and the pattern demonstrated by the animal in adjusting to
the new regime will be used to assess the effects of space residence. (By
accepting serious compromises in ﬁhe experimental design, the number of flight
subjects could be reduced to three and under some circumstances the duration of
the experiment could be reduced.) The experiment plan that follows assumes
four experimental animals flown for 120 days and consists of four types of

experiments to be undertaken in the given sequence.

1) The mean amplitude (C), mean level (Co), and the so-called acrophases

(o and &) as gauges of both the external (¢) and internal (%) phase relations

114




of the 24-hour-synchronized circadian rhythms will be measured in C-mice kept
on a 24-hour cyclic lighting regimen (LD 12:12, the synchronizer).

2) The shift-time of circadian rhythms (the number of transient cycles)
following a delay of the synchronizer (-90°A @¢LD) as well as the C, Co, %, and &
of the phase-shifting rhythmic variables will be tested. If, and only if,
daily analyses of the data telemetered from extraterrestrial space and those
telemetered from controls on earth fail to réveal differences in any one end-

point, the effects of an advance of the synchronizer (#90°A®#LD) also will be
tested.

3) The rhythms' period (T), as well as C, Co’ ® and & will be studied
under conditions associated on earth with desynchronization from lunar (24.8
hour), solar (24.0 hour), and other planetary periods. The appropriate condi-
tion at the outset will be continuous darkness (DD). Tests in continuous
light (LL) will be added if, and only if, as-you-go analyses of the data in
DD have failed to indicate any difference between the flyers and the controls.

4) Time in orbit permitting, endpoints of both circadian and ultradian
spectral components will be tested under conditions of a cycle of six hours of

light alternating with six hours of darkness.

Apart from the manipulations of the lighting regimen indicated above, the
flyers placed into orbit, as well as control animals, should be effectively
isolated, as far as possible, from all known periodic stimuli external and
internal to the spacecraft (or control housing unit) with relatively constant
environmental temperature and humidity and with food and water available ad
libitum.

The data received through spacecraft communication from animals in flight
will be analyzed using inferential statistical methods. Appropriate computer

programs are available in the investigators' laboratory.

Control Data.- Control data will be obtained on several groups of "support"

mice and "mission-controls."

a. Support. The support data are to be collected as soon as the decision
to fly the C-mouse mission is implemented by the availability of at least six
sets of developmental hardwares to be used with separate and mobile digital

data acquisition systems. With these systems available, the "liftoff" simulation
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will have to be repeated with (1) exposure to all liftoff transients as con-
comitantly as possible, and (2) with different groups being exposed at different
phases of their circadian system. If possible, physiologic functions should

be monitored during this simulated liftoff and the test period for each group
after exposure should extend to > 100 days. Such suﬁport data will validate

the anticipated ground control parameters for the actual flight. The 24 animals
used in this group will be selected from a larger pool of 160 telemeter-implanted
C-mice using the procedures discussed below for "mission controls." At least

128 liftoff controls will be maintained under environmental and spatial condi-
tions resembling those of the BioPioneer mouse package as closely as is practical
at this stage. Liftoff transients to be simulated concomitantly as far as
possible are vibration, acceleration, and noise, as they are anticipated to

occur during launch and orbital injection. These transients will be tested

only at the levels expected for the chosen trajectory and only for the 24 liftoff

mice.

b) Mission control data will be obtained (1) for two months before actual

liftoff; and (2) on earth while mission mice fly. At the time of weaning at
21 days of age, 450 inbred male C-mice will be implanted with transensors.
Telemetry will be carried out up to the actual launching of the space probe
about 2 months later. Rhythms will be investigated for the preflight endpoints.
Body weight also will be measured whenever a change in lighting condition is
instituted. One week prior to the mission, histograms will be prepared of the
distribution of the mice by gain in weight, by level of body temperature, and
by other rhythmometric criteria. The 5% on the extremes of body weight and
rhythmometric distributions will be omitted from study. The remaining animals
up to 360 will serve as concurrent ground controls during the mission. They
will be maintained under conditions as nearly identical with those in the Bio-

Pioneer as 1s practical.

Compromises.-

a) Adherence to 1 g level. The effect of weightlessness per se upon
metabolic rhythms in a rodent presumably will have been tested by the time of
the BioPioneer mission. The influence of altered gravity upon rodent rhythms
will have been studied by us in 1968. Current plans call for studying rats
exposed to two levels higher than 1 g (presumably 1.75 and 2.50 g). Nonetheless,

the interaction of altered gravity with any geoselenic influences constitutes
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an important problem of basic and applied biology, if indeed such an inter-
action can be detected. Eventually, this problem should be studied in a non-
earth orbit by exposing C-mice to several g levels. Onboard variations in a
first BioPioneer mission are not feasible because spatial and other logistic
limitations to the BioPioneer package prevent increasing sample size. Against
this background it is definitely preferred to maintain the mice at 1 g with

compromises being acceptable only to the extent to which they are unavoidable.

b) Reduction in number of experimental animals. Four C-mice represent

the minimum required to obtain the study conditions outlined above. Three
animals will permit achievement of some mission objectives. A reduction in

sample size can be advocated only as a "last resort!" for two reasons.

First, in flying only three C-mice, several of the test conditions to be
applied sequentially may have to be omitted from study in order to compensate
for the reduced number of mice by longer observation spans during any one given

test situation.

Second, any losses of data during transmission or otherwise will weigh
more heavily when the total number of mice monitored at a given time is reduced
by one-fourth, particularly when this number is initially as small as four.
Thus the relatively small logistic saving realized by omitting an animal will
result in a large loss of information or it may altogether jeopardize achieving

many of the rhythmometric aims of the mission.

c) Omission of heart rate telemetry. Valuable physiologic information

can be obtained without telemetry of heart rate but only with a very severe
reduction in the scope of the mission. In support of this omission, savings

in cost and effort may be cited, as well as the fact that information on the
heart rate of the mouse as yet is limited. However, in the near future we
definitely intend to collect and to quantify by inferential statistical methods
the heart rate rhythms of the C-mouse. The electronic task on hand appears to
be within the state of the art, and it may represent a reasonable expense, as
compared'to total mission cost. It should be emphasized against this background
that the omission of heart rate measurements may entail partial loss of the
applied objective and may drastically reduce the scope of invaluable applied
and basic information. Thus, as to information on rhythms, the inclusion of

heart rate measurements permits quantification of internal timing of metabolism
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and circulation (by any phase difference between temperature and pulse) as an
important feature of circadian system structure. It seems pertinent that the
phase relations of heart rate and rectal temperature rhythms have been found to
be maintained in human beings during prolonged isolation in a cave. In any
event, to monitor the heart rate of the C-mice would also be an additional and,
perhaps, the most pertinent way to ask whether this orbiting mammal is still
alive, a dividend that seems non-trivial and a problem that indeed should be
explored in a small mammal for three to four months, under conditions permitting
extrapolation to the behavior of human beings in extraterrestrial space, in

lieu of initial studies on man himself.

d) Reduction of flight duration. As a "worst case" only, the minimal

span of 90 days or the preferred longer span of 120 days could be reduced to

the extent that only oné or a few conditions of study are tested. Such a
reduction is not advocated, since the time spans visualized for the testing of

a given condition are already minimal. Despite the very sensitive available
"microscopic" procedures for data analysis, the time necessary to derive defini-
tive data from a given experimental condition may well take much longer than
anticipated. If certain scheduled conditions have to be maintained for longer
spans, some other conditions will be excluded from study. Under such circum-
stances a short duration mission represents a limitation to the scope of the

mission.
Engineering Information

Equipment Description.- As originally conceived (Basic Plan) the entire

experiment is contained in a sealed enclosure with a 20% 02, 80% N2 atmosphere

at 14.7 psi. Only electrical connections pass through the walls. Carbon di-
oxide and other gaseous contaminants are removed by chemical absorbants.

Humidity is controlled between 40-80% RH by a thermo-electric cooler which con-
denses water from the airstream to provide drinking water for the animals.

Oxygen is supplied to the animals at ambient pressure on demand. Thermal control
is achieved by controlled heat paths to the cold experiment platform. Dry food
is provided ad iibitum.

Within the sealed enclosure each mouse is visually isolated from every
other mouse but will share a common air circulation system. Waste materials
are carried out of the cage area by gravity and air circulation into an absorbent

debris trap. (See Figure 42.)
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The walls of each mouse container contain antennae with which to monitor
signals from the telemeter implanted in the mice. Programmed lighting is
provided in each mouse cage. Circuitry is provided for collecting experimental
and engineering data for presentation to the Pioneer Data Handling system and

relay to the ground.

The basic plan, however, was too massive and could not be accommodated
on the Pioneer experiment platform. Consequently, two alternative plans
were evolved by separating functional components of the basic package into

separate assemblies. It should be noted that many alternate configurations

can be developed, depending upon defined spacecraft constraints.

Alternate Plan A consists of one specimen chamber containing three mice
(Assembly 1); one oxygen supply with regulators (Assembly 2); one blower and
trace contaminant unit (Assembly 3); and one electronics unit (Assembly 4).
This configuration is compatible with the Pioneer spacecraft. Alternate Plan D
consists of one specimen chamber (Assembly 1); one oxygen supply, regulator,
blower and gas contaminant control unit (Assembly 2); and one electronics
unit (Assembly 3). This configuration is also compatible with the Pioneer
spacecraft and is preferred by the Principal Investigator because of the
increase in number of experimental animals. Regardless of the configuration,
the mechanical, electrical, and electronic aspects of the experiment package
are the same and provide for life support and data acauisition from up to

four animals for a period of approximately 100 days.

a. Structure. The experiment enclosure is of lightweight aluminum
construction of sufficient strength and rigidity to withstand the anticipated
physical environments and pressure differential. Hermetic seals are utilized
for all access openings and electrical connectors to provide a gas-tight assembly.
A pressure relief valve safeguards the assembly from overpressurization in the
event of leakage from the oxygen source. Insulation is placed between the
mouse cage assemblies for isolation. The cages are rectangular in configura-
tion and fabricated from nonferous material with the approximate dimensions
of 3 in. by 4 in. by 3 in. high. The mice stand on a screen floor. The cages
are oriented so that rotation of the vehicle produces an artificial gravity,
forcing loose material and wastes to fall through the screen into the debris
trap. A photoluminescent light source provides overhead illumination to each

cage. Dry food held in a screen bin is accessible to the mouse ad libitum.
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b. Water supply and humidity control. Water is available from a small

trough located in each cage area. This water is the condensate runoff from

the cold surface of a thermoelectric element located near the air inlet to

each cage. As the air enters the cage and passes over the cooling elements!
finned surface, a portion of the air is chilled below its dew point, producing
liquid condensate. As the liquid layer increases in thickness, the gravity
force induced by the vehicle's rotation will cause the liquid to flow into

the trough where it may be consumed on a continuous basis. The temperature

of the cooling element cold surface (Tc)is a function of the imposed thermal
load and the temperature of the hot side (Tc) of the element. Th can be ex-
pected to be relatively stable since it will be connected directly to the outer
skin of the experiment package, which in turn is fastened to the temperature-
controlled Pioneer platform. A bimetal switch attached to the cooling element
cold surface senses TC and stop operation of the cooling process if the surface
becomes too cold under low load conditions. Because, generally speaking, the
absolute humidity in a system is determined by the coldest point in the system,
the cold surface of the cooling element must be maintained near a dewpoint
representing 76°F and 407% RH.

Urine and overflow water from the trough enter the debris trap under the
influence of gravity and are evaporated by the air flowing through the sponge
and filter. If necessary, excess water produced by the metabolic processes
and the reaction of 002 with LiOH will be retained in a sponge in the high

gravity end of the enclosure.

By condensing and reusing metabolic water, the need for a separate water
supply is eliminated, as is the need for chemicals to absorb water to retain
desired humidity levels. This results in a weight saving of 12 1b which is

offset in part by the cooling elements.

c. Gas system. Oxygen is stored in a pressure bottle at a pressure between
2000 to 7500 psi. As the mice consume oxygen and 002 is absorbed by LiOH
chemical packs, the total pressure in the sealed enclosure will fall. When
this pressure drop équals a predetermined magnitude (e.g., 0.5 psi), the pressure
regulator automatically releases oxygen from the tank until the desired total
pressure in the sealed enclosure is re-established. It is intended to provide
a leak-tight enclosure so that it is not necessary to provide stored nitrogen.
(Since this is an extended mission, sufficient time can be taken during count-

down to assure that the container is airtight.)
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As shown in Figure 42, air enters the cage near the ceiling, passes over
a cooling element and then through the cage area. Exit air is forced through
a coarse debris-type filter and a bacterial filter similar to the system used
by General Electric on the Rat Experiment in the Biosatellite. This filter is
made by the Pall Corporation.

A single blower delivers air through parallel ducts to the mouse cages.
Air leaving the cages returns to the blower inlet by migration through the LiOH
chemical packs and through and around the partitions between the subjects. A
backup fan will be considered if reliability figures indicate this need for a
100-day mission.

d. CO2 control. Carbon dioxide level is controlled by the placement of
containers filled with LiOH in the enclosure. The LiOH is held behind a fine
mesh screening or in porous paper bags (similar to Biosatellite) to prevent the
spread of LiOH dust. It is not planned to duct air directly through the LiOH
since General Electric's previous experience on project Spurt has indicated
that natural convection and diffusion will do an adequate job in a gravity
field. In the proposed design, air moving from the cages is directed toward
the chemical package; if needed, additional forced circulation will be provided.

Permeable membranes and molecular sieves were considered for CO. control, but

2
the oxygen and nitrogen losses in the former case and complexity in the latter

case preclude the usage of either technique for this program.

e. Trace contaminants. In closed systems with living subjects there is

generally a slow buildup of carbon monoxide in the chamber. 1If tests indicate
control is required, a canister of Hopcalite preceded by a LiCl dryer will be
used. Similarly, ammonia levels can be controlled by the use of Amberlyst and

odor can be minimized by the use of activated charcoal.

f. Thermal control. Information from NASA/ARC indicates that the Pioneer

platform can be maintained relatively stable (thermally) at a selected tempera-
ture between 60 and 80°F while dissipating as much as 80 W of energy. On this
basis it will be advantageous to provide a good thermal linkage between the
experiment envelope and the Pioneer platform. Additionally, heat-producing
devices will be attached wherever possible so that they dissipate their heat
directly into the experiment housing. With such an arrangement, it will not
be necessary to provide independent means for heating and cooling within the

experiment package.
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g+ Instrumentation. Figure 43 is a block diagram for instrumenting four

mouse cages. This diagram shows the method proposed for monitoring cage
temperature, illumination level, and "in vivo™" temperature for the mouse.
Consideration has also been given to the possibility of obtaining mouse average

heart rate from the existing instrumentation system.

h. Method for obtaining average mouse heart rate. General Electric has

conducted some limited tests on a mouse implanted with a temperature trans-
mitter in an attempt to determine the feasibility of obtaining mouse average
heart rate from the existing telemetered signal. The transmitted signal con-
sists of a pulsed carrier of approximately 500 kHz, with the separation between
bursts being proportional to mouse body temperature. The testing by GE has
consisted of examining oscilloscope traces and multispeed recordings of the
transmitted pattern to determine if there is a measurable amplitude modulation
of the carrier. The recordings show considerable amplitude variations even

for a resting mouse with a fixed rf path length. At least part of the amplitude
modulation can be identified as being caused by respiration rate, occurring
approximately 3 times per second. Various portions of the recordings also

show a very small modulation at a rate of approximately 10 per second, and

this is suspected to be due to heart rate. However, the modulation is not
always present or is sometimes indistinguishable from '"noise." The conclusion
is that since the '"naked eye" cannot discern a definite heart rate pattern,

some electronic data processing will be required in order to suppress background
noise (respiration, body motion, electronic noise, etc.) and enhance that portion

of the frequency spectrum which contains heart rate.

Figure 44 shows one possible scheme for accomplishing this. The received
signal is first amplified and then fed to a gain-controlled amplifier which
automatically adjusts the gain of the amplifier to maintain the long term
signal voltage at point "a" constant. The time constant for the AGC loop is
chosen to be about 1 second, so that it can follow relatively slow variations
in signal strength (such as body motion and respiration) and adjust the gain
accordingly. However, for rapid changes in signal strength such as produced
by the 10-bps heart rate, the AGC loop will be unable to follow, and a thres-

hold detector can be made to trigger at the peaks in signal strength.

This concept is shown in Figure 45 for an assumed set of signal conditions.

Each time the threshold detector triggers, it sends a pulse to a counter which
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Figure 44. Proposed method for extracting mouse heart rate from
transmitted temperature signal.
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Figure 45. Signal from receiver, RF bursts plus EKG modulation.
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counts the total number of pulses occurring within a given time interval. The
time interval could typically be selected as one hour, thus registering the
total number of heart beats which occur in the l-hour interval. For telemetry
back to the ground, the number of heart beats to the nearest 1000 (requiring

6 bits) may be sufficient.

10 beats
sec

3600 sec X 36000 beats/hr

Register contains 36 at end of 1 hour.

1. Cage temperature. The cage temperature is measured by a thermistor
bridge and amplifier, thus providing an analog voltage proportional to tempera-
ture, with a voltage and impedance level compatible with the Pioneer telemetry

system.

j» Illumination level. Each mouse cage is illuminated to approximately

5 ft-C with a redundant set of electroluminescent lamps as shown in Figure 46.
The "on-board" programmer cycles the lamps through a nominal cycle of 12 hours
"on" followed by 12 hours "off." This basic cycle can be modified by a ground
command signal as shown.

Electroluminescent lamps have been chosen for this application because of
their rugged construction. Figure 47 shows the illumination for a 10-in.2
lamp operating with 120 V ac at 400 Hz. It is seen that a rather severe decrease
in illumination takes place over the first 1000 hours, followed by a more
gradual decline in output. It is proposed to "burn in" the lamps for approxi-
mately 1000 hours to "burn off" this initial slope and then operate the lamps
at a somewhat higher voltage in the Pioneer experiment package. In this way,
as shown in Figure 47, the illumination should decrease less than 20% over the

100-day mission time.

Figure 48 shows the variation in illumination as a function of the voltage
applied at 400 Hz for the three common color phosphors which are available in
electroluminescent lamps. The green phosphor, peaking at 5300 Z, is by far
the most efficient lamp, and fortunately this spectrum of energy is compatible
with the mice.

Each mouse cage has a "prime" lamp and an auxiliary lamp to take over

should a failure of the prime lamp occur. The logic for this circuitry and
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Figure 46. Illumination method for C-mouse experiment.
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for the "illumination present' signal to telemetry is shown in Figure 46. When
either lamp is illuminated, the telemetry signal indicates presence of light.
Some consideration will be given to the possibility of combining the illumina-
tion signal from each cage (a digital signal) with the corresponding cage
temperature signal (analog) in order to reduce the number of telemetry channels

required.

k. Mouse temperature measurement. The method proposed for measuring the

mouse temperature is based on the successful development of an implanted tempera-
ture telemeter and its application to the Biosatellite program. The output of
this telemeter is a burst of rf pulses (approximately 500 kHz) with a repeti-
tion between these bursts of between 330 and 670 pps, depending on mouse tempera-
ture. The induction field created by the transmitter is picked up by one or
both of the orthogonal antennas mounted on the mouse cage. Each antenna coil

is connected to an amplifier, and the largest signal is further processed to

a constant amplitude signal. The digital data processing of this signal (see
Figure 43) is designed to provide a digital number proportional to the amount

of time it takes to receive 20 input pulses from the receiving antennas. This
time is about 30 ms for a high-temperature mouse transmitting 670 rf bps, and

is about 60 ms for a low-temperature mouse transmitting 330 rf bps. The gate
shown in Figure 43 permits the holding register to count the 500-Hz clock pulses

for the duration of this time. Thus for a high-temperature mouse, the holding
30 ms
2.0 ms
= 30. This permits a 0.33°F reso-

register will record a count of approximately
60 ms
2.0 ms
lution of the expected 5°F mouse temperature range. The digital word resulting

= 15, and for a low-

temperature mouse, a count of about

from this operation will be 5 bits long and allowing one bit for cage identifica-

tion, the Pioneer telemetry system must process a six-bit word for each mouse.

The telemetering of the four mouse temperatures is synchronized with the
Pioneer telemetry system format by the '"word gate'" pulses which are provided
by the "Digital Telemetry Unit" (DTU) within the spacecraft. The data process-
ing is arranged so that the four mouse cage receivers time-share one digital

processor as shown in Figure 43.

During the Pioneer telemetry frame, a '"word gate" signal ('"word 7 gate'"
has been chosen as an example) energizes gate 1, permitting the computation
of the mouse 1 temperature. When the next "word gate" signal occurs ("word 8

gate" in this example) the six-bit digital number corresponding to mouse 1
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temperature, is shifted from the holding register to the Pioneer telemetry
system for playback to the earth. At the completion of the eighth word, the
digital processing counters are reset to zero. During the ninth "word gate,"
the mouse 2 temperature is computed and stored in the holding register. During
the tenth "word gate," this digital number is shifted out to. the telemetry
system. This sequence is repeated for all four cages, alternately computing
the mouse temperature during one "word gate" signal, and reading this out

during the next '"word gate" pulse.

In the final application of this method, it may be necessary to actually
space the temperature "words" by more than two words in order to permit sufficient
time (60 ms) to compute each mouse temperature during one '"word gate" interval.
For the present Pioneer telemetry system design with a maximum bit rate of 512

bps, a spacing of five words would be required.

If weight, power and data channels are available, additional instrumentation
should be considered for the flight hardware. Of considerable value in measuring
performance of the experiment would be cage ambient, total pressure, and stored
oxygen pressure. Ambient pressure would indicate performance of the oxygen
regulator, and stored 02 pressure would indicate leakage of the experiment
enclosgre. (Over the longer period a measure of average 02 consumption of the
mice would also be provided.) Temperature of the cold surface of the thermo-
electric elements would provide an indication of humidity levels. Should the
mice die prior to completion of the 100-day mission, these additional data would
assist measurably in identification of possible equipment failure as cause of

death.

1. Equipment required. Minimum requirements are estimated to be:

Test
Design Verification Test Unit 1
Prototype 1
Qualification Test Unit 1
Flight
Flight Unit 1
Flight Unit Backup 1
Control Unit 2

GSE (To be defined.)
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m. Equipment status. The experiment hardware summarized above is at the

level of conceptual design. Breadboards have been fabricated to determine the
feasibility and practicality of the proposed life support system. These bread-
boards have been operated with experimental animals at the Valley Forge Division
of General Electric under the scrutiny of both the Principal and Coinvestigators.

A summary report is attached.

Breadboard tests have confirmed the adequacy of the proposed method of
water management and life support. Methods of instrumenting mice to study
changes in body temperature and activity are currently in use at the University
of Minnesota and have been adapted for use on the planned NASA Biosatellite

2l1-day mission. Methods of monitoring heart rate are under development.
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GENERAL ELECTRIC COMPANY SUMMARY REPORT
PIONEER MOUSE FEASIBILITY TESTS-CLOSED CYCLE WATER CONCEPT

SUMMARY.- Four separate tests were conducted with a "C" mouse in a closed
environment. These tests were conducted for 5, 12, 16 and 24 days and proved
the feasibility of closing the water ecology with the mouse drinking water
condensed from the atmosphere. Also, the tests demonstrated the reliability
and design adequacy of the thermoelectric cooler and the brushless blower
which are similar to those which may be required for the flight experiment.
Results to-date do not indicate the existence of any major technical obstacles
which would prevent the successful development of this experiment for flight,

PURPOSE.- The purpose of the tests was to prove the feasibility of closing
the water loop, i.e., re-use of the water in a simulated Pioneer Mouse Experi-
ment enclosure. Re-use of the water will minimize the launch weight of the
experiment by eliminating a large amount of stored water and chemicals re-
quired for humidity control.

TEST SETUP.- The test setup consisted of a wire mesh mouse cage placed in a
Plexiglas enclosure which, in turn, was placed in a sealed belljar. Air was
circulated through the cage, Plexiglas enclosure and-belljar via a brushless
DC blower. A thermoelectric cooling unit was used to cool the air flow and
also to condense drinking water from the atmosphere., A normal atmosphere gas
composition was used with carbon dioxide control by lithium hydroxide absorp-
tion. In the last test, carbon monoxide control was provided by Hopcalite
catalytic oxidation, ammonia control by Amberlyst absorption and odor control
by activated charcoal. Food was placed at the top of the cage, and debris
was collected in a tray below the cage. Temperature and humidity were moni-
tored at several points in the test setup, and gas analyses were provided by
mass spectrograph and specific gas analyzers.,

RESULTS.- The first test was used to check out the equipment. The test vo-
lume was then reduced to better simulate the available vehicle volume. The
second and third test mice died apparently of malnutrition (35 - 40% weight
loss) when all the readily available food was consumed. There was also the
possible problem of toxic gas buildup, since the mass spectrograph could not
distinguish between carbon monoxide and nitrogen because of their equal mole-
cular weights, The fourth test provided carbon monoxide control and gas ana-
lysis by specific gas analyzers. This test confirmed the buildup of carbon
monoxide and the suspicion that carbon monoxide caused or contributed to the
death of the two previous test mice. This test was terminated after 24 days
when the mouse squeezed through the food retaining mesh at the top of the
cage. This mouse was quite active, looked healthy and had lost only 7% of
his weight, possibly through dehydration after escaping from the cage.

During all tests, a good level of water was maintained in the drinking trough
by the thermoelectric condensing technique, and the mouse was observed to
drink from the source.
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Envelope.- The basic approach, illustrated in Figure 49, is for a four-

mouse experiment and is a single platform-mounted unit. Alternate plans A

(Figure 50) and D (Figure 51), for three and four mice respectively, consist

of individual assemblies which can be separately mounted to make better use of

available platform space. Figures 52 and 53 represent configurations of

Alternate Plan D.

Weight and Size.- Weight and size requirements are shown in Table 26.

Power.- Power requirements are shown in Table 27.

Spacecraft Interface Requirements.- Requirements are as follows:

Location: On equipment platform.

Mounting: Good thermal contact between experiment and platform.
Spacecraft Support: Electrical, data storage and telemetry.
Special Control: Thermal control and spin rate.

Environment Constraints.-

a) Constraints. The limiting constraints are those imposed by the bio-

logical specimens. Mice mounted in a manner proposed for the experiment hard-

ware have survived simulated Pioneer launch stresses with no detectable change

in their circadian system. (See section entitled "Environmental Tests.")

b) Interference.

Vibration - None
Noise - None
Light - None
Radiation - None
RFI - To be studied
EMI - To be studied

Data Measurements Requirements.- Data requirements given in Table 28 are

for a three-mouse experiment. For a four-mouse experiment an additional channel

would be required for each parameter.

132



*poAOWRI I3A0D Y3 maTa ueld (uerd oyseq) adoysaue Juswiaadxe ISNOR-D

~
N

AN N

*6h 9In31y 7

N \
AN
/ /

T:€° %~ $ATVOS
SAHONI 6~ :IHOIEH
SLIVM 6°1¢ $4aMod
s4T 9°6%  :IHOIAM 5 \
Vo
e——— 3971 ——t \
NZHA w0t L /
m b »—
0°1 T ul S i
. o
00€¢ —
4
b SANIS
LVEH /
/
=
— AU) / / ~—
- Y V
= \ /
€ AN
/
r— X >
TOYINOD y \
IAIX0IA NOddEVO / \ JIMo1d
HOF1 / \
/ \
L— )
I9VO FSNOW ——
NIOXXO

st

SOINOY¥LOATH



ASSEMBLY 4
LECTRONICS

ASSEMBLY 1
3 MICE

HEIGHT: 9 INCHES

ASSEMBLY 2
OXYGEN
TANK

ASSEMBLY 3
BLOWER &
TRACE
GAS

WEIGHT: 40 LBS
POWER: 16.5 WATTS

APPROXIMATE SCALE: 4,3:1

APPROX.
120°

Figure 50. Experiment envelope for C-Mouse experiment (alternate plan A).

ASSEMBLY 3
ELECTRONICS

ASSEMBLY 2
OXYGEN TANK
LIOH BED, BLOWER
REGULATOR, & TRACE

GAS CONTROL

ASSEMBLY 1
4 MICE
HEIGHT: 8 IN.

APPROX.

/ 170° \

WEIGHT: 52 LBS
POWER: 21,5 WATTS
APPROXIMATE SCALE: 4.3:1

Figure 51. Experiment envelope for C-Mouse experiment (alternate plan D).
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Missing information or data available mostly at unequal intervals can be
tolerated. An undesirable blackout of communication with the spacecraft for
spans up to five days would not jeopardize the mission, notably if the informa-
tion could be retrieved whenever communication is reestablished. If, in turm,
the capacity of onboard data storage allows coverage only for spans shorter
than the duration of the blackout, and thus some information is necessarily
lost, the flexibility of the sequential design here proposed will allow for
replications of the exposure to certain conditions, e.g., of the execution of
a phase shift. In case of a failure of the entire mission, say, at 45 days,
enough data will have been accumulated to draw valid inferences about the T,
Co’ C, ® and & of the metabolic rhythms under several conditions of study;
and if failure occurs yet earlier, at least one or a few conditions of study
can be documented by objective data. The worst case of uncertainty would be
generated by reception of an undue proportion of mutilated or missing data,
but so long as 3 or 4, more or less evenly-spaced reliable data points per

animal per day are available, useful rhythm estimates can be obtained.
Operational Requirements

Spacecraft Orientation Requirements.- The experiment as described is

specifically sized for a "typical" Pioneer spacecraft mission, the basic ele-

ments of which are acceptable to experiment execution.
Specific requirements which appear to be met on Pioneer are:

a) The spacecraft must leave the earth and lunar fields as rapidly as

possible.
b) There should be no change in distance between the vehicle and the sun.

c) There must be no periodic event aboard the spacecraft, such as accelera-
tion noise, vibration, etc, which occurs at frequencies which entrain a biological

rhythm.

d) There should be minimal variation in possible effect of other planets--

notably Venus and Mars.

e) Data must be retrieved either continuously or intermittently for approxi-

mately 120 days.
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Prelaunch Support.- Shipping and handling procedures for the experiment
hardware will follow usual procedures for equivalent flight items. Addition

of oxygen, chemical absorbents, specimen food, and the experimental organism
will be at the launch site as close to time of launch as is operationally
feasible.

The assemblies containing the experimental organisms will go through all
necessary checkout to insure the integrity of the package prior to installation
in the spacecraft. Experiments will receive a prelaunch checkout by procedures
to be defined. The principal support requirement in this category is for
thermal control and electrical power. The proposed experiment achieves tempera-
ture control passively through its mounting on the experiment platform. All
other functions are self-contained or need not become operational prior to

prelaunch checkout and/or launch.

A combination office/laboratory space will be required to accommodate up
to 24 experimental animals, the flight hardware, and associated backups and
ground controls. This is estimated to require approximately 400 square feet
of air-coﬁditioned work space, a desk, an electronics bench, one or two tables
and an animal rack. Both 120 V ac and 28 V dc power will be required. The
space should be available continuously from 30 days prior to launch to 30 days
after completion of the flight experiment. It is entirely feasible to accom-

modate total experiment support in a suitable trailer.

Data Support Requirements.- Control data will be collected on magnetic

tape at the launch site. Flight data will be recovered from the NASA communica-
tion net on computer compatible magnetic tape and relayed to University of
Minnesota for analysis. Flight data may be retrieved either in real time or

intermittently from a data storage unit, depending upon operational constraints.
Resources Requirements

Development Schedule.- The schedule is shown in Figure 54.

Estimated Funding Requirements.- In the opinion of the principal investigator

and his engineering support (General Electric Co.) estimations of costs through

program completion are misleading at this point in time. The costs presented in
Figure 55 represent best estimates based on the prior experience of both parties
in developing flight hardware for the NASA Biosatellite and related programs.
While supporting documentation is not available, an estimated rate of expenditure

can be derived from Figure 54. 141
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REQUIREMENTS FOR PHYSICAL SCIENCES EXPERIMENTS

Philosophy

The biological experiments treated in this study are designed to test
the premise that some geophysical phenomenon is responsible for maintain-
ing the integrity of the circadian system. Execution of the experiment
in space many millions of miles from the earth should either result in
the removal of geophysical cues or result in the cues being "sensed" by
the biological material at intervals which should disrupt the circadian

system.

A reasonably well documented hypothesis subscribed to by many biolo-
gists is that in a "stimulus free" environment the addition of any stimulus
which an organism can sense is capable of entraining a biological rhythm.
In practice the most effective stimuli have been shown to be photoperiod
and temperature. The proposed biological experiments are directed toward
packaging the experimental material in a constant environment aboard a
spacecraft in an effort to achieve a near "stimulus free" condition and
to determine whether the biological periodicity remains stable or changes;
and whether changes if they occur can be related to some aspect of the

space environment.

Complete analysis of the biological data therefore is dependent upon
characterization of the physical environment in which the experiment is
conducted. Paradoxically, biological material cannot survive unprotected
from the space environment and indeed requires a simulated terrestrial
environment for definitive studies. Physical characterization of the
experiment environment therefore relates to the environment as the specimens

'sense" it within the experiment hardware.
Requirements

Each Principal Investigator was requested to identify his requirements

for monitoring devices to characterize the physical environment during

biological experimentation. Their requirements fell into three categories.
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First, all investigators required adequate monitoring of the experiment
hardware to insure its proper performance. For the most part, this kind of

monitoring is designed into the experiment package itself.

Second, it was required that there be no periodic event aboard the space-
craft, such as acceleration, noise vibration, etc., occurring at a frequency
or intensity capable of entraining a biological rhythm. This area requires
further study but at first analysis it appears that such events will not occur.

The problem of transient magnetic fields remains controversial.

Third, it was required that events associated with the space environment
be documented. This requirement was least well defined and the priority varied
with different investigators. In order of importance, a requirement was ex-
pressed for the spacecraft ephemeris; documentation of the ionizing radiation
inside the experiment hardware; and documentation of the magnetic fields
inside the experiment hardware. Measurement of changes in the levels of ioniz-
ing radiation in space and magnetic fields in space was requested but could only
be justified to the extent that such a measurement related to the immediate

environment of the experimental organism.
Existing Pioneer Physical Sciences Experiments

Three physical sciences experiments currently being flown on the Pioneer
spacecraft have been '"suggested" as both contributing to the interpretation of
biological data and extending the useful life of BioPioneer by continuing to
operate for many months after cessation of biological experimentation. One
experiment is a Magnetometer designed to measure the magnetic fields in space.
The sensor is located at the end of a boom approximately 5% feet from the edge
of the experiment platform on which the biological experiments will be mounted.
"The interplanetary magnetic field is only of the order of 4 to 10 gammas
(one gamma = 10-5 gauss). At the earth!'s surface the field is approximately
500 milligauss (50,000 gammas). Inside the Pioneer spacecraft the field will
exceed the interplanetary field because of internal magnetic sources such as
the traveling-wave tubes. At the experiment platform, in the probable locations
of biological experiments, the field will be 2 to 3 milligauss (200 to 300
gammas). The platform field is nonperiodic and its variation from point to

point is unpredictable.”
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The second experiment is a plasma probe designed to measure low energy
emissions associated with the solar wind. In the opinion of the Pioneer
Program Office, NASA/ARC, "The experiment platform is sufficiently shielded
from the low-energy solar wind that there will be no appreciable radiation

effects on the biological specimens from this source.”

The third experiment is designed to measure cosmic rays. '"The true cosmic
or galactic rays originate outside the solar system. Although they cover a
wide spectrum of energies, the flux is so extremely low that no appreciable

effects on biological experiments are anticipated."

Data on high-energy particulate radiation associated with solar flares are
in the process of summary. The information supplied thus far from NASA/ARC
is as follows: "The sun emits protons at irregular intervals. These high-
energy particles, called "solar cosmic rays" by some, originate primarily from
solar flares. Solar-flare activity waxes and wanes in an approximately ll-year
cycle, but so far no one has developed a method of predicting the time of an
occurrence. The last peak of solar activity was in 1958 and the next will be
in the 1968-1970 period. Thus, Pioneer VI (launched December 15, 1965) and
Pioneer VII (launched August 17, 1966) are flying in a time of increasing
activity. A launch year of 1971 for the first BioPioneer would be at a time of
decreasing solar activity, at approximately the same time interval beyond the

peak as Pioneers VI and VII precede the peak."

It was specifically recommended that before specific requirements are
defined by the biologists that the physical sciences data presently on hand
be examined by some form of time series analysis in an attempt to identify

periodicities of biological importance.
Assumptions for BioPioneer Feasibility Study

It is assumed that physical monitoring of the space environment will be
required either to document biological experiments or to take advantage of the
orbital life of the satellite after the biological experiments have been
completed. It appears feasible to design monitoring devices such as dosimeters
which could have one sensor either mounted in the biological experiment hardware
or shielded to provide data which could be extrapolated to conditioms within
the experiment hardware; and one sensor mounted in a manner to monitor ambient

space radiation. One sensor would be activated to monitor biological experiments,
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The system could then be switched to the alternate sensor for physical sciences

studies when the biology was completed. Design of such a system was beyond the
scope of this study.

Since it was assumed that physical sciences experiments would be accom-
modated, the existing Magnetometer, Plasma Probe, and Cosmic Ray experiments

were used to develop representative payloads for a BioPioneer Mission.
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PIONEER SPACECRAFT CHARACTERISTICS

The purpose of this section is to provide design information with respect
to the Pioneer Block II Spacecraft currently being fabricated and launched as
a continuing program for NASA/ARC. The spacecraft is designed to operate in
solar orbit to provide data on solar wind, interplanetary magnetic field,
solar physics and basic interactions of high-energy charged particles and
magnetic fields (Figure 56). The purpose of the present study is to determine
the usefulness of a Pioneer spacecraft as a platform for biological experi-
ments. General spacecraft characteristics are provided, including acoustic,
vibration, acceleration and thermal aspects of a typical Pioneer mission.
These data are based on the use of the McDonnell-Douglas DSV-3E booster with
a FW-4 third stage and an assumed 150-pound payload. However, the present
booster combination can accommodate significantly heavier payloads. Figure 57

shows the launch-vehicle third-stage, fairing, and spacecraft interface.

Pioneer 6 was launched December 16, 1965, from Cape Kennedy on a six-month
interplanetary mission. Final earth-sun orientation was achieved as scheduled
44 hours after launch at 230,000 miles from Earth. Spacecraft systems and
experiments have performed their required functions as designed over the past
21 months. Pioneer 7 was launched August 17, 1966, and has been operating as
required for the past year. On December 13, 1967, a third Pioneer spacecraft
was launched and all systems are operating flawlessly. Figure 58 depicts the

heliocentric orbits of Pioneers 6 and 7 and the Earth.

Spacecraft Description.- The basic spacecraft body is a cylinder 37 in.

diameter and 35 in. high. Three 64-in. booms deploy from the midsection, with
a magnetometer, wobble damper and orientation nozzle mounted on the ends of
their respective booms. A 52-in. mast containing high-gain and two low-gain
antennas projects from one end of the spacecraft. A dual-frequency antenna
used in a radio propagation experiment deploys from the other end. The sides
of the cylinder are covered with solar cells, except for the experiment view
band at the midsection. The present Pioneer system characteristics are given
in Table 29. Figure 59 is an exploded view of the basic spacecraft, and
Figure 60 shows plan and side views of the spacecraft in launch and flight

configurations. Spacecraft systems include an S-band communication system
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Figure 57. Launch vehicle.
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Figure 59. Spacecraft Exploded view
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TABLE 29 PRESENT PIONEER SYSTEM CHARACTERISTICS

Pioneer C total spacecraft and experimenter weight: 144 1b

Pioneer C experiment weight: 38 1b

Spacecraft trajectory constraint: Aphelion - 1.2 AU (electrical power);
Perihelion - 0.7 AU (thermal).

Present experiment volume: 2,000 in.3; Experiment window area in plane
of ecliptic - 750 in.2.

Watts available to experiments: 12 at 1.2 AU; 22 at 1 AU; 43 at 0.7 AU,
Experiment viewing direction during spin cycle provided.

Reliability: 0.88 for 6 months: MTBF, 48 months.

Lifetime: More than 1 year.

Communication range: 8 BPS to 0.5 AU (85 ft ground antenna) or 1.82 AU
(210 ft ground antenna).

Variable bit rate: 512, 256, 64, 16, 8 BPS.

Commands: 80 (57 presently in use).

Variable experiment sampling formats: Analog to Digital conversion.
Data storage: 15,232 bits.

Spacecraft magnetic field at 6 ft: Less than 0.2 gamma at 6 ft.
Spacecraft thermal environment: 40-90°F over 0.8 to 1.2 AU,

No electromagnetic interference detected in prototype spacecraft test.
Broad range of housekeeping data telemetered to the ground.

Four spacecraft funded: Two launched; Subsequent launches, one at
approximate 1l2-month intervals.
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with redundant 8-W TWTs for transmission range in excess of 40 million nautical
miles (85-ft DSIF antenna). Transmission rates vary from 512 bits per second
near earth to 8 bits per second at maximum range. Data storage capacity is
approximately 15,000 bits. The nitrogen gas attitude control system is actu-
ated by input from four sun sensors. The spacecraft is spin stabilized (60 rpm)
and oriented normal to the ecliptic plane. Experiments are designed to sweep
the ecliptic plane. Sun sensors define the direction of experiment sensors
with respect to the spacecraft/sun line. Power is supplied by 10,368 n-on-p
solar cells, providing 80 W at earth distance and about 90 W at 0.8 AU.

Vehicle design minimizes and controls spacecraft magnetic fields; materials

and currents were selected to assure high accuracy measurements of low magnetic
fields in space. Pioneers 6 and 7 have magnetic fields significantly smaller

than that of any previous spacecraft.

Scientific Payload.- The total weight of the seven physical sciences

experiments flown to date on Pioneer is 38 1lb, the highest ratio of scientific
instrument weight to overall vehicle weight of any interplanetary spacecraft.
Experiments are divided into four groups: (a) single-axis fluxgate magnetometer
for magnetic field data; (b) detector for solar wind studies; (c) cosmic ray
anistrophy detector and cosmic ray telescope for cosmic ray measurements, and

(d) radio propagation measurements.

Spacecraft Environment.-

(a) Acoustics. The period of high acoustic noise levels begins with the
ignition of the main engine (launch minus approximately 1 sec) and extends to
the point in the ascent trajectory where maximum dynamic pressure occurs

(launch plus approximately 31 sec).

The acoustic noise environment outside the spacecraft and inside the
shroud is illustrated in Figure 61. The noise field will be reverberant,
i.e., there will be very little deviation in the overall sound pressure levels
over the spacecraft, and any point in the sound field is considered a source
in which noise is generated in all directions. Transmission of sound into the
spacecraft can occur in a number of ways with the most crucial being through
the different leakage paths, such as the openings around the boom damper
attachment brackets, around the sun sensor and antenna strut openings, between
adjacent solar panels and through the top cover insulation interfaces.

Acoustically induced resonance of the spacecraft structure results in the
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structure appearing transparent to the impinging sound at the particular
resonant frequency, with the amount of sound transmission being a function of
the structural damping. Significant structural resonance will occur in the
low frequency range below 500 Hz. Transmission of sound through a wall obvi-
ously depends on the absorbtion characteristics of the wall material. The
spacecraft structure, especially the solar array substrates, is a porous solid
in which the dissipation of acoustic energy results from the severe forces
that are set up by the flow of air through the small capillary pores in the
material. Typical performance of this type of material allows transmission
of low frequency energy and attenuates energy above 1000 Hz. The thermal
insulation attached to the spacecraft is loosely packed and does not provide

much attenuation except at very high frequencies.

The sound distribution within the spacecraft enclosure will not be uniform
and differences in the overall sound pressure levels over the volume will be in
the order of 43 db. The differences in the overall sound pressure levels are
due primarily to standing waves set up between the parallel walls of the enclo-

sure.

We can conclude from this discussion that the incident sound energy will
be affected by the spacecraft structure primarily in the high frequency region.
An estimate of the acoustic environment inside the spacecraft enclosure is

illustrated in Figure 61.

The solution to a sound level problem would be to construct acoustically
insulated enclosures for the experiment subjects. Any design must take into
consideration vibration damping, noise absorbtion inside the enclosure and
sound transmission reduction through the enclosure walls, such as, double-wall

construction with acoustical lining between the walls.

(b) Vibration. Vibration data applicable to presently envisioned Bio-
Pioneer experiments are given in Tables 30 and 31. These data were derived
from Block 1 Pioneer test data. The peak transmissibility figures for the
Pioneer spacecraft are given in Table 32. These figures were derived from
qualification and acceptance tests performed on the prototype and Pioneers 6
and 7. The application of the Table 32 transmissibility data to the vibra-
tion levels mentioned above provided the acceptance levels for experiment
assemblies to be installed on Piocneer. The qualification levels are derived

by multiplying the acceptance levels by 1.5 and by multiplying the duration at
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TABLE 30 ASSEMBLY FLIGHT SINUSOIDAL VIBRATION

ACCEPTANCE
TREQUENCY | DURATION LEVEL SWEEP
AXIS CPS MINUTES G, O-PEAK RATE
THRUST 10-19 0.23 3 4 OCTAVES
19-25 0.10 4.5 PER MINUTE
25-50 0.25 3
50-150 0.40 8
150-250 0.20 4
250-400 0.17 4.8
400-2000 0.58 5
LATERAL 10-250 1.42 6 4 OCTAVES
(EACH AXIS) | 250-400 0.17 2 PER MINUTE
400-2000 0.58 4.5
QUALIFICATION
FREQUENCY | DURATION LEVEL SWEEP
AX1S CPS MINUTES G, O0-PEAK RATE
THRUST 10~19 0.46 4.5 2 OCTAVES
19-25 0.20 6.8 PER MINUTE
25-50 0.5 4.5
50-150 0.8 15
150-250 0.4 6
250-400 0.34 7.2
400-2000 117 7.5
LATERAL 10-250 2.83 9 2 OCTAVES
(EACH AX1S) | 250-400 0.35 3 PER MINUTE
400-2000 P16 6.8
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TABLE 31.

RANDOM VIBRATION

LEVEL AX1S FREQUENCY Psg LEVEL ACCEF DURAT 1ON
ces G~/CPS G-RMS
THRUST 20-150 0.01 6.15 |2 Minutes
AND 150-300 increasing from 6.15 leach axis
ACCEP LATERAL 150 cps at constant
rate of 3DE/octave.
300-2C00 0.02 6.15
THRUST 20-150 0.023 9.23 |4 Minutes
AND 150-300 increasing from . 9.23 jeach axis
QUAL LATERAL i50 cps at constant
rate of 308/cctave.
300-2000 0.045 8.23
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TABLE 32. PIONEER VIBRATION TRANSMISSIBILITY
QUALIFICATION ACCEPTANCE
FREQUENCY PEAK PEAK
AXIS CPS TRANSMISSIBILITY TRANSMISSIBILITY
THRUST 10-19 1.5 1.5
19-25 1.5 1.5
25-50 1.5 1.5
50-150 5 4
150-250 2 2
250-400 1.6 1.6
400-2000 1 1
LATERAL 10-250 4 4
250-400 1 1
400-2000 0.9 0.9
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each level by 2. The random vibration requirements for the assemblies are

given without amplification to the spacecraft levels.

Acceleration.- Axial acceleration data for each of the three stages is

shown in Figure 62. The maximum axial acceleration is approximately 25 G which
occurs at the end of the third-stage burn. A maximum onset acceleration of
approximately 280 G per second occurs at the termination of the first stage
firing. Just prior to igniting the third stage, the payload and third stage
are spun up to approximately 120 rpm. Maximum transient angular acceleration
resulting from peak spin-up thrust occurring at ignition is approximately 27
rad/sz. The nominal sequence of events for Pioneer is given in Table 33. This

sequence is appropriate for preliminary planning purposes.

Thermal.- The emissivity requirement placed on the experiments is important
in regard to providing thermal control for the spacecraft subsystems and experi-
ments. Particular experiments not meeting the emissivity requirements must be
considered in light of the total spacecraft requirements. These cases will be

considered in more detail in followon studies.

The temperature levels at various positions vs time are given in Table 34.
The sun~spacecraft distance vs time from launch were supplied by NASA/ARC as
an approximation of the type mission to be flown. The temperatures given in
this table for the mission indicated were derived from the orbital data taken
from Pioneers 6 and 7. Measurement 236 is a temperature measurement located
on the spacecraft platform in the experiment area. (See Figure 63.) The
primary reason for these measurements changing is the distance from the sun
is changing. Therefore, it can be seen that the rate-of-change is small and
there are no minor fluctuations; that is, the temperature is steady and not

fluctuating. Figure 64 presents thermal data for the first 40 days.

The temperature of an experiment assembly is primarily a function of the
heat generated internal to the box and the platform mounting area of the experi-
ment. In order for the spacecraft to maintain experiment temperature within
specified levels, the experiment must meet several spacecraft requirements:

1) Experiment power dissipation must be no more than 0.2 W/in.2 of

mounting area for a spacecraft temperature of 60°F.

2) The mounting base must be bare metal with a surface finish of 32 y in.

rms or better and must be flat within 8 mil in an 8-in. length (or proportional

value for actual base dimensions).
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218
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TABLE 33. NOMINAL PIONEER SEQUENCE OF EVENTS

EVENT

MAIN ENGINE IGNITION
LIFTOFF

MAXIMUM G

THRUST AUGMENTATION ROCKET JETTISONED
MAIN ENGINE CUTOFF (MECO)
STAGE II IGNITION

FAIRING JETTISONED

SECOND ENGINE CUTOFF (SECO)
THIRD STAGE SPIN-UP

THIRD STAGE IGNITION

THIRD STAGE BURNOUT
SPACECRAFT SEPARATION

SPACECRAFT BOOMS DEPLOYED AND SPIN RATE REDUCED
TO APPROXIMATELY 60 RPM

STEP 1 ORIENTATION COMPLETE
START STEP 2 ORIENTATION

STEP 2 ORIENTATION COMPLETE AND BEGIN CRUISE
PHASE

162




ACCELERATION, G'S

ACCELERATION, G'S

ACCELERATION. G'S

AX|

AL ACCELERATION VS TIME

- T

- — ; A -
20 40 60 80 100 120 140 160

TIME, SECONDS MB-3, FIRST STAGE

j - 1 ‘l ‘ A A] ﬂ
! ! | | /
. i | :
e

A0 T8 T2

32
28

24

20
16
12

0 i60 200 240 280 320 360 400

TIME, SECONDS AJ10-118E, SECOND STAGE
i .
B—
{ | —_
!
ra—"4—”"4 o h
| -
% | 1
i
I
4 8 12 16 20 24 28 32
TIME, SECONDS FWw-4, THIRD STAGE
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3) External surfaces, except the mounting base, must be treated or coated

to have an infrared emittance not less than 0.72 at a temperature of 60°F.

TABLE 34, TEMPERATURE LEVELS VS TIME

Time Spacecraft Temperature

From Earth Sun [Simp. Exp.|[Plat. #3
Launch | Range | Range | (M #236) }(M #263)

{ Days I06KM ] IO6KM °F °F

o ! o0.01 | 147.28] 64 52

20 2.43 1 145.02 66 54

; 40 4,72 1 143.93 67 54

! 60 7.28 | 143,72 67 54

80 9.94 | 144,37 66 54

100 12.37 | 145.76 65 53

120 14,27 § 147.69 64 52

140 15,42 + 149,89 62 50

160 15.69 | 152.09 60 49

180 | 15,07 | 154.05| 59 48

200 13.63 | 155.56 58 47

220 11.57 | 156.47 57 46

240 9.13 | 156.68 57 46

260 6.68 | 156.17 57 46

280 4.80 | 154.96 58 47

300 4.12 | 153.14 60 48
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ENGINEERING TESTS AND ANALYSES OF BIQOLOGICAL EXPERIMENTS

This section contains data common to many experiments resulting from
various tests and analyses performed to establish the feasibility of
accomplishing meaningful biological research aboard a Pioneer spacecraft.

The tests deal specifically with determining the survivability of organisms
and/or the stability of their circadian systems following exposure to simu-
lated launch forces. The analyses deal with problems of spacecraft dynamics;
analytical tests of the effectiveness of "passive' thermal control; and
determination of the adequacy of data handling as a function of data require-

ments and spacecraft trajectories.

Environmental Tests

Biological material was instrumented and mounted in the manner proposed
for the experiment hardware and exposed to the simulated launch forces of
vibration, acoustics and acceleration (Table 35). Test subjects were re-
turned to the laboratory for study of survivability and/or stability of the
circadian system. With one exception, the principal investigators reported
that all specimens survived a simulated launch and/or that there was no

degradation of the circadian system attributable to the test program.

The one exception was experienced in populations of vinegar gnat pupae.
One vibration test was run with the pupae in a standard oxygen nitrogen
atmosphere at 14.7 psi; one vibration test was run in 100% nitrogen atmosphere at
14.7 psi; and one population held in 100% nitrogen was exposed to all three
launch stresses. Vibration accelerated the rate of eclosion, and storing
the pupae in 100% nitrogen produced an unacceptable level of mortality.
The effects of vibration can probably be damped out with suitable mounting
of the experiment package, but time did not permit further study. Labora-
tory studies have shown that the stage of pupal development at which atmos-
pheric oxygen is replaced by nitrogen is critical to survival. Subsequent
laboratory testing endorsed the practicality of using nitrogen but further
study is required. The following paragraphs describe the mechanics of the

environmental tests performed on the biological material.
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Acoustics.- Specimens were suspended by resilient mounting systems within
the Norair Reverberant Chamber. A microphone located within the test volumn
was used to monitor the sound field. A Noraircoustic Generator MK V-H-20
was used to provide the random sound energy directed at the specimens (Figures
65 and 66).

Sound field exposure was for 2 1/2 minutes at an overall sound pressure
level of 136 db. Sound spectra typical of the acoustic environment are tabu-
lated below with the test specification.

TABLE 36. ACOUSTIC ENVIRONMENT TO WHICH BIOLOGICAL MATERIAL WAS SUBJECTED

Sound Pressure Level

(db re: .0002 dynes/cmz)
Octave Band

(Hz) Specification Run 1
37.5 - 75 118 118
75 - 150 124 124
150 - 300 128 129
300 - 600 131.5 131
600 - 1200 132 130
1200 - 2400 121 121
2400 - 4800 118 114
4800 - 9600 115 113
Overall 136 db 136 db

The following test equipment was used to provide and monitor the acoustic

environment :
1l - Noraircoustic Generator MK V-H-20
1 - Photocon Model 524 Microphone
1 - B & K Type 2409 Electronic Voltmeter
1 - B & K Type 2111 Audio Frequency Spectrometer
1 - B & K Type 2305C Level Recorder
3 - Special test setups within the Norair 170 cubic

foot Reverberant Chamber
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Test Chamber

Figure 65. Acoustic generator used to provide random sound energy during a
study of the biological effects of noise anticipated during the
launch of a Pioneer spacecraft.
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Vibration.~ Specimens housed in simulated experiment hardware were
mounted normal to the exciter head. The specimens and containers were sub-
jected to random excitation in the thrust or vertical axis for a period of
two minutes. The exciter head was then rotated 90 degrees and the specimens
subjected to a 4-minute random vibration test. The 4-minute exposure period

was divided into two 2-minute runs separated by 2 minutes (Figures 67 and 68).

The shaker was equalized with bare table at full test level. A plot of
the equalized spectrum is shown in Figure 69 along with a plot of the test
specification. The specimens were mounted on the exciter head after equaliza-

tion was complete for the test runs.

The following test equipment was used to provide and monitor the vibra-

tion environment:

1 - Ling A-249 Vibration Exciter System

1 - Endevco Model 2213 Accelerometer

1 - SD 101A Tracking Filter w/20 cps Filter
1 - Moseley Model 7035 X-Y Plotter

1 - Ballantine Model 320 True RMS Voltmeter

Acceleration.- Test specimens were subjected to acceleration forces that

varied from 5.5 g's to 25.0 g's in 28 seconds then back to 9.0 g'!'s in 1 second.
Acceleration forces were varied by changing the position of the specimens on a
constant speed centrifuge. The specimens were placed on a movable carriage
0.92 ft from the centrifuge axis. The centrifuge was brought up to a speed of
2.22 rps. At this speed the carriage was moved to a position 4.2 ft from the
axis in one second (Figures 70 and 71). The centrifuge was then stopped. The
time from startup to complete stop was approximately 5 minutes. Radial posi-
tion of the carriage was determined by a linear potentiometer attached to the
carriage drive and recorded on an oscillograph. Tracings of these positions vs

time plots are presented as acceleration vs time in Figure 72.

The following items of test equipment were used to provide and monitor

the acceleration enviromment:

1 - Centrifuge ETF: 10 (USAF 9574)
2 - CEC Oscillograph EP 10701
3 - Waldale Potentiometer ET 9273
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Figure 67. C-mice mounted on an electromagnetic shaker to study the bio-
logical effects of vibrations anticipated during the launch of
a Pioneer spacecraft.
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Figure 68. Biological specimens mounted on electromagnetic shakers to study

the biological effects of vibrations anticipated during the
launch of a Pioneer spacecraft. Upper: Bean leaves.
Lower: Drosophila pupae bed.
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Figure 70. C-Mice mounted on a centrifuge to study the biological effects of
accelerations anticipated during the launch of a Pioneer Spacecraft. ‘
Top: At the long radius position., Bottom: At the short radius position.
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Figure 71, Biological material mounted on a centrifuge to study the biological
effects of accelerations anticipated during the launch of a Pioneer
spacecraft., Top: Bean leaves, Bottom: Drosophila pupae bed.
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The effects of the acceleration on the potato and fiddler crab were studied
at Space Defense Corporation using their Space Flight Acceleration Profile
Simulator (SFAPS-Mark I). The profile duplicated was that supplied to Space
Defense as indicative of the characteristics of the Pioneer spacecraft. Both
a sprouting potato plug and a Fiddler Crab (Uca) were studied and the timing
and staging were adjusted to simulate the Pioneer 7 sequence of events. While
no long-term studies have been made upon the specimens subjected to the accelera-
tion tests, short term studies show that there were no detrimental effects and

that no difficulties are anticipated in the BioPioneer spaceflight.

The possibility of angular rotation inducing disorientation or an aberrant
behavior pattern in the mice is judged remote. Laboratory studies of this
phenomenon in man have been performed in mixed force fields in which centrifugal
force was acting at right angles to gravitational force and disorientation was
experienced. The reaction was further complicated by visual cues depicting a
static environment. In the spinning spacecraft, however, there will be negli-
gible cross field forces and no visual cues since the experiments are to be done
in constant dark. Further assurance that the mice will be unaffected is pro-
vided by results of animal experiments at University of California at Davis,
University of Minnesota and University of Kentucky, in which animals kept on
centrifuges for long periods of time quickly adapted. Indeed the experiment
at Davis reportedly includes maintenance of breeding colonies of small animals

on a centrifuge.
Effect of Biological Experiments on Spacecraft Dynamics

Assumptions.- The dynamic effects of adding any of seven different bio-
experiments to the Pioneer spacecraft were investigated. Preliminary layouts
and verbal information supplied by Northrop Corporate Laboratories form the
basis for the dynamic studies. The primary areas of investigation were
spacecraft balance and spin stability.

The basic Pioneer 6-7 spacecraft without the Stanford antenna and solar
sall was assumed. In order to arrive at approximate quantitative results for
the study, the following spacecraft properties (typical of previous Pioneer

spacecraft) were assumed:
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Spacecraft Weight 140 1b
Deployed Spacecraft Transverse Inertia, A 6.75 slug fcz

Deployed Spacecraft Spin Inertia, A 8.85 slug ft2
Stowed Spacecraft Transverse Inertia, A 6.5 slug ftz
Stowed Spacecraft Spin Inertia, C 5.1 slug ft2

The dynamic effects of each of the experiments were considered separately
although several of the experiments may ultimately be combined in a single
space launch. The experiments, most of which are designed for a 4-month
in-orbit life, which were considered are:

a. "C" Mouse Experiment (Four layouts, Plans A,B,C, and D
were considered.)

b. Pocket Mouse Experiment

c. Cockroach Experiment

d. Fiddler Crab Experiment

e. Pupae Fruit Fly Experiment

f. Potato Experiment

g. Bean Leaf Experiment

The experiments will all be positioned on the equipment platform at a
radius where they will have close to a one 'g" environment. Currently the
worst case spin rate planned is 45 rpm which places the experiments about
17 in. from the spacecraft Spln axls. However, as shown in "Experiment
Integration" section of this report, the majority of the individual experi-
ments or experiment combinations were placed nearer to the spacecraft spin
axis with resultant higher spacecraft spin rates. The lesser radii used for
certain experiments somewhat alleviate the dynamics problem but the spacecraft

balancing problem remains the most formidable one to solve in followon studies.

The most serious dynamics problem associated with the bioexperiments is
static and dynamic balance when mammals are on-board. The transfer in loca-
tion of the food and oxygen for the proposed "C" mouse layouts will result in
high static and dynamic unbalances. The study indicates that a careful layout
of these experiments will be required to maintain acceptable static and dynamic
balance limits. Arrangements where oxygen and food are transferred symmetri-
cally with respect to the equipment platform is minimized would be preferred.
Balancing problems for the remainder of the experiments will be much less
serious. Figure 73 compares the predicted dynamic unbalances for the BioPioneer

experiments with previous Pioneer balancing requirements.
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The effects of spacecraft wobble were evaluated. The existing Pioneer
wobble damper will keep the spacecraft wobble angle within a 2 degree half
cone angle after initial wobble due to spacecraft separation and boom deploy-
ment has been damped out. Solar radiation pressure is not expected to produce

attitude drift above 0.015 degree/day.

Balance Requirements.- Static and dynamic balance of the spacecraft are

important since the allowable center of mass offset and principal axis mis-
alignment are very small. The problem is compounded by the motion of passengers,
food and oxygen. The Douglas report, SM-48897, "Improved Delta Spacecraft
Design Restraints," revised January 1966, specifies the spacecraft balance

requirements at launch. These are:

a) Static unbalance (center of mass offset from the nominal geometrical

centerline), 15 mil.

b) Dynamic unbalance (angular misalignment between the longitudinal
principal axis and the geometrical centerline), 2 mrads (or about
15 1b-in.2).

The in-orbit balancing requirements, which are based on subsystem re-
quirements on board the spacecraft (especially the communication antenna)

are:
a) Static balance, 0.03 in.
b) Dynamic balance, 5 mrads (or about 50 1b-in.2).

These in-orbit balancing requirements will need re-evaluation for the
Bio-Pioneer but may be typical of the final requirements, depending on which
of the original Pioneer physical experiments are left on the spacecraft for
the BioPioneer. '

Of all the experiments, the "C" mouse experiment represents the most

. formidable balance problem. Unrestricted motion of the "C'" mice in their
cages can produce a maximum statis unbalance of about 3 mils and a maximum
dynamic unbalance of about 1 mrad (the totals are for three "C" mice in

Plan A and four "C" mice in Plan D). However, the pocket mice will cause

less imbalance as can be seen in Figure 65. It therefore appears that balanc-
ing to meet the launch requirements would be difficult but achievable for

launches with mice experiments on board.
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Imbalances induced during orbit are caused primarily by food and oxygen
transfer. None of the proposed "C" mouse layouts appear feasible for meeting
the present in-orbit balancing requirements and would require relaxation of
balance requirements. The best of the four from this standpoint, Plan D,
results in a change in spacecraft center of mass of about 0.1 inch and a
change in product of inertia of over 300 1b-in.2. The estimated maximum
changes in mass center and product of inertia for the remaining experiments

are shown in Table 37.

TABLE 37. ESTIMATED MAXIMUM CHANGES IN MASS CENTER AND
PRODUCT OF INERTIA FOR BIOLOGICAL EXPERIMENTS

Lateral Change Product of Inert%a

Experiment in Mass Center (in.) Change (1lb-in.“)
Pocket Mouse (3) 0.043 20
Cockroach Negligible 6
Fiddler Crab .01 10
Fruit Fly Negligible Negligible
Potato Negligible 2
Bean Leaf Negligible Negligible
C-Mouse (see discussion)

As mentioned previously, experiment layouts where food and oxygen transfer
can be made symmetrically with respect to the spacecraft spin axis and at rela-
tively the same "height" from the equipment platform will help alleviate the

balance problem.

Spacecraft Wobble.- Transverse torques can cause wobble (coning motion of

the spacecraft spin axis about the spacecraft angular momentum vector). Major

contributors to the wobble angle will be:

a) Booster errors.

b) Spinup

c) Separation

d) Boom Deployment

e) Attitude Control

f) Motion of Passengers
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Previous Pioneer results indicate that the maximum wobble angle will exist
just after the booms are deployed. This estimate will not change appreciably
for the BioPioneer. A worst case value of about six degrees can be expected.
The continuous rolling motion of the cage floors caused by wobble will make the
mice think they are on-board a ship. A six-degree wobble angle, for example,
would correspond to a peak-to-peak floor motion of about 3.5 in. and a frequency
of about 0.25 Hz. It is shown in the analyses to follow that the wobble damper

will reduce the wobble angle from six degrees to one degree in about 10 minutes.

The existing Pioneer 6-7 wobble damper is expected to be adequate for the
BioPioneer. The damper consists of two ball-in-tube impact dampers located at
the end of one of the deployed booms. Energy is dissipated as the balls
inelastically impact the ends of the tubes.

The damper analysis previously made for the Pioneer spacecraft was used to
evaluate damper performance. The rate of spacecraft wobble angle decay is re-

lated to the energy dissipation in the impact damper by:

4ar
o _ _dn
t
d CSZAQ
where
de
dt - Rate of change of wobble angle (angle between momentum
vector and the axis of symmetry)

dT :cd
dn - Energy dissipation per cycle

I in = It
A = Inertia ratio, Sp2n ransverse _ 0.31

I
transverse

s = Spin rate, rad/sec
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The damper threshold of about one degree wobble angle is reached when
rolling friction of the balls causes them to stop impacting the tubes. (The
threshold would be reached in about 10 minutes for the proposed configuration
and an initial 6-degree wobble angle.) Thereafter, damping continues, but at

a much clower rate as the booms flex. Figure 74 shows the damping character-
istics.

Previous analyses were used to evaluate wobble which could be induced by
motion of the mice. The rate of energy increase which the mice would conceivably
cause was compared with the rate of energy dissipation which is provided by the
wobble damper. The mice can efficiently produce spacecraft wobble if their
axial impulsive motion (a continuous back and forth cycling within their cages)
is synchronized with the spacecraft body precession rate. The induced wobble
angle was shown to equal the principal axis shift due to this motion:

so - S
where

m = Mouse mass, slug

r = Radial mouse location, ft

§ = Axial shift in mouse position, ft

C = Spacecraft spin inertia, slug—ft2

A = Spacecraft transverse inertia, slug—ft2

The time interval between shifts from one end of the cage to the other
which will produce a maximum wobble buildup is the half period of the

body precession cycle:

=

At = C (equals about 2 seconds for the proposed configuration)
s
where 2 C-A
= A
s = Spin rate

The rate of wobble increase is:

6 = 40 _ mré)s
T At w(C-A)
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For © << 1, the wobble energy is approximately:

2
E =z A o028
w 2

and the rate of wobble increase is:

Substituting,
where
m =
r
§ = 0.17 ft
A = 0.31
C = 8.85 slug ft2
A = 6.75 slug ft2
s = 4,72 rad/sec

0 2
Ew = 200 Cs

. 2
E = DIé) Cs™ o

25 grams each (C - mice)
= 1.41 ft (for 45 rpm spin rate)

The rate of wobble energy increase is:

Ew = ,005 8 ft-1b/sec

The energy dissipation rate for the Ploneer damper is:

where

T=107% g3 f(—ﬂi)
LQ

Energy dissipation rate, ft-1b/sec

Spin rate, rad/sec

Abscissa of Figure 75
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Figure 76 compares the "C" mouse induced energy increase with the damper
energy dissipation rate. The bound on wobble angle is obtained when the damper
energy dissipation rate exceeds the energy increase rate due to motion of the

mice. It can be seen that wobble is bounded at approximately 2 degrees.

The "C" mouse experimenter should determine whether mouse motion as pre-
scribed above is 1ike1y'to occur. In addition, the probability of more than
one mouse moving in unison with other mice on board will need to be determined.
If it can be determined that the "C" mice will be fairly dormant during in-orbit
operation, the probability of producing the above wobble angle is remote.

Attitude Drift Due to Solar Pressure.- Solar radiation pressures will

cause a long-term attitude drift of the spacecraft if the center of radiation
pressure is offset from the satellite center of mass. For this study, the basic

Pioneer 6-7 configuration was changed as follows:
a) The Stanford experimental antenna was removed.
b) The solar sail was removed.

Removal of these items has a compensating effect for solar pressure torque

calculations.
The attitude drift due to solar pressure torque is:

_ P(c.p. - c.m.) At

@« Cs
where
o - Attitude change, rad
P - Solar pressure = 12 x 1077 1

c.p. - c.m. -~ Distance between center of pressure and

center of mass = 0.1 ft

At - Time increment, 1.05 x 10" sec
C - Spin inertia, 8.85 slug ft2
s - Spin rate, 4.72 rad/sec

The attitude drift after four months due to solar pressure is 1.7 degrees.

Effects of Cockroach "Running Wheel!.- The cockroach capsule contains a

small rotor which has a spin axis aligned but laterally displaced from the

spacecraft spin axis. The cockroach uses the rotor to exercise and reportedly
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can cause it to spin up to as high as 100 rpm. This effect on spacecraft spin
stability was investigated. The criteria for spacecraft spin stability for

the proposed configuration are:

x1~h2 >0
Kl h >0
where
Xl = C1 - Bl - 32 s1 + C2 s2 / Al + A2
X2 = C1 - Al - Az s, + C2 52 / B1 + B2

A1 = Spacecraft transverse inertia, 3.1 x 104 lb-in2

B1 = Spacecraft transverse inertia, 3.1 x 104 1b-in2
. 4 2

C1 = Spacecraft spin inertia, 4.1 x 10 1b-in

s = Spacecraft spin rate, 45 rpm

A2 = Rotor transverse inertia, .029 lb-in2

B2 = Rotor transverse inertia, .029 1b-in2

02 = Rotor spin inertia, .044 lb-in2

s, = Rotor spin rate ~ this quantity was determined for
the instability condition

h = Angular momentum

It was found that the cockroach would have to spin the rotor to about 106 rad/sec
(in a direction which opposes the spacecraft spin direction) to create space-

craft 1nstébility.
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Feasibility of "Passive' Thermal Control of Biological Experiments

A thermal analysis for a typical experiment was performed by Northrop to
determine the practicality of passive thermal control for organism environment.
The Vinegar Gnat (Drosophila) experiment was chosen for this analysis since
it represented one of the more difficult thermal control problems and required

both steady-state and transient analysis.

Steady State Thermal System.- Results of the steady-state analysis con-
firmed that the desired temperature equilibrium could be achieved by proper
selection of heat paths to the spacecraft platform. Results of the transient
analysis indicated that approximately 24 hours would be required to reach the
desired temperature states unless a heater was added to the system. The addi-
tion of a one watt electrical heater allows the desired state to be reached in

approximately six hours.

The steady-state analysis was performed assuming the thermal configura-
tion of Figure 77. Each container is insulated to eliminate radiation and
isolated except for the selected thermal paths represented by Rl’ Rx’ and RZ'
R1 represents heat transfer through the air from the pupae beds to the container
walls. R is a metal conduction strap which was added as a result of the
analysis, and R2 is the thermal path of the structure between the upper and
lower containers. The structure between the lower container and the spacecraft
platform is sufficient to maintain the lower container approximately at plat-

form temperature.

Transient Thermal System.- The transient analysis was performed assuming

the thermal system of Figure 78. The thermal masses of the upper and lower
pupae beds are represented by C1 and 03, and the thermal mass of the upper con-
tainer is represented by C2. The parallel resistance of Rl and Rx if R3. The
analysis was performed by a digital computer and the results are given in
Figure 79.

Trajectory and Data Handling

BioPioneer Trajectory.- A trajectory which would be suitable for a Bio-

Pioneer mission was developed by NASA/ARC. A plot of this trajectory for 500
days is illustrated in Figure 80. The Sun and Earth are fixed in this co-

ordinate system and the Earth is at the center. Each point is 20 days from
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adjacent points, and each point represanting position at 100-day intervals is
so noted beside its respective point. The trajectory plot shows that the most
distant point which the spacecraft would travel from Earth is approximately

16 x 106 km or 9.95 million miles. This point would occur approximately 130

days after launch.

The ranges of the spacecraft from both the Earth and the Sun have been
calculated for specific time intervals from launch to 300 days after launch.
These data were then converted to actual temperature data derived from Pioneers
6 and 7 at two platform positions as shown in Table 36. Measurement 236 is a
measurement located within an experiment mounted on this spacecraft platform
and Measurement 263 is a temperature measurement located on the spacecraft
platform in the existing experiment area. As noted, the rate of temperature
change is small and there are no minor fluctuations, thereby providing a benign

temperature environment for biological specimens.

The proposed trajectory has an insignificant effect on total available
power. The power budget at 1.0 AU is outlined below:

Total power at 1 AU 80 W
Spacecraft power =45
35
Nominal power for 3 physical
experiments -10
25
Nominal power for biological
experiments . =25
oW

Telemetry and Commands.-

(a) Commands. The total number of commands available for experiments is
23. These commands result in the generation of pulse signals to be applied to
the experiments. Three representative physical experiments (Cosmic Ray, Plasma
Probe, and Magnetometer) required eight of these commands. Seven more commands
are available for applying power to individual experiments. Three of these
would be required by the above mentioned physical experiments. One additional
command is used to remove power from all experiments simultaneously. Typically,
power is removed from the experiments just prior to launch until several hours

after launch. This has been necessary to minimize the requirements on the
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TABLE 38.

THERMAL DATA

Time Spacecraft Temperature
From Earth Sun [Simp. Exp.]Plat. #3
Launch | Range | Range | (M #236) |(M #263)
Days IO6KM IO6KM °F °F
0 0.01 ] 147.28 64 52
20 2,43 | 145.02 66 54
40 4,72 1 143,93 67 54
60 7.28 ] 143.72 67 54
80 9.94 | 144,37 66 54
00 12.37 | 145,76 65 53
120 14.27 | 147.69 64 52
140 15.42 | 149.89 62 50
160 15.69 | 152.09 60 49
180 15.07 | 154.05 59 48
200 13.63 1 155.56 58 47
220 11.57 | 156.47 57 46
240 9.13 | 156.68 57 46
260 6.68 156.17 57 46
280 4.80 | 154.96 58 47
300 4.12 | 153,14 60 48
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battery which provides power until the solar array is able to supply the total
power requirements. Figure 81 shows a typical Pioneer Command Matrix (Pioneer 6)

and indicates spacecraft commands, experiment commands, and unusable commands.

(b) Telemetry. The communication data rate for the BioPioneer mission
utilizing the 8-W TWI's used in the present Pioneer system would be no less
than 256 bits per second. Most of the mission would be at 512 bits per second

as can be seen in Figure 80.

The possibility of removing TWI's and their converters for significant
savings in weight, power, and space has been examined. The transmitter driver
presently installed on Pioneer has a 50 mW output and does not provide suffici-
ent power even for 8 bps to provide communications much beyond 1 million km
which is reached within 10 days after launch. Replacement of the 50-mW driver
with one having a 2-W output would still provide significant savings in avail-
able platform space and would allow for complete mission coverage via the
present Pioneer system with a bit rate no lower than 64 bps. (See Figure 80.)
A 2-W transmitter and its associated converter is currently under development
at TRW for use on another space program. This transmitter used in a redundant
mode was considered in developing various Pioneer Spacecraft layouts discussed

in later sections.

(c) Data Storage.- In regard to additional data storage, several possi-
bilities exist. An additional Pioneer DSU could be installed serially with the
present DSU, thereby doubling the existing storage of 15,232 bits. An alterna-
tive is to replace the present DSU by a larger DSU now in production for the
Vela Project which has a 130,000 bit capability. Other techniques can be
examined in a followon study that may better match particular requirements.

For the purpose of this study, it was assumed that an additional Pioneer DSU
would be used where necessary to accommodate certain experiments or experiment
combinations. This unit could be mounted on top of the Experiment Interface
Unit (EIU) required for most biological experiments and therby save spacecraft

platform space.

(d) Experiment Interface Unit.- The Experiments Interface Unit contains

a time of day clock, experiment timing and control signal generators, buffer
storage, and amplifiers required for experiment outputs to interface with ;he
Pioneer data system. In general, these electronics can be shared by more than
one biological experiment; however, most of the functions provided by this

unit would be required even if only one experiment were on the spacecraft.
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EXPERIMENT INTEGRATION

It is specifically beyond the charter of this study to rank experiments
in terms of scientific merit. The problem of experiment platform layout and

experiment integration has been approached with the following assumptions:
1. All experiments are of equivalent technical merit.

2. Integration of biological payloads must be accomplished with a minimum

change to the proven Pioneer spacecraft system.

3. It is highly desirable to include physical sciences experiments to
fully utilize the orbital life of the spacecraft.

The first series of platform layouts treats the problem of accommodating
individual biological experiments and several physical sciences experiments.
A second series shows several feasible combinations of biological and physical
sciences experiments but makes an additional assumption that an improved data
system presently under development for future Pioneer missions will be available.

The assumption is reasonable.

Combinations of biological experiments attempt to utilize different classes
of organisms with the assumption that phenomena occurring over a broad phylogen-
etic spectra are better evidence of an effect or lack of an effect on a funda-
mental process than if the same phenomena occurred in only one species. Thus,
an optimal payload derived from the experiments considered in this study would
include at least one mammal, one arthropod, and one plant experiment, plus two

or three physical sciences experiments to study particles and fields.

There are obviously a very large number of possible combinations. In all
cases the biological experiments represent the minimum replication of experi-
mental material that will permit meaningful data to be obtained. A summary of
the biological experiment requirements compared to the Pioneer spacecraft
capability is shown in Table 39.

Pioneer capability is that available for use by both biological and physical
experiments and is an approximation subject to geometrical constraints. Com-
parison of experiment requirements with spacecraft capability, however, indi-
cates that the spacecraft is more than adequate to accommodate biological as

well as physical science experiments.
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Approach.- The existing Pioneer Spacecraft platform was examined for the
purpose of investigating various platform layouts for several proposed bio-
logical experiments. Figure 82 is a diagram of the Pioneer 6 Spacecraft plat-
form showing the layout of Pioneer components and physical experiments. In
the investigation of various biological experiments and combinations of experi-
ments, the biological experiments were, whenever possible, located in the same
general areas now occupiled by physical type experiments. When considering the
many different types of biological and physical experiment combinations, it
becomes quite evident that a large variety of possible experiment combinations
exist. Therefore, only what appeared to be the most logical and feasible
combinations were considered. However, it is entirely possible that after
review of this report certain other logical combinations may look feasible
enough for study or more detailed examinations. Table 40 is a summary of the

various experiment combinations studied.

Some discrepancy will be noted between the number of experimental organisms
accommodated in the various platform layouts and the minimum replication of
organisms required by the experimenter (Table 39). In most cases the discrepancy
is attributable to changes in the experiment design made after the platform
analysis was completed. It is the feeling of both the study contractor and the
spacecraft contractor that where such discrepancies occur there are simply solu-
tions and that the discrepancies in no way reflect on the feasibility of accom-

modating experiments to the satisfaction of the respective Principal Investigators.

The platform layout investigations are considered to be feasible from a
conceptual design standpoint. It is here noted that the artist concepts shown
in this section were derived from scaled layouts of each experiment on approved
engineering prints. Where individual experiments rather than experiment mixes
were considered the layouts incorporated existing Pioneer components. The
layouts dealing with experiment mixes, however, considered certain modifications
of Pioneer spacecraft components. These modifications were the incorporation
of a convolutional coder (CCU) presently under development; a miniaturized
digital telemetry unit (DTU); replacement of the existing Pioneer transmitter
driver, transmitter converter and TWI's with redundant two watt transmitter and
transmitter converters currently under development at TRW. Incorporation of
these modified spacecraft equipments provides additional platform space which

can be utilized for both biological and physical sciences experiments.
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Platform Considerations

Figure 83 is a photograph of the existing Pioneer Spacecraft showing
spacecraft components, structural members and experiments. This illustrates
the need to observe certain constraints in laying out the various experiment

combinations. These constraints included:

a) No box above 6 3/4 in. in height could extend closer than 2 in. from

the platform circumference.

b) Equipments could not be located over certain platform flanges and

brackets.

c) Spacing of boxes could not violate the envelope required for the 3

boom mounts or the 3 sets of antenna mounting struts.

d) No box could be placed in a manner requiring platform mounting within
4 in. of the spacecraft center because of the circular cutout required for the
pneumatics bottle and lines, and the existing spacecraft equipment occupying

this centralized area.

e) Sufficient platform space must be reserved for cabling, particularly
from the digital telemetry unit (DTU), command distribution unit (CDU) and the

decoder.

f) Where possible, spacecraft equipments were not relocated from their

existing positions to minimize spacecraft modifications.

The nominal spin rate specified for Pioneers 6 and 7 prior to separation
from the third stage is 110 rpm. After separation from the third stage and
deployment of the spacecraft booms, the spin rate is reduced to approximately
60 rpm. Assuming the orbital injection and spacecraft attitude stability re-
quirements may be relaxed, it would be possible to proportionately reduce the
spin rate if required by the biological experiments. The Earth's gravitational
field can be simulated by selecting an appropriate spin rate for a particular

location of an experiment on the spacecraft platform.
Individual Experiments

nG" Mouse Experiment (Plan A).- Four alternate plans for the "C!" mouse

installation were submitted. Two were selected for further consideration. As

noted in the section entitled "Spacecraft Dynamics," the "C'" mouse experiments

206




207

Present Pioneer spacecraft platform layout.

Figure 83.




represent the most formidable balance problem of all the experiments which

were examined. The first plan, (A), consisting of three mice in a container,
was selected because of the relatively small spacecraft platform area required.
This experiment consists of a container, an electronics box, a blower and trace
gas control, an oxygen tank and an oxygen regulator. It was determined that
this "C" mouse experiment could be incorporated on the Pioneer Spacecraft in
addition to two physical sciences experiments. In this instance, cosmic ray
and plasma probe experiments were selected, although other experiment combina-
tions could possibly be incorporated. This layout, shown in Figure 84, requires
minimum reorientation of the existing spacecraft equipments on the platform.
The requirement for placement of the mouse container at least 2 in. from the
spacecraft periphery results in a spacecraft radius to the floor of the con-
tainer of 11 in. (This assumes the floor to be located approximately 6 in. from
the end of the container nearest the spacecraft centerline.) To maintain a

1 g environment at the floor of the container, the spacecraft would be rotated

at 57 rpm.

"C" Mouse Experiment (Plan D).- The other "C" mouse experiment selected

was that preferred by the experimenter (Plan D). This plan requires consider-
ably more spacecraft platform area than Plan A, but provides for four mice
instead of three, as in Plan A. This experiment requires a relatively large
oxygen tank, LiOH bed, blower regulator and trace gas control occupying a
sphere of 12 in. in diameter. The additional containers are required: (1) a
container to house the four mice, and (2) an associated electronics box.
Because of the large platform area required for this experiment, it was not
possible to incorporate any physical experiments. (See Figure 85.) Assuming
the floor of the container to be approximately 4 in. from the top of the con-
tainer (inbound), the position of the "C" mouse container is such that it re-
quires the spacecraft to be spun up to approximately 57 rpm to maintain a 1 g

environment at the container floor.

Pocket Mouse Experiment.- The pocket mouse experiment layout consists of

three pocket mouse containers, a central electronics box and an experiment
interface unit with an additional data storage unit (DSU) mounted on top. It
is possible in this arrangement to incorporate two physical experiments in
addition to the pocket mouse experiment. These are the Magnetometer and Plasma
Probe experiments. It is noted that due to the size of the pocket mouse con-

tainer and the requirements for mounting the container, it is not possible to
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incorporate four mouse containers on the existing Pioneer platform together
with required spacecraft components without reconfiguring the experiment
package. The radius from the center of the spacecraft platform to the floor
of the container was selected at 12 in. due to the requirement that the con-
tainer be located at least 2 in. from the periphery of the spacecraft platform.
This requires that the spacecraft revolve at 54 rpm to maintain 1 g at the
floor of the container. The layout of this experiment combination is shown

in Figure 86.

Cockroach Experiment.- Six cockroach experiments (1 cockroach per con-

tainer) were considered at the request of the experimenter. Since these
spherical containers could be placed near the periphery of the spacecraft due
to the relatively low height of 6.7 in., it was possible to place six of these
containers around the periphery of the spacecraft platform and still incorpor-
ate two additional physical experiments. In this instance a cosmic ray and
magnetometer experiment were the selected physical experiments although other
physical experiment combinations could probably be accommodated, if desired.
Minimum changes to the existing spacecraft equipments layout were necessary

to incorporate this combination of experiments. The radius to the 1 g position
of all the containers is 17 in. requiring a 45-rpm spacecraft rotation to main-
tain the 1 g environment. Figure 87 shows the platform layout selected for

this experiment combination.

Crab Experiment.- This experiment consists of crab containers (2 crabs

per container), a crab controller unit and an experiment interface unit (EIU).
(With respect to the experiment interface unit, an additional DSU could, if
desired, be placed on top because of the position selected for the EIU.) This
experiment would have the objective of placing these containers so that the
specimen is subjected to 1 g, 1/2 g and 0 g, if possible. However, it is appar-
ent that a 0 g environment is not possible to attain since this would require
location of the specimen container on the spin axis of the spacecraft which is
presently occupied by the spacecraft, diplexers and RF filter. Therefore,
development of the platform layout concentrated on the objective of placing an
equal number of containers at the 1 g and 1/2 g locations. As shown in Figure 88,
due to the relatively small size of the crab containers, a workable platform
layout was accomplished while still maintaining adequate space for location of

four physical experiments in addition to the crab experiment. The physical
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Figure 87, Pioneer spacecraft equipment and experiment installation
Cockroach experiment (6 cockroaches) and two physical
experiments.
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experiments shown are the cosmic ray, plasma probe, magnetometer and cosmic dust.
Spacecraft spin rate would be adjusted to 45 rpm so as to provide a 1 g environ-
ment to the 2 crab containers placed at a 17 in. radius from the platform center
and a 1/2 g enviromment for the 2 crab containers located at 8.5-in. radius

from the center. With the exception of relocating the receiver assembly, no
changes were necessary to the existing locations of the Pioneer Spacecraft

equipments.

Bean Leaf Experiment.- This experiment consists of bean leaf containers

with four leaves in each, an A/D converter (required for more than one container),
and a central electronics box in addition to the experiment interface unit and
an additional data storage unit required for the experiment. The experimenter
desired that one bean leaf container be located in a 1 g enviromment and the
second container at less than 1 g environment. Due to the size of the bean

leaf container and the constraint of the spacecraft DTU and other boxes located
at the platform center, it was determined that one container located at a radius
of 15 inches from spacecraft centerline would experience a 1 g environment with
spacecraft spin rate at 49 rpm. The other bean leaf container with its floor
located at 12-in. radius from the centerline would experience a 0.8 g environ-
ment. With this layout shown in Figure 89, it was also possible to incorporate
two physical experiments which could be cosmic ray and cosmic dust experiment.
In this layout it may be necessary to change the present location of the N2 fill

valve, but this should pose no problem.

Potato Plant Experiment.- Due to the relatively small volume of the potato

plant experiment containers, it is possible to locate four potato plant experi-
ment containers (2 plants per container) and their associated electronic boxes
and, in addition, to accommodate three physical experiments. In addition to the
4 containers, the total experiment requires an experiment interface unit. No
data storage unit is required for this experiment; however, the experiment
interface unit has been placed on the platform so that if a DSU is desired, it
could be accommodated within the specified volume. The outboard floors of two
of the potato plant containers are located approximately 17-in. from the space-
craft centerline, while the floors of the other two containers are located 9 1/2
in. from the spacecraft centerline. A spacecraft spin rate of 45 rpm will main-
tain a 1 g environment for the outboard containers and 0.55 g environment for

the two inboard containers. The physical experiments selected for this case
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are: a magnetometer experiment, a plasma probe experiment and a cosmic ray

experiment. Figure 90 shows the layout of this experiment combination.

Pupae Fruit Fly Experiment.- This experiment comsists of fruit flj containers

with 1,000 specimens in each, and an experiment interface unit. There is no
requirement for an additional DSU. In this case, four fruit fly containers
(two each in tandem) were selected for placement on the spacecraft platform.
The overall dimensions specified for the fruit fly tandem containers necessitate
their being placed at least 2 in. from the spacecraft circumference. The
centerline of the two cylindrical containers mounted in tandem is specified as
the 1 g location. Therefore, under these conditions the radius from the space-
craft spin axis to the container centerline is approximately 12 in., which
will require a spacecraft spin rate of 54 rpm. With four containers (two each
mounted in tandem) it is possible to also locate three physical experiments
with only minimal modification to the existing spacecraft platform layout (see
Figure 91). The physical sciences experiments selected are the Magnetometer,
Plasma Probe, and Cosmic Ray. If it were decided that one fruit fly container
were sufficient for this experiment, an addition, or fourth, physical experi-

ment could be incorporated.
Representative Combinations of Experiments with Spacecraft Modifications

Recommended Spacecraft Modifications.- As mentioned earlier, after investi-

gation of individual biological experiments with combinations of physical sciences
experiments, a selection of optimum combinations of experiments was made and
platform layouts for each were prepared. In order to accommodate a larger

number of variety of both biological and physical sciences experiments, a plat-
form layout was prepared which incorporates certain spacecraft component modifi-

cations. These are:

1) Substitute the existing digital telemetry unit (DTU) for a miniaturized
(new design) and a convolutional coder presently under development by the Pioneer
Project. These two components would be stacked together on the spacecraft plat-

form.

2) Substitute the existing redundant TWI's and their associated trans-
mitter converters and transmitter drivers for redundant two-watt transmitters
and transmitter converters presently under development for use by another TRW

Spacecraft Project. These transmitters and their associated converters are
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capable of being mounted side by side on the platform and this configuration

was used for conservation of platform space.

3) Delete the present coupler unit and two of the five coaxial switches
as a result of the above modifications. The results of investigations of

various experiment combinations are discussed below.

Combined Potato, Fiddler Crab _and Bean Leaf Experiments.- An attempt was

made to incorporate two different plant experiments and one arthropod experi-
ment utilizing modified spacecraft equipments. In this case, the potato plant,
fiddler crab and bean leaf experiments were selected. Figure 92 shows the
layout for this combination, which includes three potato containers (six plants)
and their associated electronic units, four crab containers (eight crabs) and
one bean leaf container (four leaves) with associated support equipment. Pro-
vision was also made for an experiment interface unit with an added data stor-
age unit in a stacked configuration. The two potato containers, the bean leaf
container and two of the four crab containers were placed near the periphery
of the spacecraft platform with the container floors located 16 in. from the
spacecraft centerline. This permits the outboard floor of the two potato
containers and the two crab containers to see a 1 g environment at 46 rpm spin
rate while the bean leaf container, due to its height, was placed slightly
inboard such that its floor would be in a 0.9 g environment. The other two
crab containers and one potato container were placed so that their floors are

8 in. from the spacecraft centerline, thereby permitting their environment to
be 1/2 g. This arrangement was made to accommodate the request of the experi-
menter to have different crab modules at 1 g and 1/2 g positions. This plat-
form layout permits incorporation of two physical sciences experiments (cosmic
ray and magnetometer). A plasma experiment could be substituted for the cosmic

ray experiment, if desired.

Combination Pocket Mouse and Fruit Fly Experiments.- An attempt was made

to prepare a platkorm layout which would include a mammal experiment (three

pocket mice containers) and an arthropod experiment (one fruit fly container).
This combination of experiments was determined to be feasible. An experiment
interface unit (EIU) with an additional DSU on top was provided to accommodate

the needs of the pocket mouse experiment. Due to the size of the experiment
containers it was necessary to place them not closer than 2 in. from the periphery

of the spacecraft platform. This resulted in a radius to the container floors
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of 12.5 in. and a spacecraft spin rate of 53 rpm to maintain a 1 g environment
at the 1 g location of each container. It was also possible in this layout
(see Figure 93) to incorporate two physical sciences experiments. Those selected

were the magnetometer and plasma probe experiments.

Combined Pocket Mouse and Cockroach Experiments.- The next layout con-

sidered was a mammal (pocket mouse) experiment and a different arthropod (cock-
roach) experiment. This experiment combination includes three pocket mice
containers and three cockroach containers and thelr associated supporting
electronic boxes. Figure 94 shows the platform arrangement selected which
places the three pocket mouse containers and the three cockroach containers
with their respective floors located at 14-in. radius from the spacecraft
centerline. A spacecraft spin rate of 49 rpm is necessary to provide a 1 g
environment at the floor of each of the five containers. It was possible in
this experiment combination to also include a physical experiment on the plat-
form. The experiment selected is a cosmic ray instrument although another

experiment selection could be made, 1f desired.

Cockroach, Fiddler Crab and Fruit Fly Experiments.- A platform layout was

prepared for the three arthropod experiments and it was determined feasible

that three cockroach containers, three crab containers and one fruit fly con-
tainer and associated experiment support boxes could be placed on the Pioneer
platform in addition to incorporating a magnetometer experiment. Due to the
size and 1 g location of the fruit fly container, it was necessary to place

3 cockroach, 1 fruit fly and 1 crab container in positions so that the 1 g
location is at a radius of 12.5 in. from the spacecraft centerline. To main-
tain the 1 g environment at this location, it is necessary that the spacecraft
spin rate be maintained at 53 rpm. Two crab containers were placed in position
so that they would experience a 1/2 g environment, as desired by the experi-
menter. The experiment interface unit is placed in a position that, if desired,
an additional DSU can be placed on top. Three physical experiments are incorpor-
ated in this platform layout. They are a magnetometer, a cosmic dust experiment
and a cosmic ray experiment. Figure 95 illustrates the platform layout for

this experiment combination.

Pocket Mouse, Fiddler Crab and Potato Experiments.- This experiment com-

bination consists of:
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1. A mammal experiment (pocket mouse).
2. An arthropod experiment (fiddler crab).
3. A plant experiment (potato).

Three pocket mouse containers were selected with their associated electronic
box (central electronics), two crab containers with require support equipment,
and two potato containers with their associated central electronics and controller
box. Also included in the platform layout is an equipment interface unit with
an additional DSU to accommodate the Pocket Mouse Experiment. The platform
layout selected permits a 1 g enviromment for all specimen containers which are
located at approximately a 12-in. radius from spacecraft centerline at a 54-rpm
spacecraft spin rate. One of the two potato containers and one of the two crab
containers are located inboard of the other experiment containers at a distance
of 7 in. from the spacecraft centerline. At a 54-rpm spin rate these experi-
ments would experience a 0.58 g environment. With the arrangement shown in
Figure 96, a magnetometer (physical) experiment could also be incorporated in
addition to the three different biological experiments.
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CONCLUSIONS AND RECOMMENDATIONS

The results of this study clearly establish the feasibility of con-
ducting biological experiments aboard a Pioneer spacecraft. Seven biological
and three physical sciences experiments were analyzed in the course of this
study. The fact that each experiment can be accommodated and in most
instances meaningful experiment combinations established clearly attests
to the versatility of the Pioneer experiment platform. While beyond the
scope of this study, endorsement of the scientific merit of the BioPioneer
is strongly implied. The feasibility of combining both physical and bio-
logical experiments also implies a cost effective mission fully utilizing

the operational orbital life of the Pioneer spacecraft.

It is recommended that the feasibility study now completed be followed
by a more detailed Program Definition Phase leading to detailed design,
fabrication, spacecraft integration, test, and launch. Tasks which would

be performed include:

1. Identification of the most likely biological and physical sciences
experiment combinations to be studied in detail. It is essential that
candidate experiments endorsed by NASA receive support in the immediate
future to permit prototyping of experiment hardware and adequate liaison

between principal investigators and the spacecraft contractor.

2. Determine general feasibility of incorporating the experiment
combination(s) defined in 1. above if different from those presented in

this report.

3. 1In conjunction with the experimenters, investigate the feasibility
of making certain modifications to the experiment packages so that the
capability of the Pioneer spacecraft could be better utilized for specified

experiment combinations.

4. Perform more detailed investigations of the integration of selected
experiment combinations on the Pioneer spacecraft. Such studies and analyses

would include:
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a. Thermal analysis of the spacecraft and the experiment com-

ponents and the emmissivity requirements thereof.

b. Detailed platform layouts of experiments and spacecraft
components to include cabling requirements and incorporating a miniaturized
Digital Telemetry Unit (DTU), redundant 2 W transmitters and a Convolutional

Coder.

c. Detailed dynamics analysis of the selected experiment con-
figuration(s). Determine, if necessary, additional requirements for
restraining food and/or mice to maintain balance within allowable limits.
Study methods of preventing and/or damping out the wobble induced by the
motion of mice or other moving specimens, if such methods are required to

maintain spacecraft stability.

d. Optimized utilization of data formats and modes to best ac-

complish the mission. Determine method of implementing these changes.

e. Analysis of the performance of the orientation subsystem
with modified dynamic characteristics and define characteristics and re-

quirements for new spin rates, if required.

5. Determine requirements for and perform detailed design of a miniatur-
ized Pioneer DIU to include fabrication of an engineering model, unit testing

and engineering prints.

6. Determine detailed characteristics of redundant 2 W transmitters
for the BioPioneer mission and study the integration and interface require-

ments of these components on a BioPioneer spacecraft.

7. Perform an overall system analysis, including investigation of

all interfaces.

8. Develop a BioPioneer Program Plan to define (1) the remaining
detailed design, (2) fabrication and unit test, (3) spacecraft integration
and test and (4) launch of a BioPioneer spacecraft. Cost per launch and

milestone schedules would be included in the Plan.
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