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ABSTRACT 

A general solution of the frequency equation for rigid rotors in undamped bearings is 
m e  solution is applied to a wide range of derived for forward and backward precession. 

speeds and shapes, with variation in center-of-gravity location, to obtain maps of the fre- 
quency characteristics and locate major and nonsynchronous critical speeds. When the 
center of gravity is at the bearing centerline midpoint, a set  of two solutions exists. An 
additional set of two solutions appears, however, when the center of gravity is away from 
this point. 
of-inertia ratio equals or exceeds the critical-speed ratio. With the center of gravity 
midway between single-row ball bearings and the polar and diametral moments of inertia 
equal, a nonsynchronous critical speed exists at all rotor speeds. 

No forward-precession high-frequency critical speeds exist if  the moment- 
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CRITICAL-SPEED ANALYSIS OF FLEXIBLY MOUNTED RIGID ROTORS 

by Richard H. Cavicchi 

Lewis Research Center 

SUMMARY 

A theoretical analysis of rigid rotors in undamped flexible bearings develops and 
solves a general frequency equation to determine frequencies of both forward and back- 
ward precession. This study applies the general solution to a wide range of rotor rota- 
tional speeds and to shapes that vary from a pencil shape to a disk. The center of gravity 
varies from midway between the bearings to an outboard quarter point. Maps present the 
frequency characteristics of all these configurations for use as a guide in preliminary 
design. Besides locating major critical speeds, the maps locate numerous nonsynchro- 
nous critical speeds that may result from bearing defects. 

A single two-branch curve completely describes a set  of two solutions for all shapes 
when the center of gravity lies midway between the bearings. With this location between 
single-row ball bearings and the polar and diametral moments of inertia equal, a nonsyn- 
chronous critical speed exists at all rotor speeds. When the center of gravity is away 
from the bearing centerline midpoint, two sets of solutions for forward and backward 
precession result. The frequency 
magnitude of forward precession exceeds that of backward precession in each set  over 
all rotational speeds studied. As rotor speed increases, the frequency magnitude of for- 
ward precession increases and that of backward precession decreases. 

major critical speeds of the low-frequency se t  decrease in magnitude and those of the 
high-frequency set increase. 
cal speed decreases as geometries become more disk-like. 

speeds than pencil shapes. No forward-precession high-frequency critical speeds exist 
if the ratio of polar to diametral moments of inertia equals or  exceeds the critical-speed 
ratio. 

One is a low-frequency set ,  and the other is high. 

As the center of gravity is moved progressively from the bearing centerline midpoint, 

The effect of the center-of-gravity location on major criti- 

This analysis revealed that, in backward precession, disks have lower major critical 



I NTRO D UCTlO N 

Numerous investigators have studied the problem of vibrations in rotating machinery. 
Gunter (ref. 1) traces the history of some of this work over the past century. He adds his 
own contribution with a general study of nonsynchronous precession in a rotor system. In 
references 2 and 3, Yamamoto makes major advances in this field by combining theoreti- 
cal and experimental treatments. He studies shafts and disks and varies the axial location 
and thickness of the disk. Yamamoto's work reveals that ball-bearing defects can cause 
critical speeds both below and above the major critical speed, the speed at which rotation- 
al and precession frequencies are equal. Dimentberg (ref. 4)  also presents a variety of 
theoretical studies on shaft-disk systems backed. by experiment. Eshleman and Eubanks 
report on a continuous shaft-disk system in reference 5. 

Despite the thorough treatment in these references, NASA requirements have stimu- 
lated further work on rotor systems. The work of reference 6 is aimed at predicting the 
deflection amplitude and frequency of vibrations in an axial turbopump, the design of which 
is described in this reference. 

The intention of the present report is to extend the prediction of vibration frequencies 
beyond the study of one particular machine as done in reference 6. By contrast, the work 
performed herein covers a wide range of rotor shapes and speeds. This report presents 
the results of a parametric analysis of rotor dynamic frequencies. Its purpose is to aid in 
preliminary design of turbomachinery by providing guidance as to the location of potential 
major and nonsynchronous critical speeds. 

speed is varied over a wide range. 
the center of gravity: midway between the bearings, at inboard and outboard quarter 
points, and at a bearing. . 

sionless working charts relating vibration frequency with speed. Shape factors a r e  used 
as parameters to display the effect of geometry on critical speed. 
tinuation of work suggested by Timoshenko in reference ?. 

on some of the working charts to display their proximities to various critical speeds. 

In this study, the rotor geometry varies from a pencil shape to a disk, and the rotor 
The analysis is performed for four axial locations for 

The results of calculations made for this analysis are presented in the form of dimen- 

This analysis is a con- 

The operating conditions of the axial turbopump investigated in reference 6 are located 

DESCRIPTION OF ROTOR-BEARING SYSTEM 

Figure 1 is a representation of a rigid rotor on a shaft mounted in flexible bea.rings. 
The mass of the shaft is neglected. 
directions, but no axial motion (x). 

This study considers motion in the lateral (y and z) 
(All symbols are defined in appendix A. ) In figure 1, 
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Figure 1. - Rotor-bearing system geometry. 

y- and z-displacements of the shaft a r e  greatly magnified for clarity. 
assumes no friction, no unbalance, and no external disturbing force. Specifically, there 
is no damping in the bearings. 

The rotor configuration varies from a pencil shape to a disk. Shape is introduced 
into the mathematical analysis in terms of the rotor polar moment of inertia I and its 
diametral moment of inertia I1. 
inertia are expressed as dimensionless parameters: 

This study further 

To make the analysis nondimensional, the moments of 

I1 m 2  =- 

Mi2 

I 
113 = -  

I1 

The values of these parameters are small for pencil shapes, and are larger for disks. 
For example, the ratio 1/11 for a rod whose length is 10 times its diameter is 0.0149. 
For a disk of negligible thickness, it is 2. 
references 5.and 8. It is zero for a concentrated mass and is infinite for a disk having 

The parameter m2 is the disk effect used in 
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all its mass distributed over a large radius. 
like as 7r2 and 7r3 increase. 

centerline. 
of the center of gravity. 
vary from zero to infinity in the maps prepared from this analysis. 

Therefore, geometries become more disk- 

In the system studied in this report, the rotor center of gravity remains on the shaft 
The study does, however, investigate the effect of varying the axial location 

The disk effect 7r2 and the moment-of-inertia ratio 7r3 each 

GENERAL ANALYSIS 

Figure 1 shows the geometry used in this study. The bearings are assumed to be 
linear springs, with a spring constant of k/2 for each bearing in both lateral directions. 

Equations of Motion 

Timoshenko presents the equations of motion for  this analysis in reference 7 (pp. 287- 
288): 

kY1 kY2 

1 l 2  2 2 
M(L2y1+1 Y ) + - + - = O  

.. q h 2  

1 l 2  2 2 
- (1221+1z  M * *  ) + - + - = o  

I w ( i 2 ;  %) + Il(i, ; Y l )  +---- k12Y2 k l l Y l  - () 
2 2 

(3) 

This study does not consider axial motion. 
equations (5) and (6) are summations of torque. 
the free vibrations of a rigid rotor in flexible bearings. 
tions 

Equations (3) and (4) a r e  force equations; 
Equations (3) to (6) completely describe 

Timoshenko suggests the solu- 

y1 = A sin pt (7) 
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y2 = B sin pt  

z1 = c cos pt 

(8) 

(9) 

(10) z2 = D COS pt 

In equations (7) to (lo), p is the frequency of rotor vibration. Calculation of p is the 
objective of this analysis. This study is not concerned with determining the deflections 
y and z, or  the amplitudes A, B, C, and D. 

Substitution of equations (7) to (10) into equations (3) to (6) yields 

A - - - M p  + B - - - M p  = O  (: : ”) (; : 7 
C (t - 22 Mp2) + D (i - l 1  Mp2) = 0 

k2 12 k122 
-A(Iwp) + B(1op) + C(T - Ip2)  - D(T - I l p 3  = 0 

-A( kl  1l - I lpT  + B(T kZ22 - I1P2) + C(IWP) - D(IoP) 0 

In matrix form, this set becomes 

- 
0 

($ - Mp2) 

-(? - I1p, 2‘ 

- (IOP) 

- 

- .  
A 

B 

C 

D 



Frequency Equation 

Nontrivial solutions of A, B, C, and D in equations (11) to (14) require that the 
determinant of the coefficient matrix vanish. Expansion of the determinant and collection 
of similar terms yield 

(M11)2p8 - M I w + 2kM11 2 + kM211 

+ ( 1  2 + 2 ;) + k MI1Z122 + k 
2 

4 2 

2 3k MI1 

1 2 2 2  

Equation (16) is the general frequency equation for the model studied in this report. 

Nondimensional Frequency Equation 

The following dimensionless parameters make equation (16) nondimensional and 
shorten its appearance: 

P m 1  = - fi 
I1 

712 = - 
MZ2 

I 
n.3 =I 1 

w n.4 = - 

$ 



2 s = m1 

(20) 
16 

Solution of Frequency Equation 

Solution of the quartic equation (20) for  S is inconvenient. It is simpler to solve for 
the shape-speed parameter m3m4. 
Equation (20) takes the form 

The procedure is first to form a quadratic in m2. 

16 

Factoring the coefficients of this expression yields 

It is convenient to solve this quadratic in m2 for 1/m2.  The solution is 
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4(S - 1) (s - 6"3"46) 

The result of solving equation (23) for 7r37r4 yields the general solution of the frequency 
equation 

I-- 

4+(S - 1)7r2 

In equations (23) and (24), for forward precession, 

F = l  

and for  backward precession, 

6 = - 1  

The presence of the factor (S - 1) in the denominator reveals that no solution exists 
for 

s = l  

or 

Major Cr i t ica l  Speed 

A major critical speed is said to occur when the magnitudes of the precession and 
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rotational frequencies are equal. 
sented mathematically by 

Also called synchronous speed, this condition is repre- 

- *1 rcr - - - - nl 

n4 

or  

When this relation is used in the general solution of the frequency equation (eq. (24)), 
the major critical speed results as follows: 

1 
2 
- 

2 2  
+ z2 

Z 2  1 +  
27r2(1 - Rn3) 

k- 
2 li 

J 
For backward precession (6 = - l ) ,  a positive sign before the radical in equation (28) al- 
ways yields the high-frequency solutions; a minus sign yields the low-frequency set. 
forward precession (6 = l), the same pattern is true when n3 < 1. When n3 > 1, how- 
ever, the effects of the signs a r e  reversed. 

For 

Ca IC u I at ion P roced u re 

me calculation procedure uses S as an independent variable for which a range of 
values is assigned. 
parameter n1 from graphs. 

This is an indirect method that evaluates the dimensionless frequency 
From equations (17) and (19), 
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Appendix B applies equation (24) to the four center-of-gravity axial locations. The 
equations for these four cases a r e  collected here for tomparison. 

Center of gravity midway between bearings, case 1 (11/2 = 1/2): 

67r37r4 = fi - 1 

4 6  "2 

Center of gravity a t  quarter point, case 2 (ll/t? = 3/4): 

_ -  5s 1 
6a37r4 = 6 - 4 

4 6  (S - 1)7r2 

Center of gravity at one bearing, case 3 (11/2 = 1): 

2 s  - 1 
r 

6m37r4 = 6 - 
411s (S - l )n2 

Center of gravity at outboard quarter point, case 4 (L1/Z = 5/4): 

13s - -  
67r3rr4 = 6 - 4 

4+ (S - l)T2 

The effect of the axial location of the center of gravity appears in these four equations and 
in equation (24) only as a coefficient of S, 2 [ (2s + l;)/Z2] . This factor is designated the 
center-of-gravity influence coefficient. Thus, equation (24) is a relatively weak function 
of the center-of-gravity location. 
4/4 to 13/4 as the center-of-gravity location varies from midway between the bearings to 

The center-of-gravity influence coefficient varies from 

10 



I 

an outboard quarter point Z1/2 = 5/4. 
with the center-of-gravity axial location. 

port. 
of-gravity axial locations with 1/2 5 (Z1/Z\ < 3/4, since figure 2 reveals that the in- 
fluence coefficient does not change greatly in this region. 

cases 2, 3, and 4. 

Figure 2 shows the variation of this coefficient 

Equation (24) can easily be applied to cases other than the four presented in this re- 
For quick estimates, however, the graphs of equation (B2) can be used for center- 

Equations (B15), (B17), and (B19) reveal that there is no solution for S = 1 for 
For case  1, however, all solutions exist. 

. 6  .7 

/ 

, 

.8 

/ 

i 

,/ 

/ 

Center-of-gravity axial location, ZllZ 
' 1.3 

Figure 2 - Var ia t ion in center-of-gravity in f luence coeff icient w i th  
center-of-gravity axial location. 
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DISCUSSION AND RESULTS 

Universal  Plots 

The basic graphs of this report are the universal plots. They apply to a wide range 

of geometry and speed. 
and (B19). 

speeds for case 1 in which the center of gravity is midway between the bearings. 
abbreviated universal plot (made from eq. (B4)), shown in figure 3, has  the adjusted 
shape - speed para meter 

The universal plots are made from equations (B2), (B15), (B17), 

Appendix B shows that a single two-branch curve can represent all geometries and 
This 

‘ i ’ 1 l 1 l l  o Reference t u r b o w m p -  

I -  Forward precession 
6 k  ---- B kward precession - 

0 1 3 

i 

I 

/ 

.- 
I ,  

fi 

Adjusted shape-speed parameter, Z f i  7r3 7r4 = (1111) (u/-i 

Figure 3. - Abbreviated universa l  plot for center  of gravity midway between 
bearings, case 1; equation (64). 
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as the abscissa and the adjusted-frequency parameter 

P 

as the ordinate. 
lower branch, backward precession. When 6 = 1, positive values of 7r37r4 in equa- 
tion (B4) result from positive values of 7r1 to yield the upper curve in figure 3. When 
6 = -1, positive values of 7r37r4 result from negative values of 7r1 to yield the lower 
curve. In reference 8, Den Hartog observed, presumably from experiment, that the low- 
frequency branch represents backward precession. 

resents a direction opposite from the upper branch. 
quadrant to save space, however. 
equation (B4). Although not shown, a mirror image of figure 3 in the second quadrant 
represents the other symmetrical half. 

for  case 1. These four solutions are represented by 

The upper branch in figure 3 represents forward precession, and the 

The backward-precession branch should be shown in the fourth quadrant, since it rep- 
Both branches a r e  shown in the first 

Figure 3 displays only one-half of the total solution of 

Because equation (16) is of the eighth order in p, there a r e  four additional solutions 

(29) 
(k - Mp2)(k - Mp 2 ) = 0 

2 

Each factor in equation (29) yields 
This equation results from setting Z1/2 = 1/2 which permits factoring (k - Mp ) from the 
first two rows of the matrix in equation (15). 

Yamamoto states in reference 2 that the precession frequency is constant when the 
center of gravity is midway between the bearings. His constant value is represented by 
equation (30), which, as discussed previously, represents only the less-interesting half of 
the eight solutions. Yamamoto's presentation in reference 2 therefore neglects the vari- 
able solutions of figure 3 and equation (B2) of this report. 

For the axial turbopump studied in reference 6, the product 
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I w  -- 

is 0.19 at design speed. 
turbopump design operating point shown by the open circles. 

plots consist of a family of curves with n2 as the parameter. 

This value for the abscissa in figure 3 locates the reference 

When the center of gravity does not lie midway between the bearings, the universal 
Figure 4 presents univer- 

“ [ I  Reference tUrbODUmD I . .  I- Forward precession - 
Bacl I ____ ird precc 

~ 

/’ 

/ 

Jon 

/ 
/ 
/ 

/ 
/ 9 

-1- 

1 2 3 4 
Shape-speed parameter, r3r4 = t/Il)@/flM) 

/ 

5 

(a) Center of gravi ty midway between bearings; case 1; equation (B2). 

Figure 4. - Universal plots. 
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(b) Center of gravity at quar ter  point; case 2; equation (815). 

Figure 4. - Continued. 
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(c) Center of gravity at one bearing; case 3; equation (B17). 

Figure 4. - Continued. 
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(d) Center of gravity at outboard quarter point; case 4; equation (B19). 

Figure 4. - Concluded. 
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sal plots of this type for all four cases. In these figures the shape-speed parameter 

I o  -- 

is the abscissa, and the ordinate is the frequency parameter 

p 

Figure 4(a) repeats the information for case 1, presented more concisely in figure 3, to 
provide a direct comparison of case 1 with the other three cases, as represented in fig- 
ures 4(b) to (d). It is not possible to reduce the family of curves to one two-branch curve 
for cases 2 to 4. It may be of interest to note that the set of curves in figure 3 corre- 
sponds to the set in figure 4(a) (not shown) for r2 = 0. 25. This fact results from equating 
the corresponding ordinate or abscissa parameters ( 2 f i  7rl = rl,). 

Figures 4(b) to (d) each present two forward-precession solutions (solid curves) and 
two backward (dashed curves). 
second quadrant (not shown in fig. 4) make up the eight solutions called for by equa- 
tion (16). 

These four solutions plus their mirror images in the 

Intersections of the curves with the ordinate axis of the universal plots represent vi- 
bration frequencies of nonrotating rotors. 
backward precession at these points, as the two branches of the curves join there. 
solution given by equation (30) is of a different mode from the zero-speed solutions given 
in figure 4(a) by the ordinate-axis intersections. 

tion (24) when p/@ is plus or minus l. A no-solution barrier does not exist, of 
course, for case 1, as shown in figure 4(a). 
riers divide the plots into a low-frequency set and a high-frequency set. 
forward- and a backward-precession branch in each set. 

curves on the universal plots approach a 45' line through the origin for all four cases. 
This condition is obvious from equation (23). It occurs both below and above the no- 
solution barrier of figures 4(b) to (d). In fact, equation (23) also shows that the no- 
solution barrier itself (r l  = 1) also represents geometries in which r2 is infinite. 

There is no distinction between forward and 
The 

The universal plots in figures 4(b) to (d) display the no-solution condition of equa- 

For cases 2, 3, and 4, the no-solution bar- 
There is a 

As rotor shapes become more disk-like and the disk effect 7r2 approaches infinity, 

In figures 4(b) to (d), forward precession curves in the low-frequency set all cut the 
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45' line through the origin in a common point. 
by setting 

This observation can be shown analytically 

6 = 1  

and 

7r37r4 = + = 7r1 

in equation (24). The result is 

which is independent of rr2. 

tational speed, the effect of the center-of-gravity axial location as it is displaced outward 
from the midway point is a small rise in the magnitude of precession frequency. 

Comparison of the universal plots in figure 4 reveals that, for a given shape and ro- 

Frequency Plots 

Curves of precession frequency plotted against rotational frequency are helpful in 
visualizing the locations of critical speed for a given geometry. 
frequency plots for selected geometries of cases 1 and 3. 
plots, the frequency plots are obtainable from them or from equations (B4) and (24) by 
specifying r3. When 7r3 is 1, frequency plots and universal plots are identical. 

Each curve in figure 5 denoting constant n3 represents a constant geometry. 
design operating point of the reference turbopump is shown by the two lowest open circles 
in figure 5(a). The straight lines in figure 5 denote various critical speeds, to be discus- 
sed in the following two sections. Thus, each curve in figure 5 traces the passage of a 
given machine through potential critical speeds as it accelerates or  decelerates. 

Figure 5 presents a few 
Less general than the universal 

The 
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Major Crit ical Speeds 

An important aspect of this investigation is to locate the major critical speeds for all 
geometries considered. This information is significant because forward-precession ma- 
jor critical speeds may be excited by rotor unbalance. For this purpose, plots relating 
major critical speed with geometry are helpful. Major critical speed plots, presented in  
figures 6 and 7, are derived from equation (28). They may also be obtained from inter- 
sections of the curves on the universal plots with straight lines through the origin having 
slopes of 1/r3 = I~ / I .  

The abbreviated major critical-speed plot for case 1 consists of one two-branch 
curve and is shown in figure 6. The abscissa in this figure is 1/11, and the ordinate is 

The curves in figure 6 are derived from equation (B9). 
gives the solution for forward precession; the lower branch is for backward precession. 

The upper branch of the curve 
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Figure 6. - Abbreviated major crit ical-speed plot for  center of gravi ty 
midway between bearings, case 1; equation (B9). 
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Figure 7. - Major critical-speed plots. 

Thus, for  case 1, major critical speeds, when they occur, a r e  higher for forward than 
backward precession for any shape. Equation (B9) and figure 6 show that, for constant 
7r3 for case 1, the major critical speed is inversely proportional to 

Equation (B9) shows that, for forward precession (6 = l), the major critical speed 
becomes infinite when r3 is 1 and is imaginary beyond 1. The upper curve in figure 6 
illustrates these conditions. This fact implies that forward major critical speed can be 
avoided entirely for case 1 by using designs having 1/11 greater than 1. If such designs 
a r e  not feasible, designing with 1/11 as close to 1 as possible may yield a major critical 
speed well above the design speed. 

Because the dashed curve in figure 6 remains finite, backward-precession major 
critical speeds cannot be so easily avoided by selective design. 
a low value of r2 (pencil shapes) are used, the major critical speed may be high enough 
to exceed design speed. 

forward precession is very sensitive to shape. 

However, if designs with 

The steep slope of the upper curve in figure 6 reveals that the major critical speed of 
The dashed curve shows that the major 
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(b) Center of gravity at quarter point: case 2. 

Figure 7. - Continued. 

critical speed of backward precession is much less  sensitive. Also, the adjusted major 
critical-speed parameter for backward precession decreases with increasing I/I1. 

turbopump of reference 6 passes through a major critical speed as it accelerates to the 
design point. Major critical-speed plots for all four cases are shown in figure 7. 
figures have Il/MZ2 as the abscissa and wcr/@ as the ordinate, with 1/11 as a pa- 
rameter. Figure 7(a), which repeats the information given in figure 6, aids in a compari- 
son. As in the universal plots, there a re  two families of curves on the major critical- 
speed plots of cases 2 to 4. One family is above the no-solution condition, and one is be- 
low. As noted earlier, the positive sign before the radical in equation (28) yields the high- 
frequency set. 
creases as I1/MI 
this observation for low-frequency forward precession when 1/11 is greater than 1. When 

This observation arises from setting 6 = 1, rl = r4, and r3 = 1 in equation (23). 

According to the locations of the lowest two open circles in figure 5(a), the axial 

These 
. 

The curves in figure 7 show that, in general, major critical speed de- 
2 increases. For cases 2 to 4, figures 7(b) to (d) show an exception to 

1/11 is 1, the forward major critical speed is independent of I1/MZ 2 for cases 2 to 4. 

The 
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(c) Center of gravity at one bearing: case 3. 

Figure 7. - Continued. 

result is again equation (30), which was  derived earlier for a different situation. 

increases. The opposite variation occurs for backward precession. Thus, for backward 
precession, disks have lower major critical speeds than pencil-shape configurations. No 
such conclusive statement can be made for forward precession because of the opposite ef- 
fects of I1/MZ and I/I1. 

ligible for the high-frequency set. 
1/11 have a minor effect as the curves for this set converge. 

speed exists for forward precession when 1/11 is 1 or higher. Tfiis observation is true 
for the other three cases, too, but only for forward precession in the high-frequency set. 
Equation (28) is useful in explaining this circumstance. When 6 = 1 and rr3 = 1, it is 

On the other hand, for forward precession, major critical speed increases as 1/11 

2 
2 At values of Il/MZ greater than about 1, i ts  effect on major critical speed is neg- 

Furthermore, in this range of Il/Mi , variations in 

It was observed for case 1 from equation (B9) and in figure 6 that no major critical 

2 
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Figure 7. - Concluded. 

evident from equation (28) that w c r / w  becomes infinite. When 6 = 1 and 7r3 > 1, 
the magnitude of the expression following the f sign exceeds that preceding it. There- 
fore, a,,/@ from equation (28) is imaginary when the minus sign is used; this con- 
dition pertains to the high-frequency set. 

Consideration of the universal plots may give added insight to this explanation. A 45' 
line through the origin on a universal plot not only locates the major critical speeds for an 

2 1/11 of 1, but also represents a value of infinity for 11/M2 . 
dent from equation (24) when ?r2 is infinite. 
frequency set  therefore cannot intersect the 45' line when 1/11 is 1. Thus, no major 
critical speeds a r e  possible for forward precession of the high-frequency s e t  when 1/11 
is 1 or  greater. Figures 3 and 4(b) to (d) all confirm this observation. It is apparent, 
however, that intersections with the forward-precession low-frequency curves still occur. 

Figure 8 presents the major critical-speed results in a form to show the effect of 

This condition is also evi- 
The forward-precession curves of the high- 
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~ 

1.3  

axial location of the center of gravity. 
selected value of I b l .  In addition, Il/MZ2 varies as a parameter on each plot. The 
plots in figure 8 a r e  derived directly from the corresponding plots of figure 7 or from 
equation (28). 

ure 8 are shown in the fourth quadrant. A s  usual, they are dashed. 
r o r  image in the second and third quadrants. 
is from -0. 25 to 0. 5; that i s ,  Z2/Z varies from 0. 5 to 1. 25. 

for Z1/Z of 0.5, as noted in the discussion of figure 4. 
graphically illustrate the fact discussed in connection with figure 3 that the two sets of 
solutions ostensibly absent for case 1 actually exist in n1 = 1. The slopes of all the cur- 
ves in figure 8 are zero at the bearing centerline midpoint because of symmetry. Differ- 
entiating equation (28) and using 1 l/Z = 1/2 proves this observation mathematically. 

Four plots a r e  presented in figure 8, each for a 

To avoid confusion among the many curves, the backward-precession curves in fig- 

The abscissa range of Z1/2 of the image 

There are two families of curves for both forward and backward precession except 

Figure 8 has a mir- 

The merging curves in figure 8 
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(d) ~3 1/11 = 2. 

Figure 8. - Concluded. 

Figure 8 shows that the effect of the axial location of the center of gravity decreases 
as both n2 and 7r3 increase. Therefore, the effect of the axial center-of-gravity loca- 
tion decreases as geometries become more disk-like. 

Furthermore, there a r e  no forward precession high-frequency curves in figures 8(c) 
and (d) for reasons mentioned on pages 27 and 28. 

In figure 8, solutions that lie within the -1 to 1 ordinate band reveal a trend of de- 
creasing major critical-speed magnitude as the center of gravity is located progressively 
outward f rom the bearing centerline midpoint. Both families outside this band display the 
opposite trend. 

identical for all values of 7r2. 

sults from equation (31). 

tical speeds for various configurations. 

In figure 8(c), in which n3 = 1, the forward-precession low-frequency curves a r e  
This characteristic, observed in figures 7(b) to (d), re-  

Figures 7 and 8 should aid in preliminary design by pointing out potential major cri-  
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Nonsy nc h rono us C r it ical Speeds 

It is well  known that critical speeds other than the major critical speed may induce 
destructive vibrations. 
synchronous precessions. 

in rotors supported by ball bearings. H e  has determined that the bearings a r e  respon- 
sible for this phenomenon. 
critical speeds occur when double-row self-alining ball bearings a r e  used. These mo- 
tions occur at rotor speeds both greater and less than synchronous critical. 
characteristics a r e  linear for this bearing type. merefore ,  the rotors studied herein 
may be assumed to be mounted in  double-row ball bearings because of the linear spring 
constant used in this analysis. 

cal  speed for single-row ball-bearing configurations. 
rotational speeds above synchronous. This type of bearing has  nonlinear and nonsymmet- 
rical  spring characteristics because of the absence of self alinement in the bearings. 

row ball-bearing defects cannot be rigorously applied to the solutions of the present anal- 
ysis. However, even for double-row ball-bearing defects, the present analysis is approx- 
imate because of its idealized assumption of no damping. Furthermore, Yamamoto shows 
in reference 3 that theoretical solutions from his linear spring-constant analysis are good 
approximations to his  experimental results obtained with single- row ball bearings (non- 
linear spring constants). Therefore, nonlinear spring constant conditions a r e  applied 
herein without hesitation to the present analysis for the purpose of locating potential non- 
synchronous critical speeds. 

Yamamoto observed that very slight defects can produce driving forces at frequencies dif- 
ferent from the shaft speed. 
uniformity in the ball diameters. 
from noncircular inner or outer bearing races. Yamamoto observed that all commercial 
bearings made in Japan, and presumably elsewhere, have these defects. 

than critical. 
occur when the critical-speed ratio is 

The accompanying motions of the rotor a r e  commonly called non- 

Yamamoto has made the most thorough investigation of nonsynchronous precessions 

In reference 2, he reports that two classes of nonsynchronous 

The spring 

Yamamoto's work in reference 3 reveals two other classes of nonsynchronous criti- 
These motions all occur at rotor 

Therefore, the conditions for  nonsynchronous critical speeds resulting from single- 

Double-row ~ _. ball bearings. - In experiments with self-alining ball bearings, 

One class of such nonsynchronous motion arises from non- 
Another se t  of nonsynchronous precession may result 

Nonuniform ball diameters cause nonsynchronous precession at rotor speeds higher 
Yamamoto's work disclosed that the most serious conditions of this type 
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for  forward precession. 
experimentally and theoretically by Yamamoto, and reported in references 2 and 9. 
presents the following relation in  these references: 

The constant in this expression is an average value obtained 
He 

d 2 + 2 -  
9 

For backward precession, Yamamoto finds 

Appendix B uses these expressions in equation (B8) for case 1 yielding equations (B12) 
and (B13). These equations a r e  plotted in figure 9, which is a companion plot of figure 6, 
with appropriate change of constant. 
cession of this type cannot occur for shapes having 1/11 greater than the critical-speed 
ratio 1/2.65. 
to a small range of n3. Backward precession is possible over the entire range of IDl, 
however. 

Figure 9 shows that forward nonsynchronous pre- 

Thus, forward-precession nonsynchronous speeds of this type a r e  limited 

At this point, the use of equation (B8) is convenient in making a general statement: 

2 6  n4 = 1 

For case 1, no forward-precession critical speeds (either synchronous or nonsynchronous) 
exist when the moment-of-inertia ratio r3 equals o r  exceeds the critical-speed ratio r. 

Yamamoto's work revealed that the amplitudes during backward-nonsynchronous mo- 
tion a r e  smaller than in forward precession. 
mains finite in figure 9, the small amplitudes reduce the severity of the consequences of 
this motion. 

plot of figure 5(a). 
figures 5(b) to (d) for case 3. 

precession curves a r e  meaningful. Similarly! the meaningful intersections for the 
r = 1/4. 1 lines a r e  with the backward-precession curves. Solid circles in figure 5 de- 
note valid intersections. 

Therefore, although the dashed curve re-  

Lines representing r = 1/2.65 and r = 1/4. 1 for case 1 a r e  shown in the frequency 
Likewise, corresponding lines are shown in the frequency plots of 

In figure 5, only the intersections of the r = 1/2. 65 lines with the forward- 
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r = U2.65 and r = -Y4 .1  for center of gravity midway 
between bearings; case 1, equations (812) and (B13). 

Most of the r = 1/2.65 and r = 1/4. 1 intersections in figures 5(b) to (d) occur 
below the no-solution barrier lp / d m  I = 1 for  both forward and backward preces- 
sion. Although these intersections a r e  at the lower end of the rotor-rotational-speed 
scale, they occur at more than twice the major critical speeds. 

In reference 2, Yamamoto points out that noncircular inner and outer bearing races 
cause nonsynchronous forward precession at critical-speed ratios of 2, 3, and 5. 
r = 5 motion is not serious, however, because of the low amplitudes he observed at this 
condition. 
plots of cases 1 and 3 in figure 5. 
at rotor rotational speeds well  below the major critical speeds. 

The 

Lines denoting critical-speed ratios of 2 and 3 are shown on the frequency 

This observation im- 
All  intersections, shown by solid circles, take place 
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plies that even low-speed machines can experience this type of nonsynchronous preces- 
sion. Furthermore, most machines, including the reference turbopump, must acceler- 
a te  through these critical speeds to reach design speed. 

sections exist with the r = 2 lines. 
which it w a s  noted that, by equation (B8), no forward precession exists when 7r3 2 r. 
For cases 2 to 4, both a graphical and a mathematical explanation aid in understanding 
the absence of forward-precision intersections when 7r3 = r = 2. 

Although not presented herein, frequency plots for cases 2 to 4 made for 1/11 of 2 
would also disclose no nonsynchronous critical speeds for the forward-precession high- 
frequency sets  when r = 2. Consideration of the location of the n 2  = co line on a fre- 
quency plot will  illuminate this situation because no forward-precession high-frequency 
solutions are allowed below this line. For example, on a frequency plot constructed for 
n3 = 2, the 7r2 = 00 line coincides with a critical-speed-ratio line of r = 2 and therefore 
allows no high-frequency solutions. More generally, coincidence of the 7r2 = w line and 
a critical-speed-ratio line for forward precession (6 = 1) on a frequency plot for 7r3 = r 
can be proved mathematically from equation (23). 

Forward-precession 
high-frequency critical speeds do not exist for geometries in which 1/11 equals or  ex- 
ceeds the critical-speed ratio r. 
frequency intersections exist, however. 

noncircular bearing races without having both defects. 
the critical speeds revealed for both kinds of bearing defect will occur. 

Single-row ball bearings. - One class of nonsynchronous motion associated with 
single-row ball bearings is called subharmonic. Yamamoto observed this motion only in 
forward precession. Subharmonic motion is characterized by critical-speed ratios r of 
1/2, 1/3, . . . l/n, where n is a positive, real  integer. It can occur only after the 
major critical speed is exceeded. 

figure 5. Only intersections with forward-precession curves are valid, as shown by solid 
circles. Figure 5(a) shows that no high-frequency nonsynchronous precession of this type 
is possible for case 1 when 1/11 is 0. 5 or greater. This observation is also true for all 
cases, and is a consequence of the general conclusion stated earlier relating n3 and r. 

The axial turbopump studied in reference 6 w a s  mounted in single-row ball bearings. 
According to figure 5(a), the locations of the two lowest open circles reveal that it 
passes through the r = 1/2 nonsynchronous critical speed when accelerating to the 
design point. 
tion. 

Figure 5(d) shows that when 1/11 is 2, no high-frequency forward-precession inter- 
This circumstance is analagous to that for case 1 in 

Therefore, a general conclusion can be stated for all cases. 

Figures 4 and 5 show that forward-precession low- 

It is unlikely that a se t  of bearings would have either nonuniform ball diameters or  
Thus, it may be assumed that all 

Lines for subharmonic motion are shown on the frequency plots for cases 1 and 3 in 

In fact, the design point itself lies close to this nonsynchronous condi- 



I 

Yamamoto further observed that when single-row ball bearings are used, two natural 
frequencies build up together at certain speeds. The absolute value of their sum o r  dif- 
ference is related to rotor rotational speed by 

in which pi and p 
tion (24). 
may exceed those of the major critical speed. It is evident from any of the universal 
plots that the condition i = j is not allowed, except for the trivial case of zero rotor ro- 
tational speed. In this instance, only 

a r e  any two of the natural frequencies as calculated from equa- 
j 

In reference 3, Yamamoto reports that vibration amplitudes from these sources 

P 1 =  P4 

and 

P2 = P3 

a r e  allowed. 

value of I/I1. 
fore 

It was  observed in figure 5(a) that there are only two solutions for case 1 for each 
The only summed-and-differential motion possible for this case is there- 

where p 
precession solutions. 

lowest open circles, represents the summed-and-differential motion for the reference 
axial turbopump. The location of this circle relative to the 45' line through the origin 
shows that this turbopump accelerates through a summed-and-differential nonsynchro- 
nous critical speed just prior to reaching its design point. 

represents forward-precession solutions, and p4 represents backward- 

The uppermost open circle in figure 5(a), obtained by adding the ordinates of the two 

Figure lO(a) presents a copy of the m3 = 0.4 curve of figure 5(a) with curves of 
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added to illustrate the possibilities for  case 1. The uppermost solid circle locates a non- 
synchronous critical speed at 2.16 for 

Oris 

This point is established by the intersection of the 

curve with the 45' line through the origin. It is clear that no intersection is possible for 
the 

p1 +P4 

curve. 

the line 1 (pi f p.) 1 / w  = 1 when 1/11 has  a value of 1. 
dent that designs having the center of gravity midway between the bearings and I = I1 
should be avoided if single-row ball bearings are used because all rotational speeds a r e  
critical. 

twelve summed-and-differential combinations. 
ure  5(c) of the four solutions for case 3 when 7r2 = 0. 1 and 7r3 = 0.4. 
displays all 12  possible 1 pi f p. 1 combinations. 

p3, no 1 p1 + p4 1 or  I p2 + p3 1 intersections with the 45' line through the origin of a 
frequency plot a r e  possible. 
pencil shapes and disks, shows 10 lpi f p. 1 intersections with the line r = 1. 
fore, the maximum number of intersections for any geometry is 10. 

Either equation (B4) or figure 5(a) can be used to show that lpl  + p4/ coincides with 
From this observation, it is evi- J 

For a rotor with four natural frequencies, as observed for cases 2 to 4, there a r e  
Figure 10(b) presents a copy from fig- 

Figure 10(b) also 

3 
Because at zero rotor-rotational speed p1 coincides with p4 and pa coincides with 

Figure 10(b), which is drawn for shapes intermediate between 
There- 

J 

Yamamoto and Hayashi have proved mathematically in reference 10 that only summed 
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harmonic oscillations can occur if  both natural frequencies pi and p 
precession or if both represent backward precession. 
ward precession and the other, backward, only differential harmonic oscillations can oc- 
cur. 
Can occur: 

represent forward 
j 

If one frequency represents for- 

The following tabulations summarize the combinations that can and cannot occur. 

w =  I P ~ + P ~ I  J 
Cannot occur: 

1 " = J P 1 -  P21 

= ( P I  + P31 

t 0 = Ip1 + p4I 

w = ( p 2  +p31 
(3  5) 

" = lP2 + P41 

Valid intersections with the major critical-speed line, according to the allowed combina- 
tions of equation (34), a r e  shown by the solid circles in figure 10(b). The four major cri- 
tical speeds also are located by the appropriate solid circles. 

For disks, no intersections for I p1 * pj 1 can exist, as figure 5(d) will verify. There- 
fore, there are five \p i  * p. I intersections with the line r = 1 on a frequency plot for a 
disk. But equation (34) shows that only 1 p2 - p3 1 ,  I p2 - p4 I , and I p3 + p4 1 can occur 

J 
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for disks. In references 3 and 10, Yamamoto presents experimental evidence to substan- 
tiate equations (34) and (35) as applied to disks. 

and-differential nonsynchronous critical speeds varies from three for a disk to six for 
A conclusion from this phase of the study is that the maximum number of summed- 

pencil shapes. 

discussed, as well as for the major critical speeds. 
Plots similar to figure 8 may be drawn for any of the nonsynchronous critical speeds 

SUMMARY OF RESULTS 

This rotor critical-speed analysis has yielded the following results when the center of 

1. The solution for rotor frequencies simplifies to a single two-branch curve, one 

2. The forward major critical speed rises rapidly and becomes infinite as the ratio 

gravity is midway between the bearings: 

for forward and one for backward precession. 

of polar to diametral moments of inertia 1/11 approaches 1. No forward-precession ma- 
jor critical speeds exist when 1/11 equals or exceeds l. The magnitude of backward 
precession frequency, however, remains finite and decreases slowly throughout the range 
of I/I1. 

3. Major critical speeds are inversely proportional to 4 3  for constant I/I1. 
4. When single-row ball bearings are used, designs should avoid having the polar-and 

diametral moments of inertia equal because a summed-and-diff erential nonsynchronous 
critical speed occurs for all rotor rotational speeds. 

5. An experimental axial turbopump passes through a major and a nonsynchronous 
critical speed during acceleration, and at its design point operates close to nonsynchro- 
nous critical speeds. 

For more general center-of -gravity locations, the following observations were made: 
6. A low-frequency set  of solutions occurs for forward and backward precession 

within a band width of - 1 to 1 for p/@. A high-frequency se t  occurs outside this 
band. A no-solution barr ier  exists at *l for p/ k/M except when the center of gravity 
is centrally located. 

7. At any rotor speed of a given configuration, the frequency magnitude of forward 
precession exceeds that of backward precession. 

8. The frequency magnitude of forward precessions increases with increasing 
rotor speed. The opposite trend occurs for backward precession. 

9. As the center-of-gravity location is moved progressively outward, major critical 
speeds of the low-frequency families decrease in magnitude and those of the high- 
frequency families increase. 

d- 
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10. In backward precession, disks have lower major critical speeds than pencil 
shapes. 

11. No forward-precession high-frequency critical speeds exist for geometries in 
which the polar to diametral moment-of-inertia ratio equals or  exceeds the critical-speed 
ratio. 

12. The effect of the axial location of the center of gravity on the major critical 
speeds decreases as geometries become more disk-like. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 6, 1968, 
122- 29-02- 20- 22. 
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I .I 

APPENDIX A 

SYMBOLS 

A, B, c, D 

9 

d 

I 

I1 

k 

2 

2 1 7  22 

M 

n 

vibration amplitude, m r 

outer diameter of inner 

S ring of ball bearing, m 

diameter of individual ball 
in ball bearing, m 

rotor polar moment of t 

X 2 inertia, kg-m 

rotor diametral moment 
2 of inertia, kg- m 

linear spring constant, 
2 kg/sec 

natural frequency used for 
nondimensional pur- 
poses, rad/sec 

distance between bear- 
ings, m 

distances from bearings to 
rotor center of gravity, 
m 

rotor mass, kg 

Y 

Y17 Y 2  

z 

general factor in har- '17'2 
monic sequence 
1, 1/2, 1/3, . .. l/n 

rotor precession fre- 
quency, rad/sec 6 

T l  rotor precession frequency 
used in summed-and- 
differ entia1 nonsynchso- 
nous critical speeds, 
rad/sec 

critical-speed ratio, 

"1/774 = P/W 

square of frequency pa- 

rameter, (p/$&i)2 

time, sec 

axial coordinate of arbi- 
t rary reference frame, 
coincident with shaft 
centerline when undis- 
turbed, m 

lateral coordinate perpen- 
dicular to x-coordinate, 
m 

lateral distance from ar- 
bitrary reference frame 
to bearings in y- 
direction, m 

lateral coordinate mutually 
perpendicular to x- and 
y-coordinates, m 

lateral distance from ar- 
bitrary reference frame 
to bearings in z- 
direction, m 

*1 

frequency parameter , 
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7r2 dimensionless rotor moment of 
2 inertia or  disk effect, 11/M2 

ratio of rotor polar to diametral 
moment of inertia, 1/11 

eter, a /@ 

7r3 

7r4 rotor rotational speed param- 

w rotor rotational speed, rad/sec 

Subscripts: 

B backward 

c r  major critical 

F forward 

} i i j  
i = 1, 2,3,4 i, j dummy indexes, = 1, 2, 3 , 4  

ns nonsynchronous 
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APPENDIX B 

This 

A P PLICATIONS 

ppendix applies the general solution to the frequency equation (24) to four spe- 
cific cases. The only variation in these cases is the axial location of the center of grav- 
ity. 

Center of Gravity Midway Between Bearings (Case 1) 

The simplest case is that in which the center of gravity lies midway between the bear- 
ings. For this condition (see fig. 1) 

Insertion of this relation into equation (24) gives 

It is of great significance that the factor (S - 1) in equation (24) cancels for this case. 
Basically, it reduces equation (24) from second order in S to first order. By equa- 
tion (19), equation (B2) is therefore a quadratic in vl. Rewritten with ml, equation (B2) 
is 

1 6m3m4 = m1 - ~ 

4 * 1 ~ ~  

If this expression is plotted with ml and m3m4 as coordinates, a family of curves with 
m2 as the parameter results. More judicious choice of coordinates, however, reduces 
the family of curves to a single curve. The procedure is to use fi in each of the two 
coordinates. Thus 
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The coordinates used are 

and 

Den Hartog suggested this technique in reference 8 (p. 259). 
The critical speed ratio is defined by 

“1 

“4 
= -  

With this relation, equation (B4) becomes 

2 + J 2  m4 = 1 

For the major critical speed, defined by equation (27), r = rcr = 1, equation (B8) becomes 

Equation (28) also reduces to this form when equation (Bl) A usec 

among others: 
In reference 2, Yamamoto observed the following nonsynchronous critical speeds, 

Forward precession: 

1 r =- 
2. 65 
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Backward precession: 

1 
4 . 1  

r = -- 

Use of these expressions and the appropriate value of 6 in equation (B4) yields 

Forward precession: 

Backward precession: 

I 2.65 

Center of Gravity at Quarter Point  (Case 2) 

If the center of gravity is located one-fourth of the axial distance between the bear- 
ings, figure 1 shows that 

11 - 3 

22 - 1 

2 4  

1 4  

With these relations, equation (24) becomes 
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The change-of-coordinate technique used in equation (B4) is of no value in this case 
because of the S in the numerator of equation (B15); that is, there is no choice of coor- 
dinates that can reduce the family of curves to a single curve. 

Center of Gravity at  One Bearing (Case 3) 

When the center of gravity is at one of the bearings, the conditions are 

then 

4fS(S - l)n2 

This expression also results in a family of curves with a2 as parameter. 

Center of Gravity at  Outboard Quarter Po in t  (Case 4) 

The relations among Z1, Z2, and 2 for this case are 

The solution to the frequency equation is 

13s - -  
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