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SECTION 1 

INTRODUCTION 

This is the midterm report of the Mars Spacecraft Power System Development Program 

conducted in accordance with JPL Contract No. 952150. 

The aim of this program is to investigate and recommend possible changes in existing 

Mariner power system designs for use in future Mars  flyby and orbiter missions. The 

Mariner Mars 1969 power system is used as  the reference design against which all 

comparisons and recommendations will be made. 

A s  evidenced by guidelines and information provided by JPL during the early phases of the 

program, the principal interest is centered on orbiter missions as exemplified by the 1971 

opportunity. As a result, more emphasis is being placed on a design meeting orbiter 

requirements rather than flyby requirements. However, possible flyby improvements 

will be inclusive in the study of orbiter power systems, e.g., the application of fault 

sensing and redundancy. Thus, at the conclusion of the study, all of the necessary informa- 

tion will be available to identify potential flyby power system improvements as well. 

A work plan for  conducting the study was  developed in the early weeks of the program and 

is shown on Figure 1-1. The cross-hatched areas  indicate the degree of completion of the 

designated tasks. The principal results at this point in the study a re  summarized below: 

A shunt regulation system has been selected as the prime contender for  more 
detailed study. 

Upon review of available test data it has  been concluded that only silver-zinc and 
nickel-cadmium batteries will be considered in the upcoming study phase. 

Reliability sensitivity studies indicate that fault sensing and switchover devices 
should be considered only if their net reliability is equal to o r  greater than the 
reliability of the functions being protected (e. g. regulator or  inverters). No 
clearcut reliability advantage has been identified for fault sensing the regulator 
and inverter separately o r  as  a pair. The choice will  lie more in which approach 
is easier  to implement. 

1-1 



Fault criteria have been identified for the principal types of power conditioning 
units (PCUs'). These cri teria distinguish between PCU and sourcefload faults. 

A frequency optimization study indicates that a change from the presently used 
frequency of 2.4 kHz is not warranted. 

General guidelines and design practices in the area of power switching and dis- 
tribution have been provided. 

Circuits of the MM '69 power system were reviewed, several potential problem 
areas identified, and alternate approaches suggested. 
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SECTION 2 

CONSTRAINTS AND GUIDE LINES 

Guidelines for the study are largely drawn from the  requirements for the MM '69 power 

system and from load profile estimates for  a 1971 orbiter mission. Specific characteristics, 

either specified o r  implied, are summarized below. 

2 .1  POWER SYSTEM TYPE 

The power system wi l l  utilize solar arrays for power generation and electrochemical 

batteries for energy storage. 

2.2 S O U R  ARRAY ORIENTATION 

The solar arrays will be fully sun oriented, except for brief maneuver periods when power 

will be supplied by the spacecraft batteries. 

2.3 DISTRIBUTION 

To least disturb the power system interface with other spacecraft subsystems and OSE as 

presently defined for the MM '69 system, the types of distributed power wil l  be identical to 

that of the MM '69 system: 

Regulated ac power 

50 volt rms ,  single phase, 2.4 kHz 

27.2 volt rms,  three phase, 400 Hz 

28 volt rms,  single phase, 400 H z  

Unregulated dc power 

25 to 50 volts, extreme limits 

2.4 LOAD PROFILE 

Power requirements by user  designation, power type, and mission phase for the 1971 orbiting 

mission have been furnished by JPL and are  summarized on Table 2-1. 
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Table 2-1. Power Requirements (Watts), 1971 Orbiting Mission (Cont) 

Phase Number 

One 

T W O  

Three 

Four 

Five 

Six 

Seven 

Eight 

Nine 

Ten 

Eleven 

Twelve 

Thirteen 

Fourteen 

Notes: 

Phase Name 

Launch 

Star Acquisition 

Cruise  I (Battery Charger On) 

Cruise I1 (Battery Charger Off) 

Maneuver 

Far Encounter 

Orbit Insertion 

Playback - Far  Encounter 

0 rbit Trim 

Orbit Cruise - CC&S Update 

TV Sequence 

Earth Occultation 

Playback ATR 

Playback DTR 

Duration 

45 minutes max. 

Not specified 

Not specified 

Not specified 

40 minutes 

Not spec if ied 

100 minutes 

Not specified 

20 to 40 minutes (Note A) 

Not specified 

Not specified 

Not specified 

Not specified 

Not specified 

st A. 1 orbit t r im no sooner than 24 hours after Orbit Insertion; subsequent orbit 
trims no sooner than 24 hours after previous orbit trim. 

B. Sun-probe distance: 
6 Encounter: 212 x 1 0  kilometers 

Encounter plus 30 days: 217 x 10  kilometers 

Encounter plus 90 days: 228 x 10 kilometers 

6 

6 
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2.5 TRANSIT AND ORBIT CHARACTERISTICS 

Also based on information supplied by JPL, the significant orbit characteristics relating to 

the power system design are: 

Transit time: Approximately 8 months 

Arrival date: 14 November 1971 

Orbit period: 12 hours 

Onset of Solar Occultations: 130 days after arrival 

Length of Solar Occultations: Up to 90 minutes 

2 -4 



SECTION 3 

POWER SYSTEM SELECTION 

A shunt regulation system 

the MM'69 power system. 

has been selected for further detailed design and comparison with 

This selection was  based on the relatively higher scoring of the 

shunt system over other candidates when judged against numerous criteria. 

Three principal power system candidates were evaluated in the selection process: (1) a 

boost regulation system, (2) a series switching (buck) regulation system, and (3) the shunt 

regulation system. A single representative arrangement of the functional elements was 

evaluated for  each candidate. Only those functions necessary to provide regulated and raw 

dc power were considered, Although the guidelines listed earlier indicate the distribution of 

ac power, its impact on candidate evaluation is not significant since dc/ac conditioning 

equipment is quite similar for any candidate. Any other features that could be applied with 

equal advantage to all candidates were also not included, such as improved methods of 

battery charging. The solutions t o  this and similar questions a r e  considered a s  part of the 

detailed design phase which follows the selection of the principal candidate. 

3.1 INFLUENCE OF SOLAR ARRAY - 

The variations in solar array characteristics associated with Earth/Mars transfer provide a 

logical starting point for considering power system candidates. It seems valid to  consider 

that future Mariner spacecraft wil l  utilize rigid deployed panel solar arrays similar to those 

used previously. Given a particular solar a r ray  design, its voltage-current characteristics 

with sun distance will vary in a particular way depending to a large extent on its thermal 

properties. 

The variation in voltage-current characteristics a r e  thus largely independent of the subsystem 

arrangement of which the solar array is a part. It is therefore possible to use a generalized 

set of solar a r ray  characteristics in examining possible subsystem arrangements. 
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Figure 3-1 shows a set of normalized power-voltage curves for a representative Mars 

spacecraft solar array design. 

temperature distance profile shown on Figure 3-2. 

ments made on a set of RCA l-ohm/cm N / P  cells. 

P-V variation with sun distance a re  summarized in Appendix A. 

in temperature prediction a r e  also included in the P-V plot for 1 . 0  AU. 

The relative variations in the P-V curves a r e  based on the 

The P-V curves a r e  based on measure- 

The procedures used in predicting the 

The effect of possible e r ro r s  

To permit relative assessments of the solar array effect on candidate subsystem arrange- 

ments , the P - V  curves a re  normalized and hence independent of specific series-parallel 

arrangements of the solar cells. Normalization is shown with respect to maximum power and 

voltage at 1. 0 AU and 140°F. 

In the power system candidate discussion which follows, the influence of the P-V curves of 

Figure 3-1 wil l  be referenced. I t  is stressed that these curves a re  the result of a particular 

cell type, namely the RCA cells mentioned earlier. The conclusions regarding solar a r ray  

influence on candidate selection may be somewhat modified if other cell types a r e  considered. 

This is a question being analyzed presently in relation to  the shunt system detailed design 

activity. 

The use of the P-V curves previously described implies that no active means would be used 

to electrically rearrange solar a r ray  sections by switching. The purpose of such switching 

would be twofold: (1) to add or  remove array sections and thus minimize problems of handling 

excess power, (2) to change the series-parallel solar cell matrix to permit power availability 

at more favorable voltage levels as a result of large changes in V-I characteristics with sun 

distance. A l l  of the power system candidates described later a r e  able to cope with these 

conditions .without the necessity for switching; therefore, this possibility was not considered 

further. 
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N O H M A U Z E D  VOLTAGE 

Figure 3-1. Normalized P-V Solar Array Curves 

140 

120 

2 60 

i 

20 
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Figure 3-2. Solar Array Temperature Versus Sun Distance 
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3 .2  REGULATOR EFFICIENCY 

Regulator efficiency data used in evaluating the candidate systems is shown on Figure 3-3. 

100 1 
SHUNT REGULATOR 

(FIXED LOSS) 

BUCK REGULATOR 

BOOST REGULATOR - 50 INPUT 
-, 25 VOLTAGE 

- 

- 

7n I I I I I J I I I 1 I I . "  
0 1 0  20 30 40 50 60 7 0  80 90 100 110 120 130 

PERCENT LOAD 

Figure 3-3. Regulator Efficiency Data 

The boost regulator data is based on the efficiencies cited in the 1971 load profile information 

and reflects the performance of the regulator used in the MM'69 power system. 

The buck regulator data is based on a design rated at 600 watts and 30 vdc which was built a s  

a breadboard and performance tested. 

The shunt regulator data is based on assuming an efficiency of 98 percent at rated load with 

2 percent used for  the regulator control electronics, A t  partial loads, it is assumed that the 

same amount of control power is required which results in the overall efficiency decrease 

shown. 
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3.3 CANDIDATE DESCRIPTIONS 

3.3.1 BOOST SYSTEM 

This candidate system is shown on Figure 3-4(a) and has the general characteristics of the 

MM'69 power system. 

The boost regulator requires that all input operating voltages be lower than the regulated 

output voltage. 

with reference to the normalized values for the solar a r ray  (Figure 3-1). 

selecting these levels is described in the following paragraphs. 

The necessary voltages to meet this condition a r e  shown on Figure 3-4(b) 

The procedure for 

First, a s  shown on Figure 3-1, for  an arrival at Mars between 1.4 and 1.6 AU, maximum 

power is available at  a normalized voltage, V For these particular P-V 

curves, there is a negligible power difference if V 

to AU distances of 1.4 and 1.6,  respectively. An intermediate value of 1.25 appears 

appropriate under this circumstance, 

of around 1.25. 
N' 

is used between 1.2 and 1.3, corresponding 
N 

With a r ray  power at Mars  drawn at  V 

boost input level be set  higher than 1.25, with allowance made for zener shunt tolerances. 

The zener shunt is used to assure that the boost input limit is not exceeded. This could occur 

as a result of solar a r ray  tolerance buildups or  upon emergence from solar occultations 

(i. e. , a cold a r ray  producing high voltage). With these constraints, V for  the boost output 

bus is set at 1.4 with a loose zener tolerance of V 

= 1.25, it is necessary that the maximum allowable N 

N 
equal to 1.3-1.4. 

N 

A battery charging voltage must be selected which does not interfere with the ability to draw 

sufficient a r r ay  power in the near-Earth phase of operations. If, for example, a series 

dissipative charge regulator is used and its minimum input voltage is set at V 

Figure 3-1 indicates that insufficient array power is available at 1.0 AU, especially if the 

solar a r r ay  operates at 155'F rather than the nominally predicted temperature of 140 F for 

Mariner panels. By lowering the charger input to  V = 1.05, this problem is avoided and 

the only penalty is the need for a wider boost input voltage range. 

= L25 ,  then N 

0 

N 
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The battery charge to discharge voltage ratio is typically 1.35:l  (for Ag-Zn, Vcharge = 1 .94  

= 1.44). With a conservative allowance made for a voltage drop through the and 'discharge 
charge regulator, the total voltage ratio of charger input to battery discharge is about 1.5: l  

corresponding to the V values of 1 . 0 5  and 0.7 shown on Figure 3-4(b). N 

The limits described above result in a 2:l  variation in raw voltage. 

With a boost system designed for these general limits, considerable latitude exists in the 

design voltage for the solar array. If the a r ray  were designed to provide sufficient near- 

Earth power at  VN = 1.05 (the charger input lower limit), this would represent an a r ray  

voltage reduction of 12 percent from the V 

1 . 0  AU and 155 F array as at V 

number of solar cells in series may be varied by about 12 percent without affecting system 

operation. 

value of I. 19 which provides the same power for N 
= 1.25  and 1 .5  AU. This is the same as saying that the 0 

N 

The boost system requires a means for avoiding the simultaneous supply of power from the 

solar a r ray  and battery, although the a r ray  might be fully capable of supplying all power. 

This possibility could occur during certain sequences when the battery clamps the a r ray  

voltage at a value below its optimum point., A share boost regulator is incorporated to avoid 

this condition in the manner used on the MM'69 system. Another possibility is to reduce the 

load momentarily through appropriate sensing logic. 

3.3 ,2  SERIES SWITCHING (BUCK) SYSTEM 

This candidate system is shown on Figure 3-5(a). 

The buck regulator requires that all input operating voltages be higher than the regulated 

output voltage as shown on Figure 3-5(b). 

A s  with the boost system, maximum power at Mars is available a t  V M 1.25. Sufficient 

near-Earth power is available at V = 1 . 2  which sets the minimum charge regulator input 
N 

N 
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Figure 3-4. Boost Candidate 
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Figure 3-5. Buck Candidate 
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voltage. Again, conservatively allowing a 1.5:l ratio for the relationship of charger input 

voltage to battery discharge voltage, the latter voltage is se t  at V = 0.8. An estimated 

minimum voltage drop of V = 0.05 is allocated to the buck regulator to result in a regulated 

bus level at  0.75. 

N 

N ‘ I  

~ 
These established limits result in a 1.7:l variation in raw voltage, 

In this system, an even greater variation in the a r ray  design voltage exists. The lower limit 

is set by conditions which mutually satisfy the near-Earth power demand and the charger 

input voltage. The higher limit is set  by the regulator transistor ratings or  the desire t o  

limit the raw power range. A 2:l input to output range for a buck regulator is realistic 

which would allow an increase to V = 1.5 over 1.25. This is equivalent to permitting an 

a r ray  design with 20 percent more cells in series. If the 2:l range on the regulator was an 

absolute requirement, it is likely that zener shunts would be required to prevent excess 

voltage during cold a r ray  conditions (emergence from occultations, etc. ). 

I 
I 
1 N 

I 
I) This system also requires a means for avoiding the a r r ayba t t e ry  load sharing problem. 

I 3.3.3 SHUNT SYSTEM 

This candidate system is shown on Figure 3-6. 

Regulated dc power is drawn directly from the solar a r ray  and is controlled by a partial 

shunt regulator in the form of multiple shunt transistors across separate semi-sections of 

the solar array. I 
The Sequence CoDtrol provides the base drive signal t o  the shunt transistors and also 

provides control sigra1.s for sequencing operation of the charge regulator and boost regulator. 

This sequencing is necessary to prevent (1) simultaneous shunt and boost operation, and (2) 

simultaneous battery charging and boost operation. The method of sequencing is explained 

more fully on Figure 3-6(b). The Seqlence Control establishes shunt, charge regulator, 

I 
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and boost regulator operation a s  a function of the voltage level within the voltage regulation 

range. Assume for example that the regulated bus is set at 50 volts +1 - volt; then the 

voltage regulation range is 2 volts. 

three roughly equivalent bands, each devoted to a different control mode. The range of the 

upper band varies the shunt from "full on" at its high level to "full off" at  its low level. 

middle band similarly varies the charge regulator, and the lower band inversely varies the 

boost from "full off" at  its high level to "full on" at its low level. The Sequence Control of 

the charge regulator is an override control over the normal charge regulaCor control functions. 

If the shunt regulator is operating, i. e., it is draining away excess array power, and the 

battery is fully charged, the charge regulator would probably only be supplying trickle power 

depending on the charging method used. Any subsequent Sequence Control override signal 

would in that case not affect the charge regulator operation. 

Figure 3-6 indicates that the range is divided into 

The 

Raw power is drawn from a separate set of solar a r ray  isolation diodes or through a diode 

from the battery. It would have been possible to  use the scheme shown on Figure 3-7 which 

results in an additional diode voltage loss for solar a r ray  power. In the interest of efficiency, 

the arrangement of Figure 3-6(a) was selected for further study. 

The determination of relative voltage levels is shown on Figure 3-6(c). Again V 

provides the maximum power capability at  Mars. However, since the a r ray  voltage is 

constant throughout the mission (same as  regulated voltage), there would be a power 

deficiency in near-Earth operation a s  seen on Figure 3-1. 

this condition with a penalty of several percent in the power available at Mars. 

= 1.25 N 

The selection V = 1.2 avoids N 

The 1.5:l ratio for the relative values of charger input to battery discharge is used a s  before 

which results in a similar ratio fo r  the raw power range. 

The selection of a partial shunt over a full  shunt is based on its lower thermal dissipation 

within the shunt elements. Figure 3-8 shows the full and partial shunt options and their modes 

of operation relative to the solar array V-I curve. If the voltages of the two V-I curves fo r  
e 
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Figure 3-6. Shunt Candidate 
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Figure 3-7. Raw Power Source Alternative 

the partial shunt case were added, they would result in the full  shunt V-I curve. A s  shown on 

the sketch, these are  drawn to scale relative to each other, and it becomes apparent that the 

partial shunt dissipation is significantly less. It is also clear that the current requirement 

for both types is about equivalent. 

Figure 3-9 shows the shunt analysis for a solar a r ray  quite similar in size to the MM'69 

solar panels. This particular a r ray  would produce about 900 w a t t s  at 1.0  AU at a panel 

temperature of 100 F. The curve shows the dissipation from either a full o r  partial shunt 

for  a nominal demand load of 200 watts. The dissipation is shown as a function of a r ray  

temperature to  identify the maximum dissipation that might occur during emergence from an 

Earth eclipse. Each shunt section has a transistor and resis tor  in series. The dotted lines 

indicate the heat dissipation associated only with the transistors which is almost the same for 

the full and partial shunt cases. It is possible that no resis tors  wi l l  be required for the 

partial shunt case. It was therefore selected f o r  use in the shunt system candidate. 

0 
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Figure 3-8. Shunt Regulator Options 
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3.4 CANDIDATE - COMPARISON 

The three candidate systems a r e  compared on the matrix shown on Table 3-1. 

each candidate against a particular criterion is indicated in the rating columns where "1" 

indicates the highest rating, "2" the intermediate rating, and "3" the lowest rating. The 

lowest summation of these ratings provides the basis for candidate selection. 

The rating of 

Pertinent discussion for each criterion is provided below : 

Relative Battery Demand 

For regulated loads, battery demand in the boost and buck systems is inversely proportional 

to the regulator efficiency and the discharge diode efficiency, assumed to be 0.97. Then the 

relative demands are: 

0.85 x 0.97 
0. 91 x 0.97 

= 0.94 - - Buck demand 
Boost demand 

using the regulator efficiencies cited in Figure 3-3. The shunt system does not contain a 

battery discharge diode to  the boost regulator and therefore, 

Shunt demand - 0.85 x 0.97 = o. 97 
Boost demand 1. 85 

- 

For raw loads, all three candidates provide battery power to the raw bus through diodes and 

therefore no battery demand difference exists. 

Relative A r ray  Demand 

For regulated loads, a r ray  demand is inversely proportional to  regulator efficiency: 

Buckdemand - 
Boost demand 0 .92  

- o*89 - 0.97 
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Table 3-1. Candidate Comparison 

Criterion 

Reg 
Relative loads 
Battery Raw 
Demand loads 

Reg 
Relative loads 
Array Raw 
Demand loads 

Charge 
Power 

Packaging 

Bay Thermal 
Design 

Raw Bus 
Limits 

Boost R *  

1.0 3 

- 1.0 

1.0 3 

1.0 1 

small+ - 

Compact 2 

Battery - 
Integr . 
2 :1 2 

- 

0.97 2 

1.0 1 

Buck R* I shunt R* 

0.93 1 

1.02 2 

0 . 9 4  1 I 0.97 2 

s mall - 

1.0 

small- - 

2 2 1.7:l 
(Zener s ? ) 

- +2 % - 

PWM reg 2 
PWM reg - 
Medium - 

1.5:l 1 

- +2% - 

Shunt 1 
PWM reg - 
Medium - 

Compact wiring 

Integr. Integr . 

Reg Bus 
Limits 

Ripple, day 
Ripple, night 
Response 

Battery Charger 
Integration 

+2 % - - 

PWM reg 2 
PWM reg - 
Medium - 
Variable 2 
Voltage 
Input 

3 Variable 
Voltage 
Input 

~~ ~ 

Fixed 1 
Voltage 
Input 
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Operational 
Complexity 

Flexibility / 
Growth 

Redundancy 
Implementat ion 

Share 2 Share 2 Sequence 1 

Regulator 2 Regulator 2 Add shunt 1 

Single 1 Single 1 Multi- 2 

Boost Boost control, no 
switching 

Size Size elements 
Limit Limit (day operation) 

Function Function Functions 



8 
1 
1 
I 
I 
I 
I 
I 

Table 3-1. Candidate Comparison (cont) 

Criterion 

Failure Modes 

Regulator-Array 
Operation : 

Open 

Short 

Control Failure 

Regulator-Batteq 
Operation : 

Open 

Short 

Control Failure 

~~ 

Ease of Test 
On Pad 

Flight 
Demonstration 

TOTALS 

* Rating Scale: 

1 =Highest 
2 = Intermediate 
3 = Lowest 

Boost R *  

Results in 2 
short 

'B US 3 

%ATT 
'BUS 3 

"ARRAY 

Results in - 
short 

'BUS 2 

% A T T  

'BUS 1 

"BATT 

, 

Wide ground 1 
power limits 

Yes 1 

33 

Buck R "  

Complete 2 
power loss 

'BUS= 2 

'ARRAY 
"BUS 2 

*VARRAY 

Complete - 
power 10s s 

'BUS= 1 

'BATT 

<'BUS 2 

% A T T  

Wideground 1 
power limits 

Partly 3 
(Nimbus B) 

30 

Shunt R *  

Minor effect 1 
(multiple units) 

loss 
Array section 1 

'BATT' 'BUS 1 

"ARRAY 

Results in short - 

2 'BUS"RATT 

'BUS>'BATT 1 

Tight ground 2 
power limits, 
shunt simulation 
probable 

~ ~~ 

Partly (Lunar 2 
Orbiter) 

25 
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8 

Shunt demand - 0.89 - 
Boost demand 0.98 

- - 0.91 

The shunt system incur s  an Earth/Rlars matching penalty of several percent (see Subsection 

3. 3. 3) and therefore, the relative shunt demand is raised to  0. 93. 

For raw loads, array power is supplied directly to  the raw bus for all candidates. Again 

the shunt system is penalized by two percent to raise its relative demand to 1.02. 

For charge power, small differences in charge power a re  associated with the relative 

battery demand--this is not significant a s  a measure. 

Packaging 
No major differences a r e  involved. The bay equipment is about the same for  all candidates. 

The buck system may o r  may not require zener shunts on the array. The boost system 

requires zeners; the shunt system requires transistors plus additional wiring for the base 

drivers. Therefore, they a re  rated 1, 2 ,  3 in that order. 

Bay Thermal Design 

No  significant difference. Main thermal problem is probably battery integration which is 

common to all candidates. 

Raw Bus Limits 

Limits a r e  indicated on Figures 3-4, 3-5 and 3-6. 

- Regulated Bus Limits 

N o  measure--similar limits should be achievable with pulse width modulated electronics of 

all candidates. 
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Ripple, day; with array power, the shunt system should be best since switching electronics 

is not in use. 

Ripple, night; no measure--with battery power switching electronics is used in all candidates. 

Response; no measure--all candidates depend on response of switching electronics. 

Battery Charger Integration 

A smaller variation in the charger input voltage results in a smaller average drop through 

the regulator resulting in more efficient power usage. The shunt system, with a fixed 

charger input voltage, is best in this regard. The buck system may o r  may not be worse 

than the boost system depending on whether o r  not zener a r ray  voltage limiters a r e  used. 

Operational Complexity 

The boost and buck systems require some means for avoiding solar array/battery load 

sharing while the shunt system requires a sequence control. Since no switching of relays 

is required for the shunt system, it is rated better. 

Flexibility /G rowt h 

Power capability during a r ray  operation for the boost and buck system is limited by the 

regulator ratings. The growth of the shunt system is accommodated by adding shunt elements. 

(Shunt control can be initially designed for possible growth. ) During battery operation all 

systems a r e  limited by regulator size. 

- Redundancy Implementation 

Redundancy schemes for the shunt system may be complicated by multi-functions operating 

from a single Sequence Control. 
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Failure Modes 

R egulator-A r ray  Operation 

a. Open power transistor: Circuit review of the boost regulator indicates that an open 
circuit of one transistor would result in a short to ground of the remaining transistor 
with complete power loss; the bypass diode capability would be ineffective. An open 
transistor in the buck regulator obviously results in complete power loss. An open 
shunt transistor of the shunt system results in  no power loss; the system can be 
easily designed to permit several such failures with remaining transistors absorbing 
the additional shunt load. 

b. Shorted power transistor: For the boost regulator circuit, this is a short to  ground 
with probable full power loss. For the buck regulator, this is a through short and 
the output is the same a s  the array voltage input. A shorted shunt transistor only 
results in loss of the associated a r ray  section. 

c. Control failure: With bypass diode capability in the boost regulator the output could 
be higher but no less than the array input voltage. Inherently the buck regulator 
cannot produce an output voltage higher than its input; therefore, a control failure 
could result in output between zero and the highest a r ray  input. With the shunt 
system the array voltage and bus voltage are identical; this voltage can be drawn 
downward t o  the battery voltage by virtue of the bypass diode capability of the battery 
discharge boost regulator. 

Regulator- Battery Operation 

a. Open power transistor: Complete power loss for all candidate systems--no measure. 

b. Shorted power transistor: Probable complete power loss for  boost system o r  shunt 
system due to short to ground of boost regulator. 'Through short of buck regulator 
results in bus voltage same as battery voltage. 

C. Control failure: With bypass diode capability in boost regulator the output could be 
higher but no less than the battery input voltage; this applies t o  the boost and shunt 
systems. Buck regulator maximum output is limited to  battery input voltage. 

Ease of Test-On Pad 

Both the boost and buck systems can accept wide variations in ground power voltage during 

on-pad operations by way of a r ray  simulation o r  other power supplies. The boost and buck 

regulators automatically condition this raw input. The shunt system cannot function in this 

3-20 

I 
a 
I 
8 
8 
I 
B 
1 
I 
I 
I 
1 
I 
I 
I 
I 
1 
I 
I 



way since the shunt transistors a r e  diode isolated on the solar array. Until appropriate 

solutions a r e  found, the shunt system is rated lower on this criterion. 

Flight Demonstration 

The boost system has been used extensively on Mariner and Ranger spacecraft. 

system has been used on battery powered military satellites and is used on the Nimbus B 

spacecraft to be launched shortly. The shunt system was used on the Lunar Orbiter space- 

craft in a somewhat different arrangement. 

The buck 

The summation of ratings results in the selection of the shunt system as the candidate for 

further comparison with the MM'69 power system. 
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SEC TION 4 

BATTERY CONSIDERA'ITONS 

4 . 1  REQUIREMENTS 

The power requirements for the Mars vehicle have been summarized in Section 2. 

the more important facts concerning the battery design wil l  be outlined here. 

Some of 

The primary difference between the battery requirements for  this mission and other Mariner 

missions is that battery power will  be  required at the time of planet encounter and also 

after encounter. This requirement may exist for one of two cases. In Case I power is 

required for orbit insertion maneuvers and subsequent orbit t r im maneuvers. In Case I1 

power is required for solar eclipse periods during planetary orbit in addition to  the insertion 

and orbit t r im maneuvers. The orbit cycle would be in the order of 12 to 24 hours with a 1 

to 2 hour eclipse. The battery requirement could be from just  a few to several hundred 

cycles, with the battery being charged during daylight periods by the solar array. 

4 .2  BATTERY CANDIDATES 

There a re  three types of batteries which could be considered for use in the Mars vehicle 

power system. 

cadmium, and nickel cadmium. 

These batteries, all of the alkaline class, a r e  secondary silver zinc, silver 

The present Mariner battery is representative of a secondary silver-zinc battery and is an 

important contender in any f u t u r e  Mariner-type missions. 

specifically designed for maximum cycle life with maximum energy density, a r e  also worthy 

of consideration. Consequently GE-MSD initiated a test program two years ago to investigate 

the operating characteristics of such silver-zinc and silver-cadmium batteries. Previous 

work carried out by GE-MSD and work performed by other investigators was believed 

extensive enough to develop the characteristics of standard nickel-cadmium cells and were 

not included in the aforementioned test program. However, cells containing a new "third 

electrode" charge control device have been purchased recently and a re  being tested. Some 

of the highlights of the silver cell test program a re  reported here. 

Other silver-zinc batteries 
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A S  mentioned previously, these test were concerned with secondary, o r  rechargeable cells. 

The primary purpose of the test program was  to determine the float capability and cycle life 

of silver cells representative of the latest state of the art. 

Joplin, Missouri was selected a s  the vendor for both types of cells. 

The Eagle Picher Company of 

4.2.1 SILVER-ZINC CELLS 

The silver-zinc cells have a nominal capacity of 50 ampere-hours and a r e  assembled in 

Lustran plastic cases with pressure gages attached. Each cell measures 6-1/8 inch high 

by 3-1/8 inch wide by 1-1/16 inch thick and weighs 1.55 pounds, exclusive of the pressure 

gage assembled to each cell. 

while the negative electrode consists of 7 zinc plates containing 2 percent mercuric oxide. 

Separation consists of two layers of polyvinyl alcohol and six layers of cellophane. Each 

cell contains 113 cc  of 40 percent KOH electrolyte. 

The 152 square inches of silver oxide is contained on 6 plates 

Cel ls  were tested in packs of five and underwent charge and discharge characteristic tests, 

and 7 -  and 24-hour charge/discharge cycles. In addition, some cell packs were placed on 

float charge for several months and then subjected to repetitive cycling. A summary of tes ts  

on the silver-zinc cells is shown in Table 4-1. A l l  cycle tests included a one hour discharge. 

Table 4-1. AG-ZN Test Summary 
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Cycles 
Months Test To 

Pack No. 1 2  3 4 5 6 7 8 9 10 11 Failure 

lto5 )< Charge Tes t s  _- 

13 to lo-)< 7 H r  Cycle, 40% DOD 

16 to 20 )< 24 Hr Cycle, 40% DOD 83 

94 

11 to 15 x 7 Hr Cycle, 20% DOD 314 

7 Mo. Float X 7 H r  Cycle 169 

X 24 Hr Cycle 290 

21 to25 

*26 to 30 

*31 to 35 

20% DOD 

20% DOD 
> Voyager Power Profile- 

Float and Cycle 

> Float and Cycle at 30' F *36 to 40 

* Tests Continuing 



8 
I 
I 
8 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

, 

4.2.1.1 Charge Tests 

To determine the most favorable charging procedure to use with these cells, the first part 

of the test program consisted of charge characterization tests. The charge regime selected 

was a constant current to  a selected voltage limit, with the current tapering at this point 

holding the charge voltage at the selected level throughout the remainder of the charge 

period. 

After several formation cycles, the pack was discharged a fixed amount (60, 40, o r  20 

percent of nominal capacity) and recharged t o  a specified voltage limit (1.96, 1.94, o r  1.92 

volts/cell, average). Maximum current levels were from 2 to  10 amps. Most of the charge 

tests w e r e  carried out at 7 5  F, with a few at 30 F for comparative purposes. The only 

difference attributable to  the laver temperature was that charge acceptahce was somewhat 

lower at  low temperatures. 

0 0 

Typical data is plotted in Figure 4-1, where charge acceptance as  a function of charge time 

is shown for three different voltage levels for a battery which had previ 

to  a 60 percent depth of discharge. 

120 

4 0  I I I I I I I I I U 

CHARGE TIME - HOURS 

Figure 4-1. Ampere Hours Versus Charge Time 

sly been discharged 
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' I  
From these tests it w a s  possible to determine the optimum charge voltage to  use a s  a 

function of depth of discharge and charge time. It was determined that an average voltage 

level of 1.92 volts per  cell was generally too low to allow completion of the charge while a 

voltage level of 1.96 volts per cell frequently resulted in gas generation during the charge. 

The level of 1 .94  volts was selected for charging, resulting in a limitation on the depth of 

discharge for shorter cycles. 

The charge data may be represented in another way as shown in Figure 4-2. Here the point 

at which tapering of the current occurs is plotted a s  a function of the charge current. The 

curve is valid for  a cell voltage limit of 1 .94  volts per cell. The plot shows the time 

necessary to complete the charge from a given depth of discharge. In Case A ,  a 2 . 0  amp 

rate is used a s  the maximum charge current. Starting from a 50 percent depth of discharge 

(DOD) it can be seen that 15 ampere-hours may be returned in 7 . 5  hours reducing the DOD 

to 20 percent. To complete the charge requires an additional 14 .5  hours. 

I 
I 
1 
1 
I 
1 
1 
I 

A close study of the data presented in Figure 4-2 suggests that it might be advisable to 

operate the battery at  less than full  charge. Suppose that it is desired to remove 15 ampere- I 
I 
I 
1 

hours of capacity from the battery. Case A shows that in  operating between 20 and 50 

percent DOD, the 15 ampere-hours could be returned to the battery in 7 . 5  hours, while 

Case B shows that trying to return this 15 ampere-hours to a battery operating between 30 

percent DOD and fu l l  charge would require 17.5 hours. It must be assured that cycle life 

does not suffer from the fact that the battery is operating from less than a fully charged 

condition. 

4 . 2 . 1 . 2  Discharge Tests 

A set of typical V/I curves was  generated for this cell by discharging the cell at various 

rates and measuring the corresponding sLabilized voltage. Data is shown in Figure 4-3 for 

temperatures of 40, 75, and 90 F. 

I 
1 0 
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4.2.1.3 Cycle Tests 

Cell packs were put on automatic 7- and 24-hour cycles at room ambient conditions dis- 

charging to a 20 or 40 percent depth of discharge. The results of the tests a r e  summarized 

in Table 4-1. When comparing the results of the tests it may be noted that the total life of 

the battery pack appears to be a function of the number of cycles rather than the time on test. 

Compare the 40 percent DOD tests (94 7-hour cycles and 83 24-hour cycles) with the 20 percent 

DOD tests (314 7-hour cycles and 290 24-hour cycles). While the results of the 40 percent DOD 

tests a r e  disappointing, the 20 percent DOD tests are encouraging, especially when it is 

recalled that this silver-zinc cell at  a 15 percent DOD is equivalent in usable energy density 

to  a nickel-cadmium cell at a 60 percent DOD. 

plots of average end-of-discharge voltage versus cycle number are shown in Figure 4-4 for 

the 20 percent DOD 7-hour cycle and in Figure 4-5 for the 20 percent DOD 7-hour cycle. 

In all cases, silver-zinc cell failure was caused by internal cell shorting. 

use of a relatively low charge voltage limit, 1.94 volts/cell, cell gassing was  not a problem 

and cells did not leak o r  dry out. Also the polyvinyl alcohol, coupled with the cellophane 

separator system virtually eliminated the problem of silver migration. 

eventually caused by solution and precipitation of the negative material until the separator 

was either punctured o r  bypassed. 

Because of the 

Failure was 

4.2.1-4 Float Tests 

Pack 811-21 to 25 was floated in a fully charged condition at  an average voltage level of 1.87 

volts/cell for 7 months. Following the float period, the pack was put on a 7-hour cycle at  a 

20 percent DOD. Figure 4-6 shows the results of several capacity discharges of this pack. 
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It may be seen that the total capacity of the pack was not appreciably degraded; however, 

when placed on cycle test the pack failed after only 169 20-percent DOD cycles a s  compared 

to 314 cycles for a pack which had not undergone the float period. Upon inspection of the 

failed cells it was  observed that the PVA separator had degraded considerably and this w a s  

believed to be the reason for the  decreased cycle life. 

Additional packs are now in the float portion of other float/cycle tests to determine if lower 

depths of discharge can be sustained for longer time periods and to see if a 30 F environment 

causes a significant change in operation. 

0 

4.2.2 SILVER-CADMIUM CELLS 

The silver-cadmium cells have a nominal capacity of 20 ampere-hours and are assembled in 

302 stainless steel cans. Each cell has two ceramic bushings, insulating the negative and 

positive terminals from the case. Each cell measures 3-7/16 inches high by 3-3/16 inches 

wide by 1-7/16 inches in thickness and weighs 1.5 pounds, exclusive of the pressure gage. 

The 154 square inches of silver oxide is contained on 12 plates while 13 plates contain the 

negative cadmium material. Separation consists of two layers of polyvinyl alcohol and four 

layers of cellophane. The electrolyte, in all cases but one, consists of 93 cc of 30 percent 

KOH. Pack 812-F contains 80 cc of 40 percent KOH. 

Cel ls  were tested in packs of six to determine charge and discharge characteristics and 

cycling capability on 7- and 24-hour charge/discharge cycles. In addition,one pack was  

placed on float to determine cycling capability after an extended period of floating in a fully 

charged condition. A summary of the silver cadmium tests is shown in Table 4-2. 

4.2.2.1 Charge Tests 

Charge tests, similar to tests carried out on the silver-zinc cells, were also performed on 

the silver-cadmium cells. Voltage levels of 1.48, 1.50 and 1.52 volts/cell average were 

used, recharging from 60, 40, and 20 percent depth of discharge. A 3.0 amp maximum rate 

was used in all cases. A l l  of the charge tests on the silver-cadmium cells were  conducted at 
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0 room dmbient, about 75 F. Data was obtained similar t o  that obtained for the silver-zinc 

cells. It was determined that 1.48 volts/cell was too low for  efficient charging, but that 

1.50 o r  1.52  volts/cell would be satisfactory under certain conditions, if the  depth of 

discharge is not too great. Under certain conditions (pack 812-F) 1.54 volts/cell was used 

satisfactorily, but usually this voltage level resulted in severe unbalancing during charging 

with the result that gassing occurred in some cells in the test pack. 

4 . 2 . 2 . 2  Discharge Tests 

Silver-cadmium cells were discharged at 40, 75, and 90 F to  generate typical V/I curves. 

The results a r e  shown in Figure 4-7 where data is plotted for rates of 1 to 20 amps. 

0 
I 

4 . 2 . 2 . 3  Cycle Tests 

Packs were  put on 24-hour cycles at 60 and 40 percent DOD and on 7-hour cycles at 40 and 

20 percent DOD. Results of these tests a r e  summarized in Table 4-2. No correlation of 

cycle life with depth of discharge o r  cycle period is possible, however, cycle life was 

disappointingly poor except for pack 812-F. 
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Table 4-2. AG-CD Test Summary 

Pack No. 
Months Test 

1 2  3 4 5 6 7 8 9 10  11 

Cycles 
To 

Failure 

Charge 7 Mo Float 
A , x 7 H r  Cycle 

Tests ' 20% DOD 
B x 7 H r  Cycle, 40% DOD 

97 

285 

C X 24 H r  Cycle, 60% DOD 126 

D X 24 H r  Cycle, 40% DOD 135 

E X 7 H r  Cycle, 705 
20% DOD 

40% DOD 
40% KOH, 2 Step 
Change 

*F 7 H r  Cycle > 1000 

* Test Continuing 

Considering that the nominal energy density is only about 14 watt-hours per pound, these 

cells would not be competitive with nickel-cadmium cells unless a definite magnetic 

cleanliness requirement existed. 

A l l  silver-cadmium cells failed by a low end-of-discharge voltage phenomenon. When the 

end-of-charge voltage w a s  increased to  increase the charge input , cell unbalancing occurred 

resulting in  gas generation in some of the cells. Failure analysis showed no signs of internal 

shorting o r  silver migration. 

plate fading or  passivation. This phenomena was  discussed with the manufacturer who 

concurred in the explanation, because the negative plate was of pasted construction rather 

than impregnated on a sintered nickel substrate. 

From this it was deduced that failure was  caused by negative 

Pack 812-F behaved quite differently and has exceeded 1000 cycles at a 40 percent DOD on a 

7-hour cycle. Figure 4-8 shows end-of-discharge voltage versus cycle number. The reason 
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for this improved operation can be explained by any one of three unique factors existing for 

this pack: 

a. 

b. 

C. 

By an extremely fortunate set of circumstances, six well-balanced cells were 
selected that can be operated at a charge voltage equivalent to 1.54 volts per cell 
without becoming unbalanced and generating gas. 

The inception of a two-step voltage limit causes the charge voltage to  drop to a safe 

I 
- I  

1 
I 
I 
I 
I 
I 
I 
1 
I 
1 
1 
1 
I 
1 
1 

value before unbalancing occurs. Operation in this mode is illustrated by Figure 4-9, 
where the upper voltage level of 1.54 volts per  cell is maintained until the charge 
current decays t o  0.21 amp. A t  this point the cell voltage is reduced to an average 
of 1.42 volts/cell, just  above the open circuit voltage. 

The cells were filled with 40 percent KOH rather than 30 percent KOH electrolyte, 
resulting in less severe fading and degradation. 
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Figure 4-9. Silver-Cadmium Cell Pack 8-2-D Cycle 109, 40 Percent DOD, 24-Hr Cycle 

4 . 2 . 2 . 4  Float Tests 

One pack was placed on a 7-month float at 1.42 volts/cell and then cycled at a 20 percent 

depth of discharge on a 7-hour cycle. The pack survived only 97 cycles before failure 

occurred as  a result of the inability to accept a charge. It was concluded that this cell is 

severely penalized by long periods on float charge and would not be satisfactory for a 

Mariner-type mission. 

No additional silver-cadmium cells w e r e  placed on float test, but it was decided that the use 

of 40 percent KOH electrolyte for silver-cadmium cells did warrant fu.ither investigation. 
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4 . 2 . 3  NICKEL CADMIUM CELLS 

4 . 2 . 3 . 1  Standard Nickel Cadmium Cells  

The Space Systems Organization has carried out a considerable amount of testing with 

hermetically-sealed nickel-cadmium cells. 

chambers to determine thermal characteristics, on 5-hour and synchronous orbit-type cycles 

to determine cycle life capability, and on continuous overcharge tests. 

Batteries have been tested in thermal-vacuum 

Cells used for the latter tests were 11 to 12 ampere-hour cells, purchased in late 1961, 

which were placed on a continuous charge for over 500 days at a C/7 ra te  and following a 

capacity discharge, when they delivered over 12 ampere hours of capacity, were put in  

storage in the laboratory for over two years. They were subsequently removed from storage, 

given a few conditioning cycles, and placed on a continuous 24-hour cycle, discharging to a 

60 percent DOD. These cells have completed over 500 cycles and a r e  still operating 

satisfactorily. 

4.2.  3 .2  Third Electrode Nickel-Cadmium Cells 

A relatively new method in battery charge controls employs the u s e  of a third or  auxiliary 

electrode to signal when a cell has reached full  charge. Using this method, a nickel-cadmium 

battery may be recharged at a rapid rate, and reduced to a safe trickle rate when the charge 

has been completed. Several 20 ampere-hour cells containing third electrodes have been 

procured for evaluation. It is expected that they will  be tested at  several charge rates and 

temperatures to  determine the effect of these parameters on the third electrode signal and 

the charge acceptance of the cells. 

A n  overall comparison of silver-zinc, silver-cadmium cycle-life capability a s  a function of 

depth of discharge is shown in Figure 4-10. 
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I '  
I SECTION 5 

RE LIABIIJTY SENSITIVITY STUDIES 

1 5 . 1  APPROACH 

It is very difficult to accurately predict o r  calculate the reliability of various piece parts,  

subunits of a blackbox or  the complete blackbox, because of uncertainties in reliability data 

and shortcomings in reliability modeling techniques. Consequently, the approach taken on 

this study is to perform selected sensitivity studies in a parametric fashion to illuminate key 

questions concerning the operation of the subsystem elements. 

I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
1 
I 

Utilizing parametric sensitivity studies we can plot results, for specific points to be analyzed, 

for the full range of reliability from 0 to  1, and then we can assess  the relative importance of 

various questions, even though we do not know with any confidence the actual hardware reli- 

abilities of the various elements. By way of illustrating this approach, and how the results 

of such studies can provide insight into certain fundamental questions, the first two examples, 

discussed separately in the following section, consider the cases of two ser ies  elements and 

two parallel elements. These examples, as well as the remainder of the analysis in this 

section, have been studied with the use of the remote access time sharing computer system. 

5 . 2  SERIES EXAMPU 

Figure 5-1 shows the block diagram being analyzed. R represents the reliability of one 

black box and R 

both black boxes must work; hence, the  series diagram. R is the reliability of the system 

and is: 

71 

represents the reliability of the second black box. For the system to work N 

S 

R = R  x R N  
S iT (5-1) 

Figure 5-2 is a plot of the system reliability, Rs ,  versus the reliability of the first black 

box, R . The parameter represents the reliability of the second black box, R N' 7r 
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5.2.1 CONCLUSIONS 

Several general conclusions concerning a series system can be seen from examination of 

Figure 5-2 and Equation 5-1. 

a. 

b. 

C. 

d. 

e. 

f. 

R, and RN are interchangeable; consequently any statement made about one black 
box equally applies to the other. 

The system reliability never exceeds the reliability of the lower element. 

The system reliability improves linearly with improvement of the lowest element 
until the lowest element is nearly as reliable as the highest element. 

Once the most reliable element is about any order of magnitude better than the lowest 
element, no significant system improvement follows from further improvement of 
the highest element . 
R, and/or RN can represent the reliability of a single black box o r  the reliability 
of several black boxes in series. 

From b and c, above, it follows that to improve the system, effort should be con- 
centrated on improving the least reliable element. 

5.3 PARALLEL EXAMPLE 

Figure 5-3 shows the block diagram being analyzed. R, represents the reliability of one 

black box and RN represents the reliability of a second black box. The system works suc- 

cessfully if  either black box works, hence the parallel diagram. R 

system and is: 

is the reliability of the 
S 

- Rn RN R = R  + R N  
S n- (5-2) 

Figure 5-4 is a plot of the system reliability, R 

R . The parameter represents the reliability of the second black box, RN. 

versus’ the reliability of one black box, 
S ’  

lT 
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5 .3 .1  CONCLUSIONS 

Several general conclusions concerning a parallel system can be seen from Figure 5-4. 

a. R, and RN are interchangeable, consequently any statement made about one black 
box equally applies to the other. 

b. The system reliability always exceeds the reliability of the highest element. 

c. The system reliability improves with improvement of either element. 

d. The system reliability always improves with improvement of either element reli- 
ability: no matter what the relative reliabilities are. 

e. R, and/or RN can represent the reliability of a single black box o r  the reliability of 
several black boxes in series. 

f. From b, c and d, it follows that to improve the system, effort can be applied to either 
element; hence, which element is easiest to improve would become the main criteria. 

5.4 FAULT SENSING AND SWITCHING 

One of the major areas of interest on this study is the subject of switched redundancy for 

regulators and inverters. The use of a standby regulator and/or inverter in conjunction with 

a fault detection and switching system always raises the question of whether the system 

reliability might not have actually been degraded by the additional fault sensing complexity. 

The following sections describe studies aimed at illuminating this general question. 

5 . 4 . 1  COLD VERSUS HOT REDUNDANCY 

Standby redundancy can be implemented in two ways: 

a. Hot redundancy where the standby unit is always turned on 

b. Cold redundancy where the standby unit is not turned on until the main unit has failed. 

Presumably cold redundancy would be the most reliable since the standby unit is not on until 

the main unit fails, hence, its operating life is shorter. The following analysis sheds some 

light on this specific question as well as the general subject of fault sensing and switching of 

a redundant element. 
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Figure 5-5, Part A ,  shows the basic circuit being analyzed, and Figure 

corresponding block diagram used to assess the system reliability. 

, Part B, the 

R and R represent the reliabilities of the regulator and inverter, respectively. The A ,  B, 

and C blocks represent the reliability of the fault sensing and switching. The failure modes 

which are incorporated in the A ,  B y  and C blocks are listed below: 

R I 

B - A - 
0 Open top relay 0 Pole of relays open 

contacts 

False detection 0 Pole side relay 
and switching connections open 

C - 
Open relay coil 

0 Welded top contacts 

0 Fault sensor fails to 
detect failure and/or 
switchover 

0 Bottom contact open 

For  the hot redundancy situation the total system reliability is: 

R = [ l - ( 1 - R  R R ) ( l - R  R R )I RB 
S R I A  R I C  

For the cold redundancy situation the total system reliability is: 

( 5 - 3 )  

(5-4)" 

* This equation assumes: (1) the A block must work from the beginning of the mission until 
a switchover to the redundant string occurs, (2) the B block must work for the entire mis- 
sion, and, (3) the C block must work from the time the standby chain is first used until the 
end of the mission. Actually most of the C block items must work only until a switchover 
to the standby chain occurs. This analysis was checked and the numerical results are 
essentially the same for either time of operation of the C block. 
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Figure 5-5. Paired Regulator Inverter 
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where: 

CY = h + h I + h A  , 
R 

+ A  t h  = a  I c y  
h 

T = mission time 

all reliability functions are assumed to be exponential functions. 

= the  failure rate of the ith component, 
i 

5.4.1.1 Conclusions 

Figure 5-6, shows the system reliability, R 

parameter, R 

reliabilities are R = R = 0.9. Figure 5-6, Part B,  is for better boxes where R = R = 0.99. 

And Figure 5-6, Part C ,  is for very reliable black boxes where RR = RI = 0.999. The single 

string reliability for just the regulator and inverter is shown as a horizontal line in this 

illustration. 

versus the r'C'' reliability, R 
S' C Y  

with "A" as a 

Figure 5-6, Part A ,  is for the case where we have poor black boxes whose 

R I  R I  

A' 

Since "B" is in series with the whole system,its reliability is very important to the problem 

(see Section 5.2) and must obviously be kept very high. 

assumed perfect, hence, R B 

For the following studies it is 

= 1.0.  

The following conclusions are drawn from Figure 5-6: 

a. The redundant system is always more reliable than the single string system if the 
fault sensing reliability, RA and RC , is equal to o r  higher than the black box 
reliability, RR and RI. 

b. The failure modes of the fault sensing system included in "A" are frequently ignored 
in many analyses, and their importance is seen to be very significant. 

c .  There are many values of fault sensing reliability, RA and Rc,  which cause the 
redundant system to be less reliable than the single string system. 
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d- The improvement in system reliability for the cold case over the hot case is real ,  
but not of large significance. The reliability of actual hardware for a cold system 
would be somewhere inbetween the hot and cold cases (the shaded region) since the 
hardware would be degrading to some extent even in the off condition, e. g. radiation 
damage to semiconductors. 

I e. Based on a,  above, and Section 5.2.1, it is extremely important in implementing a 
switched redundancy system to assure that RA and RC are at least equal to RR and 
RI and that RB is very high. 

5.4.2 SPLIT STRING VS PAIRED SWITCHING 

The regulator/inverter pair analyzed in the previous section could have been implemented in 

a split fashion such that if either the main regulator o r  the main inverter failed it would be 

switched out and the standby unit switched in and, then, when the remaining main unit failed 

its standby unit would be  switched in. 

analyzed in this section and Figure 5-7, Part  B, shows the corresponding block diagram 

used to assess the system reliability. 

I 
I 

Figure 5-7, Part A, shows the basic split string being 

The analysis for this situation is performed on a hot redundancy basis and compared to the 

data in the previous section for a "pairedrf regulator and inverter (see Figure 5-5). The 

total split string system reliability is: 
I 

R = [ l - ( 1 - R  R A  R ) ( l - R R R C ) ] L l - ( l - R  I A  R ) ( l - R  I C  R ) I R B  (5-5) 

1 
S 

I I 
where the nomemclature is the same as in the previous sections. 

I 
1 

5.4.2.1 Conclusions 

Figure 5-8 shows the system reliability, Rs, versus the "C" reliability, R 

parameter, R The results of this section, the split string case,  are shown as wel l  as the 

paired regulator/inverter results from the previous section. The results are presented for 

three levels of black box reliability with Figure 5-8, Part A, being the lowest, RR = RI = 0.9 

and Figure 5-8, Part C y  being the highest, R 

with "A" as a 
C Y  

A' 

= R = 0.999. The single string reliability 
R I  

, I 
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I -  
of a single regulator and inverter is shown as a horizontal line. Also, as before, ''Brr is 

assumed perfect, hence, R = 1.0. Of course, the split string case "Btr includes portions B 
of an additional relay. I 
Examination of Figure 5-8 indicates the same general conclusions pertaining to the compari- 

son of a single string system versus a switched redundant system as previously seen and 

only the specific conclusions from the comparison of the split string versus the paired 

regulator/inverter are listed below : I 
I 
1 
I 
1 
1 
1 
I 
I 

a. For low values of fault sensing reliability, RP and R , the "paired" regulator/ 
inverter system is more reliable than the split string approach. 

C 

b. For high values of fault sensing reliability, R 
most re liable. 

and Rc, the split string system is A 

c. The relative advantage of either system does not appear to be too significant, hence, 
the dominating consideration in choosing between approaches should be which system 
is easiest to implement so that the reliability of the "A" and "C" fault sensing 
hardware is highest. 

5 . 4 . 3  MARINER MARS 1969 CASE 

The Mariner Mars  1969 regulator, inverter, and fault sensing were partially reviewed using 

the techniques discussed above. The failure rate data for the components w e r e  supplied by 

JPL* and are listed in Table 5-1. The circuit analyzed is shown in Figure 5-9 and the 

equation used is Equation 5-4. The results, for an assumed mission time of 5700 hours, 

are shown in Figure 5-10. 

I 5.5 GENERAL CONCLUSIONS/RECOMMENDATIONS 

Table 5-2 presents a summary of the main conclusions reached from the reliability sensitivity 1 studies to date. 

8 * Mariner M a r s  1969 Flight Power Subsystem Design Review Report, Power Conditioning 
Equipment; Electro-Optical Systems Report No. 7178-DRR-O02A, 1 7  April, 1967. 

5-1 3 



Figure 5-9. Mariner M a r s  '6 9 Regulator /Inverter /Fault Sensing 
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Figure 5-1 0. Mariner Mars '69 Regulator/Inverter/Fault Sensing 
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Table 5-1. Mariner Mars '69 Component Failure Rates 

Component 

Regulator 

Inverter 

Failure Sensor, "C 'I 

Relay , ItB It 

Failure Rate Reliability 
(Per lo6 Hours) (Mission Time = 5700 Hours) 

5.76 0.968 

4 .95  0.972 

2.93 0.983 

0.0085 0.99995 

Analysis of the J P L  document did not identify anything equivalent to the "A" block used in 

this study, hence, the reliability was  plotted versus R 

that the redundant system is better than the single string regulator/inverter for any value of 

R 

sections, when the components have reliabilities as listed in Table 5-1. The question of how 

valid the component reliabilities really are is, as pointed out in the introduction to Section 5, 

very difficult to answer. 

Examination of Figure 5-10 indicates A' 

> 0 .1 .  This is the result we would expect, based on the conclusions of the previous A 

The analysis of this section is not completely representative of the actual MM '69 system. 

Future work on this task, utilizing a more complete model of the MM '69 system, is discussed 

in Section 10. 
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Table 5-2. Summary of Main Conclusions 

Question 
~ ~~ 

In general, is fault sensing and 
switching of a standby element 
a good step? 

Is separate fault sensing and 
switching of regulator and 
inverter better o r  worse than 
for the pair  ? 

Where should effort be con- 
centrated in overall power 
system to improve reliability? 

Is the reliability improve- 
ment of cold redundancy over 
hot redundancy real?  

5-16 

Conclusion 

It completely depends on the 
relative reliability of the main 
black boxes but as long as the 
fault sensing is comparable to 
the black boxes in reliability, 
then it is  well worthwhile. 

It depends: if RA and RC are 
low, no; if RA and RC a r e  high, 
yes. 

For  series elements always 
work on the element which is 
significantly lower than any 
other element. 
For  parallel elements work 
on easiest element to improve. 

~ ~~ ~~ 

Yes, however, it does not 
necessarily follow that the 
improvement is so great that 
it should always be used. 
That is, if some good engineering/ 
reliability reason exists for using 
a hot redundancy situation, it 
might be worthwhile and should 
be studied. 

Study 
Recommendation 

Review carefully the "A" 
block-which includes: 
1. Hardware failures in the 
fault sensing which cause a 
false switching to the redun- 
dant chain, 
2. Design of the level and 
duration of the fault criteria. 
If too tight, the system is 
more prone to false switch 
to the redundant chain. 
Assure  that RA and RC, the 
fault sensing reliabilities, 
a r e  equal to o r  greater than 
RR and RI, the regulator and 
inverter reliabilities. 

Relative improvement less than 
uncertainties of actual values of 
various elements, hence, other 
criteria should be used, such as: 

1. Which approach is easiest 
to implement. 
2. Which approach provides 
highest fault sensing 
reliabilities. 

a. Model MM '69 system and 
Shunt System- 

b. Perform sensitivity studies 
to identify which elements 
should be further improved. 

Do not '%blindly" be constrained 
by a cold redundancy requirement 
when designing the power compon- 
ents and subsystem. 

I 
' I  

1 
I 
I 
I 
I 
1 
1 
I 
I 
B 
I 
I 
1 
I 
I 
I 
1 



SECTION 6 

FAULT SENSING CRITERIA 

1 
1 
1 
1 
1 
t 
i 
I 
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I 
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I 
I 
I 
1 
1 
I 
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The concept of replacing a faulty power conditioning unit (PCU) with a standby unit implies 

that measurement of the original unit against a set  of performance criteria is necessary. 

Figure 6-1 shows the functions of a fault detector based on such criteria for transferring 

operation to the standby unit. This section considers and defines such criteria for 

representative types of PCU's. 

Any particular PCU has a defined functional requirement for a given set  of external 

conditions. For example, a series dissipative voltage regulator is required to deliver power 

within a specified voltage tolerance providing the input power is available within a certain 

voltage range and providing the output load is within certain limits. If these external 

operating conditions are satisfied, the regulator requirements themselves serve as the 

cri teria for proper unit operation. Thus , in  the case of the ser ies  regulator, the delivery 

of power within a specified voltage range serves as the fault sensing criterion providing the 

other external conditions a re  satisfied. A broader set  of criteria must, however, be postulated 

to cover those situations where the external conditions a re  not satisfied. The ser ies  regula- 

to r ,  for  example, cannot be expected to function normally if the input voltage is too low. And 

yet, the fault sensing criterion established for normal input conditions would have indicated 

a failed regulator. Thus, the general definition of fault sensing criteria must consider both 

normal and abnormal external conditions. 

There a re  several ways for attacking this general problem. First, the behavior of a properly 

functioning PCU can be studied for the entire range of normal and abnormal external conditions, 

and the results, either analytical or experimental, used to establish fault sensing criteria. 

Consider again the series regulator. If the input voltage is too low, a properly functioning 

ser ies  regulator wil l  simply produce the input voltage at its output with some deviation 

depending on the load. By varying the input voltage over its entire abnormal range, the 

PCU behavior (specifically the output voltage variation) , can be mapped for different load 

6-1 



I 
I 
I 
I 
I 
I 
I 
I 
-i 

I 
I 
I 
I 
I 
I 
I 

k cd 

E 

3 
Q, 
c, m 

r( 
I 

Eo 
Q, 

I 

6- 2 



conditions. The resulting mapping function can be considered as  an analog model represen- 

tative of proper operation of the PCU, Conceptually, this model could serve as the basis for 

fault sensing criteria, i. e. , in  an actual mechanization the behavior of the operating P C U  

would be compared to the analog model., Practically, of course, this approach is difficult to 

implement. It would probably be complicated because of the implied computer functions, and 

the mapping function might be difficult to predict, duplicate, and verify. 

A second more practical way of considering normal and abnormal external conditions is to 

recognize the abnormal conditions and avoid comparisons during such periods. For example, 

if load on a PCU is excessive, its corresponding low output voltage would be ignored as a 

criterion of failure. The definition of such inhibit functions is not always obvious and must 

be examined carefully for each P C U  type. For example, a low input voltage to the ser ies  

regulator could have been caused by failure of the regulator and a fault sensing inhibit would 

not be desirable. 

The second approach has been adopted in  examining the fault sensing criteria for the following 

typical PCU's:  

a. Series dissipative regulator 
b. Inverter o r  converter 
c. 
d. Shunt regulator 

Switching regulator (buck, boost, etc. ) 

Table 6-1 summarizes the fault sensing criteria and inhibit functions for  these PCU's  in 

accordance with the nomenclature shown. As indicated for the first criterion, the table should 

read as  follows: "Failure indicated when V > V except i f  V 3 V o r 1  <IoMm ? I  . o RMAX I IMAX o 

Sections 6.1 to 6.4 provide more detailed discussion on each P C U  type. 
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6.1 SERIES DISSIPATIVE REGULATOR 

The series dissipative regulator is described by the three curves of Figure 6-2. Their 1 
relation with each criterion of Table 6-1 is as follows: 1 

a. V o  7 VRMAX: Curve A shows the relationship of VI and VO. VO follows VI up to a 
certain minimum value (VIMIN) and remains constant until some maximum allowable 
value of VI (VIMAX). Thereafter Vo increases accounting for the inhibit function 
VI > V l M ~ .  Curve C shows the relationship of Vo and IO. At  very low values of 
Io, VO can increase above the regulation limits accounting for the inhibit Io < 
IOMm. For series dissipative regulators, IOMIN is practically zero, and therefore, 
the possible rise in Vo is not shown. 

VO < VRMIN: The inhibit function VI < VIMIN follows from curve A when Vo M VI up 
to  the point where VI = Vmm. 
accounting fo r  this second inhibit. 

I 
1 
1 

b. 
Curve C shows a drooping output for >IOMAX 

c. Io <II: In a series dissipative regulator, the input current is equal to the output 
current for all conditions with appreciable inequality only at very low loads as shown 
on curve C. The appropriate inhibit function is, therefore, 5 < IIMIN* 

6.2 INVERTER OR CONVERTER 

Inverters or converters are described by the three curves of Figure 6-3. Their relation with 8 
the criteria described in Table 6-1 are as follows: 

1 
a. V #K1 V,: Since inverters and converters are strictly voltage transformation 

devices, the voltage ratio shown by curve A is constant providing VI is greater than 
some VIMm (usually about 10 volts determined by switch voltage efficiency). Normal 
performance is expected as long as VI is above V ~ I N  as shown by curve A and C. 
Curve C also shows that with > I  OMAX, VO decreases causing the ratio Vo/VI # K; 
however, a transfer is inhibited because Io > I  is an overload. Therefore, 
an output voltage failure is indicated when Vo #K1 VI, except for inhibit conditions of 
VI < V ~ I N  and +-J > 1 OMAX. 

0 I 
I 

b. IO f K 2  11 : Curve B shows the input current, VI, as a function of load current, Io. 
This ratio under normal performance is constant above IIMIN (established by fixed 
losses of PCU). If II rises due to  additional internal losses, then f K 2  II and the 
PCU is failed, except if II < I  fK2 11 and II > I I M ~ ,  the P C U  is failed. If 

IMIN' 

I 
I 
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Figure 6-2. Voltage - Current Characteristics of Series Dissipative Regulator 
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6 . 3  SWITCHING REGULATORS 

The switching regulator is described by the three curves of Figure 6-4. These curves describe 

the general characteristics of buck, boost, buck-boost and converter o r  inverter/regulator 

combinations with a single critical output. Their relation with the criteria described in Table 

6-1 are as follows: 

a. 

b. 

C. 

Vo >VRMAX: Curve A shows the relationship between VI and Vo. This curve is 
similar to the series dissipative regulator V V curve, except Vo may be greater I O  o r  less than VI. Curve A shows that VO > V R M ~  when VI > VIMM; therefore, the 
PCU is failed when Vo > V R M m ,  except i f  VI > VIM=. Curve C shows that Vo > Vmm 
if IO < Q-JMIN ( a characteristic of the LC output filter under light loads). Therefore, the 
PCU is failed when V > V except if I 0 < I  OMIN' 0 RMAX' 

V o  <VRMm: Curve A shows that Vo <VRMIN when VI <VIMIN and Curve C shows 
that Vo < VRMIN when Io > IoMAx. Therefore, the PCU is failed when Vo < VRMIN, 
except when VI <VMIN and Io > 1 0 ~ ~ .  

Po <qMIN PI: Curve C shows that between I O M ~  and IOMAX, Vo is within 
regulation limits and the efficiency is reasonably constant and greater than %IN. 
If Po<rl MINPI the  PCU is failed, except i f  IO < IOMIN and IO >IOMAX. It is 
possible to have an efficiency failure when +-, < I o M ~ .  Curve B shows that for  
Io = IOMIN, there is a II = Imm. If Po <qMmPI, the PCU is failed if  11> IIMIN 
o r  not failed if 11 < I I M ~ .  

6.4 SHUNT REGULATOR 

The shunt regulator is described by the curve of Figure 6-5. Its relations with each criterion 

of Table 6-1 is as follows: 

a. 

b. 

6-8 

VO >VRMAX: At V o  = VRMAx, the regulator is shunting maximum design current. 
For  higher shunt current, it cannot maintain regulation, and therefore, the inhibit 
function is I > I 

VO < V R M ~ :  At VO = V R M ~  the regulator normally shunts minimum current. If 
IS > I S M ~  when VO <VRM~J ,  the regulator is considered failed since Is should be < 
Imm. Therefore, the failure indication is Vo < VRMIN, except if Is < ISMIN. 

s SMAX' 
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Figure 6-4. Voltage - Current Characteristics of Switching Regulator 
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0 
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SMlN 1 I smx 

CURRENT - Is 

Figure 6-5. Shunt Regulator Characteristics 

6 . 5  DISCUSSION 

Of all the failure detector requirements discussed, the failure detector for the switching 

regulator requires the greatest number of circuit functions (Refer to Table 6-2). Note that 

the circuit functions required for any of the other failure detectors is included in the switching 

regulator failure detector which is easily modified for use with the other PCU's discussed. 

The fault detector developed by GE can perform the functions described. Its application 

toMariner power systems will be examined in the forthcoming phase of the program using 

the criteria described above. Any decision to ultimately employ such fault detectors will 

depend on the outcome of the reliability sensitivity studies described in Section 5.0.  
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SECTION 7 

DISTRIBUTION FREQUE NC Y OPTIMIZATION 

Much of the power o the MM '69 spacecraft is ac distributed at a frequency of 2.4 kHz. This 

section provides an analysis of whether this frequency is near optimum from the standpoint of 

weight. The only constraint is that the wave form be essentially square. 

The principal elements whose weights a r e  affected by frequency are: (a) dc/ac inverters; 

(b) ac/dc transformer-rectifiers; (c) power source equipment whose size is affected by 

possible efficiency changes in the inverters and transformer-rectifiers. Each of these 

elements a re  considered separately below. 

7.1 INVERTER WEIGHT 

As a function of frequency, inverter weight is primarly sensitive to power transformer weight. 

The weight of the power switch transistors and drive circuits in comparison to the output 

power transformer is relatively constant. Thus transformer weight as a function of frequency 

may be studied separately since the results will provide the most sensitive data for observing 

inverter weight effects. 

Transformer size depends on power output, efficiency, temperature r i se ,  voltage levels, and 

frequency. Specific designs were analyzed and the results a r e  plotted in Figure 7-1. The 

frequency w a s  varied from 60 to 5000 Hz under the following constraints: 

a. Power level is constant. 

b. Efficiency is constant--hence for equal assembly materials and procedures tempera- 
ture rise is also considered constant. 

c. Voltage levels are not in a range where extra insulation affects size or  weight. 
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In addition to the designs of Figure 7-1, a search was  conducted to obtain results of other 

design procedures. The results of this search are plotted in Figure 7-2. The levels in this 

figure are relative and are representative of three design procedures as a function of 

frequency. Note that regardless of procedure the percent change in weight beyond 1000 to 

2000 Hz is not appreciable. 

7 . 2  TRANSFORMER-RECTIFIER (T/R) WEIGHT 

The same assumptions established for determining inverter weight sensitivity to frequency 

are directly applicable to the T/R weight. The curve generated for the inverterhansformer 

weight is directly applicable to T/R weight. 

7 . 2 . 1  PRELIMINARY CONCLUSION 

Based on the weight of the inverters and T/R's, a preliminary conclusion is that operation 

beyond 1.5 kHz does not provide sufficient weight gain to merit its consideration. To sub- 

stantiate this conclusion, the question of overall power system weight effects must be answered. 

@ REF. NO. I 

@ REF. NO. II 

@ SPECIFIC DESIGNS 

0 . 2  - 

6 0  
0 ,  I 1 I 1 I I 

0 1.0 2.0 3.0 4.0 5.0 

FREQUENCY ( K H Z )  

Figure 7-2. Transformer Weight Percent Reference to 60 Hz 
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answered. The parameter which effects solar array and battery sizing is inverter and T/R 

efficiency. This parameter is examined in the following paragraph. 

7 . 3  POWER SOURCE WEIGHT 

7 . 3 . 1  TRANSISTOR EFFICIENCY 

The power switch operates either full on or full off with a finite time required for transfer. 

This transfer time is determined by intrinsic transistor characteristics and results in 

switching power losses. The more frequent the switch transfers the greater are the switching 

losses. 

Since power transformer efficiency is constant by design, the inverter efficiency can be 

analyzed by considering only power switching losses as a function of frequency. 

are expressed by the following equation which is derived in Appendix B: 

P = f V .  I 
sw Lnc 

0 . 7 1  t + 4/3  (; tf ) + 5/3 
S t + t f  

2 "-) t + t f  + 0 . 3 3  tf 
S 

PI 1 - 4 f (ts + tf) 

where : 

P is power switch loss in watts (Psw occurs twice per  cycle) 
SW 

f is frequency 

V is supply voltage less V 
in ce  SAT 

I is peak collector current 
C 

t is storage time 
S 

tf is fall t ime 
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7.3.2 RECTIFIER EFFICIENCY 

Rectifier efficiency is treated similarly to the transistor switch efficiency as a function of 

frequency. The losses a re  expressed by the following equation, which is derived in Appendix C: 

P r S W  = f VR $, 1/6 trec 

where 

is power rectifier switching loss in watts 'rsw 

f is frequency 

is peak reverse voltage seen by rectifier vR 

is rectifier peak current ID 

t is recovery time of diode 

P occurs twice per cycle. r s w  

Since recovery time of diodes is at least an order of magnitude 

switching times, it is considered negligible in this analysis for 

faster than transistor 

the frequency range considered. 

7.3.3 INVERTER EFFICIENCY 

Transistor switching losses along with other transistor losses (drive losses and saturation 

losses) were used in a computer program to determine inverter efficiency as a function of 

frequency. The results are shown in Figure 7-3 for an inverter of the Mariner '69 design 

for two sets  o f t  and tf. 
S 

7.3.4 POWER SOURCE WEIGHT 

Based on the Mariner "71 load profile, the specific weight in pounds per watt at the inverter 

input can be determined when the inverter operates from the solar array only and from the 

battery only. Table 7-1 derives the specific weight (0.288 lb/watt) for the solar array,  and 

Table 7-2 derives the specific weight (0.117 lbs/watt) for the battery. 
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Figure 7-3. Square Wave Inverter Efficiency 

Using these specific weights and knowing the inverter efficiency and transformer weight as a 

function of frequency, total power system weight can be determined as a function of frequency. 

The results are tabulated in Table 7-3 for several values of frequency and bracketing values 

of t and tf. 
S 

7 . 4  CONCLUSIONS 

The results of Table 7-3 indicate that frequency has little effect on weight within the frequency 

range examined. While operation at 4 kHz appears optimum, the weight gain is only about 

0.5 pounds (or 0.5 percent) compared to that at 2.4 kHz. This provides little incentive for 

considering a change from the frequency presently used on the MM '69 system. These 

results are consistent for the extremes o f t  and t considered. 
S f 
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Table 7-1. Primary Power Source Weight - Pounds per Watt at Inverter hpu t  

~~ 

0 MM “71 load profile 

0 

0 2 . 4  kHz lnver te r  load = 214 w 

0 

0 

Far Encounter phase  - Solar  A r r a y  Case 

Inverter  Input (214/0.918) = 233 w 

Inverter  load reflected a t  a r r a y  

Boost Reg. Efficiency = 0.887 
Distribution Losses = 0.97 

214 
0.918 x 0.887 x 0.97 

Total a r r a y  demand = 421 w 

= 2 7 1  w 

0 

Percent  a r r a y  fo r  inver te r  loads = - = 64% 

0 Array  Weight: 

271 
421 

Cell ass ly  - 50 l b  

1 0 4 . 5  
StNCtUlY. - 5 4 . 5  lb 

Percent  a r r a y  weight for inver te r  loads 0 . 6 4  x 1 0 4 . 5  = 67 Ib 

Array  weight p e r  watt at inver te r  input = 

67 - = 0.2 88 lb/watt 233 

Table 7-2. Secondary Battery Source Weight - Pounds per Watt at Inverter Input 

MM ‘71 load profile 

Orbi t  inser t ion phase - Battery Case 

2 . 4  kHz Inverter  load = 179.5 w 

Inverter  input (179.5/0.910)  = 197 w 

Inverter  load ref lected a t  bat tery 

Boost Regulator efficiency = 0 .842  
Distribution loss = 0 .97  

0 . 9 1 0  x 0. 812 x 0.97 

Total Battery demand = 326w 

Percent  bat tery f o r  inver te r  = - = 74% 

= 242 1 7 9 . 5  

242 
32 6 

Battery weight = 31 Ib 

Percent  bat tery weight fo r  inver te r  = 0 . 7 4  x 31 = 23  lb 

Battery weight p e r  watt at  inver te r  input =-- = 0.117 lbs/watt 23 
197 
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SECTION 8 

POWER SWITCHING AND DISTRIBUTION 

This section discusses the present status of electrical equipment design in the power control, 

switching, and distribution areas of power system design as they might relate to future 

Mariner spacecraft. The information presented here is based primarily on hardware experi- 

ence with the Nimbus satellite, the Gravity Gradient Test Satellite, Biosatellite, and classified 

programs. Al l  of these systems use dc distribution and the concepts discussed are applicable 

to such dc systems in general. The specific design characteristics to be discussed are: 

Flexibility to incorporate changes 

Command Input Redundancy 

Driver Failure Protection 

Command Matrix Implementation 

Noise Sensitivity 

Relay Coil Suppression 

Soft Commutation 

Contact Suppression 

8.1 FLEXIBILITY 

In the context of power switching and distribution design, flexibility pertains to the ease of 

incorporating changes which normally arise in the course of a hardware program. 

Such flexibility has been attained by locating as many switching functions as possible within a 

single distribution unit including the provision for spares. The use of a single distribution 

unit has the advantage of concentrating switching and distribution design within one area of 

specialization and usually results in a more uniform selection of switching devices, more 

efficient packaging, and reduced noise susceptibility. 
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All  power switching has been typically accomplished with standard latching and holding 

relay styles. Most applications can be accommodated with contact ratings of two or ten 

amperes. A long history of performance of these standard devices increases confidence in 

their use and also reduces replacement costs and simplifies logistics. 

The practice has been to separately compartment the relays and relay drivers. Relays are 

insensitive to noise, require a significant energy pulse to activate the contacts, but are noise 

generators. The transistorized relay drivers are very sensitive to noise and are protected 

from relay transients by a separate enclosure. The wire carrying the relay coil signal 

can have noise induced on it between the transistor driver and the relay coil, but the coil 

will not respond to this low energy noise. 

Spare relays are provided in the power control unit for flexibility and growth as the system 

evolves. A l l  contacts a re  wired out to the electrical connector on the component, and multiple 

diode isolated lines are prewired to allow for redundant commanding. The spare relays are 

tested as part of the component acceptance and qualification test program, and thus are 

available in the vehicle to  support required changes. The multiple use of similar relays in 

the component qualifies the new application without special attention to the previously unused 

relay. 

The spare relays are made accessible to the system by changes in the vehicle distribution 

harness. The concept here is a rear-release crimp contact in the harness connector that 

allows wires to be switched from one termination point to another without cutting, splicing, 

soldering, or potting. The electrical connector is disassembled, the required change o r  

additional wiring applied, and the connector reassembled. The changed hardness is revalidated 

by a full electrical functional test to assure that the required change meets the application. 

The change does not require that a component be recycled back to the w i r e  shop, thru an 

electrical functional check, or thru a requalification cycle. The schedule impact on the 

vehicle flow cycle when the change is incorporated in the vehicle harness is in the order of 

four to twelve hours, depending on the complexity of the electrical functional test to verify 

and revalidate the harness. 

8 -2 



The cr imp contacts eliminate a requirement for skill, judgment, and competence on the part 

of the operator. The wire is cut and stripped of insulation to a calibrated length with an 

automatic hand operated tool, the contact is placed on the stripped end of the wire,  and a 

calibrated crimping tool makes a metallurgical pressure bond between the w i r e  and the 

contact. These tools are calibrated daily as they flow to and from the tool crib. The finished 

contact can be inspected after the operation is complete to insure that the w i r e  protrudes past 

the crimp portion, that the indentations at the crimp section are of a sufficient but not excess- 

ive depth, and that the insulated portion of the wire extends sufficiently. 

8.2 COMMAND INPUT REDUNDANCY 

Protection against an open command line on an essential function can be designed into the 

hardware by providing two or  more commands to the same relay coil from various coil 

drivers in the same or different sources. An example of this is a lock-stepped sequence with 

a timed command capability. Once the critical sequence is initiated, the initial and each 

subsequent command activates its own event and starts a separate timing circuit that w i l l  

time out after the next command is due. If the command does not occur, the back-up timer 

activates the next event, and diode isolation prevents a fault in the command system from 

preventing the back-up timer from initiating the next event. 

As shown on Figure 8-1 this concept provides protection against an open command line, but 

does tend to complicate the required vehicle wiring. 

8 . 3  DRIVER FAILURE PROTECTION 

When it is necessary to protect against a shorted relay driver applying continuous power to a 

latching or holding relay, the protection can be provided by switching both ends of the relay 

coil. It should be noted that a shorted relay coil driver in a conventional system with a 

common ground return wi l l  prevent deactivation of either a latching or a holding relay. This 

is obvious in the case of the holding relay, and is also true for the latching relay, since the 

magnetomotive force generated by both the set and reset  coil are essentially equal and in 

opposite directions. It is thus impossible to reset  a latching relay when continuous power is 
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I L  
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Figure 8-1. Redundant Commanding 

being applied to the set coil. To activate an event it is then necessary to turn on positive 

power to the top of the coil and also provide a ground return for the bottom. Failure of 

either switch in a shorted position is insufficient to maintain power on the relay coil. 

r 

Figure 8-2 shows how protection is provided against a shorted command line on e i ther  

the positive o r  ground side. Two failures a re  required to cause a malfunction of the relay. 

8.4 COMlVLAND MATRIX IMPUMENTATION 

The driver failure protection described above at least doubles the amount of vehicle wiring. 

When power control is centrally located, the protection can be provided and the vehicle wiring 

can be reduced by using a matrix concept for relay activation as shown on Figure 8-3. When 

the X command line is energized, nothing will occur until one of the three Y command lines 1 
is returned to ground. If command line Y2 is returned to ground at the same time that the 

X command line is energized, then relay coil K 1 12 will  be activated, but no other relay. 
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COMMAND Y1 

COMMAND Y2 

COMMAND Y 

JL JL 111 

K1 RELAY 1 1 
- E - 4 - 1 

COMMAND Y 2  COMMAND Y COMMAND Y 

Figure 8-2. Driver Failure Protection 

COMMAND X1 COMMAND X2 COMMAND X3 

Figure 8-3. Simplified Command Matrix 

8-5 



2 This concept allows n events to be commanded with 2n separate commands when the 

commands a re  arranged in a square array as shown. A t  least two failures are required 

before a malfunction occurs. However, if any one command line fails, two events will 

occur whenever a command is issued. The desired event wi l l  occur, and at the same 

time the valid command w i l l  complete the circuit for the failed command line, and allow 

that event to occur also. It is relatively easy to verify the failure, and a contingent mode 

capability would allow all subsequent command lists to reset the undesired event immediately 

after a valid command completed the circuit for a failed command line. 

8.5 NOISE SENSITIVITY 

When a relay is to be activated, sufficient energy must be supplied in the form of an electri- 

cal pulse to establish a magnetic field sufficient to overcome a spring force restraining the 

moving contact. Electromagnetic relays are relatively insensitive to noise, since a pulse 

of a significant magnitude and duration is required to accomplish the event. 

shows a typical relay characteristic for a coil rated for twelve-volt service used in a 

twenty-eight volt system. 

Figure 8-4 

The transistorized relay driver is an active amplifier, and wi l l  act on a noise pulse of the 

proper polarity thru the gain of the transistor to possibly cause problems. These problems 

are minimized by locating the relay drivers in a relatively quiet region remote from the 

relays. The relays are extremely noisy and would cause the relay drivers to react in a 

detrimental fashion. However, the relays can exist in their own environment and are  insen- 

sitive to their own noise. 

8 .6  RE LAY COIL SUPPRESSION 

When the current through an inductive circuit is interrupted, a large potential may appear at 

the terminals of the inductor. The energy stored in an inductor because of a steady-state 

current must be dissipated before the current goes to zero. When the coil is driven by a 

semiconductor switch, the energy may destroy the switch if  not controlled. A simple 
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Figure 8-4. Relays Insensitive to Noise 

protection method uses a conventional diode suppression circuit where the induced voltage 

forward biases a diode to provide a current path a s  shown on Figure 8-5. 

The turn-off transient can be more effectively controlled by replacing the switch with an 

active circuit capable of supplying to the coil a current with diminishing magnitude. The 

rate of change of current may then be constrained to values low enough to avoid induced 

voltages. In Figure 8-5 the transistor traverses the active region at a slow rate, and the 

only consequence is an increase in the pull-in and drop-out times of the relay. 

8.7 SOFT COMMUTATION 

Of special interest in power control is the radiated field generated when current changes in 

a vehicle harness wire. To limit these fields to acceptable levels, it is necessary to control 

the rate of current r ise or fall to values in the order of 5000 amperes per second. This can 

be accomplished by providing line inductance, or by controlling the rate of change of current 

with semiconductor switches. Figure 8-6 illustrates these approaches. 
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8.8 CONTACT SUPPRESSION 

An inductive load wil l  not allow current to change instantaneously, and when a relay contact 

attempts to interrupt such current flow an arc is established. The duration of the electro- 

magnetic noise generated is increased by coil suppression, since the drop-out time increases, 

and is also increased if the load is deliberately made inductive to control the rate of current 

r ise  at turn-on. 

The a rc  suppression problem can be solved by a resistance-diode-capacitance network across 

the relay contacts as shown on Figure 8-7. The rapid voltage rise at contact opening is 

caused by the inductive load keeping the load current essentially constant. This current, 

on contact opening, is fed from the distributed capacity of the circuit wiring. As the voltage 

r ises ,  at some value of voltage, arcing will occur across the contacts, discharging the 

wiring capacity. If the load inductance islarge, the load current will not have decreased 

appreciably, and the process wil l  be sustained at an increasing value of breakdown voltage 

since the contact gap wil l  have increased. 

41 
CONTACTS 

LOADS 

Figure 8-7. Contact Suppression 
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The value of capacity to be furnished must be sized to limit the arc-over voltage. Its size 

is a function of the load current and the opening time of the contacts. 

It c = -  
V 

where: C = Capacitance required in farads 

I = Load current in amperes 

t = Opening time in seconds (to any gap value) 

V = Gap breakdown at  any spacing in volts 

Just prior to contact closure this capacitor is charged to the bus voltage that has been across 

the open contacts. When the contacts close, this capacitor is short-circuited across the 

contacts , causing excessive surge currents and rapid contact deterioration. This reclosure 

surge can be controlled by a resistor in series with the capacitor to limit the surge current to 

a safe value. A good approximation is to make this resistance equal to the load resistance. 

The load current will increase from zero because of the inductive load, and the surge 

current wil l  decrease from its initial value due to the CR time constant. 

The series resistance destroys the capacitor's effectiveness to furnish the current when the 

contacts open, but this defect can be corrected by shorting the resistor with a diode. The 

series resistance for surge protection on contact closure is still retained. 

Information required to size the a rc  suppression circuit is: 

a. 
b. 
c. 
d. Contact closure time, maximum at worst case 

Equivalent series inductance of the load 
Equivalent series resistance of the load 
Distributed shunt capacitance of wiring between contacts and the load 

Preliminary experimental evidence indicates that arc-over occurs at some low value of 
voltage before any significant gap has been achieved, and that this a rc  is maintained at 
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15 volts o r  less during an opening time of two milliseconds. The capacity would have to 
furnish load current to prevent this voltage from appearing across the contacts. The phenome- 
non apparently is controllable only by the rate of voltage rise across the contacts. A 
minimum value of capacity would then appear to be: 

C = I  1 
LOADx E 

DV 
Pt where -is the maximum voltage rise that wil l  not ignite the arc. It is on the order of one 

volt/microsecond, making: 

microfarads 'LOAD c =  
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SECTION 9 

MM '69 POWER SYSTEM CIRCUIT REVIEW 

A s  an aid in understanding the MM '69 power system, a review of the circuit designs was  

conducted. A s  a result of this review some possible modifications to the circuits were 

developed. These are discussed below. 

9.1 DIODES ACROSS POWER TRANSISTORS 

Under reactive load conditions resulting from transformer and load impedances, the current 

level in switching power transistors is maintained during a transfer from on to off states. 

This can result in excessive voltage buildup ar ross  the transistors. By placing a properly 

polarized diode across the transistor this condition can be relieved with a possible improve- 

ment in reliability. 

9.2 FAILURE DETECTOR TRANSIENT SUSCEPTIBILITY - MODULE 4A 

Transfer from the main to the redundant regulator/inverter chain should occur when an out-of- 

specification voltage exists for greater than 1.5 5 0.5 seconds. The Schmitt trigger, used to 

start the one second delay, may not reset  if the voltage deviation exists for less than 1.5 - + 
0.5 seconds and could result in an undesireable transfer. This transient susceptibility could 

result because the 0.1 volt hysteresis level of the Schmitt trigger may be toohigh. Testing 

with signal pulses between 0.1 and 1 . 0  second duration would provide an indication of whether 

this is indeed a problem. 

9.3 INVERTER SYNCHRONIZATION 

On startup the inverter operates in the free-run mode until voltage output from the inverter 

starts the crystal oscillator and countdown chain to provide the synchronization pulse, Since 

the synchronization pulse can occur any time during the free run, the summation of T2 voltage 

support time and synchronization time results in a time great enough to cause the power trans- 

former to saturate. This reduces voltage to the oscillator and count down chain which may 

result in operational instability. However, since the saturation time of the output transformer 
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is short (20 to 30 microseconds) the voltage to the oscillator may not fall to a low enough 

level to cause the oscillator to stop. Also, this short saturation time probably would not 

damage the power transistors. A possible solution to the instability question is to operate 

the oscillator directly from the dc input voltage to the inverter. The free-run pulse would 

operate only if the synchronization pulse is lost. 

An additional problem concerns crystal oscillator failure after normal operation is attained. 

The last flip-flop of the count down chain remains in a fixed state and would apply a constant 

voltage to the Q4A or Q4B base circuit through C12R15. This RC time period is 1 7 . 1  milli- 

seconds. Transformer, T1, saturates in a time period of 0.521 milliseconds. This time (T1 

to saturate) is greater than the time the output transformers, T3 and T4, can support voltage 

(0.329 milliseconds). Thus Q5 o r  Q6 will probably short removing drive power from Q7 and 

Q8 and would present a heavy load to the boost regulator. Thus a failure of this oscillator 

would not result in free-run operation but in loss of output voltage. A transfer to the redun- 

dant chain would occur based on a voltage decrease rather than a frequency shift. Note also 

that the standby inverter has the same potential deficiency. Testing would verify the above 

possibilities. 

A potential solution is to free run at  a frequency 5 to 1 0  percent below 2 . 4  kHz and to reduce 

synchronization pulse duration to approximately 1/8 to 1/4 of the synchronization period. 

This solution would also relieve the operational instability question previously discussed. 

9.4 BOOST REGULATOR OVERLOAD PROTECTION 

Heavy overloads are reflected to the boost switching power transistors through the boost 

transformer, and could degrade o r  destroy the power transistors. 

The most probable failure of the power transistor would be a short. High current could then 

be drawn from the battery resulting in the possible welding of the input relay contacts. 

A possible modification is to provide an overload control which would reduce the duty cycle 

on the power transistors as a function of the overload current. 
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SECTION 10  

FUTURE PLANS 

The planned activities for the remainder of the contract are shown in Figure 1-1. The 

emphasis during the coming month wi l l  be on the following tasks: 

Task 3 . 0  System Design - Shunt 

Detailed Circuit Approaches 

Battery Selection 

Battery Charging Approaches 

0 Redundancy Implementation 

Task 2.0 Fault Sensing 

0 

Task 4.0 System Level Reliability Studies 

0 Exercise MM '69 Model 

Relative Evaluation of Various Approaches 

- Redundancy Comparison 

- Component Sensitivity 
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APPENDIX A 

PROCEDURE FOR PREDICTING SOLAR ARRAY VOLTAGE-CURRENT CHARACTERISTICS 

The basic data required to predict solar array performance a s  a function of sun distance 

a r e  (1) measured voltage-current characteristics (V-I) of solar cells preferably at  1 sun 

intensity and various temperatures and (2) temperature-sun distance history. Figure A-1 

shows a typical set of V-I curves at various temperatures a s  measured under a carbon-arc 

simulator adjusted to a one sun intensity. The cells a r e  1 ohm-centimeter N/P cells 

supplied by RCA. Through curve-fitting techniques, these data are stored in a computer 

program which can produce the necessary V-I data for  any interpolated value of temperature. 

The program also produces adjusted V-I curves in response to series and parallel multi- 

plying factors, adjustments in short circuit current and adjustments in open circuit voltage. 

Each of these is described below: 

a. Series and parallel multiplying factors. This is a straightforward multiplication 
of current for paralleled cells and voltage for series cells. 

b. Short circuit current adjustment. The short circuit current at a particular 
operating temperature and 1 AU is adjusted by the following multiplying factors: 

Typical Value 

Filter loss 
Radiation degradation 
Sun distance 
RMS loss & contingency factor 

which includes : 
-Manufacturing loss 2% 
-Measurement uncertainty 4% 
-Micrometeroid erasion 4.5% 
-Ultraviolet effect on filter 5 . 5  % 
-Random cell failures 5% 

0.92 
0.935 
(A U)-2 
0 .90 

The predicted V-I characteristic is obtained by translating the 1 AU bare cell 
characteristic to the adjusted value of short circuit current. This translation is 
not purely in the X direction but also slightly in the Y direction to take account 
of a series resistance effect. The method for estimating this effect is shown on 
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Figure A-2. Measurements taken on unilluminated cells show that the diode 
characteristic shown on the left quadrant has the same basic shape a s  the illumi- 
nated V-I characteristic a t  1 AU but is shifted higher in voltage by an amount Vs  
equivalent to the short circuit current at 1 AU times Rs, the series resistance 
effect. This effect is temperature sensitive and for the RCA cells cited has an 
average value of about 0.4 ohms. Though the effect is small, the computer pro- 
gram takes it into account by translating the V-I shape along the Rs  line to the 
adjusted value of short circuit current. 

Open circuit voltage adjustment. This is a direct translation in the Y direction 
to take account of radiation degradation of voltage. A typical value of the multi- 
plying factor is 0.96. 

c. 

Other features of the program include allowances for protective diode voltage drops and 

nonnormal solar incidence angles. 

1.0 

SOLAR CELL TEMPERATURE 
-200' F 

0.8 

0.7 

0.6 
e 
0 0.5 > 
J 
4 

s 

0.4 

0.3 

0.2 

0.1 

0 

C E L L  OUTPUT CURRENT (MA) 

Figure A-1. Voltage-Current Characteristics of 1-ohm-cm N/P Solar Cel ls  
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Figure A-2. Voltage-Current Translation f o r  Reduced Illumination 
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APPENDIX B 

INVERTER EFFICIENCY ANALYSIS 

Inverter efficiency is mostly affected by transistor and transformer losses. The transformer 

losses are relatively constant over a wide range of frequency. The transistor losses, on the 

other hand, are sensitive to frequency and are accordingly treated in  detail below. 

B. 1 TRANSISTOR SWITCHING LOSSES 

The switching losses are determined by intrinsic switch characteristics. These characteristics 

are altered by drive control and load. Drive control is primarily determined by load current 

magnitude, and it affects switching losses only if insufficient reverse bias is provided during 

the switch off time. Assuming that drive control conditions are adequate, load is the only 

remaining parameter to affect the intrinsic characteristics of the transistor switch. Part of 

the real  load is the power transformer, and it is examined along with load to establish the 

conditions during switch transfer from on to off. 

The equivalent circuit seen by the transistor switch is shown in Figure B-1. Switches Q1 and 

Q2 are  the power transistors, T is the  ideal transformer, RL is the nominal load, and the 

balance is the transformer impedances seen by the p e r  switch. The transformer imped- 

ances somewhat distort the desired square wave. Further, the switches are not considered 

fully open or  closed until the transformer is in a stable state. Thus, the transistor switching 

time is affected by the transformer frequency response. Note that high frequency characteristics 

are desireable for the transformer. 

The design of transformers with high frequency response involves many factors. Their 

effect may be analyzed indirectly by considering switching losses over a wider range than 

those suggested by the transistor manufacturer. 
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Figure B -1. Transformer Equivalent Circuit 

B. 2 TRANSISTOR SWITCHING DIAGRAMS 

The transistor switching diagram for a push-pull configuration is shown in Figure B-2. The 

switch forcing function is the drive power shown in time only for Q1 and Q2. Consider that 

Q1 is on and the level of collector current I is determined by R At time t the drive to 
C L' 1 

Q1 is removed and drive to Q2 is applied. Collector current of Q1 continues to flow due to 

load effects and transistor storage time, t . Transistor Q2 starts to turn on denoted by the 

fall of V 

normally presented by the transformer is reduced such that I of Q2 rises to a level deter- 

mined by transistor drive current and gain. For this analysis a gain limit of two times that 

required is assumed. Therefore, I 

impedance presented by the  transformer increases reducing I 

S 
and r i se  of I ce c2' Since Q1 is still on and Q2 is turning on, the high impedance 

C 

r ises to 21 c2 c2 until Q1 begins to open such that the 

to I level determined by 
c2 c2 

Thus, the diagram shows the relation between rise, fall, and storage time of a transistor. L' 
Note that the rise time, t , is a function o f t  and t The switching diagram associated r S f' 
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Figure B-2. Switch Voltage-Current-Time Diagram of Push-pull Inverter 

with the time diagram is Figure B-3. The power dissipated during the switching period is 

then the summation of each period of t t , t ; where t is f (t s s  tf)' r' s f r 

B.  3 POWER DISSIPATION GENERAL CASE 

Since the voltage-current for each time period of the diagram can be considered linear, a 

general case power dissipation for each time period may be derived. Consider the general 

case for linear switching shown in Figure B-4. The instantaneous current is 

and the instantaneous voltage is 
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Figure B-3. Switching Diagram 
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Figure B-4. Linear Switching 



v - v  = t. v = v + (  X tl ) 
The power for this interval is 

1 p = -  
T 

where T is the period 

v i dt, 

0 

of reoccurrance. 

This equation reduces to 

Thus each interval is examined using this equation and the total switching losses is a 

summation of each interval during period T where T is- and f is frequency of operation. 1 
f 

B. 4 DERIVATION OF TRANSISTOR SWITCH LOSS 

The general equation for linear switching is 

Referring to Figure B-2, at Q2 turnon the rise time, t 

shown related to storage time, t 

loss during this time period is 

is shown in two parts. The first is ry 
and the second is shown related to fall time, t Power 

S’ f’ 

P = f (t ) + f (t,) P (t -I- tf). 
r S r s  
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* 

Since V 

appears later when the transistor is on. For the switching period calculations the transistor 

nearly equals 2V when the transistor is off, V is used for clarity because V ce ce in in 

is considered zero since the e r ro r  is much less than one percent. V ~ e ~ ~ ~  

The power loss during rise time is as follows: 

P (Part  1) r 

21c + 011 tf P (t ) = f t [1/6 (2Vin 2IC + 0) + 1/3 (2Vin r s  S 
S 

t t  
) 

s f  P (t ) = f V .  I (2/3 t + 4/3 
r s  in c S t + t f  

S 

Pr (Part  2) 

1 tf2 
t + t f  = f V  I (1/3 - 

S 
in c 

S 

1 -  ts tf P (tf) = f V I (2/3 ts + 4/3 7 
S 

in c 
S 

r 

Power loss during the storage time is P (t ). s s  

P = f t  [ 1 / 6 ( 0 + 0 . l V  1 ) + 1 / 3 ( 0 . l V  I +O)] 
S S in c i n c  

P = f V. I (0.05 ts) 
S in c 
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Power loss during the fall time is P (t ). f f  

Pf = f tf [ l / 6  (0 + 2Vin IC) + 1/3 (0 + 0 . 1  V. I -, 0) 1 in c 

P = f V. I (1/3 tf) . f in c 

The total switch losses a re  

P loss = P + P  + P  --= sw r s f  

+ 1/3 tf 1 tf2 P loss = f V. I rO.71 ts + 4/3 t+t, ts tf + 5/3 - 
sw in c t + t f  

S S 

This power loss due to switching is described by f ,  Vin, I , ts, tf. (Note that this loss 

occurs twice per cycle. ) 
C 

Note that if frequency increases,the percent time that the transistor is on becomes less. 

Therefore, in order to supply the same average load current the peak collector current IC 

must increase as frequency increases. The derived factor for this is, 

r 1 1 
1 11 - 4f (ts + tf) 

B .  5 COLISCTOR CURRENT FREQUENCY CORRECTION 

In terms of transistor efficiency as a function of frequency where the average current is a 

constant and the percent of on time decreases due to fixed switch time and shorter on time, 

I increases as a function of frequency to maintain the average current. 
C 
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= K = Constant per load requirements IAVE A 

= I at frequency equal to zero 
IAVE C 

= K I at frequency greater than zero, where K is a factor which changes as a then IAVE 

function of frequency causing I also to change in order to maintain a constant I 

factor K is determined by reference to Figure B-5 and the following text. 

f f c  
The 

C AVE' 

f 

For simplicity it is assumed that no power is delivered to the load during the periods (t + t ). 

Then 
s f  

2f 

where: 

Kf simplified is 1 - 4f ( ts + tf) /l. 

If K decreases as a function of frequency I must increase as a function of frequency by the 

inverse of K in order to maintain a constant I 
f C 

Thus, I is corrected for frequency by AVE ' C f 

I -  I S 

1 
1 - 4f (t + tf) 
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I 
I '  
I 
I 
I 
I 
I 
I 
I 
1 
B 
I 
I 
1 
1 
I 
I 
I 
I 

It, + tf t + t f  
S 

T 1 - = - -  I- 2 2 f  

- 

1 . T =  f -m 

Figure B-5. Inverter Collector Current-Time Diagram 

Note that i f  the peak 1 increases then the base drive must correspondingly increase, therefore 

the base drive must also be adjusted by the same factor. Note also that saturation losses 

increase by the same factor and is accordingly adjusted. 

C 

The inverter efficiency is 

P output ' = P output + Transformer loss + Transistor loss ' 

P 

' = P + (0.05) P + Transistor loss 
with a 95 percent efficient transistor 0 

0 0 

1 
transistor loss 

P 
' =  

0 

1.05 + 

B -9 



Knowing transistor losses permits calculation of efficiency. 

Transistor losses are 

+ P  sw + ’drive sat = 2P ’total 

where: 

= EQL, 

= 0.025 Po, and 

= v  

sw P 

P 

P 

drive 

sat are corrected by multiplying by EQ 2 ce I where P P 

since all are related to IC. 
SAT c sw’ drive’ ’SAT 

A computer program was  prepared where t 

from 400 Hz to 11 ,000  Hz,  and outputs are Psw, P drive’ ‘SAT’ 

puter printout for two cases are in Table B-1. 

tf9 Vce, IC, V , P are inputs, f is varied 

total’ EFF (77). A com- 
S c e ~ ~ ~  0 
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Table B-1. Computer Printout for  Inverter Efficiency as a Function of Frequency 

R EADY 
S FORT 

CA~CULATION OF TRANSISTOR SWI TCHING LOSSES 

VIN IC VCE Pt= 5 3 55.3 4 

8.879 
0. 198 
8.297 
8.397 

497 
9.597 
(3.698 
9.799 
1.882 
1.412 
1-527 
2.248 

2.804 
2. 889 
2.814 
2. R l U  
2.523 
2 827 
2.832 
2.836 
2.846 
2. (364 
2.883 
2.902 

7.409 
7 424 
7.436 
7.448 
7.468 
7 472 
7.454 
70496 
70  520 
7.570 
7.619 
7.679 

10.371 
1 Be 628 
18.844 
11006tl 
11 a276 
11,494 
11.712 
11.930 
12.374 
13.258 
14.157 
I 5 .  e69 

V I M  IC VCE PL= 15 10 55.3  

PSW PSAT PDRIVE PTOTAL 

@a254 2.811 
Q.639 ?a828  
0.964 2.543 
1.29P 2.857 
1.623 2.372 
1.953 2-88? 
2.296 2*9@2 
2.635 2.917 
3.332 2.947 
4.765 3.811 
6.260 3.877 

7.479 
7.475 
7.513 
7.551 
7mS90 
706Q'9 
7.668 
7.708 
7a7f39 
7.957 
8.132 

19.749 
11.552 
12.283 
12.992 
13.7BS 
14.431 
15.162 
15.980 
17.490 
20.497 
23.738 

- 7  200 

EFP 

8.908 
00987 
8.906 
8.905 
0.904, 
0.903 
0.902 
8.901 
9.599 
S a  896 
0.892 
0.889 

4 - 7  290 

EFF 

0.906 
B.9c13 
9.988 
a. 397 
9. 894 
6.391 
0.885 
0.885 
0.880 

4.356 
00S68 
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APPENDIX C 

RECTIFIER SWITCHING LOSSES 

Using the general equation for linear switching derived in Appendix B, the diode r i se  and 

fall time losses are derived with reference to Figure C-1 as follows: 

The rectifier voltage-current curve shows that very little power is lost in the diode during 

the rise time. The primary power loss is during the fall time, which is the'diode recovery 

time. 

P = f t  [1/6 (V I + V I ) + 1/3(V I + VxIx)] 
X Y  Y X  Y Y  

Pf = fVRID 1/6 t rec' 

where 

P is power rectifier switching loss in watts. 

t is time 

f is frequency 

V is reverse voltage seen by rectifier 

f 

R 

ID is forward current at  time of switching off 

t rec  
is recovery time of rectifier. 

Total rectifier losses are 

= VfId + 1/3 f V  I t ptOtal r d rec,  

where vf is fomard voltage drop. 
c-1 
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Figure C-1. Rectifier Switching Characteristics 
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