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ELECTROMAGNETISM IN MOVING;  CONDUCTING  MEDIA 

BY 
Rudolph M. Kalafus 

ABSTRACT 

Based  on Minkowski's theory of the  electrodynamics of moving  bodies, 

the  present  work is concerned  with the systematic  solution of problems in- 

volving sources  placed  in a uniformly moving, conducting  medium. In order 

to  accomplish this it is first necessary  to  examine  the two differing  forms of 

Ohm's  law  for moving media that are found in the literature. It is concluded 

here  that  the two forms are equivalent and interchangeable,  and  that  their  apparent 

difference arises out of different  definitions of conduction  and  convection 

currents. 

Another  difficulty which is encountered when dealing with  conducting 

media is related  to  the  relaxation phenomenon. The  total  charge  and  current 

densities  cannot be independently  specified,  but  must  be  consistent with the re- 

laxation phenomenon; for non-conducting  media  only the  equation of continuity  must 

be met. A scheme is developed here which involves a separation of currents 

and charges  into  source  and  response terms. The source  terms  can be spe- 

cified independently,  but the  total  charge  must be consistent  with  Maxwell's 

equations. 

Vector  and scalar potentials are developed from  the  field  quantities,  and 

partial  differential  equations  for  the  potentials are derived  for two classes of 

problems: static charge  sources,  and  harmonic  current  sources.  For un- 

bounded regions  potential  solutions are found by  the  method of Green's  functions, 

which satisfy  the  same  differential  equations.  The  differential  equations are 

solved  by  transform methods,  and  the  Green'e  functions are found in closed 

form. 

The  medium is assumed  to have  constant scalar parameters of permittivity, 

permeability,  and  conductivity.  The  results are valid  for all values of conductivity 

and  frequency,  and  for  relativistic  velocities. 
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PRELIMINARY DISCUSSION 

1.1 Introduction 

There  have  been  several  papers  written  in  recent years on the  subject 

of moving media,  most of which  deal  with  lossless  media. Nag and  Sayied 

(1956) applied Minkowski's theory of the  electrodynamics of moving bodies 

to  the phenomenon of Cerenkov  radiation,  by  considering  the  problem of a 

static charge  in a moving  medium.  Sayied  (1958) later extended this to  the 

two-medium  problem of a charge  imbedded  in a channel of moving dielectric. 

Wave-motion  in moving media has been  discussed  by  Collier  and  Tai ( 1964 

and 1965). The  more  involved  problem of harmonic  current  source  has re- 

ceived  appreciable  attention,  notably  from Compton and  Tai (1964 and 19651, 

Lee and  Papas (1964 and 1965), Tai (1965a  and 1965b1, and Daly, Lee,  and 

Papas (1965). Unlike the  present  work,  the  concern  there  was  with loss- 

less media. 

The  formulation of field  problems  involving  charge  and  current  distri- 

butions as sources in a moving, conducting  medium is delicate,  and raises 

certain  questions which  have not been  clearly  settled  up  to now; Pyati (1966) 

notes  this  in  his  thesis. One  of the  questions  raised  regards  the  formulation 

of Ohm's  law  for moving  media, for which two different  forms  exist  in  the 

literature. Another  concerns  the  relaxation phenomenon and its expression 

in moving media. In order  to  discuss  the  fields set up  by  charge  distributions 

moving in a medium it becomes  necessary to either set up an  initial-value 

ballistic  problem,  where at a given instant of time the  charges have a given 

velocity, mass,  and  location,  or  to  postulate  impressed  currents  and  charges !. 

which  maintain their velocity  by  some  unspectfied  energy  source.  In  order to 

adequately treat the first problem  one  should  consider  the  reaction  forces  and 

collisions  and  find  the  resulting  velocity as a function of time. This is an  ex- 
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tremely  difficult  approach  to  use.  The  second  approach is used  in 

altered  form  in  antenna  problems and, in  fact,  most  problems involving the 

calculation of fields due to a particular  source  configuration.  The  second 

method will be employed  here,  treating  the  sources as stationary,  and  im- 

bedded in a uniformly moving  medium.  The  medium is assumed  to have 

constant  permeability,  permittivity  and  conductivity. 

In the first chapter Maxwell's equations  for moving  media a re  reviewed, 

and cast in dyadic  form.  The  second  chapter is devoted  to  the  formulation of 

Ohm's law, with a discussion on the two apparently  dlfferent  forms which exist 

in the literature.  Chapter III treats the decomposition of charges and currents 

into  source  and  response  terms, thus making it possible  to  rigorously  approach 

problems  in which sources are present.  The  relationship of the  response 

charges  to  the  sources is derived.  Finally,  Chapter IV is devoted  to  the  develop 

ment of the  vector  and  scalar  potentials  and  their  differential  equations.  Green's 

functions a re  found in  closed  form, allowing the  complete  solution of field  pro- 

blems in moving, conducting  media.  Throughout  the  work,  attention is focussed 

on two classes of problems:  the first involves  stationary  charge  distributions, 

and  the second  treats  harmonic,  stationary  current  distributions. A t  no time 

is any low- velocity  approximation  used;  that is, the  results  are  valid  for rel- 

ativistic  velocities.  Furthermore, it is not necessary  to limit the  values of 

conductivity  to either low o r  high values. 

1.2 Maxwell's  Equations for Moving Media 

For  the  sake of completeness we shall now develop  the  constitutive  relations 

for  an  isotropic,  linear  medium i n  motion  and  introduce  the  dyadic  symbolism 

convenient to  discussion of the  theory. Minkowski's  powerful theory will be 

used  throughout  this  work, as it provides  an  elegant  framework  for  the  dis- 

cussion of electrodynamics. 

As  is well known, Minkowski postulated as his starting point that  Maxwell's 

equations  in  their  indefinite  form are to be treated as physical laws, and as 

such  have  the  same  form  in  any  coordinate  system  in  uniform motion relative 

to the  medium, in  accord with  the postulates of special  relativity. The ter- 

minology  "indefinite"  and  "definite" forms of Maxwell's equations  was  explained 
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by  Tai (1964). Maxwell's  equations  in  their  indefinite  form are: 

v x R =  B + Z ( I I I ) ,  V . B = O ( I V ) .  a t  
These  along  with  the  constitutive  relations  comprise  the  definite  form. 
Denoting the  coordinate  system of the  medium  by  primes (i. e. that  coordinate 

system  with respect to  which  the  medium is stationary), we remark  again  that 

the  above  equations  hold  for  primed  quantities ; in.  addition, for  linear, iso- 

tropic  media  the  following  constitutive  relations hold: 

The  corresponding  constitutive  relations  in  any  other  system of reference which 

is moving  with respect to  the  medium are not as simple.  To  find  them, it is 

first necessary  to know the  relations  between  the field quantities of the two 

reference  frames. 

In particular,  let  us  choose  for  the  unprimed  system one which  moves in 

the negative  z-direction  with a constant  velocity v. This we may do  with no 

loss of generality.  The  medium  then  moves  with  velocity v in  the  positive 

z-direction  relative  to  the  unprimed,  or  "stationary",  system.  The  transfor- 

mation of electric  field,  for  example, is given  by 

where y = (1 - v ~ / c ~ ) - ~ ' ~ ,  and c is the speed of light  in  vacuo.  The 

development of the transformation of the  field  quantities is discussed by 

Sommerfeld (1952), Section 34 ; the  results  will  be  used  here.  The above 

transformation  relation  may  be  written  in  dyadic  symbolism as 

3 
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where the elements of the  dyadic 7 a& given  by  the array 

The  other  field  quantities  transform  in a similar manner: 

and 

and 

Combining these  eliminates one field  quantity. Thuq eliminating B' allows 

5 to be expressed  in  terms of E and H ,  and  eliminating D gives B 

in terms of E and (Tai, (1965b) 1: 

- - - 

and 
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where 

p = v/c 

and  the  elements of the dyadic are given by 

where 

1 - p2 a =  
1 - n p  2 2  ' 

In the  stationary  system,  then, D and E, B and no longer are 

related  uniquely as in  the case of stationary  media. If, in  addition, J 

is a known independent  function or is related  to  the  field  quantities  in a 

known manner,  the  indefinite  form of Maxwell's  equations  along  with  the 

constitutive  relations  comprise  the  definite form of Maxwell's  equations. 

- - 
- 
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OHM'S LAW 

2.1 The  Forms of Ohm's Law 

Ohm's Law for moving  media appears in two different  forms in the  litera- 

ture: one is isotropic,  given by Weyl (1922), p. 195: 

where the superscript 11(1)11 indicates  the first form of 5 the conduction 

current  density, cr' denotes  the  rest-frame  conductivity, 
C '  

and 

The  other  form is anisotropic  and is the one most  widely  used  in  the  literature 

(see  especially  Sommerfeld (1952)  p.  283, and  Cullwick  (1959) 'p. 92): 

The  difference  between  them, 

2 
is of the order of ,B , and is negligible for  velocities  significantly less than 

the  speed of light  c . It is important  to know which, if 

either, is correct.  Before we treat  this question, it will be instructive to note 

how each  form  arises. 
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We first note  the  transformation  relations  between  the  current  and  charge 

densities,  which arise from the Lorentz  transformation of special relativity,  and 

relate quantities  in two systems in uniform  relative  motion  (see Appendix A, 

Eq. (A. 9) ) : 

where  the  elements of the  dyadic y are given  by 
= -1 

The  crux of the  difference  concerns  the  decomposition of current  density 

into  convection  and  conduction terms. Convection current is associated  with 

free charge  in  motion,  while  conduction is associated  with  electric  fields  in 

conducting  media. Both formulations of Ohm's  law  procede  from  the  assump- 

tion  that  in  the rest frame  system of the  medium  (indicated  by  primed  quantities) 

the current is all conduction: 

Weyl, on the one  hand, uses the  relation 3 = y 7-l- (5' + p 'V to show 

that 

since  the  transformation of electric field is given  by (see Eq. (1.2)) 
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Weyl then calls that  part  which  depends  explicitly  on  the  conductivity %on- 

duction  current  density",  denoted  by  the  subscript c, and  the  remaining  part 

I t  convection  current  density",  denoted by the  subscript v : 

Sommerfeld, on the  other hand, uses  the  transformation  relation 

5' = y 9". (3 - p q  to show that 

and calls the  second  term "conduction current  density" : 

The  difference  between  the two charge  densities  which  appear,  in 5:) and J 4 2 )  
v '  

is called  the  "apparent  charge  density"  and arises from the  relativistic  trans- 

formations.  In  pre-relativistic  electrodynamics a moving charge  resulted  in 

a current, but a moving current did not give rise to a charge. In relativistic 

electrodynamics  this'is not the case, but  intuition is of little help  in  attaching 

a physical  significance  to  the  apparent  charge  density. Depending  on whether 

it is assigned  to  the  convection  term  or  the conduction term, one o r  the  other 

of the  decompositions above is derived. 

We shall  show  by  elementary  thermodynamical  considerations  that the 

heat loss expressfon  can  be  derived  independently of the  form of Ohm's  law 
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used,  and  thus  that  either  form is adequate.  F'urther,  the fields arising from 

charge  distributions  can  also  be  equally  well  formulated in either  form. While 

Schlomka (1950) uses an electron-theoretic model to conclude  that Jp' is 
and  Cullwick accepts his reasoning, we shall disagree with. 

his  argument  and  conclude  that  the two forms are interchangeable,  and 

differ only  in  definitions of "Convection"  and  %onduction" terms. 

2.2 Formulation of Joule Heat 

The rate at which  heat is developed per  unit  volume is given in the rest 

frame of the medium by 

which can be expressed i n  the  stationary  (unprimed)  system as 

(2.12) 

(2.13) 

by  use of Eq. (1.2). 

We must, of course,  consider  the  same volume i n  each  system, so that 

relative  to the unprimed  system the volume is moving,  and i n  accordance with 

the results of special  relativity,  appears  shortened, i. e.  

d V '  = y d V  . (2.14)' 

Borrowing on the results of relativistic  thermodynamics  (Myher (19521, p. 107), 

the  heat  developed per unit  time  transforms as follows: 

d Q '  = y dQ 2 

so that  the rate of heat 

by 

(2.15)' 

per unit  volume seen  from  the  stationary  eyetem is given 

(2.1 6 )  
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or 

Thus  the  Joule  heat loss per unit  volume per  unit time can  be  readily  expressed 

by either  formulation of Ohm's law. 

2.3 The  Atomistic Model 

Schlomka  (1950) uses  an  atomistic,  or  electron-theoretic model,  much 

like one described by Pauli (1958), p. 106, as a basis  for  claiming  that Jc 

is the  correct  formulation of Ohm's law in moving media. H i s  argument is 

briefly  the following:  conduction current is composed of a flow of electrons 

which travel on the  average with some  velocity 't' relative  to  the medium, 

Le .  , 

4 2) 

(2.18) 

where p; is the  charge  density of the  electrons (p '  < 0). By conservation 

of charge 
e 

d q  = p' dV' = p dV = po dVo e e e (2.19) 

where  the  superscript  zero  indicates  that  frame of reference with respect  towhich  the 

charge is at rest, Le .  which has a velocity 3 relative to the  medium.  Thus, 

using (2.14) and  noting  that here the  relative  velocities are u  and u' rather 

than v , 

The  transformation of velocities is given  by M@er (1952), p. 53. Inthe dyadic  notation, 

they  can be condensed to one vector  equation: 

10 



Now the conduction current  in  the  unprimed  system is given  by the  product 

of the  charge  density p and  the  relative  velocity of the  electrons  and  the 

medium ii - as seen  from  the  unprimed  coordinate  system,  or 
e 

s = pe (E - 
C 

which  by using the relations above, gives 

Y 
" 

C 

(2.22) 

(2.23) 

which is the  expression  used  by  Sommerfeld. 

There are two considerations  which cast some doubt on the  generality 

and validity of the  reasoning.  The  first  regards  the  concept of the  relative 

velocity of two bodies as seen by a third (moving) observer.  This is an  in- 

tuitive  carry-over  from  the Newtonian concept of addition of velocities. 

This  being so, it is doubtful whether  such an argument  can  be  used  in a situation 

where  special  relativity  holds,  to  distinguish a second-order effect. 

I .  

The  second  objection  involves  the  phenomenological  quality of Maxwell's and 

Minkowski's  equations.  The  model of a cloud of electrons  each  traveling  with a 

velocity  u is an artificial one, especially  since  the  possibility of fast conduction 

electrons is ignored, i e .  notions of Newtonian mechanics are again  assumed. In 

view of these  objections  and  the fact that  the  Joule  heat  has a unique  and  consis- 

tent  expression  in  either  formulation,  the  question is reduced  to one of definition. 

Schlomka asserts that new formulas would have  to be derived  in  the first form- 

ulation, a statement  that is not born out by  this  work. In fact, it will prove  more 

convenient  for  our  purposes  to  use  the first form when discussing  problems  where 

sources are present.  This  will  be  made clear in  the next  chapter. 
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III 
SOURCE AND RESPONSE CHAR-GES  AND CURRENTS 

3.1 Decomposition of Charges  and  Currents 

It is desirable  to be able to treat problems  that  involve  charge  particles 

which  obtain  their  velocities  through a medium  by  other  than  electrical  means. 

An example is the  problem of a charged  particle moving through a dielectric; 

Nag and  Sayied ( 1956) treat this  by  considering a stationary  charge  in a moving 

dielectric.  The  charge is the source of the  fields,  and acts as a forcing  function 

in Maxwell's  equations.  In treating conducting  media a peculiar  problem arises, 

that of the  relaxation phenomenon: any  charge  placed  in a conducting  medium 

tends  to  disappear. If the  charge is movingy the  situation is more  complicated. 

Suppose there is a convection  current  caused  by  charges moving through 

the  medium  in  addition  to  the  conduction  current: 
V 

Taking  the  divergence of (3.1)  and  using  the  relations VI Dl = pf and 

cf = E' E' along  with  the  equation of continuity, Vf 3+ a pf /a  t f  = 0, we 

- 
- 

get 

If we consider a constant  charge moving along  the z - axis with  constant  velocity  uf , 
and attempt  to  identify  this  charge  with  the  total  charge, i. e. 

where 

pl = p1 (z l  -uf  t ') = constant , 

substitution  into (3.2) requires  that p' = 0. Thus, we conclude  that one cannot 
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arbitrarily  assume a given  convection  current  that is compatible  with  the re- 

laxation  condition. This leads us  to  separate  the  total  charge  density p' into a 

source  term p' and a response term p' and  identify the source  term  with  the 

moving charge: 
S r J  

P' = P' ,  + 

then P' can  be  found  by  requiring  that it be consistent  with (3.2). Thus (3.2) r 
becomes 

Similarly if a current  source  such as an  antenna is placed  in a moving 

medium  and  considered as an  independent  forcing  function,  the  total  current 

in  the  primed  system is comprised of conduction current  and  the  source  current 

as seen  from the rest frame of the  medium: 

The  problem  that  presents itself is the  expression of charge  and  current den- 

sities in the unprimed  system. 

In  this work we shall  usually  define the stationary or unprimed  system as 

that  coordinate  system  which  transforms  the  source  to rest. At this point it is 

not necessary  to restrict consideration  only  to  harmonic  current  sources, al- 

though later  discussions will have that limitation.  There are two classes of 

problems  that  will be dealt  with  in this work: "static" charge  sources  and 
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harmonic  current sources in conducting,  moving  media. We shall now discuss 

the  decomposition of currents  and  charges in the  stationary  system. 

3.1.1 Case A: Charge  Sources 

First we will suspend  the  restriction  that  the  stationary  system be that with 

respect  to which  the charges are at rest, in  order  to show the  generality of the 

formulation.  Consider a set  of charges moving through a conducting  medium 

with  constant  velocity i? relative  to  the  medium,  the motion  being  maintained 

by  an  unspecified  mechanical  force.  Suppose  the  medium  moves  with  velocity 

v = vf  relative  to  the  stationary  coordinate  frame. An observer in the sta- 

tionary  frame sees the charge moving  with velocity Ti, where Ti and 2 

a re  uniquely  related. This relatbn involves  the  relativistic  addition of velo- 

cities, given  by Eq. (2.32): 

- 

= -1 
u'l = Y (5. - V) 7-1 (if + V) , o r i i =  

i i *  v 'i' . 7 1+-  1" 2 2 
C  C 

The source  charge  densities  are  related by 

(3.5) 

where  the double prime  indicates  that  coordinate  system which transforms  the 

charge  to rest. This  relation follows from the  principle of the  invariance of 

charge: 

and 
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(see M&er (19521, p. 45), which  combine  to  give  the  above  relation of charge 

densities. 

As stated above,  in the rest frame of the  medium  the  total  current  consists 

only of conduction current 3' = u1 E' and  convection  current 3' = p' El 
due to  the  motion of the source  charge: 

C v s  

In  the  stationary  system, we add p ii to  the  current  density  expression of 

the Ohm's  law  discussion  which  consists of conduction current and  convection 

current due to  the  motion of the  medium: 

8 

J ' = p n + J  + J v ,  p = p s + p r .  
- 

S C (3.10) 

It will now be  shown  that. the quantity + jv does not explicitly  depend 

on ps,  and the  decomposition  into  conduction and convection is similar to 

that previously  discussed  in  Section 2.1. 

C 

The  transformation  law for current  density is given by Eq. (A. 9) of Appendix 

A: 

so that 
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From Eq. (3.51, it is a matter of simple  vector  algebra to show  that  the fol- 

lowing identity holds: 

(3.14) 

Using  this relation along with Eq. (3.5), and substituting them into Eq. (3.131, the 

bracketed term vanishes,  leaving 

(3.15) 

Here as in the sourceless  case, we are  free to decompose the convection and 

conduction terms in two ways: 

or 

We will generally  use the first  form, 

5 = psC + tJ' yFXC + yp;T . (3 .17)  
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In the case where  the  charge is at rest in  the  stationary  system, 

Ti = 0, leaving 

Similarly  the  response  charge  density p is related  to p i  in a manner r 
similar t o  Eq. (2.11): 

(3.19) 

Substituting  Eqs. (3.6) and (3.14) into (3.19) the  bracketedtermvanishes.  Thus we 

can  write  the  charge  density  in  the  stationary  frame as 

P = Ps 

Equations (3.18) 

in  the  stationary 

(3.20) 

and (3.20) constitute  the  desired  current-charge  expressions 

system.  Later on in  Section 3.2.1, the  relationship  between 

the  source  and  response terms will be derived.  There it will  be shown that 

y p; satisfies a first-order  partial  differential equation,  with p as the  forcing 

function. 
S 

3.1.2 Case B: Current  Sources 

Instead of a  convection  current p ii there is here  an  impressed  current 
S 

density Js in  this class of problems,  having  an  associated  charge p . 
In  the  primed  system  the  impressed  current  density moves, so that a con- 

vection term  appears  in  the  transformation (Eq. (3.11) ): 

S 
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(3.21) 



also, from the transformation law  (Eq. (2.4) ), 

(3.22) 

These  quantities,  being  independent  source  quantities, do not depend on the 

parameters of the medium. Equation  (3.9)  becomes 

(3.23) 

Using the  transformation  relations, we have also 

=- 1 5'1 = y y  * ( ? - p q  = y y  =-1. j - ypsT - YP,V - . (3.24) 

Equating  these two expressions  yields  the  decomposition of the  second  form 

(which is the  equation  given by Sommerfeld  (1952) p. 283), or, equivalently, i n  

the  first  form 

As before,  the  charge  density  decompositions are given by 

v'*E 
P = P, + Pr = P s  + YPE + yo' - 2 .  

C 

(3.25) 

(3.26) 

The  relationship of yp' to pa is discussed  in  Section  3.2.2. 
1: 
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3.2 Relationship of Response  Charge  Density to  Source  Charge  and  Current 
Densities 

.. " ~~~~~ 
~ . . - - - - 

I n  this section we shall  develop  the  differential  equation  for  the  response 

charge  density P; in  terms of the  source terms in the unprimed system. 

Thus  the first form of the decompositionis (3.16) of charge  and  current  densities 

will  be  used,  even though it would be  more  satisfying  to  express  everything  in 

terms of the  unprimed  system.  The  reason for this is that while  the  final 

expression  for 

seem  to  be  the 

We shall 

first, and then 

y p ;  involves  only  charge  and  current  terms, this does not 

case  for p since a term involving  the  electric  field  appears. 

develop  the  desired  differential  equation  in its most  general  form 

discuss the  effects of assuming  time - independent  stationary 

rJ 

charges and  time-harmonic  current  sources.  The  final  results of the  paper 

are  limited  to  these two classes of problems. 

In order  to develop the differential  equation  for y p'  , Eqs. (11) and (111) 
r 

of Maxwell's  equations,  the  constitutive  relation  for D , and  the  expressions 

for  charge and current  densities  are needed: 

V' 5 = p (11) , v x B  = g + 3  (111) J 

S 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

I 

Substituting (3.27) and (3.29) into (11) gives 
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" v '  E 
= p,  + y p ; +  u- 2 .  

C 

(3.32) 

First note that using (III) , 

1 + $ - 2 v = a ,  (3.34) 

and 

(3.35) 

Multiplying by ( T / E  and rearranging terms gives 

u ~ .  z .  E - - - u p '  a v .  E aE 2 
a t  

(3.36) 

Similarly, taking the divergence of (III) and combining this with (11) yields the 

continuity equation 

which upon using  (3.28),  (3.29), and (3.31)  becomes 

(3.37) 



Note that 

- 
V - (an2 - 1) = R 

- 
2 (3.41) 

C 

and 

a PS 
v . 5  = - -  a t  - (3.43) 

Subtracting (3.36) from (3.44) eliminates  the  field  quantities , leaving  the 

desired  dwerential  equation 

(3.44) 

where it is noted that 

1 -  p 2  = I / ?  
and 

(3.45) 

(3.46) 

(3.47) 

from the  definitions. 
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The primary  interest of this  work is stationary  charge  sources and 

time-harmonic  current  sources. In the former case the  unprimed  coordinate 

system is that of the  charge, so that in (3.17), 5 = 0, and  thus = 0. The 

steady-state  solution  obtained  by  setting a/a  t = 0 is not trivially  zero,  which 

is the  case  for  stationary  media. While it would be  desirable  to know the 

transient  behavior,  the  problem is not simple  because  by  the  continuity 

Eq. (3.43) the  source  current  density would  have a singular  behavim  in 

time if one postulated a source  charge which suddenly  appeared.  The  steady-state 

solution is physically  interpretable,  and  will be discussed. 

S 

For  time-harmonic  current  sources  such as radiators,  the  steady-state 

solution is found  by  setting a /a  t = - i w  . 
3 . 2 . 1  Stationary  Charge  Sources 

In this case 7 = 0 , a/at = 0, and  Eq. (3.45) reduces  to 
S 

( E + -  a cr (5 

2 ) r P ;  = - -  F ' V  P s 
€17 v 

which has  the  form 

(3.48) 

(3.49) 

where 

and 

u(z) = Y P; . 
As a boundary  condition we shall  assume that u (a>) vanishes.  The  solution is 

well-known,  but  we shall include  the  solution  by Fourier  transforms.  There  will 

be need to made use of the  techniques later on in  more  complicated  situations. 
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Let  the  Fourier  transform  in z of a function f (z) be defined by 

1 0 

F (f) = j-OO eihz f(z) d z  (3.50) 

a, 
where it is assumed  that If (z) l 2  d z  is bounded,that is, f(z) is L 

integrable  in ( -00 a>). Then we  know that  the  integral F (f) d h  con- 

verges  to f (z) wherever f (z) is continuous  (Morse  and  Feshbach (1953), 

p. 458). We first note that 

2 

-00 
a, 

-00 

= - i h F ( f )  (3.51) 

since f (t z ) must  vanish as z approaches  infinity for f (z) in the class 

L . Multiplying Eq. (3.38) by e /27r and  integrating  from -Q) to -1-00 

gives 

2 i h z  

(-ih + b) F (u) = - F (Uo} 

or  

(3.52) 

Taking  the  inverse  transform by  multiplying by e and  integrating  over 
h from -00 to a, gives, at points  where u(z)  is continuous, 

- ih z 
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(3.53) 

We now make use of a theorem  related  to  the convolution integral, and  described 

in  Morse  and  Feshbach (1953), p. 465, which states, for gl(z)  and g (z) 

L integrable  in (-<x, , 00): 2 2 

00 - i h z  
Letting g,(z) = Uo(z) and  g2(z) = -i h+ ib  

e - d h ,  we note  that 

- i  and  that 

e-ihz F{Uo}F(g2} d h  = - 
a, 

u(z) = gz(z - 5)Uo(5)d 5 . (3.55) 
27r -a, 

In  order  to  evaluate g (z) we use  the  technique of contour  integration. 

Referring  to  Fig. 3-1 , it is noted that for z < 0, the  exponential e 
2 -ihz 

Large  Semi-circles 
(Ihl--+-a3) 

FIG. 3-1: CONTOURS IN THE h-PLANE FOR  EVALUATING g2(Z). 
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approaches  zero  uniformly  in the upper half plane on the  semi-circle as the 

radius  approaches  infinity.  Thus  the  contribution  along  the  semi-circle  con- 

tour t o  the  integral is negligible,  and from  the  theory of residues, 

a> - ihz  
g,(z) = Q e + i b d h  = - i  / + 27ri Z R e s i d u e  = 0, z < 0 , 

-00 Semi-circle 
(3.56) 

since e has no finite  poles,  and  (h + ib)-' has only  one  pole, not en- 

closed  by  the  contour.  For z > 0, the  contour  can be closed  in  the  lower 

half-plane.  Then  the  contribution to the  integral  along  the  infinite  semi-circle 

is again  zero, and the  residue at h = -i b is merely ie  , giving 

- ih  z 

-b z 

- 2 a e  , -b z 
z > o  

Thus,  combining  (3.46)  and  (3.47), 

so that  from Eq. (3.45) 

or 

00 

u(z )  = - J e-b' Uo(z-t)   dP . 
0 

(3.57) 

(3.59) 

Wri t teu in  the  original  terminology we can now state that the  differential 

Eq. (3.37) has  the  solution 
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In the  important  case  where p is a point  charge at the origin, 
S 

(3.61) 

(3.62) 

where 6 (x)  has  the  properties  that  6(x) = 0 for x # 0 , 

sp 6(x)dx = 1 for a <  0 < b ,  f(x)6(x)dx=f(O) for a <  0 < b  . (3.63) 

Then here 

(3.64) 

This is shown graphically in Fig. 3-2. 

Motion of Medium 

z = o  
~~ ~ 

Exponential  Decay 

Source  Charge at z = 0 

FIG. 3-2:  RESPONSE  CHARGE  DENSITY  ALONG  THE Z-AXIS FOR A  POINT 
SOURCE  CHARGE AT THE ORIGIN. 
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Thus  along  the z-axis, trailing  the  source  charge, is a wake of response 

charge. The  sign of the  charge is opposite  that of the  source. The  minimum 

value of the  response  charge is proportional  to  the  conductivity  and  inversely 

proportional  to  the  velocity, so that  for small velocities  the effect is significant. 

In effect the  response  charge  tends  to  cancel  out  the effects of the  source.  The 

more  closely  the  response  charge is concentrated at the  source,  the  more 

significant this screening effect is. 

3.2.2 Case €3: Current  Sources 

In  the  case of current  sources, it is assumed  that J is given, and that 
S 

a/at  = - i w  . Then  (3.45)  becomes 

where the source  charge  density is determined  by the continuity  relation, 

v . ss 
PS 

- 
" 

i w  (3.66) 

This  also  has  the  form of (3.49). The only  difference is that the  resulting  pole 

of Fig.  3-1 is shifted  horizontally;  this  has no effect on the  integration so that 

the  results of Section  3.2.1  follow  directly.  From  (3.59) we can  write the 

solution as the superposition  integral 

L '  

As an  example,  consider a thin  wire  antenna of length 2 1 oriented  in the 

x-direction,  and having a triangular  current  distribution: 
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Then by the equation of continuity (3.43), 

1 
ps iw = - V ' J s  

= - b (y) h(z) ax 
I 

1 w . 1  
0 

or 

Then since 7 - Ts = 0 , the response  charge  density  can  be written, from 

(3.6 71, 

This  example is indicated schematically in Fig. 3-3: 

FIG. 3-3 : CHARGES AND CURRENTS FOR A THIN-WIRE ANTENNA. 
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I t  can now be demonstrated why it was  necessary  to  decompose  charges 

as well as currents  into  source  and  response  terms.  For if, instead, we 

had  begun  with  the  sourceless  formulation of Sommerfeld, 

and  added an  impressed  current  source Js, and  written 
- 

(3.71) 

(3.72 

the  convection term p? would become  meaningless, if p is taken as the 

total  charge  density.  For as the  conductivity u' vanishes, we  would then get 

J ' = s  + p T .  
S (3.73) 

But  we  know that a lossless medium, i n  motion o r  not, with a stationary  charge 

and current  distribution,  gives rise to no convection  term,  that is, 

- 
J = J '  

s *  

and since i n  general, p # 0, this  contradicts (3.72). 

On the  other  hand,  in  the  formulation of the  present  work, we have 

(3 .74)  

(3 .75)  

Now as the  conductivity  vanishes, y p i  vanishes  by (3.6 71, and we are left 

with 

as is required. 
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IV 

VECTOR AND SCALAR POTENTIALS; DEVELOPMENT 
OF THE GREEN'S FUNCTIONS 

In this  chapter we shall  derive  the  vector  and  scalar  potentials and  the 

differential  equations  they  satisfy,  for  the two classes of problems of interest 

to  us.  The  Green's  function  approach  will be used  to  find  solutions  to  the 

linear,  inhomogeneous,  partial  differential  equations. In this  approach  the 

forcing  function is replaced  by  a point  function, or 6 -function, in  space, and 

the  solution  to  the  resulting  differential  equation is called a Green's  function. 

The solutions  to  the  differential  equations  for  the  vector  or  scalar  potentials 

are then  given  by a superposition of Green's  functions.  The  field  quantities 

then  follow from  the  potentials. 

The class of problems involving charge  sources  gives  rise  to a  complicated  differ- 

ential  equation  in  the  general  time-dependent  case, one not readily solved. 

If steady-state  behavior is assumed,  that is, a/a t = 0, the  equation is 

greatly  simplified,  and is amenable  to  solution. We shall  derive  the  differ- 

ential  equations  and  present  them  in  their  entirety, and find  the  Green's 

function  solution  in  closed form  for the  steady-state  case. 

The  harmonic  current  source  class of problems is treated  in  a  modified 

way, i.e., the  potentials a r e  defined  differently  than  usual.  The modified 

approach  gives rise to  simpler  differential  equations.  Steady-state  behavior 

is again  assumed,  and Green's function  solutions a re  found in  closed  form. 

The  discussion is limited  to  consideration of unbounded  media.  Thus 

we are  primarily  interested  in the particular  solutions  to  the  differential 

equations.  There is thus a unique correspondence  between the solutions  and 

their  transforms; we will use the  method of Hankel transforms in the cylin- 

drical  coordinate r = (x + y2)1'2 , and Fourier  transforms  in the  longi- 

tudinal  coordinate z . The  solutions are valid  for all values of conductivity 

cr, and all velocities v . 
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4.1 Static  Charge  Source  Distributions 

4.1.1 Differential  Equations for the  Potentials 

For a linear, uniformly moving, conducting medium, Maxwell's equations 

are given by 

V X E  = -s (I) , a t  v 5 = p (11) , 

where  the  constitutive  relations are, using  the  definitions of Eq. (1.5) 

and  charge  and  current  densities  are  decomposed as follows: 

Here we have  used Eqs. (3.29)  and (3.31). The  quantity ypJr is determined 

by the  source  density p * this  was  discussed  in  Section 3.2.1. In  finding 

this  relationship of response  to  source, it should  be  noted  that  only (11) and 

(111) of Maxwell's  equations  were  used.  In  deriving  the  expressions for the 

potentials, it is necessary  to  use (I)  and (IV) as well. 

6' 

For source  charge  problem,  the  vector  potential x is defined in the 

usual  manner,  using (IV): 

I 

E = v x A .  
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Note that this is only a partial definition,  since is not unique. Any other 

vector  potential x, which differs from by the  gradient of some  scalar, 

would also  satisfy  this  relation. From (I), 

or  

where 9 is some  scalar  potential. 

We  are  free to choose x to be in  the  z-direction without losing  gener- 

ality.  Thus  cross-products of x with 7 o r  E will  vanish  in  the following 

development.  The  equation V E = p has  already  been  expanded  in Eq. (3 .36)  

This becomes, using (4.4), 

where  the  elements of zy=-' are  given  simply by 
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From Eq. (4.2), 

J' = o ( F + V x B 7  + y p 1 T  . r 

Thus (111) becomes 

By choosing a gauge  condition  which is consistent  with  the well-known  gauge con- 

dition  for  stationary,  conducting  media,  separate  partial  differential  equations 

may be obtained  for A and 8 . The  development of the  gauge  condition is 

given  in Appendix A. It can be written: 

- 

(4.11) 
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Substituting  this  into (4.6) yields  the  differential  equation for g : 

To show this, we first note the  following  relation,  which follows from (4.11): 

(4.13) 

Using this  relation  in  (4.6), it can  be  seen  that  the  terms involving  the  vector 

potential K drop out, leaving (4.12). 

Turning  our  attention now to (4. lo), we first draw upon a vector  identity 

noted  by Tai (1965a) : 

v x  ( b  
- -1 (Vx (Z-l- - F))) = - 1 [ (%* V)(V* 5 )  - (V.Z.V)F]. 

2 a 
(4.14) 

When is the  vector  potential A, and it is noted that x is in  the z-  

direction only, the left hand side becomes 

V x ( a '  (Vx(g-l- x))) = Vx(Z-'. (Vxx)) = - V x   V x  A , - -1 1 
a 

- 

(4.15) 
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When.this is substituted into Eq. (4. lo), and the terms are regrouped, we get 

The  fifth term on the left can  be  written as follows: 

a 5 x  ( V X  - )  a x  = a V ( z -  A ) -  a ( 5 .  V)'; , - 
a t  

(4.16) 

(4.17) 

where  use is made of the  vector  identity 

V ( F  * E) = F x  (Vx 5)  + a  x (Vx ??) + (F V) + (E - V)?, (4.18) 

and it is noted  that  derivatives of E are zero  since 0 is assumed  constant. 

Similarly,  the  sixth  term on the left becomes 

c 

o p f a 2 i 7  x (VxA)  = op ' a  V(G - A) - op'a (v V ) A  , (4.19) 2 2, 

and  the  third  and  fourth terms on the  right  combine  to  give 
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(4.20) 

The transverse component,  denoted by the  subscript T, can be written 

which follows from  the  definitions of R and a. Similarly  the z-component 

is merely  that of the first t e rm of (4.20),  or 

n2a2 a2g  
” 

2 a z  a t  
C 

Also, the first te rm on the  right of (4.16)  can be re-written: 

a v  x v x <E@> = a V  v - (E$) - av2(c@) 

(4.21b) 

(4.22) 

where  use is made of the following vector  identities,  in  addition  to (4.18): 

v x  v x  F = V V .  F - v 2 F  , (4.23a) 

- 
V *  (FQ)  = F VQ + Q V * B  , (4.23b) 

v (F Q) = F v Q for F a  constant  vector, 
- 2  

( 4 . 2 3 ~ )  

v x (VQ) = 0 , (4.23d) 

36 



and it is noted  that  derivatives of 5 vanish,  since R is a constant  vector. 

The  second  term  on  the left of (4.16) cau be  rewritten,  using  the gauge condition 

of Eq. (4.11). This  gives,  for  the  transverse  components, 

- 

For the z -component, 

(. -') * . (4.24b) + u p f a =  + - 2 

2 2  

c 1 - n p  2  2 a z a t  

Similarly the transverse  part of the  right  side of (4.16) after using  (4.21) and 

(4.22)  becomes 

which is the  same as (4.25a).  Thus  the  transverse  components  cancel,  and 

we are left  with  only  longitudinal  components.  This  means  that  the  vector 
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meren t i a1  equation  reduces  to a single scalar differential  equation, an im- 

portant  result. 

Summing up the  longitudinal  components on each  side, we get 

n a  2 2  a% 2 a X  u p l a  - " - - 
c2 a t 2  a t  

Ex :amining  those terms involving  and V @ , we note that 2 

a z  2 

= - r i ( V .  x * V ) @  . (4.27) 

Since  the  quantities are  parallel  vectors,we  can drop the vector notation.  After 

multiplication  by R , Eq. (4. 6) becomes 

- R ( V .  x. V ) f j  = 0"- a2A - 2 - a2A - a A  
a Z  a t  u p ' a v  R - 

a t2 a t  

2 a2g PS - 0  - up'av52- '9 + R ?  + ~ F Y P ~  R - 
a z  a t  a z  E 

(4.28) 
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I 

Using, (4.27)  and (4.28), Eq. (4.26)  becomes 

- aA a2A 
(V= F -  V)A -op 'av-   -2R- - a p ' a ( a  -vR) - aA cc: - - a2A a z  az a t  a t  - 

a t2 

(4.29) 

It can be seen  from  the definition6 of a and R that the  folbwing  relations 

hold: 

a - v S Z =  1 , 

2 2   2 2  
1 n -6  

2 2  
C c 1-1-16 2- n a  " 2 = - z  

and 

(4.30) 

so that (4.29) becomes,  finally, 

Written in scalar  form,  the  corresponding  expression  (4.12)  for  the scalar 

potential $4 becomes 
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Comparison of (4.31) and (4.32) reveals  that  the two differential  equations a re  

identical, except for the  source terms. 

Let $is be  the  solution  to  the  differential  equation when only the first 

term  appears on the  right of (4.32) , and 9 the  solution when only the 

second  term  appears.  Then 
r 

If x and A' are similarly defined from Eq. (4.311, the  particular  solu- 

tions are related by constant  quantities: 
6 r 

and 

(4.34) 

From  the  transformation  relations  for A' and @' in the rest System of the 

medium (see Appendix A, Eq. (A. 8) ), 

or 
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and thus A' depends only on the source  term p and  not on the response 

charge  density p' . On the  other hand, 
B 

r 

It is  also of interest  to  express the fields in terms of the scalar  potentials; 

from  (4.31,  (4.4), (4.71, and (4.8) we get 

= E - -  a gs - V agr 
a t  2 a t  vvr 8 

v#s - - - - 
C 
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- E' E x x vqr) . (4.37) 

For this case it can  be  seen  that for zero conductivity, y p' vanishes,  and so 

does qr and E. Thus  for  lossless moving  media when A and @ have 

the  same  boundary  conditions, H = 0 .  In this case we have a static  configura- 

tion  in  space, so the  result  that x = 0 is to be expected,  since  there is 

no radiation at all. 

r 

- 

4.1.2 Green's  Function  Solution 

The  system of equations  for  the  potentials  given  in  equations (4.31) and 

(4.32) is quite  complicated, involving, as i t  doe;;, three  variables.  It  was  seen 

in  Section 3.2.1 that there is a steady-state  behavior  for  the  currents  and 

charges  for  large t which is found either  by  letting t approach  infinity 

or  setting a /a  t = 0 from  the start. If the  assumption is made  that a/at = 0, 

the  differential  equations  simplify  to 

and 

The  Green's  function  method  utilizes a function  G(R IR ) which is the  solu- 

tion  to a given  differential  equation  whenthe  source  term is a point source  in 

space at Ro; that is, G (a I Eo) satisfies the  equation 

" 

0 

- 

(4.39) 
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where is the  vector  from  the  origin  to  the  field point, is the  vector 

from the  origin  to the source point,  and the  derivatives  operate on the  field 

coordinates.  The  symbol 6 (E /Eo) denotes R quantity which vanishes  for 

R # KO, and has the property  that 

0 

- 

where  the  volume v encloses the point Ro . In all of the  problems i n  this 

work we shall be dealing  with unbounded media, so that  for  all  fields,  poten- 

tials, and Green's  functions,  the  boundary  conditions  will be the  radiation  con- 

dition,  namely  that only functions which do not increase away from the source 

are allowed;  also,  that  for unbounded media,  the  homogeneous solutions  vanish. 

This means  that no sources  exist  for  the  fields  other  than  the  given  sources, 

which are  assumed  to occupy  a  finite  region. 

- 

It will now be shown that the vector  and  scalar  potentials  are  related  to 

the  Green's  function  in  the following way: 

and 

where Vo indicates  a  volume  enclosing  the  sources. To show this, we shall 

define three-dimensional  Fourier  transforms  and  use  the  relation (3.541, ex- 

tended  to  three-dimensions.  Let  the  Fourier  transform pl! of a  function 

F(E) be defined as follows: 
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(4.41) 

-a, 

where d Ro = dxo dyo dzo. Then if F (Eo) is class L2 in each  variable 3 

x and z for all real values of xoD yo, and z the inverse  trans- 
OD YoD 0 0' 

form is given by 

(4.42) 

and 

(4.43) 

where J represents  the  term on the right of (4.38a). From  these  relations, 

(4.44) 
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where the asterisk (*) indicates the complex conjugate; this is subject to the 

conditions stated above. Let F (go) = J (E SO that F6) = r(6) . 
Similarly, let 

0 

Then 

and 

or 

Noting  that H* (K ) = G(EIEo) and using  (4.42),  (4.44),  (4.45), and 
0 

(4.46)  to find A(R) , 

00 

(4.47) 

-a> 
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which  was to  be  proved.  Substitution of the  appropriate  term for J yields 

Eq. (4.40). Similar  results hold for (E). It should  also be noted that this 

discussion  holds  independently of the  operator  form; this will  be  useful later 

on. 

We turn  our  attention naw to finding  the  Green's  function  that satisfies 

Eq. (4.39) which in  cylindrical  components  can be written: 

The parameter ffa'f can  be  either  positive or negative,  depending  on  the  value 

of up;  for low velocities n p < 1 , and a > 0. For velocities which a re  

very high, n p  > 1 , and a < 0 ; in  this case the  velocity v = PC of the 

medium is greater than  the  speed of light  in  the  medium,  c/n,  and  the 

Cerenkov  radiation  condition is met. We shall treat both  conditions  in  this 

work. 

The  method of solving  the  differential  equations is straightforward: by 

taking  appropriate  transforms,  the  differential  equation  can be transformed 

into  an  algebraic  expression like (4.43). The  transformed unknown can 

then  be expressed as a ratio of polynomials. Upon taking  the  inverse  trans- 

forms,  the  solution  can be expressed as a multiple  integral. If we are for- 

tunate,  the  integrals may be  reduced  to a closed  form.  This will prove  to 

be the  case  in  the  present work. 

Case A. Low Velocities : v < c/n, and a > 0. Here we let CY = a ,  and 

b = u p '  CY v /2 ,  and  without loss of generality, we may choose R' = 0 tem- 

porarily.  Then (4.48) becomes 

2 

2 
0 

(4.49) 

The Hankel transform technique is well  suited to this problem. Given a 
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function f (r), the Hankel transform H(f} is defined by 

H{f(r))  = Jr Jo(Xr) f (r) r d r  , (4.50) 

for all functions  f (r) of class L , i. e.  such that [: ( f  ( r ) ( d r  is bounded. 

From the well-known theory of Hankel transforms, t function f (r) is re- 

lated  to its transform by 

1 

It follows from the  definition (4.50) that 

(4.51) 

This  can be shown as follows: 

= - X 2 H  {f} , (4.53) 

where it is noted  that  from  the  definition of the  Bessel  function  that 
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and it is assumed  that f (r) has a behavior  such  that: 

Lim a f  Lim a f  
r+O ar 0 r 3 0  a r  - r J (Xr) = r -  = o  * 

Lim 8 Jo(X r) Lim 2 
f (r) r a r  - - " 

rf(r)(-X r) = - X  Lim r 2 f ( r j = 0  r+O r+Q r+O 

and 

Taking  the Hankel transform of Eq. (4.49) gives 

Further, taking  the  Fourier  transform in  z gives 

or 

1/4 7r 
2 

F{H ' G j ]  = ( h - i b )  2 + CY 2 2  X + b 2 .  

(4.55) 

(4.57) 
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The  roots of the  denominator are at 

one is in  the  upper  half-plane, one in  the lower for all X.  The  inverse  Fourier 

\ I I 

FIG. 4-1:  CONTOURS  IN  THE h-PLANE FOR EVALUATING H {G} . 

transform of (4.57)  in h is given by 

(4.59) 

From the  exponential it is evident  that  for z < 0 the  contour  can be closed  in  the 

upper half plane,  and  for z > 0 closed  in  the  lower half plane,  and  the  theory 

of residues applied. For z < 0, the  residue is 
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and for z > 0, it is 

Noting that  the  contour in the  lower  half-plane is counterclockwise , (4.59) be- 

comes 

The inverse Hankel transform,  from Eq. (4.51), gives  the  integral 

(4.60) 

This  can be solved by a  change of variables:  let E = X + b /Q ; then 

E d 5 = A d X , and  the  positive real axis-in X maps  into  the  straight  line 

contour b / a  < 5 < 00 i n  5 .  Then Eq. (4.61) can be written 

2 2  2 2  

(4.62) 
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This is a tabulated  Laplace  transform  given,  for  example,  in Magnus and 

Oberhettinger (1954), p. 132. Finally,  the  Green's  function  can  be  written 

as 

Replacing  R  by - Eo and  substituting for (Y and  b  gives 
- 

p' a v  p' a1'2 v 
0 - (z - zo) 2 R1 2 

4 a a  R1 

- 0  

G (E IFo) = 
e  e 

1/2  J 

(4.63) 

(4.64) 

where 

that as cr + 0, this  becomes  simply 
R1 - - vi. , This is the  form  desired. Note 

(4.65) 

Case B. High Velocities: v > c/n,  and a < 0 .  Here we let CY = - a and 

define  b as before, i.e. b = cr p' CY v/2 . Again letting = 0 Eq. (4.48) 2 

now becomes 

2 

0 

Taking  the  Fourier  transform first this  time  gives 
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II.' - h2:2ihb 
] H{F {G)) = -7 1 2 4 s  Q 

or 

The inverse Hankel transform of (4.69),  using Eq. (4.51)  is then 

1 
2 2  

a, J (XrIXdX 
F{G} = - - 0 

47r CY 0 X2 - (h2;;ihy . 

(4.68) 

(4.70) 

Now J (Xr) = H ( l )  (Xr) -+ - H(2) ( Xr) . If R (X ) denotes a rational 

function in X then 

2 
0 2 2 0  2 0  

0 
= H(l)  (Xr)R(X2)XdX 

-OD 
0 

since 

(4.71 1 
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from.the  circuit  relations  for  the Hankel functions. (See, for example, 

Sommerfeld (19491, p. 315, (11) ). Thus (4.70) can  be  written 

where  the  contour C is given  in  Fig. 4-2, and  the  branch  cut  must not  be 

taken  in  the  upper  half-plane.  (Otherwise,  the  circuit  relation  above  could 

not hold). 

I- Branch  Point 
x = x2 I - Branch Cut 

(Simple Poles) I 

FIG. 4-2: CONTOURS  IN THE X-PLANE FOR EVALUATING F 

It is well known that  the  asymptotic  behavior of the Hankel  function 

( G I  

is given  by 

for  large  amplitudes of X, and  since r > 0 ,  the  contour  can be closed  in  the 
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upper  half-plane,  enclosing only the  pole at A = Lfim . By the 

theory of residues, (4.72)  becomes 
1CY 

(4.73) 

The  inverse  Fourier  transform  in  h  gives 

The  argument of the Hankel function  vanishes at h = 0 and  h = - 2 i  b, the 

Hankel function itself behaves  logarithmically at these  points, so that  these 

points are branch  points,  and  the  branch  cuts  must  extend  to  infinity.  Thus 

it is appropriate  to  choose  the  branch  cut so that it lies along  the  negative 

imaginary  axis, as in  Fig. 4- 3. 

I 

/ 

X Branch 
Branch I 

"- Points 
cu t  

I 
FIG. 4-3: CONTOURS  IN  THE h -PLANE FOR  EVALUATING G (a IO) . 
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For  large  amplitudes of h, the  integrand  behaves as 

Thus  for z < r/a, the  contour  can  be  closed in  the  upper-half  plane,  and 

for z > r/a it can  be  closed in the  lower  half-plane. 

For z < r/a the  contour  in  the  upper-half  plane  encloses no poles  and 

encounters no branch  cuts;  furthermore,  since  the Hankel  function  behaves 

logarithmically  near  the  branch  points,  the  integral  around  the  branch  points 

points  vanishes,leaving 

G (RIO) = 0 for z < r/ct . (4.75) 

For z > r/o, the  presence of the  branch  cut dictates that  the  imaginary  axis 

cannot be crossed,  and  since no poles are enclosed, 

IC = s,, ’ (4.76) 
I 

where the contours  are  indicated in Fig. 4-7. 

It is necessary  to  examine  the  argument of the Hankel function with some 

care.  Assuming  the  radical is taken as positive,  the  arguments of the  radical 

can be obtained for  the  contour CI i n  the  following  manner:  for a rg  h = -7r/2, 

o r  h = -iA,  where A = [h l  , 

{ a rg  [ - i f . ] ,  A > 2b 

(4.77) 
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Similarly for arg h = 3 n/2 or h = i A, 3 

= a r g  i2 

Comparing  (4.77)  with (4.78), it can be seen  that  for A < Zb, the  argument 

of the  radical  along  the left side of the  contour C differs from that  along  the 

right  by A ,  and for A > a, this  difference is 27r. 
1 

Thus  for z > r/ff, (4.74)  can be written 

(4.79) 
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Substituting u = i (h + i b) in the first integral  and v = i (h + i b)  in  the 

second,  this becomes 

(4.80) 

From  the  circuit  relations given, for  example, in Sommerfeld,  (1949) p.  314, 

we have 

and 

which when substituted  into (4.80) gives 

(4.82) 

Since J ( - i z )  = J (i z) = I (z),  where is the  modified Bessel function, 

this  can  be  written 
0 0 0 IO 

(4.83) 

The  right-hand integral is a tabulated  Laplace  transform  given,  for  example,  in 

Magnus  and Oberhettinger (1954), p. 134: 
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The  finite  integral of (4.83) is more involved. First of all, we note  that J 

is an  even  function  in u , so that 
0 

2 J b  emu’ Jo (: f n ) d u  = f cosh(uz)  J o f f  (I p“-.“).. 
-b -b 

= j I c o s h u z  J o f f  (z$?T?)u = Jb cos ( iuz )  J (:fz) 2 2  du 
0 0 

since J (z) = cos z . Let u = b sin 8: then f b v  = b cos 8, 

and this becomes 

-1/2 

f? JY2 
4 2  (ib z s ine)  Jo sin1l2 8 cos 8 d 8 . 

(4.85) 

Now Sonine’s  second  finite  integral  can be written (see Watson (1922),p. 376) 

(4.86) 
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Thus by  letting I-( = -l/? , v = 0, z = i b z ,  Z = rb / a ,  (4.85) becomes 1 

Thus,  using (4.831, (4.84),  and  (4.87), we find  that 

L 1 

Letting  R be replaced by R  and  noting the  definitions of a and b , we 

have  the  desired solution for  the  Green's  function: 
0 

I 

(4.89) 

2 
2 0 0 

where R = $z - z ) [ a1 - (r - r  ) ! The  Cerenkov  cone is defined  by 2 
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or 

(4.90) 

Cerenkov Cone o r  Shock Wave 
Front : 
( a \ ( z - z   ) = r - r  Zero  Fields 

0 0 

Motion of Medium - 
Fields Decrease - 

FIG. 4-4: CERENKOV CONE GEOMETRY FOR HIGH  VELOCITKES. 

In Fig. 4- 4; 

(4.91) 

which for p small, while n p  > 1, approaches  the  familiar  shock wave 

for mu1 a 

From the  solution  (4.89)  it  can  be  seen  that as z - z increases, the solu- 
0 

tion  decays  exponentially,  since  the  exponential  dominates  over  the  hyperbolic 
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cosine  function of large  values of z - z For  lossless media, this 

approaches the well-known result 
0' 

(4.93) 

4 , l .  3 Summary 

Let  us now summarize the results  for  static  charge  distributions,  where 

a / a t  = 0: given  a static source  charge  distribution p (E ) in a moving 

conducting  medium,  the fields are related to the  vector  and  scalar  potentials 
s o  

by 

E =  o x  A, E =  - v g  , 

11 = - v x  (X+ E @ )  , 1 
P' a 

(4.94) 

and  the potentials  are  related  to  the  sources by 

where the volume V encloses  the  sources;  the  response  charge is related  to 

the source  charge  density  by 
0 
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and  the  Green’s  function is given by 

p1 a v  pl a1/2v 
2 0 2 0-(2-2 ) - 0  

or  

where 

2 2 2 R1 = ( r - r  ) + a ( z - z  ) 
0 0 

and 

R~ 2 = ( a l ( z - z O )  2 - ( r - r  ) 2 . 
0 

(4.97) 

4.2 Harmonic  Current  Source  .Distributions 

4.2.1 Differential  Equations  for  the  Potentials 

One way  to  approach  the  problem of harmonic  current  source  distributions 

would be to  develop a differential  equation of the  form (4 .31)  for  current  sources, 

and  make  the  substitution a /a  t = - iw . It turns out that  there is another  approach 

which develops a Green’s  function  equation  that is considerably  simpler.  This 
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I 

development  follows  that of Tai  (196%)  for lossless media,  and  involves  the 

introduction of a set of potentials  differing  from x and @ . 
For harmonically  oscillating  fields,  Maxwell's  equations can be written, 

where all quantities  have  the  time  dependence e -i w t  
# 

The  constitutive  relations are given  by 

where 

(4.98) 

Substituting  the  constitutive  relations  into  Maxwell's  equations  (I) - (IV) and 

eliminating B' and E, we get  for  (Ih) and (I11 h) , 

(V + i w m  x E = iwp'E. E , 

and 

Let - p = op'aiT . 
Equation  (4.99)  can  be  simplified  by  introducing two auxiliary  field  vectors 

El  and  defined as follows: 
- 

1 
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E, = e i w n z E  
# 

and 
El = e 

( i w s 2 -  p)z - 
H .  

Then 

V x E = V x ( e  El )  = e  v x  E, + V(e - i w  n z- - i w  R z  - i w R z  
) X B ,  

= e  - i w  R z  [ v x E 1 - i w K x F 1 ]  . 

Similarly 

V X ~  = e  ( - i w  R + piz [VXE, "xE1 + i-j XE . 11 
Substituting these  relations into (4.99)  gives 

V x E l  = iwp' e 
- p z =  - 

c r * H 1  J 

(4.100) 

(4.101) 

(4.102 

(4.103a) 

and 

(4.103b) 
By  taking  the divergence of the first relation  (4.103aIJ 

L 

so that we  can  partially 

cc' ePz = - cu H1 

or 

define  a vector potential Al by 
- 

= v x  (0 J 

(4.105) 

From Eq. (4.1031, E, is then related by 
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- =-1 - 
El = i w  CY AI - V g l  , (4.106) 

where 9 is a scalar potential. 

Substituting  the  potentials  into  the  second  relation (4.103b), we get 

Using  the  vector  identity 

where k = w p'e'  + i w  upf . 2 2  

Similarly,  using (I1 h), another  equation  can be found: 

V - D = € ' V . ~ . E + V . ( ~ x ~ ) = € ' V ' ~ . ~  - 5 . V x Z  
- " 

- e  -(i w R- p) zE, e-pz( c 1 o s +  Y p ; . ) l  
- i w  € 1  + u ) B -  B + e  (i w 52 - p)z 
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" v E, 
1 

= p s +  r P E  + CT 2 
C 

(4.109) 

Substituting  the  potentials  through  the  relation (4.1061, and grouping  terms, we 

obtain 

Since 1 + v R = a , and - + R = 1.1' E' a v  , thus  can be written as 
V 

2 
C 

(4.111) 

1 '  
Equations (4.108)  and (4.11 1) are two coupled  equations for A I  and fi We 

are free to  further  define  the  potentials by a gauge  condition,  which we choose  to 

be 

- 

We have  immediately  then,  from (4. ill), 

Turning our attention  to  Eq. (4.1081, it can  be  seen  that  (4.14) can be applied 

directly  to  the  first  term. Noting the  vector  identity 

66 



for  constant F, the  second term of (4.108) becomes 

(4.114) 
Using (4.14) and  (4.114), Eq. (4.108)  becomes 

By breaking  the terms up  into  components it can be shown that 

which  involves no terms i n  @ Comparison with  Eq. (4.113)  shows  that  the 

vector and scalar  potentials  satisfy  the  same  differential  equation,  except  for  the  source 

t e rms ,  and thus can be found from the same  Green's  function,  ignoring  the 

homogeneous  solutions.  Furthermore,  by  comparing  this  expression with 

(4.311, it is evident  that  this  formulation is considerably  simpler. 

1 '  

4.2.2 Green's Function  Solution 

From  an  inspection of Eqs. (4.113)  and  (4.117), it is evident  that  the 

appropriate.  Green's  function  for  the  problem satisfies the  following  differential 

equation: 

I 

(V - Z . *  V) G - 5  - V G  + k a G = - 6 (RIRo) . - 2 2  " 

(4.118) 
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It was remarked  before  that  the  discussion of Section  4.1.2  does not depend 

on the  form of the  operator, so  that  the results of that section may  be  applied 

directly  to  this  case.  Thus 

and 

0 

(4.119) 
3 where V encloses  the  sources,  and  dV = d R = d x  d y d z . 

0 0 0 0 0 0  

In  cylindrical  components, Eq. (4.118) 

As with the  static  charge  distribution,  there are two conditions which  give rise 

to  different  solutions: for low velocities  such  that v > c/n,  and a > 0 ,  and 

for high velocities  such  that v > c/n, or  a > 0. 

Case A. Low Velocities:  v < c/n.   Let CY = a, and  b = p/2. Again  without 

loss of generality we may  take ' i o  = 0 for the  time being.  Then  Eq. (4.120) 

can be written as 

2 

Taking  the  Hankel transform  in r and the  Fourier  transform  in z yields 

the  algebraic  equation 

(h2cu2+ h 2  - 2 i h b  - k 2 ~ 4 )  F {€I {G})= 1/4x 2 , (4.122) 
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or 

F'{H {G} }  = - 1 2 1 
477 h 2 - 2 i h b  f X CY - k  ct 2 2  2 4  

Taking the  inverse  Fourier  transform  in h, we obtain  the  integral 

a> - ihz  
H {G} = I.1 e d h  

4 n  -a0 h 2 - 2 i h b + A  ct - k  CY 2 2   2 4  - 

(4.123) 

(4.124) 

It is necessary  to  carefully  examine  the  location of the  roots of the  denominator 

of the  integrand. Expanded, the  denominator is 

2 2 2  W ~ C Y  ( h - i b )  + X  (Y -- 2 a w n  (Y + b  - i  .-I 

2 2 4   2 4  

C 
L 

E' c 
L 

By inspection,  the  roots are given  by 

(4.125) 

(4.126) 

If the real part  of the radical is greater than  one, then  there  will  be one root  in 

the  upper-half  plane,  and one in  the  lower. W e  are thus  interested  in  the  range 

of w for which this is true  for  all  real X. The worst  case is obviously for 

X = 0 ; thus we let X vanish  and  consider  the  radical 

u +   i v  = J 

b c  E' c 
(4.127) 

where u and  v are real. Substituting  x = w E'/CI, this  simplifies  to 

(4.128) 

We first note that  at  x = 0, u = 1, and at  large  values of I X I  , 
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u +  i v w  (1 - 2 ix )  
nP 

o r  

1 
U"" 

nB > 1  . (4.129) 

This  suggests  that u has a minimum  value  for  some  value  or  values of  x. 

Thus  let us set du/dx = 0 and take  the  derivative of (4.128)  with respect  to 

x.  Then we obtain 

. or  

The  denominator is real and non-negative,  since it involves  the  product of a 

quantity and its conjugate. In order  for  dv/dx  to  be  real, it is necessary  that 

the  imaginary  part of the  numerator be zero; i. e.,  that 

and 

(4.132) 

The  second  conditions  holds  only if x = 0, and this  also  satisfies  the first con- 

dition.  Thus  the  minimum  value of u is 1, and occurs  at  x = 0, or w = 0, 

and the  roots of expression  (4.125) lie one in  the  upper half plane,  and one in  the 

lower,  for all w > 0 . 
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Thus  (4.124)  can be evaluated  by  closing  the  contour  in  the  upper  half-plane 

for z < 0 , and in the  lower  half-plane  for z > 0, and  applying  the  theory of 

residues;  then  (4.124)  becomes 

o r  

H {G) = 

z<ol  z > o  

b z  e e  CY 

CY 

J 

Taking  the  inverse Hankel transform of (4.133) results  in  the  integral 

- C Y I Z I  q-; h - k  CY +-  

(4.133) 

(4.134) 

V CY 

This  can be written i n  closed  form  by  making  use of Sommerfeld's  formula, 

given, for  example,  by Magnus and  Oberhettinger, (19541, p. 34. It is first  

necessary  to  examine  the  argument of the  radical.  First of all the  quantity 

2 2  b2 - 2 2  2  2 2 b2 w n  CY w o n  CY + i  
CY C E' c CY 

k CY - -  - 
2 2 2 

" 

lies i n  the first o r  second  quadrant,  for w > 0, and thus 

71 



Also, the  quantity 

2 2 2  b2 - 2 w n a  2 2 2  u0nc - t  
2  2  b2 

X - k ~  i" - X-- - i  2  2  2 + -  2 
CY C E' c CY 

lies in  the  third  or  fourth  quadrant, so that 

-w/2 < arg  1 7 -  X - k  CY + - 0 . 

Thus  Sommerfeld's  formula  applies,  and we get  the  expression 

b z  e 
4ACY 

G (E[O) = - q-' a z   + r  

(4.135) 

(4.136) 

(4.137) 

Replacing by R' - Eo, and using  the  definitions of b  and CY, the final 

solution is obtained:. 

0- " a v ( ~  - z ) i k  a''' R1 2 0 1 

1 2  G (glEo) = e e 
4 a a  ' R1 

, 

where 

R 
1 

and 

(4.138) 
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I 

For  frequencies in the  range w < 0 / 2  E', it is more  appropriate  to write 

this in  ascending  form  in w; noting (4.1351, Eq.  (4.138) can  be  written 

(4.139) 

where 

The Greenls  function  does not increase  indefinitely  for  large  positive  values 

of z i n  spite of the  presence of the term e i n  (4.137).  Consider  the 

numerator of the  expression  for  large  positive  values of z; we have,  approx- 

imately, noting (4.135), 

b z  

The radical is exactly  (4.127),  whose real  part  has a minimum  value of unity 

at w = 0. Thus  the  exponential  has an argument  which is not positive, and does 

not increase  indefinitely  for  large z . 
Note that as the  conductivity 0 vanishes,  the  Green's  function  becomes 

that  for  the  lossless case, reported by Tai (1965a): 

(4.141) 

where  here k = wn/c . 
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Note also  that if we let  w = 0 in (4.138), we get  the static charge  source 

Green's  function of (4.64): 

i I n  

p' a v  1-11 a'f "v 
0" 2 

G  (R[R ) = 
e e 

A 1 19 

(2-z ) -G- 
O 2 R1 

" 

(4.142) 
I V  47r R1 

(4.138) is probably  the  most  useful  Green's  function  obtained  in  this  work, 

since it can be readily  applied  to  the  problem of an  antenna  in a moving, conducting 

medium. 
n 

Case B. High Velocities: v > c/n, a < 0. Let CY = -a and b = -p/2. A s  

before, we may take E = 0 temporarily without loss of generality.  Then 

Eq. (4.120)  becomes 

L 

0 

Taking  the Hankel transform  in r, followed by the  Fourier  transform i n  z, 

yields  the  algebraic  expression: 

or 

1 1 

+ 2 i b h - X  CY - k  C Y )  
2 2   2 4  - 

Taking  the  inverse  Fourier  transform  in  h  gives  the  integral 

e d h  - i h z  

( h 2 +   2 i b h - X  CY - k CY ) 
2 2   2 4  

-00 

(4.144) 

(4.145) 

(4.146) 
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The  roots of the  denominator are given by 

i 
U 2 ( l + i - ) - b  

w E' 

(4.147) 

Since we anticipate a shock wave behavior as with static  charge  sources, we 

ask  the  question,  for  what  range of w are both poles  in  the  lower half plane, 

o r  equivalently,  for  what  range of w is the real value of the  radical  less  than 

unity?  It is evident  that  the  worst  case is for X = 0. Thus we want  to  examine 

the  expression 

(4.148) 

which is identical  to  (4.127).  The  discussion  that  followed  (4.127)  applies  here 

as well, with  one  modification:  since now n p  > 1, relations  (4.29) now become 

or  

(4.149) 

and as before  u = 1 at x = 0. Thus  u is maximized  rather  than  minimized, at 

some  finite  value of x; as in  (4.132),  this  turns  out  to  be at x = 0 , or  w = 0. 

Thus  for  positive w, the  roots of h are both in  the  lower  half-plane,  rather 

than  one  in  each  half-plane as in  Fig. 4-5. 

For z < 0 , the  contour  in  (4.146)  can be closed  in  the  upper  half-plane, 

and  since it encloses no poles of the  integrand of (4.146), 

(4.150) 
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For z > 0, the  contour  can be closed  in  the  lower  half-plane, and encloses 

both  poles of the  integrand.  Thus  by  the  theory of residues, 

e -bz 
= -  

27ra 

C a 

(4.151) 

Taking  the  inverse Hankel transform  in X gives  the  integral 

e a, J (Xr) sin XdX 

a (4.152) 

This  can  be  reduced  into  closed form by means of the  Sonine-  Gegenbauer for- 

mula (see Watson (1922), p. 4141, which states: 

(0, az < r  

f f z  > r (4.153) 

f o r   R e v  > R e p  > -1; e z, rreal andnon-negative.  Ifwesubstitute 1-1 = 0 , v = 1/2, 

and  k2 a2 = k a - b /a , and use  the well-known relations 2 2  2 2 
1 
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and 

then the Sonine - Gegenbauer formula becomes 

00 Jo(Xr) sin .'/X + k  cy -b2/  2 2 2  
1 m " . 

0 

( 0 ,  cyz < r  

Thus  the Green's function solution  can be written, for z > 0, 

(4.154) 

(4.155) 

(4.156) 

Using (4.1501, replacing b y E  - Eo and using the definitions of b and 

a, we have, finally, 
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(4.157) 

where 

R2 - - 

and 

kl - 
- 

For large  conductivity u or l o w  frequencies  such that u > 2 w  E' , it is  

more appropriate to  write  this  in  terms of an attenuation factor Q * 1 '  

where 

I -  o ,  

For lossless media u = 0, and 

* 

the Green's function reduces to: 



where here k = m/c. This agrees with  the  result  obtained by Tai (1965a). 

Furthermore, If w is allowed to vanish,  the  Green's  function  becomes that for  

static  charge  sources, Eq. (4.89): 

While the  hyperbolic  cosine te rm in  (4.158) involves a rising  exponential,  the 

decaying  exponential t e rm dominates.  This  can be seen by  considering  the 

numerator of (4.158) for  large  values of positive (z - z ): 
0 

The  radical is exactly (4.148). In the  discussion of this quantity it was shown 

that its real part is less  than  unity  for all positive w . Thus  for  large  values 

of positive (z - z 1, the  solution  decreases with increasing (z - z ). 
0 0 

4.2.3 Summary 

Summarizing  the  results of Section 4.2, we can  say  that  for  harmonically 

varying  current  sources,  the  fields  are  related  to  the  potentials x, and 9, 
by 

- 1 - i w R z = - l  
H = - e  a - [v x ( e .  A,)] , I.1' 

E = e  4 w R z  [( v -  i w m  x (a = -1, X1) + E x q,] , 
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and 

- - i w R z  - 
D = e  

- 
[EWWX, -Em v g l )  + - x (V x (F h,))]  , R - -1 

aCc' 
(4.161) 

where  the  time  dependence of all field  and  charge-current  quantltles is under- 

stood to  be e . The  potentials are given by - i w t  

and 

(4.162) 

where  the  volume V encloses  the  sources.  The  response  charge  density is 

related  to  the  source  currents and charges by 
0 

and it is noted  that lwps = V Zs, and i! = Ro -$ . - 
0 

The  Green's  function  necessary  to  find  the  potentials  in  (4.162) Is, for 

v < c/nJ  or a>O: 

where 

(4.164) 

and 

80 



or far v > c/n, or a < 0: 

where 

R2 = y m  . 

(4.165) 
" 

I 
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V 
SUMMARY AND CONCLUSIONS 

Two classes of problems  have  been  solved in the area of moving, con- 

ducting  media: static  and  radiation  fields of static charges,  and  radiation  fields 

of harmonic  current  sources. No limitation is put either on the  range of con- 

ductivities  and  frequencies, or on the  velocities. For the  limiting  case of 

vanishing  conductivity,  the  solutions here  reduce  to  already  published  solutions. 

The  results of the f i rs t  class of problems  find  application  to  the  fields of 

particle  beams  permeating  matter,  including  the  Cerenkov  radiation effect. The 

second class can be applied  to  antenna  problems involving radiating  elements  in 

a moving, conducting  fluid. 

There are several areas and problems  to which it would  be interesting  and 

useful  to  extend  the  methods  developed  here.  The  two-dimensional  counterpart 

of both classes of problems  can be readily  solved,  from the differential  equa- 

tions of the  Green's  functions.  The  fields of stationary  currents as well as 

stationary  charges  could be developed.  Boundary value  problems  are  also of 

interest, for example,  the  fields in a filled  circular waveguide excited  by  char- 

ges of high velocities.  The  application of the  methods  to  the  problem of a short 

dipole in a moving,  conducting  medium is an  important  application on which  the 

author is presently working. 
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APPENDIX A 

TRANSFORMATION  RELATIONS  FOR  THE POTENTIALS 
AND THE  GAUGE  CONDITION 

Minkowski's theory of the electrodynamics of moving bodies is based on 

the covariant  formulation of electromagnetism  with  respect  to  coordinate  sys- 

tems in uniform  relative motion. This in turn is based on the Lorentz  trans- 

formation of coordinates,  where  in  addition to  the  space  coordinates x, y, and 

z,  time is considered as a fourth  coordinate i c t , where  c is the  velocity 

of light  in  vacuo.  This  and  the following discussion are taken  from  Sommerfeld, 

"Electrodynamics", (1952) Section 27. If the  primed  system  coordinates  moves 

with  a  velocity  v  in  the  positive z- direction  with  respect to the  unprimed sys- 

tem, they are  related  under  the  Lorentz  transformation by 

x' = x , y' = y, z' = y (z - v t )  , 

t' = y (t - + , v z  

C 

In  the  dyadic  symbolism,  using  the  definition 

for  primed and unprimed  systems, (A. 1) can be written as 

and 

C-  

These  can  be  inverted  straight  forwardly  to  give 
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and 

The "del" operator VI with  the  time  derivative a/a t1 can be  shown to 

follow a similar set of relations: 

by  using (A. 3) , giving 

Similarly, 

a a t  a a z  a 
a t '   a t f a t  a t (  a z  
- = "  + - -  

Sometimes it is convenient  to use what is sometimes  called  the  total  time 

derivative , given by 

"- D -  a 
Dt  a t  + 6 - V ,  

Then (A. 4) and (A. 5 )  become 

. . . . . . - .. . 
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and 

a D 
at1 Dt - - =  (A. 7) 

Four-vectors  are  quantities  having  four  components which  obey  the Lorentz 

transformation,  and a re  thus  said  to  transform  like  the  coordinates. In the  co- 

variant  formulation of electromagnetism,  there  are two important  four-vectors: 

the  four-potential (x, i @/c), and the  four-current  density (r, i c p) ,  where  the 

notation  used  here  means  that  the  vector  corresponds  to the apace  coordinate 

a and  the  scalar  corresponds  to the  time  coordinate,  ict.  Thus  since  the 

components of these  four-vectors  transform  as the  coordinates,  from (A. 2) 

we have 

and 

In this  theory, then, a moving current  produces  a  charge, although for  small 

velocities it is negligible. 

Turning  our  attention now to  the  gauge  condition, we note that if the primed 

system is that  coordinate  system which transforms  the  medium  to rest, then 

the  vector and scalar  potentials  in  that  system  are  related by  the familiar gauge 

condition 
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Noting that CJ = y 0' , using (A. 4), (A. 51, and (A. 8), we obtain 

2 a p  2 n a 
a t  2 a t  p f € f - ' =  y - ( - +  7 -  V ) ( p l - T .  X) 

C 

and 

Noting that V * (7 = v ' *  Vg ,  and  collecting terms, we get 

2 2  2 2 2 1 - 1  After dividing  through  by (i-n P ) and  noting  that a = [Y (1 - n P ) and 

= 7 (n2 - I)/ (c (1 - n p ) )  , this  can be written as 2 2 2  

(A. 11) 

For x in  the  z-direction,  the first term  becomes V '  x,  and (A. 11) is 

exactly Eq. (4.11) of the text. 
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