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ABSTRACT

Spherically symmetric similarity solutions of the radiative

gas dynamic equations are examined for problems of imploding_ and

exploding shock waves. The system is reduced to similarity form

by retaining the definitions of the radiant quantities as oper-

ators on the radiative intensity. Homology str_cture for the

intensity is dictated by the governing equations. It is sho_m

that Stipulating a radiative transfer law constitutes a simple

constraint on the system. Large classes of radiative transfer

laws are ca_patible with a constant shock strength or with a

llmitingly strong shock. Because of radiative heating, s_nnilarity

structure may be prescribed for the gas upstream as well as do_-

stream of the shock wave. Constant shock: strength is ._Intained

by virtue of identical similarity homology in both regions.

The general Rankine-Hugoniot equations for an arbitrary

radiative intensity are given. Initial conditions appropriate to

self similar motion are given. It is shown that a sequential

proced_re for n_nerical solutions can be established. In the

adiabatic problem, the solution for the velocity distribution

is not contingent on the form of the radiative intensity.

Cc_putatlons are effected illustrating useful approximation

schemes.
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CPJL_ I

INTRODUCTION

i.I Perspective

Substantial interest in recent years has been focused

on schemes for produclr_ very _] temperatures with the ultimate

purpose of controlled fusion. As is well known, plasma heating

may be accomplished by ohmic losses, magnetic compression and

strong shock waves. Coexistent is the problem of containment.

One contemporary solution employs high mirror ratio coils with

open ended systams. There exists a genuine problem of confine-

ment when attempting to attain initiating thermonuclear temper-

atures.

After the conclusion of World War II, in connection with the

detonation of nuclear devices, shock waves from strong explosions

received some attention. Symmetrical explosion and implosion

studies were effected by Guderley, (1) Taylor (2) and Weizsacker. (3)

The possibility of e_ploying imploding _aves presents itself as

at least one method that should be investigated for producing

high temperatures. Superficially, the method appears to obviate

the confinement problem while heating occurs. In this spirit an

investigation of a spherically sy_netric implosion is not unwar-

ranted. Extrapolation of similarity calculations for the neutral

fluid dynsmlcal equations tentatively indicate that the temperature
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which can be achieved In the region of convergence are limited

only by a critical radius at which shock reflection might occur.

Thls technique cannot rigorously substantiate the fluid property

behavior at the convergence point.

AssL_ning the extrapolations are to some extent valid, the

temperature ratio can be estimated by assumin_ a critical radius

of the order of several mean free ion paths for a neutral mech-

anically driven fluid. The speculation follows that, if an

imploding current sheet is preceeded by a region capable of sup-

porting a magnetic field, the ion Larmor radius might replace

the Ion mean free path. The consequences are a diminished

critical radius and higher temperature ratios. The feasibility

of this approach Is contingent on available energy loss mechanisms,

a probl_n fundamental to all schemes proposed for controlled

fusion. If an implosion proceeds into an ionized gas permeated

by a magnetic field, minimally there will be energy loss due to

bremstrahlung and cyclotron radiation.

In vlew of rad_atlon shock smoothing, a critical radius of

several ion mean free paths may totally lose significance. A

more realistic characteristic dimension might be the radiation

smoothed shock thickness. If thls pessimism Is substantiated

the initial hlgh temperature conjectures based on strong i_plo-

slons, which do not take radiation into account, would be entirely

spurious. Radiation trapping in the pre-shock core, should it

I
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become significant, would result in a net increase in the pres-

sure and hence the reflection radius.

In order to discuss the influence of radiative effects on

shock waves, the radiative gasdyrmmlc equations may be used. It

is expected that radiation effects of importance are incoherent

and amenable to description via classical radiative transport

theory. The nonlinearity of the fundamental system poses a

formidable problem by virtue of a conspicuous lack of mature

analytical mathematical techniques. Indeed, there exist but two

broad areas of approach to the problem: the method of character-

istics and that of self similarity. The radiative gas dynamz[c

equations are hyperbolic, while the radiative transport equation

is elliptic. Consequently the system, in total, cannot be

analysed by the nmthod of characteristics. This approach is still

valuable if first a solution to the radiative transport problem

or a constitutive hypothesis on the structure of the radiative

intensity is made. It should be clear that the resulting equations

except under specific assumptions will not form a reducible

canonical system. With this formalism it would be possible to

deduce the onset and development. The question of reflection

remains uncertain. Nevertheless, this approach is mathematically

accurate and it would be interesting to discover what minimal

assumptions are required to make the problem tractable. The

method of characteristics requires stipulating initial conditions



which cannot be provided, as yet, satisfactorily by experiments.

The alternate approach of self similarity dispenses with the

onset and development. Indeed, quite naturally, it requires the

hypothesis that the motion be either totally or piecewise self

similar. The formalism and consequencesof a si,[[larity approach

lend themselves favorably to examination by experiment. It is

frequently possible to deduce significant features of the dynamic

problem without performing exorbitant computations. Similarity

solutions are not generally applicable in arbitrarily small

nei_hborhoods of the singular point of the transformation. Some

heuristic extrapolation may be effected though conclusions based

on such would be suspect. In past works there have been attempts

to deal with one dimensional shock waves influenced by radiation.

The approach revolves around stipulating a radiative transfer

law, substituting it into the radiative gas dynamic equations

and attempting to reduce the resultant equations to a self similar

form. This has not been a completely successful approach. It

has been necessary to introduce manyapproxlmat_ons in the search

for symmetric •solutions. Oneof the primary objectives of this

dissertation is to demonstrate a procedure ensbllng the reduction

of the radiative gas dynamic system to self similar form for

general radiative trm_sfer laws. The complete solution of the

feasibility of an Inplosion shock for controlled fusion is, of

course, beyond the scope of a single dissertation. Consequently
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the attention is focused on developing the techniques of one

possible approach, self similarity.

1.2 Literature Review

Guderley, (4) in a now classic paper, has examined strong

spherical and cylindrical shock waves in the region of the con-

vergence points. The starting point of his arguments are the

ordinary fluid equations with an ideal gas law and Isentropic

energy equation. The shock waves are non-constant strength and

llmitingly strong (see page _o), propagating in a uniform region.

The suggested Justification of a Similarity description in the

regime of the convergence point revolves around an expansion of

the shock position as a power series in time. The dominant term

suggests the self similar form. When the equations are rendered

in self similar form, the one parameter family of integral curves

is examined to ascertain physically admissible solutions. Initial

conditions issue from the similarity form of the limltlngly strong

shock Jump relations. The divergent temperature and pressure

ratios discussed in "an experimental proposal by Winterberg (5)

characterizes a particular solution from an infinity of solutions,

which one reasonably would not expect to be valid in the presence

of dissipation mechanisms such as radiation. Guderley makes no

statements concerning the concept of critical radius. Only in a

later paper by Sanger (6) is it suggested that, on the basis of

chemical arguments, if a critical radius existed it would probably
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be of the order of several Debye ler_ths. Nevertheless, the

optimistic point of view of Winterberg is based on neglecting

the smoothing effect of radiation on the shock wave.

Welzsacker (7) concerns himself with obt'culningn_nerical

solutions to the similarity transfon_ed ordinary differential

equations. Using the hypothesis of a strong shock wave and

fixing the shock trajectory and pre-shock initial conditions

the Jump equations establish starting post-shock conditions.

Since the shock waves discussed are llmltingly strong a sequence

of solutions generated parametrically on (see page ZZ)

developed simultaneously with the appropriate parametric post-

shock conditions.

Sponsered by the war effort in 1941, Taylor (8) has made

calculations of a preliminary nature on the generation of very

strong shock waves such as would be developed in high yield

nuclear detonations. The computations were effected by the usual

similarity approach. The validity of the solutions in retro-

spect was subject to some criticism. In addition to the constraint

_m_oosed by the llmlti_gly strong shock condition, a particular

is selected on the basis of an integral constraint imposed on the

total energy. The applicability of such solutions pertains to

areas in time such that the ener_gy in the post-shock region greatly

supersedes that in the pre-shock region. The energy equation

contains no dissipative terms. Numerical computations are carried
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out "on the transformed system and an approach for analytical ap-

proximation to this specific problem is suggested.

Pal and Speth (9) have derived a form of the Ranklne-Hugonlot

relatlonsfor a planar shock wave using asymptotic uniformity of

"the flow field. Their work is principally concerned with high

temperature effects where a significant percentage of the gas is

ionized and in which a magnetic field can exist. The radiation

field is characterlzed by a Pl_ckian distribution. The Jump

equation with radiative effects reflects this specialized assump-

tion. An energy equation is suggested appropriate for the discus-

sion of shock structure. Explicit cognizance of the work of Sen

and Guess (10) is made in suggesting that a broadening of the shock

thickness accompanies the inclusion of radiation.

The paper by J. Clarke (ll) is concerned with calculations

of a "radiation resisted" planar one dimensional shock wave and

associated shock structure problem. The energy equation employed

in this work structurally resembles that suggested by Speth and

PSi in view of havifig omitted radiant energy and pressure by

virtue of a dominant radiant flux. Refraining from arguing the

relative importance of the characteristic diffusion lengths for

radiation and heat conductivity, the discussion is concerned with

the effect of the flux dissipation contribution in the energy

equation. Both loss mechanisms are discussed by Sen and Guess.

In all of these works pertaining to shock wave problems which
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Intrinsically are strongly non equilibrium, the underlying as-

s_i_tion for the radiative field is equilibrium.

Marshak (12) for a one dimensional planar geometry has con-

sidered similarity solutions to the radiative gas dynamic equations.

In this work again is the hypothesis of radiative equilibrium.

The flux term in the energy equation is written to suggest a dif-

fusion interpretation. The Jump equations in essentially a

blackbody gas are derived. No method is presented to dispense

with equations in totality. The conjecture is made that what is

common to a sequence of approximate similarity equations reflects

the properties of more general non-self similar motion.

1.3 Definitions of Radiative Transport Quantities

The basic properties of the radiative transport phenomenon

can be established from a scalar energy function. The method of

fonnulatlon to some extent reflects an inability to cope with the

msny body problem. The techniques depend on global quantities

which do not take explicit account of the microscopic structure

of the radiation field. With a corpuscular perspective, the trans-

port equation can be interpreted as deducible from a Boltzmann

equation for photorm. From a wave point of view it suggests a

description of energy transport via a short time averaged Poyntlng

vector. Consequently the classical formulation possesses the virtue

of &cguiescence to either the wave or particle interpretation.

The radiative intensity is a scalar point function of fixed
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I coordinates and a vector direction defined as the rate of energy

I transport per unit frequency interval per area per solid angle

per unit time:

I

| /c

I

II _ ,y
X

I Figure I. Diagram of Coordinates

I The quantity I is a local property of the medium and is an In-

I variant under coordinate transfon_atlons. The total intensity

is given:

u

I °
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The transport of flux is defined:

(3) J r R: z,. ( a_, L) _ d

(4) d FR:

Equation (4) is the differential flux vector.

are the direction cosines associated with _.

is defined:

The quantities

The energy density

w

C

The momentum transfer associated with the radiation suggests con-

structing a radiation pressure tensor:

?.

The normal pressure stress on a surface is:
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Two additional quantities require definition: the source

function and the absorption .

C7)

C8)

The structural qualities of the radiation field and the

medlt_n are embedded in the absorption and emission functions..

For a radiant gas the absorption may be written: _

I
I
I

_ is defined to be the mass absorption coefficient. The emis-

sion is c_posed of two psx_s: scattering into a given direction

from other d:Lrections _, and true emission _.

I

I
Similarly :

I

I
(n)

I
|
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where _ is the loss from a given direction due to scattering in

other directions and _. Is the true absorption. The radiative

transfer equation is a rate equation for the energy transport.

!

_e_:

(13)

(14)

if

_m _t

For time independent problema :

_ --

_ - _4,- _ i_,_,,

(15) D_I v : o

then

(16)

D_

w
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With isotropy cancellation of scattering and no time

dependence it follows:

(17)

R

"_r- i 4_,,>
-I<

is a mean absorption.

A less heuristic, more accurate discussion of tile fundamental

concepts of radiative transport phenomenon m_y be found in the

summary work of Goulard. (13)

1.4 The Birkhoff Search for Syr_netric Solutions

A well known procedure for the reduction of a system

of partial differential equations to ordirmry differential

equations is herein briefly paraphrased. The use of this procedure

in the problems discussed is not necessary. The motivation for

including it resides in its facility to cope with systems of

equations not as well studied as those of fluid dynamics.

Let ][ be a set of differential equations with W, and _i the
t
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corresponding independent and dependent set of variables respec-

tively. Define a transformation P as follows:

(2o.l) xr : o. x_-

(20.3) P(Z_= Z

'Fne system _. under U is required to be absolutely conformally in-

variant.

(21) P(_ - F_

I
A set of Invariants are then constructed:

I
/Y_/_I c_._ _-(_'): _;x, '

I

I

Algebrs_Ic relations exist between the constants _y

virtue of requirL_g absolute confiormal invariance.

and _'by

A rigorous

I
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and valuable conten_0orary discussion ef self slv_larJty and the

Birkhoff search for symmetric solutions may be found in a book

by Ames. (14)

1.5 Resume of Content

In C_apter II, the method of reduction and resulting

fundamental equations are derived. The Ranklne-Hugonlot equations

are written for arbitrary radiative expressions. The significance

of two sided similarity and proper initial conditions are given.

Chapter III developes the implications of constraint conditions,

limltingly small radiation and strorg shock waves. Self similar

motions are discussed. Chapter IV enccmpasses numerical and

analytical approaches to the equations and Chapter V conjectures

a variation of the i_ndamental synTnetric search process. Con-

ciudlng comments are pointed out in Chapter VI.



CHAFI_ II

FUNDN4ENTAL EQUATIONS

2.1 Initial Discussion

In general the distinction between radiant and non-radiant

gas dynamics is the addition of a radiation pressure to the

momentum equation and radiation energy and flux to the energy

equation. Thus, the total energy is due to internal energy and

radiant energy. The work done by pressure forces includes that

done by radiation pressure. The flux enters as a dissipation

which parallels the heat conduction in structure. %_e energy

equation is a simple consequence of the first law of thermodynamics.

That the entropy is not constant on stremallnes is the effective

manifestation of the dissipation mechanisms. Moment_n follows

from Newton' s Law. The equations are as follows: (15)

(23) D_ U.. Continuity

_--T L)] " _(])[" P{i![ Momentum

16
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I (26) P _ ID ( _,T } Equation of State

I (27) _ - C vT Polytropic Assumption

I (28) %_ : X T_ _ Heat Conduction

m The equation of state p_incipally to be employed is the perfect

gas law. This is employed for' convenience in calculations and does
not constitute a necessary requirement A polytropic gas is by

I definition one in which the internal energy is proportional to the

i temperature. Hence the specific heat at constant volume is a
constant. The law for the uonduction of heat is not a primitive

I but empirical.

In a_dition to these, expression of the thermodynamic dependence
I of the radiative functions must be provided to ccmplete the system.

i The radiant quantities are defined in terms of a single quantity,

the radiative intensity:

i ° I
(29) U - ! Uv _'''" ) 'J_ " 4n' ¢I

#!/¢
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The _" integration is over frequency and _)over solid angle.

=_

The symbols _ and _ are direction cosines of L at the tip of an

r. is the radiant energy, FR the flux and ee the pressure.

The thermodynamic form taken by Ivreflects the internal

state of the radiant media. The differential equation governing

the rate process for radiative transport is the classical radiative

transfer equation. The average microscopic state of the system

is depicted through the lumped parameters describing the transport

process. _. then represents a microscopic mean behavior.

I

where _ = Q.O_@ "

This equation does not couple into the radiative gas dynamic .

system since it in no way depends on the fluid velocity. Con-

sequently from the radiative equation I_ is ascertained as a

function of space, time and thermodynan_ic variables. In this

respect the view is adopted that this equation is a constitutive

equation for the radiant medium. Throughout the course of this

work the radiative transfer equation is never solved for particular
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structural assumption of emissivity and absorbtivity. It is one

of the prin_z-y objectives of this dissertation to demonstrate a

method by which general solutions for T can be used to describe

radiant transport properties consistent with a total reduction to

self s_._dlarity of the radiative gas dyi_mic equations. For Il-

lustrative purposes structural forms of I are assumed which are
y-

not meant to represent carefully constructed solutions to the

radiative transfer equation, but serve to demonstrate the fact

that by adopting the subsequent procedure these general forms are

compatible. In all subsequent considerations these equations are

analyzed in a spherically symmetric form. Shear stresses in the

fluid and radiation pressure tensors are dropped from the equations.

These terms can be included _d the system reduced to self similar

form provided appropriate similarity statements concerning the

viscous coefficients are made. The heat conduction term with

some contradiction is included to illustrate it requires one con-

stralnt. The coefficient of heat conduction is assumed constant.

Thls term is never employed in the computations and serious con-

slderatlons of it are not appropriate. The problem of reducing

the multidimensional system to self simdlarity has not been in-

vestigated.

To effect tot-_l reduction to self similarity it is required

to introduce the radiative quantities as operators on the radiative

Intensity. Designate:
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(34)

(35)

(36)

so that

(37) = 7,

i

c38_ F_= L Iv

(39)

It is obviously true that:

"(40)

2O

) _o___

)
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The space and time derivatives con_uute with the L (j) operators.

With these statements the fundsmental equations to be con-

sidered are:

(41)
_)--- _ _. _ / Momentt_u.

 43) :. +

Continuity.

Energy

In the formal language of Birkoff, the initial set is requi_md

to be confor_lallyinvariant under a one parameter group of trans-

formations of the independent and dependent variables. With the

elimination of one independent variable a set of invarlants for the

systmn is obtained together with the associated differential

equations. It is not necessa_y to follow this formalism in equations

so well studied as the fluid dyusmlcal system. When one homology

is stipulated the structure of the equations determines uniquely

the homology of the remaining variables (see Appendix). However,
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when an attempt at a multidimensional reduction to self similarity

I

I

I

I

is made, it is virtually mandatory to follow the Birkoff "search

for sy_netric solutions".

2.2 Reduction to Self Similarity

The independent simz[larity invariant is_) defined:
t

is a scaling constant and _ is a fundamental constant govern.tog

the time evolution of the systa_1 (16) In the non-self.similar

case _ = _(r). It follows:

I _ _ _.%(4s) =--,_ i - -

The slmil_ity _nns to be associ_ed _th the fl_d varifies

are:

(46) _= _

(47) T= '_'" V(_)

(48) a. : ','T..'_a.(_)

i
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where _(_), T(_), and _[(_) are the dependent similarity invariants

associated with density, temperature and velocity. Now postulate

the form of the radiant intensity:

The constants and are to be ascertained from the structure of

the equations. To make provision for the possible variation of the

index of refraction set:

T_is form is dictated by the momentum equation. The following

algebraic manipulations are required to obtain the similarity

forms for the differential system. For the energy equation:

(52)
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TheL. H.

lowing manner:

S. of the energy equation is expanded

the first term is

in the fol-

(53)

the second term

e_

+[m-(_.,_ I__R _'I_RR ¢ _-I7,_ ¢ ¢ ][U-%]I.ej.[ , -,., ,.z., .,_,

Finally

(55)

t .l -I I_,_L_-_ll__-_:_,_"_:V:_,__')]
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This result suggests:

(56) _- (_,+I)= _. _ ?-.-_

Therefore

(57) I V- __ _I_t_)

The R. H. S. is established.

The first term is

The second term:

The tranoformed energy equation Is:

I ' o

(GO) o Re,,['(T(.u-i}i_,T(u-,)]÷pR[L(u.i)ETa.R"_-,

.+_ttu'_>/t {.Z_R"c".'/..R'R'Ic-Lz.i,.R-,CI._ ' ]_.._

, ]j
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...S_m.tl_._lyfor the Momentum equation:

(61)

Expandlng this yields:

(62)

For the continuity equation:

(63)

expanding

rearranging

(65)

-'0
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The transformation of the heat conduction follows:

(66) %,_-_,_ _ %_.>_:>,V_T_.), "o"e--c'--r
'b'e b_._. b"'__

Hence I must cancel V_ZZ "3 or

(68) i. _,,(Kl_ T.t 4.

and

(69) _= - /K_Z.

To sun_narize, thenon-dimensional transformed equations used in

the course of this work are:

_ne rg.y:

(70)
_TI t _.I¢. I

.-_._.,_-\-,.:,_,.,,-,_-_,_]:-L',_[_,_,-_.+__',.].Lo_,_L_u,_]
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Moment um:

(71)

Continuity:

(72)

2.3 Shock Velocity

Lnitial observations suggest two possibilities for the shock

path. Only one is correct, compatible with Self similarity and

the Jump equations. Consider first r = r(T) where r(_) = _%_

with _ =_ is some fixed value of_. In thls case the shock path

is described as a line of constant _ and the shock velocity is:

In the second case set r : r(_) then:

(74)



I

In order that there exist compatibility with an incoming shock

_ te_h_hr°Ckc_e_°_ ib_ _t_.t°b_ _eh_tki_eath Ii_ _o_°l_ctly

described by equation (73). The reasoning follows fz_m the

diagrams.

Figure 2 Correct Shock Path Figure 3 Incorrect Shock Path

In Figure (2) the shock lies on a path of constant _ =_. _e

region _<_ in an _losion corresponds to the pre-shock region.

In Figure _31the shock does not lie on a llne of cor_tsnt _. Since

any property which is a function of _ is constant on lines of

constant ? then the path r = R(n) cannot divide a pre and post-

shock wave region by virtue of the fact that it is intersected

by lines of constant _.
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2.4 Two Sided Similarity

Traditionally, in discussions of strong implosions or ex-

plosions, the pre-shock gas was stipulated to be uniform in

concordance with physical structure. Shock waves in a radiant

media are consistent with pre-shock uniformity when the con-

stitutive behavior of the meditm is such that the shock wave can

be considered completely opaque, It will be shown in a later

section that many functional forms of _9 are compatible with the

special constraints imposed on a constant finite strength shock

wave. In problems dealing with a pre-shock nonuniform region it

is reasonable to introduce similarity for both regions. This

approach especially makes sense in the case of propagating non-

opaque shock wave in a radiant gas. Energy transfer across the

shock produces a nonuniform region. The Jump equations impose

no cor.qtraints for two sided similarity. All finite strength

shocks are constant in stz_ngth. The three criteria for shock

strength (see page 5_ ) are compatible. To characterize a shock

wave with two-sided "similarity the homology Of the dependent

Invarisnts are by mandate identical in both regions. The shock

manifests itself as a discontinuity in the dependent invariants.

In characterizing a shock in this way it is not necessary that

all fluid variables be discontinuous. Thus the pressure and

density may be discontinuous while the temperature is continuous

compatible with the gas law and the strength measures of excess
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pressure and condensation, excess pressure in the case of

for is precisely the

continuous temperature m_d an ideal gas

condensation. _The temperature can reasonably be discontinuous

In the case of an opaque shock. That the usefulness of two-

sided similarity discussions for non-opaque shock waves is not

purely academic is easily reco zed when it is remembered that

in nuclear detonations a heat w_e precedes the shock wave.

For definiteness, imagine that the p and post-shock

pressure distribution has been obtained b_integrating into these

regions fram initial conditions given at the shock _ =7 com-

patible with the Rankine-Hugoniot equations in self similar

form. Consider Figure (4).

I p(_ /

,I
I

, | ;

Figure 4 Discontinuous Dependent Invarlant

Suppose:
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i then "

where r and I[ are the time and position of the shock wave.

2.5 Pankine-Hugoniot Equations

The general Jump equations with arbitrary radiative terms
are obtainable by a process not extremely dissimilar from that

used to derive the usual mechanical shock conditions. Introduce

the coordinate system:

c79_ _.,- k -- -- _--

is the shook speed and _ is the new spatial coordinate. In this

frame of reference the differential conservation relations are:
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Momentum equation

+"_. _'_ _4 +'\_-_ I=°
,

Continuity equation

Energy equation

(82_ _ +.(u _) _ - ..._-

•.,.,., _.-_ __ .'_.>,_ .__ ,_

These differential relations are integrated over a control

length of K_ and the limit taken as _+0. All quantities that are

not differentiated with respect _ vanish in this process. This

is a simple consequence of the following:

+.._o J_ ¢. _'i:
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I '_° J-,

I 11 is arbitrary and the integrands have a finite number of finite

discontinuities. Hence for the continuity equation:

I , _

I
I energy equations res Its in the system:u

I _ -

i ,,(,',i:r/.-s'o(,,,,-'_I

Performir_ these oeprations similarly for the momentum and

Continuity

Energy
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c89_ _,(u,-_)(_,-_o_÷ %-%,

(90.1) % = (pR÷p)

=0

The energy equation used in deriving the latter relation was

modified by multiplying the momentum equation by u and adding

it to the original energy equation.

The similarity form of the Jump/equations is imnediately

derivable by substitution in the latter system. In the case of

two-sided similarity these relations trivially impose no con-

I straints. With _= _ _/_ :

(91)

P

(92) _L___,[v,(_,-_L_/,_,-_o__-X% i"_" l"/[[_,plll
-0

I

I

I

(93)
-e_ _%.*(F,_-%)Y '+
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The self similar forms of the Jump equations are:

(94) _,[%-%]=%[Uo-_lI

(96) ¢1 Co

=0

2.6 Initial Condition

The differential similarity relations are of the form

(gT> ___J+ _.,_'li=_j

where the yj are the dependent variables and the _] are functions

of yj and _.



i

37

The system of equations in similarity representation are ordinary

nonlinear and coupled. In discussing initial conditions ap-

propriate for integration no suggestion is made concerning suf-

ficiency and necessity for uniqueness. The author is not aware

of theorems appertaining to systems of this type. Hence the

initial conditions are those required minimally to properly

pose a n_nerlcal calculation to the computer and satisfy certain

rudimentary physical requirements. The equations are all of

first order. Consequently, to initiate a numerical procedure

starting values of the f_mctions must be be given at some point

in the integration demain. In the case of zero or near zero

thickness shock waves, the Jump equations arepoint Invariants

of the conservation system. If the problem is not strongly

time dependent, the Jump equations can be viewed as linking

asymptotic values of fluid variables in the pre and post-shock

regions. The first interpretation is relevant to problems in

this dissertation. In concordance with the physical requirement

of satisfaction of the Jump equations the following approach is

suitable.

The classification of initial conditions is contingent on

the continuity property of the dependent Invariants. (Figure 6)

This statement means that not all fluid variables need necessarily

be discontinuous at the shock wave. Let Q(_) be a property of

the system defined on the interval (Vo _) and to which corresponds
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If Q(_) is continuousa differential relation, the property

across the shock wave then ?_) for (Vo •. _ _

I Q( _ " _") is to be the
given. It is conceivable to admit continuity

I

I

I

I

of all properties. If Q(_)is discontinuous at the shock _-_

then two alternatives arise. The Jump and mean value of Q at
= _ is given consistent with the _altus equations. Alternately

Q(_T) or Q(_) for ('p+_-_T_-_)or (p-__?_) respectively are to be

given together with the Jump. The last criteria is probably most

practical from an experimental point of view.

The shock velocity is presumed stipulated such that the

Jump system is determined. This information could be provided by

experimental measurement or through appropriate values for con-

served quantities when an inte_'al constraint is employed to

I

I
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obtain a k-_ relation.

2.7 General Approach

In order to avoid difficulties arising from inconsistant

guesses and to obtain valid solutions to the derived differential

similarity system it is virtually mandltory for a complete under-

standing of the results to follow the subsequent rules.

i. Construct an hypothesis on the type of problem to be

considered, i.e. define the constraints which are physically

appropriate.

2. Integrate numerically the shock Hugoniots for all

initial doublet of sound speed and fluid speed.

3. From the differential system form the quantities

ul --_(RTu) and _ = _(RTu) then form the quotient:

OT____1"'(a,T,u )

From the ideal gas law the unambiguous isentropic speed of

sound is _ Hence:

D_

Dq

cCR,u,c 

4. Solve the above equation parametrically on appropriate

initial conditions. The solution of this equation produces the

vector field of integral curves corresponding to the problem.

All subsonic, sonic, supersonic regimes can be read off this

I
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vector field.

Minimally the shock Hugoniots should be found along with the

singularities In the vector field.
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CHAPTER Ill

I SELF SIMILAR MOTION

I 3.I Limitln_ly Small Radiation EffectsThE question arises as to whether a smooth transition from

problems involving radiation to those not involving radiation

can be made. The admission of radiation effects, independent of

the degree, fundamentally characterizes, through establisb_nent of

a (k,_) relation, certain physical aspects of the problem. These

aspects remain Invariant throughout the spectrum of importance

of the radiative phenomenon. For example, consider:

(1oi) Iv - _ _"T n

for arbitrary m and n.

I
R and

I 41
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Consequently, if k - 0 then _ = 1 for all values of m and n.

Clearly (_'A_"'_ _I ) contains two scaling parameters a and _,

hence the influence of the radiative terms in the equations can

be varied. Nevertheless, %dth _ = 1 the shock velocity is

constant. The transition to Guderley's implosion non constant

shock velocity problem can never be made continuously for the

aforementioned class of radiative laws. It must be discontinuous

and should not be considered as being reached by limitlngly small

value of _, a or I. Instead % would behave discontinuously.

i

Figure5

I

I

I

I
I

_ , m,,

Discontinuous

It is only in this sense the transition to Guderley's problem is

of a singular perturbation nattu_. With the class of radiative

laws above what can be effected as a continuous transition is the

(17)
problem dlscussed by Friedricks and Courant, namely, an out-

wardly progressing spherical quasi simple wave preceded by a

shock propagating into a quiescent region. That the coalescence
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of the field of integral curves occurs for small sound speeds

and/or small effects of radiations (see Chapter 4) brings this

point more sharply into focus. In other words the transitlon

from one "type", in the sense of specified (k, _ ), of a problem

involving radiation to a different "type" not involving radiation

must be thought of in the manner of a singular perturbation.

Transitions between the same "type" problem can be made contin-

uously. Hence, a warning is in order. If transitions of the

first kind are expected, great care should be exercised in

examining regions in which the self similar motion can be expected

to be valid._ Consider the following hypothetical example:

The general solution to this equation is:

(105)

/ ,,,-

for all values of m and p without restriction. Now:

(106) 'IV:
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(lOB) _ = - ('P+_)

and for k = 0

(109) _ : pt.

Non constant shock velocities can also be included with k = 0

compatible with radiation laws. Hence for any particular "type",

I

I

I

say the Guderley "type", one could take that value of _ and

structure a radiation law compatible to it, and in the limit of

no radiation the solution would go in a continuous manner to the

non-radlative solution.

3.2 Constraints

It has been shown that the two parameter family of similarity

transformations with two-sided similarity is consistent with a

shock wave. The Jump equations impose no constraints (when heat

conduction is excluded). The inclusion of heat conduction can be

vle_md as a constraint on the system. The object of using con-

straints on the system is two fold. First it is desirable to

obtain unique solutions to a specific problem. Secondly in

modeling a specific Practical problem by similarity techniques
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the constraints imply definite physical properties about the

system. The reduction of a particular form of the intensity

into an admissible similarity representation implies a con-

stralnt on the system and limits the class of homologies and

shock velocities.

3.3 Equations of State

For an Isentropic law:

(11o)

then

(in) __,_-z ?l_x-_'Y Fi(_}=_(_)

(113) W.: K(,l-'_)-t X. _ &%: &

Hence, for constant strength shock waves preceded by a uniform

state, k and _ are ascertalned independent of the number of

degrees of freedom of the gas. With two-sided similarity two
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additional constraints can be used compatibly to ascertain a

and k provided the B and k do not yield a non physical value

for the ratio of the specific heats.

For an ideal gas:

(ns) ?= _,T

and

(116) T_LI'_" ?(_) "- _'W'P,{"I)'{x"I:'2"T(_)

Clearly no constraint is implied whatever. This result is

expected by virtue of the way the homology for the variables was

constructed from the fundamental equations.

For a real gas:

Generally the equation of state for a real gas Is written as an

expansion.

a_ gas(I8)For an ideal gas A = RT; for a Van der Wa_Is A = RT;

B = RTb-a and C = RTb 2.
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"n

That a r@al gas represented by a general virial expansion be

compatible with similarity demands that k = 0, & = I. The

coefficients can be arbitrary functions of the temperature. In

any region in which a single term in the series dominates the

latter conditions are relaxed. Constraints based on equations

of state restrict similarity by constitutive assumption concerning

the medium. The above discussion has shown that any gas law can

!

be used with an outward progressing flow preceded by a shock and

uniform pre-shock region. As will be shown subsequently many

radiative transfer laws are cc_patible with these conditions.

3.4 Intesral Constraints

For energy conservation consider:

That the total integrated enerEy be a constant, where w is a

variable upper limit, implies the following constraint:

i
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Since

l c_,_ ._-_/>._
I

For a fixed time _ and a given r there corresponds a specific

] _. Hence:

I
(124) E= _L_I_YI'_ _(_

I J -r

Consequent ]4:

In the description of intense explosion Taylor (19) produced very

good results by combining this constraint of total integral

energy with the limitingly strong shock Jump conditions. Thus
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for k = 0 and _ = 2/5 the shock speed is given:

J
I (_) vs-_(_-__

-E

I Apparently this result was somewhat critisized since the hypothesis

I of strong shock would ultimately breakdo_. (20)
For the moment_n integral constraint.

I

l
That the total integrated momentum be a function only of

I requires:

,
(_29) M--/'r_*__" a(?)u_I

d?
I J
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It is interesting to conjecture an alternative hypothesis

to that of Taylor for a very strong explosion. Imagine that an

appreciable amount of energy is dissipated, say in a nuclear

explosion in the form of radiation. The intense heat wave in a

nuclear blast precedes the shock. Hence the pre-shock gas is

non uniform. This raises the possibility of e_ploying two-sided

similarity. Imagine, however, that the very strong shock con-

ditlon with pre-shock unlformity is applicable, and the total

impulse conserved. Then k - 0, _ = 1/4.

"4

The pressure remains strorger farther out from the point of

explosion.

I For density set:

J

. I_ _,___(135) _ : T ._.
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Consequently k = -3 for all values of _. Wlth this constraint

the continuity equation is exactly Integrable, i.e.,

(136)

3.5 Inclusion of Radiation as a Constraint

If the two parameter family of transformation is uniquely

determined by using const._aints such as a unlformpre-shock

region, integral constraints and gas laws, then the form of

the radiative intensity, its functional dependence on thermo-

dynamic parameters, is limited to those laws compatible %_th the

constraints. There are alw_vs laws which can be constructed

whlchare compatible with two-slded similarity. The shock

conditions impose no constraints. Consequently, in lleu of

this, the inclusion of more desirable radiative laws can be

used to determine a k,%relatlon. As a case in point, it is

not possible to use "the Rosseland Approximation together with a

unlformpre-shock region and a finite constant strength shock

wave.

A general form for I_.that Is compatible with a strong or

llmitlngly strong shock wave can easily be given:

(137)



52

(138)

Hence for k = 0 and & = I

(139) _I_(_) =

For a general power law on the temperature:

(14o)
T_1' - _(.7..}_,zCC.)T _

(141) : "_ '_ "I.T(,_)4,(v)A_{,C.1

The w_ and 4
' Z

respectively.

are arbitrary functions of frequency and direction

(142) x"zn"(_*_)"c_-X',=().)_.

The implied constraint is:

(143) _ = (R.n-3)/(2,_.3).k
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l Forn-- 4

I
I ""_ _" _

J It is frequently very useful, prior to formulating the

constraint, to perform the frequency integration which is conTnon

I to all tl_ee operators L(j), since the thermodynamic dependence

j may become less restrictive. Consider the fcllowlng example:

I (145) _It'-- [_x_-_--_]K't. _,L_

I This function is of the form first considered (,Equation 139) and
requires k = 0, &= i.

I " ° [ K7

J After integration

I (147) _ = - _(_) _

The post integration form is significantly less restrictive and

I

l
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falls under the second category considered, i.e. n = i and

i _: I/_ ' for the

Transformation Rosseland Flux •

In the Rosseland approximation the radiation energy and

pressure are discarded while radiant flux dissipation is included

in the energy equation. The flux in this theory has the form:

This expression is easily written in similarity form compatible

with the energy equation as follows.

then

(150)

and

3 ._c,Ti

-
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c_$2)F_- _ _C_,_'_'_-(T,_,,_'T'1

Imagine a nuclear explosion problem treated from the point

of view of two-sided similarity using the Rosselaud flux as a

means of energy dissipation and assuming the conservation of

impulse:

(153)

(154)

(_s6) P -C''/_ ( x'_{'_/7PO)

The alternate hypothesis herein mentioned are not intended

necessarily to have physical content.

Several observations concenxkng the physical implications

of integral constraints should be made. The basic requirement

is that the integrand be a function of _. Tbls means that the

integrated quantity Is conserved between the integration li_Ats.

More, however, Is implied: namely, between any two _ limits the

quantity is conserved. Hence, between any two moving points in
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the fluid on lines of constant _ the quantity is conserved. If

the total quantity is defined to be fixed and finite throughout

the _ domain then the integral constraint can impose an asymptotic

constraint on the value of the function. More over the stipulation

of a defined quantity can fix simultaneous the shock velocity.

These points are stressed by an example.

Consider the integral constraint on the energy:

Imagine that two-sided similarity is to be used over an

I[ infinite _ domain. Let the shock position be _ = _. Etota I _ AA_; where A is defined on physical ground s. Then

158) = A

i ° .

I If E(n) is continuous for then as

(159)
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Furthermore, since the integral is conserved between any

two moving points :

When E(n) is discontinuous at the shock wave equation (161)

automatically determines the shock velocity as a function of the

constant A. Of course, in an explosion preceded by a shock, the

energy per unit volume decreases. The converse is concluded in

the case of implosion when the integral energy constraint is

used.

In closing this section it is noted the integral density

constraint implies the existence of a contact surface. Indeed

every llne of constant is a contact surface for k - -3. This

constraint can not be used simultaneously with a shock _ve by

virtue of contrary definitions.

3.6 Sisnificance of Stro_ Shocks

The Rankine-Hugoniot equations in the absence of radiation

are well known to be

(162) _oVo - _,V,
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(163) Vo [ _oUo_ _ _o = ( _,U, _ Jr PI Momentum

where e --CvT

(165) V : U- U U = shock velocity

and for an ideal gas when the Internal energy is proportional to

the temperature:

(166) P: A _w

A = A(s) is not necessarily constant.

(167) Cz= _..-P)= _P_. --_'I-"

For the following discussion these relations will be used.

Several definitions of shock strez_th are popularly accepted:

the excess pressure ratio, condensation and the relative fluid

velocity to sound speed. The subscripted 5 refers to these

strengths.
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'v:Y_."v(7)

) c;L: ,(_('_-,)_(_){*'II

When the pre-shock gas IE uniform then $, U and T ai_ constant

and the aforementioned similarity applies tO the post-shock

For an ideal gas the Jump relations:

: _,(u,.U)

: tu,(u,-u)_ _,T,

As before the similarity invariants employed are:
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3.7 Limiting Strong Shock Conditions

In the limit that TO is small using the

and momentum relations:

initial continuity

(_T6) _o%(v_-VoI:%-r,

(178)

(179)

%v,: ____%'%
I'o"f,

.I

In this case S1 = oO

s;,P'/u(_,u)

For 71' PI' Ul' U stipulated then 7o has a limiting non zero

value. For this case the energy and momentum relations are:
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c_8o> U,(,U-u,_-T,

It follows irgnediately from the above relation that for

strong (not necessarily const,_ut) shock waves no constraints

are implied by momentum and energy on substitution of the simil-

arity forms. The continuity equation still demands that k = O.

If in addition Po "_ 0, _o-¢ 0 or To is sufficiently small then

continuity implies no constraint.

It is not physically unreasonable to consider the latter

possibility. Then s2 = sI = _. Furthennore co = _, then s3 =e_.

All the definition of shock strength are consistent. Very strong

explosions or implosions from a point could be approximated under

these conditions.

If the shock wave is to be constant strength then U1/c o = %_tX,

constant directly behind the shock wave. The use of co is overly

restrictive. Introduce U1/c I = constant. Then

(z82) x-'c"uc))/,(._.c'_-,I/_._(.._Ix-,/_

is required to be constant directly behind the shock wave, there-

roe it must depend only on_.
I
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(183) ,if "I : i__%_ _"

(184) r --E--T."_ : _ 1"

( 85) yB- -

This is the same result obtained in Friedric_s and Courant; (20)

the k,& relation for an isentropic gas and a constant shock

strength. Since the shock trajectory is a line of constant

and its strength is to be constant for all r and I, then either

r and I must cancel from the Jump equations or must be represent-

able as functions of ?. Suppose the homology in r and r cannot

be reduced to functions of_, then the Jump equations depend on

position and time. Hence the shock strength cannot be constant.

This is evident in a straight forward way from the continuity

equation. Therefore k = 0 renders the Jump equations consistent

and implies from the k-_ relation for an isentropic gas that _ = I.

An ideal non isentropic gas is trivally consistent with k = 0,

_-i.

Rhe most plausible hypothesis for explosions for example

revolves around non constant shock strengths. The shock is

initially strong and its strength decreases with distance. The

Jump equations using the similarity forms are:
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(186) __0x_"U = _*'_" _,_ Lu,<__-u]

_T-_(187) o "-

1: -_3 7.

Frcm these equations it is clear no possible way exists

within the framework of pre-shock uniformity to consistently

satisfy these relations for finite shock strengths without setting

k = O, _ = i. The only laternative is the use of the Jump

equations as initial conditions for integration, while the post

shock initial conditions vary from one tlme Intezwal to the next

assuming the pre-shock conditions are constant. Hence a parametric

family of solutions for independent Invarlants for the post-shock

region could be developed on time or space. This may not be a

totally unreasonable way of avoiding the partial differential

equations and treating non constant finite strength shock waves.

The slmilarity expressions for the shock strength are:
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(189.i) S

Or

$_: _-" u,(.?)/ _.o

(189.2)

Suppose the Jump equations are abahdoned in favor of a modeled

continuous solution across a transition region proceeded by a

unifonn region. From the similarity form of the shock strength

relations it is still evidently not possible to discuss finite

stren:_bhs shock except when k : 0 and b : I. With these state I

ments In mind the inltialmotlvatlon of employing two-slded

similarity is clear. Wlth two-sided similarity the Jump equations

impose no constraint. And
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(19o.2)

(19o.3)

The shock strength can be made consistent for arbitrary k,_ pairs

for finite strength shocks. The shocks, however, are still of

constant strength. Indeed, it may be concluded that except for

the llmitlngly strong shock problems self similarity fundamentally

requires constant shock strength. A further remark, the physical

implications of constant integral density is incompatible with a

pre-shockunlformity since k = -3.

3.8 Self Similar Motlons

Curves of constant _ are traditionally of the form:

(192)

In modeling solutions to a particular problem it is not

,necessary to fix the shock wave to a path of constant _. A

characteristic transition region may be introduced to facilitate
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description of pl_sically realizable non zero thickness shock

waves.

% q

Figure 6 Transition Length

The assumptions inherent in a similarity formulation are visually

apparent with the introduction of this length, khile mathen_tically

one locates the shock on a line of constant V , one recognizes a

shock wave does not have infinitesmal thickness. The similarity

approach dictates a behavior for this thickness. The equations

derived in the previous chapter are not necessarily sufficient to

describe a shock transition region because that the only loss

mechanisms included are the radiative flux.

Let the space-time domain in Figure (6) threaded by curves
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of constant be divided in three angular regions:

(193.1) (_ >.__.o

These regions would correspond respectively to pre-shock, shock

transition and post-shock regions. A sinDle formula for the

shock thickness can now be written:

- For the ease ( _ o ); ( ?, o ) and time increasing to infinity

then A_ _ corresponding to an explosion I%_m a point. The

Jump conditions may be applied for pre and post-shock integra-

tions initiating from To and 17_ respectively. For the shock

transition region values given at both end points over determines

the integration proceedure. To discuss shock structure it may

be required to produce continuous solutions to equations whose

Structure typifies the particular region and abemdon the Jump

conditions. This question is open.
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In Figure (7) where _I and if t(_. 0) the lines of

constant _ bow toward the time axis. This motion is non p.hysical

and improper for describing implosions. The behavior is simply

the inverse of the explosion problem. This fact is of course

obvious since &>0; v> 0 and Y_ 0 implies Vshock _ 0. In

Figure (8) for i > _ ) 0. The lines of constant _ bow toward

the space axis and aS-*_ as r_ _ for T • 0 but more slowly.

The division clearly occurs at & = i.
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Figure 9 _ ( o Figure l0 _ L o

Two alternatives for the description of implosion motions

are properly described by Figures (9) and (I0). In Figure (9)

the motion is "hyperbolic" since _ is negative. For [ _ 0,

_ 0 and _ implies Aso0. The shock wave in this case

takes an infinite amount of time to reach the origin. In

Figure (I0) time is negative therefore Vshoc k is negative

[(-_ ) 0) and _ • 0 the shock converges to the origin in a

finite time and A s _ 0.

3.9 Translation and Finite Surfaces

Traditionally curves of constant _ are of the form r = _ .

Discussions of similarity motions for explosions and _o]osions

revolve around the singular point corresponding to r= 0, I_= 0.
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Lines of constsnt _ converge or diverge from this point. _he

point at infinity is also a singular point. To reiterate, a

contact surface can exist along the space or time axis in an

infinite problem without imposing an integral constraint. It

is instructive to envision the Euclidean plane with its lines

of constant _ mapped by stereographic projection onto a sphere

located at the origin of coordinates. The two great circles of

space and time divided this sphere into four sections.

3.10 The Effect of Translation

Consider the primary system of fluid equations:

bT _× ? bx

(196) _-- + _ _ @_%_.. =O

(197)
U

(198) _- (y,-Xo]'_n _'_1

(199)

K Yk

(2oo) .__ (_.×o_/(z.L-o_
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Transforming the Momentum: the I_S is;

and

(203)

..'( i_i _I

The isentropic equation of state implies:

Transforming the continuity equation:



72

(206) (or1, =o

The above equations hold for arbitrary coordinates. The

energy equations transforms similarly when Isentropy is not

assumed. Hence it has been shown that the equations are In-

variant under translations and maintain their self similar form.

The similarity variable ? is of the form:

In spherical coordinates the points ? = 0 is a vertical

line parallel to the time which describes the time revolution

2

of a spherical surface of radius r = ro. From all points of

this finite surface the lines of constant _ diverge (converge)

Figure ii Finite Surface
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In cylindrical coordinates with sxial symmetry and z independence

= 0 corresponds to a cylindrical shell. Naturally, in plane

coordinates with x and y independence it corresponds to a plane.

Looking into quadrant (1) where Z_ O, r • ro with r_ r + ro,

explosions diverging from a finite surface can be investigated

with a shock wave positioned on a line of constants. In the

region r • O; r _ ro; r-7 (ro - r) explosions from a spherical

surface cr.eating a wave propagating to the origin can be described.

One notices that for this type of implosion:

(209) . &$ _

This represents a characteristic increase in the shock width as

time evelves. The converse of the problems mentioned can be

investigated by looking into the 3,_d and 4th quadrants.

Some physical problems that can be associated with these

motions might be mentioned. Using the radiative gas dynamic

equations for %_ 0 time i-_o, K ) 0, it would not be im-

plausible to describe a radiating exploding star in vacuum. A

contact surface could be used to represent a matter-space inter-

face implying k = -3. A gravitational force could be included.
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Using Y< O, _ 9 0 frsn-_, _ 0, l_.0 or5 a 0, _> O, r-_o

k) 0 an imploding shock wave in a radi_nt gas can be discussed.

Further, a contact surface at infinity can be imagined to be the

imploding force implying no constrslnt. In both cases ] = r/A'_%.

For the finite spherical surface, focusing attention on the

region T > 0 for &_ O: ro• r2 0, a shock wave imploding to

the origin can be discussed. In all cases these solutions are

to be considered carefully for regions of physical applicability.

They do not hold in all regions of space and time. Again, a

shock and contact surface can only exist simultaneously if they

are in coincidence, but this case is to be ruled out by contrary

definitions (contact surface not at _).

If I_ al, r-, br, where a and b are dimensionless numbers,

this represents a uniform contraction or dilation and simply

represents rotating the field of lines of constant _ .

3.11 Superposition of Self Similar Motions for a Problem of an

Imploding Shock

Almost definit@ly a given problem of physical interest will

not be analysable, in totality, on the basis of self similarity.

Hence to model a solution it may be necessa_ to model the motion

in a plecewise self similar way from one region to the next.

Consider Figure (12).
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Vo F_.g_e 12 Piecewise Model

Let an explosion at r = ro on a finite surface occur gener-

ating a shock wave pl_pagating inward and for rI _ r < ro; _ _ 0,

_-> _ from zero. The solution can be joined at rI to a transition

region where the shock velocity begins to diminish, i.e. B>_'> 0.

This region is Joined to a thi_ region where the shock takes an

infinite amount of time to traverse the interval (r2 > r > 0).

Here _ ( 0. At the points rI and r2 curves of the same_ for

different _ can be Joined. The solutions cannot be made valid

generally at the Juncture points rI and r2. The homology which

depends on k can be preserved but the inval-iants are generally

discontinuous at these points. Failure of a solution in the

neighborhood of a few points where solutions are Joined is a small
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price to pay. In the region (ro_ r > r), is of the fore:

--..-(21o)

These remarks on piecewlse self similarity can be viewed

upon as concc_nltant with the hypothesis that _ in the general

case of non self similarity is _(T), and over the time intervals

corresponding to the portions of space (ro > r _ rl) , (rI _ r 2 r2),

(r2 _ r _ 0), _ (t) is approximately constant.

Shock Wave at the Origin

No adequate description within the framework of self similar

motion exists to describe the reflection of the shock wave at

the origin. If the criterion of critical reflection radius

exists it cannot be formulated except to conjecture in an ad-hoc

way that the self similar motion breaks down and is invalid be-

yond this polnt.



CHAPTER IV

AN,'U_YTICALAND NUMERICAL PROBI2MS

4.I Introductory Remarks

The numerical problem herein discussed concerns an inward

propagating shock wave which is completely opaque to radiation.

From this problem the conclusion may be dra_vn that the effect

of the radiative transfer is the cooling of the gas directly

do_.mstrean of the shock wave. Consistent with a t_dform pre-

shock gas e_nd the embedding of radiative transfer laws, the

implosion velocity is constant. The problem is posed on the

basis of the following statements.

a. The upstrean (core) gas is quiescent with zero velocity,

uniform density and uniform non-zero temperature.

b. A shock wave is defined to exist on a llne of constant

c. The shock _ave is opaque to radiation. This means that

in the heated radiant post-shock gas the net radiant flux diverges

away from the shock.

d. The initial conditions for numerical integration are the

initial post shock values i.e. U(_), T_) and R(?). Further, the

shock velocity is stipulated.

In the model considered, the radiation energy and pressure

77
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are excluded. The radiation flux is _intained as a dissipative

_echanism in the energy equation. This is reasonable because:

(211)
Fa Ua

The radiation quantities could be comparable in magnitude for

dense materials or equivalently for a large index of refraction.

In this case the radiant energy mlght be trapped over locally

small volumes. The model problem presupposes that the post-

shock gas is not optically dense.

Situations can arise in whlch all radiative terms should

be Inclined. An example of this might be a dense radiant star.

In laboratory experiments the primary influence of radiative

transfer effects, should they be of importance, is manifested

by the flux dissipation in the energy equation.

Problems may be considered in which the heat flux (radiant

plus conductive) hag zero divergence. The radiation pressure

and energy in this case augment the analogous fluid properties.

Equilibrium assumptions of some type are usually employed

by experimentalist to establish a relation between the density,

temperature and net radiation. The black body distribution is

commonly used even by theoretlclans. It is ludicrous to abjectly

discard these theories as inaccurate. Deductions based on
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equilibrium hypothesis in a region quite strongly in non equili-

brium (the shock wave region) should, however, be subject to

scrutiny.

A procedure for analytical approximation is illustrated by

application to the problem in which the divez_gence of the total

heat flux is zero.

4.2 Embeddir_ of a Radiative Transfer Law

In the numerical calculation the Rosseland flux hypothesis

could be used. The proper similarity form for this term was

derived in the section on constraints. In a strongly time de-

pendent problem the validity of the assumptions required to

formulate the Rosseland flux approximation break down. More

convincing critical statements of this popularly accepted

hytpothesis cannot be made. The correct law to employ in a non-

equilibrium region is unknown. The use of the Rosseland flux

raises the order of the energy equation to two. In general the

inclusion of the radiant energy and pressure terms with a

Rosseland form for the flux, requires two k, _ relations. It has

been shown that giving a similarity form to the radiative intensity,

while retaining the expressions for the radiant quantities as

integral operators on the intensity, requires but one constraint.

This lends credence to the point of view adopted in Chapter II.

Unfortunately, appropriate choices of radiative transport

functions appertaining to laboratory experiments is an exercise
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in academic conjecture. Therefore, a law is postulated in an

ad-hoc manner. The numerical exper_ent is to be viewed as an

illustration to which no profound physical significance should

be attached. For Just these reasons, laborious numerical

analysis of the entire system of equations is without slgnifi-

cance.

Postulate:

a. The material derivative of the radiant intensity is zero.

b. An anisotropic angular dependence of radiation.

c. Exclusion of scattering.

d. Black body frequency dependence.

e. Admissability of a mean absorption.

It is realized that these postulates are questionable.

The radiative transfer equation is:

(212)

t •

, '_ i£--J +
(214) lV V V

The quantity _ ,Sis the loss due to scattering and J_ is an

effective emission due to scattering in a given direction from
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other directions. With the five postulates:

A mean absorption may be defined:

(216) <_> :

where f is an appropriate weighting function.

(217)

J

(218) _ _ -[

Then

(219) _ ¢_

Tr

0

Consequently

P, q
(220) _ _. 7"
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The proportionality constant _ includes the Stephan-BoltTmmn

constant, the mean absorption and integration constants. The

only relevant part of this constant is its order of magnitude.

Hence

t
-_ F(<. _-T_

(221) h- _V

then

(222) _ T T," =

Using the homology for Iv give n in Chapter II con_patible with

the energy equation, one obtains:

(223) _ _."I,,.,_"_ _- 4

That the R.H.S. be a function of ? only implied:

and

,C
,.c._1:(22_) ,(- "_':(>,_)
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In spherical coordinates the dlve_gence of the flux is:

(227)

In similarity form the R.H.S. becomes (see Chapter II):

(228)

Also

I

(230) i i]

Tne flux dissipation becomes:

(231)

"F

The specific form of the function _I(L) is not consequential.
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The sign attached to the flux term prescribes the direction.

4.3 Numerical Procedure.

The simplest procedure for numerical integration is seen

from the following example.

then

!

(233) Ay_ y Ax _ _&X

For fixed _x = h, then:

and

(235) y _ Yo,_ _

Consider asystem of coupled first order differential equa-

tions in which it is possible to solve explicitly for the deriva-

tive in terms of the functions. The equations can be put into

the form1:
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A natural procedure presents itself for the integration. The

equations in the problem to be treated are, of course, non-

linear. Define a sequence [4] where:

(237.1)

| 0

Z _D

The range of J equals the number of equations and n = 0, i.

For n = 2,3 use:

With this:

(238)

I=

!

This scheme reduces to Simpson's rule when yj = yi(_). Clearly

the system under discussion is snenable to treatment by this
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method. (21) It is required to solve for U' (n) ; T' (n) and R' (n)

as functions of R, T, U.

4.4 The k- _ Values

With the condition that the pre-shock gas be unlfonn _[th a

non zero temperature, the Jump equations stipulate that k - 0,

= I, which has already been shown. The law _ = T_ is com-

patible with these values for k and _. Indeed, If it is desired

to discuss a limitingly strong shock propagating into a unifor_n

region then k must still be zero and with this radiation law

= 1. For the significance of this see the discussion on

limitingly small radiation effects,

4.5 Immediate Deductions

Before any n_nerical computations are effected, the important

physical consequence of the model can be ascertained. Since _ is

constrained to be unity the shock velocity is a constant. Propa-

gation is inward along a ray r =_T. This is more than a con-

sequence of pre-shock ur_ifonnity but also of the radiative law.

!

If the similarity relation for L(I_) is evaluated at. ] =_ , a

relation is established between the shock velocity, radiant in-

tensity and temperature in s_dlarity fo_n:

Hence, if any two quantities can be observed experimentally then



I the third is detez_nined. The radiation law hypothesized to apply
for a given situation can be checked. If the model of an ex-

plosion from a finite spherical surface Is used then for a finite

"shock thickness" :

(240.2) C (

_% incres_es as t increases or, in the case that _ goes from -

to O, A_ decreases. Hence the gross features of the model that

can be checked by experiment are directly computable.

The object of any extended computation is to ascertaln

the structure of the variables away from the shock proper. Most

usually this structure cannot be measured in present day experi-

mental appartus.

4.6 Equations

(241) _ _'[U-I] +_U , hO'R Continuity

R I

(242) [U-i] [hU'+U] _ [i,+___ ] T_]T' Momentum

(243) _v[U.,]_T I_CvtU-,]T

_R

Energy
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The ideal gas law has been substituted into the momentum equation.

Rearranging the energy equation and substituting the similarity

expression for Iv yields:

where _ = _/_

In order to facilitate manipulation define the following:

(245) Q- [u-,]

(246)
9: [cvq, 4 _ _'T _ ]-- _ T '

_, •

Solving for T' in the energy equation and substitution.in the

momentum equation, and similarily solving for R' from the con-

tlnulty and substitution yields:

(247) , ] _.__._u'[ o,o
Q _e
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_d

Forming the quotient and multiplying numerator and denominator

by Q.

(249)
_L2PQ-3up-2¢vQ_3uQ]T÷ __-u_LP

U= R

NOW.

-R

Substituting the above and dividing numerator and denominator by P

.(25o)

I

u P
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• From the momentum equation, the derivative of the temperature

is most easily expressed.

(251)
i i u

(252) T =. u,'+,.V]
i I ii

The density is immediately determined.

( s3>r,'--&

In the ( ) sequence J goes from 1 to 3, where kI corresponds
n

velocity increment _ to the density and k3 to the temp-
to the

' , n

erature. Since U' is contained in the expression for R' and T',

it is of course necessary to compute U' first then either R' or

T'. In tDds computation the value 3/2 is used •for the specific

heat at constant volume. Assuming teh equipartition theorem,

this corresponds to a gas of three degrees of freedom and yields

a specific heat ratio of 5/3.

4.7 Sir_alarities in the Field of Integral Curves

It is fruitful to examine the vector field of fluid velocity

versus sound speed. This has been done for the case k = 0, & = 1
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(254) _w.
TG Q

Resub Lttt :' ._

1

(256) dT . LZ( _.

call "G"T--e,._

I

when no radiation is present. (22) In general it is a formidable

undertaking to produce these curves. The siI_ularities that are

encountered are more easily divulged. Needless to say no deduc-

tlons based on the curves with radiation absent need necessarily

be extendable when arbitrary radiation laws are Lntroduced. Fach

law determines a different field with different singularities.

Since P =_ T, then the sound speed is effectively _-T. Taking

the expression for the derivative of the temperature and dividing

by the derivative of the velocity the following results:

[(_u'r- u_" )+ l',,Te/e t._,_ 'l_ 1"_q/P ]

Resubstltutlng the expression for U' in the numerator:

,,u' "xlI ]
m[+]
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(258) c_.
du
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;t..e._[ (, _,ucV_-uc_"), 3u.___c',_._?_'q'%/p]
P_

The slope is infinite when the denominator is zero: c --0; U - O;

(259) _ _- Z_'_ =o

It is i,medlately noticed that with the introduction of

radiation _ enter's explicitly, a situation which hitherto did

not occur, _he additional contribution in the denominator due to

the radiation is:

(260)

When the radiation disappears the expression reduces to the old

result.

4.8 Discussion of cv

The ideal gas law has been written in the form
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and E -= r..vT

The implications of this are immediate from the second law of

thennodynamlcs:

"1"

(262.3)

f

Hence X = I÷*/_ v

usuany _= I _-RAv

Hence cv as used in this formulation:

,(263) e,,.v ... e. v/R ' = "_/'_
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For three degrees of freedom cv = 3/2 and = 5/3 as aforementioned.

4.9 Conditions for Numerical Integration

Tne shock wave trajectory is determined when is given to-

gether with . For an implosion wave, the shock velocity should

be negative. This can be procued by any of the follow_ug conditions.

The case :'a" is used in this problem.

A reference length and time are usually employed in the non-

din_nsional formulation of the original system of equations. _ The

quantities employed in this section can be thought of as non,

dimenslonalized with respect to a reference length of one meter

and a reference time of one second.

The dimensionless shock speed is fixed at - l03. That is,

_[ = - l03. In view of the above paragraph, the conversion to

physical units is effected by a multiplication by one meter per

second. In the pre-'shock gas the fluid variables are assumed

uniform and are not stipulated. In order to vary the influence

of the radiative flux term the post-shock initial condition for

the temperature is varied. The post-shock conditions for the

dependent similarity invariants associated with velocity and

density are respectively U(_) - .95 and R(_) = 1. Consequently,

the dimensional initial flow velocity would be - 9.5 x l02 meters
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per second. In the shock frame of reference the post shock gas

is moving awaF subsonically from the shock wave.

It is obviously not possible to stipulate all of these

quantities consistent with the same pre-shock conditions for

each value of the post-shock temperature. The Jump equations

impose constraints on the proper values. The shock Jump con-

ditions need to be solved numerically. In lieu of this, the

initial conditions chosen are those w_ich one might typically

expect to find in a laboratory experiment.

To establish accurate mathematical and physical initial

conditions for the solution of a given problem is an horrendous

task. The shock Hugonlots would have to be solved numerically

for triplets of pre-shock conditions and for positive and negative

values of_ . The Jump equations are not necessarily invarlant

under a change of sign of 7' Therefore, a set of pre-shock

conditions suitable for a positive _ regime are not necessarily

suitable for a negative _ regime. The field of integral curves

should be determined" together with all sonic, subsonic and super-

sonic regions and singularities. A particular problem m_y be

represented by one curve in the vector field and appropriate

initial conditions established by discovering where the integral

curve intersects the surface generated by the Jump conditions.

A discussion of this approach for a non-radiative problem can be

found in the paper of Guderley. (_) With radiation the difficulties
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are multiplied.

In the problem under consideration, the temperature across

the shock wave is discontinuous. This discontinuity is compatible

with an opaque shock wave.

4.10 Results of the Co_T_utation

The density and velocity fields for all practical purposes

do not vary appreciably over the integration range for each

co_outation. This result is not unexpected. Consequently, the

curves for density and velocity are not reproduced.

The effect of the radiative flux is to cool the gas directly

downstream from the shock wave. The temperatures in this region

are lower than what they normally would be without radiation.

_hls statement is validated by considerations of section (4.9).

The relative decrease of the temperature is, in each case the

same. The asymptotic value approached is higher for higher

values of the initial conditions. (See Figure 13).

The situation of constant shock velocity, a lower than

normal downstream temperature and a constant shock stre_gth are

all compatible and re_present a plausible model, at least in the

gross features.

4.ii Analytical Approach

Frequently insight into the nature of the problem can be

obtained by approximate solutions. Several calculations are

effected in this section illustrating an avsdlable approach.
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A limiting case of the computer experiment is subsequently

produced. The assumption is made that the contribution due to

radiation is negligible. The quantity U' is then:

(264) U' % "U
Le._-_T- 3eP/v]
[(_T- QIP ]

The statement P _. CvQ can be made, but is not necessary, since

by inspection:

!
(265) [J _-_ el.

where g is a number between 1 and 3. From the continuity equation:

(266) _ _ _-

(uo-'7*)

Consequently:

(267) ,, _ : R_e-xp

Hence generally:
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The temperature is established from the momentum equation, which

has the form:

(270)

The solution to which is:

(271) T=

(272)

(273) J
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,
(275),,_.._I (_-_%C_)-(_+').

I '_-I (__1 _'_ _

I No general integral of N is available. The above form breaks
down when _< is one, setting N = To produces the desired result.

For < = l, the forms follow:

Similarity Actual

u-Uo/_ U:_o_,_°(yo_,)_ _=_°(w;_i_

(b 'u_._ u_-_l
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_. = i should J_ply for validity of the approximation that

3T/Q 2_4 l: thls is true for _>>3 since MAX U° = i. For

= 3,u : Uo_-3_d R : Ro.

(276)

(277)

(278) T(_I : _ -
_ _,,7_

(279)

To digress, it is noted that the temperature diverges as

@ O. Appropriate values for _ are to be computed on the

basis of initial conditions.

In the absence of radiation the energy invariable leads

to &n invarlant when k = 0 and _ = 1 In planar, cylindrical and

spherical coordinates:

.,(28o) % tu-,]?T _z(.v_f.u-,] : "T[_ u +?u']
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= I, 2, 3 corresponding to the coordinates mentioned above.

But

(281)

Hence dividing the energy equation by [U - l] Tcv and inte-

gratlngresults in:

'_T
(282) ..--- : L,.mt_'_.aa11_

R'/Cv

This leads to the result s = So, a constant. Hence k = 0, _ = 1

corresponds to an adiabatic motion as expected.

4.12 The Iterative Scheme for Arbltrary Flux Laws

o.R %'_ J

Writing the energy equation:



(285)

I (286)

1o3

cv[u-_,l _3", _,c,,[u-_l --'r [_u_u,]

_'t

then

[
P .. o,R-r" c_,,

"o_ T

i Substitution of this expression into the momentum equation

I produces the desired isolation of U' required for the previously

suggested iteration scheme. UsJm4_ the continuity to eliminate

R! .,

_-- in terms of U.

(288) I q_UI + U%'_ + [(kiz)" [(k_+5}U+_lOs]-el__._v(u't)P

9

(289)
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(290) UI= ( I'_, l'_, S )

(291)

and

i

Equations (290) through (292) are the general Iterative scheme

for arbitrary pairs of k and _ and for arbitrary flux laws.

Similarity representation for the entropy_ From the

second law:

(293) s,s,+[,, (_'_'_)

(293.2)
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(293.3> "_=_l,u_

(293.4

4,13 Negligible Radiative Transfer-Heat Flux

The discussion in this section bears upon problems in which

the divergence of the sum of the radiative flux the conductive

heat flux is either negligible in comparison to other terms or

zero. Explicitily:

(294) V, (_ +r_)=o

The momentum and energy equations are respectively:

(295)

.(296)
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In order to widen the class of readily manageable problems,

an artiface is introduced. Define:

(297)

Hence, whenever the ratio of the radiant energy to radiant

pressure yields an acceptable value for the specific heat at

constant volt,he of a gas, the statement may be made and will

be proved that the velocity field is independent of the thermo-

dynamic structure of the radiation field. With this artiface

the specific heat is related to the angular distribution of the

radiant intensity. The range of specific heats is determined

from total isotropy of I_ to total undirectionality. For these

two antipodes of the spectru_n of angular distribution the fol-

lowing results. _enI _ is total]y isotropic:

(298)

(299)
4._.,_T-= Ul_

Hence cv = 3._orl._strongly anlstropic_ The MAX _ is _.
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Since MAX (Cos2) = 1 then UR = _ and cv = I. Thus the artiface

introduced as a mathematical convenience, usable on its own

merlt, is acceptable physically since realizable gases correspond

to admissable quotients. To digress, this raises the question

of the relation between the number of degrees of freedom of a

radiant gas and the an_lar distribution of the radiant intensity.

What would be the effect of a magnetic field? O ¢_ I,e :

(301)

R' L2Iwfrom the momentum equation theAdding and subtracting R a_c

energy and momentum equations in terms of z become:

(302)

(303) _ u'[u-_] + L(k_+ _-a'] _ + _ Z'_ _" U -°

The character of the above equations with z In place of T re-

sembles the non radiative system• For the case _ = 0, _ = 1
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the energ_y equation yields an invariant, dividing by c
V

(306) _T(hl _ (_%_ .___r_
l_i/Cv o,I_ _ /

z[u - 1]:

(307)

Clearly from the energy equation:

Using the continuity equation, it follows that the momentum

equation can be written solely in terms of the velocity field.

This implies the velocity field is independent of the form of

Iv since the latter holds for arbitrary z.

4.14 Approx_Jnate Solution

Again, isolate U' from substitution of the energy and con-

tinuity expressions into the mome_nt,_mequation.
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(309)

(31o)

_[u-il_ ):o

=
-u_'+u.(.v_tl_-+(k+) +31c,,)_ + 7,[v-,]_

ib u =(311) &

-u_+u-ck,_._+(k+_+)Ycv),__.u_._,tu-,):_

Q- (,+'/c,,)z/o,

Mult!plylng numerator and denominator by Q:

#

(312) _ U :
-u(.u-,lQ -(._+zl%_ -,-(k+_+Vc,,)_u+z.(.u-,l_.

qz (i+,/c_)_

Rearranging the numerator:

(313) U i I [-o(__-,_-_)+(_,_i_._)_]

Assuming z/Q 2 _ const.
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The physical significance of the assumption z/Q2_, constant is

that in the shock frame of reference the work done by pressure

forces is proportional to the translational energy of the gas.

•Consider the simplest case when _- i,_ _. Call: =i---.i)

(315) _ u'-.-_u÷b

(316)

(317)

r_ [Uo._-_.,6/_.,_]

(318)

[ Uo_(_._)_],l

_he momentum equation is of the form:
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These expressions for z, R, U are for arbitrary g and explicitly

include parametric dependence on the homology number k.

To digress, in planar coordinates the similarity equations

are altered by virtue of the divergence terms. The momentum

and energy equations are:

(323)
Cv

The velocity derivs_ive is:

!

([324) U =
[-v_o-,),_,[,,-,,'_.,],u_.[c,,,,__,-,.]_:
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An equation which is almost identical to the previous.

5= I =>%-o

Set:

then

(325.1) UI= . U/_

(325.2) U'-Uo_ "I

(326) _ ): ¢_,

(327) 2._+._.'-0 _ _:?-o_ "7" VC-v

The temperature distribution is discovered when I_ is expressly _

stipulated. This exactly solvable problem is the trivial equil-

ibrium and uniform flow problem.

4.15 A Further Special Case

_' It is worthwhile to ask when the approximation schemes used

,in prevlous sections may be applied to the case where V.(_i_%o,

If the heat conduction is written:
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if

(329) F_ = D_ _---_]_v-
_r

Clearly if k_/Dg-_ CV , the sum of the above expressions is nothing

more than a constant multiplied into the gradient of the internal

energy of the gas. Tne inclusion of this term raises the order'

of the energy equation to two. Furthermore, the similarity

structure of the term parallels that of the heat conduction alone.

To include it requires an additional constraint on the system

unless the coefficients possess appropriate similarity structure.

In addition, if the similarity form of _Z,(qi + FR) ' _ ,= H_z,z'z" )

for an arbitrary function H, the conclusion that the velocity

fle]d is independent of the structure of the radiation still

holds. The physical result that is concluded is that the real

coupling between the material and radiation is the flux dissi-

pation terms in the energy equation.
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5.1 Remarks

The Birkhoff formalism was introduced in Chapter I. This

approach was not needed in the main body of the work. _le usual

homology associated with the fluid variables can be ascertained

when, for example, the homology associated with the density is

stipulated. The proper homology for the radiative terms was

discovered through requiring compatability with the energy

equation. If it is desired to analyse equations not as well

studied as the fluid equations, the Birkhoff formalism is an ex-

ceedingly useful guide in ascertaining admittable _imilarl_y

__I"_11E.

It is natural to ask whether a less intuitive method for

discovering proper self similar forms is leasable. _nis chapter

constitutes sn initial inquiry into an alternate procedure that

could be used. The-basic concepts introduced are not reduced to

a rigorous mathematical formalism but are suggested as an inter-

esting approach which to be properly useful would require Further

development adn substantiation.

5.2 qhe Boutndak_/Value Problem in the Similarity Approach

q%_e only really adequate formalism that can embrace properly

posed boundary value problems for Hyperbolic systems is the

114
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method of characteristics. In some cases, however, problems

of this type are amenable to solution compatible with siml]arity

ideas. Usually, in inquiring into a similarity solution,

boundary value problems are abandoned or conjured a' posteriori

for p_-poses of com_atability. A simple criterion exist by

which it is possible to ascertain whether a particular boundary

value problem can be reduced to self similarity. The following

example illustrates this: Let Q(x,y) be a function bo which

there corresponds a differential relation. Let Q(x,y(x)) be

given on the curve, y = y(x), refer to Figure 14. The sind.larlty

representation of Q is of the form:

(330) Z"_ _ Q (_ : Q(.'<,_

at the bounda_j:

(331) _" (_(_I _ (X_ I

Q(_) is a constant on lines of constant _. Consequently, if

lines of constant _ thread the curve y = y(x), then the solution

Q(_) to the associated ordinary differential equation is estab-

lished by initial conditions. If this were valid, the initial

conditions would establish a solution for the evolution of the
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system independent of the structure of the equation. Obviously,

this is not a correct approach. Therefore, the function Q(_) as-

sociated with the similarity transformed differential relation

must be a constant on the boundary arc. _he appropriate constant

constitutes an initial condition for integrating the trans-

formed differential relation. The boundary curve must be a line

of constant_. The admissable boundary curves are precisely:

(332) _LX) = "_"_xb

The appropriate boundary data must be of the form:

(333) (_ C×,_) 1 = B y'P

:y,-},-,

where B and p are constants.

5.3 Basic Concept

The suggested technique depends on a cambination of two

classical concepts: transformation to general coordinates and

the Birkhoff search for sy_netric solutions. Prior to effecting

a similarity treatment of a given system, the equations are

written in a general coordinate system, qhe metrical coefficients

associated with the general coordinates contribute to the system

as assumed known functions. A reduction to self similarity is
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effected. In the process the metrical coefficients are given a

similarity representation. The constraint that the system of

equations be "absolutely conformally Invariant" determines a

class of general coordinates compatible with a similarity repre-

sentation of the system. The inversion of the transfon_ation for

any memberof this class produces a curve in the original system

which can be represented by a constant value of the independent

Invariant in the transformed system, provided the transformation

is not sino_ular.

An extension to the Birkoff search ban produce different

curves compatible with similarity by properly designing the

transformation _. Supposethere are two independent variables

xI and x2 and_iI = 0, Then define:

(334.2) _ L: _. L X_.

(33 ) : x,<=.

clearly _ (_ ] - "_
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In retrospect, the latter procedure seems deceptively s_nple.

The construction of general transformations requires considerable

ingenuity. The value of the alternate method suggested Is to

reduce somewhat the need for intuitive guessing. The approach

is pedestrian in comparison to the simple elegance depicted by

Birkhoffs process. It could be more than canpetltlve wlth the

classical approach If the transfonnatlons could be inverted

with some degree of generality. Indeed, if for a given system

the transformation could be inverted, all similarity motion

compatible with the system would then be determined. This un-

fortunately has not been accomplished. Only by trial and error

is it possible to invert these at present.

5.4 Fonnulatlon

Introduce a system of differential relations by the symbol

][ in which there are p dependent variables [_ and m independent

variables _X_. Before using the Birkhoff formalism, introduce

a general coordinate transformation on the system. Define:

(336) %_ = _(×_.I

(337)

and
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(338)

The transfonnation :nay be leftunspecified until a later

stage in the development of a particular problem. In the bar

corrdinate system effect the transformation

(339) X _. = _

(340) _

(341) [ _, y_

#%

(342) k°2 _ = (_ --

_q()Y{ and _ are constants and the constant "a" is the generator

of the transformation. The dependent invariants are:

: / .,,,(343) _ _ _ _ k fixed, L: P

The independent invarlants are:
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(345)
...__ --

_x_

The requirement that the system of differential equations

° _ Lnv_iantbe absolutely con_ormal_y is:

(346) [-

This produces _ constraints on the 4_, _ and _;_ such that

the number of unidentified constants in the formulation is:

(347)

Now

(348)

where the $i_ are arbitrary functions.

(349) _*_1, I "" _'t _;'_/"('"_ _r _(_x%;'_/'4Y'_
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The symbolic quadrature of equation (349) Is:

Curves which can be represented by (350) are exactly transform-

able. There exists a transformation to a system in whlch they

are representable by a constant value of the independent In-

variant.

Flgure 14 Sketch of Coordinates
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Let y = y(x) (refer to FigLa_e ]4) be an initial data curve

which is not of the formy = x_ for some_. In the x-y co-

ordinate system it ca_ot be represented by some constant

By first using the general coordinate transformation it is pos-

sible to ascertain a system _ - y in which the given curve can

be expressed by a constant value of the independent Invarlant

associated i_ith the bar system.

From equation (349) the class of curves that are exactly

transformable in two dimensions is:

(351.i)

_x

(351.2)

(351.3)

'_×

(351.4)

For curves which satisfy the relations (351) no further con-

straints are imposed on the set of gl' _land _;i ' other than
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those due to the differential system.

5.5 Short Tabulation of Admissable Inversions

Case I:

(352)

then

(353)

a3

(354)

_x
..__.,S: _ p,i,= _i c..,)z_?

with

(355) _4
. (_.,)

---- -_3
.f

then

(356)
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From this example the classical result (335) is easily

produced by setting; p = l, m = 0, y = y + I. Further tabula-

tions are computed without cG_nent:

Case II:

(357.1) _ _ x _

(357.2) _ _-_

(357.3)

(357.4)

The _'s abbreviate the honTDlogy of the metrical coefficients.

(357.5) ____o _ S,i_--o

(357.6) =o

(357.7)

(357.8) (_-
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(357.9)

•::,.:.Case III:

Set:

(358) ,R: cxI_(x.,-_,_)o.

(358.1)

(358.2)

_x _b

(358.3)

b-'i _x

(358.4)

(358.5)
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Case IV:

Set :

(359.1)

(359.2)

(359.3)

X=

S =

126

_x_,(x,_l,_1-Q.xp-(xi-;,_)

_:S ,__
bx _x

(359.4)

(359.5)

_R I_, "_ '----" ) __ =IX

I !

with

Set :

(360. i)
_i= constant

(360.2)
_z"- 0

(360.3)
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(360.5) - [ _,(_-_,__-_,/(,-_,_]'/,-_,,

(360.6)

Curves of constant _ are:

(360.7) _ =

['_,t_+_+_,)_,-F,_]_'I_,_,-_,_

5.6 Illustrative Computation

Let _ be the equation:

(361)
U,3"_UUy i,u'd =o

Under a transformation of coordinates this becomes:

(362)

Consider the case (357.1) to (357.9)
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(363) _. _YI _ _= _.o.×m

The above equation becomes:.

(364)

Also

(365.1) _)_ ×/_l = ('_")I'_

+ _l\+vu =o
/

(365.2) c_e_x/K, = (_"11_

Then

^ J,,(366.1) R :

(366.2) _ : O,_"

A
(366.3) U : 4'U

(366.4) _r - o,_ V
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be constraint con_tions imposed by the dif_nt_al equatlon

are:

(376) C'q"_)" ( _',__,-_. *_,c_.E:9):
'11

and

(368.1) "_I:" _2.

(368.2) <I (_'")--.-_,'- ._,(c',-,V,,-,)
o

(368.3)

and

(369.1) _'i:" _', (_-i__....]
_n

(369.2)
_1( "m-n_._.l]"6%.- -
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and

(370) 4__-. An

The class of curves and boundary conditions on these curves

compatible wlth the differential equation and the choice of

tr_nsfon,_ation are:

"' x_'' = ×'_ /

(372) U: X_¥'/":'UL_ I : X1"mg('_)

The solution is trivial, but sufficent to illustrate the approach.

The solution U(_) is still to be obtained.

5.7 Imcal Similarlty

An approximation procedure for locally self similar solu-

tions suggests itself. Designate:

(373) 7_ = _;% _"_X _"VU,= o
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The requil_s curve is:

The boundary condition is:

(375) U (x,u_)

Let a curve admissable with _(_) be y = y(x). Translate co-

ordinates to a point x_, y_ satlsfyln_ equation (374) by

(376)
: Y o _'_

\ ' I \ ' _

At the point x_, y_ effect the transformation:

The differential relation becomes:



(379)
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d(.s)

Using the transfo_nation:

(38O.l) '5 : _ _ _ "- (_"

A j ^ YI(380.2) U :

The similarity form of the differential equation becomes:

(38z)

(382)

_T_

Zhe accuracy and usefulness of this approach depends upon

how close the curve Ys = Ys (x) can be appz_ximated by y = y(x)
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in a neighborhood of the point Xs*, y_.



CHAPTERVI

CONCLUDINGC(__A_S

6.1 Conclusions

It has been shown that a total reduction to self similarity

can be acbZeved with the radiative gas dynamic equations w_[th

spherical symmetry. This reduction was effected in a one

coordinate system by preserving the definitions of the radiant

quantities as integral operators on the radiative intensity and

asking for the proper homology for I compatible with the system

of eauatlons. The findings of this paper have thro_a_ serious

doubt on the validity of several published results. Specifically,

In the paper by E. I. Zababakhln and V. A. Simonenko (23) the

statement is maae that ':the h_t ..........w_v_ _ _,_^'.........,_._ az_I"._

successively at the center. Each of these near the center is

described by its own self similar motion, a general self si_dlar

motion for the entire process does not exist." In another paper

MarsDak states explicitly (24) that "In order to obtain a solution

of any kind for eq. (9) to (ll), two fundaments_l assumptions must

be made:

Assumption I - The radiation energy and pressure are

negligible compared with the material energy and pressure. The

radiation f!_x must of course not be neglected in the flux tenm.

134
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Assumption II - The material plane."

Clearly in the light of the present work the latter statements

are incorrect.

Indeed, the constraint conditions normally in_osed by the

requirement of preshock uniformity can be relaxed to nonuniformity

by virtue of radiative energy transport in this region. It has

been found also that conditions for unitingly strong shock waves or

even t_mt the more severe restrictions imposed by preshock

uniformity can be used provided the correct form of the radiative"

intensities are employed.

The constra/nt conditions imposed by gas laws, invariant

integrals and specific forms off the radiative intensity have been

developed. It has been shown Li_t _w_......._-_*_,_....._ _ _dlative

transfer phenomenon before reduction to self similarity renders a

complete reduction more difficult. The Rosseland approximation is

a case in point. The Jump equations are derived in generality for

arbitrary radiative intensities. The proper shock paths for self

similar motions for implosions from points and finite sy_netrical

surfaces have been given. The significance and implications of

strong shock waves have been discussed. The impossibility of

discussing s'imultaneously contact surfaces and shock waves in the

framework of similarity is proven. The appropriate physical

interpretation of limitingly small radiation effects is derived.
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In conj_iction with radiative effects two-sided similarity is

introduced and its utility explored. The significance of the

Jumpconditions for discontinuous dependent invariants is

discussed and appropriate initial conditions for integration are

given.

Throughout the course of this work it has been shownthat the

essential physical characteristics are m_nifest from the following:

i. The system constraints ascertain the homology of the

dependent w_riables and the fund&mental constant 8 which

determines the space time evolution of the system.

2. The introduction of the similarity form of a shock

transition tlckness suggest an origin of coordinates and permits

testability of similarity.

3. General relations are deriveable relating the intensity

of radiation to the ma_litude of the shock velocity and other

thermoc_vnandc functions.

4. On the basis of con_nents (2) and (3) one also is provided

with a connection between the radiation intensity at the shock

wave, the shock transition thickness and shock strength.

In general deductions based on the statements (I) through (4)

do not require extended computation. THey represent what the

writer believes are conclusions which are most directly
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experimentally tested.

In addition, it has been shownthat under appropriate physical

conditions, the velocity field is independent of the form of the

radiative intensity. An exact solution to the similaritY equations

for a uniform flow problem exists in planar coordinates. In

spherical coordinates another exact solution which is non-physical

and corresponds to a negative specific heat.

A ntmerlcal cemputation is performed for an inward propagating

opaque shock wave. In this manner a nu_nerical procedure is

established which is applicable to arbitrary flux laws. The

legitimate physical concl_slons that may be drawn on the basis of

the computations and the statements given above are made in sections

,,,_, t, _ _ _,_ho_ phvsleal statements would be Lhlghly

speculative.

It is the writer's contention that in general the application

of similarity techniques is limited. The procedures in this

dissertation depend critically on the system possessing a high

element of syn_netry and a space time evolution governed by self

similarity.

6.2 Suggestions for Future Work

The useful application of the techniques developed _a this

work are found through the-relationships that can be established
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with a minimumof computation. These testable observables are;

the shock trajectory, the behavior of the shock "thickness", the

similarity conditions of the shock strength and the expressions

relatlng the radiation to the shock velocity and thermodynamic

variables. _he implication of formulas obtained for particular

combinations of constraints ultimately should be examined

experimentally. Whenthe relevance of a particular model has been

satisfactorally established experimentally one might legitimately

ask for a structure calculation of the fluid variables. A scheme

for such calculation has been effected and executed on the sample

w_bl6,-_ of _.......____',_....._mnlodln_._ shock in Chapter 2 .

From a theoretical poin t of view the problem of a covergent

Shock wave in a radiant gas should be approached by the method of

characteristics.
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Homology Determination:

A.I

A.2

Ccnsider

A.3
i .

A D.

Let

A.5

Then

A.6
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A.7

A.8

u =_ _.14.)_,,._-t_r '

A.9
_.= I_"_.,_ _- _'_'

A. i0

_-xA,__ t _.__._i_._.,]

A.II

_q_:

--O

_")"_ B_i_, .--) __-o,t,_

O1" _,= _')_

_e_re

A.12

T
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Momentum:

A.13

A.14

A.15

Set

A.16

then

•A.17

%"¢"_? _ b%>,'_]

A.18

A.19.1

A.i9.2
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