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A Note on Sequential Search#%*
by

Morton Klein
Columbia University

In [67 Dobbie suggested that problems involving the
optimal distribution of search effort for moving objects de-
served more attention than they had received in the development
of search theory*‘ Among the several target motion possibilities
which he mentioned as being of interest were: {a) "Target
motion independent of position and drawn randomly from a popula-
tisn known to the searcher," and (b) “"Target motion drawn ran-
domly from a known population that is a function of target posi-
tion."

Our purpose is to indicate how certain search preblems
involving such target behavior can be formulated (and consequently

solved) by the use of appropriate Markovian decision models. A

general description of these problems is given below.

Suppose that an object moves about within a finite
number of regions, one per time perisd, according to known proba-
bilitistic laws (made explicit later). A single searcher, using

a detection system whose effectiveness is a function of the amount

* This research was supported by the Army, Navy, Air Force, and
NASA under a contract administered by the Office of Naval Re-
search; Contract Nonr 266(55). Repreduction in whole or in
part is permitted for any purpose of the United States Government,

T An extensive bibliography has been assembled by Enslow [71].



of effort used and the region searched, checks one region at a
time until the object is found, his effort budget is exhausted,
or he decides that it is "uneconomical" to continue. The problem
is to find an optimal sequential search policy; i.e., one which
tells the searcher, at each point in time, whether to search,

where to search, and how much effort to use,

Definition of the term "optimal policy" will, of course,
vary with problem settings. The most frequently used measures of
effectiveness in search theory problems appear to be those af maxi-
mizing the probability of detecting the target with a given effort
or of minimizing the expected search costs needed te find the tar-
get. Other posiible.oblectives are to minimize the expected number
of periods until the target is found, or, when relevant, to minimize
total expected losses until the target is found (where losses may be
in different units than search costs), Also, when one of the above
is used it may be apprepriate t® use seame or all of the others in

the form of constraints.

Markovian decision medels will be suggested fgr twg varia-
tions of this search problem, The first is characterized (a) by
assuming target movements which are independent of the target's
location and (b) by assuming that the searcher does not knew the
target's locatien until the peint at which it is feund. In the
second model, we assume that the target, if undetected, leaves a
trace which is detected by the searcher, Thus, the searcher ale

ways knows the target's last location, Here, we also assume that



the target's movement is a function of the last region he visited.
In both models, we assume that the target's movements are governed
by probability laws, known to the searcher., We algo assume that

the searcher is "noisy," enabling the target to base his movements

on knowledge of the searcher's location at the end of each period.

Other sequential search problems have been discussed
using closely related models. In [51 a Markovian decision model
was used for a non-terminating search problem in which each region
had to be visited with preset long run frequencies. Also, Norris
(127 studied the structure of some special Markovian search games
involving both motionless and moving targets; for the most part he
dealt with two region problems and did not consider effort distribu-
tion decisions. A sequential search problem for a stationary tar-

get was examined by Neuts in [11l7.

MARKOVIAN SEARCH MODELS

We now give more precise descriptions of the problems

and their formulations within the Markovian decision framework.

In both problems, we assume that there are a finite
number of regions labeled O, 1, ... , L. The process starts
with the searcher in region 0 (his base) and the object in any
region. The budget, of size B, consists of a finite number of
discrete units. Travel costs between successive search locations

may be counted in the same units.
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Model 1l: Two classes of states will be used for the Markov chain
to be constructed. Members of the first carry labels of the form
ig, indicating that region i has just been searched, unsuccess-
fully (0), and b units of budget remain for future use, Labels

for the second class are the same except that a superscript (1)

is used to indicate that the object has been found; all such states
are stopping states for the process as are other states with labels
18, since the subscript-implies that the budget has been used up.

Thus, the state space of the decision process is

S= {i% : 4= 0,.00,L5 D= 0,00s, B-1; @ = 0, 1} U { 02 3

where og is its initial state,

We assume that the target discovers the searcher's
location at the end of each period, His evasion strategy, based

on this informatien, is assumed te be randomized and represented

in the form of a stochastic matrix H = {hij}: i.e., hij 2 0 and
L

jZO hij = 1, where i denotes the searcher's current location and
j the target's next. Thus, corresponding to each searcher posi-
tion (i) the target moves to j with probability hij’ One aspect
of this assumption is that the target's ability to move is inde-
pendent of its location, This may not be true of the searcher's

mobility.

Now, suppose that the effectiveness of the searcher's
detection system depends on the region searched and the amount of
effort used, Thus, let V = (Vj(e): j = 0,...,L} represent the

detection system, where vj(e) is the probability that a search
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of region j using effort e will find a target if it is in the

region.

After each determination of the current state of the
decision process, say ig, the searcher chooses a decision, je,
from a finite set K(ig), i.e., the searcher chooses the next
region to be examined (j) and the amount of effort to be used
(e = 1,2,...,b). We assume that the decision is made with pro-
bability d(ig, je). Thus, the probability that the system is in
some particular next state, say j%, is a function of the current
state, the decision, and whether the target is present. Since
none of these factors depends on anything which has happened in
the past, except as these events might be refledted in the cur-
rent state ig, the sequence of successive states that the process

follows is a Markov chain, The process is controlled by a random-

ized statd.onary decision rule D = [d(ig, Je)}wwhere a( ) > 0

a
and ? a(i’, Je) = l. In general, the problem is to select an
e
optimal rule D from the class of all randomized stationary rules.*

Let A represent all states in which the target is
found, that is,

1

A = {lb

H i = O, eas L H b = o’ *eeoe B‘1}

and let G contain all states in which the budget is exhausted, i.e.,
.0
G = {lo : i = O, es e 9 L} .

Then T = AlJ G is the complete set of stopping states for the

* Derman has shown in [&] that we can restrict our attention
to this class of rules.
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chain., We suppose that the process starts in state Og with

probability equal to one. The transition probabilities for the
controlled chain, p(i%, j%) follow, Let rij =1,2,... Dbe the
travel effort needed to go from i to j; then, for all integers

P(ig: Jé) = hij Vj(e) d(ig: je): ib € S-T, j% € A,
and
p(ig, 3% = (- hyy) a1y, 1, ¢ s-1, 3¢ sa

As described, the chain is absorbing by virtue of the stopping
states T, For computational purposes, it is convenient to make
the chain cyclic by forcing it to return to its initial state

whenever T is reached, Hence, we set
a 0 .0 0 .
P(ib: OB) = d(lb: OB) = 1, for L, € T

It is easy to see that this new chain consists of, at most, one

ergodic class of states.

We may now develop formulas for the suggested criterion
o¥ constraint functions. Let C(ig, je) be the cost if the pro-
cess is in gtate ig at the end of a period and decision je is

made. That is,

c(ips Jg)

e+rij, J%GS-T,
and

c(iy, o))

0 , ipeT

Then the total expected cost Q(D) is
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(D)
o(b) =E fo c = E{®*D)} EC

where (D) is the (random) number of periods taken by the process

to reach a stopping state using a specific rule D,

Let { ﬁ(if;): ig ¢ S} represent the (unique) steady state
probabilities of the controlled chain. Then the total expected

cost can be written in the form

(1) a(p) = ((1/m(09) - 17

? H(i%) d(i%,je) C(i%:je)

%
a
b e

where, from Markov chain theory l/n(Og) is the mean recur-

rence time for state Og and

(2) B{ +(D) } = 1/n(op)7 - 1

is the expected duration of the search.

A successful search terminates in state class A;
hence it is easy to see that the probability of a successful

search, using rule D, is

(3) p(p) = (1/n(og) 2 op(ig) .
ineh
Various search problem formulations are now at hand,
Some examples are indicated:
(a) minimize Q(D) subject to P(D) > g
(b) maximize P(D)
(c) minimize E{+(D)} subject to P(D) > g and Q(D)< T

(d) maximize P(D) aubject to E{r(D)} < A and Q(D) T

1 VANI | \V4
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pzublems without constraints (e.g., (b) above) may be
solved using dynamic programming computational methods [97, rioj.
However, when restrictions such as those in the other formulations
are involved, it is more convenient to transform these problems
into linear programs using methods such as were given in [27 for

stochastic shortest route problems,

Model 2: As mentioned earlier, here, we assume that an undetec-
ted target leaves some trace which is detected by the searcher
just after a search has been completed and the target has moved
to its next location. We also assume that, at the start of the
search, the target is known to be in the region g (say). Thus,
the gtates of the Markov chain are labeled (i;: j) where j is
the target's known location after region i has been searched

and (Qg: g) is the initial state.

Now, the second kind of target motion, dependent on
target positien, can be incorporated., We assume that the tar-

get's mgments are described by a stochastic matrix

Y = {y(i,3ik): i,j,kx = 0,...,L} where X v( ) =1
k eR(j)
Thus, the conditional probability that the target's next s&ate
is (k) depends on the last location of the searcher (i) and the
target (j), The set R(j) represents regions accessible to the

target in one period from location j.

Ag in the first model, given V, ¥, and a rule D, it is

easy to see that the sequence of successive states form a Markov
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chain consisting of at most one ergodic class. Expressions
for criterion and constraint functions similar to those used

in the first model can be written for this chain.

It is now also possible to give a more explicit
accounting of losses due to an undetected target than was
possible in Model 1., Since the target's location is now part of
the state space description, a loss function, perhaps in differ-
ent units than search or effort costs, can be defined., A typical
loss function would have zero value for all stopping states
associated with a successful search and various positive values
for the other states. Its expected value would have a linear

form similar to (1).
ADDITIONAL REMARKS

In some search problems, the time permitted for the
search process may be limited, say, to N periods. A simple
device for handling such a constraint is to enlarge the state
space of the process by adding a time counting term n = 0,1l,.. ,N
to the state labels as in [47. This keeps track of the number
of periods taken to reach the current region and budget status
of the process. All states carrying the label N would then be
stopping states. This also permits the inclusion of time-depen-

dent target movements.

Optional stopping can be included in either model by
the addition of an artificial state, say *, which would be inclu-

ded in the set of stopping states. 1In terms of the first model,
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the transition probabilities for the chain related to this state
a N L QL

would be set as p(4,, *) = a(iy, *), for i, ¢ S-T. The cost

associated with such a transition might be the travel cost incur-

red by the searcher to return to base, plus the expected loss

associated with such an action,

Simpler Markovian decision models can be formulated
if the bound on the budget is relaxed somewhat and changed from
a deterministic to some stochastic form. For example, this could
be done by imposing either a constraint on the expected total
effort used or a probabilistic bound on actual total effort used.,
In such cases the budget term in the state labels can be dropped
and the dimensionality of the state space reduced by the multi-
plicative factor B. This also would result in a corresponding
reduction in the number of restraining equations in a linear
programming formulation of such a problem. In order to be sure
that the process would teaminate, some constraint, such as an
upper bound on the expected time to find the target or on the
expected total cost, would have to be imposed. If optional
stopping is included, this could also be done by setting
p(i%. %) = d(igy &) = 5, for all i? € S-T, where § is a small
positive number; such restrictions would not only assure us that
the chain will only have one ergodic class, but that it will also

be irreducible.
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In each of the proposed models, we have assumed that the
stochastic laws governing the target's movements were given, Since
this may not be the case, the question of finding an optimal search
rule against an unknown target strategy is of interest., A computa-
tional investigation against a limited nurb er of target strategies
is, of course, one way of treating such a pwoblem; however, this
would rapidly become impractical if one wanted to sweep out a rea-
sonably sized class of such strategies. Algorithms proposed by
Charnes and SChroeder[11??goffman and Karp [81, for solving multi-
move stochastic games may, under certain circumstances, poovide a
useful approach. For our purposes, a stochastic game is one in
which both searcher and target seek optimal strategies, and in
which the cost incurred by the searcher can be construed as the
target's gain, In these terms a minimum cost Markovian search
Problem is a stochastic game against a "dummy", since such a prob—
lem has the target's strategy specified, Assuming, as indicated,
that the game is zero-sum and that there are no added constraints,
the Hoffman-Karp algorithm would involve solving an alternating
sequence of Markovian search problems* and standard (single move)
games, The computation would start with a Markovian decision prob-
lem against an arbitrary target strategy; then, given an optimal
search rule, another target strategy is generated by solving a
certain standard game, etc. The Charnes-Schroeder algorithm
which involves solving a sequence of linear programs can be used

for problems involving certain additional constraints.

* A mild requirement im that each such problem should involve
a controlled chain with an irreducible state space.
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