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A Note on Sequential Search* 

Morton K l e i n  
Columbia University 

I n  [61 Dobbie suggested t h a t  problems involving the 

optimal d i s t r i b u t i o n  of search e f f o r t  fo r  moving ob jec t s  de- 

served more a t t e n t i o n  than they had received i n  the development 

of  search theory'. Among the severa l  target motion possibilities 

which he mentioned a s  being of i n t e r e s t  w e r e :  ( a )  "Target 

motion independent of pos i t ion  and drawn randomly from a popula- 

ticrn known t o  the searcher," and (b) "Target motion drawn ran- 

domly from a known population t h a t  i s  a function of t a r g e t  posi- 

t ion.  'I 

Our purpose i s  t o  indicate  how c e r t a i n  search preblems 

involving such target behavior can bc formulated (and consequently 

solved) by tho  use  of appropriate Markovian decision m o d e l s .  A 

genera l  descr ipt ion of these problems is  given below. 

Suppose t h a t  an  object  movas about within a f i n i t e  

number of regions, one per t i m e  period, according t o  known proba- 

b i l i t is t ic  laws (made e x p l i c i t  l a t e r ) .  A s ing le  searcher, using 

a detec t ion  systan whose effect iveness  is a function of t he  amount 

* This research was supported by the Army, Navy, A i r  Force, and 
NASA under a cont rac t  administered by the O f f i c e  of Naval Re- 
search; Contract N o m  266(55) ,, ReprrPductisn i n  whole or i n  
part is permitted fo r  any purpose of t he  United S t a t e s  Government. 
An extensive bibliography has been assembled by Enslow [ T I .  
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of e f f o r t  used and the region searched, checks one region a t  a 

time u n t i l  the object is  found, h i s  e f f o r t  budget is exhausted, 

o r  he decides that  it is  "uneconomical" t o  continue. The problem 

is t o  f ind  an optimal sequent ia l  search policy; i.e., one which 

tel ls  the searcher, a t  each poin t  i n  time, whether t o  search, 

where t o  search, and how much e f f o r t  t o  use, 

Defini t ion of the term "optimal pol icy" w i l l ,  of course, 

vary w i t h  problem se t t i ngs .  

e f f ec t iveness  i n  search theory problems appear t o  be those af maxi- 

mizing t h e  probabi l i ty  of detect ing the t a r g e t  w i t h  a given e f f o r t  

or of minimizing the expected search costs needed ta f ind  t h e  tar-  

get. 

of periods u n t i l  the  t a r g e t  i s  found, or, when re levant ,  to minimize 

total expected lasses u n t i l  t h e  t a r g e t  i s  found (where losses may be 

i n  d i f f e r e n t  u n i t s  than search costs), 

is used it may be appropriate to use some o r  a l l  of the athws in 

t h e  form of cons t ra in ts .  

The most f requent ly  used measures of 

O t h e r  posbib%ti&J*tives are ta minimize the expected number 

Also, when one af t h e  a b w e  

Markovian decision models will be suggested @r tw) varia- 

t ions of t h i s  search problem, 

assuming t a r g e t  movements which are independent o f  the ta rget 's  

location and (b) by assuming tha t  the  searcher does not  knew the 

target 's  loca t ion  u n t i l  the pa in t  a t  which it i s  found. I n  the 

second model, we assume that  the t a rge t ,  i f  undetected, leaves a 

trace w h i c h  is detected by the searcher. Thus, the searcher a l -  

ways knows the t a r g e t ' s  l a s t  locat ion,  Here, we  a lso assume that 

The first i s  charac te r ized  ( a )  by 
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the  target 's  movement i s  a function of the l a s t  region he v i s i t ed .  

I n  both models, we  assume t h a t  t h e  target ' s  movements a r e  governed 

by probabi l i ty  l a w s ,  known t o  the searcher. 

the searcher i s  "noisy," enabling the t a r g e t  t o  base h i s  movements 

on knowledge of the searcher 's  loca t ion  a t  t he  end of each period. 

We alga assume tha t  

O t h e r  sequent ia l  search problems have been discussed 

using c lose ly  related models. 

w a s  used f o r  a non-terminating search problem i n  which each region 

had t o  be v i s i t e d  w i t h  p re se t  long run frequencies. Also, Norris 

r121 studied the s t ruc tu re  of some spec ia l  Markovian search games 

involving both motionless and moving ta rge ts :  f o r  the m o s t  p a r t  he 

d e a l t  w i t h  two region problems and d i d  not consider effor t  d i s t r ibu-  

t i o n  decisions.  

g e t  w a s  examined by Neuts  i n  [111. 

I n  [TI a Markovian decis ion model 

A sequent ia l  search problem for  a s t a t iona ry  tar- 

MARKOVIAN SEARCH MODELS 

k?e now give more precise  descr ipt ions of the problems 

and their formulations w i t h i n  the Markovian decision framework, 

I n  both problems, w e  assume t h a t  there are a f i n i t e  

number of regions labeled 0, 1, ... , L. The process starts 

w i t h  the searcher  i n  region 0 ( h i s  base) and the  object  i n  any 

region. The budget, of s i z e  B, consis ts  of a f i n i t e  number of 

discrete uni ts .  

may be counted i n  t he  same u n i t s ,  

Travel costs  between successive search locat ions 
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Model 1: Two c la s ses  of s t a t e s  w i l l  be used f o r  the Markov chain 

t o  be constructed. Members of the f irst  ca r ry  l a b e l s  of the f o r m  

0, ind ica t ing  t h a t  region i has j u s t  been searched, unsuccess- 

f u l l y  (0 ) ,  and b u n i t s  of budget remain for f u t u r e  use. Labels 

f o r  the second c l a s s  a r e  t he  s a m e  except t h a t  a superscript (1) 

is used t o  ind ica te  that  the  object  has been found: a l l  such s t a t e s  

a r e  stoppinq s t a t e s  f o r  t he  process a s  are other  s t a t e s  w i t h  l a b e l s  

io, s ince  the subscriptyimplies t h a t  the budget has been used up. 

Thus, the s t a t e  space of t h e  decision process i s  

0 

where 0; i s  its i n i t i a l  s t a t e ,  

We assume that: the t a r g e t  discovers the searcher ' s  

loca t ion  a t  the end of each period. His evasion s t ra tegy,  based 

on t h i s  information, i s  aesumed ta be randomized and represented 

i n  the form of a s tochas t i c  matrix H = [h.  3;  i.e., h 2 0 and Z I  i j  - 
L 

h = 1, where i denotes the sea rche r ' s  cur ren t  locat ion and 

j the t a r g e t ' s  next. Thus, corresponding t o  each searcher posi- 

t i o n  (i) the  t a r g e t  moves t o  j w i t h  p robab i l i t y  hij. 

of t h i s  assumption is that  the target's a b i l i t y  t o  move is inde- 

pendent of i t s  location. This may not be t r u e  of the searcher ' s  

mobility. 

j=o i j  

One aspect  

NOW, suppose t h a t  the ef fec t iveness  of the searcher ' s  

de tec t ion  system depends on the region searched and the  amount of 

e f f o r t  used. 

de tec t ion  system, where v . ( e )  i s  the p robab i l i t y  t h a t  a search 

Thus, l e t  V = {v,(e):  j = O,...,L] represent  the 

3 
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of region j us ing  e f f o r t  e w i l l  f i n d  a t a r g e t  i f  it is  i n  the 

region. 

A f t e r  each determination of the  cu r ren t  s t a t e  of the 

decision process, say 

from a f i n i t e  set K ( i E ) ,  i.e., the searcher chooses the next 

region t o  be examined (j) and the amount of e f f o r t  t o  be used 

(e = 1,2,. . . ,b). 

b a b i l i t y  d( g, je)  . 

<, t h e  searcher chooses a decision, j,, 

W e  assume t h a t  the decision is made w i t h  pro- 

Thus, t h e  p robab i l i t y  t h a t  the system is i n  

is  a function of the  c u r r e n t  some p a r t i c u l a r  next s t a t e ,  say j f ,  B 

s t a t e ,  the decision, and whether the t a r g e t  is  present. Since 

none of these f a c t o r s  depends on anything w h i c h  has happened i n  

the pas t ,  except as these  events might be refledted i n  the cur- 

r e n t  s t a t e  

f o l l o w s  is a Markov chain. 

ized statckonary decision ru l e  

and Z d(iE, je)  = 1. 

optimal r u l e  

<, the  sequence of successive s t a t e s  t h a t  the process 

The process is cont ro l led  by a random- 

D = {d( i:, je)  ] .where d( ) > 0 - 
I n  general, the  problem is t o  select an 

1, 
D from the c l a s s  of a l l  randomized s t a t iona ry  rules ."  

L e t  A represent a l l  states i n  w h i c h  the  t a r g e t  is 

found, t h a t  is, 

and l e t  G contain a l l  s t a t e s  i n  which the budget is  exhausted, i.e., 

Then T = A IJ G is the complete set of stopping s t a t e s  f o r  the 

* Derman has shown i n  [XI t h a t  we can restrict our a t t e n t i o n  
to t h i s  c l a s s  of r u l e s .  
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chain. 

probability equal to one. The transition probabilities for the 

We suppose that the process starts in state 0; with 

controlled chain, p($, jf) B follow. Let r = 1,2,... be the 
il 

travel effort needed to go from i to j: then, for all integers 

rij < b g B, b , f : O < f = b - e -  - - 

and 

A s  described, the chain is absorbing by virtue of the stopping 

states T. For computational purposes, it is convenient to make 

the chain cyclic by forcing it to return to its initial s t a t e  

whenever T is reached. Hence, we set 

and 

. 

It is easy to see that this new chain consists of, at most, one 

ergodic class of states. 

b7e may now develop formulas for the suggested criterion 

o f  constraint functions. 

cess is in state 

made. That is, 

Let C ( % ,  J,) be the cost if the pro- 

i: at the end of a period and decision j, is 

Then the total expected cost  Q ( D )  is 
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T(D) 
Q ( D )  = E c c = E [ T ( D ) )  E c 

t= 0 

where T ( D )  i s  the (random) number of periods taken by t h e  process 

t o  reach a stopping s t a t e  using a specific r u l e  D. 

L e t  { f i ( i b )  U : ii F SI represent  the (unique) s teady siate 

p robab i l i t i e s  of the control led chain. 

c o s t  can be m i t t e n  i n  the form 

Then t h e  t o t a l  expected 

where, from Markov chain theory l / n ( O i )  
rence t i m e  f o r  s ta te  0: and 

is t h e  mean recur- 

i s  the expected durat ion of the search, 

A successful  search terminates  i n  state c l a s s  A: 

hence it is easy t o  see tha t  the p robab i l i t y  of a successful  

search, using r u l e  D, is  

Various search problem formulations a r e  now a t  hand, 

Some examples are indicated: 

( a )  minimize Q ( D )  subjec t  t o  P ( D )  > - - 8 ; 

(b) maximize P ( D )  

(c) minimize E { T ( D ) ]  subjec t  t o  P ( D )  2 - F) and Q ( D ) <  - r 
(a) maximize P ( D )  sub jec t  t o  E [ T ( D ) )  < - - I\ and Q ( D ) <  - - r 
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P m b l e m s  without cons t ra in ts  (e.g., (b) above) may be 

solved using dynamic programming computational methods [ g ] ,  rl01. 

However, when r e s t r i c t i o n s  such as those i n  the other formulations 

a r e  involved, it is more convenient t o  transform these problems 

i n t o  l i n e a r  programs using methods such a s  w e r e  given i n  [21 for  

s tochas t i c  ahor t e s t  rou te  problems. 

Model 2: 

t ed  t a r g e t  leaves some trace which i s  detected by the searcher 

j u s t  after a search has been completed and the t a r g e t  has moved 

to  its n e x t  location. W e  a l s o  assume tha t ,  a t  the s t a r t  of t h e  

search, the t a r g e t  i s  known t o  be i n  the region g (say) .  Thus, 

As mentioned earlier,  here, we assume tha t  an undetec- 

. 

the 

the 

and 

states of the Markov chain are labeled (e: where is 

t a r g e t ' s  known loca t ion  a f t e r  region i has been searched 

(QZs g) i s  t h e  i n i t i a l  s t a t e .  

Now, the second k i n d  of target motion, dependent on 

target posi t iqn,  can be incorporated. W e  assume t h a t  the tar-  

get's mwents are described by a s tochas t i c  matrix 

Y = [ y ( i , j r k ) :  i , j , k  = O,,.,,L] where y( ) = 1 
f ,  

Thus, t h e  condi t ional  p robab i l i t y  t h a t  the t a r g e t ' s  next skate 

1s (k) depends on the  l a s t  locat ion of the searcher (i) and the  

target; ( j 1, 
t a rge t  i n  one period from locat ion j .  

The s e t  R( j) represents regions accessible t o  the 

As i n  the first model, given V, Y, and a r u l e  D, it is  

oasy t o  see that  t h e  sequence of successive states form a Markov 
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chain cons is t ing  of a t  most one ergodic class. 

for c r i t e r i o n  and cons t r a in t  functions similar t o  those used 

i n  the first model can be wr i t ten  for t h i s  chain. 

Expressions 

It is  now a l s o  poss ib le  t o  g ive  a more e x p l i c i t  

accounting of losses due t o  an undetected t a r g e t  than w a s  

poss ib le  i n  Model 1. Since the target's loca t ion  is  now part  of 

t he  s ta te  space description, a loss function, perhaps i n  differ-  

e n t  u n i t s  than search or e f for t  costs, can be defined. 

loss function would have zero value for a l l  stopping states 

assoc ia ted  w i t h  a successful  search and various p o s i t i v e  values 

for  the other states. 

f o r m  similar t o  ( I ) .  

A typical 

Its expected value would have a l i n e a r  

ADDITIONAL REMARKS 

I n  some search problems, the  t i m e  permitted for t h e  

search process may be l i m i t e d ,  say, t o  N periods. A simple 

device for handling such a cons t r a in t  is t o  enlarge the s ta te  

space of the process by adding a t i m e  counting term 

t o  the s t a t e  labels as  i n  [41. This keeps track of the  number 

of periods taken t o  reach the  cu r ren t  region and budget s t a t u s  

of the process. A l l  s tates carrying t h e  label N would then be 

s topping s t a t e s .  

den t  t a r g e t  movements. 

n = O , l ,  . .. ,N 

This a lso  permits t he  inclusion of time-depen- 

Optional stopping can be included i n  either model by  

t h e  add i t ion  of an a r t i f i c i a l  state,  say  *, which would be inclu- 

ded i n  the set of stopping states. I n  terms of the f i rs t  model, 

. 
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the  t r a n s i t i o n  p robab i l i t i e s  for t h e  chain r e l a t ed  t o  th i s  s ta te  

would be set as p ( g ,  *) = d(ib,  a *), f o r  E S-T. The cost 

associated w i t h  such a t r ans i t i on  might be the  t r a v e l  cost incur- 

red by the searcher t o  r e tu rn  t o  base, p lus  the expected loss 

assoc ia ted  w i t h  such an action. 

Simpler Markovian decision models can be formulated 

if the bound on the budget is relaxed somewhat and changed from 

a de terminis t ic  t o  some s tochas t i c  form. For example, t h i s  could 

be done by imposing either a cons t ra in t  on the expected t o t a l  

e f f o r t  used or a p robab i l i s t i c  bound on ac tua l  t o t a l  e f f o r t  used. 

I n  such cases the budget term i n  the state labels can be dropped 

and the dimensionality of the s ta te  space reduced by the  multi- 

p l i c a t i v e  factor B. This a l s o  would r e s u l t  i n  a corresponding 

reduct ion i n  the number of r e s t r a in ing  equations i n  a l i n e a r  

programming formulation of such a problem. I n  order t o  be sure  

t ha t  the process would t e m i n a t e ,  some cons t ra in t ,  such as an 

upper bound on the  expected t i m e  t o  f ind  the  t a r g e t  or on the  

expected t o t a l  cost ,  would have t o  be imposed. I f  op t iona l  

stopping i s  included, t h i s  could also be done by s e t t i n g  

p ( i ! ,  %) E d(i!!,> W )  = 6 ,  for a l l  is a s m a l l  

p o s i t i v e  number; such r e s t r i c t i o n s  would not only assure  US t h a t  

the cha in  will only have one ergodic class, b u t  tha t  it w i l l  also 

be i r reducib le .  

i! E S-T, where 6 - 
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I n  each of the  proposed models, w e  have assumed tha t  the 

s tochas t i c  l a w s  governing the t a r g e t ' s  movements w e r e  given. Since 

th i s  may not be the case, the question of f inding an optimal search 

r u l e  aga ins t  an unknown target s t r a t e g y  is of i n t e r e s t ,  A computa- 

t i o n a l  inves t iga t ion  aga ins t  a limited n-er of t a r g e t  s t r a t e g i e s  

is, of course, one way of t r ea t ing  such a pnroblemt however, this 

would rap id ly  become impractical  i f  one wanted t o  sweep out  a rea- 

sonably s ized  class of such strategies. 

Charnes and Schroederfll,/Hoffman and Karp ~87, for  solving mul t i -  

move s tochas t i c  games may, under cexta in  circumstances, pbovide a 

usefu l  approach. For our purposes, a s tochas t i c  game is one i n  

w h i c h  both searcher and t a rge t  seek optimal s t r a t e g i e s ,  and i n  

Algorithms proposed by 
and 

which the cost incurred b y  the searcher can be construed as the 

t a r g e t ' s  gain. I n  these terms a m i n i m u m  cost Markovian search 

problem is a s tochas t i c  game aga ins t  a "dummy", s ince  such a prob- 

lem has the t a r g e t ' s  strategy specified. Assuming, as indicated,  

t h a t  the game is zero-sum and that  there are no added cons t ra in ts ,  

the Hoffman-Karp algorithm would involve solving an a l t e r n a t i n g  

sequance of Markovian search problems* and statldard ( s i n g l e  move) 

games. The computation would s t a r t  w i t h  a Markovian decision prob- 

lem aga ins t  an a r b i t r a r y  target s t ra tegy:  then, given an optimal 

search rule ,  another target s t r a t egy  is generated by solving a 

cer ta in  standard game, etc, The Charnes-Schroeder algorithm 

which involves solving a sequence of linear program4 can be used 

for problems involving ce r t a in  addi t iona l  constraints .  

* A m i l d  requirement ia t h a t  each such problem should involve 
a cont ro l led  chain w i t h  an irreducible s t a t e  space. 
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3. A B S T R A C T  

Optimal distribution of search effort 
problems for certain kinds of moving targets 
are considered. It is shown that they can 
be formulatedby the use of appropriate 
Markovian decision models. 
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