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ABSTRACT

Spherically symmetric similarity solutions of the radiative
gas dynamic equations are examined for problems of imploding and
exploding shock waves. The system is reduced to similarity form
by retaining the definitions of the radiant quantities as oper-
ators on the radiative Intensity. Homology structure for the
intensity is dictated by the governing equations. It 1s shown
that stipulating a radiative transfer law constitutes a simple
constraint on the system. Large classes of radiative transfer
laws are carpatible with a constant shock strength or with a
limitingly strong shock. Because of radiative heating, simllarity
structure may be prescribed for the gas upstream as well as down-
stream of the shock wave. Constant shock strength 1s maintained
by virtue of identical similarity homology in both regions.

The general Rankine-Hugoniot equations for an arbitrary
radiative intensity are given. Initial conditions appropriate to
self similar motion are given. It 1is shown that a sequential
procedure for numerical solutions can be established. In the
adiabatic problem, the solution for the velocity distribution
1s not contingent on the form of the radiative intensity.
Camputations are effected illustrating useful approximation

Schemes.
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CHAPTER I

INTRODUCTION

1.1 Perspective

Substantial interest in receht years has been focused
on schemes for producing very high temperatures with the ultimate
purpose of controlled fusion. As is well known, plasma heating
may be accomplished by ohmic losses, magnetic compression aﬁd
strong shock waves. Coexistent is the problem of containment.
One centemporary solution employs high mirror ratio coils with
open ended systemé. There exists a genuine problem of confine-
ment when attempting to attain initiating thermonuclear temper-
atures. '

After the conclusion of World War II, in connection with the
detonation of nuclear devices, shock waves from strong explosions
received some attention. Symmetrical explosion and implosion
studies were effected by Guderley,(l) Téylor(z) and Weizsacker.(3)
The possibility of employing imploding waves presents 1tself as
at least one method that should be investigated for producing
high temperatures. Superficially, the method appears to obviate
the confinement problem while heating occurs. In this spirit an
investigatioh of a spherlcally symmetric implosion is not unwar-
ranted. Extrapolation of similarity calculations for the neutral

fluid dynamical equations tentatively indicate that the temperature
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which can be achieved in the region of convergerice are limited
only by a critical radius at which shock reflection might occur.
This technique cannot rigorously substantiate the fluid property
behavior at the convergence point.

Assuming the extrapolations are to same extent valld, the
temperature ratio can be estimated by assuming a critical radius
of the order of several mean free ion paths for a neutral mech-
anically driven fluid. The speculation follows that, if an
imploding current sheet is preceeded by a region capable of sup-
porting a magnetic field, the ion Larmor radius might replace
the ion mean free path. The consequences are a diminished
critical radius and higher temperature ratios. The feasibility
of this approach is contingent on available energy loss mechanisms,
a problem fundamental to all schemes proposed for controlled
fusion. If an implosion proceeds into an ionized gas permeated
by a magnetic field, minimally there will bé energy loss due to
bremstrahlung and cyclotrdn radiation.

In view of radation shock smoothing, a critical radius of
Several ion mean free paths may totally lose significance. A
more realistic characteristic dimension might be the radiation
smoothed shock thickness. If this pessimism is substantiated
the initial high temperature conjectures based on strong implo-
slons, which do not take radiation into account, would be entirely

Spurious. Radiation trapping in the pre-shock core, should it
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become significant, would result in a net increase in the pres-
sure and hence the reflection radius.

In order to discuss the influence of radiative effects on
shock waves, the radiative gasdynamic equations may be used. It
is expected that radiation effects of importance are incoherent
and amenable to description via classical radiative transport
theory. The nonlinearity of the fundamental system poses a
formidable problem by virtue of a conspicucus lack of mature
analytical mathematical techniques. Indeed, there exist but two
broad areas of approach to the problem: the method of character-
istics and that of self similarity. The radiative gas dynamic
equations are hyperbolic, while the radiative transport equation
is elliptic. Consequently the system, in total, cannot be
analysed by the method of characteristics. This approach is still
valuable if first a solution to the radiative transport problem
or a constitutive hypothesis on the structufe of the radiative
intensity is made; It shéuld be cléar that the resulting equations
except under specific assumptions will not form a reducible
canonical system. With this formalism it would be possible to
deduce the onset and development. The question of reflection
remains uncertain. Nevertheless, this approach is mathematically
accurate and it would be Interesting to discover what minimal
assumptions are required to make the problem tractable. The

method of characteristics requires stipulating initial conditions
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which cannot be provided, as yet, satisfactorily by experiments.
The alternate approach of self similarity dispenses with the
onset and development. Indged, quite naturally, it requires the
hypothesis that the motion be either totally'or plecewise self
similar. The formalism and consequences of a similarity approach

lend themselves favorably to examination by experiment. It is

- frequently possible to deduce significant features of the Gynamic

problem without performing exorbitant computatlons:- Similarity
solutions are not generally applicable in arbitrarily small -
neighborhoods of the singular point of the transformation. Some
heuristic extrapolation hay be effected thdugh conclusions based
on such would be suspect. In past works there have been attempts
to deal with one dimensional shock waves influenced by radiation.
The approach revolves around stipulating a radiative transfer
law, substituting it into the radiative gas éynamic eduations

and attempting to reduce the resultant equaﬁions,to a self similar
form. This has not been a éompletely successful approach. It
has been necessary to intrbduce many approximations in the search

- for symmetric solutions. One of the primary objectives of this

dissertation is to demonstrate a procedure enabling the reduction
of the radiative gas dynamic system to self similar form for

general radiative transfer laws. The complete solution of the

.feasibility of an implosion shock for controlled fusion is, of

course, beyond the scope of a single dissertation. Consequently
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the attention 1s focused on developing the techniques of one
possible approach, self similarity.
1.2 Literature Review

Guderley,(u) in a now classic paper, has examined strong
spherical and cylindrical shock waves in the region of the con-
vergence polnts. The starting point of his arguments are the
ordinary fluld equations with an ideal gas law and isentropic
energy equation. The shock waves are non-constant strength and
limitingly strong (see page ¢o), propagating in a uniform region.
The suggested justification of a similarity description in the
regime of the convergence point revolves around an expansion of
the shock position as a power series in time. The dominant term
suggests the self similar form. When the equations are rendered
in self similar form, the one parameter family of integral curves
1s examined to ascertain physically admissible solutions. Initial
conditions issue from the similarity form of the limitingly strong
shock jump relatiéns. The divergent temperature and pressure
ratios discussed in‘an experimental proposal by w1nterberg(5)
characterizes a particular solution fram an infinity of solutions,
which one reasonably would not expect to be valid in the presence
of dissipation mechanisms such as radiation. Guderley makes no
statements concerning the concept of critical radius. Only in a
later paper by Sanger(s) is i1t suggested that, on the basis of
chemical arguments, if a critical radius existed it would probably



be of the order of several.Debye lengtﬁs. Nevertheless, the
optimistic point of view of Winterberg is based on neglecting
the smoothing effect of radiation on the shock wéve.

Weizsacker(7) conéerns himself with obtaining numerical
solutions to the similarity transformed ordinary differential
equations. Using the hypothesis of a strong éhock wave and
fixing the shock trajectory and pre-shock initial conditions
the jump equations establish starting post-shock conditions.
Since the shock waves discussed are limitingly strong a sequence
of solutions generated parametrically on (see page 22) are
developed simultaneously with the appropriate parametric post-
shock conditions.

Sponsered by the war effort in 1941, Thylor(s) has made
calculations of a preliminary nature cn the generation of very
strong shock waves such as would be developed in high yield
nuclear detonations. The computations were'effécted by the usual
similarity approach. The validity of the solutions in retro-
spect was subject to some criticism. In addition to the constraint
imposed by the limitingly strong shock condltion, a particular 7
1s selected on the basis of an integral constraint imposed on the
total energy. The applicability of such solutions pertains to
areas in time suéh that the energy in the post-shock region greatly

-Supersedes that in the pre-shock region. The energy equation

~ contains no dissipative terms. Numerical computations are carried
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oul un the transformed system and an approach for analytical ap-

proximation to this specific problem is suggested.

Pal and Speth(g) have qgrived a form of the Rankine-Hugoniot

~relations for a planar shock wave using asymptotic uniformity of
~the flow field. Their work is principally concerned with high

 temperature effects where a significant percentage of the gas 1is

ionized and in which a magnetic field can exist. The radiation
field is characterized by a Plékkian distribution. The jump
equation with radiative effects reflects this specialized assump-
tion. An energy equation is suggested appropriate for the discus-
slon of shock structure. Explicit cognizance of the work of Sen
and Guess(lo) is made in suggesting that a broadening of the shock
thickness accompanies the inclusion of radiation.

The paper by J. Clarke(ll) is concerned'with calculations
of a "radiation resisted" planar one dimensional shock wave and
assoclated shock structure problem. The enérgy equation employed
in this work struéturally resembles that suggested by Speth and
Pal in view of havirg omitted radiant energy and pressure by
virtue of a dominant radiant flux. Refraining from arguing the
relative importance of the characteristic diffusion lengths for
radiation and heat conductivity, the discussion is concerned with

the effect of the flux dissipation contribution in the energy

-equation. Both loss mechanisms are discussed by Sen and Guess.

In all of these works pertaining to shock wave problems which
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intrinsically are strongly non equilibrium, the underlying as-
sunptlon for the radiative field is equilibrium.

Marshak(lz) for a one dimensional planar geometry has con-
sidered similarity solutions to the radiative gas dynamic equations.
In this work again is the hypothesis of radiative equilibrium.

The flux term in the energy equation is written to suggest a dif-
fusion interpretation. The jump equations in essentially a
blackbody gas are derived. No method is presented to dispense
with equations in totality. The conjecture is made that what is
cammon to a sequence of approximate similarity equations reflects ‘
the properties of ﬁore general non-self similar motion.

1.3 Definitions of Radiative Transport Quantities

The basic properties of the radiative transport phenomenon
can be established from a scalaf energy function. The method of
fb;mulation to some extent feflects an inabiiity to cope with the
many body problem. The techniques depend on global quantities
which do not take explicit account of the microscopic structure
of the radiation field. With a corpuscular perspective, the trans-
port equatlon can be interpreted as deducible from a Boltzmann
equation for photons. From a wave point of view it suggests a
description of energy transport via a short time averaged Poynting

vector. Consequently the classical formulation possesses the virtue

,of acquiescence to either the wave or particle interpretation.

Tre radiative intensity is a scalar point function of fixed



coordinates and a vector direction defined as the rate of energy

transport per unit frequency interval per area per solid angle

per unit time:
(1) Ivdv’aw (Ac-U)dt = AQEV
o )
U T
e
Jd
[y
x
Y
X

Figure 1. Diagram of Coordinates

The quantity I is a local property of the medium and is an in-
variant urder coordinate transformations. The total intensity

is given:

(48]

©
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The transport of flux 1is defined:

o dFfs LG L)udy
| Ac|

@  dFs I, dudsr

Equation (4) is the differential flux vector. The quantities
are the direction cosines associated with L. The energy density
is defined:

O NTARI S Y
3

The momentum transfer associated with the radiation suggests con-

structing a radiation pressure tensor:

The normal pressure stress on a surface is:

dp = I,,.(‘.osze o dor
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Two additional quantities require definition: the source
function and the absorption

(7) AVEQ = Sdvdwdt (A'G'.&\)cgt_
(8) A"Eq, : gévclwi*- (AG‘ )cg{-_

The structural qualities of the radiation field and the

medium are embedded in the absorption and emission functions. .

For a radiant gas the absor'p'cion may be written:’
(9) A)}' s PV sz

fsris defined to be the mass absorption coefficient. The emis-
sion 1s composed of two parts: scattering into a given direction
from other directions 'J;, and true emission je’.

(10) - ' €
31: B ‘Tv .

Similarly:

(11) By= % + Ky
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where 6, is the loss from a given direction due to scattering in
other directions and gris the true absorption. The radiative

transfer equation is a rate equation for the energy transport.

| DT = ‘ -
(12) -E B\'. v g 3,, f?y-'[zr
where:

D . :°_ + C ° )
(13) DT ( »t 3

For time independent problems :

(14) 2T, L
i
(15) DI,:zo
DT
then
(16) _)..?.{ = Iz:
By
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With isotropy: cancellation of scattering and no time

dependence 1t follows:

| -Qan 'Q'L \i\g‘:"’ = -ijTbR;*i‘:-& 3;,.
| R
(18) Q'L’QB i—%” AVAw =~ S Ker'V 1L4vcjw=-g(kz)‘=
R
(19) \;P = -Y(.K;,>FR \ LK7)= K

LY

K 1s a mean absorption.

A less heuristic, more accurate discussion of the. fundamental
concepts of radiative transport phenomenon may be found in the
swmary work of Goulard.(lB)

1.4 The Birkhoff Search for Symmetric Solutions

A well known procedure for the reduction of a system
of partial differential equations to ordinary differential
equations 1s herein briefly paraphrased. The use of this procedure

in the problems discussed is not necessary. The motivation for

including it resides in its facility to cope with systems of
equations not as well studied as those of fluid dynamics.

Let 3 be a set of differential equations with ¥, and §s the
- [
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corresponding independent and dependent set of variables respec-

tively. Define a transformation M as follows:

- Ly
(20.1) X, = o "Xy

(0.3)  ML)=%

The system Y. under © is required to be absolutely conformally in-

variant.

(21) )z ¢

A set of invariants are then constructed:

(22.1) 7’: xr/x|*f/*‘

(22.2) {(?') = ‘jj/x;‘.i/*.

Algebraic relations exist between the constants «, and x‘; by

virtue of requiring absolute conformal invariance. A rigorous
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and valuable contemporary discussion of self similarity and the
Birkhoff search for symmetric solutions may be found in a book
by Ames.(lu)

1.5 Resume of Content

In Chapter II, the method of reduction and resulting
fundamental equations are derived. The Rankine-Hugoniot equations
are written for arbitrary radiative expressions. The significance
of two sided similarity and proper initial conditions are given.
Chapter III developes the implications of constraint conditions,
1limitingly small radiation and strong shock waves. Self similar
motions are discussed. Chapter IV encompasses numerical and
analytical approaches to the equations and Chapter V conjectures
a variation of the fundamental symmetric search process. Con--

cluding comments are pointed out in Chapter VI.



CHAPTER II

FUNDAMENTAL EQUATIONS

2.1 Initial Discussion

In general the distinction between radiant and non-radiant
gas dynamics is the addition of a radiation pressure to the
momentum equation and radiaticn energy and flux to the energy
equation. Thus, the total energy is due to internal energy and
radlant energy. The work done by pressure forces includes that
done by radiation pressure. The flux enters as a dissipation
which parallels the heat conduction in structure. The energy
equation is a simple consequence of the first law of thermodynamics.
That the entropy is not constant on stremalines is the effective
manifestation of the dissipation mechanisms. Momentun follows

from Newton's Law. The equations are as foliows:(ls)

(23) by , S U - | Continuity
DT .l)l.
. .o U= R
(21") g %—“:’L = g UL)L + s UJ U‘)) = sXL" PL)'D.L-P(S,L Nxomentlm
R R R
€+ U = - - . - .- s .
e pBLE IR Ry e
16
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(26) RP=R(T) Equation of State
n Bz, T Polytropic Assumption
(28) %i = \ 7: / Heat Conduction

The equation of state principally_ to be employed is the perfect
gas law. This is employed for convenience in calculations and does
not constitute a necessary requirement. A polytropic gas is by
definition one in which the internal energy is proportional to the
temperature. Hence the specific heat .at constant volume is a
constant. The law for the conduction of heat is not a primitive
but empirical.

In addition to these, expression of the thermodynamic dependence
of the radiative functions must be provided. to canplete the system.‘
The radiant quantities are defined in terms of a single quantity,

the radiative intensity:

(23]
R . R X
NV 5 Uy—l?f ) Yy * = dw
f N
R " R
(30) Fo: S Fz,flv' S A S 1.0 L
o © Jur
N
Q ,
R
(31) P ?,,.,SJv ) OF, s '{3{2;23&
> A ,_mQ.
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The 3+ iIntegration is over frequency and « over solid angzle.
The symbols ‘Qi and &3 are direction cosines of 'f, at the tip of an
T. LlR is the radiant energy, FR the flux and PQ the pressure.

The thermodynamic form taken by Iv_reflects the internal
state of the radiant media. The differential equation governing
the rate process for radiative transport is the classical radiative
transfer equation. The average microscopic state of the system
is depicted through the lumped parameters describing the transport

process. Iv then represents a microscopic mean behavior.

QI:BT §I1r=_ -I-\»‘
(32) 5T .g._tv‘+ T f?‘r RS TN

(33) LI R

where K= Cose

This equation does not couple into the radiative gas dynamic |
system since it in no way depends on the fluid velocity. | Con-
sequently from the radiative equation I, 1s ascertained as a
function of space, time and thermodynamic variables. In this
respect the view is adopted that this equation is a constitutive
equation for the radiant medium. Throughout the course of this

work the radiative transfer equation is never solved for particular
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structural assumption of emissivity and absorbtivity. It is one

of the primary objectives of this dissertation to demonstrate a

“method by which general solutions for I;rcan be used to describe

radiant transport properties consistent with a total reduction to
self similarity of the radiative gas dynamic equations. For 1il-

lustrative purposes structural forms of ];.are assumed which are

not meant to represent carefully constructed solutions to the

radiative transfer equation, but serve to demonstrate the fact
that by adopting the subsequent procedure these general forms are
compatible. In all subsequent considerations these equations are‘
analyzed in a spherically symmetric form. Shear stresses in the
fluid and radiation pressure tensors are dropped from the equations.
These terms can be included and the system reduced to éelf similar
form provided appropriate similarity statements concerningrthe
viscous coefficients are made. The heat conduction temm with

same contradiction is included to illustrate it requires cne con-
straint. The coefficient of heat conduction is assumed constant.
This term is never employed in the computations and serious con-
siderations of it are not appropriate. The problem of reducing
the multidimensional system tb self simllarity has not been in-
vestigated.

To effect total reduction to self similarity it is required

. to introduce the radiative quantities as operators on the radiative

intensity. Designate:
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(31) £ = J ( ) Iy do
O UM
(35) E = Y ( ) doselw}w
% 4
2. i -
(36) [_ . J () coss dnd
| o ‘4l |

so that

(37) Uﬂ'z LO I-'V/ Q.
(38) F L I,

L
@ Pt LI, /e

It is obviously true that:

3 Q)
(40) ,;L )%"‘J:E‘)%_J:O
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)
- The space and time derivatives commute with the L(J’ operators.

With these statements the fundamental equations to be con-

sidered are:

Momentum.

Q. (P+ ‘.}I'Zrlc) =

(42) Df + g( bU + 2‘:) o Continuity.

(43) S’Q (E+EIV)=-(P+\}}_V)( §.9.+7'“)

Energy

In(the formal language of Birkoff, the initial set 1s required
to be conformally invariant under a one parameter group of trans-
formations of the independent and dependent variables. With the
elimination of one indeperdent variable a set of invariants for the
system is obtained together with the assoclated differential
equations. It 1is not necessary to follow this fonnalism in equations
so well studied as the fluld dynamical system. When one homology
1s stipulated the structure of the equations determines uniquely

the hamology of the remaining variables (see Appendix). However,
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when an attempt at a muitidimensional reduction to self similarity

is made, it is virtually mandatory to follow the Birkoff "search

for symmetric solutions”.

2.2 Reduction to Self Similarity

The independent similarity invariant is }2 defined:

'(uu) _ \z: \’/Atg

M 1s a scaling constant and & is a fundamental constant governing

the time evolution of the systean.(l6) In the non-self similar
case § = 8('(). It follows:

M __ s, o
(45) S{(- T0) g?r r

The similarity forms to be associated with the fluid variables

are:
K
(46) §= ¢ Ry

an  T= vCATep

@ oz YUl ()
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where R(?),'Y(Y), and () are the dependent similarity invariants

associated with density, temperature and velocity. Now postulate

the form of the radiant intensity:
= P
(49) T,= vt T .M

The constants and are to be ascertained from the structure of
the equations. To make provision for the possible variation of the

Index of refraction set:

v vl
(50) C= YT %c?)

(51) [° =z \'H.L'C'z Piy)

This form is dictated by the momentum equation. The following
algebraic manipulétions are required to obtain the similarity

forms for the differential system. For the energy équation:

(52)  af R %‘t(( T T+J_m t"T, ) LWY“:P

avkR (T cm

- \
:- L\'.va I, - (O\YK%E'LP+ Ly™’L, (9-”‘ 4y ’:9)
e ¥ T
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The L. H. S. of the energy equation is expanded in the fol-

lowing manner: the first term is

63 e (cartiToce3 Ty ) +

¢y ( n."u)( ArT AT, n“T'\I )

the second tem

S

<
>

s m- (K1)
(54) %1; %(Ym (kultm T );z ) s tPI,,X(r..;w(m-mn))}
m- (K41} 1 -1, I .
+Zv thy [I,,_R §-T,RR%'\T R ‘c‘d}[UA]g

Finally

s5) L.HS.= C\.YhR \‘z'l:'scv [\11"( U-8) +7;r(u.z)] +

Lc: ? Yh R ‘m-(kﬂ\tp U (pt1) ,U(m-(k“)))r_z’ R-|C-l

(LR RR LT wlete)]
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This result suggests:

(56) m- (ke =k 4 =3

Therefore

(57) I,= \““31'311,0()

The R. H. S. is established.
The first tem is

l K43 . )
(59) L2y 131,,=-Lpitk+m”‘ Ay *YM%*I";;

b

E

I |

i

E = iQP’PLI gizu"vutf

The second temrm:

The transformed energy equation is:

(60) aRe, [T (-8 42T (u)]+ pR[ ALv- nfr, Ry
ea In Rieh T /el gl *¢'Ja
\_13[(‘\«5\1 T, - [« P*L_‘C_Ir]{suﬂuj



~3imilarly for the Momentum equation:

{(61) D (YT} + tuld (‘{‘f‘\))-\w\—

E&Y‘“é"—? LT
N T w“x\}‘cv v %(

" Expanding this yields:
(62) “ty- % AN o '
z"lu (U-§)+v U"'R[(MM |,,1P ]
*‘l:iﬁ Gl TC (T ¢ ¢l [E=0
oL | WL (1, T ),

For the continuity equation:

D (oK - ® ]
(63‘) f‘c(m R)+ U Ug-v(““l\)'m ] [%—;‘(Y[ 'u-n;‘g)]:o
expanding

/
@) - aRy ety (ahety rax*ijh )z o

rearranging

(65) -&R'\z 1.0(\;9\*»1\@')1(2( 30*'10'): o
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The transformation of the heat conduction follows:

Uyt -

(£6) My G AVT < )X et T

v .. ‘Bo < I "
(67) o R 5 = A\t S b
12 -2 [y £ 3T +T 0]

DY

- 1.
Hence < 2 must cancel ‘r‘ 1‘1‘. 3 or

RS
T

1

68) 1 3¢NRg

and

(69) o= - ytuk

To summarize, the non-dimensional transformed equations used in

the course of this work are:
Energy:

(70) aﬂcth‘(u-sH )"T(U"\:]]N(\”wa'n\:TV-R"Q"¢ LGI(U-MLI;-R"C"

'TVR'RQ(: ] T, R’ Ic- 2C /]] z- L:rg, [ (Rts) I'V‘+ tl',[:_ ]-[_o.ﬂp_gfv.][amwo]
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Momentum:
X .
(71) \lu'[u-z} *U‘:U‘t%{\(htﬂﬂﬁlpllﬁ \_.a_‘_(i \(hrz)IVQ '
) (:rLc"-;ryc"c’)‘z Jzo
Continuity:

(72) “?R'[U~§,]+(ki2)(\u+rzr\u‘:o

2.3 Shock Velocity

Initial observations suggest two possibilities for the shock
path. Only one is correct, compatible with self similarity and
the Jump equations. Consider first r = r(T) where r(t) = XL%
with 'z =>'£ is some fixed value of "( . In this case the shock path

i1s described as a line of constant ? and the shock velocity is:

(73) %:Mit

In the second case set r = r(?) then:

O

Y

—

My Ly

———

T 4t

O

A<

S5
. J
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In order that there exist compatibility with an incoming shock
wave the shock velocity is required to be negative. If 3o
then either r or T must be negative. The shock path is correctly
described by equation (73). The reasoning follows from the

diagrams.

Shock (i

Palh 2

~1

Y . v \

L4

Figure 2 Correct Shock Path Figure 3‘ Incorrect Shock Path

&

In Figure (2) the'shock lies on a path of constant 7 ==>; . The
region *l-l.ﬁ in an fmplosion corresponds to the pre-shock region. |
In Figure (3) the shock does not 1lie on a line of constant’( . Since
any property which is a function of 7 is constant on lines of
constant ? then the path r = R(n) cannot divide a pre and post-
shock wave region by virtue of the fact that it 1s intersected

by lines of constant '? .
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2.4 Two Sided Similarity

Traditionally, in discussions of strong implosions or ex-
plosions, the pre-shock gas was stipulated to be uniform in
concordance with physical structure. Shock waves in a radiant

‘media are consistent with pre-shock uniforndty when the con~-

stitutive behavior of the medium is such that the shock wave can
be considered completely opaque. It will be shown in a later
section that many functional forms of ];rare compatible with the
special constraints imposed on a constant finite‘strength shock
wave. In problems dealing with a pre-shock nonuniform region it
is reasonable to introduce Similarity‘for both regions. This
approach especially makes sense in the case of propagating non-~
opaque shock wave in a radlant gas. Energy transfgr across the
shock produces a nonuniform région. The jump equations impose
no -constraints for two sided similarity. A;l finite strength
shocks are constant in strength. The three eriteria for shock
strength (see pagé 59) are compatible. To characterize a shock
wave with two-sided ‘similarity the hamology of the dependent
invariants are by mandate identical in both regions. The shock
manifests itself és a discontinuity in the dependent invariants.
In characterizing a shock in this way it 1s not necessary that
all fluid variables be discontinuous. Thus the preséure and

density may be discontinuous while the temperature is continuous

compatible with the gas law and the strength measures of excess
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pressure and condensation. The excess pressure in the case of
continuous temperature and for an ideal gas is precisely the
condensation. ;The temperature can reasonably be discontinuous
in the case of an opaque shOEk. That the usefulness of two-
sided similarity discussions for hon—opaque shock waves is not
purely academic is easily recognized when it is remembered that
in nuclear detonations a heat wave precedes the shock wave.

For definiteness, imagine that the pre and post-shock
pressure distribution has been obtained by integrating into these
regions from initial conditions given at the shock n ==§ com-
patible with the Rankine-Hugoniot equations in self similar
form. Consider Figure (4).

r POY)

[
|
I
'
—L
2 | S
Figure 4 Discontinuous Dependent Invariant

M
[

Suppose:



1
(77) [P] . r"”‘t*[ﬁp] -
7

) ——
[—‘-———-———— T TN Ul B I G T B I -l O oew e

32

A -

(75) Py) = *“l, (SR
3

then

'(76) I:F('g)]: ("(,‘lk- Q-"P‘*z."[)

=R,

where r and T are the time and position of the shock wave.

2.5 Rankine-Hugoniot Equations

The general jump equations with arbitrary radiative terms
are obtainable by a process not extremely dissimilar from that
used to derive the usual mechanical shock conditions. Introduce

the coordinate system:
‘ T
(78) q - \’-J TdT-

(79) }:-Y)= %Q\,r 54 %) : :Béf) "J %Q\t

:I'is the shock speed and Q is the new spatial coordinate. In this

frame of reference the differential conservation relations are:
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Momentum equation

(80) }1‘3“ Y 3”\ +1&3‘L)

> 2R W, lg’k?%\"

Continuity equation

PY AR Of LY 2U8 .
@S TR A TR B

Energy equation

> RGAEE TR
(82) S[a )6;-( J) = @b} BRY: msél]

| W4 2 ¥ )Z. A
-5 (bﬁi Lqﬁ:rm) )z;t 1q+ sm]ar

These differential relations are integrated over a control
length of 2¢ and the limiﬁ taken as ¢40. All quantities that are
not differentiated with respect‘? vanish in this process. This
is a simple consequence of the following:

é
83 T= Lin X {&Jﬁi =0

€-0
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(84) I-= (LIM 6) Lin %Je"‘ é_%. Aq):o

€-o t-o :
. OT

&30

. ¢
85) T = UMSPJQ:o

*€

. T is arbitrary and the integrands have a finite number of finite

discontinuities. Hence for the continuity equation:

€
(86) G‘LMOJ %1 $lo-7) dq =0

Performing these oeprations similarly for the momentum and

energy equations results in the system:
8 -T)z ¢ (vu- | Continuit
(87) g'(U‘ 3’) gb( X ’]) n y

&) 3 (u,-T)[_ET -ETO] * \'-:‘3 FoR

(>
+ |T|u‘ . ﬁ_LU.L =0

Energy
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(89) g (U-3Nu0) + B-R =0

(90.1) R = PR+ P)

| x
(90.2) EL° (c;\‘+ Up‘/g N ’710 )

The energy equation used in deriving the latter relation waé
modified by multiplying the momentum equation by u and adding
it to the original energy equation. '

The similarity form of the jump equations is immediately

derivable by substitution in the latter system. In the case of

two-slded similarity these relations trivially impose no con-
straints. With Y= ¥/t ! '

(91) zv“al*/t e8] =R [ Ve Lu,-u]B
(2) i*" AT RATEAIER L el (3 rﬂ}:o

(93) EY‘RR‘{‘/I (U.'S)]\'ET.. E,.O]\'zt.'l +(1=‘f3. I-_<->R)‘,"~*%. s,

(Puu,\' Pouo.)fmgfsg " e
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The self similar forms of the jump equations are:

(94) iﬂ@u;g]: RoLUs81 1

“om RWALGETI B (2 L T Yol (1, 1,)

R|c‘ R (‘O

U'(_ﬂ»r\z:gv‘]-uz_‘_i’o-\-\_%v ] L(U B){ Y ]§= o

LR 00+ (2 -aw)%aoml

(96) 9 Co

2.6 Initial Condition

- The differential similarity relations are of the form

(97) :_\!_‘13 +‘°§.5 &= L
1

where the y 3 are the dependent variables and the <:: are functions

-9
of yJ and ‘?

(98 STERSN Ay )
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The system of equations in similarity representation are ordinary
nonlinear and coupled. In discussing initial conditions ap-

propriate for integration no suggestion is made concerning suf-

- ficlency and necessity for uniqueness. The author is not aware

of theorems appertaining to systems of this type. Hence the

- initial conditions are those required minimally to properly

pose a numerical calculation to the computer and satisfy certain
rudimentary physical requirements. The equations are all of
first order. Consequently, to initiate a numerical procedure
starting values of the functions must be be given at some point
in the integration domain. In the case of zero or near zero
thickness shock waves, the jump equations are point invariants
of the conservation system. If the problem is not strongly
time dependent, the jump equations can be viewed as linking
asymptotic values of fluid variables in the pfe and post-shock
regions. The first interpretation is relevant to problems in
this dissertation. In concordance with the physical requirement
of satisfaction of the jump equations the following approach is
suitable.

The classification of initial conditions is contingent on
the continuity property of the dependent invariants. (Figure 6)
This statement means that not all fluid varlables need necessarily
pe discontinuous a@ the shock wave. let Q(?) be a property of

the system defined on the interval (7° ,12{) and to which corresponds
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a differential relation. If the property Q(‘?) is continuous
across the shock wave then Q(}°) for (y,49*¢ }:) 1s to be the

glven. It is concelvable to admit continuity

Q(z) |

/_T;

% ? (£

Figure 5 Admissible Invariant Structure

of all properties. If Q("() Ais discontinuous at the shock ! =;z‘
then two alternatives arise. The Jump and mean value of Q at
'7 = f is given consistent with the saltus equations. Alternately
Q(‘(T) or Q(';;) for ('?o‘:yti E) or (?5 ’1} %) respectively are to be
glven together with the jump. The last criteria is probably most
practical from an experimental point of view.

The shock velocity is presumed stipulated such that the
Jump system is determined. This information could be provided by
experimental measu;'ement or through appropriate values for con-

Served quantities when an integral constraint is employed to
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obtain a k-§ relation.

2.7 General Apprecach

In order to avoid difficulties arising from inconsistant

- guesses and to obtain valid solutions to the derived differential

similarity system it is virtually manditory for a complete under-
standing of the results to follow the subsequent rules.

1. Construct an hypothesis on the type of problem to be
considered, i.e. define the constraints which are physically
appropriate.

2. Integrate numerically the shock ﬁugoniots for all
initial doublet of sound speed and fluid speed.

3. From the differential system form the quantities
u' = J(RTu) and ™ = T(RTU) then form the quotient:
DT = T'(.R)TIU)
— i ———————
DL U (RTu)
From the ideal gas law the unambiguous isent;opic speed of

sound is J¥T Hence:

be Q(RM@)
DY u(Ruv,c)

i, Solve the above equation parametrically on appropriate

initial conditions. The solution of this equation produces the

_ Vector field of integral curves corresponding to the problem.

All subsonic, sonic, supersonic regimes can be read off this
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vector field.

Minimally the shock Hugoniots should be found along with the
singularities in the vector field. .



TN W Uy G BN GEY Gl I W Gl T  UEl BT BT BT Uy T W e

CHAPTER III

SELF SIMILAR MOTION

3.1 ILdmitingly Small Radiation Effects

The question arises as to whether a smooth transition from
problems involving radiation to those not involving radiation
can be made. The admission of radiation effects, independent of
the degree, fundamentally characterizes, through establishment of
a (k,$ ) relation, certain physical aspects of the problem. These
aspects remain invariant throughout the spectrum of L'nportanc_:e .

of the radiative phenomenon. For example, consider:
™
(101) 'I_u_ = TP T“

for arbitrary m and n.

m K-(k+3) 127 .3 -2

(102) I,= ¥ R chmc—
and
(103) 3: - (3- Z“)/(m-n R4+ 2n-3

4y



42

Consequently, if k = 0 then § = 1 for all values of m and n.
2n-3
Clearly (A & ) contains two scaling parameters a and ),

hence the influence of the radiative terms'in the equations can

- be varied. Nevertheless, with ® = 1 the shock velocity is

constant. The transition to Guderley's implosion non constant
shock velocity problem can never be made continuously for the
aforementioned class of radiative laws. It must be discontinuous
and should not be considered as being reached by limitingly small

value of ¢, a or ). Instead § would behave discontinuously.

5
@

|
#

Figure 5 Discontinuous &
It is only in this sense the transition to Guderley's problem is
of a singular perturbation nature. With the class of radiative
laws above what can be effected as a continuous transition is the
problem discussed by Friedricﬁs and Courant,(l7) namely, an out-
wardly progressing spherical quasi simple wave preceded by a
shock propagating into a quiescent region. That the coalescence
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of the field of integral curves occurs for small sound speeds
and/or small effects of radiations (see Chapter 4) brings this
point more sharply into focus. In other words the transition
from one "type", in the sense of specified (k,& ), of a problem
involving radiation to a different "type" not involving radiation
must be thought of in the manner of a singular perturbation.
Transitions between the same "type" problem can be made contin:-
uously. Hence, a warning is in order. If transitions of the
first kind are expected, great care should be exercised in
examining regions in which the self similar motion can be expected
to be valid. Consider the followiné; hypothetical example:

(10) DIy=-K§Ty § esvjrey ) K§=Kfofv
ot

" The general solution to this equation 1is:

m
(105) R A 3

for all values of m and p without restriction. Now:

(206) pER it SO WULED MR



Y
(207) I,W= .Y‘m-“fg’tmafv‘,
(108) §= - %%3)
and for k=0
(109) § = -%1%3

Non constant shock velocities can also be included with k = 0
compatible with radiation laws. Hence for any particular "type",
say the Guderley "type", one could take that value of § and
structure a radiation law compatible to it, and in the limit of
no radiation the solution would go in a continuous mannér to the
non-radiative solution.

3.2 Constraints _

It has been shown that the two parameter family of similarity
transfomations with two-sided similarity is consistent with a
shock wave. The jump equations impose no constraints (when heat
conduction is excluded). The inclusion of heat conduction can be
viewed as a éonstraint on the system. The object of using con-
straints on the-syStem is two fold. First it is desirable to
obtain unique solutions to a specific problem. Secondly in
modeling a specific practical problem by similarity techniques
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the constraints imply definite physical properties about the

system. The reduction of a particular form of the intensity

- into an admissible similarity representation implies a con-

straint on the system and limits the class of homologies and

shock velocities.

3.3 Equations of State

For an Isentropic law:

(110) PE % consTant

then

(111) LR o Pt'nw'“"ﬁ(?): -f(’g)

(112) 7"’-: Y(‘_‘X"ﬂ‘*lt-?\: Y*t'd,\'*
(113) .L: K6 +2 ) b= 2

Hence, for constant strength shock waves preceded by a uniform
state, k and & are ascertained independent of the number of
degrees of freedom of the gas. With two-sided similarity two
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additional constraints can be used campatibly to ascertain a
and k provided the ) and k do not yield a non physical value
for the ratio of the specific heats.

For an ideal gas:
(115) P=¢T

and

(116)  v*RURPy= vRRO YR

Clearly no constraint i1s implied whatever. This result is
expected by virtue of the way the hoamology for the variables was
constructed f‘rom the fundamental equations.

" For a real gas:

Generally the equation of state for a real gas is written as an

expansion.
C
(117 Pv= A+ B + & .,
) v i
< (18)
For an ideal gas A = RT; for a Van der Walls gas

A = RT;
B = RTb-a and C = RTbe.
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(118) P= 3, $"A,
n
(119) Tt Pope R \‘““Rn(f) A LT T)
m .

That a real gas represented by a general virial expansion be
compatible with similarity demands that k = 0, § = 1. The
coefficients can be arbitrary functions of the temperature. In
any region in which a single term in the series dominates the
latter conditions are relaxed. Constraints based on equations
of state restrict similarity by constitutive assumption concerning
the medium. The above discussion has shown that any gas law can
be used with an outward p'rogressing flow preceded by a shock and
uniform pre-shock region. As will be shown subsequently many
radiative transfer laws are compatible with tﬁese conditions.
3.4 Integral Constraints |

For energy conservation consider:

v

. |
(120) E= (?.;.’.. +¢,T+P4 u"/f)\_zdv

That the total integrated energy be a constant, where ¥ is a
variable upper limit, implies the following constraint:
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)
(12) g | e (RO YT v, To,wmnu"m))
R

~ Since

(122) YERVANS

azm  dy= 9%

For a fixed time T and a glven r there corresponds a specific

’? . Hence:

k
2
S R

Consequently:

(125) ()\’() TR, 4 ol

In the description of intense explosion Taylor(lg)

produced very
good results by cambining this constraint of total integral

energy with the limitingly strong shock jump conditions. Thus
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for k = 0 and & = 2/5 the shock speed is given:

5
(126) Vg = %(\ﬂ 7S

-5
(127) P= ’(3()\’() P(’ﬂ

Apparently this result was somewhat critisized since the hypothesis
of strong shock would ultimately breakdown. (20

For the momentum integral constraint:

r
8
(128) M s ?U X JY‘

That the total integrated momentum be a function only of ‘z

requires:
Y
(129) M= | ¢®*3q mpumér
J
7
am M= | S one
J z
(131) \= ‘/kw
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It 1s interesting to conjecture an alternative hypothesis
to that of Taylor for a very strong explosion. Imagine that an
appreclable amount of energy is dissipated, say in a nuclear
explosion in the form of radiation. The intense heat wave in a
nuclear blast precedes the shock. Hence the pre-shock gas 1is
non uniform. This raises the possibility of employing two-sided
similarity. Imagine, however, that the very strong shock con-
dition with pre-shock uniformity is applicable, and the total
impulse conserved. Then k = 0, & = 1/4,

(132) Vo1 ()nUL| v

-3 -4
(133) P=X /2'<>\7) P(z)

The pressure remains stronger farther out from the point of
explosion.

For density set:

A
(134) § = T“ﬁ(?) ‘fzcl\“

“K*3 '3_(_2) A‘z
{
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Consequently k = -3 for all values of §. With this constraint
the continuity equation is exactly integrable, 1.e.,

(Uo'»s)
(u-8§

(136)  [u-813R'tyRUS0 y R= R,

—

3.5 Inclusion of Radiation as a Constraint

If the two parameter f‘afnily of transformation is uniquely
determined by using constraints such as a uniform pre-shock
reglon, integral constraints and gas laws, then the form of
the radiative intensity, its functional dependence on thermo-
dynamic parameters, is limited to those laws compatible with the
constraints. There are always laws which can be constructed
which are compatible with two-sided similarity. The shock
conditions impose no constraints. Consequently, in lieu of
this, the inclusion of more desirable radiative laws can be
used to determine a k,$ relation. As a case in point » it 1s
not possible to use the Rosseland Approximation together with a
uniform pre-shock region and a finite constant strength shock
wave.

A general form for Iv_ that is compatible with a strong or
limitingly stroﬁg shock wave can easily be given:

(137) I,= 1((V,T,E)



(138)  Ttp= N3 () et L)

Hence for k = 0 and & = 1

(139)  T,q= (5 1, i)
(X7)3

For a general power law on the temperature:

WM
(140) I, N4, (0T

I .2n - (Kt3) " u
(141) I,2 v v ¢ 13 T 4,0 4,LL)

The « and '(z are arbitrary functions of frequency and direction

respectively.

. - 4
() TTTRLEEY ()

The implied constraint is:

(143) y= (2n-3) /(an- 3k



- = & -4 —
- s [ ] [ ] L L V. L ] —_——
- - — — — —

3

Forn=4

- S
144 b- —
(14%) S-k

It 1s frequently very useful s prior to formulating the
constraint, to perform the frequency integration which 1is common
to all three operators L('j ) » since the thermodynamic dependence
may become less nesﬁrictive. Consider the fecllowing example:

@s) T . [exp- \i{] 40

This function is of the form first considered (Equation 139) and
requires k = 0, b= 1,

P )

(146) T= . Ib-(m'l;t)tlv& (L) Qxf-%clv‘

6. o

After integration

(147) I - G(Z.(t) \5.1-

h

.o

The post integration form is significantly less restrictive and
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falls under the second category considered, i.e. n =1 and
Y2 Vrey
Transformation for the Rosseland Flux :

In the Rosseland approximation the radiation energy and
pressure are discarded while radiant flux dissipation is included
in the energy equation. The flux in this theory has the form:

T2 3T
TK DY

R
Flz b
(148) 3

This expression i1s easily written in similarity form compatible
with the energy equation as follows:

then

(150) FR(W = 13‘1 T ;":;:'(m)r"_ (T(phﬂ‘)
and

'(151) S = 5/4-1!\
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R I - '
(152) F 0y = % g__g})_ ~(Tc7n-vﬂ' )
(‘z)

Imagine a nuclear explosion problem treated from the point

of view of two-sided similarity using the Rosseland flux as a

means of energy dissipation and assuming the conservation of

impulse:

(153) 8= Sk * Viy
(154) K=~ '6/7 3 8'.‘. 7/”\.
| -5 12./9

(156) P W)ﬂ/? P(y)

The alternate hypothesis herein mentioned are not intended
necessarily to have physical content.

Several observations concerning the physical implications
of integral constraints should be made. The basic requirement
is that the integrand be a function of ? . This means that the

dntegrated quantity is conserved between the integration limits.

More, however, 1s implied: namely, between any two ? limits the

quantity is conserved. Hence, between any two moving points in
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the fluid on lines of constant y the quantity is conserved. 1If
the total quantity is defined to be fixed and ‘f'inite throughout
the 7 domain then the 1ntegr.al constrainf can Impose an asymptotic
constraint on the value of the function. More over the stipulation

‘of a defined quantity can fix simultaneous the shock velocity.

These points are stressed by an example,

Consider the integral constraint on the energy:

1
?m EL\;)J?

sy E

Imagine that two-sided similarity is to be used over an

infinite ? domain. Let the shock position be ?= ? . .Etotal = A

A< ; where A is defined on physical gréunds. Then

(258) THeqdy = A

-]

If E(n) 1s continuous for '?rf then as

(159) yweo y EQ)- O('/f“")

_and for ‘?‘?
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Furthermore, since the integral is conserved between any
two moving points

VI o

(16‘_1) Yk“‘E(‘() clz +* ?K*qE(?)J’( = A |

° ?

When E(n) is discontinuous at the shock wave equation (161)
automatically determines the shock velocity as a function of the
constant A. Of course, in an explosion preceded by a shock, the
energy per unit volume decreases. The converse 1s concluded.in
the case of implosion when the integral energy constraint is
used.

| In closing this section it is noted the integral density
constraint impliés the exlstence of a contact surface. Indeed
every line of constant 1is a contact surface for k = -3. This
constraint can not be used simultaneously with a shock wave by
virtue of contrary definitions.
3.6 Significance of Strong Shocks

The Rankine-Hugoniot equations in the absence of radiation

are well known to be

.(162) YOVO s ?IV‘
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(163) Vo (U P = (fU )V +R Momentum
(16“) fovo ( !l'.uol+ eo)_(-‘iu‘z‘ el)f.\/'-‘ ﬁUI.POUO- Energy
where e = ch
(165) vz v-U U = shock velocity

and for an ideal gas when the intermal energy is proportional to

the temperature:

¥
(166) P: AS

A = A(s) is not necessarily constant.

(167 ot. §f) < 1P T
s 3
For the following discussion these relations will be used.
Several definitions of shock strength are popularly accepted:
the excess pressure ratio, condensation and the relative fluid

veloclity to sound speed. The subscripted S, refers to these

strengths.
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(168) .= 0-f
Fo
(169) S, wie
So
(170) 93¢ Yl
(o]

As before the similarity invariants employed are:

(171) = YRR Y Ve vTluly)

¥-1) 1)
(172) T: {"t'szﬂ |) ¢ 22 ,(K( ')(’\(:7\)

When the pre-shock gas 1= uniform then S, U and T are constant
and the aforementioned similarity applies to the post-shock
region only.

For an ideal gas the jump relations:

(173) - g U= 5, (v-U)

a7h) ?:f;‘-"- %U» (Ua" U) ¥ flTi
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(175) - ro L’ QVTO- [- ‘iull{-CvT]?‘ (U." U) < f'T‘Ul

3.7 ILimiting Strong Shock Conditions

In the limit that TcJ Is small using the initial continuity

and momentum relations:

(176) $oVo (VYo )= B~ P,

(77) (§:6)%Vi= P B

(278) v,V = R
-f )

@t g

In this case S, = @

1

St P‘/U(u‘-u)

For f1s Py» vy, U stipulated then fo has a limiting non zero

value. For this case the energy and momentum relations are:



61

(180) U (U-u,)=T,

(16 [rof+ T Joru]=Ty

It follows immediately from the above relation that for
strong (not necessarily constant) shock waves no constraints
are implied by momentum and energy on substitution of the simil-
arity forms. The continuity equation still demands that k = 0.
If in addition Po"’ 0, % o™ 0 or So is sufficiently small then
continuity implies no constraint.

It is not physically unreasonable to consider the latter

possibility. Then §, = 5 =, Furthermore Cy = hﬂ; , then s3 =co,

A1l the definition of shock strength are consistent. Very strong
explosions or implosions f‘rom a point could bé approximated under
these conditions. |

If the shock wave 1s to be constant strength then Ul/co = tongl,
constant directly behind the shock wave. The use of o is overly -

restrictive. Introduce Ul/cl = constant. Then

-1 _
(182) T ‘ucz) ‘_Ku-n/;, m’l)“ W2

1s required to be constant directly behind the shock wave, there-

Snele
roe it must depend only on ? .
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(183)  yt! _ (_f_%\)’“
YT VIS M
(184) " k(?)t" ] \(.L.L..(&
(185) ys : - K(¥-0/2

This is the same result obtained in Friedric}‘es and Courant;(20)
the k,§ relation for an isentropic gas and a constant shock
strength. Since the shock trajectory is a line of constant
and its strength is to be constant for all r and T, then either
r and 1 must cancel fran the jump equations or must be represent-
able as functions of 7 Suppose the homology in r and T cannot
be reduced to functions of7 » then the jump eguations depend on .
position and time. Hence the shock strength cannot be constant.
This is evident in a Straigtlt forward way fﬁom the continuity
equation. Therefore k = 0 renders the jump equations consistent
and implies from the k-$ relation for an isentropic gas that § = 1.
An ideal non isentropic gas is trivally consistent with k = 0,
=1,

The most plausible hypothesis for explosions for example
revolves around non constant shock strengths. The shock 1s
initially strong and its strength decreases with distance. The

Jump equations using the similarity forms are:
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(186) - go'ﬂ:" U= "o Ry LU,(’?)-U]
asn T € ':*l [gm U (Uem-U) + R.‘(\;ﬂjm}

(188)  -% Ue L L - _{f”(.‘iu:‘* cv'ﬂm)ﬁ‘(u\-U)
° ° T

*_{_‘_‘;3 (erz)'\"‘(y)u,(»,J)

From these equations it is clear no possible way exists
Qithin the framework of pre—shock uniformity to consistently
satisfy these relations for finite shock strengths without setting
k =‘0, o=1. The only laternative is the use of the jump
equations as initial conditions for integration, while the post
shock initial condigions vary from one time interval to the nex?
assuming the pre-shock conditions are constant. Hence a parametric
family of solutions for independent invariants for the post-shock
region could be developed on time or space. This may not be a

totally unreasonable way of avoiding the partial differential

equations and treating non constant finite strength shock waves.

The similarity expressions for the shock strength are:



(189.1)

or

(189.2)

(189.3)
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Suppose the Jump equations are abaﬂdoned in favor of a modeled

continuous solution across a transition region proceeded by a

uniform region. From the similarity form of the shock strength

relations it is still evidently not possible to discuss finite

strengths shock except when k = 0 and & = 1, With these state-

ments in mind the 1nitial metivation of employing two-sided

similarity‘is clear. With two-sided similarity the jump equations

1mpose no constraint. And

(190.1)

&?UAW/ ¥ T
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(190.2) S, kR‘m) »
R. M)

(190.3) Ss"' (Pm ‘)
Fotm)

The shock strength can be made consistent for arbitrary k,$b pairs
for finite strength shocks. The shocks, however, are still of
constant strength. Indeed, it may be concluded that except for
the 1imitingly strong shock problems self similarity fundamentally
requires constant shock strength. A further remark, the physical
implications of constant integral density is incompatible with a
pre-shock uniformity since k = -3,

3.8 Self Similar Motions

Curves of constan’c? are traditionally _of the form:
&
(192) r= Ay T

\ ST
(192) Y Yooz Srerla T T

In modeling solutions to a particular problem it is not
necessary to fix the shock wave to a path of constant 7

characteristic transition region may be introduced to facilitate
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description of physically realizable non zero thickness shock

waves.

Figure 6 Transition Length

The assumptions inherent in a similarity formulation are visually
apparent with the introduction of this length. While mathematically
ane locates the shock on a line of constant‘?, one recognizes a.
shock wave does not have infinitesmal thickness. The similarity
approach dictates a behavior for this thickness. The equations
derived in the previous chapter are not necessarlly sufficient to
describe a shock transition region because that the only loss
mechanisms included are the radiative flux.

let the space-time domain in Figure (6) threaded by curves
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of constant be divided in three angular regions:

193.1) (= >e)

(193.2) (%z127)
(193.3) (0202 7)

These regions would correspond respectively to pre-shock, shock
transition and post-shock regions. A sinple formula for the

shock thickness can now be written:
S ()= Mg )48
(194) AS— o Yo )= o {y

For the case ( 0 ); ( Tvo ) and time increasing to infinity
then Asveo corresponding to an explosion from a point. The
Jump conditions ma;y'be applied for pre and post-shock integra- ‘
tions initiating from ’7° and m respectively. For the shock
transition region values given at both end points over determines
the integration proceedure. To discuss shock structure it may
be required to broduce centinuous solutions to equations whose
structure typifies the particular region and abandon the Jump

conditions. This question is open.
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Figure 7 §>1 Figure 8 12870

In Figure (7) where $%1 and if t(e = 0) the lines of

constant 7 bow toward the time axis. This motion is non physical
. and improper for descfibing implosions. The behavior is simply

the inverse of the explosion problem. This fact is of course

obvious since 6> 0; ¥> Oand 12 0 implies V, > 0. In

Figure (8) for 1> 3 2 0. The lines of constant » bow toward

the space axis and A2 w as T2e for T > 0 but more slowly.

$
The division clearly occurs at &= 1.
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Two alternatives for the description of implosion motions
are properly described by Figures (9) and (10). In Figure (9)
the motion is "hyperbolic" since & is negative. For 120,
840 and Cr ixr'xplie‘s A, 0. The shock wave in this case
takes an infinite amount of time to reach the origin. In
Figure (10) time is negative therefore v shock is negative
T(-o, 0) and & >0 the shock converges to the origin in a
finite time and b 0.

3.9 Translation and Finite Surfaces

3
Traditionally curves of constant y are of the form r = )\7212 .
Dlscussions of similarity motions for explosions and inmplosions

revolve around the singular point corresponding to r= 0, T = 0,
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Lines of constant ? converge or diverge from this point. The
point at infinity is also a singular point. To reiterate, a

contact surface can exist along the space or time axis in an

. infinite problem without imposing an integral constraint. It

is instructive to envision the Euclidean plane with its lines
of constant n mapped by stereographic projection onto a sphere
located at the origin of coordinates. The two great circles of
space and time divided this sphere into four sections.

3.10 The Effect of Translation

Consider the primary system of fluid equations:

(195) U Ly W - L0
¥T d% § dx
(196) g*?w+uﬁ=o

at X Y

(197) u = 2%} vy

(T-Te)
(198) f= (x-xofﬂm
(199) P= Aﬁfz A(x-xo\ﬂﬂi;)
(200) Y = (%-Xo) /(T-To)®



(201) El = L i
¥ (x-x) T 3t (TT)

~ Transforming the Momentum: the LHS is:

w0 = L (sl g v )
\

(T-T, )¢ (rt,) (g (ot
and
N ::"'{'c")i (‘IU\M\(U-&\N‘—U) =
%)
-1) )
Aks (xS e W]
(x-% )"

The isentropic equation of state implies:

(k= 1)-(k-1)
(204) (t~t°)2 (X-%.) . 7“

(205) o=~ z/(*cf-l)(K-')

Transforming the continuity equation:
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K K
(206) -8 (XX qﬂ' ¥ (X% (\; u‘+U)n v ("‘_,_"_QK(U Q') =o
(-To) \T-T5) (t-G,)

The above equations hold for arbitrary coordinates.':The
energy equations transforms similarly when isentropy is not
assumed. Hence it has been shown that the equations are in-
variant under translations and maintain their self similar form.

The similarity variable 7 is of the form:
(207) 1 (x-%5) /T.8 y T

In spherical coordinates the points ? = 0 is a vertical
line parallel to the time which describes the time revolution
of a spherical surfacé of radius r = rye Frbm all points of

this finite surface the lines of constant ?’diverge (converge)

f

A

T

3
v

/\—‘1

v
o

Figure 11 Finite Surface
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In cylindrical coordinates with axial symnetry and z independence
?.= 0 corresponds to a cylindrical shell. Naturally, in plane
coordinates with x and y independence 1t corresponds to a plane.

Looking into quadrant (1) where T> 0, r » rowithro r+ ry
explosions diverging from a finite surface can be investigated
with a shock wave positioned on a line of constant'z . In the
region T»> 0; r ¢ S R (rb ~ r) explosions from a spherical
surface creating a wave propagating to the origin can be described.
One notices that for this type of implosion:

(208)  Ag= M'l;")o\T—is fory 8505 Tv @
(209)  Ag e

Thié represents a characteristic increase in the shock width as
time evelves. The converse of the problems mentioned can be
investigated by looking into the 3rd and 4th quadrants.

Scme physical problems that can be associated with these
motlons might be mentioned. Using the radiative gas dynamic
equations for ¥y 0 time T-w, U >0, it would not be im-
plausible to describe a radiating exploding star in vacuum. A
contact surface could be used to represent a matter-space inter-

~ face implying k = -3, A gravitational force could be included.
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Using T<¢ 0, T4 0 from-w, % 0, A0 orbd < 0, T>0, T-w

A0 an imploding shock wave in a radiant gas can be discussed.
Further, a contact surface at infinity can be imagined to be the
impleding force implying no constraint. In both cases N = /).
For the finite spherical surface, focusing attention on the
region T > 0 for &> 0; r,>» r> 0, a shock wave imploding to
the origin can be discussed. In all cases these solutions are
to be considered carefully for regions of physical applicability.
They do not hold in all regions of space and time. Again, a
shock and contact surface can only éxist simultaneously if they
are in coincidence, but this case is to be ruled out by contrary
definitions (contact surface not at w).

If T-al, r- br, where a and b are dimensionless numbers,
this represents a uniform contraction or dilation and simply
represents rctating the field of lines of constant7 .

3.11 Superpecsition of Self Similar Motions'for a Problem of an
Imploding Sﬁock

Almost definitely a given problem of physical interest will
not be analysable, in totality, cn the basis of self similarity.
Hence to model a solution it may be necessary to model the motion
in a piecewise self similar way from one region to the next.

Consider Figure (12).
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Yo, Fipure 12 Plecewise Model

Let an explosion at r = r,on a finite surface occur gener-
ating a shock wave pmpagating inward and for rjer 4 rs 3> 0,
To o from zero. The solution can be joined'at ry to a transition
region where the shock velocity begins to diminish, i.e. §>8"> 0.
This region is joined to a third region where the shock takes an
infinite amount of time to traverse the interval (r2 >r>»0). .
Here & ¢ 0. At the points ry and r, curves of the same 7 for
different % can be joined. The solutions cannot be made valid

generally at the juncture points ry and r The homology which

2.
depends on k can be preserved but the invariants are generally
discontinuous at these points. Failure of a solutiocn in the

neighborhood of a few points where solutions are joined 1s a small
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price to pay. In the region (r0> r>r), 1is of the form:

(210) 1= ( %)

These remarks on plecewise self similarity can be viewed

upon as concomitant with the hypothesis that & in the general

case of non self similarity is ¥(t), and over the time intervals

corresponding to the portions of space (r0 >ro> rl), (r-1 Yyr > r2),'

(r,» r20), § (v) 1s approximately constant.
Shock Wave at the Origin

No adequate description within the framework of self similar

motion exists to describe the reflection of the shock wave at

the origin. If the criterion of critical reflection radius

exists it cannot be formulated except to conjecture in an ad-hoc

way that the self similar motion breaks dowﬁ and is invalid be-

yond this point.



CHAPTER IV

ANALYTICAL AND NUMERICAL PROBLEMS

4.1 Introductory Remarks

The numerical problem herein discussed concerns an inward
propagating shock wave which is coﬁpletely opaque to radiation.
Frcem this problem the conclusion may be drawn that the effect
of the radiative transfer 1is the cooling of the gas directly
dovmstream of the shock wave. Consistent with a uniform pre-
shock gas and the embedding of radiative transfer laws, the
implosion velocity is constant. The problem is posed on the
basis of the following statements.

a. The upstream (core) gas is quiescent with zero velocity,
uniform density and uniform non-zero temperature.

b. A shock wave.is defined to exist on a line of constant
=1

¢. The shock wave is opaque to radiation. This means that
in thé heated radiant post-shock gas the net radiant flux diverges
away from the shock.

d. The initial conditions for numerical integration are the
initial post shock values i.e. U(}), T(;) and R(}). Further, the
'shock velocity is stipulated.

In the model considered, the radiation energy and pressure

7
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are excluded. The radiation flux is maintained as a dissipative

mechanism in the energy equation. This is reasonable because:

R R

.E, = Q)= 'E'
(211) FR uR

The radiation quantities could be comparable in magnitude for
dense materials or equivalently for a large index of refraction.
In this case the radiant energy might be trapped over locally
small volumes. The model problem presupposes that the post-
shock gas is not optically dense.

Sltuations can arise in which all radiative terms should
be included. An example of this might be a dense radiant star.
In laboratory experiments the primary influence of radiative
transfer effects, should they be of importance, is manifested
by the flux dissipatién in the energy equation. '

Problems may'be considered in which the heat flux (radiant
plus conductive) has zero divergence. The radiation pressure
and energy in this case augment the analogous fluid properties.

Equilibrium assumptions of same type are usually employed
by experimentalist to establish a relation between the density,
temperature and.net radiation. The black body distribution is
commonly used even by theoreticians. It is ludicrous to abjectly

discard these theories as inaccurate. Deductions based on
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equilibrium hypothesis in a region quite strongly in non equili-
brium (the shock wave region) should, however, be subject to
scrutiny.

A procedure for analytical approximation is illustrated by
application to the problem in which the divergence of the total
heat flux is zero.

4.2 BEmbedding of a Radiative Transfer Law

In the numerical calculation the Rosseland flux hypothesis
could be used. The proper similarity form for this term was
derived in the section on constraints. In a strongly time de-
pendent problem the validity of the assumptions required to
formulate the Rosseland flux approximation break down. More
convincing critical statements of this popularly accepted
hypothesis cannot be made. The correct law to employ in a non-
equilibriﬁm region is unknown. The use of the Rosseland flux
raises the order of tﬁe energy equation to tﬁo. In general the
inclusion of the fadiant energy and pressure terms with a
Rosseland form for the flux, requires two k, § relations. It has
been shown that giving a similarity form to the radiative intensity,
while retaining the expressions for the radiant quantities as
integral operators on the intensity, requires but onevconstraint.
This lends credence to the point of view adopted in Chapter II,

Unfortunately, appropriate cholices of radiative transport

functions appertaining to laboratory experiments is an exercise
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in academic conjecture. Therefore, a law is postulated in an
ad-hoc mamer. The numerical experiment is to be viewed as an
1llustration to which no profound physical significance should
be attached. For just these'reasons, laborious numerical

analysis of the entire system of equations is without signifi-

cance.,
Postulate:
a. The material derivative of the radiant intensity is zero.
b. An anisotropic angular dependence of radiation.
¢. Exclusion of scattering.
d. Black body frequency dependence.
e. Admissability of a mean absorption.
It 1is realized that these postulates are questionable.

The radiative transfer equation is:

_‘...EI *—E)_IV=~§3I *1..
(212) I Flrlytdy
(213) By =T« xy
(214) TEEAE

The quantity Gi is the loss due to scattering and j: is an

effective emission due to scattering in a glven direction frem
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other directions. With the five postulates:

(215) gk, Ty = §15= {6y

A mean absorption may be defined:

S K,,f :lv'
(216) {Ry> =

| 4w

vhere f is an apprcpriate weighting function.

(217) T-= -\‘; SB-.,c\U'

(218) 1 ccTi
Then
Ul
R Y .
(219) F oL | T &(0) Cosedw
-]
Consequently
20y e T
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The propertionality constant ¢ includes the Stephan-Boltzman
constant, the mean absorption and integration constants. The

only relevant part of this constant is its order of magnitude.

Hence

(221) v T,= fe ot

then

(222) P\‘Hzt' : L"Lv.: e ¢8c 8 Tty

Using the homology for Iv given in Chapter II compatible with

the energy equation, one obtains:
\‘:’ . S-K Y T
(223) F IV. = X Tt (\z\

That the R.H.S. be a function of 7 only implied:

(224) §: §/sx

and

: &
(225) \rSKt"z (A7)
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(226) BLT, = o0 Ty

In spherical coordinates the divergence of the flux is:

R
Gany  gopR. 2E, aF"
DX Y

In similarity form the R.H.S. becomes (see Chapter 1I):

(228) F(k&&‘) Ll T, + 18 L I;,CM

Also
: s 4 g3 !
29y BL T 0N \quT(w yyS T ]
b ) Tl
(230) YFLIV(n): LIV(M[:“Q?.}
The flux dissipation becomes:
1 ' \
(231) (ki) LT, ) rgpl o T
=

The specific form of the function °<1(L) is not consequential.
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The sign attached to the flux term prescribes the directicn.

4.3 Numerical Procedure

The simplest procedure for numerical integration is seen

from the following example.

(232) Y5 X0 Y= Y,
then
(233) AYZ Y'AX % YAX

For fixed aox = h, then:

(234) A'Y = Wy (xAmhY
and
(235) Y 2 Y;«? NN

Consider a system of coupled first order differential equa-
tions in which it is possible to solve expiicitly for the deriva-
tive in terms of the functions. The equations can be put into

the form:
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. /
(236) Y) = Y‘,‘(Y‘)q)
A natural procedure presents itself ‘for the integration. The

equations in the problem to be treated are, of course, non-

linear. Define a sequence [k‘rj]] vhere:

) () )
= R A
CHRVI R AR DAY, X+ Rn ) 47

The range of J equals the number of equations and n = 0, 1.

2

For n = 2,3 use:
. ),
(237.2) VER A (l'-il- AY

With this:

= -

(238) ESACN

2

(239) Y : \jo.. 1_\,\33‘

This scheme reduces to Simpson's rule when yJ =y 1(7). Clearly

the system under discussion is amenable to treatment by this
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method.(‘?l) It is required to solve for U'(n); T'(n) and R'(n)
as functions of R, T, U.
4.4 The k-$ Values

With the condition that the pre-~shock gas be uhif‘ohn with a
non zero temperature, the Jump equations stipulate that k = 0,
§ = 1, which has already been shown. The law FR = ™ is com-
patible with these values for k and ). Indeed, 4f it is desired = -
to discuss a limitingly strong shock propagating into a uniform
region then k must still be zero and with this radiation law -
=1, For thé significance of this see the discussion on
limitiné;ly small radiafioh effects .‘ |
4.5 Immediate Deductions

Before any numerical computations are effected, the important
physical consequence of the model can be ascertained. Since & is
constrained to be unity the shock velocity 15 a constant. Propa—
gation is inward alozig aray r =\T. This is more than a2 con-
sequence of pre-shock uniformity but also of the radiative law.

If the similarity relation for L‘(Iv_) is evaluated at 10,2 .
relation is established between the shock velocity, radiant in-

tensity and temperature in similarity form:
- ! - - (xn)s-..rq- &‘ T:‘.‘
(240.1) p L I =0 (A * % Venoew | 1 -

Hence, 1f any two quantities can be observed experimentally then
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the third is determined. The radiation law hypothesized to apply
for a given situation can be checked. If the model of an ex-

plosion from a finite spherical surface is used then for a finite

 "shock thickness":

(240.2) A& (M NT

A.; increases as U increases or, in the case that 1 goes from - o
to 0, A g decreases. Hence the gross features of the model that
can be checked by experiment are directly computable.

The object of any extended computation is to ascertain
the structure of the variables away from the shock proper. Most
usually this structure cannot be measured 1n. present day experi--

mental appartus.

4.6 Equations

(1) RTu-1) +3RV + nU'R Continuity

(242) o) [nu'u) *{U‘z%'] TaqT' Momentum

(243) Qv[u-cj\('r;zcv[\)-l] T

=.7( 3umu‘,]--l_f_ﬁ (|o ::szj:vj)
aR Enerey
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The ideal gas law has been substituted into the momentum equation.

Rearranging the energy equation and substituting the similarity

expression for Iv. yields:

(2hb) \T'[_cv(\M)Ni‘g‘“‘r}],\'r[_zcv(u-\)+3umu'l'
L |
A

where o= °'/ a

In order to facilitate manipulation define the following:

(245)  Q=Lu~1]
u6) P [“-\;Q + 4T YST? ]
R .

Solving for T' in the energy equation and substitution in the
momentum equation, and similarily solving for R' from the con-
tinuity and substitution yields:

an [yl () ety

~(nle@liqv'a30) e =0
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and

(248) WU'[Q’%;—'%]*[& 3. A0LQ . 2u]-r

e

QR PP

- lo& 4
ff_;fil tUQ =0

Forming the quotient and multiplying numerator and denominator
by Q.

u' -[1P@~3up-zch‘~3uolT+ \f:zfl'"q uqQ'P
= R

K ‘_(‘QETW-QT]

(249)

-

Now.
: 2 - .
Lpa= 2,Q+ 88y T 0
| - R |
Substituting the above and dividing numerator and denominator by P

v (BuT-u) wWTe/p 28 T e
U= R P
(250) -

wL(RM) -9/




90

From the momentum equation, the derivative of the temperature-

is most easily expressed.

: “ (U113 La- w‘*gu T
(51) T'e - JAA et )]
{

(2) 7' [pu'+ulQ= (u'suin)T

f?i‘(i |

The density is immediately determined.

253 Rz ~R [3uen0]
Q¥Y A

In the (kg) sequence J goes from 1 to 3, where ki corresponds

to the velocity increment kﬁ to the density and kg to the temp~
erature. Since U' 1s contained in the'expression for R' and T',
it is of course necessary to compute U' first then either R' or

T'. In this computation the value 3/2 1s used for the specific

heat at constant volume. Assuming teh equipartition ﬁheorem,

this corresponds to a gas of three degrees of freedom and yields
a specific heat ratio of 5/3.
4.7 Singularities in the Field of Integral Curves

It is fruitful to examine the vector field of fluid velocity

versus sound speed. This has been done for the case k = 0, § = 1
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when nt:I radiation is present. (22) In general 1t is a formidable
undertaking to produce these curves. The singularities that are
encountered are more ea.s_ily divulged. | Needless to say no deduc-
tions based on the cunfes with radiation absent need necessarily
be extendable when arbitrary radiation laws are introduced. Each
law determines a different field with different singularities.
Since P =¢ T, then the sound speed is effectively ¥T. Taking
the expression for the derivative of the temperature and dividing
by the derivative of the velocity the following results:

T ‘;(\u‘w]Q"- (nukum-\-“dgT_ Q/PT]‘
254) Y. =
(254) du Q[(3UT—UQ1)+3UTQ/9 *1'@75-‘-4 Q/e.l

Resubstituting the expression for U' in the numerator:

It [ugx it 4]+ U'—LQ"‘.'{-“-L]

(255) .2

v Qlel alel
oy 4T . [uarwT]i] +[exT1l6]
du
call V= et

251 dT= 3cde

¥
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(258) C‘C - [. UCQI‘(.U'\"JC\/'G'][.“] *[Q“Cz/x]iﬂ
du  zeql (3ue¥g-uqt)t g %l”“f?STqQIP]

The slope is infinite when the denominator is zero: c = 0; U=0;

(259) \_(wc LuQ) ¢ %%’w 287 ch‘\ =0

It is immediately noticed that with the introduction of
radiation ? enter's explicitly, a situation which hitherto did
not occur. The additional contribution in the denominator due to

the radiation is:

- 5 %'
(260) ( w>

X8 p

When the radiation disappears the expression reduces to the old
result.

4.8 Discussion of c_

The ideal gas law has been written in the form

(261) Pyl 5 E=GT



and E=c,T

The implications of this are immediate from the second law of
thermodynamics: |

(262.1) Tde = du+pPdv

(262.2)  ds= c\,é_.r'E + g e

¢
(262.3) 2xp8-55)= T V( fo _Bc,)
f

' i
(262.4) = AQXP(S“So\S(HQV)

Hence X = H-‘/Qv

usually Y= i+ R/Cv

Hence cv as used in this formulation:

(263) ¢, > Sv/p = Va
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For three degrees of freedom cy T 3/2 and = 5/3 as aforementioned.

4.9 Conditions for Numerical Integration

The shock wave trajectory is determined when 1is given to-
gether with . For an implosion wave, the shock velocity should
be negative. This can be procued by ahy of the following conditions.

a. 530 (M) v{TtoYA(rYO)

be o0 (M0 YN (T2 YA (¥>0)

¢ 850 3 (MolA (Too)v(Yr0)
The case "a" is used in this problem.

A reference length and time are usually employed in the non-
dimensional formulation of the orig;inal system of equations. The
quantities employed in this section can be thought of as non-

| dimenslionalized with respect to a reference length of one meter

and a reference time of one second. ,

- The dimensionless shock speed 1s fixed at - 103. That is,
)‘i = - 103, In view 61‘ the above paragraph, the conversion to
physical units is’effected by a multiplication by one meter per
second. In the pre-shock gas the fluid variables are assumed
uniform and are not stipulated. In order to vary the influence
of the radiative flux term the post-shock initial condition for

the temperature 1s varied. The post-shock conditions for the

~ dependent similé.rity invariants associated with velocity and

density are respectively U(7) = .95 and R(p) = 1. Consequently,
the dimensional initial flow velocity would be - 9.5 x 102 meters
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pér second. In the shock fréme of reference the post shock gas
1s moving away subsonically from the shock wave.

It 1s obviously not possible to stipulate all of these
quantities consistent with the same pre-shock conditions for
each value of the post-shock temperatufe. The Jump equations
impose constraints on the proper values. The shock Jump con-
ditions need to be solved numerically. In lieu of this, the
initial conditions chosen are those which one might typically
expect to find in a laboratory experiment.

To establish accurate mathematical and physical initial
conditions for the solution of a glven problem is an horrendous
task. The shock Hugoniots would have to be solved numerically
for triplets of pre-shock conditions and for positive and negative
values of? . The Jump equations are not necessarily invariant
under a change of sign af?. Therefore, a set of pre-shock
conditions suitable fof a positive ? regime are not necessarily
suitable for a negétive ? regime. The field of integral curves
should be determined together with all sonle, subsonic and super- |
sonle regions and singularities. A particular problem may be
represented by one curve in the vector field and appropriate
initlal conditions established by discovering where the integral
curve intersecté the surface generated by the jump conditions.

A discussion of this approach for a non-radiative problem can be

found in the paper of Guderley.al) With radiation the difficulties



-

96

are multiplied.

In the problem under consideration, the temperature across
the shock wave 1s discontinuous. This discontinuity is compatible
with an opadue shock wave. '

4,10 Results of the Computation

The density and velocity fields for all practical purposes
do not vary appreqiably over the integration range for each
computation. This result is not unexpected. Consequently, the
curves for density and velocity are not reproduced.

The effect of the radiative flux is to cool the gas directly
downstream from the shock wave. The temperatures in this region
are lower than what they normally would be without radiation.
This statement 1s validated by considerations of section (4.9).
The relative decrease of the temperature is, in each case the
same. The asymptotic value approached is hiéher for higher
values of the initial conditions. (See Figure 13).

The situation of constant shock velocity, a lower than
normal downstream temperature and a constant shock strength are.
all compatible and represent a plausible model, at least in the
gross features.

4,11 Analytical Approach

Frequently insight into the nature of the problem can be
obtained by approximate solutions. Several calculations are

effected in this section illustrating an avallable approach.
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A limiting case of the computer experiment is subsequently
produced. The assumption is made that the contribution due to
radiation is negligible. The quantity U' is then:

| U [_Q?:':’:T“ 3 P/'\”]
(264) U XY =—
-, ¢ Letr-air]

The statement P % ch can be made, but is not necessary, since

by inspection:

(UO’Y«)
Consequently:
- - (3‘4)00 J
(267) A= RQQ'XP )Z(U_’?.g) ?

Hence generally:
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(%)

| . 3edl)
(269) R = R, [ VU~’1*] X
X |

The temperature is established from the momentum equation, which

has the form:
!
(270) BT 5T 43,=°

The solution to which is:

(2r1) = [*xe']%j’l J'%[““?H&l{]%

(]

(@12) Gy fm aang'y Sy= (unprub)
R

'
(213) T= AxP-j( —‘% - (304, )‘l’l}"

M%)
([ (- A (i d L(30g
J - Lttt g (5G]
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3-d -
(274) T“Z'l(."_i )‘:C -8“‘*“’0
Uyt

.o (%
(275) N - - (\-J‘)Uo(n*) (o( ‘H)

wAHuN) 7"

(Uo' ‘l*)' /4

No general integral of N is available. The above form breaks

down when « 1s one, setting N = T0 preduces the desired result.

For { = 1, the forms follow:

Sinilarity
U= Vo /y
RR, (Vs ) " R= R,
| 2
BRI Bl
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.L =
3r/Q% ¢¢ 1: this is true for »>>3 since MAX U_ = 1. For
A=3,U

—

should imply for validity of the approximation that

U P and R =R,
(276) N= 2| Y (Uo"?s)‘i?
?5’

3
(277) N = (..‘ie. } zuo) ¥ tonsk avt.

@18) Tz e - Y

73 Int
'y
(279) T = ( 2V . .\_)9_) + Constant
T

To digress, it is noted that the temperature diverges as
7'9 0. Appropriate values for 4 are to be computed on the
basis of initial coqditions.

In the absence of radiation the energy invariable leads
to an invariant when k = 0 and & = 1 in planar, cylindrical and

spherical coordinates:

. (280) C\,Y.U'i]*ﬂ'fncv'rtu.;] --TLgv "‘W‘]
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P»= 1, 2, ‘3 corresponding to the coordinates mentioned above.

But

(281) - Lovenv] g
To] R

Hence dividing the energy equation by [U - 1] 'I‘cv and inte-
grating results in:

2
(282) }_.I z tanslom®
RY/<v

This leads to the result s = Sg0 & constant. -Hence k = 0, 0 =1

corresponds to an adiabatic motion as expecte_d.

4.12 The Iterative Scheme for Arbitrary Flux Laws
(283) Q: Y._U-S]

- e B }_>__I__v]
(284) P- [ v@ oo

Writing the energy equation:
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(285) e Lu-s1yT '+ 2¢, [u-1] =-T [3U4ny']
- (R BTy n L By R

(286) DI,

oy °

}IV’\{“-\- BI""]R# _%__)_21/'\?

then

(287) ’IT . 'T[zc (- l)+(3Utnu')+(f;+;'LETv- frfé’?
1

Substitution of this expression into the momentum equation
produces the desired isolation of U' required for the previously

Suggested iteration scheme. Using the continuity to eliminate
? N
g— in terms of U.

I A _ Lireztuenuty 26 (u-1)
(288) Q‘?U + U~y +[(kiz) x { _ "5"

_Ls‘UMu") (R+s) gL @V é_T_v \Tw[(“*:"‘“*"”]]_

P aRT P PeRTB‘( PR PQaT

Q-T-T+ Iy |- UV (R T+ (RIUT
(289) ’zU QP foRQ3 ®

& A0, (U-)T/p 4 3uT/p + (Res)PTr/aRP Y

BI\)— }Iu-(h-\ﬂ
S?ﬁP 67 MR ap

4
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- (290) ols (Rn,s)
M (LW9)
(291) f'-- R ‘_(B‘l-h)U'\' (RUSY/(L Hs)]
ki N
and

: ] | x
(292) . YT= (RHS)-HAQ-\(hnM R' |T
! Y i

Equations (290) through (292) are the general iterative scheme
for arbitrary pairs of k and & and for arbitrary flux laws.

Similarity representation for the entr'opy5 From the

second law:
(293) §=5, +Lln (P g’")

@ seserLa™ Rey Ton ™)
(293.2) = S +bn [_\*K("“”‘T-z ]To,) Ry ¥
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(293.3) e t/atd
.l/
2 Xy /%

(293.4 1= (n)

“§)ve- s (1-¥K)
(203.5)  S75,+ Ln L AN ] oy nepy T

4.13 Negligible Radiative Transfer-Heat Flux

The discussion in this section bears upon problems in which
the divergence of the sum of the radiative flux the conductive
- heat flux 1is either negligible in comparisor; to other terms or
Zero. Explicitily:

- (294) v (%(”:R):o
The momentum and energy equations are respectively:

(295) wzu'[u-s]w':u,Vm\,hR']TmTu
+(kn\L IV@, *'zl:__[’__tv i E..V‘C .

(296) [u.g][ﬂ'c *QQ_LIV- 7&___vf\ QE.E[V‘C"]

aR arRe @

rten [re B 25 e 5 oo
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In order to widen the class of readily manageable problems,
an artiface is introduced. Define:

g
(297) ¢,z —Y
v U'Iqr

Hence, whenever the ratio of the radiant energy to radiant
pressure ylelds an acceptable value for the specific heat at
constant volume of a gas, the statement may be made and will

be proved that the velocity field is independent of the thermo-
dynamic structure of the radiation field. With this artiface
the specific heat is related to the angular distribution of the
radiant intensity. The range of specific heats is determined
from total isotropy of I to total undirectionality. For these

two antipodes of the spectrum of angular distribution the fol-

" lowing results. When I .- is totally isotropic:

(298) U= T, =y
R v, UR
(299) P=L1,= 'w_1=-3-

Hence c, = 3.For 1. strongly anistroplc, The MAX AR TR
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(300) \ jk@) tos'e wnode ‘ & \ 3"69\ tno do

Since MAX (Cos ) = 1 then UF = oF and ¢ = 1. Thus the artiface
introduced as a mathematical convenience, usable on its own
merit, is acceptable physically since realizable gases correspond
to admissable quotients. To digress, this raises the question

of the relation between the number of degrees of freedom of a
radiant gas and the angular distribution of the radiant intensity.
What would be the effect of a magnetic field? ©Dadwne:

o
(301) 2= T+ LLv
aR¢
.. R' 12T, ' _
Adding and subtracting R are from the momentum equation the

energy and momentum eduations in terms of z .become:
(302) ¢ 7 e Lu-81 42 2 Lum1)=-2 [Butqu’]
¢ ! ] 2
YOTu-§ 7+ (Ri2)+ QR |2+D2 +VU=-U=0
(303 yvlu-s] K L AR

The character of the above equations with z in place of T re-

sembles the non radiative system. For the case R=0, § =1
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the energy cquation ylelds an invariant, dividing by Cy z[U - 1]:

i

(304) I S
2 7 GvR
(305) (27) = constant
R'/(v '
(306) VTl (cmt.- W1,
; R.,CV o RK
2,0
(307) gz §,+ Ln kﬁohsr"? L—_lv\)
aR”

Clearly from the energy equation:

(308) £z Z ex [Mﬂ J Ay
ot eyplu-87  qlv-§] !

Using the continuity equation, it follows that the momentum
equation can be written solely in terms of the velocity field.
This implies the velocity field is independent of the form of

I, since the latter holds for arbitrary z.

4,14 Approximate Solution

Again, isolate U' from substitution of the energy and con-

tinuity expressions into the momentum equation.
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(309) hu' [u-8)+ulu+ \um\- (R¥3)UsnU! [_3u+nu']].=.

Lu-$1 ¢, =81
vl g l zo
Lu-%]
(310) ' :
' [@- L) 2] =
SV u-(Re 2+ [ RE3+3/¢,) U 4 2[U-1]%
TR
1 -
-~y +U-(Re2) ki3 43, YEV & 2(U-M2
(311) }lul , U+ 102 +( c.,) e

Q- (1ri/e,) 2/q

Multiplying numerator and denominator by Q:

(312) wu's ~ulu-NQ-(ke2) 2@ + (ki3 3o Y2u s 2(un2
Q*- (1+1/e,) 2

Rearranging the numerator:

[Fu(Qeu-n-382)+( (hn)&-l)i‘]
Q¥ 2

Assuming z/Q2 2 const.
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on o [t fos]d g

The physical significance of the assumption z/Q2,vv, constant 1s

that in the shock frame of reference the work done by pressure

forces is proportional to the translational energy of the gas.

R
" Consider the simplest case when %= 1,¥R. Call: a- l 35‘\] L:(\ X

1-¥4

(315) ‘\lu'=-au+\>

¢316) VERY/ S A

] -
R . . Likas a2 {blasy qub\;‘-'\l‘—-\l

17 12
R Loy ®eb/a-s]

(318) R=R, Q“P )[([R;S-&)(U o¥ ] :IO‘)“D] A‘
ot (-8 ]y

The momentum equation is of the form:

. )
(319) f2'vfrafeo



111
(3200 Ary oy = (hen ong') b Lo-811nut]

" The standard solution is:

. ¢
(321) %= ’*“P“X%l‘l ‘,_-i up&i_ih]éq

These expressions for z, R, U are for arbitrary 4 and explicitly
include parametric dependence on the homolog;y number k.

To digress, in planar coordinates the similarity equations
are altered by virtue of the divergence terms. The momentum

and energy equations are!

I 1 [ Rusnut] ‘.
(322) “’tU(U'5)+UTU+{(*<*Z>‘W]%+‘72 o

(323) 2[Rl e Ez.v[umu']

The velocity derivative is:

' [-U(U—I)Q + [ +'/cv]“'2Q +I_(hm8-l]%
a2 (1+7,)]

(324)  U'z
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An equation which is almost identical to the previous. Set:

(Rt2)b-2=0
dz 1 = \‘i.=o

then

(325.1) v's - Uy

(325.2) U=y,

(326) AR ) = tonsT,

(327) 24N 2/z0 ) ?=1°’z'z ey

The temperature distribution is discovered when I ¥ is expressly-
stipulated. This exactly solvable problem is the trivial equil-
ibrium and uniform flow problem.

4,15 A Further Special Case

It is worthwhile to ask when the approximation schemes used
in previous sections may be applied to the case where ©i(};t F8)ie,

If the heat conduction is written:
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(328) %= N 25
Y
if
(329) Fo=ot 201,
dr

Clearly if x,/pﬁs C,» the sum of the above expressions is nothing
more than a constant multiplied into the gradient of the intermal
energy of the gas. The inclusion of this term raises the order
of the energy equation to two. Furthermore, the similarity .
structure of the term parallels that of the heat conduction alone,
To include it requires an additional constraint on the system
unless the coefficients possess appropriate similarity structure.
In addition, if the similarity form of Yﬂ(qi + FR) = H{z,z'z", )
for an arbitrary function H, the conclusion that the velocity
field is independent of the structure of the radiation still
holds. The physical result that is concluded is that the real
coupling between the'material and radiation is the flux dissi-

pation terms in the energy equation.
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CHAPTER V

5.1 Remarks

The Birkhoff formalism was introduced in Chapter I. This
approach was not needed in the main body of the work. The usual
homology associated with the fluid variables can be ascertained
when, for example, the homology associated with the density is‘,
stipulated. The proper homology for the radiative terms was |
discovered through requiring compatablility with the energy
equation. If it is desired to analyse equations not as well
studled as the fluid equations, the Birkhoff formalism is an ex-
ceedingly useful gulde in ascertaining admittable similérity
forms.

It is natural to ask whether a less intﬁitive method for
discovering proper self similar forms is feasable. This chapter

constitutes an initial inquiry into an alternate procedure that

could be used. The-basic concepts introduced are not reduced to -

a rigorous mathematical formalism but are suggested as an inter-
esting approach which to be properly useful would require further
development adn substantlation. '

5.2 The Boundary Value Problem in the Similarity Approach

The only really adequate formalism that can embrace properly

posed boundary value problems for Hyperbolic systems is the

114
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method of characteristics. In some cases, however, problems

of this type are amenable to solution compatible with similarity
ideas. Usually, in inquiring into a similarity solution,
boundary value problems are abandoned or conjured a' posteriori
for purposes of compatability. A simple criterion exist by
which it is possible to ascertain whether a particular boundary
value problem can be reduced to self similarity. The following
example illustrates this: Let Q(x,y) be a function to which
there corresponds a differential relation. Let Q(x,y(x)) be
given on the curve, y = y(x), refer to Figure 14. The similarity

representation of Q is of the form:

(330) 2y QR) 2 QUGN

at the boundary:

(331) xm\;‘_ Q(n\\ = QXY ‘
Wyex) Y3Yyix)

Q(?) is a constant on lines of constant‘?. Consequently, if
lines of constant 7 thread the curve y = y(x), then the solution

Q(?) to the associated ordinary differential equation is estab-

1ished by initial conditions. If this were valid, the initial

conditions would establish a solution for the evolution of the
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system independent of the structure of the equation. Obviously,
this 1s not a correct approach. Therefore, the function Q(V) as-
sociated with the simlilarity transformed differential relation
must be a constant on the bobndary arc. The appropriate constant
constitutes an initial condition for integrating the trans-
formed differential relation. The boundary curve must be a line

of constant’l. The admissable boundary curves are precisely:
%8
(332) . MW= 7X

The appropriate boundary data must be of the form:

- euP
(333) Q (x,4) Bx
3# "')ﬂ“l

where B and p are constants.

5.3 Basic Concept

The suggested éechnique depends on a combination of two
classical concepts: transformation to general coordinates and
the Birkhoff search for symmetric solutions. Prior to effecting
a similarity treatment of a given system, the equations are
written in a geheral coordinate system. The metriéal coefficients
assoclated with the general coordinates contribute to the system

as assumed known functions. A reduction to self similarity is
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effected. In the process the metrical coefficients are given'a
similarity representation. The constraint that the system of
equations be "absolutely conformally invariant" determines a
~ class of general coordinates compatible with a similarity repre-
sentation of the system. The inversion of the transformation for
any member of this class produces a curve in the original system
which can be represented by a constant value of the independent
invariant in the transformed system, provided the transformation
is not singular.

An extension to the Birkoff search tan produce different
curves compatible with similarity by properly designing the
transformation '. Suppose there are two independent variables

x:L and x., and o(l = 0. Then define:

2

(334.1) X,z xthna
(334.2) X, = ot Xy,

(335) AL

clearly Pim=7
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In retrospect, the latter procedure seems deceptively simple.
The construction of general transformations requires considerable
ingenuity. The value of the alternate method suggested is to
reduce somewhat the need for intuitive guessing. The approach
is pedestrian in comparison to the simple elegance depicted by
Birkhoffs process. It could be more than competitive with the
classical approach if the transformations could be inverted
with some degree of generality. Indeed » 1f for a given system
the transformation could be inverted, all similarity motion
compatible with the system would then be determined. This un-
fortunately has not been accomplished. Only by trial and error
is it possible to invert these at present_;.'
5.4 Formulation

Introduce a system of differential relations by the symbol
Y. in which there are p dependent variables ?j"{ and m independent
variables §$X.1. Before using the Birkhoff formalism, introduce

a general coordinate transformation on the system. Define:

(336) X;= X (x{)

Y = X! D
37) == =t
3 YTREETYRYY
and
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—

(338) 7 — %} ; 3y

v

The transformation may be left unspecified until a later

stage in the development of a particular problem. In the bar

corrdinate system effect the transformation

2 Ly
(339) X;= o' %
L A _ 0\!;_..
(340) \:i = ‘
(341) T3
A 5.
(342) LETAPINIR T6
®X] d X3

*g) X and LY, y'are constants and the constant "a" is the generator

of the transformation. The dependent invarlants are:

(343) § =- i /Q%‘/“K R rixed, 1zt p

L

The Independent invariants are:
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The requirement that the system of differential equations

be absolutely conformally invariant is:

1]
M

(316) T

This produces | constraints on the '('t.’ *o’( and 9, 3 such that

the number of unidentified constants in the formulation is:

(347) Prmtm=-L=4

Now

(348) ¥R Sr (*z)
bx3

where the &i 3 are artitrary functions.

v Sk w8k oz (8
(349) oX, B;:S R : Sf;gxh
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The symbolic quadrature of equation (349) is:

(350 X = X;(*a y g )Réfslu)

Curves which can be represented by (350) are exactly transform-
able. There exists a transformation to a system in which they
are representable by a constant value of the independent in-

variant.

L

»i

Figure 14 Sketch of Coordinates
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Let y = y(x) (refer to Figure 14) be an initial data curve
which is not of the form y = xb for some b. In the x-y co-
ordinate system it cannot be represented by some constant
By first uslng the general coordinate transformation it is pos-
sible to ascertain a system X - y in which the given curve can
be expressed by a constant value of the independent invariant

associated with the bar system.

From equation (349) the class of curves that are exactly

transformable in two dimensions is:

(351.1) k% _ L (,())-(%;x/.c,

VX XX
(351.2) b . {'x (_“(};,\&23/,@‘
dy 3
o -B\
(351.3) L _ .{.gxbﬂx 3\/4‘
ox
- .-.% -
(351.4) ¥y | "‘5\;*1) % 89 /4,
3

For curves which satisfy the relations (351) no further con-

straints are imposed on the set of 43, ¥ and \;i, other than
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those due to the differential system. .

5.5 Short Tabulation of Admissable Inversions

Case I:

(352) X=xPy Gz exp (y-x"

then

(353) - B..g. =X= ')Lps-(.u

oy
. " . - /e,
(354) i% = -X-m {S:XP"'%{-X Y
with
(355) By~ U L,
P
then

RV XY
(356) 72 Y/X t J pr(\j‘xm)/x"“l“l
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From this example the classical result (335) is easily

produced by setting; p = 1, m = 0, y=y + 1. Further tabula-
tions are computed without comment:

Case II:
(357.1) %= x"
(357.2) 9= y-oax™
(357.3) ST PRSIV IR Y
‘ox W
(357.4) £eN ) p\:(\—_\/n)

The p's abbreviate the homology of the metrical coefficients.

(357.5) 3% .o 4 { me
3

(357.6) )_5_\;)_ S sz;,:\ 3‘3‘1.__0
3

(357.7) 09 | max™. cam® (MN/M
X



and

(357.9)

oo . Case III:

Set:

(358)

(358.1)

(358.2)

(358.3)

(358.4)

(358.5)

125

3% . o3 5§£=1Q2
X Y

p= exp Lboxei) e tarig]
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Case IV:
Set:
(359.1) X = Lxp (xrig)r exp-(x+iy)
(359.2) gz exp (x+iy)- exp-(xtiy)
(359.3) W g ¥,
YRR
(359.4) 2R o 4 ¥ Lig
Y ¥y

\

(359:3) "‘..f é/)( l) -‘:IZ::C ')"\-“= ‘/? .) 'gz: (:

with F.-. pl

Set :

(360.13 g’x?" 1) ";3.3: 1, y,= constant
T

(360.3) 4% = ig'n‘( dx 1dy)
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(360.5)  d§ = (dx-dy)

(360.5) X =

L
(360.6) 9= I\;l (X-%h)]

Curves of constant 7 are:

2 ] [_"h (X"Q*QL):‘

(360.7) ) .
[Yl. ‘Xftj.\,c')(l-(&l)] 2/4‘(‘ PI)

5.6 Illustrative Computation

Let ¥ be the equation:

(361) U‘g* UU‘X +vd =0

Under a transformation of coordinates this becomes:

| 3V ¥Y . AV dX (b 3G | dU %
62 el SR L DUYY (Rl RV -
(362) ( 3 5‘3 % 6\3) - \)Wu Q

‘Consider the case (357.1) to (357.9)
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(363) X=x" 1 Gaoyeax™

. The above equation becomes: -

Also

(365.1)  dgy /4, = ("/m

(365.2) Sgx /4= (™) /n

Then

(366.1) )“< - a3
(366.2) = Qg
(366.3) §= v

(366.14) LENLY);
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I

The constralnt conditions imposed by the differential equation

are:

G16) ()= (rne sy e )
(¥ ,-<, +°‘.(D.;T'>)= (¥,+¥): A

and

(368.1) ¥,5 - oy

(368.2) &, (__*_:}"_-_') - dy, - ,('( (“")/n")

(368.3) (f,w,'_): (u‘-xlw.(ﬁgj))

and

(369.1) ¥ = -4, (M)

n

(369.2) Cpr o (M)
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(369.3) Ged (| )
n
and
(370) o= - AN
(2m-1)

The class of curves and boundary conditions on these curves
compatible with the differential equation and the choice of

transformation are:

- (h-ax™ (8 )
(371) L el ( &)
(372) Us x“‘,/""U(nh X"mucq)

The solution is trivial, but sufficent to -illustrate the approach
The solution U(q) is still to be obtained.
5.7 local Similarity

An approximation procedure for locally self similar solu-

tions suggests itself. Designate:

(373) %= u%+ux+vu=o
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The requires curve is:

T (X
(374) 3 ‘35 s)
The boundary condition is:

(375) Ux,4) = Q)
‘3;.- ‘js( Xs)

Let a curve admissable with §(x) be y = y(x). Translate co-

ordinates to a point x%, yg satisfying equation (374) by

X X Xs ©
(376) (?):(Y\"'(o Y(\)

\ ! A i

At the point xg, yg effect the transformation:

(317) %=%(%,%); §:9¢%,9)
2. = (81 /4,) 2
(378) ¥ |z kTS o
2 S ola
® X D%

The differential felation becomes:




T ——T T ——
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(379) (s) ~ Suld,
Ay X

(S\:_-b /J\
" U 4 X Ot dy

o% XS

() = & /o S
e X uf '%% + 4

Using the transformation:

2 - dy =
(380.1) b = ud“‘g ) X =a %

A A

= ¥ = o -
(380.2) U = o 5 v = O.Yl'l-}

~ &) ~
(381) 3 (d‘:”.’n) é.%l'f J-l( "J' )}I)V(W)) U =zo
(382) Otqy = exp- %}J‘Z

T W —_— T
.

The accuracy -and usefulness of this approach depends upon

how close the curve Yg = ys(x) can be approximated by y = y(x)
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in a neighborhood of the point xg, yz.



CHAPTER VT
CONCLUDING COMMENTS

6.1 Conclusions

| It has been shown that a total reduction to self similarity
can be achieved with the radiative gas dynamic equations with
spherical symmetry. This reduction was effected in a one
coordinate system by preserving the definitions of the radiant
quantities as integral operators on the radiative intensity and
asking for the proper homology for Iv compatibie with the system
of equations. The findings of this paper have thrown serious
doubt on the validity of several published results. Specifically,
in the paper by E. I. Zababalmin and V. A. Simonenko(23) the
statement 1s made that “"the heat wave and shock wave arrive
Successively at the center. Each of these near the center is
described by its own.self‘ similar motion, a general self similar
motion for the eﬁtire process does not exist." In another paper
Marshak states explicitly(2u) that "In order to obtain a solution
of any kind for eq. (9) to (11), two fundamental assumptions must

be made:

Assumption I - The radiation energy and pressure are
negligible compared with the material energy and pressure. Tke

radiation flux must of course not be neglected in the flux term.

- 134
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Assumption IT - The material plane."

Clearly in the light ofthe present work the latter statements

are incorrect.

Indeed, the constraint conditions normally imposed by the
requirement of preshock uniformity can be relaxed to nonuniformity
by virtue of radiative energy transport in this region. It has
been found also that conditions for unitingly strong shock waves or
even that the more severe restrictions imposed by preshock
Unifonmify can be used provided the correct form of the radiative’

Intensities are employed.

The constraint conditions imposed by gas laws, invariant
integrals and specific forms of the radiative intensity have been
developed. It has been shown Lhat approximations tn radiative
transfer phenomenon before reduction to seif similarity renders a
camplete reduction mbre difficult.' The Rosseland approximation is
a case in point.‘ The jump equations are derived in generality for
arbitrary radiative intensities. The pfopgr shock paths for sélf
similzar motions for implosions from points and finite symmetrical
surfaces'have been given. The significance and implications of
strong shock waves have been discussed. The impossibility of
discussing sim@ltaneously contact surfaces and shock waves in the
" framework of similarity 1s proven. The appropriate physical

Interpretation of limitingly small radiation effects is derived.
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In conjunction with radiative effects two-sided similarity is
introduced and its utility explored. The significance of the
Jump conditions for discontinuous dependent invariants is
discussed and appropriate initial conditions for Integration are

given.

Throughout the course of this work it has been shown that the

essential physical characteristics are manifest from the following:

1. The system constraints ascertain the homology of the
dependent variables and the fundamental constant 9 which

determines the space time evolution of the system.

2. The introduction of the similarity form of a shock

transition tickness suggest an origin of coordinates and permits
testability of similarity.

3. General relations are deriveable relating the intensity
of radiation to the magnitude of the shock velocity and other
thermodynamic functions.

4. On the basis of comments (2) and (3) one also is provided
with a connection between the radiation intensity at the shock

wave, the shock transition thickness and shock strength.

In general deductions based on the statements (1) through (4)
do not require extended computation. THey represent what the

writer believes are conclusions which are most directly
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experimentally tested.

In addition, it has been shown that under appropriate physical
conditions, the velocity field is independent of the form of the
radiative intensity. An exact _s»oluti.on to the simlilarity equations
for a uniform flow problem exists in planar coordinates. 1In
spherical coordinates another exact sclution which is non-physical

and corresponds to a negative specific heat.

A numerical computation 1is performed f‘or' an inward propagating
opaque shock wave. In this manner a numerical procedure is
est;ablished which 1s applicable to arbitrary flux laws. The
legitimate physical conclusions that may be drawn on the basis of
the computations and the statements given above are made in sections

and (4.1

{4.5) and {%.10). A further physical statements would be highly

speculative.

It is the writer's contention that in general the application
of simllarity techniques 1s limited. The procedures in this
dissertation depend critically on the system possessing a high
element of symmetry and a space time evolution governed by self
similarity.

6.2 Suggestions for Future Work

The useful application of the techniques developed in this
work are found through the-relationships that can be established
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with a2 minimum of computation. ’I‘riese testable observables are;‘

the shock trajectory, the behavior of the .shock "thickness", the
similarity conditions of the shock stfength and the expressioﬁs
relating the radiation to the shock velocify arid' thermodynamic
variables. The implication of f‘ormulas obtained for particuiar
combinations of constraints ultimately should be examined
experimentally. When the relevance of a particular model has been
satisfactorally established experimentally one might legitimately
ask for a structure calcuiation of the fluid variables. A scheme
for such calculatien has been effected and executed on the sample - -

prouism of on cpaque imnloding shock in Chapter 2 .

From a theoretical point of view the problem of a covergent
shock wave in a radiant gas should be approached by the method of

characteristics. '
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Momentum:
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