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ABSTRACT 

The response of an insulated wall, over which a heated fluid flows, to a sinusoidally 
forced fluid temperature was used to calculate the convective heat-transfer coefficients. 
An exact solution i s  given which accounts for thermal  conductivity and the location of the 
sensed wall temperature in one-dimensional heat-transfer problems. Charts a r e  in- 
cluded to a id  in the calculation. A comparative analysis was made of solutions that do not 
account for  thermal conductivity and the location of the sensed wall temperature and those 
that do. If the exact solution i s  not used, e r r o r s  greater  than 23 percent a r e  possible. 
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DETERMINATION OF CONVECTIVE HEAT-TRANSFER COEFFICIENTS 

ON ADIABATIC WALLS USING A SINUSOIDALLY FORCED 

FLU I D  TEMPERATURE 

by Ronald G. Huff 

Lewis Research Center 

SUMMARY 

The response of an insulated wall, over which a heated fluid flows, to a sinusoidally 
forced fluid temperature  was used to calculate the convective heat-transfer coefficients. 
An exact solution is given which accounts for  thermal conductivity and the location of the 
sensed wall temperature  in one-dimensional heat-transfer problems. Charts  are in- 
cluded to aid in the calculation. A comparative analysis was  made of solutions that do not 
account for thermal  conductivity and the location of the sensed wall temperature  and those 
that do. If the exact solution is not used, e r r o r s  greater than 23 percent are possible. 

INTRODUCTION 

Both t ransient  and steady-state analyses have been used to design calor imeters  for 
u s e  in  rocket engines and aerodynamic heat-transfer studies. The steady-state calorim- 
eter makes use  of the temperature gradient in  a material of known conductivity and geom- 
etry; the t ransient  type makes use  of the response of a mater ia l  to a driving temperature,  
that is, the response of a thin disk to a step change in the surrounding fluid. 

The response of a wall to a fluid that flows over it and has a sinusoidally oscillating 
temperature  has been used to calculate the convective heat-transfer coefficient h. The 
solution found by Anderson (ref. 1) for the convective heat-transfer coefficient (herein 
called slug solution), however, does not account for thermal  conductivity o r  the location 
of the measured wall temperature.  An estimate, given by Anderson, of "the e r r o r  in the 
measured t ime constant T caused by heat conduction through the skin" is 1 . 5  percent. 
Bell (ref. 2) neglects the effect of thermal conductivity by designing h i s  experiments in 
zzdi 8 -vvzy iis ti, cause its eiiect to drop out of his equations, which are in s e r i e s  form. 



The objective of this analytical investigation, conducted at NASA Lewis Research 
Center, was to find a solution fo r  the convective heat-transfer coefficient as a function of 
the phase l a g  between the fluid and wall temperatures.  Such a solution would take into 
account the thermoconductivity as well as the location of the measured wall temperature.  

The solution is presented along with charts  that (for the wall temperature measured 
a t  the insulated side of the wall) can be used to determine the heat-transfer coefficient as 
a function of frequency, wall properties, wall thickness, and phase lag. A comparison is 
made between this solution and that of Anderson (ref. l), both of which assume that the 
back surface of the wall x = L is perfectly insulated. 

The slug solution may be substituted for the present analysis when conductivity and 
temperature-sensor location are not important. 

SYMBOLS 

C specific heat of wall material ,  Btu/(lb) (OR) ; J/(kg) (K) 

CON 

f 

h 

K 

L 

T 

T 
- 

ATG 
X 

CY 

€G 

e 
17 

71 

function defined in eq. (4b) 

frequency of temperature oscillation, cps; Hz 

convective heat-transfer coefficient on surface of wall, Btu/(in. ?(sec)('R) ; 
W/(m2) (K) 

thermal conductivity, Btu/(in. ) (sec) (OR) ; J/(m) (sec) (K) 

thickness of wall, in. ; m 

wall temperature,  Tw - TG, 

mean temperature,  OR; K 

- 
0 

R; K 

- 
0 amplitude of gas temperature,  TG - TG, 

distance measured from fluid-wall interface into wall, in. ; m 

thermal diffusivity, K/pC 

function defined after eq. (49 

frequency and diffusivity per imeter ,  a i  
time. s ec  

R; K 

constant equal to 3.1416 rad 
density of wall material ,  lb/in. 3; kg/m 3 

time constant, pCL/h 

P 

7 
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cp phase shift between forced fluid temperature  TG and wall  temperature Tw, < 0 for 
Tw lagging TG, deg 

o angular velocity of forced fluid temperature T 2nf rad/sec 

Subs c r ip t s : 

G fluid flowing over wall 

s 

w 

G' 

values calculated with Anderson's slug-type solution (ref. 1) 

wall over which fluid flows 

DIFFERENTIAL EQUATIONS AND ASSUMPTIONS 

The solution for the heat-transfer coefficient a s  a function of phase lag q ,  frequency 
of fluid-temperature oscillation f ,  wall properties, and location of the sensed wall tem- 
perature T is now given. Consider an  infinite plate on one side of which a fluid flows 
over the surface (x = 0). The other side is insulated (x = L) . The system is illustrated 
in figure 1. 

f l u i d  flow - 

x - 0  
x - L  

Surface exposed to f lu id 

///////// ,Insulated surface =///////// L 
Figure 1. - Basic heat-transfer model. 

The applicable differential equation is 

a2T - 1 aT - - - -  
2 CY ae ax 

where 

T difference between wall temperature at  any location in wall and average fluid tem- 
pera ture  

x 

a! thermal  diffusivity, K/pC 

8 t ime,  s ec  

distance into wall f rom fluid side of wall 
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This  solution assumes  that the 
(1) Thermal conductivity is finite and constant 
(2) Convective heat-transfer coefficient h is constant 
(3) Density p and specific heat C of the wall are constant 
(4) Surface of the wal l  at x = L is insulated 
(5) Surface of the wall  at x = 0 is exposed to a fluid whose temperature is given by 

where 

fluid temperature 

average fluid temperature  
TG 

TG 
- 

ATG amplitude of gas temperature 

w angular velocity of temperature oscillation, 2nf rad/sec 

(6) Convective heat t ransfer  at x = 0 is 

aT 
ax G G - T )  -K- = h (T (3) 

(7) Heat conduction through the wall is one dimensional 

For  the solution to the differential equation (l), a product solution is assumed and the 
boundary conditions are applied (i. e .  , an insulated surface at x = L, assumption (4), and 
convective heat t ransfer  at x = 0, assumption (6). The details of the solution are given 
in the appendix. The convective heat-transfer coefficient is 

where 

for the wall temperature lagging the fluid tempera ture  
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e 27?(L-x) cos q(2L - x) + cos 77x 

e 2q(L-x) sin q ( 2 ~  - x) + sin qx 
A b ,  L, = 

where 

q 
2 a  

This  solution is simplified if the wall temperature is measured at x = L, which for - 
many applications is the easiest place to locate a sensor. The CON used in equation (4a) 
reduces to 

- 
CON = tan(q - qL) at x = L ( 4 4  

The solutions to equation (1) may be used to determine the convective heat-transfer coef- 
ficient when thermal  conductivity is an important factor. 

The computations made for  the convective heat-transfer coefficient with the present 
solution (eqs. (4)) are t ime consuming. The values for  h/Kq were  calculated as a func- 
tion of qL and q ,  when x = L, and are plotted in figure 2 .  Using x = L (temperature 
sensor  located at the insulated surface) is reasonable because a temperature  sensor  is 
easily installed at this point. 

The ratio of the amplitude of the wall- to  the fluid-temperature oscillation for x = L 
can be written by inspection of equation (A15). The ratio is 

L 

T G - T G  ATG 1/ - e271LE sin(EG+ 2qL) 1’ 1 - 9 + e2qLE cos(eG + 2qL) 
- hG 

where 
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F 

L 
Y .  

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 
Phase shift, (p, deg 

(a) qL. 0.002 to 0.01. 

Figure 2. - Convective heat-transfer coefficient as function of frequency and phase shif t  with ternper- 
ature measured at insulated surface. 

6 



Phase shift, (0, deg 

(bl 7L. 0.008toO.1. 

Figure 2. - Continued. 
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l 

and 

-1 1 c G =  tan - 
-t 1 
K?7 

hG 

This ratio can be used to determine the magnitude of the fluid-temperature oscillation 
T G  that would yield a measurable wall-temperature oscillation at x = L.  

The determination of the effect of wall properties and plate thickness L on the cal-  
culation of h was aided by the expanding of equation (4a) to a s e r i e s  form at x = L. The 
resulting equation for hG is 

- -- 
2 5 t a n  q -tan q 3 tan q 

In  this equation, 40 < 0. Convergence of this se r ies  must be checked. However, if 
qL << 1 and reasonable values of q (e. g. ,  -450, a r e  used, the s e r i e s  wil l  converge. 

equates the r a t e  of change of the temperature of a mass o r  slug pL to the convective 
In this repor t ,  Anderson's solution is referred to as the slug solution because it 

heat t ransfer  f rom a 
differential equation 

fluid that flows over the slug. The slug solution is derived from the 

- TG 
7- - - tTW- aTW 

ae 

and assumes  that 
(1) The thermal  conductivity K is infinite (i .e. ,  no temperature gradient in the 

(2) The convective heat-transfer coefficient h is constant 
(3) The density p and specific heat C of the wall a r e  constant 
(4) One wall surface is insulated 
(5) The other  wall surface is exposed to a fluid whose temperature is given by 

wall) 

- 
TG = TG + ATG sin we 

The solution to the differential equation (5) is 
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where 

is the time constant. The phase lag between the wall and the fluid is tan-' WT = cp S 
from which the convective heat-transfer coefficient can be written as 

-pCLw 
tan cps  

hG, s = 

where cps is < 0. 

CRITERION FOR USE OF SLUG SOLUTION 

Comparison of the series form of the present solution (eq. (4g)) for hG with that of 
the s lug solution (eq. (8)) shows that the coefficient of the series solution is simply hG, s .  

If hG, 
second power are neglected, the series solution can be written as 

i s  substituted in the series solution and all t e r m s  having powers greater than 

2 

3 tan cp 
(qL)2 . . . hG 3 + t a n  cp - = I - -  

hG, s 

where <p < 0, and q L  is assumed to be much smaller  than 1. The value of cp can and 
should be approximately -45' (as discussed in the section Optimum Phase Angle). The 
curves in  figure 2 can be used to determine the proper frequency that, fo r  a given ma- 
terial, qL,  and hG, will yield the value cp = -45'. The selected value of qL is then 
used in equation (sa) along with cp = -45' to evaluate the ratio hJhG, s .  F o r  these 

conditions, equation (sa) reduces to 

4 2  = 1 + -  2 L  -hG, ,  -- hG - - l + - ( q L )  . . . 
3 3 K  hG, s 
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where <p = -45' and qL << 1. The second term in equation (9b), a n  approximation to 
(h - hs)/h, can be used to approximate the e r r o r  in h if  the slug solution, instead of the 
present solution, is used to calculate h. The term may also be used as a f i rs t -order  
correction if the slug solution is used to  calculate h.  

Values for  the second te rm in equation (9b) were calculated for 347 stainless steel 
and copper and are compared in table I with the values of (h - hs)/h X 100 percent. The 
agreement is good, even though the absolute value of the difference is large in several  
cases. Care must be exercised in using equations (sa) and (9b) because only two t e r m s  
of the series are used, and if the value of qL approaches 1, convergence is not ensured. 
In addition, Values f o r  <p that approach either 0' o r  90' will greatly affect hJhG, s .  

In addition to the aforementioned cr i te r ia  to be used in the choice of solutions fo r  
calculating h, a number of calculations were made and are presented to illustrate the 
practical application of the solutions f i r s t  given for h .  

APPLICATION OF EQUATIONS TO ENGINEERING MATERIALS 

The calculation of the relation between phase lag angle <p and forcing frequency f 
necessitates that assumptions be made for values of the convective heat-transfer coeffi- 
cient and the properties of the wall. The value of the convective heat-transfer coeffi- 
cient hG assumed in this calculation is 0.001 Btu p e r  square inch per  second pe r  '€3 
(2. 942X103 W/(m2)(K)), unless otherwise noted. The wall properties used are those of 
347 stainless steel and are given as follows: 

Average temperature, T, OR; K . . . . . . . . . . . . . . . . . . . . . . . .  1000; 555.5 

3 Specific heat, C, Btu/(lb)('R); J/(kg)(K) . . . . . . . . . . . . . . . . .  0.128; 0.536X10 
Conductivity, K, Btu/(in. ) (sec) (OR) ; J/(m) (sec) (K) . . . . . . . . . . .  0.000253; 18.92 

These values are approximately those of 347 skiinless -steel mater ia ls  used for simulated 
rocket-nozzle heat-transfer studies conducted in an air facility. The value of hG is ap-  
proximately 5 to 10 t imes greater than those found by Anderson (ref. 1) in  his wind-tunnel 
t e s t s  on a cone. 

Density, p ,  lb/in.3; kg/m 3 . . . . . . . . . . . . . . . . . . . . . . . .  0.286; 7.92X103 

Comparison of Phase Lags 

The calculated phase lags 40 as  a function of frequency f are  shown in figure 3. AS 
would be expected, the slug solution phase l a g  falls between the values calculated with 
equation (4a) (present solution) a t  x = 0 and at x = L .  The decrease in cp a t  x = 0 f o r  

12 



in. (m) 

Slug solution (from eq. (8) ----- ----------- 
Present solution (eq. (4a)) 0.040 ( 1 . 0 1 6 ~ 1 0 ~ )  
Present solution (eq. (4a)) 0 ( 0) 

-loH-- 
--- 

0 . 1  . 2  .3  . 4  . 5  .6  
Frequency, cps (Hz) 

Figure 3. - Phase lag as function of forced fluid-temperature frequency 
for 347 stainless steel. Fluid temperature, 1 0 "  R (555.5 K); convec- 
tive heat-transfer coefficient at f lu id  surface, 0.001 Btu per square 
i nch  per second per O R  (2 .942~10~  W/(m*NK)). 

f > 0.45 hertz can be explained by the reflected wave that counteracts the phase shift of 
the pr imary  wave. 

Optimum Phase Angle 

When the phase lag is measured for  use  in either of the solutions, an optimum value 
exists. A t  this optimum value, a given e r r o r  in  phase lag will produce a minimum e r r o r  
in the heat-transfer coefficient. Figure 4 shows this optimum phase lag to be approxi- 
mately -45O, or  exactly -45' if  the slug solution is used. If equation (4a) is used with 
x = L = 0.040 inch ( l . O l 6 ~ l O - ~  m), the optimum q increases  slightly, which is the rea-  
son for choosing a frequency that will give a value fo r  q of approximately -45'. 

Phase Lag Differences 

The values f o r  the phase lag calculated from both the slug solution and the present 

13 



- Solution Material Wall 

- 

- 
"R (K)  

- 

in. (m) 

Slug (ref. 1) _ _ _ _ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _ _ _ _  --- 
- Present (eq. ( 4 4  Stainless 0.040 1 . 0 1 6 ~ 1 0 - ~  1000 (555.5) 

steel 

Phase lag, p, deg 

Figure 4. - Change in convective heat-transfer coefficient for incremental change in phase 
lag as function of phase lag. (For present solution, temperature was measured at i n s u -  
lated surface. 

solution do not agree.  The percent difference was calculated to determine the magnitude 
of this disagreement. The percentage is based on the present  solution and is shown as a 
function of frequency in figure 5. 

m) thick and the temperature measurement made is assumed to be at the insulated 
surface,  the minimum difference is 6 percent .  The frequency for this point is 0.175 
hertz and the phase lag is -61.5'. If it is possible to measure  the tempera ture  on the 
surface over which the fluid flows (x = 0), the difference can be reduced by using a lower 
frequency. For a phase lag of -45', the difference at x = L is 6.3 percent while at 
x = 0 i t  is 4 percent. 

For the case  where the wall  is 0.040 inch (1.016 
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efficient due to location of wall temperature sensor 
as funct ion of frequency for 347 stainless steel. Fluid 
temperature, 1OOO" R (555.5 K); convective heat- 
transfer coefficient at f lu id  surface, 0.001 Btu r 

wall thickness, 0.040 i n c h  ( 1 . 0 1 6 ~ 1 0 ~  m). 
square i n c h  per second per "R ( 2 . 9 4 2 ~ 1 0 ~  W/(m T )(K)); 
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Heat -T r a  n s f e r -C oe f f ic ie n t D i f f  e r e  nce s 

Since a minimum value of the phase lag differences in the case where x = L was ob- 
served in figure 5, a similar  minimum would be expected to exist when the heat-transfer- 
coefficient differences are calculated. Figure 6, however, shows that the lowest possible 
difference calculated fo r  x = L is greater than 7 percent and occurs at a lower frequency 
than does the minimum phase lag difference shown in figure 5. At phase lags of -45', the 
heat-transfer-coefficient differences are 9.6 percent at x = L and 7 percent at x = 0. 
The differences will increase with increased frequency o r  phase lag angle. 

Effect of Heat-Transfer Coeff icient 

Up to this point in the calculation, the convective heat-transfer coefficient has been 

Figure 7. - Difference i n  convective heat-transfer co- 
efficient for M7 stainless steel. Fluid temperature, 
1oOO" R (555.5 KI; wall thickness. 0.040 inch  
(1.016~10-~ ml; temperature measured at insulated 
surface. 

3 2 assumed to be 0.001 Btu pe r  square inch p e r  second p e r  OR (2.942X10 W/(m )(K)). 
Shown in figure 7 are the calculated heat-transfer-coefficient differences at x = L = 0.040 

3 inch ( 1 . 0 1 6 ~ 1 0 - ~  m) for h = 0.001 Btu p e r  square inch p e r  second p e r  OR ( 2 . 9 4 2 ~ 1 0  W/ 
2 2 (m )(K)) and for  h = 0.003 Btu p e r  square inch p e r  second p e r  OR (8. 826X103 W/(m )(K)). 

Figure 7 shows that, for low frequencies, the differences are greater for the higher h. 
When a phase lag angle of -45' is desired (to minimize the effect of e r r o r s  in phase lag 
measurement), the differences are  9 . 6  percent for h = 0.001 Btu per  square inch p e r  
second per OR ( 2 . 9 4 2 ~ 1 0 ~  W/(m )(K)) and 23 percent f o r  h = 0.003 Btu p e r  square inch 

16 
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3 2 per  second per OR (8 .826~10 W/(m )(K)).  With a phase shift of -45' used as a criterion, 
it is concluded that increasing the heat-transfer coefficient will increase the heat- 
transfer-coefficient difference. 

Effects of Temperature 

The effect of wall  temperature on the convective heat-transfer-coefficient difference 
is shown in figure 8. Because the temperature affects the wall properties,  two tempera- 

16 

12 

8 

4 

I45 

Frequency, f, cps (Hz) 

Figure 8. - Difference in convective heat- 
t ransfer coefficient due to change in wall 
temperature as funct ion of frequency for 
347 stainless steel. Convective heat- 
transfer coefficient, 0.001 Btu per square 
inch  er  second per "R (2.942xld 

(1.016~10-3 m); temperature measured 
at insulated surface. 

I 

0 .04 .08 .12 .16 .20 

W/(m i NK)); wall thickness, 0.040 i nch  

lures were used, 1000° R (555.5 K) and 2000' R (1101 K).  The wall properties for 
347 stainless steel at 1000° R (555.5 K) were given in the first par t  of this section and for 
2000' R (1101 K) a r e  as follows: 

Density, p ,  lb/in. 3; kg/m3. . . . . . . . . . . . . . . . . . . . . . . .  0.286; 7 . 9 2 ~ 1 0 ~  
Specific heat, C ,  Btu/(lb)(%); J/(kg)(K) . . . . . . . . . . . . . . . . .  0.151; 0.63%10 
Conductivity, K, Btu/(in. ) (sec) (OR) ; J/(m) (sec) (K) . . . . . . . . . . .  

3 

0.000365; 27.29 

The values for the heat-transfer-coefficient differences calculated a t  x = L show that a 
2-percent decrease in the differences exists for a two-to-one change in wall temperature. 
Proper ty  changes due to temperature, in the case of 347 stainless steel ,  will not signifi- 
cazt!y affect the c ~ ~ v e z t t v z  k2,t  C,r2&!3.r C'iffPrPnCPC 
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Effects of Wal l  Thickness 

Effects of Thermal  Conduct iv i ty 

The effect of thermal conductivity on the convective heat-transfer-coefficient differ- 
ence is shown in table I. A comparison of copper and 347 stainless s tee l ,  having wall 
thicknesses of 0.060 and 0.040 inch ( 1 . 5 2 4 ~ 1 0 - ~  and 1. 0i6X10-3 m) ,  respectively, shows 
that the higher conductivity of copper dec reases  the heat-transfer-coefficient differences 
by 14.2 percent. Equation (sa) shows that, as K approaches infinity, the differences 
approachzero.  

i a  

~ 

Wall thickness can be expected to have an appreciable effect on the convective heat- 
transfer-coefficient difference, as shown in figure 9 .  For  a frequency that will give a 
cp value of -45' and with the use  of x = L, the following differences can be obtained: 
for L equal to 0.010 inch ( 0 . 2 5 4 ~ 1 0 - ~  m), 2.6 percent; for  L equal to 0.060 inch 
( 1 . 5 2 4 ~ 1 0 - ~  m), 14.7 percent. For  thin walls, the differences do not increase rapidly 
with frequency. The thicker walls cause the differences to increase at lower frequencies 
than those of the thin wall. Inspection of equation (9a) shows that the differences approach 
ze ro  as L approaches zero.  

0 .M .08 .12 .16 . M .24 .28 . 3 2  .36 .40 .44 
frequency, f, cps (Hz) 

Figure 9. - Difference in convective heat-transfer coefficient due to change in wall thickness as 
function of frequency for 347 stainless steel. Fluid temperature, 1000" R (555. 5 K); convective 
heat-transfer coefficient, 0.001 Btu per square i nch  per second per "R ( 2 . 9 4 2 ~ 1 0 ~  W/(m21(K)I; 
temperature measured at insulated surface. 



COMPARISON OF SOLUTIONS 

The slug solution (ref. 1), which neglects the effect of thermal  conductivity and 
temperature-measurement location, may be used in place of the more complicated solu- 
tion (eqs. (4)) provided that the system is designed properly. Equation (4g) may be used 
to estimate the e r r o r  in h when the slug solution is used provided that qL < 1 .0 .  If a 
maximum e r r o r  of 6 percent is to be tolerated, qL cannot exceed 0 . 2  and q must be 
approximately -45'. Improper design will result  in large e r r o r s .  Fo r  example, a wall 
made of 347 stainless steel ,  0.060 inch ( 1 . 5 2 4 ~ 1 0 - ~  m) thick, with the temperature mea- 
sured at the insulated face will give e r r o r s  greater than 23 percent if phase lags exceed 
-45'. Inspection of equation (4g) shows that if the slug solution is used, thin walls are 
essential. Although low frequency improves the accuracy of the slug solution, it is well 
to keep in mind that, at least for x = L, the limit of hG/hG, # 1. Also, the accuracy in 
the measurement of the phase lag  angle becomes very poor as cp approaches zero (see 
fig. 4). High thermal  conductivity is desirable as are low density and specific heat. If 
the phase lag is -45O, an  increase in the heat-transfer coefficient will increase the e r r o r  
when the slug solution is used (see fig. 7). An increase in the wall temperature of 
347 stainless steel from 1000° to 2000' R (555.5 to 1101 K) resulted in only a %-percent 
change in the e r r o r  (fig. 8). 

Table I summarizes  the resu l t s  of the comparison made of equations (4a) to (4e) 
and (8). This  table presents  calculations made for phase lags of -45'. 

CONCLUDING REMARKS 

The convective heat-transfer coefficient h can be calculated for a fluid flowing over 
a surface with one insulated side if the fluid temperature is varied sinusoidally. The 
phase lag between the fluid and wall temperatures, along with the frequency of oscillation 
and wall mater ia l  propert ies ,  can be used to calculate the convective heat-transfer coef- 
ficient h. Two solutions for h are available. Both require  a phase lag  of approximately 
-45' to minimize the e r r o r  in h due to e r r o r s  made in measuring the phase lag  angle. 
Anderson's slug solution (ref. 1) does not account for the wall thermal conductivity o r  the 
location of the measured wall temperature,  which may result  in an  e r r o r  greater  than 
23 percent in h. 
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A general one-dimensional solution is given which accounts for a finite thermal con- 
ductivity and fo r  the wall-temperature location. This solution is greatly simplified if the 
wall  temperature is measured at the insulated surface. Neither solution is applicable 
when two- o r  three-dimensional heat t ransfer  in the wall  is important. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, March 25, 1968, 
122-29 -07 -03-22. 
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APPENDIX - DERIVATION OF HEAT-TRANSFER COEFFICIENT 

AS FUNCTION OF PHASE LAG 

Determination of Boundary Condit ions 

The temperature response of a wall ,  which has one surface insulated at x = L and 
the other surface exposed to a fluid with a temperature that var ies  sinusoidally at x = 0, 
is calculated a s  follows: First, the boundary conditions a r e  determined with the assump- 
tion that 

TG = ATGe -iw8 

Fo r  x = 0, 

For  x = L 

ax 

The governing differential equation is 

~ 

For the solution to the differential equation, assume a product solution 

Then 
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and 

Substituting these expressions in the differential equation (A 1) gives 

- 1 - 
F(8) X"(X) = - X(X) - F(8) 

Ly 

o r  

Since either side of this equation is independent of the other variable, assume that each 
side must be equal to a constant, A . Now, h can be equal to zero,  greater than zero,  
o r  less than zero.  Then, setting either side of equation (A3) equal to h2 gives 

2 2 

and 

Then 

- x2ae F = Ce 

- 2 If A = 0, F = 1 and the wall temperature T will not be a function of t ime. This resul t  
cannot be the case physically; therefore, the solution for  h2 = 0 is rejected.  The 
choice between h < 0 o r  h > 0 is made by attempting to solve the equation by using 2 2 
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- A  2 and then +A2,  one of which will lead to a solution. With the use  of - A  2 , equation(A4) 

becomes 

X"(X) + h2 - X(x) = 0 

From Wiley (ref. 3, p. 88), the solution for this equation is 

x = CleihX + C2e -ixX 

Equation (A5) then becomes 

2 -A ae - 
F = Ce 

This  equation is periodic when h2 is imaginary. The solution requires that the exponent 
be of the form we. Therefore,  h2 is set equal to io/a, and 

h = *(l + i) - v; 
Substituting fo r  h and h2 in equations (A6) and (A7) gives 

and 

- iwe - 
F = Ce 

Substituting these solutions into equation (A2) gives a solution to the differential equa- 
tion (A3) which is periodic. 

Set 
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The solution thus becomes 

where the constants A and B are CC1 and CC2, respectively, and can be combined 
with no change in the solution. The choice of sign used in equation (A8) does not matter 
because the constants are arbi t rary.  The top sign is used in the following derivation. 

preliminary work is necessary.  The boundary conditions require the use of aT/ax. 
Taking the derivative of equation (A8) with respect to x gives 

Applying the boundary conditions determines the constants A and B, but first some 

Using boundary condition 2 and setting equation (A9) equal to 0 at x = L give 

A - -  - e2qx-i2ux 
B 

A - e277L(1-i) 
B 
- -  

Using boundary condition 1 

-iwe give and dividing by e 

A T G  - A - B =*[(A 1. - B)(i - 11 
“G 

Note that, if the fluid temperature is assumed to be TG = ATGe+iWB, the constants A 
and B become functions of 0 because e cannot be eliminated by division (see eq. 
(All)). Solving equation (A10) fo r  A and substituting in  equation (Al l )  give 
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Collecting t e rms  and solving f o r  B give 

Rearranging this equation gives 

Changing to the polar form gives 

B =  ATG 

-Kg [1 - e2qL(cos 2 q ~  - i sin 2 q ~ j j  + + e2qL(cos 2 q ~  - i sin 2 q ~ 4  + i 9 - e'qL(cos 277~ - i sin 2 . ~ 4  

hG hG 

Collecting the t e r m s  in the denominator on i gives 

The following trigonometric substitution can be made in the previous equation: 
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where 

Then 

ATG 

1 - 3 + Ee2qL(cos eG cos 2qL - sin cG sin 2qL) + i + e2qLE(-cos cG sin 2qL - sin cG COS 2qL) 1 B =  

hG 

This equation simplifies to 

AT, 

1 - 9 + e2qLE 
hG 

The complex numbers must be in the numerator so that the phase shift accounts for  the 
resistance of the boundary layer hG. This requirement will become apparent. T o  put 
the complex numbers in the numerator, divide the denominator into the numerator in the 
previous equation for B by multiplying each number by the conjugate of the denomina- 
tor.  The following equation results:  

-it AT-e 
B =  cr -- 

- e2qLE sin(cG + 2vL) I’ 
From equation (AlO), A is 

277 Le -i( 5 +2q L) 
(A 13) 

hTGe - A =2 - 

- 5 + e2qLE cos(€ + 2qL) + 5 - e2qLE sin(eG + 2qL) i F  G 1‘ I’ 
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where 

r 

3 - e2qLE sin(EG + 2qL) 
hG 4 = a r c  tan 

1 - 9 + e2qLE + 2qL) 
hG 

+ [F - e2qLE sin(EG + 2qL) 1" - 2  

From equations (A8), (A 12), and (A 13), the solution can be written a s  

q(2L-~)~-i(wO-qx+[+2qL) + ,gx,-i(d+qx+[) 
T =  1 (A 14) 

f - 2 + e2qLE + 2qL) 

If the rea l  par t  of the driving temperature, that is, TG = A T G  cos we, is selected, the 
imaginary par t  of the solution can be dropped. Equation (A14) then reduces to 

r 1 

] + [: - e2qLE sin(cG + 27L) l2 1/E - + e2r7LE + 2qL) 

where,  as defined before but restated here, 

E = iw 
and 

3 - e2qLE sin(EG + 27L) 
hG E = a r c  tan 

(A 15b) 

(A 15c) 
1 - 3 + e2qLE cos(cG + 2qL) 

hG 

2 
Equation (A15a) is the required solution. The values for X > 0 can be ruled out if the 
s a m e  p rocess  using A' is followed. Boundary condition 1 will then yield a solution for 
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2 the constants that are functions of t ime, which cannot be; therefore, h > 0 is rejected. 

case will be the same as  for  equation (A15a). 

2 It should be stated that h > 0 will work if TG = ATGeiwe. The solution for  this 

Determination of Phase Lag 

The phase lag is determined with a value found for we such that T = 0. This con- 
dition will occur when the wall-temperature vector in the complex plane reaches -7r/2 
radians. Therefore,  the phase lag is 

This  quantity is less than zero for the wall temperature lagging the fluid temperature.  
Setting T = 0 in equation (A15) gives 

e q(2L-x) - cos w e  cos(qx + t )  - sin w9 sin(qx + t )  
cos we cos(-qx + 5 + 2qL) - sin we sin(-qx + 5 + 2qL) 

_ -  
eqx 

Then 

from which , 

e 2q(L-x) cos(-qx + 5 + 2qL) + cos(qx + - 5 )  tan we = 
e ( 2 q ( L - ~ )  sin(-qx + 5 + 2 7 ~ )  + sin(qx + 5 )  

and 

e 2dL-x) c0.k + q(2L - x i  + cos(( + qx) 
we = a r c  tan 

e2q(L-X) s i n k  + q ( 2 ~  - x] + sin([ + qx) 

(A 17a) 

The heat-transfer coefficient can then be determined f rom the phase lag.  Solving 
equation (A17) f o r  5 and then for  hG gives 
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'TGX) [cos 5 cos 7 ( 2 ~  - x) - sin 5 s i n  q ( 2 ~  - x)] + cos 5 cos 77x - sin 5 sin 7p we = a r c  tan e 
e '~(L-x) [sin 5 cos q ( 2 ~  - x) + cos 5 sin q ( 2 ~  - x)] + sin 5 cos rpr + cos 5 sin 

s in  qx - -  tan 5 -- e 2q(L-x)[1 - tan 5 tan q ( 2 ~  - x)] + 

e 2q(L-x)[tan 5 + tan q ( 2 ~  - xu + tan < -- cos qx 

cos qx 

0 0  = a r c  tan cos q(2L - x) cos q(2L - x) 
s in  qx + --- 

cos q(2L - x) cos  q(2L - x) 

From equation (A 16), 

where cp is l e s s  than zero  f o r  the wall temperature lagging the fluid temperature, and 

tan w e  = tan(: - cp) 

tan we = cot (D 

The foregoing expression is used in equation (A17a) to write 

+ --j+ cos qx e 2 ~ ( L - x )  tan n ( 2 ~ ,  - x) + - sin qx 
cos q(2L - x) cos q(2L - x) 

Solving fo r  tan 5 gives 
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- tan 77(2~ - x)cot cp] + 7 7 ~  - sin qx cot cp - 
E CON (A 18) cos 77(2L - x) cos q(2L - x) 

'Os qx cot cp + e  277UJ-x) tan 77(2L - x) + sin nx 
cos q(2L - x) 1 cos q(2L - x) 

tan 5 = 
2dL-X) + 

This expression is set equal to CON for simplicity and the definition of 5 i s  used to 
write 

K17 -- - e2yLE sin(cG + 2yL) 

- hG CON = tan 5 = 
1 - f(rl+ e2qLE + 2yL) 

hG 

The solution for  h d K y  is as follows: Keep in mind the trigonometric substitution for E 
and c G  and write 

9 1 - e (cos 2 q ~  + s in  2 7 ~ )  - CON e2qL(cos 277~  - sin 277~) - 1 
hG { 2 ' L  -[ I> 

= e2yL sin 2yL + CON(e277L cos 2yL + 1) 

Solving for hG/Kq give 

e2qL s in  2yL + CON(e2yL cos 2yL + 1) 

Simplifying equation (A 18) by first multiplying the numerator and denominator by 
tan q, and collecting t e rms  gives 
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'Os qx t a n q  

sin qx 
1 + -- 217(L,-x) 

cos q(2L - x) cos T(21, - x) 

cos q(2Lt - x 

sin "-1 + [. -- -p2v(L-x) tan ~ Q L  - x) + - 
CON = -- 

COS 77X ] + e 2"L-x)pn n ( 2 ~  - x) + 
cos v(2L - x) 

Defining 

2dL-X) + cos l)x 

e 2 q ( L - ~ )  tan q ( 2 ~  - x) + -- 

e 
cos q(2L - x) A(x,L,q) = - 

sin qx 
cos q(2L - x) 

e 2q(L-x) cos q(2L - x) + cos qx 

e 2v(L-x) sin q ( 2 ~  - x) + sin qx 
A(x, L,q) E -- 

Then 

Equations (A19) and (A20) are the solutions presented in the text. For x = L, 

A(x, L,q) = cot qL 

tan cp - tan qL CON = -- 
1 + tan cp tan qL 

-- 
CON = tan(q - qL) 
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