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VISCOSITY OF GAS MIXTURES 

by Richard  S. Brokaw 

Lewis Research Center  

SUMMARY 

An approximate method is developed for predicting the viscosities of mixtures in- 
volving both nonpolar and polar gases. For nonpolar mixtures, only the viscosities and 
molecular weights of the constituents are required, in addition to the mixture composi- 
tion. Wi th  polar gases, dipole moments, boiling points, and boiling-point densities are 
also needed. 
comprising 280 mixtures. 
3 .7  percent. 
volving ions, f r ee  radicals, or  valence-unsaturated atoms. ) 

The method is tested by comparison with experimental data on 25 gas pairs  

(E r ro r s  may be much larger if this method is used for gas mixtures in- 
The average e r r o r  is 0 .7  percent; the maximum e r r o r  is 

INTRODUCTION 

The transport properties of dilute monatomic gases at low to moderate temperatures 
are now well understood; the rigorous Chapman-Enskog theory appears to provide an en- 
tirely adequate description for  these gases. The theory applies to molecules with spher- 
ically symmetrical force fields and without internal energy. Hence, the theory does not 
apply, strictly, to polyatomic gases. In practice, however, it turns  out that theory 
gives a good account of the viscosities (and diffusion coefficients) of polyatomic gases 
and gas mixtures. 
of gas mixtures at moderate pressures ,  the theoretical tools are already at hand. 

However, the rigorous expression for  mixture viscosity is algebraically complex - 
it requires,  f i r s t  of all, the reduction of a ratio of determinants of order  (v + l ) /v ,  
where v is the number of components in the gas mixture. And the elements of the de- 
terminants are complicated, involving not only the viscosities and molecular weights of 
the constituent gases, but a lso c ros s  sections characterist ic of all pairwise interactions 
between unlike molecules. These unlike c ros s  sections are often not known, and so must 
be estimated by using empirical rules  of thumb. Hence, to apply the rigorous theory 
successfully, one needs some familiarity with kinetic theory of gases and also some 

Consequently, if one wants to do a "best job" of calculating viscosity 
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knowledge of the nature of intermolecular forces.  

require an understanding of theory and which is easy to use. 
a technique. 
heretofore (ref. 1, which reproduced rigorous calculations for  the viscosity of helium- 
neon-argon mixtures within 3 par t s  in 10 000). Combination rules for the unlike cross 
sections are built into the mixture formula. For mixtures of nonpolar gases, only the 
gas composition and viscosities and molecular weights of the constituents a r e  required. 
When polar gases are present, additional input is needed - dipole moments, boiling 
points, and liquid densities. 

The method should be applicable to quite high pressures  - perhaps even above the 
cri t ical  pressure provided the temperature is well  above the cri t ical  point. It can be 
applied at any temperature, as long as there are not large concentrations of f ree  radi-  
cals, valence-unsaturated atoms, o r  ions. 

The accuracy of the method developed here compares favorably with rigorous theory 
when unlike c ros s  sections a r e  estimated from empirical  combination rules.  The largest  
e r r o r s  are under 4 percent. 

Thus, it is desirable to have a simpler method, useful to engineers, which does not 
This report develops such 

The method is derived from a more complicated approximation obtained 

DERIVATION OF APPROXIMATE MIXTURE VISCOSITY FORMULA 

An approximate formula for  the viscosity of gas mixtures was derived by Sutherland 
(ref. 2) more than 70 yea r s  ago. H i s  derivation, based on simple mean-free-path argu- 
ments, leads to  the expression 

V 

qmix 

i= 1 

V 

x. + <pijxj 
1 

j = l  
j#i  

Here qmix is the mixture viscosity while vi is the viscosity of component i; xi and 
x are mole fractions that specify the composition. The cp . .  are parameters presumed 
independent of composition. 

Equation (1) has intrigued a number of investigators over the years  because of i t s  
simple analytic form and because i t  represents experimental data extremely well, pro- 

j 1J 
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vided the cp. .  are suitably chosen. (Often an extensive range of pairs of cp.. and cp . .  
11 1J J1 

give satisfactory agreement for  binary mixtures. ) 
In reference 1 the rigorous expression for  the viscosity of binary mixtures was cast 

in the form of equation (1); when this is done, the cp. .  turn out to be weakly dependent 
1J 

on composition. It was found, however, that if the cp. .  were fixed to correspond to the 
1J 

rigorous expression at one intermediate composition they served for  very accurate cal- 
culations for all compositions. This expression is 

<pij = CYij 

- 

1 + 

- 

*' 
3Aij(Mi + Mj) 

5 - 3A?. 9 

Mi - M. J (:r2 C Y . .  

+ 1/21 

1 + (CY..CY..) 
13 J1 

where Mi and M. are the molecular weights of components i and j and A?. (defined 
in ref.  3, p. 528, eq. (8.2-15)) is a number close to 1 whose exact value depends on the 
nature of the intermolecular potential and the temperature. Also, 

J 1J 

a.. =77i ( 2Mj 3 
qij Mi + M 1J 

The quantity r ] .  . characterizes the interaction between unlike molecules. 
1J 2 The viscosity of component i in micropoises (XlO-? (N)(sec)/m ) is given by 

3, p. 528, eq. (8.2-18), where oi is the viscosity coLsion  diameter of compo- 

(3) 

nent i. Similarly, 

7.. = 26.693 
13 2 

U.. 
1J 

(5) 

(ref. 3, p. 529, eq. (8.2-21), with u.. a diameter for collisions between unlike molecules. 
1J 
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With the aid of equations (4) and (5), equation (3) can be  cast  in the form 

For  realistic intermolecular potentials A*. is often approximately 10/9. This, to- 
11 

gether with equations (2) and (6), leads to 

The second term in brackets in equation (7) is less than 1 and hence in the nature of a 
correction term,  so that further approximations can be made. First, we can set S.. 

1.l 
equal to 1. Next, the ratios (q./q.)ll2 can be approximated by (M./Mi)'* 05. This can 
be justified by observing that a t  any given temperature the viscosities of all gases  are 
very much of the same order  of magnitude. (For example, among the common gases 
tabulated by Svehla (ref. 4) extremes at 300' K are neon, 315 micropoise (3.15~10-~ 
(N)(sec)/m ) and normal hexane, 66 micropoise (6. 6X10-6 (N)(sec)/m ), differing by 
less than a factor of 5. ) If the data of reference 4 at a fixed temperature a r e  plotted as 
a function of molecular weight, a slight trend of increasing viscosity with increasing mo- 
lecular weight is decernable; viscosity is roughly proportional to the 0. l power of mole- 
cular weight. With these approximations, equation (7) becomes 

1 1  J 

2 2 

<pij = SijAij (.T2 
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where 

1 + (;y-45 
m.. 

13 
2 l + -  + ( z:) 1 + m . .  13 

The quantity A . .  is a function of molecular weight ratio (Mi/M.) only which can be cal- 
culated once and for all; a scale giving A . .  and A . .  in t e r m s  of Mi/M 
figure 1. 

and (9): 

1J J 
is shown as 

13 J1 j 

The final equation for  mixture viscosity is obtained by combining equations (1) 

V 

i. i= 1 

X k+  S. .A. .  

j 

i = l  

5 



Aji 0.012 

Mi/Mj 0. PI0 
AiJ fi 

I I 1  

Ai j 7.5 7.0 6.5 6.0 

M#Mj 0. 

.014 .016 .018 .02 .025 

I I I I  I I I I  I I I I  I I I I  

5.5 5.0 4.5 

LLLLllllll 

.035 .04 .05 .06 

Aji 0.35 .4 .5 . 6  . 7  

Aji 1.0 1.2 1.4 1.6 

I 
I I  

4 

. 12 .10 .09 .08 .07 

3.2 3.4 3.6 3.8 4.0 4.2 
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APPLICATION FOR MIXTURES OF NONPOLAR GASES 

For mixtures of nonpolar gases, we  can take S.. to be 1. 
1J 

This is equivalent to as- 
suming the c ros s  sections for  unlike interactions to be  the geometric mean of the c ros s  
sections for  self-collisions. Experimental viscosities for  a number of nonpolar binary 
gas mixtures are compared with approximate computations in table I. The most precise 
experimental measurements seem to be those of Kestin and coworkers (refs. 5 to 8); 
other data of lower precision are taken from references 9 to 12. For several  of the 
mixtures resul ts  of rigorous calculations (refs. 9 and 13) are also shown. 

The agreement between experiment and the approximate calculations seems very 
good indeed, especially fo r  the mixtures among the noble gases. The average e r r o r  is 
0 .6  percent while the largest e r r o r  is 2 .5  percent (one of the helium-hydrogen mixtures). 
Where comparisons a r e  possible the accuracy of the approximate calculations is compa- 
rable with that of the rigorous results.  1 

APPLICATION FOR MIXTURES INVOLVING POLAR GASES 

In mixtures of polar and nonpolar gases the polar-nonpolar interactions a r e  essen- 
t ially of a nonpolar nature; hence, the unlike c ross  sections a r e  smaller than might be 
inferred from a simple averaging of the c ross  sections of the pure components. In other 
words, the S.. = a../o.o are less than 1. 

Monchick and Mason (ref. 14) have carr ied out theoretical calculations which can be 
used to obtain viscosity c ros s  sections for both polar and nonpolar gases. 
can be written 

2 
11 11 1 j 

Their result  

where (T is a length characterist ic of the particular molecule and 0 

tion of reduced temperature T* 

izes  the polarity of the molecule. Here p is the dipole moment, k is the Boltzmann 
constant, and E an  energy characterist ic of the molecule. 

2)*(6, T*)) and 
have used them to fit experimental viscosity data for  a number of polar gases, for  which 

Monchick and Mason (ref.  14) present numerical values of 

'The rigorous calculations used empirical combination rules  to estimate the inter-  
actions between unlike species; the rigorous calculations may be improved by using ac-  
curate diffusion coefficient data to estimate unlike interactions (see ref. 13). 
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6 l ies in the range 0 to 1. In the temperature range where the dipole forces  are impor- 
tant, T* - 0 . 5  to 5, and 6 = 0 to 1, the approximation 

reproduces their tabulations within 5 percent. 

to interactions between like (i, j )  and unlike (i j)  molecules) 
By combining equations (11) and (12), we obtain (after adding indices corresponding 

Let us  now approximate uzij = ooiuoj (it is more usual t o  take the arithmetic mean); 

also, let E . .  = ( E . E . ) ~ / ~  so  that T*. = (T??I'*)1/2, 62. = 6.6., and 
11 1 J 11 1 J  1J 1 J 

Thus, to calculate S.., 6 and E/k are required; values for  some 22 polar gases are 
presented in reference 14. 

polar gases oo and E/k may be  estimated from boiling-point properties (ref. 3, eqs.  
(4. 1-19) and (4. 1-21): 

1J 

It would also be desirable to estimate 6 and E/k from other properties. For non- 

E - = 1 . 1 5  Tb 
k 
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where Tb is the boiling point, N is Avagadro's number, and Vb is the molar volume 
a t  the boiling point. 

is an  empirical fact that the combination coo is approximated by the product of equa- 
tions (15) and (16). Thus, 

Equations (15) and (16) do not work at all well for  polar molecules. Nonetheless, it 
3 

2 2  'b Tb 

where the dipole moment is in Debyes esu-cm), the molar boiling point volume is 
in cubic centimeters and the boiling point is in OK. Equation (17) works quite well, as is 
shown in figure 2, where values of 6 obtained by Monchick and Mason (ref. 14) are com - 
pared with values estimated from boiling points and boiling point densities. 

. 4  

.3  

ro l:i, . 2  
i 

c 

0 a 
k .08 

.06 

.02 

I I I 1 1 1 1  I I I I L L L I  
. 2  . 3  . 4  . 6  .8 1.0 

. 01 
. O l  .02 .03 .04 .06 .08 .1 :v Figure 2. - Comparison of polarity 2X10%2/(vbTb) parameter w i th  estimates based an  boi l ing points 

and boil ing-point molar volumes. 

9 



"'r 
2.25 2.501 0 NOCl 

0 H B r  2.00 - 

r) 

5 
\ 

1.75 - 

0 HzS 

1.50 -0 
CH3COOCzHTO - C3H70H 

I I I I I I I 
0 . I  .2  . 3  .4  . 5  .6 . 7  .8 

1.00 

Polarity parameter, 6 

I I 
. 9  1.0 

Figure 3. - Correlation of d k T b  with polarity parameter. 

Next we must estimate E/k. In figure 3, E/kTb fo r  a number of polar molecules is 
plotted against 6 .  The solid symbols represent molecules for  which the experimental 
viscosity data are scanty o r  uncertain. Although there  is considerable scatter,  there is 
a definite increase of E/kTb with increasing 6 .  The correlating line shown is 

- -  E - 1.15(1  + 0 . 8 5  62) 
kTb 

This equation was chosen to give a reasonable fit for  the most strongly polar gases - 
water, ammonia, acetone, and methyl chloride - and also to  reduce to equation (15) for  
nonpolar gases (6 = 0). 

Experimental viscosities for  binary mixtures of polar and nonpolar gases are com- 
pared with approximate calculations in table 11. The calculations have been made by using 
equations (9), ( lo) ,  (14), (16), and (17) (except for  hydrogen, where E/k was taken to be 
38' K (ref. 3, p. 1110)). The experimental data are largely those of Trautz and co- 
workers (refs. 15 to 17), with additional resul ts  of Iwasaki, Kestin, and Nagashima 
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(ref. 18) and Mueller and Ignatowski (ref. 19); the rigorous theoretical calculations are 
from references 13 and 20. 

the average e r r o r  is 0 . 8  percent, with a maximum e r r o r  of 3 . 5  percent. 
of the approximate calculations compares favorably with rigorous results.  

alcohol-steam mixtures are those of Silgardo and Storrow (ref. 21) while the data and 
rigorous calculations for  the methyl chloride - sulfur dioxide - dimethylether mixtures 
were taken from Chakraborti and Gray (ref. 22). The approximate calculations have an 
average deviation from experiment of slightly more than 0 .7  percent. The maximum 
deviation of 3.7 percent for  one of the water-ethanol mixtures very likely reflects exper- 
imental e r ro r s .  The agreement between approximate and rigorous calculations is satis- 
factory. 

One further point should be mentioned. Equation (14) does not reduce to 1 in the non- 
polar limit (6i = 6.  = 0). Nonetheless, it is an empirical fact that, if equation (14) is used 

3 
to calculate the S.. for  the nonpolar gas mixtures considered in this report, the agree- 

13 
ment with experiment is distinctly poorer than when the S.. are taken to be 1 (predicted 

1J 
viscosities are systematically too high, with an average e r r o r  of 1 . 8  percent and a maxi- 
mum e r r o r  of nearly 5 percent). 

is 
greater than 0 . 1 .  If both 6i and 6 .  a r e  less than 0 . 1 ,  the S.. should be taken as 1. 

- 3  11 

Again, there  is good agreement between experiment and the approximate calculations; 
The accuracy 

Results for  mixtures of polar gases  are presented in table III. The data on the 

1 

Consequently, it is recommended that equation (14) be used if either 6i o r  6 
j 

- 

CONCLUDING REMARKS 

The method developed in this report for  calculating the viscosities of gas mixtures 
seems reasonably accurate and reliable for  mixtures of both polar and nonpolar gases, 
with e r r o r s  rarely exceeding a few percent. Consequently, it is in order  to point out that 
there are gas mixtures for  which this method is not appropriate. For example, 

1 .  Gas mixtures containing valence-unsaturated atoms and free radicals (e. g . ,  a 
partially dissociated mixture of hydrogen molecules and atoms) 

The forces between such species a r e  extremely strong; some interactions correspond to 
chemical bonding while other interactions are strongly repulsive. For such systems 
equation (14) is not appropriate and the various interactions must be considered in detail. 

Again, the various interparticle potentials must be considered in detail; in particular the 
coulombic c ros s  sections are extremely large, and the ion-parent atom c ross  sections 
are large too. On the other hand, electron-atom c ross  sections may be very small. In 

2.  Ionized gases 
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addition, in fully ionized gases, the first Chapman-Enskog approximation, the basis  of 
this approximate method, is also inadequate (ref. 23). 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 20, 1967, 
129-01-02-01-22. 
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TABLE I. - COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES O F  NONPOLAR 

Tempera- Viscosity, ,up (X10-7 (N)(sec)/m2) I Reference Mole fraction 

ment ous 
calcu. 
latior 

Rigorous I Deviation, i i  Experi- Rigor 
I 
Devia ti01 

percent percent 

Heliui Neon 

0 
. 255 
.43: 
.65C 
.84t 
.94E 

1. ooa 

0 
.259 
.433 
.650 
.846 
.949 

1.000 

15 314.33 
299.49 
285.50 
261.82 
230.36 
208.81 
196.08 

322.09 
306.44 
292. 51 
268.43 
235.95 
213.77 
201.80 

314.33 
299.80 
285.94 
261.79 
230.35 
208. 59 
196.08 

322.09 
307. 19 
292.97 
268.22 
235.99 
213.68 
201.80 

29 1.000 
.741  
. 567 
.350 
. 154 
.051 

0 

1.000 
.741 
. 567 
.350 
.154 
.051 

0 

Argon 

----- 
0. lo  
. 15 

-. 0 1  
-. 004 
-. 11 
----- 

----- 
0. 25 
. 16 

-. 08 
.02  

-. 04 
----- 

303. 15 

Ieliun 

0 
.199 
.371 
.634 
.807 
.863 
.942 

1.000 

D 
.211 
.423 
.610 
.786 
.875 
.939 

1.000 

1.000 
.801 
.629 
.366 
. 193 
.137 
.058 

0 

1.000 
.789 
.577 
.390 
.214 
. 125 
.061  

0 

293. 15 222. 56 
226.94 
230.88 
231.58 
225.25 
220.28 
209.07 
196.05 

229,30 
233.83 
237.43 
238.11 
232.39 
224.32 
214.88 
200.97 

222.56 
226.78 
229.89 
231.02 
224.64 
219.81 
208.83 
196.05 

222. 56 
226.64 
230.93 
230. 58 
224. 12 
219.27 
208.42 
196.05 

13 ----- 
-0.07 
-. 43 
-. 24 
-. 27 
-. 21 
-. 12 

----- 

----- 
-0.13 

.02  
-. 48 
-. 50 
-. 46 
-. 31 

----- 

303. 15 229.30 
233.79 
237.33 
237.83 
232.17 
224.30 
214.78 
200.97 

229.30 
233.48 
236.65 
236.92 
23 1.02 
222.97 
214. 13 
200.97 

----- 
-0.02 
-. 04 
-. 11 
-. 10 
-. 01 
-. 05 

----- 
~ 

- ---- 
-0.15 
-. 33 
-. 50 
-. 59 
-. 60 
-. 35 

----- 
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TABLE I. - Continued. COMPARISON O F  COMPUTED AND EXPERIMENTAL VISCOSITIES O F  

Viscosity, p P  (X10-7 (N)(sec)/m2) 

Experi- Approxi- Deviation, Rigorous Deviation, 
mental mate percent percent 

I Pempera- 
ture, 
oK 

(WS. (9) 
and (10)) 

Mole fraction Reference 

Experi- Rigor. 
ment ous 

calcu- 
lation 

Helium 

I 

0 
.3263 
.5076 
.6119 
.6761 
.7177 
.8091 
.8585 
.8932 

1.0000 

0 
.3263 
.5076 
.6119 
.6761 
.7177 
.8091 
.8585 
.8932 

1.0000 

1 

Helium 

0 
. 102 
.208 
.313 
.406 
. 506 
.599 
.696 
.799 
.861 
.937 

1.000 

Cr ypton 

1.0000 
.6737 
.4924 
.3881 
.3239 
.2823 
.1909 
. 1415 
. lo68  

0 

1.0000 
.6737 
.4924 
.3881 
-3239 
.2823 
.1909 
. 1415 
. 1068 

0 

Xenon 

1.000 
.898 
.792 
.687 
.594 
.494 
.401 
.304 
.201 
. 139 
.063 

0 
~ 

249.50 
259.14 
263.64 
264. 53 
263.82 
262.78 
256.38 
249. 10 
241.70 
196.19 

257.38 
266.95 
271.42 
272.01 
271.20 
270.02 
262.79 
255.27 
247.70 
200.68 

2 24 
229 
232 
237 
242 
245 
249 
252 
252 
248 
232 
194 

249.50 
258.46 
262.42 
263.18 
262.43 
261.14 
254.64 
247.73 
240. 58 
196.19 

257.38 
266.36 
270.21 
270.81 
269.90 
268.48 
261.52 
254. 24 
246.75 
200.68 

224 
227.5 
231.5 
235.9 
240.0 
244.5 

251.7 
251.7 
247.4 
230.9 
194 

248.5 

----- 
-0.26 
-. 46 
-. 51 
-. 53 
-. 62 
-. 68 
-. 55 
-. 46 

----- 

----- 
-0.22 
-. 44 
-. 44 
-. 48 
-. 57 
-. 48 
-. 40 
-. 38 

----- 

----- 
-0. 6 
-. 2 
-. 5 
-. 8 
-. 2 
-. 2 
-. 1 
-. 1 
-. 2 
-. 5 

---- 

224 
228 
232 
237 
24 2 
248 
253 
257 
258 
253 
23 5 
194 

---- 
-0.4 
0 
0 
0 
1. 2 
1. 6 
2.0 
2. 4 
2.0 
1. 3 

---- 
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111 I 1.1 I I1.11111 

Viscosity, pP (N)(sec)/m 2 ) 

Experi- Approxi- Deviation, Rigorous Deviation, 
mental 1 mate 1 percent percent 

- 

TABLE I. - Continued. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

Reference 

Experi- I Rigor 

Mole fraction 

I 

Neon 

0 
.099 
.332 
.598 

1.000 

0 
.099 
.332 
.598 

1.000 

leliurr 

0 
.308: 
.393: 
.448 

1.000 

Ielium 

0 
.2051 
. 2745 
.499E 
.710c 
.831E 
.8692 
.9638 

1.000 

3 
.2051 
.2749 
.4995 
.6871 
.8318 
.8692 
.9639 

1.00 

Argon 

1.000 
.go1  
.668 
.402 

0 

1 
.go1  
.668 
.402 

0 

[ydrogei 

1.000 
.6918 
.6069 
.552 

0 

Jitrogen 

1.000 
.7949 
.7251 
.5005 
.2900 
. 1682 
. 1308 
.0361 

0 

1.000 
.7949 
.7251 
.5005 
.3129 
. 1682 
. 1308 
.0361 

0 

Tempera- 
tur e, 

OK 

NONPOLAR GAS MIXTURES 

ment 

1 

293. 15 I 
I 303.15 

293.15 

1 

222.86 
229.87 
247.80 
271. 54 
314.33 

229.63 
236. 54 
254.67 
278.59 
322.09 

87. 5 
116.6 
125.2 
131.7 
197.4 

175. 52 
180. 97 
182.85 
189. 50 
195.42 
197.87 
198.24 
197. 38 
196. 19 

180.02 
185. 62 
187.49 
194. 11 
199. 57 
202.46 
202.87 
202.02 
200. 68 

222.86 
229.48 
246.76 
269.95 
314.33 

229.63 
236.35 
253.86 
277. 34 
322.09 

87. 5 
119.3 
128. 3 
134.3 
197.4 

175. 52 
182. 16 
184. 55 
192.45 
198.94 
200.81 
200.76 
198.38 
196. 19 

180.02 
186.77 
189. 21 
197. 22 
203. 18 
205. 57 
205. 50 
202.96 
200.68 

----- 
2. 0 
2. 5 
2. 3 

_ -_ -  
0.66 

.93 
1. 56 
1. 80 
1. 48 
1. 27 
.50  

---- 

_ _ _ _  
0. 62 

.92 
1. 60 
1. 8 1  
1. 54 
1. 30 
.46  

_ _ _ -  

87. 5 
118.0 
126.8 
132.8 
197.4 4 

OUS 

calcu. 
lation 

~ 
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TABLE I. - Continued. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

Neon 

1 

.2062 

.4350 

.6203 

.7103 

.8762 
L.000 

1 

.2062 

.4350 

.6203 

.7103 

.8762 
1.0000 

Argon 

) 

.0828 

. 1575 

.3661 

.4602 

.6676 

.7325 
1.0000 

) 

.0828 

. 1575 

.3661 

.4602 

.6676 

.7325 

.ooo 

Carbon 
dioxide 

1.0000 
.7938 
.5650 
.3797 
.2897 
. 1238 

0 

1.0000 
.7938 
.5650 
.3797 
.2897 
. 1238 

0 

Carbon 
dioxide 

1.0000 
.9172 
.8425 
.6339 
. 5398 
-3324 
.2675 

0 

1.0000 
.9172 
.8425 
.6339 
. 5398 
.3324 
.2675 

0 

NONPOLAR GAS MIXTURES 

Reference I Viscosity, pP (x10- 7 (N)(sec)/m2) rempera- I 
tur e, 
oK Experi- Approxi- j mental 1 mate 

146.81 
169.16 
199.81 
230.4 1 
247.02 
283.14 
313.88 

151.61 
174.33 
205.33 
236.31 
253.31 
289.61 
321.25 

146.65 
152.65 
158.17 
173.77 
181.06 
197. 12 
202.12 
222.59 

151.52 
157.69 
163.30 
179.33 
186.72 
203. 10 
208.27 
229.06 

146.81 
167. 18 
195. 55 
224.75 
241.65 
279.02 
313.88 

151.61 
172.39 
201.28 
230.97 
248. 12 
286.00 
321.25 

~ 

146.65 
151.66 
156.35 
170.30 
177.05 
193.07 
198.44 
222.59 

151.52 
156.65 
161.44 
175.70 
182.60 
198.96 
204.43 
229.06 

I 

Deviation, 1 Rigorous I Deviation4 Experi- 
percent percent I 
-_-_- 
-1.17 
-2. 13 
-2.46 
-2. 18 
-1.45 
_ _ _ _ -  

_ _ _ _ _  
-1.11 
-1.97 
-2.26 
-2.05 
-1.25 
_-_--  

----- 
-0.65 
-1.15 
-2.00 
-2.22 
-2.05 
-1.82 
_ _ _ - _  

----- 
-0.66 
-1.14 
-2.03 
-2.21 
-2.04 
-1.84 
----- 

ment 
Rigor. 

calcu- 
lation 

ous 
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TABLE I. - Concluded. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

Rigor- 

calcu- 
lation 

ous 

Mole fraction 

Y 

Nitrogei 

0 
. 1869 
.3118 
.4943 
.6899 
.8393 
.9262 

1.0000 

0 
. 1869 
.6899 
.9262 

1.0000 

1 ydrogei 

0 
.2021 
.5053 
.6672 
.8077 

1.000 

[ ydroger 

0 
.25 
.50 
.75 
.92 

1.00 

~ 

Carbon 
dioxide 

1.0000 
.8131 
.6882 
. 5057 
.3101 
,1607 
.0738 

0 

1.000 
.8131 
.3101 
.0738 

0 

Nitroger 

1.0000 
.7979 
.4947 
.3328 
. 1923 

0 

Freon 

1.00 
.75 
.50 
.25 
.08 

- 

0 

292.15 

I _ _  

i 
298. 15 

NONPOLARGASMMTURES 

Viscosity, p P  (N)(sec)/m2) I Reference 

Experi- 
mental 

146.65 
152.70 
156.70 
162.35 
168.08 
172.02 
174.07 
175.52 

151.96 
158. 18 
173.36 
179.30 
180.02 

173.9 
170.3 
159.8 
147.2 
130.5 
87. 4 

124.0 
128.1 
131.9 
135.1 
124. 1 
88.4 

Approxi- 
mate 

and (10)) 
(eqs. (9) 

146.65 
151.29 
154. 56 
159.62 
165.42 
170. 14 
173.01 
175.52 

151.96 
156.50 
170.27 
177.61 
180.02 

173.9 
170.7 
160.1 
148.5 
131.6 
87.4 

124.0 
128.2 
133.2 
136.6 
124.3 
88. 4 

Deviation, 
percent 

_---- 
-0.93 
-1.37 
-1.68 
-1.58 
-1.09 
-. 6 1  

- ____  

__---  
-1.06 
-1.78 
-. 95 

_---- 

__ -  
0.3 

. 2  

. 9  

. 9  
_ _ -  

_ _ -  
0. 1 
1. 0 
1. 1 
.1 

--- 

Rigorous 

173.9 
170. 5 
159.6 
147.8 
130.9 
87. 4 

Deviation,l Experi- 
percent 

_ _ _  
0. 1 
-. 1 

. 4  

.3  
- - -  

ment 

13 
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TABLE II. - COMPARISON OF COMPUTED AND EXPERIMENTAL VISCCSITIES OF POLAR- 

I 

Mole fraction 

Ammonia 

0 
.238 
,422 
,621 
.780 
.853 
.948 
,954 
1.000 

0 
.245 
.468 
.662 
.goo 
.924 
.954 
1.000 

4mmonia 

0 
. 1082 
.2239 
.2975 
.5177 
.7087 
.9005 
1.000 

0 
.2239 
.2975 
.5177 
.7087 
.9005 
1.000 

Argon 

1.000 
.762 
.558 
.379 
.220 
. 147 
.052 
.046 
0 

1.000 
.755 
.532 
.338 
. 100 
.076 
.046 
0 

ydrogen 

1.000 
.8918 
.7761 
.7025 
.4823 
.2913 
.0995 
0 

1.000 
.7761 
.7025 
.4823 
.2913 
.0995 
0 

Tempera- 
ture, 
OK 

NONPOLAR GAS MIXTURES 

Reference Viscosity, IJ.P (~10- 7 (N)(sec)/m 2 ) 

222.56 
200.92 
176.80 
154.67 
136.00 
121.62 
109. 15 
106.95 
99.22 

229.30 
209. 67 
184.60 
157.22 
121.10 
114.73 
111.05 
103.03 

87.7 
101.1 
107.2 
108.7 
108.0 
104.7 
100.4 
98.2 

129.6 
167.8 
173.7 
182.3 
183.7 
182.5 
181.3 

222.56 
498.84 
175.56 
153.02 
131.43 
121.04 
107.07 
106. 17 
99.22 

229.30 
204.33 
178.08 
152.68 
118.41 
114.77 
110. 18 
103.03 

87.7 
100.9 
107. 1 
108.6 
108.1 
104.7 
100.5 
98.2 

129.6 
170.8 
176.9 
185.0 
185.5 
183.1 
181.3 

----- 
-1.03 
-. 70 
-1.07 
-3.36 
-. 48 
-1.90 
-. 73 

_ _ - _ _  
----- 
-2.55 
-3.53 
-2.89 
-2.22 
.04 

-. 79 
----- 

----- 
-0.2 
-. 1 
-. 1 
.1 
0 
.1 

---- 

---- 
I. a 
1.8 
1. 5 
1.0 
.3 

---- 

222.56 
195.9 
171. 5 
149. 1 
128. 5 
118.9 
106.2 
105.4 
99.22 

229.30 
201.3 
173.8 
148.7 
116.8 
113. 5 
109.4 
103.03 

87. 7 
100.6 
106.7 
108.3 
107.7 
104.5 
100.4 
98. 2 

129.6 
168.0 
174.0 
182.6 
183.9 
182.6 
181.3 

---- 
-3.1 
-3.9 
-4.7 
-6.6 
-2.9 
-3.0 
- 1.7 
---- 

- -_-  
-4.7 
-7.1 
-6.6 
-4.1 
- 1.4 
-1.7 
---- 
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Rigor 

calcu- 
lation 

ous 

174. 5 
168.1 
156.4 
136. 1 
123.6 
108.4 
98.2 

. 262.7 
256.9 
245.7 
224.8 
211.1 
193. 6 
181. 3 

---- 
-0. 5 
-1. 3 
-1. 6 
-1.4 
-. 7 

---- 

---- 
-0 .1  

1 ---- 

? 

TABLE II. - Continued. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

POLAR-NONPOLAR GAS MIXTURES 

Mole fraction Reference Tempera- viscosity, P P  (XIO-~  (N)(sec)/m2> 

Deviation 
percent 

Rigorous Deviation 
percent 

Experi-  
ment 

~ 

- 

~ 

Ammon 

0 
. 1111 
.2920 
.5638 
.7147 
.8883 

1.000 

0 
. llll  
.2920 
.5638 
.7147 
.8883 

1.000 

Nitrogt 

1.000 
.8885 
.708C 
.436i 
.285: 
. I l l? 

0 

1.000 
.8889 
. v o x  
.4362 
.2853 
. 1117 
0 

I 
174. 5 
169.0 
158.5 
138.3 
125.4 
109.2 
98. 2 

262.7 
257.2 
246.0 
225.0 
211.2 
193.9 
181.3 

20 174.5 
168.5 
157.2 
137. 1 
124.5 
108.9 
98.2 

262.7 
257.7 
247.4 
226.9 
213.0 
194.5 
181.3 

---- 
-0.3 
-. 8 
-. 9 
-. 7 
-. 3 

immoni 

0 
. 1351 
.2986 
.4786 
.7079 
.8755 

1.000 

0 
.1351 
.2986 
.4786 
.7079 
.8755 

1.000 

1.000 
.8649 
.7014 
.5214 
.2921 
. 1245 

0 

1.000 
.8649 
.7014 
.5214 
.2921 
. 1245 
0 

202.3 
192.4 
178. 3 
160.4 
135.0 
114.3 
98.2 

202.3 
190.7 
175.5 
157.4 
132.5 
113. 1 
98.2 

290.2 
277.6 
260.5 
239.3 
208.8 
184.2 
164.6 

---- 
-0.9 
-1. 6 
-1.9 
-1.9 
-1.0 
---- 

---- 
-1. 1 
-2. 1 
-2.7 
-2. 7 
-1.7 
---- 

---- 
-0 .3 
-. 7 
-. 9 
-. 9 
-. 5 

---- 

20 202.3 
190.2 
174. 5 
156.1 
131.2 
112.4 
98.2 

290.2 
276.6 
258.5 
236.8 
206.7 
183.0 
164. 6 

290.2 
277.3 
260.4 
239.0 
208.5 
184.0 
164.6 

---- 
0 . 1  
0 
.1  
. 2  
.1 

20 



TABLE II. - Continued. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

ture, 
oK 

Mole fraction 

Experi- 
mental 

lmmonie 

0 
. 1096 
.2993 
. 5172 
.6961 
.8071 
.8867 
1.000 

0 
. 1096 
.2993 
. 5172 
.6961 
.8071 
-8867 
1.000 

Sulfur 
dioxide 

0 
. 1676 
.2286 
.2963 
.5075 
.8215 
1.000 

0 
. 1512 
.3265 
.4905 
.6760 
1.000 

293.15 

523.15 

1 

Ethylene 

1.000 
.8904 
.7007 
.4828 
.3039 
. 1929 
. 1133 
0 

1.000 
.8904 
.7007 
.4828 
.3039 
. 1929 
. 1133 
0 

Hydrogen 

1.000 
.8324 
.7714 
.7037 
.4925 
. 1785 
0 

1.00 
.8488 
.6735 
.5095 
.3240 
0 

100.8 
101.5 
102.7 
103.0 
102.2 
101.3 
100.1 
98. 2 

166.6 
168.9 
172.9 
176.4 
179. 1 
180. 5 
180.9 
181.3 

POLAR-NONPOLAR GAS MIXTURES 

290.15 

1 

472.15 I 
88.8 
130.4 
134.4 
137.0 
135.0 
129. 3 
125.9 

123.7 
195. 3 
209.8 
212.1 
211.8 
207. 1 t 

viscosity,  PP (~10-7 (W(sec)/m2) I Reference 
! 

Approximate I Deviation, 

:ew. (91, (101, 
(141, (171, 
and (18)) 

100.8 
101. 6 
102.5 
102.6 
101.9 
100.9 
100.0 
98.2 

166.6 
169.3 
173.7 
177.7 
180. 1 
181.1 
181,4 
181.3 

88.8 
133.2 
136.8 
138.4 
136.6 
129.7 
125.9 

123.7 
196.2 
214.6 
216.9 
214.4 
207.1 

percent 

--- 
0. 1 
-. 2 
-. 4 
-. 3 
-. 4 
-. I 
--- 

--- 
0.3 
.4 
.8 
.6 
.3 
.3 

--- 

--- 
2. 1 
1. 7 
1.0 
1. 2 
.3 

--- 

--- 
0.4 
2. 3 
2.3 
1.2 
--- 

Rigorous Deviation, Ekperi- Rigor 1 percent 1 ment I ous 

100.8 
101.2 
101.7 
101.6 
100.9 
100.2 
99. 5 
98. 2 

166.6 
168. 5 
171.7 
175.2 
177.8 
179.2 
180.2 
181.3 

88. 8 
130.6 
134.3 
136.0 
134.9 
129. 1 
125.9 

123.7 
190.6 
209.6 
213.1 
212.0 
207.1 

---- 
-0.3 
-. 9 
-1.4 
-1.3 
-1.1 
-. 6 

---- 

-0.2 
-. 7 
-. 7 
-. 7 
-. 7 
-.4 

---- 
0.2 
-. 1 
-. 7 
-. 1 
-. 2 

15 I 20 

21 



Rigor, 

calcu- 
lation 

ous 

v 

TABLE II. - Concluded. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

POLAR,-NONPOLAR GAS MIXTURES 

Reference Mole fraction Tempera- 
ture,  

OK 

viscosity, p~ (XIO-~ (W(sec>/m2) 

Ekperi- 
mental 

~ 

Rigorous Deviation, 
percent 

Ekperi- 
ment 

(141, (171, 
and (18)) 

Hydrogen 
zhloride 

Hydrogen 

89. 5 
133.3 
146. 1 
146.2 
145.4 
143.4 

89. 5 
134.0 
147.6 
146.5 
145.6 
143.4 

20 0 
.2031 
.5042 
.7179 
.8220 

1.000 

0 
.2991 
.5178 
.6312 
.7947 

1.000 

1.000 
.7969 
.4958 
.2821 
. 1780 

0 

1.000 
.7009 
.4822 
.3688 
.2053 
0 

89. 5 
134.2 
147. 1 
146.9 
146. 1 
143.4 

294. 15 I 
523. 15 

_--- 
-0.2 
-. 3 
-. 3 
-. 3 

132.2 
228.1 
245.4 
250.7 
252.7 
253.0 

~ 

132.2 
228.9 
246.8 
250.7 
253.0 
253.0 

132.2 
227.5 
245.8 
249.9 
252.6 
253.0 

---- 
-0.3 

. 2  
-. 3 
0 

t 

VIethylenc 
:hloride 

Carbon 
tetrachloridc 

98.21 
99.12 
99.98 

101.27 
101.59 
102.07 
102.48 

98.21 
98. 3 
98. 6 
99.2 

100.1 
101.1 
102.48 

98.21 
99.09 

100.00 
100.96 
101.77 
102.21 
102.48 

20 1.000 
.8516 
.6886 
.4986 
.3015 
.1575 

0 

1.000 
.8739 
.7096 
.4738 
.2882 
. 1515 

0 

0 
. 1484 
.3114 
. 5014 
.6985 
.8425 

1.000 

0 
. 1261 
.2904 
.5262 
.7118 
.8485 

1.000 

---- 
-0. 8 
- 1. 4 
-2. 1 
- 1. 5 
-1.0 
- ___  

136.26 
136.83 
138.24 
141.08 
140.29 
142.46 

136.26 
137.33 
138.67 
140.40 
141. 54 
142.19 
142.66 

136.26 
136.9 
137.9 
139.3 
140.6 
141.5 
142.66 

---- 
0.1 
-. 3 

-1. 3 

. 2  
-. 7 

142.66 

22 
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Approximate 
(eqs. (9), (lo), 

(141, (171, 
and (18)) 

Deviation, Rigorous 
percent 

r 

1 ,  

7 

TABLE III. - COMPARISON O F  COMPUTED AND EXPERIMENTAL VISCOSITIES O F  

POLAR GAS MIXTURES 

rempera- 
ture, 
OK 

Reference 

calcu- 
lation 

Mole fraction 

Deviation 
percent 

Experi- 
mental 

Water nethano1 

0 
.020 
. 150 
.310 
.475 
.635 
.850 

1.000 

1.000 
.980 
.850 
.690 
. 525 
.365 
. 150 

0 

122.3 
122.8 
124.9 
126.8 
126.7 
126. 5 
126. 1 
125. 5 

122.3 
122.5 
124.0 
125.6 
126.6 
127.1 
126.7 
125. 5 

21 

v 
Water Ethanol 

0 
.032 
.081 
. 166 
.302 
.460 
.629 
.743 
.826 
.910 

1.000 

1.000 
.968 
.919 
.834 
.698 
. 540 
.371 
.257 
. 174 
.090 

0 

108.0 
111.4 
113.9 
116.3 
118.3 
119.7 
122.6 

125.2 
125. 8 
125.5 

123. a 

108.0 
108.8 
109.9 
112.0 
115.2 
118.7 
122.0 
123.9 
124.9 
125. 5 
125. 5 

---- 
-2.4 
-3. 5 
-3.7 
-2.6 
-. 8 
-. 5 
-. 1 
-. 3 
-. 3 

---- 

vlethyl 
:hloride 

Sulfur 
dioxide 

0 
.153 
.232 
.310 
.396 
.508 
.631 
.714 
.833 
.955 

1.000 

1.000 
.847 
.768 
.690 
.604 
.492 
.369 
.286 
. 167 
.045 

0 

132.8 
131.0 
129.2 
127.3 
125.6 
123.1 
120.6 
118.3 
115.6 
113.0 
112.6 

132.8 
129.8 
128.3 
126.7 
125.0 
122.8 
120.3 
118.6 
116.1 
113.6 
112.6 

_--_ 
-0.9 
-. 7 
-. 5 
-. 5 
-. 3 
-. 3 

. 2  

. 4  

. 5  
-_-- 

132.8 
129.7 
128.2 
126.6 
124.8 
122.5 
120.1 
118.4 
116.0 
113.5 
112.6 

---- 
-1.0 
-. 8 
-. 5 
-. 6 
-. 5 
-. 4 
. 1  
. 3  
. 4  

---- 
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TABLE III. - Continued. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

POLAR GAS MIXTURES 

Mole fraction 

;ethyl 
:hlorid 

0 
.207 
.314 
.411 
. 517 
.606 
.715 
.817 
.949 

1.000 

dethyl 
hloridi 

0 
.046 
.222 
.299 
.401 
. 508 
.604 
.699 
.802 
.877 

1.000 

0 
.063 
. 191 
.281 
.400 
.474 
.588 
.669 
.761 

1.000 

S u l f u r  
dioxide 

1.000 
.793 
.686 
.589 
.483 
.394 
.285 
. 183 
.051 

0 

Dimethy 
ether 

1.000 
.954 
.778 
.701 
.599 
.492 
.396 
.301 
. 198 
. 123 

0 

1.000 
.937 
.809 
.719 
.600 
. 526 
.412 
.331 
.239 

0 

_ _  ... - 

Tempera- 
ture, 
OK 

~ 

353. 15 

308. 15 

353. 15 

Experi- 
mental 

152.3 
148.7 
145.6 
142.8 
140.0 
137.7 
134.3 
131.9 
128.6 
127.8 

96. 6 
97. 5 
99.9 

100.9 
102.4 
104. 1 
105.4 
107.0 
108.6 
109.9 
112.6 

109.8 
110.9 
112.9 
114.2 
116. 6 
117.6 
119.7 
121.2 
123.2 
127.8 

(141, (171, 
and (18)) 

152.3 
147.4 
144.8 
142.4 
139.9 
137.7 
135.0 
132.4 
129.1 
127.8 

96. 6 
97.4 

100.4 
101. 6 
103.3 
105.0 
106. 6 
108. 1 
109.6 
110.8 
112.6 

109.8 
111.0 
113. 5 
115.1 
117.3 
118.7 
120.7 
122.2 
123. 8 
127.8 

---- 
-0.9 
-. 6 
-. 3 
-. 1 
0 

.5  

. 4  

. 4  
_-_-  

-___ 
-0.1 

.5  

.7 

.9 

. 9  
1. 1 
1.0 
. 9  
. 8  

- ___  
0.1 

. 5  

. 8  

. 6  

.9  

. 9  

. 8  

. 5  
---- 

152.3 
147.4 
145.0 
142.6 
140.0 
137.7 
135.1 
132.5 
128.9 
127.8 

96. 6 
97.2 

100.2 
100.9 
102.5 
104.2 
105.8 
107.4 
109.1 
110.5 
112.6 

109.8 
111.1 
113.4 
115.0 
117.2 
118.5 
120.5 
122.0 
123.6 
127.8 

---- 
-0.9 
-. 4 
-. 1 
0 
0 
. 6  
. 5  
. 2  

---- 

- -__ 
-0. 3 

. 3  
0 
. 1  
. 1  
. 4  
. 4  
. 5  
.5  

-_--  

---_ 
0.2 
. 4  
.7 
. 5  
.7 
.7 
. 6  
. 3  

---- 

ment I ous 

22 

T 

calcu 
latioi 

22 

22 
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Approximate 
(qs. (9), (IO), 

Deviation, Rigorous 
percent 

22 

T 

TABLE III. - Concluded. COMPARISON OF COMPUTED AND EXPERIMENTAL VISCOSITIES OF 

POLAR GAS MIXTURES 

Mole fraction viscosity, PP (XIO-' (N)(sec)/m2) Reference Tempera- 
ture, 

OK Deviation, 
percent 

Experi- 
ment 

Rigor 

calcu. 
lation 

ous 

Experi- 
mental 

(14), 
and (18)) 

96. 6 
98.8 

103.4 
107.5 
111.1 
114.7 
118.2 
121.9 
125. 1 
127.3 
132.8 

109.8 
111.9 
118.0 
121.8 
126. 6 
131. 5 
134.2 
137.6 
141.8 
146.7 
152.3 

118.4 
114.1 
114.2 
110.4 

135.6 
130.2 
130.4 
125.2 

Sulfur 
dioxide 

0 
.058 
. 184 
.294 
.393 
.492 
.591 
.692 
.782 
.844 

1.000 

0 
.049 
. 190 
.279 
.389 
.504 
.570 
.648 
.748 
.866 

1.000 

Dimethyl 
ether 

1.000 
.942 
.816 
.706 
.607 
. 508 
.409 
.308 
.218 
. 156 

0 

1.000 
.951 
.810 
.721 
.611 
.496 
.430 
.352 
.252 
. 134 

0 

15 96.6 
98.3 

103.1 
107.0 
110.6 
114. 5 
117.9 
122.0 
125.4 
127.9 
132.8 

109.8 
111.4 
116.9 
120.4 
125.3 
130.5 
133.3 
137.7 
141.0 
146.4 
152.3 

120.8 
114.5 
115.3 
110.2 

138.6 
131.9 
132.6 
126.9 

--- 
0. 5 

. 3  

. 4  

. 4  

. 2  

. 3  
-. 1 
-. 2 
-. 5 
--- 

--- 
0. 5 

. 9  
1. 2 
1. 0 
. 7  
. 7  

-. 1 
. 5  
. 2  

--- 

-2.0 
-. 4 

-1.0 
.1  

-2.2 
-1.3 
-1.7 
-1. 3 

96.6 
98.4 

102.9 
106.7 
110.2 
113.9 
117. 5 
121.0 
124.6 
126.9 
132.8 

109.8 
111.8 
116.8 
120.6 
125.4 
130.0 
133.4 
136.8 
142. 1 
146.4 
152.3 

118.8 
113.7 
114. 1 
109.7 

135.1 
129.6 
130.8 
125.8 

--- 
0.1 
-. 2 
-. 3 
-. 4 
-. 5 
-. 3 
-. 8 
-. 6 
-. 8 
--- 

--- 
0.4 
-. 1 

.2  

. 1  
-. 4 
-. 1 
-. 6 

0 
.8  

--- 

30 

353. 15 

dethyl 
hloridt 

0.256 
.488 
.335 
.252 

.255 

.494 

.331 

.250 

Dimethy 
ether 

0.263 
.255 
.337 
.489 

.253 

.244 

.333 

.501 

Sulfur 
dioxide 

0.481 
.257 
.328 
.259 

.492 

.262 

.336 

.249 

- 1. 7 
-.7 

-1.1 
-. 5 

-2.6 
-1.8 
- 1.4 
-. 9 

22 308. 15 

353. 15 

25 NASA-Langley, 1966 - 12 E-4230 
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