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ABSTRACT

A post-test analysis has been made of the prototype spacecraft

generant tank, Part No. 9116270-H, which had been subjected to intermit-

tent testing with hydrazine and gaseous nitrogen at internal pressures

up to 1500 psi and temperatures of less than 150°F.

The analysis of the titanium hemisphere, including mechanical

property determinations and metallographic examination revealed that no

deterioration of properties had occurred during test and that the fabri-

cation was sound.

The analysis of the ethylene-propylene expulsion diaphragm indicated

that some embrittlement of the elastomer had occurred, accompanied by an

apparent loss in tensile strength. The rate of permeation to hydrazine,

however, was not significantly different from an equivalent manufacturer's

sample.
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I. INTRODUCTION

The post-test analysis of a section of an experimental spacecraft

generant tank assembly (Part No. 9116270-H)was undertaken by Stanford
Research Institute in response to a request by the Jet Propulsion Lab-

oratory for an examination to determine whether the metal portion of the

tank and its diaphragm assembly were deteriorated in any way during stor-

age with hydrazine and gaseous nitrogen at internal pressures up to

1500 psi and temperatures of less than 150°F. The ultimate objective of

the analysis was to provide significant information for material compati-

bility and design evaluation.

The sub-assembly submitted to SRI was a 6AI-4V titanium hemisphere

(17-inch diameter) in annealed condition containing a bonded diaphragm-
type expulsion bladder madeof ethylene-propylene co-polymer (Stillman

RubberCompany,No. SR722-70). Figures 1 and 2 are photographs of the

sub-assembly as received at SRI; the areas cut awaywere removedby JPL.

The internal view (Figure 2) shows the side of the diaphragm which was

exposed to nitrogen. The series of spots seen about the rim of the

hemisphere in Figure 2 are the remains of temperature-sensitive tapes
used to indicate welding temperatures during fabrication. A detail of

the girth-weld and bonding of the diaphragm to the titanium hemisphere

is shownin Figure 3.

The generant tank was designed to meet the specifications quoted in

JPL Spec. No. 30209 [i_, and the complete assembly with the expulsion
diaphragm was fabricated according to JPL Reference Drawing No. 9116270,

Revision H; the diaphragm was secured to the girth of the tank by special

welding techniques developed for JPL [21. The generant tank was subjected
to storage and expulsion tests at intervals during the period April 1965

to November1966. After each test, the hydrazine and nitrogen were ex-

pelled completely. The surfaces of metal and elastomer exposed to hydrazine
were flushed with distilled water and dried under vacuum.



Prior to fabrication of this test generant tank, detailed investi-

gations of the compatibility of polymers and metals with hydrazine [31

were madeby JPL.

At the outset of the post-test analysis by SRI, a preliminary exami-
nation was madeof the tank assembly by analytical chemists, metallurgists,
and machinists. The examination revealed no obvious corrosion or defects

of metal at the girth weld line or at the cross-sections exposed by the

sampling cuts madeat JPL; the diaphragm material was intact and well-

bonded, with a uniform surface area apparently free of defects. The weld
seamappeared intact with no immediately discernible pin-holes. Subsequent

to the preliminary examination and a review of JPL reports, specifications,
and drawings, it was determined that the most useful information would be

derived from comparative testing of specimensof the metallic and poly-
meric materials taken from areas near the girth weld and well awayfrom

the girth weld, since no original samples of the SR722-70EPRpolymer or

the 6A1-4V titanium alloy were provided for comparison.

The diaphragm analyses (Section II) included mechanical property

determinations and physico-chemical determinations. The metallurgical

analyses (Section III) included metallography and mechanical property
determinations. Conclusions and recommendationsbased on the analyses

are given in Section IV.
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FIG. 1 EXTERNAL APPEARANCE OF GENERANT TANK ASSEMBLY,
PART NO. 9116270-H AS RECEIVED AT SRI

TA- 6063- tt6

FIG. 2 INTERNAL APPEARANCE OF GENERANT TANK ASSEMBLY AS RECEIVED
AT SRI; THE VIEW SHOWS THE SIDE OF THE DIAPHRAGM-TYPE

BLADDER WHICH WAS EXPOSED TO NITROGEN
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FIG.3 VIEWOF TANKASSEMBLYAT GIRTHWELD



II. EPR DIAPHRAGM ANALYSIS

The EPR diaphragm-type bladder was cut away from the titanium hemi-

sphere along the girth weld line with a razor edge; care was taken to cut

the elastomer close to the seam without scarring the titanium surface.

A photograph of the side of the diaphragm which had been exposed to hydra-

zine is shown in Figure 4. Deposits of dark-colored material were found

on the inner walls of the titanium hemisphere (shown in Figure 5) as dis-

tinct lines related to the rest-positions of the ribbed portions of the

diaphragm and as occasional spots in-between the rib marks. This suggests

that the hydrazine had leached colored substances out of the ethylene-

propylene diaphragm.

The thickness of the diaphragm varied from 0.039" at the girth weld

to 0.O93" at the dome, furthest away from the weld line, in accordance

with the JPL studies [2] which indicated that the area in the vicinity

of the outlet barrier plate should be thicker by a factor of 2.

As indicated in Figure 6, test samples of the diaphragm were taken

from the areas near the girth weld and away from the girth weld; samples

for density were taken from the side exposed to nitrogen and from the side

exposed to hydrazine. A composite sample of material taken from numerous

sections of the diaphragm was used to determine whether there are residual

extractable substances which enhance the rate of decomposition of hydrazine.

CHEMICAL AND PHYSICO-CHEMICAL DETERMINATIONS

Metallic Impurities or Additives

Qualitative analyses for several cations were performed on samples

of the diaphragm material taken from the areas shown in Figure 6; the

selection of cations to be detected was based on prior experience with

similar EPR polymers. The samples were digested in concentrated sulfuric

acid, neutralized with ammonium hydroxide, filtered to remove carbonaceous
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material, and then heated at 400°C overnight to remove ammoniumsulfate.
The cations listed in Table 1 were detected in the residues by spot tests.

The tests were qualitative, but it was readily apparent that the calcium
and zinc concentrations were high. The fact that titanium was present in

the sample near the girth weld and not in the area away from the girth

weld might indicate that titanium had been transferred to the EPRduring

welding (probably as the condensedmetallic vapor or a compoundsuch as
the oxide_).

Extractable Substances

Extractable substances must be considered as possible contributors

to hydrazine decomposition under long-term storage. About 3 grams of

finely-cut diaphragm material were stored in a glass-stoppered bottle

with 15 cc of hydrazine for a two-week period at room temperature. Then,

the hydrazine, now brownish-yellow in color but free of any precipitate,

was decanted, and then sealed in an acid-cleaned glass capsule fitted

with a break-off seal. This test capsule was stored for 48 hours at

125°F; a capsule containing fresh hydrazine was stored concurrently as

a control sample.

After storage, pressure in the test capsules was measured and the

noncondensable gases at -196°C were analyzed mass spectrometrically.

The analysis showed that noncondensable gases consisted primarily of

nitrogen, with some hydrogen; ullage pressures at -196°C were essentially

the same for both the control sample and the sample containing the EPR

extract (see Table 2). The presence o£ nitrogen at -196°C (and ammonia

at -78°C) indicated that some decomposition had taken place in both samples

and that no acceleration of decomposition could be attributed to the

presence of substances extracted from the EPR diaphragm.

Inert gas atmospheres used for welding contain small amounts of oxygen;

even the residual gas in the high vacuum required for electron-beam

welding contains sufficient oxygen for reaction with titanium.



Permeability

The permeabilities to hydrazine of selected sections of the bladder

material were determined essentially according to the "Vango" method:

The sample was contained in an all-glass permeability cell and system,

depicted in Figure 7; the hydrazine which permeated the samples was

trapped out at liquid nitrogen temperature and then titrated with

chloramine-T reagent.

A determination was made after a 96-hour period of test, a second

collection vessel was attached immediately, and the test was continued

for an additional 96 hours, since mass spectrometric studies have shown

that the diffusion of propellants through thick samples may require more

than three days before an equilibrium rate of diffusion is established.

The bladder samples were taken from a section near the girth weld

and a section away from the girth weld. Additionally, a manufacturer's

sample of SR722-70 provided by JPL was tested. As shown in Table 3, the

reported values for the bladder samples are not consistent with the thick-

nesses involved; however, they are definitely within the more uniform

rates obtained (in duplicate) for the "original" material. Thus, there

is no apparent indication of increased permeability due to leaching out

of fillers or reaction with minor components of the formulation.

_CHANICAL PROPERTY TESTS

Density Determinations

Density specimens were sectioned from the surface of the diaphragm

which had been exposed to hydrazine and to nitrogen, and in both cases

at areas near to and away from the girth weld. The results of the density

determinations, performed by a simple water-displacement procedure, are

given in Table 4. As shown, there is no perceptible difference in the

density of specimens attributable to exposure to hydrazine or nitrogen.

However, the EPR closest to the girth weld is definitely more dense than

that away from the weld; this may be due either to EPR processing or tank

assembly fabrication.
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Hardness Determinations

Hardness was measured with a Shore Durometer; readings were taken on

the A scale. Squares of material measuring at least 1.5 inches across

were used in double thicknesses for the measurements; all readings were

taken at least 1/2 inch away from any edge of the samples. As shown in

Table 5, there is a distinct difference in hardness values between the

sample taken near the girth weld and that taken away from the girth weld.

The difference could be attributable either to the loss of plasticizer

resulting from the heat of welding or to differences due to mode of manu-

facture.

Tensile and Elongation

Because of the continuously changing thickness of the diaphragm from

the girth weld area to the area at the outlet barrier, it was necessary to

cut micro specimens for the tensile tests in such a way as to assure as

uniform a thickness as possible throughout the length of the specimens.

The micro tensile specimens had an over-all length of 8 cm and a gage

length of 3 cm; the gage width was 3 mm. They were tested at room temp-

erature on an Instron Model TTCL tensile tester, using a crosshead speed

of l"/min. The values obtained for tensile strength and elongation at

break are summarized in Table 6: no significant differences in specimens

taken near the girth weld or away from the girth weld could be detected.
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FIG. 4 PHOTOGRAPH OF THE EPR DIAPHRAGM (Hydrazine-Side) CUT AWAY

FROM THE TITANIUM HEMISPHERE

FIG. 5 PHOTOGRAPH OF THE INTERNAL AREA OF GENERANT TANK;
NOTE DISCL.ORATION RELATED TO DIAPHRAGM-RIB MARKS

AND OTHER SPOTTY DEPOSITS
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d. DENSITY

e. CHEMICAL
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FIG. 6 LOCATION OF SAMPLING AREAS FOR EPR DIAPHRAGM ANALYSES
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III. TITANIUM TANK ANALYSIS

Samples for metallurgical analyses were taken from the girth weld

area and locations away from the weld area. The locations of metallo-

graphy samples as sectioned out of the titanium alloy hemisphere are shown

in Figure 8 and the locations of the tensile test specimens are shown in

Figure 9.

Sections were machined out of the 6AI-4V titanium alloy hemisphere,

using accepted titanium-machining practice E4_. An i/2-inch thick circu-

lar plate was prepared with a recessed annular groove to receive the open

end of the hemisphere, and a clamp ring was made to secure the hemisphere

to the plate. With this arrangement, the entire assembly could be aligned

for machining. The hemisphere was held in a lathe and the valve section

at the top of the hemisphere was removed. Then, a cone was inserted in

the center hole and equidistant lines, 8 ° apart, were laid out from the

base to the pole of the hemisphere to serve as references for the lay-

out of the specimens.

A slitting saw on a milling machine was used to remove sample sec-

tions. The tools were operated at slow speeds and with sufficient soluble

oil-water coolant to ensure that the specimens were not heated exces-

sively. The separate pieces were then potted in Cerro Bend (m.p., 158°F)

to prevent flexing of the specimens during final machining. All surfaces

were finished with an end mill to an r.m.s, finish of 32 or better.

METALLOGRAPHY

The machine-cut metallographic specimens were polished under

continuously-running water with progressively-finer grit sizes of silicon

carbide, ranging from 180 to 600 grit. The macrospecimens, to be used

unmounted, were then etched by immersion for 3-5 minutes in a conventional

titanium macroetch (i HF, 1.5 HCI, 2.5 HN03, 9.5 H20 ).

13



The specimens for photomicrography were mountedin "Cold Mount"--a

room-temperature setting mounting medium--prior to the polishing opera-
tions described above. Subsequent treatment included:

(i) Polishing with 3-micron diamond in a liquid carrier on a
slow-speed wheel;

(2) Polishing with Linde B on a microcloth under water on a
slow-speed wheel;

(3) Finished polishing on a Syntron vibratory-polisher with

Linde B on a microcloth for 48 hours.

All photomicrography specimens were checked to ensure that metal flow had

not occurred during the preparations. The surfaces were then etched with

10-second applications of a titanium alloy microetch (i HF, 4 HN03, 96 H20 ).

Macrostructure

The generant tank outlet port (with the sieve-like barrier plate)

which had been removed from the top of the hemisphere was cut longitudi-

nally in half. After polishing and etching, the weld was studied under

low magnification. The cross-section of the outlet port is shown in

Figure i0, and a bottom view of the sieve-like barrier is shown in Fig-

ure ii. The weld zones showed no unusual macrostructure; a detailed

discussion of the microstructure found in the welded areas is given later

in this section.

The macro view of the girth weld in Figure 12 shows weld penetration

into the back-up ring; the extent of weld penetration is similar to that

noted in experimental studies E2]. Details of the microstructure are

described in the following paragraphs.

Microstructure

For comparative purposes, samples were taken at the girth weld and

at a distance away from the weld. Two samples were taken at each location

so that microstructures could be viewed along two directions:

14



(i) transverse cross-section--perpendicular to the direction from the
base to the top of the hemisphere, and (2) longitudinal--parallel to the

base of the hemisphere.

Photomicrographs of the structure n the transverse section in the

parent metal away from the weld area are shownin Figures 13 and 14, and
those of the longitudinal section in Figures 15 and 16. Comparisonof the

photomicrographs in Figures 13 and 15 indicates that there is a tendency

to preferred orientation of the grains along the longitudinal axis of the

hemisphere. Observation of the parent metal indicates that it has a highly

desirable microstructure with a well-dispersed alpha phase. The grain

size averages between 15 to 20 microns.

Inspection of the 8X photomicrograph (Figure 17) of the longitudinal

cross-section of the weld in the girth area revealed an interesting micro-

structure consisting of columnar grains extending downto the heat-

affected zone (characterized by the smaller grain size) and a multiple
banding appearing in the longitudinal direction about one-third of the

distance down from the top surface of the weld. At a magnification of

20X (Figure 18), the nature of the bands is more evident, the amount of
acicular structure being greater in the dark band areas. In Figure 19,

the microstructure at 200Xmagnification shows the presence of a coarse-

grained, transformed beta structure; a view at 1000Xis given in Figure 20.

The girth weld is shownin the transverse direction at a magnifica-
tion of 8X in Figure 21 and at 20X in Figure 22. The penetration of the

weld extends about half-way into the back-up ring. The banding which was

seen in the longitudinal cross-section (Figure 17) also appears here; it

follows a circular path, with the center of the arc at about the top sur-

face of the weld. Evidently, there were somevariations or pulsations in

the welding process that caused changes in the temperature gradient and

corresponding variations in the microstructure. The edge of the heat-

affected zone is shownin Figure 23, and the weld area itself with the
transformed beta structure maybe seen in Figure 24; a view of the latter

at higher magnification is given in Figure 25.
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MECHANICALPROPERTYDETERMINATIONS

Mechanical-property specimenswere taken from the locations on the

hemisphere shownin Figure 9: (i) transverse to the girth weld, with the

weld passing approximately across the center of the gage section of the
specimen (specimens 1 and 2); (2) longitudinally along the girth weld so

that the entire gage section consisted of girth-weld material (specimens

3 and 4); and (3) transverse to the girth weld in an area away from the
weld (specimens i0 and ii).

After the specimen blanks were cut out of the hemisphere, they
were machined to the dimensions shownin Figure 26. Becauseof the

spherical curvature of the hemisphere and the thin wall-thickness, it was

not possible to machine tensile specimensof standard dimensions. This
factor would make the results obtained in this analysis not strictly com-

parable to those obtained by the use of standard specimens. Every effort

was madeto design the specimens to minimize the effect of differences

in geometry on mechanical properties. Since ASTMstandards do not pro-

vide for sub-size flat tension specimens, reference was madeto British
Standards _5] and to a discussion on specimengeometry effects on elonga-
tion [6, 7].

After the tensile specimens were machined to a finish of 32, they

were polished along the longitudinal axis on 180-grit silicon carbide

paper, with ample flowing water, to eliminate any scratches that might

serve as stress inducers. They were tested on an Instron Model TTCL

tensile testing machine. A one-inch clamp-on strain gage was used to

measure the strain, and a stress-strain curve was recorded directly. In

addition, tests were performed with load-time recording and the strain

was determined from the movement of the cross-head. The elongation was

determined with reference to one-inch gage marks made on the gage length

of the specimen; measurements were made before and after each run and

checked against the elongation recorded on the chart. After the yield

strength of the specimen was recorded, the strain gage was removed and

the test was continued to failure of the specimen.
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The test results are summarized in Table 7. It should be noted that

the yield values of parent metal run slightly lower than the minimum values

given in JPL Spec. No. 30209B EI_, which are indicated as notes to Table 7.

Since there is no knowledge of tensile data for the actual titanium alloy

used in fabrication or of the exact nature of fabrication processes for

this particular vessel, and the specifications are based on different test-

specimen geometry than that used in this analysis, no positive statement

can be made to indicate any deterioration of tensile properties caused by

environmental conditions. However, the data in Table 7 suggest that the

metal has suffered no gross alteration of properties.

Hardness

Microhardness measurements were made for the welded and parent

materials with a Vickers hardness tester, using a 200-g load. The data

are summarized in Table 8; the average of ten readings for samples from

each area furnishes values of 316 DPH for the parent metal and 338 DPH for

the weld metal. This meets the specifications for the weld hardness to

be not more than 30 Diamond Pyramid Hardness numbers than the parent

metal.
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FIG. 11 BOTTOM VIEW OF SIEVE-LIKE BARRIER LEADING TO GENERANT

TANK OUTLET PORT; MAGNIFICATION, 2X. (Macroetch, 1 HF, 1.5

HC1, 2.5 HNO3, 95 H20)

TA - 6065 _ !22

FIG. 12 CROSS-SECTION THROUGH GIRTH WELD AREA; MAGNIFICATION, 2.5X

(Macroetch, 1 HF, 1.5 HC1, 2.5 HNO3, 95 H20)
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FIG.13 PHOTOMICROGRAPHOF TRANSVERSECROSS-SECTIONOF HEMISPHERE
AWAYFROMTHE WELDAREA; MAGNIFICATION,250X.(Etchant,
1HF,4 HNO3,95H20,swab10seconds)

FIG.14 PHOTOMICROGRAPHOF TRANSVERSECROSS-SECTIONOF HEMISPHERE
AWAYFROMTHE WELDAREA; MAGNIFICATION,1000X
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FIG.15 PHOTOMICROGRAPHOF LONGITUDINALCROSS-SECTION
AWAYFROMTHE WELDAREA;MAGNIFICATION,250X
(Etchant: 1HF,4HNO3,95H20swab10seconds)

FIG.16 PHOTOMICROGRAPHOF LONGITUDINALCROSS-SECTION
AWAYFROMTHE WELDAREA;MAGNIFICATION,1000X
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FIG.17 MACROPHOTOOF LONGITUDINALSECTIONTHROUGHGIRTHWELD;
MAGNIFICATION,8X. (Etchant:1HF,4 HNO3,95 H20, swab 10 seconds)

FIG. 18 PHOTOMICROGRAPH AT CENTER LINE OF LONGITUDINAL
SECTION THROUGH GIRTH WELD; MAGNIFICATION, 20X

(Etchant: 1 HF, 4 HNO 3, 95 H20, swab 10 seconds)



FIG.19 PHOTOMICROGRAPHOF LONGITUDINALSECTION
THROUGHGIRTHWELD;MAGNIFICATION,200X

FIG.20 PHOTOMICROGRAPHOF LONGITUDINALSECTION
THROUGHGIRTHWELD;MAGNIFICATION,1000X
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FIG. 21 MACROPHOTO OF TRANSVERSE CROSS-SECTION OF GIRTH WELD;
WALL OF HEMISPHERE TO THE LEFT AND BACK-UP RING

ON THE RIGHT; MAGNIFICATION, 8X. (Etchant: 1HF, 4HNO3,

95 H20, swab 10 seconds)

FIG. 22 PHOTOMICROGRAPH OF GIRTH WELD AT JOINT AREA BETWEEN WALL
OF HEMISPHERE AND BACK-UP RING; MAGNIFICATION, 20X. (Etchant:

1 HF, 4 HNO 3, 95 H20)
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FIG.23 PHOTOMICROGRAPHOF EDGEOF HEAT-AFFECTEDZONEOF WELD
SHOWNIN FIGURE22; MAGNIFICATION,200X.(Etchant:1HF,4HNO3,95H20)

FIG.24 PHOTOMICROGRAPHOF GIRTHWELD;MAGNIFICATION,200X
(Etchant:1HF,4HNO3,95H20,swab10seconds)
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FIG.25 PHOTOMICROGRAPHOF GIRTHWELD;MAGNIFICATION,1000X
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FIG. 26 DIMENSIONS OF TITANIUM TENSILE TEST SPECIMENS
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IV. SUMMARY AND CONCLUSIONS

Preliminary examination of the partial SN/O04 generant tank received

at SRI revealed no obvious defects in the parent metal, in the girth or

outlet welds, in the bond of the diaphragm at the girth weld, nor in the

diaphragm itself.

The surfaces of the titanium hemisphere and the EPR diaphragm which

had been in contact with hydrazine showed apparent effects of passive

reaction, that is, leaching of substances from the EPR diaphragm material.

EPR Diaphragm

It has been demonstrated that materials leached-out of the SR722-70

elastomer by hydrazine have no apparent effect toward accelerating the

decomposition of hydrazine in an accelerated 24-hour test. The small

differences in the mechanical properties of the diaphragm material at

different areas are attributable rationally to modes of manufacture

and/or differences in thicknesses of sample sections. However, it may

be noted that some of the mechanical properties are at variance with

measurements made on analagous materials submitted by the manufacturer

for test in other programs:

Tensile Elongation, Hardness,

Test Sample Strength, psi _ Shore A Ref.

EPR diaphragm 1393-1507 257-270 81-86 --

Mfr. sample .... 65 [2]

Mfr. sample 2488 269 77 [8]

Mfr. sample 2202 326 77 --

The cited data would imply either a nonuniformity of processing or more

likely an actual embrittlement of the diaphragm material because of expo-

sure to hydrazine or test conditions.
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The end-user must determine whether the post-test mechanical and

physical properties are acceptable for contemplated space storage. How-
ever, it is noted that the tensile strength of the material at 1393-1507 psi

is distinctly inferior to that of the original material. Also, since an

unmannedspacecraft for planetary exploration mayalso be subjected to a
heat-sterilization procedure, the following information is offered on the

mechanical properties of SR722-70after high-temperature cycles in air and

in vacuum [8]:

ControlProperty

Tensile Strength, psi 2488

Elongation, _ 269

Hardness, Shore A 77.0

Postcured 24 Hr

in air at 150°C

Stored at 10 -6 Torr

300 Hr at 135°C

1571 2294

195 245

77.5 80.5

The assembled data for the diaphragm material indicate that the mode

of fabrication and assembly within the generant tank is acceptable. On

the other hand, recommendation of the SR722-70 for long-term storage with

hydrazine is doubtful in view of the apparent embrittlement, loss in ten-

sile strength, and the possible effects of leached substances on hydrazine

decomposition over a long period of time. More extensive and controlled

testing is required before a positive recommendation can be made.

Titanium Alloy Tank

Metallographic studies indicated no nonconformities of surface features

of the metal, such as might result from slow dissolution of metal or reaction

with deposited foreign matter. Detailed inspection of the welded and parent

metal areas reveals only the type of microstructure that one could expect

under the conditions of fabrication.

A critical review of the metallographic data and the results of mechan-

ical property tests indicate that the materials and fabrication of the

prototype generant tank are acceptable for continued use in the environment

under consideration, and suggest that any deterioration which may have taken

place during test is trivial and is not localized.
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